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Resumo

Modelos de cópulas tornaram-se um método popular para a otimização de portfólios
via Valor-em-Risco Condicional (CVaR). A abordagem de estimação normalmente é
composta por dois passos: no primeiro, modelos ARMA-GARCH univariados são
utilizados para ajustar cada retorno dos ativos, enquanto que em um segundo passo,
a estrutura de dependência do retorno dos ativos é modelada utilizando funções de
cópulas. Com o aumento do número de ativos compondo um portfólio, a estimação
de modelos tradicionais de cópulas dinâmicas torna-se computacionalmente onerosa.
Neste trabalho, nossa contribuição principipal é de utilizarmos modelos de cópulas
fatoriais dinâmicas para encontrarmos um portfólio de alta dimensão ótimo no sentido
de minimizar o seu CVaR. Cópulas fatoriais são capazes de lidar com a ”maldição da
dimensionalidade” enquanto ainda oferecem um alto ńıvel de complexidade e flexi-
bilidade em seus modelos. Para introduzir variação temporal nos parâmetros de de-
pendência das cópulas, utilizamos o modelo Generalizado de Scores Autoregressivos
(GAS). Ainda, consideramos duas estruturas distintas de dependência: dependência
homogênea e dependência em blocos. Utilizando dados de ações do Ibovespa de
Janeiro de 2013 a Dezembro de 2020, aplicamos uma janela móvel de um dia para
estimar ambos os modelos univariados e as funções de cópulas e também achar os pe-
sos ótimos do portfólio para o dia seguinte. Os resultados emṕıricos sugerem que os
modelos de cópulas fatoriais têm medidas de risco e retorno similares ou superiores em
relação a um portfólio de uma cópula Gaussiana tradicional, sendo também consid-
eravelmente superiores a dois portfólios de Markowitz de média-variância diferentes,
um portfólio com pesos iguais para cada ativo e o ı́ndice IBRX50.





Abstract

Copula models have become a popular Conditional Value-at-Risk (CVaR) port-
folio optimization method. The estimation approach normally is composed by two
steps: in the first, univariate ARMA-GARCH models are commonly fit to each as-
set return; whereas in a second step, the returns dependence structure is modeled
using copula functions. As the number of assets in a portfolio increases, the estima-
tion of traditional dynamic copulas becomes computationally burdensome. In this
work, our novel contribution is to employ dynamic factor copula models to find an
optimal high dimensional portfolio in the sense of minimizing its CVaR. Factor cop-
ulas are able to address the ”curse of dimensionality” while offering a high level of
complexity and flexibility to the models. We introduce time variation into the copula
dependence parameters using a Generalized Autoregressive Scores (GAS) model. Two
distinct dependence structures are considered: homogeneous dependence and block
dependence. Using data consisting of Ibovespa Brazilian stocks from January 2013 to
December 2020, we apply a one-day rolling window to estimate both univariate mod-
els and copula functions and also to find optimal portfolio weights for the following
day. Empirical results suggest that our min-CVaR-factor-copula proposed strategy
has superior or similar risk and return measures with respect to a traditional Gaussian
copula while being considerably superior to two different Markowitz mean-variance
portfolios, an Equal Weights portfolio and the IBRX50 index.
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Chapter 1

Introduction

This dissertation studies a dynamic factor copula method to optimize portfolios con-
sisting of many assets with regard to its Conditional-Value-at-Risk (CVaR). The study
is fully presented in chapter 2 of the present work. In addition, the current chapter
discloses the main concepts employed throughout the study as well as our findings.

1.1 Portfolio optimization using CVaR

Over recent years, CVaR has become a popular risk measure in portfolio optimization
problems due to its helpful properties. As opposed to the famous Markowitz mean-
variance optimization, CVaR considers only the downside risk of a portfolio in order
to find optimal asset allocation. Specifically, it measures the risk of potential extreme
losses an investor may face while not limiting the upside risk as variance minimization
problems do.

Following Rockafellar and Uryasev (2000), we define CVaR at a confidence level
β as

CV aRβ(w) = 1
1 − β

∫
f(w,r)⩾V aRβ(w)

f(w, r)p(r) dr. (1.1)

In the equation, f(w, r) is a loss function depending upon a decision vector w that
belongs a set W ∈ Rn of feasible portfolios and a random vector r ∈ Rm. The vector
r stands for the uncertainties that can affect the loss. Then for each w, the loss
f(w, r) is a random variable having a distribution in R conditioned by that of r. It
is assumed that r has a probability density function denoted by p(r).

Given equation 1.1, it is clear that CVaR uses VaR in its definition. As VaR
renders non-convex portfolio optimization problems, the use of the equation above
can be troublesome. The main contribution of Rockafellar and Uryasev (2000) is the
proposal of an auxiliary function that can be used to calculate CVaR without the
need to compute VaR risk first:

Fβ(w, α) = α + 1
1 − β

∫
r∈Rm

(f(w, r) − α)+ p(r) dr, (1.2)
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4 CHAPTER 1. INTRODUCTION

where (h)+ = max(h, 0).

Then, by minimizing the auxiliary function, we end up obtaining the CVaR, i.e.,

CV aRβ(w) = min
α∈R

Fβ(w, α). (1.3)

An important feature of Fβ(w, α) is that it is convex with respect to α and contin-
uously differentiable. This is especially useful from a numerical point of view since
continuously differentiable convex problems are straightforward to solve.

Furthermore, the integral in equation 1.2 can be approximated by sampling rj

observations from the probability density function p(r), where j = 1, ..., J . Then, the
approximation of Fβ(w, α) is given as

F d
β (w, α) = α + 1

(1 − β)J

J∑
j=1

(f(w, rj) − α)+, (1.4)

which is convex and linear regarding α. Although not differentiable with respect to
α, we can obtain its minimum with a linear programming problem.

Finally, if f(w, r) is convex with respect to w, then CV aRβ(w) is convex regard-
ing w and F d

β (w, α) is convex regarding (w, r). Additionally, if the set W of feasible
portfolios including constraints is a convex set, minimizing the CVaR associated with
the loss function is equivalent to minimize F d

β (w, α) over all (w, α) ∈ W × R, i.e,

min
w∈W

CV aRβ(w) = min
w∈W, α∈R

F d
β (w, α). (1.5)

By solving (1.5) we can simultaneously obtain the optimal portfolio vector of weights,
w∗, the portfolio’s corresponding VaR, α∗, and the minimum CVaR associated to the
loss, which equals to F d

β (w∗, α).

In portfolio optimization problems, a common loss function is the negative of the
portfolio return. We interpret r as the random vector that constitutes the joint distri-
bution of the returns of the assets in the portfolio, with density p(r) and independent
of w. Then, f(w, r) = −w

′
r, which is convex and linear regarding w.

Using equation 1.4, the minimization of the approximation F d
β (w, α) with the

defined loss function can be solved via convex programming. With the use of aux-
iliary variables, bj ∈ R, j = 1, ..., J , minimizing the approximation is equivalent to
minimizing the linear expression

min
w∈W, b∈RJ , α∈R

α + 1
(1 − β)J

J∑
j=1

bj

s.t bj ⩾ f(w, rj) − α, j = 1, ..., J,

bj ⩾ 0, j = 1, ..., J,

(1.6)

subject to additional linear constraints. It is then possible to solve the minimization
problem using efficient linear programming algorithms such as simplex.
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1.2 Copulas

Often, it is not desired to work with p(r) itself. Methods to obtain the joint return
distribution can be computationally burdensome in a portfolio of many assets since
there are many parameters to estimate. A common approach is to assume that the
joint probability of the asset returns r follows a multivariate Normal distribution.
However, asset returns can possess tail dependence, heavy tails and asymmetry. This
behavior is usually referred to as financial stylized facts, and while not addressed by
the multivariate Normal assumption, still an essential feature in the financial analysis
of a portfolio.

Consider the copula function C(.),

C(u1, ..., un) = P (U1 ⩽ ui, ..., Un ⩽ un), (1.7)

in which ui are realizations of Ui for i = 1, ..., n, and Ui ∼ U [0, 1]. Copulas have
become a popular method in portfolio optimization problems. Following Kakouris
and Rustem (2014), it is possible to represent the density function of an n-copula as

c(u1, ..., un) = ∂nC(u1, ..., un)
∂u1, ..., ∂un

= f(r1, ..., rn)∏n
i=1 fi(ri)

. (1.8)

This useful representation allows us to replace the estimation of the complex joint
distribution of the asset returns by separately modeling the univariate distribution of
the assets and their dependence structure captured by the copula.

Joe and Xu (1996) show that a two-step procedure is a consistent method to
estimate the dependence of the asset returns. In a first step, the conditional marginal
distribution of each asset’s time series is estimated using univariate models. In a
second step, one estimates the multivariate dependence parameters associated with
the copula functions. Then, the optimal portfolio is obtained by generating return
scenarios derived from the univariate models and the dependence between the asset
returns, as in equation 1.4.

