
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

GUSTAVO DE MEDEIROS CORREA

A cloud, microservice-based Digital Twin
for the Oil industry — A Flow Assurance

case study

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Engineering

Advisor: Prof. Dr. João Cesar Netto

Porto Alegre
September 2022

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Engenharia de Computação: Prof. Walter Fetter Lages
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor João Cesar Netto for sup-

porting me throughout the development of this work, for his constant engagement and

availability, and for introducing me to the concept of Digital Twins.

I would also like to thank my family (especially my mother Lenira) for the help

and encouragement they have given me during all these years as a Computer Engineering

student. Without that constant support, I’m sure I wouldn’t have made it this far.

AGRADECIMENTOS

Primeiramente, gostaria de agradecer o meu professor orientador João Cesar Netto

por todo o apoio que meu durante o desenvolvimento deste trabalho, por seu constante

engajamento e disponibilidade, e por me introduzir ao conceito de Digital Twins.

Gostaria, também, de agradecer minha família (especialmente minha mãe Lenira)

pelo suporte e encorajamento que me deram durante todos esses anos como estudante de

Engenharia da Computação. Sem esse constante apoio, tenho certeza que não chegaria

tão longe.

ABSTRACT

Digital Twins are one of the top recent technology trends, considered a front-runner in

enabling the next generation of intelligent, digitalized industries. A Digital Twin is basi-

cally a real enterprise asset mirrored into the virtual world, created entirely in software,

and utilized to innovate business, generate new revenue, and create value-producing op-

portunities. Naturally, building such demanding systems is not an easy task. Many organi-

zational and technological concerns should be addressed, like real-time processing, data

management, cybersecurity, and low latency communication. Moreover, Digital Twins

should be extensible and support data integration with its physical counterpart, allowing

enterprises to streamline their operations more safely. Considering there are no standard

methodologies or technologies to design a Digital Twin, software developers struggle to

develop a robust, reliable Digital Twin architecture that meets customers’ needs.

Therefore, in consideration of these technical challenges, we decided to explore solutions

in the oil and gas industry. Oil plants are known for having notoriously complex pro-

cesses and an oppressive ecosystem when it comes to the adoption of new technologies,

especially due to its intricate and ever-changing landscape. Despite these difficulties, this

industry would certainly benefit from a well-designed Digital Twin. Hence, this work

proposes a solution for an Oil Well Digital Twin architecture. We decided to use the flow

assurance process of an Oil Well as a base to build a Digital Twin, aiming to study and

fulfill those requirements and technical limitations. We implemented and tested several

APIs, each one representing the virtual version of a real Oil Well component, enforcing

the importance of microservices and cloud-native patterns in its design. When function-

ing together, these microservices comprise an entire Oil Well Digital twin solution, cov-

ering basic storage, communication, and monitoring fundamentals. This proof of concept

demonstrates how a complex asset — like an Oil Well — can be built and organized in a

completely digital manner. Lastly, this design is extensible and opens up further develop-

ment opportunities.

Keywords: Digital Twin. Microservices. Cloud computing.

Um gêmeo digital baseado em microsserviços em nuvem para a indústria de

petróleo — Um estudo de caso de garantia de fluxo

RESUMO

Gêmeos Digitais são uma das principais tendências tecnológicas recentes, considerados

pioneiros na habilitação da próxima geração de indústrias inteligentes e digitalizadas. Um

Gêmeo Digital é basicamente um ativo corporativo espelhado no mundo virtual, criado

inteiramente em software e destinado a inovar os modelos operacionais e de negócios, ao

mesmo tempo em que fornece novas oportunidades de geração de receita e valor. Natu-

ralmente, construir sistemas tão exigentes não é uma tarefa fácil. Muitas preocupações

organizacionais e tecnológicas devem ser abordadas, como processamento em tempo real,

gerenciamento de dados, segurança cibernética e comunicação de baixa latência. Além

disso, os Gêmeos Digitais também devem ser extensíveis e oferecer suporte à integração

de dados com sua contraparte física, permitindo que as empresas agilizem suas opera-

ções com mais segurança. Considerando que não existem metodologias ou tecnologias

padrão para projetar um Gêmeo Digital, os desenvolvedores de software tem dificuldade

em desenvolver uma arquitetura de Gêmeo Digital robusta e confiável que atenda às ne-

cessidades dos clientes.

Além desses desafios técnicos, a indústria de óleo e gás é conhecida por ter processos no-

toriamente complexos e um ecossistema opressor na adoção de novas tecnologias, prin-

cipalmente devido ao seu cenário intrincado e em constante mudança. Apesar dessas

dificuldades, essa indústria certamente se beneficiaria de um Gêmeo Digital bem proje-

tado. Assim, este trabalho propõe uma solução de uma arquitetura para um Gêmeo Digital

de um Poço de Petróleo. Decidimos usar o processo de garantia de vazão de um poço de

petróleo como base para construir um Gêmeo Digital, visando estudar e atender a esses

requisitos e limitações técnicas. Implementamos e testamos várias APIs, cada uma repre-

sentando a versão virtual de um componente real de um poço de petróleo, reforçando a

importância de microsserviços e padrões nativos de nuvem em seu design. Ao funciona-

rem juntos, esses microsserviços compreendem uma solução completa de gêmeos digitais

de poços de petróleo, abrangendo os fundamentos básicos de armazenamento, comunica-

ção e monitoramento. Esta prova de conceito demonstra como um ativo complexo – como

um poço de petróleo – pode ser construído e organizado de forma totalmente digital. Por

fim, esse design é extensível e abre mais oportunidades de desenvolvimento.

Palavras-chave: Gêmeo digital. Microserviços. Cloud computing.

LIST OF FIGURES

Figure 2.1 Dimensions of a Digital Twin..16

Figure 3.1 Simplified illustration of an Oil Well...20
Figure 3.2 High-level overview of the system architecture ..21
Figure 3.3 data-provider instances communicating with the DT21
Figure 3.4 Virtual model of the Oil Well DT ..22
Figure 3.5 dashboard-service communicating with the DT ...23
Figure 3.6 Publish-subscribe message channel...25
Figure 3.7 ScyllaDB Data model ..26

Figure 5.1 Thymeleaf server-side rendering ...40
Figure 5.2 Scylla partitions and rows example ...42

Figure 6.1 Logstash node monitoring in Kibana...45
Figure 6.2 Simple Kibana dashboard in discover mode ...46
Figure 6.3 Metrics explorer in Kibana ..46
Figure 6.4 Interaction between the Oil Well DT monitoring services47
Figure 6.5 DT requests filtered by traceId ..48

Figure 7.1 Oil Well Digital Twin containers overview ...50
Figure 7.2 ScyllaDB data-center ...51
Figure 7.3 dashboard-service index page without any resources52
Figure 7.4 dashboard-service Virtual Wells table with two resources............................53
Figure 7.5 dashboard-service page with two choke-valve resources..............................53
Figure 7.6 dashboard-service page with anm and tubing resources54
Figure 7.7 Virtual Well details page..55
Figure 7.8 Virtual Tubing details page..56
Figure 7.9 data-provider payload example ...56
Figure 7.10 dashboard-service temperature and pressure readings visualization57
Figure 7.11 dashboard-service custom and flow readings visualization57
Figure 7.12 Kibana index pattern using Logstash...58
Figure 7.13 data-provider endpoint documentation in Swagger58
Figure 7.14 data-provider endpoint HTTP responses documentation in Swagger.........59
Figure 7.15 data-provider request payload in Swagger documentation59

LIST OF TABLES

Table 5.1 Semantic versioning increment rules ..32
Table 5.2 data-provider endpoints ..33
Table 5.3 /v1/send-message query parameters ..34
Table 5.4 well-orchestrator endpoints...36
Table 5.5 virtual-choke-valve endpoints ...37
Table 5.6 virtual-anm endpoints ...38
Table 5.7 virtual-tubing endpoints ..39
Table 5.8 PDG endpoints ..39
Table 5.9 Sensor data endpoints..41
Table 5.10 Sensor data endpoints query parameters ...42
Table 5.11 Actuator endpoints ..43

LIST OF ABBREVIATIONS AND ACRONYMS

ANM Arvore de Natal Molhada - Wet Christmas Tree

API Application Programming Interface

CRUD Create, Read, Update and Delete

DT Digital Twin

DPTT Downhole Pressure and Temperature Transmitter

DB Database

ELK Elasticsearch, Logstash and Kibana

HTTP Hypertext Transfer Protocol

HTML HyperText Markup Language

IPC Inter-process communication

MQTT Message Queuing Telemetry Transport

PDG Permanent Downhole Gauge

RPI Remote Procedure Invocation

REST Representational State Transfer

UUID Universally unique identifier

QoS Quality of service

POM Project Object Model

CONTENTS

1 INTRODUCTION...13
2 BACKGROUND..15
2.1 Digital Twin ...15
2.2 Cloud Native Software and Microservices..17
3 PROPOSAL...19
3.1 Motivation..19
3.2 Architecture overview...19
3.2.1 Physical ..20
3.2.2 Virtual ..21
3.2.3 Service..23
3.2.4 Connection ...23
3.2.5 Data ..25
4 TECHNOLOGIES..27
4.1 Java...27
4.2 Spring Boot Framework...27
4.3 Maven...28
4.4 Mosquitto broker ..28
4.5 Scylla DB..29
4.6 Docker ..29
5 API DEFINITION ..30
5.1 Design Principles...30
5.1.1 Resource-oriented API...30
5.1.2 Message Format ...31
5.1.3 Versioning and compatibility ...31
5.1.4 MQTT outbound and inbound channel..32
5.2 Microservice endpoints...33
5.2.1 data-provider ..33
5.2.2 well-orchestrator ..36
5.2.3 virtual-choke-valve ..37
5.2.4 virtual-anm...38
5.2.5 virtual-tubing..38
5.2.6 dashboard-service ..39
5.2.7 Sensor data endpoints ..40
5.2.8 Health check endpoint..43
6 MONITORING ...44
6.1 Elastic Stack ..44
6.1.1 Elasticsearch ..44
6.1.2 Logstash ...45
6.1.3 Kibana ..45
6.1.4 Beats...46
6.2 Monitoring stack implementation ...47
7 SYSTEM SETUP AND USAGE..50
7.1 Docker set up ...50
7.1.1 Repositories..51
7.2 Making API requests with the dashboard-service ...51
7.2.1 Managing resources and creating associations ..51
7.3 Generating sensor data with the data-provider ...53
7.4 API Documentation ..55

8 CONCLUSION ...60
REFERENCES...62

13

1 INTRODUCTION

The oil and gas industry’s relevance to the energy market and global economy is

paramount. With notoriously complex processes, oil and gas plants operate with multiple

closely interrelated subsystems, usually managed by independent teams, and have long

and laborious maintenance schedules. Additionally, oil plants are also highly regulated

due to health, safety, and environmental risks (WANASINGHE et al., 2020). For these

reasons, the need to keep pace with technological advancements is vital for business pros-

perity. Following the movement towards industry digitalization, most oil companies are

looking for state-of-the-art technologies to enhance productivity, increase revenues, and

minimize capital and operational costs. However, implementing such novel concepts can

be difficult and costly when working with complicated, constantly changing environments

like an Oil Well plant. One of the biggest challenges in the Oil industry is incorporating

any new asset or operational change into the existing infrastructure, making the adoption

of digital technologies harder and a high-risk investment. Given the long lifecycle of such

systems, integration issues became prominent over the years (PERNO; HVAM; HAUG,

2021), and interest in cyber-physical integration and simulations increased drastically. In

order to solve many of these problems and promote digital transformation, the concept

called Digital twin (DT) was introduced and quickly became a recent trend across both

academia and industry.

A Digital Twin could be defined, in a general way, as a virtual representation of

a physical product. Data from this virtual entity can be collected, analyzed, and visual-

ized to make more informed decisions and to serve as a basis for simulations to optimize

operations. In theory, there are many potential and perceived benefits related to the Dig-

ital Twin concept (JONES et al., 2020), but successful implementation cases are rare,

and design definitions usually vary in scope. The lack of solutions could be explained

by the difficulty in meeting software requirements with older, obsolete architectural de-

sign and management systems. Digitalization is time-consuming and requires complex

coordination. The data monolith needs to be slowly broken into a distributed data fabric,

and the computing substrate must be significantly different from those of the past. Only

with the emergence of Industry 4.0 technologies that the DT concept matured, and real

prototypes in the automotive, manufacturing, healthcare, and aviation industry were built

(BARRICELLI; CASIRAGHI; FOGLI, 2019). Hence, cutting-edge technologies like ar-

tificial intelligence, machine learning, cloud, IoT, and microservice architectural patterns

14

are considered enablers for Digital Twins design (PENG; ZHANG; WU, 2017).

The main goal of this work is to propose and implement a solution for an Oil Well

Digital Twin. The system will serve as a proof of concept to test the feasibility of this

technical challenge, revealing good and bad design approaches for future implementa-

tions. We will take into account the different types of equipment, components, and sen-

sors from the Flow Assurance process and create a set of microservices that will comprise

the virtual version of the DT. A collection of APIs modeling the Oil Well components are

also implemented and described, following a set of modern, high-grade API design pat-

terns. In addition, a robust stack of backing services and monitoring technologies will be

described and incorporated into the final solution. This arrangement of microservices will

work in tandem with other supporting applications, and the design will consider cloud-

native patterns for storage and messaging.

The remainder of this text is organized as follows. Chapter 2 gives an overview of

the main concepts and challenges regarding Digital Twins, cloud-native development, and

microservices. Chapter 3 presents a proposal for the solution architecture, highlighting

the major building blocks and providing a brief description of each service in the design.