Different copula functions and estimation methods have surfaced in the last decades.
Common methods include Vine Copulas and mixtures of copula distributions. A mix-
ture, as in Pfaff (2012), aims to use a linear combination of different copula functions
to capture different asset return dependence structures, such as lower and upper tail
dependence. Vine copulas, proposed by Joe (1994) and Joe (1996), aim for a graphical
construction of a tree of bivariate copulas, which together build on to a desired multi-
variate distribution. Due to good performance when dealing with a moderate number
of assets, they have become prevalent in financial analysis and have many variations,
such as Tófoli et al. (2016), who introduced a dynamic vine copula approach.

Nevertheless, dynamic vine copulas can also become an infeasible method when
dealing with portfolios of high dimensions due to the large number of parameters to
estimate.
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1.3 Dynamic Factor Copulas

A factor copula model, introduced by Oh and Patton (2017), aims to build a copula
model with fewer parameters to estimate based on data dimension reduction methods.
A factor copula model with one factor for N asset returns time series is given by

Xit = λitZt + ϵit , i = 1, 2, ..., N, (1.9)

where Zt ∼ FZ(γZ), ϵit ∼ Fϵ(γϵ), Z ⊥ ϵi ∀i, λit is the ith factor loading at time t,
γZ and γϵ are vectors of the parameters from the distribution of Z and ϵ respectively
and Xt = (X1t , ..., XNt) is an underlying vector of variables whose copula is the same
one as the copula from the observable variables Y t = (Y1t , ..., YNt).

In order to model Z and ϵ, Oh and Patton (2017) propose the use of a skew-t
distribution. This way, important stylized facts of financial random variables, such
as asymmetry, tail dependence and heavy tails, can be addressed.

Two essential aspects of factor copula models are how the dependence structure
is built and how it varies over time. Regarding the former, we consider two different
dependence structures: Equidependence (Homogeneous dependence), where all the
asset returns equally depend on each other, and block dependence, which divides the
assets among groups with equal intra-group return dependence. Regarding the latter,
we use the GAS model developed by Creal et al. (2013) to deal with the time variation
of the factor copula loadings, as applied in Oh and Patton (2018).

Usually, factor copulas do not have a closed form and their estimation can be
compromised. When dealing with time-varying factor copulas, the most common es-
timation method is based on maximizing a numerical approximation of the likelihood
function.

Let ct(u1t , ..., uNt) be the density of the factor copula Xt. Then,

ct(u1t , ..., uNt) =
hXt [F −1

X1t
(u1t), ..., F −1

XNt
(uNt)]

f1t(F −1
X1t

(u1t)) × ... × fNt(F −1
XNt

(uNt))
. (1.10)

We define
fit(xit) =

∫ 1

0
fϵ(xit − λitF

−1
Z (m))dm, (1.11)

FXit
(xit) =

∫ 1

0
Fϵ(xit − λitF

−1
Z (m))dm, (1.12)

and

hXt(x1t , ..., xNt) =
∫ 1

0

N∏
i=1

fϵ(xit − λitF
−1
Z (m))dm. (1.13)

The log of the copula likelihood function is then given by

lc(θc|θ̂1, ..., θ̂N , w) =
T∑

t=1
ln c[F1(y1t |θ̂1, w), ..., Fn(yNt |θ̂N , w)|w, θc], (1.14)
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where θc = [γZ , γϵ, γλ]′ is the set of copula parameters to be estimated.

1.4 Proposal of this work

We propose using an ARMA-GARCH GAS factor copula model to model and opti-
mize a minimal-CVaR high-dimensional portfolio. We apply the framework for stocks
composing the Ibovespa index and compare the method to a traditional Gaussian
copula model with fixed parameters, a Markowitz mean-variance portfolio, a second
Markowitz portfolio with a smaller estimation window, an Equally Weighted portfolio
and the index of the 50 more tradeable stocks in Brazilian market, IBRX50. We find
that the performance of our proposed strategy is superior to both Markowitz port-
folios, the Equally Weighted portfolio and the IBRX50 index and similar or superior
to the Gaussian one regarding different risk and return measures. The proposal is
presented in an article format in chapter 2.





Chapter 2

Article

The attached research article, CVaR optimization of high dimensional portfolios using
dynamic factor copulas (Alovisi and Ziegelmann, 2022), comprises the main contri-
bution of the present Thesis.

9



CVaR optimization of high dimensional portfolios using

dynamic factor copulas

Gustavo Alovisia, Flávio Augusto Ziegelmannb

aDepartment of Statistics, Universidade Federal do Rio Grande do Sul,
bDepartment of Statistics, Universidade Federal do Rio Grande do Sul,

Abstract

Copula models have become a popular Conditional Value-at-Risk (CVaR)
portfolio optimization method. The estimation approach normally is com-
posed by two steps: in the first, univariate ARMA-GARCH models are com-
monly fit to each asset return; whereas in a second step, the returns depen-
dence structure is modeled using copula functions. As the number of assets
in a portfolio increases, the estimation of traditional dynamic copulas be-
comes computationally burdensome. In this work, our novel contribution is
to employ dynamic factor copula models to find an optimal high dimensional
portfolio in the sense of minimizing its CVaR. Factor copulas are able to ad-
dress the ”curse of dimensionality” while offering a high level of complexity
and flexibility to the models. We introduce time variation into the copula
dependence parameters using a Generalized Autoregressive Scores (GAS)
model. Two distinct dependence structures are considered: homogeneous
dependence and block dependence. Using data consisting of Ibovespa Brazil-
ian stocks from January 2013 to December 2020, we apply a one-day rolling
window to estimate both univariate models and copula functions and also to
find optimal portfolio weights for the following day. Empirical results suggest
that our min-CVaR-factor-copula proposed strategy has superior or similar
risk and return measures with respect to a traditional Gaussian copula while
being considerably superior to two different Markowitz mean-variance port-
folios, an Equal Weights portfolio and the IBRX50 index.

Keywords: Portfolio Optimization, Factor Copulas, CVaR, Financial
Econometrics, Financial Risk

Preprint submitted to International Review of Financial Analysis December 3, 2022



1. Introduction

Portfolio optimization is the practice of distributing resources among dif-
ferent investments. This may be, for example, among different asset classes,
such as stocks, funds, bonds and real estate, or among different stocks in an
equity portfolio. Generally, in this kind of problem, the asset’s returns are
described as random variables, and the selection of an optimal risk-return
portfolio depends on the underlying assumptions about the behavior of the
returns and the choice of an adequate risk measure.

Markowitz (1952) in his seminal paper introduced the mean-variance op-
timal portfolio, one of the earliest portfolio optimization frameworks. In a
traditional mean-variance optimization, the portfolio’s risk and mean-return
estimation is obtained by the asset returns covariance matrix and the sample
average of the returns, respectively. Markowitz identified that by diversifying
a portfolio among different assets and return patterns, it is possible to build
an efficient portfolio with either (i) minimum risk for a specified target of
portfolio mean-returns or (ii) maximum expected return for a specified risk
target.

An important feature of the traditional mean-variance portfolio optimiza-
tion is the assumption of normality to represent the behavior of financial
returns. However, returns often exhibit characteristics that set them apart
from normality, such as asymmetry, fat tails and tail dependence. These
characteristics, known as financial stylized facts, are not addressed by the
normality, but remain of great importance in portfolio optimization. There-
fore, newer optimization frameworks and risk measures have emerged over
the last decades.

As Pfaff (2012) highlighted, through 1990s and 2000s the focus of investors
shifted due to the need to measure losses during financial crises of the period
more accurately. Downside risk, as defined in Sortino and van der Meer
(1991), is the risk of an asset’s actual return being lower than the expected
return and the uncertainty of the magnitude of this difference. Given the need
for updated risk measures, Value-at-Risk (VaR) has become very popular in
financial risk management over the last decades as a measure of downside
risk.

Nevertheless, the use of VaR as a risk measure for portfolio optimization
has been criticized over recent years. Firstly, using VaR in a portfolio opti-
mization does not result in a convex problem, meaning that the optimization
can be hard to solve and have many local extrema. Also, it does not have
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sub-additivity property as in Artzner et al. (1999), which means that the
portfolio risk is greater than the sum of the single risk measures of the assets
included in the portfolio. Lastly, it gives a percentile of the loss distribution
of the portfolio that does not provide the whole picture of the entire possible
losses of the tail.

Under general conditions, the Conditional Value-at-Risk (CVaR), pre-
sented by Rockafellar and Uryasev (2000), can be defined as the expectation
of the values of the tail distribution, that is, of those exceeding VaR. As a
measure of risk, CVaR exhibits more desirable properties than VaR. The au-
thors showed that finding the portfolio that minimizes CVaR can be achieved
by minimizing an auxiliary and more tractable function that computes CVaR
without the need to integrate over VaR values (numerical optimization of
CVaR is difficult due to this dependence). It is also shown that using CVaR
as a risk measure for a portfolio yields convex optimization problems that can
be turned to linear programming, in which efficient algorithms to optimize
portfolios with large dimensions exist.