Chapter 4 lists the techology stack used during development, emphasizing the features that

made them eligible to be used in our final DT solution. Chapter 5 describes the developed

APIs in each service of the Digital Twin, going over implementation and usability details.

Chapter 6 presents the monitoring stack configuration used by the Oil Well DT. Chapter

7 goes over the installation and usability of the final solution. Chapter 8 concludes this

article with some final remarks.

15

2 BACKGROUND

This chapter approaches the main topics of this work on a theoretical standpoint,

providing an overview of Digital Twins, Microservice architecture, and Cloud Native

software.

2.1 Digital Twin

The term Digital Twin (DT) was first introduced in 2003 by (GRIEVES, 2014),

presenting the idea that mirroring a physical asset in the digital space could improve op-

erations throughout the life cycle of a product. At the time, most researchers had different

understandings of what a DT entailed, and there was no clear definition of the concept.

With the emergence of new technologies and Industry 4.0, however, the research by both

industry and academia on Digital Twins grew exponentially, bringing clarity and a general

consensus amongst the academic community on its meaning and importance.

According to (ADAMENKO; KUNNEN; NAGARAJAH, 2020), the core princi-

ple of a Digital Twin is that data should be exchanged, preferably in real-time, between the

physical and virtual spaces through all phases of the product life cycle, bringing constant

optimization to both models along with data analytics and visualization. (RASHEED;

SAN; KVAMSDAL, 2020) presented the following definition of a Digital Twin: A digital

twin is defined as a virtual representation of a physical asset enabled through data and

simulators for real-time prediction, optimization, monitoring, controlling, and improved

decision making.

From a modeling perspective, this definition leads to a five-dimension framework

for DTs, consisting of physical, virtual, connection, data, and service parts, as presented

in (Figure 2.1). PE represents the physical entity; VE represents the virtual entity; Ss

represents the services for both PE and VE; DD stands for the DT data; and CN means

the connection of different parts (TAO et al., 2019). The physical layer contains the real

asset; a product like an aircraft, a supply chain, or an oil well. The virtual layer has the

virtual representation of that asset, receiving information from the IoT sensors, process-

ing them, and then feeding their simulations back to the physical layer. The service layer

contains microservices that should add value to the product lifecycle. With all the infor-

mation exposed by the DT, users are looking for ways to reduce cost, enhance operations,

and improve decision-making. Enterprise software tools such as visualization services,

16

product quality services, diagnostic services, model calibration services, algorithm ser-

vices, and various data services can be added to the service layer to fulfill those demands

(WANASINGHE et al., 2020).

Figure 2.1 – Dimensions of a Digital Twin

Source: (ADAMENKO; KUNNEN; NAGARAJAH, 2020)

(MALAKUTI et al., 2020) also mentions that Digital Twins should have hierar-

chical and associational relationships, just like their real-world counterparts. A single

entity that provides value without needing to be broken down is a discrete DT, whereas a

combination of entities is a composite DT.

Despite the increasing amount of papers and growing interest from large com-

panies on DTs, the design methodology of a Digital Twin is not standardized. Many

challenges should be considered when building a DT, such as data management, security,

real-time communication, interaction with the physical asset, large-scale computation,

and continuous model updates (RASHEED; SAN; KVAMSDAL, 2020). In addition, with

the large variations on infrastructure, software, and business cases, most Digital Twins are

built with either data or system-based design approaches. The former focuses on build-

ing a data structure that organizes and links the sensor data and other information, where

the latter creates a system model of the physical object, defining logical links and rela-

tionships between the individual components (ADAMENKO; KUNNEN; NAGARAJAH,

2020).

In this work, we are interested in both data and system-based Digital Twins de-

signs in the Oil Industry context, resulting in a hybrid solution.

17

2.2 Cloud Native Software and Microservices

Recent advancements in digitalization and Industry 4.0 raised customers’ expec-

tations regarding software development. Large companies that run mission-critical busi-

nesses like finance require their software to have zero downtime, shortened feedback cy-

cles, mobile and multi-device support, scalability, embedded intelligence, and many more

requirements which are unattainable by monolithic software systems. Cloud-Native soft-

ware, alongside Microservice design patterns, is a new architectural style devised to fulfill

those demands.

One key necessity for modern applications is to be constantly available, which can

be challenging when dealing with complex systems and unstable environments. (DAVIS,

2019) affirms that cloud-native software should be designed to anticipate failure and re-

main stable even when the infrastructure it is running on is experiencing outages or is

otherwise changing. One way to achieve this is through redundancy. With multiple ap-

plication instances deployed in a highly distributed manner across all infrastructure, the

redundant copies can compensate for cases of inevitable failure. Moreover, software built

as small, loosely coupled components, independently deployable and releasable, often

prevents failures from cascading throughout the entire system. This aforementioned ar-

chitectural style is often called Microservices (RICHARDSON, 2019), and gained pop-

ularity as developers began to decompose their monolithic systems into smaller units. A

Microservice oriented system also facilitates frequent releases and scalability. Smaller

and independent components have a more agile release model, enabling daily deploy-

ments and upgrades without compromising the entire solution or having downtime. In

addition, with the ever-increasing volume of data flowing over the internet, especially

with IoT devices, applications should scale dynamically as request traffic changes, which

can be hard to achieve when working with monolithic solutions.

Of course, there are considerable challenges to consider when developing cloud-

native software. When working with multiple instances of an application, software devel-

opers must reexamine how they deal with application state, scale-out/in models, configu-

ration throughout environments, as well as shutdown and startup methods of applications.

A highly distributed environment also brings challenges related to data management, syn-

chronization of multiple databases, synchronous and asynchronous communication, au-

tomated retries, metrics, logging, and routing. And for that reason, software developers

recurred to platforms such as AWS, Google Cloud Platform (GCP), and Microsoft Azure,

18

as they provide support for and even implementations of many of the patterns presented

in this section. A cloud-native platform is absolutely essential for organizations building

and operating cloud-native software (DAVIS, 2019).

In this work, we are interested in how Cloud-native and Microservice patterns can

be applied to Digital Twins design.

19

3 PROPOSAL

This chapter will introduce the main building blocks of our Digital Twin architec-

ture. Section 3.1 starts with a brief motivation. Section 3.2 will give an overview of the

microservices comprising the physical and virtual models of the DT, as well as go over

connection and data fundamentals used in our solution.

3.1 Motivation

A definitive design pattern for building a Digital Twin does not exist, regardless

of the industrial context. Enterprises and academia have mostly chosen frameworks and

architectural styles based on business needs, provided that the design fulfilled the func-

tional and technological requirements of the stakeholders. The lack of standardization led

to a plethora of different DT solutions, employing diverse technologies and architectures,

and therefore became a challenge amongst software developers.

The well of an oil and gas plant is remarkably complex, possessing several types of

components and machinery, some of which are regularly changing. Figure 3.1 illustrates

a high-level overview of an oil well, highlighting some of its most important parts. In

this graduation thesis, our primary motivation was to study and implement a potential

architecture to model an oil well DT, describing the challenges in translating the physical

components from Figure 3.1 to their virtual counterparts. Our study will also cover all the

technical details regarding data, connectivity, and design decisions.