In order to compute CVaR (and VaR) for a desired portfolio, one has
to make assumptions about the underlying probability density of the loss
function, which depends on the joint distribution of the asset returns. How-
ever, this is not an easy task and tends to become even more difficult as
the number of assets increases. A popular way to deal with this issue is
to assume that the asset returns follow a multivariate Normal distribution,
although, as mentioned above, normality can seriously fail to represent the
behavior of financial time series. To handle some of these issues, copulas have
recently become a popular alternative - see Cherubini et al. (2004). They
are functions that connect marginals to their multivariate distribution, thus
having all pertinent information concerning the dependence structure among
random variables.

The advantage of using copulas is that they allow splitting the estimation
of the marginals distribution from the estimation of the multivariate depen-
dence structure. Thus, complex characteristics presented in the marginal
distributions are modeled in a first stage using univariate models such as
ARMA-GARCH for each asset, while copula functions focus only on the de-
pendence relationship among the asset returns. In finance, this originated
the popular Copula-ARMA-GARCH modeling framework that has become
a strong option for such problems.

In order to capture all possible dependence structures between the asset
returns, common methods include Pair Copulas (for example Vine Copulas)
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and mixtures of different copula distributions. The latter aims to use a
linear combination of copula functions that captures different dependence
structures, such as lower and upper tail dependence. An application of the
mixture method can be found in Pfaff (2012). However, as the number
of assets of the portfolio increases, mixture copulas can become difficult to
estimate as there are many different parameters, including those associated
with the linear combination.

Vine copulas proposed by Joe (1994) and later refined in Joe (1996) aim
for a graphical construction of a tree of bivariate copulas, which together
build on to a multivariate distribution that the modeler seeks for. Vine
copulas are extensively reviewed in Czado (2010) and tend to perform well
when dealing with a moderate number of assets compared to traditional
multivariate models. Thus, they became very popular in financial analysis
and had many variations, such as Tófoli et al. (2016), who introduced a
dynamic vine copula approach.

Nevertheless, dynamic vine copulas also become infeasible to estimate
when dealing with portfolios of high dimensions due to a large number of
parameters. In order to deal with the ”curse of dimensionality” of a portfolio
with many assets, copula models based on data reduction have been recently
proposed. Oh and Patton (2017) and Krupskii and Joe (2013) independently
developed two different methods of factor copulas, both with the same pur-
pose of reducing the dimension of the data assuming that common factors
can adequately represent the original group of dependence associations. In
this work, we use the proposal of Oh and Patton (2017).

Two important elements of factor copulas are how the dependence struc-
ture is built and how it varies over time. Regarding the former, we consider
two different dependence structures: Equidependence (Homogeneous depen-
dence), where all the asset returns equally depend on each other, and block
dependence, which divides the assets among groups with equal intra-group
return dependence. Regarding the latter, we use the GAS model developed
by Creal et al. (2013) to deal with the time variation of the factor copula
loadings, as applied in Oh and Patton (2018).

Therefore, we propose using an ARMA-GARCH GAS factor copula model
to model and optimize a minimal-CVaR high dimensional portfolio. We
apply the framework for stocks composing the Ibovespa index and compare
the method to a traditional Gaussian copula model, two distinct Markowitz
mean-variance portfolios, an Equally Weighted portfolio and the IBRX50
index. We find that the performance of our proposed strategy is superior to
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the IBRX50 index, Markowitz and Equally Weighted portfolios and similar
or superior to the Gaussian one regarding risk and return measures.

The paper is structured as follows: Section 2 describes the CVaR and
the (factor) copula portfolio optimization methodology. Section 3 presents
the empirical optimization strategy for the portfolios. Section 4 shows the
empirical results for the optimization strategies, whereas section 5 concludes
the study.

2. Methodology

Consider the CVaR portfolio optimization problem where there is a need
to model the joint distribution of the asset returns. We follow Joe and Xu
(1996) Inference From Margins approach, which shows that a two-step es-
timation procedure is consistent. In a first step, the conditional marginal
distribution of each asset’s time series is estimated using univariate ARMA-
GARCHmodels. In a second step, one estimates the multivariate dependence
parameters associated with the (factor) copula functions. Then, the optimal
portfolio is obtained by generating return scenarios derived from the uni-
variate models and the dependence between the asset returns. This section
describes the CVaR optimization of a portfolio and copula methods in what
follows.

2.1. Conditional Value-at-Risk

For a thorough definition and understanding of CVaR, first, we need to
define Value-at-Risk (VaR). Let f(w, r) be defined as a loss function depend-
ing upon a decision vector w that belongs to any arbitrarily chosen subset
W ∈ Rn and a random vector r ∈ Rm. The vector w can be interpreted as
representing a portfolio that belongs to the set W of feasible portfolios, in-
cluding constraints. The vector r stands for the uncertainties that can affect
the loss. Then for each w, the loss f(w, r) is a random variable having a
distribution in R conditioned by that of r. We interpret r as a random vec-
tor that constitutes the joint distribution of the returns of the assets in the
portfolio, with density p(r) and independent of w. However, an analytical
representation of p(r) is not needed to implement a CVaR optimization, as
will be shown later.

For a fixed w, we denote the cumulative distribution function of the loss
associated with w as
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Ψ(w, α) =

∫

f(w,r)≥α

p(r)dr, (1)

i.e., the probability of f(w, r) not exceeding a threshold α. It is worth noting
that Ψ(w, α) is non-decreasing with respect to α and continuous from the
right.

Then, for a given confidence level β, the Value-at-Risk associated with w
is given as

V aRβ(w) = min{α ∈ R : Ψ(w, α) ≥ β}. (2)

Furthermore, the CVaR, at a confidence level β, can be defined as

CV aRβ(w) =
1

1− β

∫

f(w,r)≥V aRβ(w)

f(w, r)p(r) dr. (3)

An important feature of CVaR is its coherence as a risk measure, in
the sense of Artzner et al. (1999). A coherent risk measure satisfies four
properties desirable in the context of portfolio optimization. For a thorough
presentation of coherence and its properties, see Appendix A. Acerbi and
Tasche (2002) and Rockafellar and Uryasev (2002) give a formal proof of the
coherence of CVaR as a risk measure. Furthermore, it is worth noting that
VaR is not coherent since it does not satisfy the property of Subadditivity -
see Dańıelsson et al. (2005).

In addition, as we will further explore below, the use of the CVaR in the
context of portfolio optimization generates a convex optimization problem.
This is a desirable outcome since most convex optimization problems nowa-
days are straightforward to solve. However, using VaR in the same context
does not render this useful characteristic. Thus, because of the important
properties above, CVaR has become popular in applications of portfolio op-
timization.

2.2. CVaR Optimization Problem

Following Wuertz et al. (2010), an intuitive minimal-CVaR optimization
problem can be written as

min CV aRβ(w)

s.t w ∈ W,
(4)
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whereW is a set of feasible portfolio’s optimal solutions, w is an asset weights
vector where w ∈ W an β the desired CVaR significance. Additional linear
constraints can be included in the feasible set W .

Given equation 3, it is clear that CVaR optimization uses VaR in its def-
inition. As stated before, VaR’s portfolio optimization problems are neither
convex nor linear. Rockafellar and Uryasev (2000) in their main contribu-
tion, define a simpler and convenient auxiliary function that can be used to
calculate CVaR without any need to compute VaR first:

Fβ(w, α) = α +
1

1− β

∫

r∈Rm

(f(w, r)− α)+ p(r) dr, (5)

where (h)+ = max(h, 0).
It is shown that Fβ(w, α) is convex with respect to α and continuously

differentiable. By minimizing the auxiliary function, we end up obtaining
the CVaR, i.e.,

CV aRβ(w) = min
α∈R

Fβ(w, α). (6)

They also developed a method to approximate Fβ(w, α) by sampling rj, j =
1, ..., J observations from the density function p(r) using J scenarios, suppos-
ing that the analytical characterization for the density p(r) is not available.
Then, it’s possible to approximate equation 5 by its discrete version:

F d
β (w, α) = α +

1

(1− β)J

J∑

j=1

(f(w, rj)− α)+, (7)

which is convex and linear with respect to α. Although not differentiable
with respect to α, we can obtain its minimum with a linear programming
problem.

Furthermore, if f(w, r) is convex with respect to w, then CV aRβ(w) is
convex regarding w and F d

β (w, α) is convex regarding (w, r). Additionally,
if the set W of feasible portfolios including constraints is a convex set, mini-
mizing the CVaR associated with the loss function is equivalent to minimize
F d
β (w, α) over all (w, α) ∈ W × R, i.e,

min
w∈W

CV aRβ(w) = min
w∈W,α∈R

F d
β (w, α). (8)
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By solving (8) we can simultaneously obtain the optimal portfolio vector of
weights, w∗, the portfolio’s corresponding VaR, α∗, and the optimal CVaR,
which equals to F d

β (w
∗, α).

Finally, if the loss function f(w, rj) is convex and linear with respect to
w we can reduce (8) to a desired linear programming problem. The final
linear problem investigated is then given by

min
w∈W, b∈RJ , α∈R

α +
1

(1− β)J

J∑

j=1

bj

s.t bj ≥ f(w, rj)− α, j = 1, ..., J,

bj ≥ 0, j = 1, ..., J,

w ∈ W,

w
′
1 = 1,

w
′
µ̂ ≥ R,

wi ≥ 0, ∀ wi ∈ w.

(9)

The reduction to a linear programming problem is achieved by adding aux-
iliary variables bj to replace (f(w, rj)−α)+, imposing the linear constraints
bj ≥ f(w, rj)− α and bj ≥ 0.

Note that the constraints bj ≥ f(w, rj) − α and bj ≥ 0 alone cannot
ensure that bj = (f(w, rj)−α)+, since bj can be larger than both of the right-
hand terms while still being feasible. Nevertheless, as we are minimizing the
objective function which involves a positive multiple of bj, it will never be
optimal to assign bj a value larger than the maximum of the two quantities
f(w, rj)−α and 0, and therefore, in an optimal solution bj will be precisely
(f(w, rj)

+ − α)+.
The loss function for a minimal-CVaR portfolio is defined as f(w, r) =

−w
′
r, which is clearly convex and linear concerning w. Additional feasible

linear constraints of no short-selling, full investment and target portfolio
returns are included in the problem, where R is a target portfolio return and
µ̂ is the asset mean return vector. Thus, for the final optimization, we have
that no portfolio weights must be negative, the weights must sum to one and
the optimal portfolio must produce the desired target return. Then, CVaR
portfolio optimization can be carried out using efficient linear programming
algorithms (for instance, simplex ).
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2.3. Copulas

The theory of copula functions was first presented by Sklar (1959). By the
mid-1990s, copulas became a popular tool to model dependence between asset
returns in empirical finance, as seen in Pfaff (2012). Copulas are multivariate
distribution functions with standard uniform distributed margins. A copula
C(.) is a function where

C(u1, ..., un) = P (U1 ≤ ui, ..., Un ≤ un), (10)

in which ui are realizations of Ui for i = 1, ..., n, and Ui ∼ U [0, 1].
The major advantage of using copula functions is that the estimation of

complicated multivariate distribution functions can be replaced by the es-
timation of univariate models and the copula functions. In a first step, all
possible complexities of the marginal behavior of the asset returns are cap-
tured by the univariate model, while the use of the copula functions captures
the multivariate dependence structure of these returns.

A famous theorem that originated this modelling method is called the
Sklar’s Theorem:

Theorem 2.1 (Sklar’s Theorem). Let F be an n-dimensional distribution
function with margins F1, ...Fn. Then, there exists an n-copula C, such that
for all r ∈ Rn,

F (r1, ..., rn) = C(F1(r1), ..., Fn(rn)). (11)

Furthermore, if F1, ...Fn are continuous, then C is unique.

The margins F1, ..., Fn and the multivariate distribution function F are as
defined above. The margins ui can be replaced by Fi(ri) as they both belong
to the domain I and are uniformly distributed, i.e, let u ∼ U(0, 1), then
P (F (r) ≤ u) = P (r ≤ F−1(u)) = F (F−1(u)) = u. With the use of the
theorem above, Kakouris and Rustem (2014) derive a relation between the
probability density functions and copula functions. They define the copula
density of a copula function with dimension n as:

Definition 2.1. Let f be the multivariate probability density function of the
probability distribution F and f1, ..., fn the univariate probability density func-
tions of the margins F1, ..., Fn. The copula’s density function of an n-copula
C is the function c: U [0, 1]n 7→ [0,∞) such that

c(u1, ..., un) =
∂nC(u1, ..., un)

∂u1, ..., ∂un

=
f(r1, ..., rn)∏n

i=1 fi(ri)
. (12)

9



The definition allows us to separate modeling the marginals Fi(ri) from
the dependence structure captured by C. I.e., copulas decompose the asset
joint p.d.f from its margins, allowing a simpler estimation of the marginals
and a copula dependence function instead of having to estimate and infer the
complex multivariate distribution of the asset returns.

As in Hofert et al. (2018b), we can replace the estimation of the multi-
variate distribution with this simpler method in two parts: (i) finding the
marginal distribution for each ri (ii) finding the dependency between the fil-
tered data from (i). As there are many different univariate and copula models
and copula functions, this method provides high flexibility concerning com-
mon joint distribution models. An extensive review of copula modelling in
finance can be found on Fan and Patton (2014) and Patton (2008).

2.4. Dynamic Factor Copulas

High-dimensional data, expressed here as a portfolio of many assets, often
correlates to data dimension reduction methods. These methods include
popular techniques such as principal component analysis (PCA) and factor
analysis. The aim of introducing factor copulas in such financial problems
is to have lesser parameters to estimate concerning traditional copulas while
still capturing important dependence structures of the asset return.

Oh and Patton (2017) propose a factor copula approach in the context of
modeling the joint distribution of a set of time series, allowing for a certain
degree of flexibility and not a very high number of parameters to estimate.
A factor copula model with one factor for N asset returns time series is given
by

Xit = λitZt + ϵit , i = 1, 2, ..., N, (13)

where Zt ∼ FZ(γZ), ϵit ∼ Fϵ(γϵ), Z ⊥ ϵi ∀i, λit is the ith factor loading at
time t, γZ and γϵ are vectors of the parameters from the distribution of Z and
ϵ respectively and X t = (X1t , ..., XNt) is an underlying vector of variables
whose copula is the same one as the copula from the observable variables
Y t = (Y1t , ..., YNt). Then, we have that

Yt ∼ HY (y1t , ..., yNt|w) = C(F1t(y1t |w), ..., FNt(yNt |w)|w) (14)

and
Xt ∼ HX(x1t , ..., xNt) = C(FX1t

(x1t), ..., FXNt
(xNt)). (15)

In order to model Z and ϵ, we use a skew-t distribution and a t distribu-
tion, respectively, as Oh and Patton (2017). This way, we address important
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stylized facts of financial random variables, such as asymmetry, tail depen-
dence and heavy tails.

2.5. Dependence structure

Even in a factor copula framework, the number of parameters to be esti-
mated tends to grow as the number of time series grows. To deal with the
increasing computation complexity implied, Oh and Patton (2017) suggest
three different levels of time series dependence structures to ponder between
optimization complexity and factor copula flexibility.

The first and least flexible structure is the homogeneous (equidependent)
dependence, which assumes all the asset returns depend on each other in the
same strength, i.e., a unique factor loading for every series. Oppositely, the
most flexible structure, heterogeneous dependence, assumes different factor
loadings for each series. Although having a high degree of flexibility, the lat-
ter has many parameters to estimate, presenting a complex optimization for
the purpose of this work. Finally, on an intermediate level, the structured de-
nominated block dependence splits the set of assets into homogeneous groups
defined ad-hoc based on the market similarities between the assets. This way,
asset returns contained in the same group have the same dependence strength
and factor loading.

A factor copula model can then be defined in terms of its dependence
structure, i.e.,

Xit = λg(i),t(γλ)Zt + ϵit , i = 1, 2, ..., N, (16)

where g(i) ∈
{
1, ..., G} is the group to which the ith time series belongs, G is

the number of homogeneous groups and γλ is the set of parameters linked to
λ. Thus, G = N is the particular case of heterogeneous dependence, G = 1 is
the case of homogeneous dependence and 1 < G < N is the block dependence
one.

2.5.1. Time-varying parameters

A common way to model dependence using copulas considers fixed param-
eters over time. Nevertheless, it makes sense to address a variation in depen-
dence parameters as market conditions and asset behavior tend to change
due to macroeconomic shocks. Patton (2006) proposes using a nonlinear
restricted ARMA model to address time-varying copula dependence parame-
ters. da Silva Filho et al. (2012) allow the ARMA dynamics of the parameters
to be conducted by a Hidden Markov Chain.
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Nonetheless, a recent popular method to address time variation in higher
dimensions is the Generalized Autoregressive Score model (GAS), proposed
by Creal et al. (2013). The method assumes a time-varying parameter ft
and a conditional observation density p(yt|ft) for observation yt. Then, the

parameter ft follows the recursion ft+1 = ω + βft + αS(ft)
∂log p(yt|ft)

∂ft
, where

S(ft) is a scaling function for the score of the log observation density. The
method uses the scaled score to drive the time variation of the parameter ft,
linking the shape of the conditional observation density to the dynamics of
ft.