3.2 Architecture overview

To develop the Digital Twin of the Flow Assurance process of an Oil Well, the

five-dimension framework presented in (Figure 2.1) was used as reference. Using this

format, a series of microservices were created to address each dimension: physical, vir-

tual, connection, data, and service.

A high-level overview of the solution is shown in (Figure 3.2). Additionally, a se-

ries of supporting services were arranged to provide a complete monitoring and analytics

stack for the DT solution, offering log aggregation and several data visualization options.

Due to its complexity, the integration of these tools is described only in Chapter 6.

20

Figure 3.1 – Simplified illustration of an Oil Well

Source: Author

3.2.1 Physical

The physical instance of the DT — the Oil Well and assets to establish the flow

control — has a vast number of sensors scattered throughout its components. For instance,

we have the DPTT (Downhole Pressure and Temperature Transmitter) and the PDG (Per-

manent Downhole Gauge) sensors transmitting temperature and pressure measurements

from different parts of the Well, like the ANM (Árvore de Natal Molhada - Wet Christ-

mas Tree)1 and many others. Considering we do not have a physical Well to perform any

cyber-physical integration, the data exchange between physical and virtual spaces was

simulated with the creation of the data-provider microservice. The data-provider is a

small, easily deployable and scalable application that will emulate the real-world sensors,

providing mock data to the virtual model of the DT. Distinct instances of the data-provider

application can function as different data sources and support time-series data of different

1The mentioned acronyms were translated using dicionariodopetroleo.com.br

21

Figure 3.2 – High-level overview of the system architecture

Source: Author

periodicities, just like their physical counterparts.

The data-provider can be seen in the leftmost part of (Figure 3.2) and highlighted

in (Figure 3.3).

Figure 3.3 – data-provider instances communicating with the DT

Source: Author

3.2.2 Virtual

For the virtual representation of the Oil Well, our proposal organizes a series of

microservices in a composite and hierarchical way (MALAKUTI et al., 2020). Each ap-

plication will define a component or equipment utilized by an Oil Well (or multiple Oil

22

Wells), acting as discrete Digital Twins. In this work, we decided to model three signif-

icant components within an Oil Well in a very simplistic manner, as creating a detailed

and realistic representation of them goes beyond the scope of a POC. These components

are the virtual-anm, virtual-choke-valve, and virtual-tubing. Each of these microservices

is supposed to work independently, unbeknownst to one another. The microservices can

emulate the physical behavior of their respective components, perform calculations and

tasks, and work with data storage related to sensor readings and simulations. And finally,

at the top of the service hierarchy, we have a microservice representing the Well proper,

the well-orchestrator. The well-orchestrator is responsible for managing the logical links

and relationships between components. It is worth mentioning that this design decision

was made with extensibility and scalability in mind, trying to facilitate the addition and

removal of new services as it would happen during the maintenance of an actual Oil Well.

Thus, the combination of all these discrete Digital Twins, and the resources exposed by

their APIs, will result in a complete representation of an Oil Well. The centermost part of

(Figure 3.2) illustrates this arrangement and is highlighted in (Figure 3.4).

Figure 3.4 – Virtual model of the Oil Well DT

Source: Author

23

3.2.3 Service

Applications in the service layer are usually monitoring, alert, intelligence, or

simulation services. In the Oil industry context, a monitoring service could offer a user

interface so plant operators can check the health of the Oil Well in real-time. Similarly,

pressure and temperature measurements of each component could be reviewed, manually,

by the employees, or in an automated manner, by the DT microservices. In addition, if an

anomaly is detected during operation, a warning message could be triggered by the alert

service and inform the responsible parties using e-mail or phone. Lastly, a common use

for applications in the service layer concern simulations and machine learning models to

be applied on top of all the provided data, optimizing the virtual and physical DTs.

In this work, we opted for just one of the aforementioned alternatives, creating

a simple dashboard microservice. Its interface is minimalistic, intended to be a direct

and user-friendly way to interact with all of the developed APIs. With the dashboard-

service, a user can perform all CRUD operations with the DT resources, add and remove

components from previously created Wells, and observe or filter measurements coming

from the data-provider sensor simulations. The dashboard-service can be seen in the

rightmost part of (Figure 3.2) and is highlighted in (Figure 3.5).

Figure 3.5 – dashboard-service communicating with the DT

Source: Author

3.2.4 Connection

When working with multiple microservices in a constantly changing environ-

ment, inter-process communication (IPC) can become challenging. Applications can

have different ways of communicating, such as one-to-one, where only one service pro-

24

cess the client’s request, and one-to-many, where multiple services are involved. There

are different methods to approach these interactions, and they can either employ syn-

chronous/asynchronous request/response-based mechanisms or purely message broker-

based communication (RICHARDSON, 2019).

In one-to-one interactions, most systems rely on request/response communication,

also known as Remote Procedure Invocation (RPI). The most common RPI technology

at present is definitely HTTP alongside REST, but there are alternatives like gRPC and

Apache Thrift. When the communication is done synchronously, the client makes a re-

quest and remains blocked until it receives a response. This block ultimately reduces the

entire system’s availability, and is one of the many reasons as to why asynchronous IPC

is more favored when working with microservices. In the asynchronous style, the client

is never blocked, and the server may or may not respond immediately or even respond at

all.

Synchronous IPC also raises concerns about routing and handling communica-

tion failures. In a landscape with hundreds of microservices, applications must not rely

on physical IP addresses, as new service instances are always being added, scaled, and

removed. A service discovery mechanism is necessary to abstract the physical location

of large enterprises’ microservices. The IP addresses can be stored in a service registry,

or the deployment infrastructure itself can be responsible for service discovery. More-

over, communication timeouts and consistent failure calls should be handled by a circuit

breaker pattern. Circuit breakers can prevent clients from repeatedly calling a failing

service, thus increasing the service availability (CARNELL, 2017).

For one-to-many interactions, most systems use asynchronous message brokers

with protocols like AMQP or STOMP. The data exchange between two applications us-

ing this method usually consists of sending data through a message channel created by the

message broker. The sender and receiver application have no knowledge of each other,

and their only concern is to listen or send messages to the proper channel. The mes-

sage channels can be either point-to-point, where messages are delivered to exactly one

consumer, or publish-subscribe, where messages are delivered to one or more consumers

(HOHPE; WOOLF, 2022). There are also a few drawbacks to this alternative, as working

with a message broker raises concerns regarding message delivery and handling duplicate

events.

All of the Oil Well microservices mentioned above will have their own APIs,

exposing data and resources to applications on both virtual and service layers. Conse-

25

quently, synchronous and asynchronous request/response communication patterns will

be employed, as well as the use of an MQTT message broker with a publish-subscribe

message channel, intended to work with the data-provider sensor readings. Figure 3.6

illustrates how the publish-subscribe channels work. More details on the implementation

will be described in chapter 5.