Oh and Patton (2018) use a GAS model to describe dynamics for factor
copula parameters. This method will be used in this work and adapted to the
context of portfolio optimization using factor copulas. The model structure
can be described as

lnλg,t = ωg + β lnλg,t−1 + α
∂ln c(ut−1, λt−1, γZ , γϵ)

∂λg,t−1

, g = 1, ..., G, (17)

where wg have dimension G, λt =
[
λ1,t, ..., λG,t

]′
and γλ =

[
ωg, β, α

]′
. There

are G + 2 parameters to estimate; thus, in the heterogeneous case where
G = N , it can become very burdensome to estimate the parameters as the
number of dimensions (assets) increases. As this work focuses on offering
computationally feasible estimations of time-varying factor copulas in higher
dimensions, only the other two aforementioned dependence structures will
be explored - block dependence and homogeneous dependence.

2.5.2. Factor Copulas Estimation

Usually, factor copulas do not have a closed form and their estimation
can be compromised. For static copulas, Oh and Patton (2017) present a
Method of Moments based estimation centered on comparing the observed
data moments with simulated data moments. However, when dealing with
time-varying copulas, the most common estimation method is based on max-
imizing a numerical approximation of the likelihood function.

Let ct(u1t , ..., uNt) be the density of the factor copula X t. Then,

ct(u1t , ..., uNt) =
hXt [F

−1
X1t

(u1t), ..., F
−1
XNt

(uNt)]

f1t(F
−1
X1t

(u1t))× ...× fNt(F
−1
XNt

(uNt))
. (18)

We define

fit(xit) =

∫ 1

0

fϵ(xit − λitF
−1
Z (m))dm, (19)
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FXit
(xit) =

∫ 1

0

Fϵ(xit − λitF
−1
Z (m))dm, (20)

and

hXt(x1t , ..., xNt) =

∫ 1

0

N∏

i=1

fϵ(xit − λitF
−1
Z (m))dm. (21)

The log of the copula likelihood function is then given by

lc(θc|θ̂1, ..., θ̂N ,w) =
T∑

t=1

ln c[F1(y1t|θ̂1,w), ..., Fn(yNt |θ̂N ,w)|w, θc], (22)

where θc = [γZ , γϵ, γλ]
′ is the set of copula parameters to be estimated.

2.6. Marginal Modelling

Due to the high dimensional nature of the portfolio optimization prob-
lem, as there are many optimizations to run, we opt for an ARMA(1,1)-
GARCH(1,1) model to estimate the conditional mean and the conditional
variance of each of the asset returns. ARMA-GARCH models are known to
be parsimonious while still offering satisfactory performance. The model is
defined as follows:

Rt = µ+ ϕRt−1 + θϵt−1 + ϵt

ϵt = σtZt

σ2
t = α0 + α1ϵ

2
t−1 + βσ2

t−1,

(23)

where Zt ∼ iid(0, 1) are the standardized errors, which are independent of
ϵt−l, l ≥ 1. The standardized errors Zt can follow any distribution with 0
mean and variance 1. Common distributions include the standard normal,
GED and Student’s t-distribution.

However, in order to correctly capture known asset’s stylized facts of
heavy tails and skewness, we use the Generalized Hyperbolic Skew Student’s
t-distribution, popularized by Aas and Haff (2006) and parameterized by
Ghalanos (2014). The probability density function of the distribution is
given by

fZ(z) =
2(1−ν)/2δν |β|(ν+1)/2K(ν+1)/2

(√
β2(δ2 + (z − µ)2)

)
eβ(z−µ)

Γ(ν/2)
√
π
(√

δ2 + (z − µ)2
)(ν+1)/2

, (24)
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where β ∈ R and ν > 0. For the unconditional variance to be finite we need
that ν > 4 and for the existence of skewness and kurtosis, ν > 6 and ν > 8,
respectively.

2.7. Copula CVaR Optimization

Now that the CVaR optimization problem for a random vector of distri-
butions has been defined, as well as theorems to associate copulas and these
distributions, we are able to define CVaR optimization with copula func-
tions. This is accomplished following Kakouris and Rustem (2014) and Zhu
and Fukushima (2009).

Letw ∈ W be a decision vector belonging to a feasible setW , u ∈ U [0, 1]n

a random vector that follows a continuous distribution with copula density
function c(.) and F (r) = (F1(r1), ..., Fn(rn)) a set of marginal distributions
where u = F (r). Also, g̃(w,u) = g(w,F−1(u)) = g(w, r) maps the domain
of the cost function from Rn to In, as implied by the transformation ui =
Fi(ri). The copula definition of CVaR with respect to VaR similar as equation
(3) is as follows:

CV aRβ(w) =
1

1− β

∫

g(w,r)≥V aRβ(w)

g(w, r)p(r)dr

=
1

1− β

∫

g(w,r)≥V aRβ(w)

g(w, r)c(F (r))
n∏

i=i

fi(ri)dr

=
1

1− β

∫

g̃(w,u)≥V aRβ(w)

g̃(w,u)c(u)du.

(25)

Then, the auxiliary copula corresponding equation of (5) is

Gβ(w, α) = α +
1

1− β

∫

r∈Rn

(g(w, r)− α)+ p(r) dr

= α +
1

1− β

∫

u∈U [0,1]n
(g̃(w,u)− α)+ c(u) du.

(26)

In order for the above equations to be computed, exact knowledge of the
distribution of p(r) or copula density c(u) and the margins F (r) are needed.
Since we introduce copulas in our models not to deal with p(r) directly,
the latter will be used. Knowledge of the copula C(u) and its margins
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ui = Fi(ri), i = 1, ..., n implies knowledge of p(r) and c(u). The discrete
version sampling K scenarios, similar to (7), is represented as

Gd
β(w, α) = α +

1

(1− β)K

K∑

k=1

(g̃(w,uk)− α)+, (27)

where we evaluate the function using Monte Carlo simulations. This is done
by sampling realizations from the copula C(.) using as inputs the filtered
uniform margins, where uk is the k-th, sample drawn from the copula C(.),
k = 1, ..., K.

Following the assumptions of convexity and linearity of the loss function
g̃(w,u) with respect to w, the optimization problem,

min
w∈W

CV aRβ(w) = min
w∈W,α∈R

Gd
β(w, α), (28)

can be modelled following Rockafellar and Uryasev (2002) minimal-CVaR
approach as

min
w∈Rn, b∈RK , α∈R

α +
1

(1− β)K

K∑

k=1

bk,

s.t bk ≥ g̃(w,uk)− α, k = 1, ..., K,

bk ≥ 0, k = 1, ..., K,

w ∈ W,

w
′
1 = 1,

w
′
µ̂ ≥ R,

wi ≥ 0, ∀ wi ∈ w,

(29)

where the loss function for a minimal-CVaR optimization is defined as g̃(w,u) =
−w

′
F−1(u).

3. Optimization Strategy

The empirical study of the portfolio optimization methods described
above considers a dataset of 30 Brazilian stocks downloaded from Yahoo!
Finance from January 3, 2013 to November 13, 2020. The dataset encom-
passes 1957 trading days, where 1956 daily price log returns are calculated.
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Figure 1: Portfolio log returns

To estimate each model, we consider a period of T = 1755 days. Then,
a rolling window optimization approach, similarly to Xi (2014), is applied as
follows:

• Optimization 1: Use return 1 to return 1755 to estimate the Copula-
CVaR models and determine portfolio weights for day 1756.

• Optimization 2: Use return 2 to return 1756 to estimate the Copula-
CVaR models and determine portfolio weights for day 1757.

• ...

• Optimization 200: Use return 200 to return 1955 to estimate the Copula-
CVaR models and determine portfolio weights for day 1956.

Figure 1 shows the portfolio log returns for the whole period. It can be
seen that the portfolio has a big volatility cluster in the year 2020 due to
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the COVID pandemic’s shock on Brazilian financial markets. We purposely
chose this time frame when assessing portfolio performance to analyze CVaR
optimization during stressful market periods. Observations on the right side
of the red line on January 27, 2020, are used to assess the optimization
performance of the entire evaluation window. Observations on the right
side of the blue line on June 12, 2020, are used to assess the optimization
performance in a calmer market scenario, where the initial COVID shock has
already passed.

Table 1 shows five different blocks of stocks, tickers and names. Each
block has stocks from similar markets used to model the Block Dependence
factor copula. The categorization of the assets into the blocks is arbitrary,
although being an ad-hoc choice based on the assumption that firms that
operate in the same segment have similar dependence structures. The stock
simple return distributions’ descriptive statistics are shown in Table 2. Most
stocks have negative or positive skewness and a positive excess kurtosis, sup-
porting our choice of using a Skewed-t distribution to model univariate log
returns instead of traditional Normal or t distributions.

3.1. Empirical Strategy

To apply the Factor Copula-CVaR portfolio optimization, we follow mainly
the steps presented in Pfaff (2012), Hofert et al. (2018a), Hofert et al. (2018b),
Xi (2014), Bartels and Ziegelmann (2016) and Oh and Patton (2018). Be-
low, the steps are presented and repeated for all the 200 optimizations that
we previously mentioned. In addition, we consider as benchmarks the fol-
lowing portfolios: an Equal Weight, a minimum CVaR Gaussian Copula, a
traditional Markowitz mean-variance portfolio, a second Markowitz portfo-
lio using a smaller estimation window of 300 observations and the IBRX50
index.