Figure 3.6 – Publish-subscribe message channel

Source: Author

3.2.5 Data

Digital Twins are known for generating massive amounts of data from different

sources, possessing diverse types, formats, and sizes. Compared to monolithic applica-

tions, managing data in a highly distributed landscape is complex and requires additional

resilience patterns and computing power. Consequently, Digital Twin databases should

excel in working with big data while keeping a low latency and a high throughput perfor-

mance. In order to keep data availability high, DT databases should also support replica-

tion with an acceptable storage cost.

Besides the mentioned performance constraints, a cloud environment is usually

in a constant state of change, prompting DT databases to be viewed as stateful, attached

resources. Treating backing services as a resource guarantees loose coupling, and allows

DB administrators to swap, add, remove, and migrate databases from different vendors

without any code changes (WIGGINS, 2017). There are many options in the market for

time-series databases, like InfluxDB, and other performant alternatives like Redis and

26

ScyllaDB (KNEBEL; WICKBOLDT, 2020).

All "virtual" microservices of the Oil Well Digital Twin, with the exception of

the dashboard-service, was bound to a shared, stateful backing service for storage during

development and testing. For this POC, a three node ScyllaDB data center was set up

using a Network Topology Strategy and replication factor of three. The replication factor

decides to how many nodes the data will be replicated. The Network Topology Strategy

is DC-aware, and allows the developer to set the replication factor independently for each

data-center. In this work, we are only using one data-center with all nodes on the same

rack, so updating the topology or replication strategy will not result in downtime or require

a shutdown. Each microservice will also have its own dedicated keyspace, where all the

tables are defined. ScyllaDB organizes the tables in a set of rows and columns identified

by a primary key. Across the nodes, the data is replicated by partitions. The partition

key (the unique identifier for a partition) is represented as a token, hashed from the

primary key. Most resources in the developed APIs will use their universally unique

identifiers as partition keys, and sub-resources will use their parent’s. Figure 3.7 illustrates

the ScyllaDB data model in a cluster with nodes X, Y, and Z.

Figure 3.7 – ScyllaDB Data model

Source: Scylla University

27

4 TECHNOLOGIES

This chapter will list the technology stack used during the development of the Oil

Well Digital Twin, highlighting its most important features. The monitoring technologies

will be described separately in chapter 6, as they are not part of the core DT implementa-

tion.

4.1 Java

Java is one of the most popular objected-oriented programming languages in the

world, widely adopted by large and small enterprises. With millions of active devel-

opers, the Java community has kept the language up to date with modern standards for

decades and continues to make it grow and evolve. Java is well-known for being platform-

independent, running on any computer as long as it has the Java Runtime Environment

(JRE) installed, justifying its longevity. By virtue of its maturity and ease of use, Java has

gained more space in the mobile, IoT, and cloud landscape (ORACLE, 2022).

In this work, we use Java 8. Java 8 is arguably the version that brought the most

profound changes in Java history, especially regarding parallel processing. With the ad-

vent of big-data applications, programmers need to lean on multi-core computers and

clusters to process workloads efficiently. Java 8 brought several features to make paral-

lelism easier, more concise, and maintainable. If the necessity to upgrade the Java version

of our DT solution arises, the migration will be practically seamless (URMA; FUSCO;

MYCROFT, 2019).

4.2 Spring Boot Framework

Spring has become one of the most popular Java frameworks, innovative and ma-

ture enough to be considered a default solution for large-scale, production-ready Java

applications. It started as a dependency injection tool, helping Java developers manage

object relationships in large enterprise software. Over the years, the framework evolved

and expanded its ecosystem into several other projects, offering a comprehensive set of

services like configuration, security, web, big data, and cloud. Following the recent ar-

chitectural trends, the Spring team also moved away from monolithic architectures and

28

embraced small, highly distributed systems. Led by Pivotal Software (VMWARE, 2022)

and backed by a large consortium of organizations and developers, Spring is guaranteed

to remain relevant for years to come (CHANDRAKANT, 2022).

In this work, we rely heavily on the Spring Boot framework, which delivers fea-

tures focused on Java-based, REST-oriented microservices.

4.3 Maven

Maven is a Java-based build and dependency management tool. It automates tasks

like compiling source code and downloading Jar files, which are usually done manually

by developers. When working with APIs, libraries are being constantly updated, added,

and removed, which is error-prone when dealing with hundreds of microservices. Maven

uses the Project Object Model (POM), an XML file containing configuration and version-

ing details to search and download the correct dependencies automatically. Looking at the

POM file, a developer can quickly see the dependency list of a project and make the nec-

essary adjustments. Ultimately, building and managing projects become easier and less

time-consuming with Maven, and it’s a must-have for any Java application (APACHE-

FOUNDATION, 2022).

4.4 Mosquitto broker

Mosquitto is an open-source message broker that implements the MQTT protocol

5.0, 3.1.1, and 3.1. Its lightweight messaging makes it a perfect candidate for low-power

IoT devices like sensors or microcontrollers, which are very prominent in Digital Twins.

Mosquitto also uses a publish-subscribe model, ideal for applications that need to broad-

cast information around multiple consumers while ensuring efficiency and security, with

minimal message loss and resource usage. If there’s a need to distribute the workload,

Mosquitto can use MQTT v5 shared subscription capabilities. Lastly, Mosquitto is backed

by a large, active online community to aid in general consulting, custom developments,

and commercial support (LIGHT, 2017).

29

4.5 Scylla DB

ScyllaDB (SCYLLADB, 2022) is a NoSql distributed database built for optimal

speed, efficiency, and scale. It meets several requirements of modern IoT applications

with its flexible data modeling and reliable performance. Scylla can process billions of

time-series events in real-time while maintaining low and consistent latency, auto-tuning

itself as data streams increase and reduce dynamically. Besides the high throughput in-

gests, Scylla provides high availability and resilience with cross-regional data replication,

ideal for distributed IoT operations in the edge or clouds. Scylla is also highly scalable

and mindful of hardware utilization, ensuring a low cost of ownership. For these reasons,

Scylla is considered the definitive DynamoDB1 and Apache Cassandra2 alternative, easy

to use with built-in Spark3 and Kafka4 integration, and backed by a large open source

community.

4.6 Docker

Docker is an open-source platform for installing, shipping, and running software.

It consists of a command-line program and a set of remote services that rely on con-

tainer technology. With containers, system administrators can have better control over

system resources, effortlessly inject environment-specific configuration, and have an over-

all simplified experience managing infrastructure and software deployments. Currently,

containers are more favored than virtual machines, offering the same isolation and scal-

ability features while being more lightweight and efficient. Many large enterprises are

using Docker for real-world production applications, especially in the cloud-native land-

scape. For teams working with dynamic scaling and continuous integration/deployment

pipelines, Docker has proven to be a robust tool that reduces customer impact and makes

production deployments fast, repeatable, and trustworthy (NICKOLOFF, 2020).