(1) Fit an ARMA(1,1)-GARCH(1,1) model with skewed t-distributed in-
novations to each univariate log-return time series.

(2) Using the estimated parametric model, construct the standardized
residuals vector for each i asset, i = 1, ..., 30, as

ϵ̂i,t
σ̂i,t

, t = 1, ..., 1755 and i = 1, ..., 30. (30)

(3) Calculate pseudo-uniform variables (the residuals cdf inverse trans-
forms) from the standardized residuals parametrically using the Skewed-t
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Code Asset Block Block Code
B3SA3.SA B3 S.A. - Brasil, Bolsa, Balcão Finance 1
BBAS3.SA Banco do Brasil S.A. Finance 1
BBDC4.SA Banco Bradesco S.A. Finance 1
ITUB4.SA Itaú Unibanco Holding S.A. Finance 1
SANB11.SA Banco Santander (Brasil) S.A. Finance 1
CIEL3.SA Cielo S.A. Finance 1
SULA11.SA Sul América S.A. Finance 1
ITSA4.SA Itaúsa - Investimentos Itaú SA Finance 1
ABEV3.SA Ambev S.A. Retail 2
MGLU3.SA Magazine Luiza S.A. Retail 2
LREN3.SA Lojas Renner S.A. Retail 2
AMER3.SA Americanas S.A. Retail 2
JBSS3.SA JBS S.A. Retail 2
RENT3.SA Localiza Rent a Car S.A. Retail 2
QUAL3.SA Qualicorp S.A. Retail 2
PETR4.SA Petróleo Brasileiro S.A. - Petrobras Energy 3
PRIO3.SA Petro Rio S.A. Energy 3
CMIG4.SA Companhia Energética de Minas Gerais Energy 3
UGPA3.SA Ultrapar Participações S.A. Energy 3
CSNA3.SA Companhia Siderúrgica Nacional Energy 3
TAEE11.SA Transmissora Aliança de Energia Elétrica S.A. Energy 3
EQTL3.SA Equatorial Energia S.A. Energy 3
ENBR3.SA EDP - Energias do Brasil S.A. Energy 3
MULT3.SA Multiplan Empreendimentos Imobiliários S.A. Construction 4
CCRO3.SA CCR S.A. Construction 4
CYRE3.SA Cyrela Brazil Realty S.A. Construction 4
MRVE3.SA MRV Engenharia e Participações S.A. Construction 4
GGBR4.SA Gerdau S.A. Construction 4
GOLL4.SA Gol Linhas Aéreas Inteligentes S.A. Aviation 5
EMBR3.SA Embraer S.A. Aviation 5

Table 1: Assets and respective blocks

distribution of the GARCH error process. This can also be done semi-
parametrically using the empirical distribution functions of the standardized
residual vectors; see Pfaff (2012) or Hofert et al. (2018a) for an example.

(4) Estimate Homogeneous Dependence and Block Dependence factor
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copula models to the data that has been transformed to uniform [0,1] margins.
(5) Use the dependence structure estimated by the factor copula models

to generate K = 3000 scenarios of random variates for the pseudo-uniformly
distributed variables.

Series Min Mean Sd Max Skewness Kurtosis
ABEV3.SA -0.1578 0.0001 0.0167 0.0987 -0.3694 11.6527
AMER3.SA -0.1697 0.0016 0.0390 0.4161 1.2898 13.4375
B3SA3.SA -0.1612 0.0010 0.0237 0.1924 0.1487 8.1349
BBAS3.SA -0.2117 0.0005 0.0289 0.1713 -0.0544 9.5692
BBDC4.SA -0.1427 0.0004 0.0233 0.1687 0.1213 9.1317
CCRO3.SA -0.1793 0.0001 0.0254 0.2216 0.2777 12.8619
CIEL3.SA -0.2118 -0.0004 0.0259 0.2346 0.9124 15.9014
CMIG4.SA -0.2105 0.0003 0.0285 0.1780 -0.2726 9.2928
CSNA3.SA -0.2529 0.0010 0.0387 0.2082 0.3477 7.2138
CYRE3.SA -0.2465 0.0005 0.0268 0.1806 -0.5253 14.2854
EMBR3.SA -0.2644 -0.0001 0.0255 0.2250 -0.1465 18.8457
ENBR3.SA -0.1277 0.0004 0.0206 0.1556 0.1242 7.3696
EQTL3.SA -0.1084 0.0010 0.0169 0.0815 -0.3002 6.8250
GGBR4.SA -0.1796 0.0005 0.0299 0.1745 0.1173 6.4267
GOLL4.SA -0.3629 0.0013 0.0477 0.5033 1.2066 18.5140
ITSA4.SA -0.1087 0.0005 0.0199 0.1027 -0.0338 5.7802
ITUB4.SA -0.1205 0.0005 0.0209 0.1177 0.1995 6.3375
JBSS3.SA -0.3134 0.0011 0.0319 0.2460 0.3568 14.3872
LREN3.SA -0.2112 0.0009 0.0228 0.1500 -0.1201 11.7651
MGLU3.SA -0.2108 0.0029 0.0396 0.3729 1.3519 15.2224
MRVE3.SA -0.2015 0.0007 0.0278 0.2114 -0.0357 9.7884
MULT3.SA -0.2239 0.0003 0.0221 0.1730 -0.0800 15.6592
PETR4.SA -0.2970 0.0006 0.0327 0.2222 -0.2797 10.6809
PRIO3.SA -0.3654 0.0014 0.0520 0.8367 2.6899 45.1696
QUAL3.SA -0.2937 0.0006 0.0278 0.3664 0.2539 26.7847
RENT3.SA -0.2361 0.0012 0.0258 0.2682 0.3447 16.9381
SANB11.SA -0.1347 0.0007 0.0234 0.1578 0.1639 8.0727
SULA11.SA -0.1753 0.0008 0.0227 0.1760 -0.1270 9.8877
TAEE11.SA -0.0831 0.0003 0.0159 0.0873 -0.2172 4.8489
UGPA3.SA -0.2136 0.0002 0.0233 0.2338 0.1360 21.1323

Table 2: Asset returns descriptive statistics
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(6) Calculate Skewed-t quantiles for these Monte Carlo draws, zi,k, k =
1, ..., K.

(7) Determine the K scenarios of simulated daily log returns for the out-
of-sample following day we are forecasting for each asset i,

ri,k = R̂sim
i,k + ϵ̂i,k, (31)

in which R̂sim
i,k is provided by the ARMA(1,1)-GARCH(1,1) model,

R̂sim
i,k = ϵ̂i,k +

1∑

l=0

ϕ̂i,l R
sim
i,k−1 +

1∑

l=0

θ̂i,l ϵ̂i,k−1 (32)

where ϵ̂i,k is given as

ϵ̂i,k = σ̂i,k zi,k

σ̂2
i,k = α̂i,0 + α̂i,1 ϵ̂

2
i,k−1 + β̂i,1 σ

2
i,k−1.

(33)

(8) Finally, use the simulated returns data as input to optimize the port-
folio weights, finding the minimal CVaR for a confidence level of 5% and a
given portfolio target return. This is done using the results fromWuertz et al.
(2010), in which the method by Rockafellar and Uryasev (2002) is applied
for optimizing CVaR, reducing the optimization to a linear problem. The
output is a vector of optimal portfolio weights, W ∗ = [w∗

1, ...w
∗
30]. To assess

optimization performance, we run the optimization for target daily returns
equal to the average of the portfolio returns.

Similar steps are applied when optimizing the Gaussian copula portfolio
for every period. Nevertheless, as there is no need to estimate a factor copula
model, step (4) of the optimization fits a Gaussian multivariate copula to the
pseudo-uniform data following Hofert et al. (2018b) method.

For each of the 200 optimizations for the compared portfolios, the esti-
mated optimal asset weight and the observed simple returns of the data-set,
robsi , are used to calculate the following day’s out-of-sample portfolio returns,
as

Rport
n =

30∑

i=1

w∗
in r

obs
in , n = 1, ..., 200. (34)

For the Equal Weight portfolio, the weight of each asset is simply 1/30. As
we repeat this procedure for every optimization, the compared portfolios are
automatically rebalanced daily by their weights. After running the optimiza-
tions, we obtain a vector of portfolio returns, Rport = [Rport

1 , ..., Rport
200 ], that

will be used to assess the portfolio’s performance.
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3.2. Performance Measures

In order to assess the portfolio’s risk and return measures, we propose sev-
eral indicators as in Peterson and Carl (2019) and Bacon (2008): Annualized
Returns, Annualized Standard Deviation, VaR, CVaR, Semi-Deviation, Con-
ditional Drawdown-at-Risk (CDaR), Average Drawdown, Annualized Sharpe
Ratio, Sortino Ratio, Upside Potential, Downside Frequency, Calmar Ratio
and Drawdown Deviation. The choice of the performance measures was made
in order to capture different aspects of the portfolio’s performance: cumula-
tive returns, variability of the returns, downside risk, tail downside risk and
risk-return measures.