1DynamoDB: https://aws.amazon.com/pt/dynamodb/
2Cassandra: https://cassandra.apache.org
3Spark: https://spark.apache.org
4Kafka: https://kafka.apache.org

30

5 API DEFINITION

This chapter will describe the DT microservices implementation in more detail.

Section 5.1 will go over some general API design decisions, like layout, message format-

ting, and versioning strategies. Subsection 5.1.4 will explain how all MQTT channels in

the DT were configured. Section 5.2 will describe all the API endpoints.

5.1 Design Principles

5.1.1 Resource-oriented API

Most of the developed APIs in this POC could be considered resource-oriented.

The concept of a "resource" is usually defined as a business object that APIs manage with

a set of standard actions: create, get, list, delete, and update. A famous synchronous IPC

mechanism that relies heavily on resource layouts is REST. Most RESTfull APIs follow

a set of architectural constraints, using HTTP and mostly JSON to manipulate resources.

The rules established by REST guarantee that APIs remain consistent and predictable

and, for the most part, that their methods remain idempotent and without undesirable side

effects (GEEWAX, 2021).

The APIs developed in the subsequent sections of this work follow the "Level 2"

REST maturity level defined by (RICHARDSON et al., 2022). A level 2 API possesses

the REST standard methods implemented and uses HTTP verbs to perform actions, such

as GET to retrieve, POST to create, and PUT to update. The request body and query

parameters serve as inputs to define those actions. Furthermore, each resource is refer-

enced in its respective endpoints URL. For identification, we opted to create IDs on the

server side, as user-generated identifiers can lead to security vulnerabilities. When the cre-

ation methods are invoked, each resource is assigned with a UUID. UUIDs are common

128-bit identifiers with enough available IDs to make collisions negligible. Additionally,

SycllaDB is already prepared to store and index UUIDs.

31

5.1.2 Message Format

Choosing the right message and serialization format is an important decision for

API design. The APIs’ performance, IPC, usability, and evolvability can depend on this

choice. In the microservice landscape, it is also essential to use cross-language formats.

The most common categories to choose from are either text-based like JSON and XML,

or binary like Avro or Protocol Buffers. All of the microservices mentioned in this work

will use JSON.

The JSON format became a standard in most modern web servers. It is a human-

readable and dynamic data structure without a strict schema, making it remarkably flexi-

ble to use. JSONs’ versatility is an important feature when building evolvable interfaces

and making backward-compatible changes to the API. Consumers can merely use the

fields of interest and ignore the rest, although that could accidentally create malformed

data if misused. Like most String serialization formats, JSON uses UTF-8 encoding. A

downside of JSON is its verbosity and the overhead of parsing text, which can be ineffi-

cient in some cases (FREEMAN, 2022).

5.1.3 Versioning and compatibility

Upgrading and changing a microservice-based API requires much more planning

compared to a monolithic one. Clients can not upgrade their systems whenever a new API

version is shipped, so interface changes should be done carefully and without side effects.

In addition, cloud-native applications will frequently have both old and new versions

running simultaneously, most commonly during rolling upgrades, to meet availability

requirements without downtime. For that reason, our DT microservices use semantic

versioning (PRESTON-WERNER, 2022).

Semantic versioning proposes a set of rules for numbering and controlling soft-

ware releases. The version numbers are organized in the following format: MAJOR.MINOR.PATCH.

Table 5.1 shows the rules for incrementing each version number.

In the developed DT microservices, we place the MAJOR version number at the

start of the URL path. This method allows clients to call different versions of a single

endpoint simply by changing the "/v1/.." path to "/v2/...".

32

Table 5.1 – Semantic versioning increment rules

Version Increase when
MAJOR You make incompatible changes to the API.
MINOR You add a new, backwards compatible feature.
PATCH You make backwards compatible bug fixes.

Source: (PRESTON-WERNER, 2022)

5.1.4 MQTT outbound and inbound channel

To create the MQTT outbound and inbound message channels, consumers and

producers use the Spring Integration libraries (FISHER et al., 2022), which in turn im-

plement the Eclipse Paho MQTT Client library (ECLIPSE, 2022). There are several con-

figuration options for the client connection and channels, and we leave most of them as

default with a few exceptions. For instance, a user and password are set to the MQTT

client to provide basic security to the Mosquitto broker. These password credentials are

provided to the Mosquitto service running in docker via bind mount. Another important

parameter is clean session, which sets whether the client and server should remember state

across restarts and reconnects. This property is vital in the cloud-native environment, as

applications are expected to stop and restart frequently. With the broker state maintained,

message delivery will be reliable, and the subscriptions are treated as durable. Another

configuration option that is parameterized is max inflight, which should be increased in a

high-traffic environment. The MQTT Paho library stores messages on the client side (ei-

ther in a file or in memory) and only removes it before the broker confirms its receipt. As

a result, performance problems could occur if the limit of in-flight messages is reached.

As for the outbound and inbound channels, a few parameters are worth mention-

ing. To begin with, the MQTT level of service is configurable. In the developed microser-

vices, we opted to use the highest level of service QoS 2. This level guarantees that each

message is published and received only once, eliminating any chance of message loss and

duplication. Although QoS 2 is the safest level of service, it is also the slowest due to the

four-part handshake between sender and receiver. This additional request and response

flow is made to ensure that each message is transmitted, despite the cost. Nevertheless,

this property is easily changeable through a configuration file. Another mutual configura-

tion between inbound and outbound channels is the message converter. The Paho library

provides the option to parameterize the converter responsible for converting String pay-

33

loads to bytes and vice-versa. To this converter, we supply the QoS, retain settings (which

keeps the last published message on the broker topic), and a UTF-8 charset. Uniquely to

the outbound channel, we manually define asynchronous communication to avoid client

blocks, and provide a default topic for cases when the MQTT header is empty.

5.2 Microservice endpoints

This section will describe all API endpoints exposed in the DT microservices. We

start with services from the physical layer, consisting of the data-provider. Next, we will

go over the virtual layer microservices, such as well-orchestrator and other component-

related applications. For the service layer, we explain the purpose and general design

details of the dashboard-service. We end the chapter by describing all endpoints related

to the sensor readings, and a few utility endpoints like health and monitoring checks.

5.2.1 data-provider

The data-provider microservice only goal is to simulate the physical Oil Well sen-

sors, generating streams of mock data. It will create an N number of messages specified

by the client via endpoint call, as described in table 5.2. The generated messages will

be published to the proper Mosquitto-broker topic, intended to be consumed by another

service shortly after.

Table 5.2 – data-provider endpoints

HTTP method Path Action
POST /v1/send-message Creates and sends N mes-

sages to the specified MQTT
broker topic.

Source: Author

In our DT solution, there are three microservices acting as consumers and many

measurement types available, so the parameters shown in table 5.3 must be informed to

post messages to the appropriate topics.

Every time a component resource is created (anm, tubing, etc.), a new MQTT

topic with the following format is added to the subscription list:

34

Table 5.3 – /v1/send-message query parameters

Name Description Value example
componentType Specifies the type of compo-

nent the message belongs to.
tubing

componentId The UUID of the component
entity.

7f8ba085-7834-4341-874b-
e45e61c5cbb3

measurementType The type of sensor reading the
message will be.

pressure

number The number of generated
messages.

100

rate The time between sending in
milliseconds.

10

customPropertyName The name of the property
when using a custom mea-
surement type..

speed

Source: Author

<componentType>.<componentId>.<measurementType>.

As described in chapter 3, each microservice in the virtual layer represents a com-

ponent or equipment utilized by an Oil Well, so the options for the field componentType

are the following:

1. choke

2. anm

3. tubing

The field componentId represents the component universally unique identifier

(UUID). This field is required to handle cases in which we have multiple components of

the same type, generating data related to the same kind of measurement.

Besides the virtual representation of DT components, physical sensors can also

read data of different types and units of measurement. For this reason, a proper way to

differentiate and generalize the sensor data type was required, and the field measure-

mentType was created in the data-provider interface. One of the most prominent mea-

surements in the Oil Well DT is temperature and pressure, which are estimated to generate

hundreds of requests per second. All microservices mentioned in chapter 3 are prepared

to handle temperature and pressure readings, possessing dedicated tables and reposito-

ries due to the high load of requests. The choke-valve microservice also possesses a

unique measurement type besides temperature and pressure called flow, which serves to

35

demonstrate that each microservice can have its own properties and features indepen-

dently. Admittedly, allowing the client to only send hard-coded measurement types is not

ideal for a constantly changing environment like an Oil Well, so the possibility to gener-

ate custom measurements was also added. To generate messages with a custom property,

the client should fill the measurementType field with the value custom and fill the field

customPropertyName with the respective property name. Both measurementType and

componentType fields are validated in the interface at each endpoint call, and custom-

PropertyName is optional for any cases besides custom measurements. Ultimately, the

options for the measurementType field are presented below:

1. temperature

2. pressure

3. flow

4. custom

The fields number and rate relate to the number of messages and the sent fre-

quency, respectively. Both expect integers as input, and the rate is measured in millisec-

onds. Using the rate field, the data provider can simulate time-series data of different

periodicities. The /v1/send-message endpoint works asynchronously, so the client will

not be blocked when setting a large number of messages or a very high rate value. The

number of threads and concurrency configuration are auto-configured by Spring Boot,

but the default settings can be fine-tuned in the application properties file (WEBB et al.,

2022).

The message payload consists of a timestamp and a randomly generated num-

ber mocking the actual measurement, alongside some specific MQTT headers contain-

ing topic and QoS information. When using a custom measurementType, an additional

propertyType field is also added to the final payload. Considering the diverse amount of

sensors in an Oil Well, we should not expect all readings to be real numbers or use the

same unit of measure. Thus, the generation of the value field uses a factory class named

DataGeneratorFactory. The Factory pattern is a famous creational design pattern in Java,

where the client can create objects without any knowledge of the creation logic. Based

on the component type, the DataGeneratorFactory can create different data generator ob-

jects and refer to them using a common interface. Currently, the data provider has three

implementations of the DataGeneratorFactory, one for each type of component (choke-

valve, tubing, anm). Thereby, we guarantee more flexibility in data generation when

36

future microservices are added to the ensemble. If a developer is working with a new

microservice or a more complex data type, he can simply create a new implementation of

the DataGeneratorFactory.

5.2.2 well-orchestrator

The well-orchestrator microservice is mostly responsible for managing a "Well"

resource and its relationships with other components. A physical representation of a Well

resource would be equivalent to the entire Oil Well itself, containing general data about the

plant and the discrete DTs associated with it. Table 5.4 shows the implemented endpoints

for the well-orchestrator microservice.

Table 5.4 – well-orchestrator endpoints

HTTP method Path Action
GET /v1/well Return all Well re-

sources.
GET /v1/well/{id} Returns a Well resource

with given id.
POST /v1/well Creates a Well re-

source.
PUT /v1/well/{id} Updates a Well re-

source with given id.
DEL /v1/well/{id} Deletes a Well resource

with a given id.

POST /v1/add-component/{id} Adds a component to
a Well resource with
given id.

DEL /v1/remove-component/well/{id}/component/{comId} Removes a component
with comId from a Well
resource with given id.

Source: Author

The REST standard methods are the first ones described, containing basic CRUD

operations. The id field is the generated UUID returned when a new resource is created.

The PUT method will only update general information related to the Well and will leave

relationship changes to the custom methods.

A distinct characteristic of the Well resource is its many-to-many relationships

with other discrete DTs. To map these associations, we opted to create an add and remove

37

custom method. The add-component method will create an association with a component,

while the remove-component will delete it. Considering that the well-orchestrator is on

top of the service hierarchy, we elected it to be the managing resource — or parent —

of this relationship between well and components. The Well resource UUID must be

informed as an endpoint path variable, and the associate resource information (in this

case, UUID and the componentTypes described in section 3) should be passed in the JSON

body. A list of associated components of a Well can be seen when using the standard GET

methods.

For cases where we need extra relationship-oriented metadata, the creation of a

dedicated association resource could be an alternative. In this POC, we considered that a

complete association resource would be too excessive and opted to abstract this complex-

ity entirely with the custom methods.

5.2.3 virtual-choke-valve

The virtual-choke-valve microservice represents the digital version of a device

known as Choke Valve, commonly used in oil and gas production facilities. This type of

control valve controls the flow of fluids as they are being produced by the well and can

act as pressure regulators in the reservoir and flowlines. The standard CRUD actions for

the "choke-valve" resource can be seen in table 5.5. The virtual-choke-valve microservice

also has a dedicated measurement type called flow, intended to store sensor readings with

the opening percentage of the control valve.

Table 5.5 – virtual-choke-valve endpoints

HTTP method Path Action
GET /v1/choke-valve Return all Choke Valve resources.
GET /v1/choke-valve{id} Returns a Choke Valve resource with given id.

POST /v1/choke-valve Creates a Choke Valve resource.
PUT /v1/choke-valve{id} Updates a Choke Valve resource with given id.
DEL /v1/choke-valve{id} Deletes a Choke Valve resource with a given id.

Source: Author

38

5.2.4 virtual-anm

The virtual-anm microservice represents the Wet Christmas Tree (Árvore de Natal

Molhada in Portuguese), which is an assembly of valves that regulate the flow stream of

pipes in an oil well. The ANM is also connected to the wellhead and controls access

to the tubing as the well begins pumping oil. In the developed API, the "anm" resource

also models a series of valves present in the flow path, such as master valve M1 and

M2, wing valve W1 and W2, and cross-over valve XO and PXO. When the creation

method is invoked, all master and wing valves are set with the value open as default,

and all the cross-over valves are set with the value closed. These values, however, can

be changed using the update PUT method. Table 5.6 lists the available actions with the

ANM resource.