Annualized Returns are a convenient way to compare a standardized pe-
riod of returns. It is calculated as

An.Return =

(
n∏

i=1

(1 +Rport
i )

)f/n

, (35)

where Rport
i is the daily simple return observations of the portfolio, n is the

number of periods under analysis and f is the number of periods within the
year. On average, we have over 252 trading days yearly, such that f = 252.
As we run 200 optimizations, n = 200.

In order to measure the variability of the returns from the mean return
of the portfolio, we compute the Annualized Standard Deviation,

An.StdDev = σ
√

f, (36)

where σ is the portfolio’s standard deviation and f = 252.
From an investor’s perspective considering absolute returns and wishing

to avoid losses, a continuous losing period, or drawdown, is an intuitive and
well-known risk measure. In this sense, the Worst Drawdown is defined as
the largest individual uninterrupted loss in a return series and it is calculated
as

WorstDD = |maxDj| , j = 0, ..., d (37)

where Dj is the j-th Drawdown over the entire period and d is the total
number of Drawdowns in the entire period.

Drawdown Deviation (DDDev.) calculates a statistic similar to standard
deviation, considering individual drawdowns:

DDDev. =

√√√√
j=d∑

j=1

D2
j

n
. (38)
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Risk measures that use standard deviation consider a portfolio’s upside
and downside risk. Nonetheless, investors can have a bigger aversion to
downside risk than to upside risk, as variability in positive returns is not
viewed with the same concern as variability in negative returns. Therefore,
the analysis of risk measures regarding only the negative returns in a portfolio
is called Downside Risk Assessment.

In this sense, Downside Deviation measures under-performance variability
below a Minimum Acceptable Return - MAR. It is defined as

σD =

√√√√
n∑

i=1

min[Ri −MAR, 0]2

n
, (39)

where n is the total number of returns. Semi-Deviation (Semi.Dev) is a
particular case of σD where the Minimum Acceptable Return is the mean of
Rport.

To calculate Downside Frequency, (DownsideFreq.), we take the subset
of returns that are less than the MAR, nd, and divide the length of this
subset by the total number of returns:

DownsideFreq =
nd

n
. (40)

In order to evaluate portfolios with different levels of risk and different
returns, distinct risk-reward measures can be calculated. A traditional risk-
return measure is Sharpe Ratio, which measures the return per unit of risk,
expressed as variability. It represents the additional amount of return an
investor receives for an additional unit of risk, considering a Risk Free rate.
It is calculated as

SharpeRatio =

∑n
i=1(R

port
i −Rf )

n

σ
. (41)

The Sortino Ratio, similar to the Sharpe Ratio, is a risk-adjusted eval-
uation of the return of an investment. The difference is that Sortino Ratio
only factors in downside risk. It is defined as

SortinoRatio =

∑n
i=1(R

port
i −MAR)

n

σD

. (42)

The Upside Potential Ratio builds on Sortino Ratio, considering only Upside
Risk (the opposite of Downside Risk) on the numerator.
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It is also possible to define a risk measure similar to the Sharpe Ratio
using the worst computed Drawdown rather than the standard deviation to
reflect the investor’s risk. The Calmar Ratio, (CalmarRatio), is calculated
as

CalmarRatio =
An.Return

Wd

, (43)

where Wd is the worst drawdown observed in the portfolio.
Lastly, we also calculate downside risk measures concerning the tail of

the returns’ distributions: VaR, CVaR and Conditional Drawdown-at-Risk,
CDaR. VaR and CVaR calculation is already explained. For a thorough
definition of CDaR see Chekhlov et al. (2004). We use a significance level of
5% to compute the tail downside risk statistics.

4. Empirical Results

As mentioned previously, to capture financial stylized facts of skewness
and kurtosis of the asset returns distributions as well as variance clustering,
we used an ARMA(1,1)-GARCH(1,1) following a Skewed-t distribution for
each series. As we run many estimations for every asset, the ARMA-GARCH
parameter estimation results are not shown, although we chose the model by
its capability of addressing fat tails and variance clustering while still being
parsimonious.

To validate subsequent copula analysis, we perform Kolmogorov-Smirnov
(KS) tests for the probability integral transforms of the standardized resid-
uals. In order to uphold correct copula modeling, it is expected that the
transformation provides margins with Uniform [0,1] distributions. In every
case, p-values of the test were above 0.1, meaning they do not statistically
differ from the Uniform [0,1] distribution.

Regarding estimation of factor copula with time-varying parameters, Fig-
ure 2 shows the estimated out-of-sample Homogeneous factor copula loadings.
We note that the loadings vary between 0.35 and 1.20, with a mean of around
0.84, with the smallest value occurring on March 10, 2020 and the highest
value on April 15, 2020 - the most volatile period during the COVID market
crisis. By the sharp decline in asset dependence on the most critical early
days of the crisis in March 2020, followed by a sharp elevation afterward,
it is possible to conclude that during the initial stages of COVID crisis, the
various assets behaved differently while gaining a more dependent behavior
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in the following days of the crisis. As the most volatile period passed, the
asset dependence gradually decayed over time.

Figure 2: Homogeneous factor copula loadings

Figure 3 shows factor loadings evolution through time for the Block De-
pendence case. We see that asset returns from the Finance block are the
ones that have the highest dependence, reaching a maximum of 1.44 during
COVID crises and slowly decaying afterward, as well as a minimum of 0.57
before COVID. On the other hand, the Aviation block has the lowest depen-
dence variability, increasing from around 0.62 to 0.76 after the crisis. For
the Retail block, the most heterogeneous block of assets, it is possible to see
the increase of dependence during the initial stages of the crisis but a fast
decay as the volatile period passes. Finally, the Energy and Construction
ones behaved similarly to the Finance block but with a different magnitude.
Thus, given the different behavior of the blocks, it seems to make sense to
separate the dependence estimation of the asset returns.

Table 4 computes, for the whole evaluation window, out-of-sample An-
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Figure 3: Block Dependent factor copula loadings

nualized Mean Return, Annualized Standard Deviation, V aR0.95, CV aR0.95,
Semi-Deviation, CDaR0.95, Average Drawdown, Annualized Sharpe Ratio,
Sortino Ratio, Upside Potential, Downside Frequency and Drawdown Devia-
tion, using a daily target return equal to the mean return of the assets. Due
to the hard task of optimizing portfolio returns in the context of extreme
market losses during COVID crisis, Table 4 computes the same risk met-
rics for a subset of the evaluation window after the initial shock of COVID
crisis. We chose this particular subset window in order to have risk and re-
turn metrics for a stable market condition in addition to the extreme volatile
period mentioned above. For the calculation of risk measures, due to the
extreme negative market condition, we consider a Risk-Free Rate of 0% and
a Minimum Accepted Return of 0%.

By analyzing the seven portfolios of the whole out-of-sample optimization
window, we find that factor and Gaussian copula models present considerably
better risk and return measures with respect to the Equal Weight portfolio,
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the Markowitz portfolios and the IBRX50 index. Copula portfolios have over
twice the Annualized Return regarding the Equal Weight and the Markowitz
portfolio with the same estimation window as the copula ones, with lower
or similar downside risk measures - VaR, CVaR, CDaR, Semi-Deviation and
Drawdown Deviation. An increase in portfolio return is also followed by
a lower increase in risk measures, as we can see by better Sharpe Ratio,
Calmar Ratio, Sortino Ratio and Upside potential. The three portfolios
also exhibited lesser Worst Drawdown and Annualized Standard Deviation,
even though the Markowitz mean-variance portfolio optimization aims to
minimize the asset’s covariance. The Markowitz portfolio with a smaller
estimation window has a good performance regarding risk statistics, however
the low Annualized Return severely hinders its use, as can be seen in the bad
performance of risk/return statistics such as Sharpe Ratio.

Risk/Return Measure Hom.
Factor

Block
Dep.
Factor

Equal
Weight
Portfo-
lio

Marko-
witz

Marko-
witz
Smaller

Gaus-
sian
Copula

IBRX-
50

Annualized Returns -0.132 -0.088 -0.220 -0.236 -0.203 -0.108 -0.264
Annualized S.D. 0.363 0.369 0.530 0.390 0.312 0.366 0.511
VaR -0.034 -0.035 -0.042 -0.036 -0.027 -0.032 -0.045
CVaR -0.068 -0.067 -0.095 -0.072 -0.063 -0.068 -0.093
CDaR 0.388 0.416 0.499 0.411 0.388 0.408 0.507
Semi-Deviation 0.018 0.018 0.025 0.019 0.016 0.018 0.025
Drawdown Deviation 0.027 0.029 0.035 0.029 0.027 0.029 0.036
Worst Drawdown 0.388 0.416 0.499 0.411 0.372 0.408 0.507
Sharpe Ratio -0.363 -0.238 -0.416 -0.604 -0.650 -0.294 -0.517
Sortino Ratio -0.016 -0.005 -0.016 -0.039 -0.044 -0.010 -0.027
Upside Potential 0.534 0.591 0.533 0.579 0.530 0.515 0.531
Downside Frequency 0.49 0.505 0.47 0.515 0.5 0.465 0.485

Table 3: Risk and return measures for whole evaluation window

A comparison between the Homogeneous factor copula, Block Depen-
dent factor copula and the Gaussian copula model requires more attention,
as the observed statistics are closer to each other. Block Dependent fac-
tor copula presented the best risk-return measures: Sharpe Ratio, Calmar
Ratio, Sortino Ratio and Upside Potential. This means that an increase
in portfolio returns is accompanied by a lower increase in overall risk and
downside risk concerning the other portfolios. The Block Dependent port-
folio also exhibited better Annualized Returns and CVaR, the optimization
target. Concerning drawdown statistics, the Homogeneous Dependence fac-
tor portfolio had the best measures, shown with lower CDaR, Drawdown
Deviation and Average Drawdown. The Gaussian copula portfolio had good
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Risk/Return Measure Hom.
Factor

Block
Dep.
Factor

Equal
Weight
Portfo-
lio

Marko-
witz

Marko-
witz
Smaller

Gaus-
sian
Copula

IBRX-
50

Annualized Returns 0.450 0.470 0.210 0.076 0.167 0.417 0.188
Annualized S.D 0.188 0.202 0.245 0.194 0.152 0.195 0.242
VaR -0.016 -0.017 -0.025 -0.019 -0.013 -0.018 -0.023
CVaR -0.020 -0.021 -0.029 -0.023 -0.016 -0.021 -0.029
CDaR 0.050 0.047 0.058 0.036 0.055 0.056 0.037
Semi-Deviation 0.008 0.008 0.011 0.008 0.006 0.008 0.011
Drawdown Deviation 0.009 0.009 0.011 0.014 0.009 0.010 0.013
Worst Drawdown 0.067 0.078 0.101 0.136 0.069 0.069 0.120
Sharpe Ratio 2.397 2.331 0.856 0.390 1.100 2.142 0.777
Sortino Ratio 0.226 0.225 0.083 0.045 0.109 0.201 0.076
Upside Potential 0.990 1.105 0.782 0.885 0.859 0.920 0.813
Downside Frequency 0.467 0.505 0.458 0.505 0.467 0.458 0.467

Table 4: Risk and return measures for a stable market subsample

all-around behavior, with the lowest Downside Frequency and an Annualized
Return between Block Dependent and Homogeneous dependence portfolio
measures.

Lastly, Figure 4 shows the cumulative return time-series of each model.
It is possible to see that during the COVID market crash of March 2020, the
Equal Weight Portfolio and the IBRX50 index suffered significantly bigger
losses with respect to the other portfolios, even though they ended with a
cumulative return similar to the Markowitz ones. CVaR-targeted portfolios
exhibited comparable initial losses regarding the Markowitz portfolios. How-
ever, they could better capture the market recovery dynamics, as all three
exhibited better cumulative returns than the Markowitz benchmark. The
Block Dependent factor copula had the best cumulative return at the end of
the testing period.

In the smaller subsample results analysis, all of the considered portfolios
showed positive Annualized Returns. However, as well as in the whole eval-
uation window, CVaR-targeted copula portfolios exhibited considerably bet-
ter returns concerning Equal Weight, Markowitz and IBRX50 benchmarks.
Compared to Equal Weight, the traditional Markowitz and IBRX50, the in-
crease in portfolio returns of the copula models does not follow an increase in
risk: copula portfolios have less SD, VaR, CVaR, Drawdown Deviation and
Average Drawdown, while having better risk-return metrics such as Sharpe
Ratio. Thus, copula portfolios can consolidate higher returns with less or
similar risk metrics concerning the other portfolios. Even though the smaller
estimation window Markowitz portfolio produced better risk measures, the
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Figure 4: Cumulative returns of the considered models for whole evaluation window

poor Annualized Return performance hinders its use.
With respect to the three copula portfolios, the factor copula ones de-

livered higher Annualized Returns and lower SD, VaR, CDaR, Drawdown
Deviation and Average Drawdown, while having similar Semi Deviation and
CVaR. Risk-return measures are also better than the Gaussian counterpart.
Thus, although factor copulas reduce the data dimension, they can still cap-
ture significant asset dependence behavior with time-varying loadings. By
solely comparing the Homogeneous and Block Dependent factor copula port-
folios, we conclude that the Block Dependent optimization generated better
Annualized Returns at the expense of slightly worse risk and risk-return
measures.

Figure 5 shows cumulative returns for the smaller subsample. While the
traditional Markowitz portfolio had a good initial performance during the
market upturn, it failed to deliver consistent performance through the con-
sidered period. The Equal Weight portfolio and the IBRX50 index performed
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better in the more stable market condition, an expected behavior considering
the stylized fact that the asset returns tend to have a similar (panicking) dy-
namic in the event of extreme market losses. The Gaussian copula portfolio
showed slightly worse overall performance concerning the factor copula port-
folios. The Markowitz portfolio with a smaller estimation window exhibited
a sideways behavior, not being able to capture the positive returns in the
market upturn as the rest of the portfolios. While the Block Dependent fac-
tor copula and the Homogeneous factor copula portfolios behaved similarly,
the former had a better performance at the end of the evaluation period,
with the highest cumulative return of all the considered portfolios.

Figure 5: Cumulative returns of the considered models for a stable market subsample

5. Final discussion and future work

This work aims to investigate and offer an alternative to traditional com-
putationally expensive Archimedian and Elliptical copula modeling in the
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context of minimal-CVaR portfolio optimization with many assets. We em-
ploy two time-varying factor copula models with distinct dependence struc-
tures in order to reduce the number of copula parameters to estimate while
still capturing significant asset dependence behavior.

The empirical portfolio optimization analysis suggests that both factor
models can deliver similar or better risk/return measures concerning tradi-
tional Gaussian copula methods, as well as a Markowitz mean-variance port-
folios and an Equal Weight portfolio. Both factor copula models have also
superior risk/return measures with respect to the IBRX50 index. Regarding
the two distinct factor copulas, the Block Dependent portfolio optimization
exhibited higher Annualized Returns and risk-reward measures at the ex-
pense of marginally higher downside risk measures considering the larger
optimization window.

In summary, although not popularly employed in CVaR optimization of
portfolios, factor copulas can be a promising alternative to the ”curse of di-
mensionality” implied by the increase in the number of assets composing the
portfolio. Similar to Bartels and Ziegelmann (2016), future work could ex-
pand on different analyzed factor copulas models and dependence structures
of the asset returns.

Appendix A. Coherence of a risk measure

In this appendix, we aim to give a simple yet complete explanation of the
coherence of a risk measure. In the sense of portfolio optimization, a coher-
ent risk measure ensures that the portfolio holds important characteristics
regarding broader aspects such as regulations. Artzner et al. (1999) defines
a risk measure as coherent if it satisfies four axioms. Let ρ denote a risk
measure and ρ(L) the risk value of a portfolio, where the loss L ∈ G is a
random variable.

Axiom Appendix A.1 (Translation Invariance). Let l ∈ R. Then,
ρ(L+ l) = ρ(L)− l.

The first axiom states that adding (subtracting) an initial amount l to an
initial position and investing it in a reference instrument decreases (increases)
the measure of risk by l. I.e., it ensures that the losses and the risk measure
are defined in the same units.
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Axiom Appendix A.2 (Subadditivity). Let L1 and L2 ∈ G. Then,
ρ(L1 + L2) ≤ ρ(L1) + ρ(L2).

A simple interpretation of axiom Appendix A.2 is that the portfolio’s risk is
lesser or equal to the sum of the risk of the assets that create the portfolio.
I.e., by holding different assets, we obtain a less risky portfolio.

Axiom Appendix A.3 (Positive homogeneity). Let c ≥ 0 and L ∈ G.
Then, ρ(cL) = cρ(L).

The axiom above ensures the scaling of the risk measure regarding the size
of the position. By having this property, one ensures that the size of the
portfolio does not directly influence its riskiness.

Axiom Appendix A.4 (Monotonicity). Let L1 and L2 ∈ G with L1 ≤
L2. Then, ρ(L1) ≤ ρ(L2).

A straightforward interpretation of axiom Appendix A.4 is that the relation
between the losses also reflects when risk measures are calculated regarding
each loss. Traditional risk measures are ruled out as a coherent measure when
checking for this property, including Standard Deviation and Semi-Deviation.

VaR is not coherent because it does not satisfy axiom Appendix A.2 - see
Dańıelsson et al. (2005) for a complete study. Even though CVaR includes
VaR, a non-coherent risk measure in its definition, Rockafellar and Uryasev
(2002) and Acerbi and Tasche (2002) give a complete proof of the coherence
of CVaR, i.e., satisfying all of the axioms above.
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