Table 5.6 – virtual-anm endpoints

HTTP method Path Action
GET /v1/anm Return all ANM resources.
GET /v1/anm{id} Returns a ANM resource with given id.

POST /v1/anm Creates a ANM resource.
PUT /v1/anm{id} Updates a ANM resource with given id.
DEL /v1/anm{id} Deletes a ANM resource with a given id.

Source: Author

5.2.5 virtual-tubing

The virtual-tubing microservice models the inner and external tubes of the oil well

production column. The tubing is responsible for transporting oil and gas from deep in the

well to the surface. Table 5.7 lists the standard CRUD methods for the tubing resource.

It is a standard procedure for engineers to install specific gauges inside the tubing,

named permanent downhole gauges (PDG). The PDGs primarily measure pressure and

temperature at multiple points of the well, but they can also function as other types of

sensors and, therefore, should support other measurement types. Hence, the virtual-tubing

microservice also supports the concept of creating and managing PDGs. Table 5.8 shows

the standard endpoints for the PDG resource.

A key difference with the PDG resource is that it is associated with a tubing re-

source. This relationship works almost identically to how the well-orchestrator manages

39

Table 5.7 – virtual-tubing endpoints

HTTP method Path Action
GET /v1/tubing Return all tubing resources.
GET /v1/tubing{id} Returns a tubing resource with given id.

POST /v1/tubing Creates a tubing resource.
PUT /v1/tubing{id} Updates a tubing resource with given id.
DEL /v1/tubing{id} Deletes a tubing resource with a given id.

Source: Author

Table 5.8 – PDG endpoints

HTTP method Path Action
GET /v1/pdg Return all PDG resources.
GET /v1/pdg{id} Returns a PDG resource with given id.

POST /v1/pdg{id} Creates a PDG resource for tubing with given
id.

PUT /v1/pdg{id} Updates a PDG resource with given id.
DEL /v1/pdg{id} Deletes a PDG resource with a given id.

Source: Author

his associations with other discrete DTs, except on a lower level of the service hierar-

chy. A tubing UUID must be informed when creating a PDG, and this identifier will be

saved. When listing the tubing resources, the API will also return a list of which PDGs

are installed inside this tubing.

5.2.6 dashboard-service

The dashboard-service is the application that comprises the service layer in our

DT five-dimension framework. It acts as a client for all the APIs described so far, dis-

playing the information in a simple interface to simulate the user experience. By using

the dashboard-service, a user will be able to:

1. Create, delete, update, and visualize all Digital Twins components.

2. Associate or disassociate a component to a Well.

3. Create and manage PDGs.

4. Visualize temperature, pressure, and other types of sensor readings.

5. Filter and search data in the appropriate dashboards.

40

For rendering, the dashboard-service uses the Thymeleaf (THYMELEAF, 2022)

template engine and Spring Web MVC. For some additional features like buttons, filters,

and search bars, the application uses Bootstrap (BOOTSTRAP, 2022) and DataTables

plugin for jQuery (SPRYMEDIA, 2022).

Spring Web MVC (Model View Controller) is a well-known design pattern, and

Thymeleaf is a server-side Java template engine for web environments. Combined, these

two technologies provide the developer with a quick way to prototype web applications.

Essentially, the dashboard-service will match browser requests to a controller. Controllers

will then communicate with the virtual layer microservices, fetch the required data, and

build a collection of Java objects called Models. The Models will be integrated with the

Thymeleaf templates and generate HTML pages. Finally, the Controller will return the

created views, and the web browser will render them to the user. Figure 5.1 illustrates the

Thymeleaf MVC interaction.

Figure 5.1 – Thymeleaf server-side rendering

Source: (DEBLAUWE, 2020)

More details on the dashboard-service usage will be described in chapter 7.

5.2.7 Sensor data endpoints

Excluding the dashboard-service, all microservices described in this chapter can

process the sensor data generated by the data-provider. As new resources are created and

41

removed, new MQTT topics are also added and removed from the broker subscription

lists, and a simple API to fetch this information was necessary. Thus, all virtual microser-

vices possess a list of sensor data endpoints with the same signature path, as shown in

Table 5.9.

Table 5.9 – Sensor data endpoints

HTTP method Path Action
GET /v1/temperature Returns all temperature sub-

resources.
GET /v1/temperature{id} Returns all temperature sub-

resources with given parent id.
GET /v1/pressure Return all pressure sub-resources.
GET /v1/pressure{id} Returns all pressure sub-resources

with given parent id.
GET /v1/flow Return all flow sub-resources.
GET /v1/flow{id} Returns all flow sub-resources with

given parent id.
GET /v1/measure Return all custom measure sub-

resources.
GET /v1/measure{id} Returns all custom measure sub-

resources with given parent id.
GET /v1/measure{id}/property/{propertyName} Returns all custom measure sub-

resources with given parent id and
propertyName.

Source: Author

To design a resource relationship that supports these scenarios, we decided to treat

the measurements (temperature, pressure, flow, etc.) as sub-resources. More specifically,

the readings are considered subcollections — many sub-resources of the same type — of a

parent resource such as anm, choke-valve, or tubing. A sub-resource is basically a hybrid

between an attribute and what we deem a full-fledged resource. We opted for this design

decision because, in theory, a pressure or temperature measurement could be considered

a property inherent to one of these component resources. However, treating these fields

as an attribute would mean storing them with the parent, and that would be discouraged.

Considering the number of requests the temperature and pressure sensors generate, listing

all this data with the parent would lead to size and access control problems. For instance,

we could not expect to return all pressure measurements related to a tubing resource every

time a client makes a GET request. The GET operation would have to filter hundreds of

values before simply returning the tubing resource fields. Moreover, the parent resource

would have to be updated multiple times per second as the MQTT messages are con-

42

sumed, which would require write contention mechanisms and, ultimately, increase the

chances of write conflicts or data loss.

As a result, the endpoints in Table 5.9 use the parent resource UUID for data re-

trieval, and the subcollections are stored in complete separate tables. For performance

reasons, the parent UUID is also the partition key for Scylla tables related to measure-

ments, allowing even data distribution across nodes. To differentiate the sub-resources,

we use the timestamp field as a clustering key. The clustering key with timestamp values

will sort the rows within the partition by time, optimizing filtering. With a partition key

and a clustering key defined, each partition can have multiple rows associated with mea-

surements of a single resource. An example of this arrangement can be seen in Figure 5.2,

with a timestamp clustering column and a field called heart_rate. Additionally, the GET

endpoints also support two date-time query parameters for filtering, as shown in Table

5.10.

Figure 5.2 – Scylla partitions and rows example

Source: Scylla University

Table 5.10 – Sensor data endpoints query parameters

Name Description Value example
startDateTime Specifies the start date for fil-

tering.
2022-07-02T17:26:17.342

endDateTime Specifies the end date for fil-
tering.

2022-07-02T17:26:19.357

Source: Author

43

5.2.8 Health check endpoint

With the amount of network traffic and external services involved in a microservice-

based solution, sometimes applications can malfunction. Therefore, it is important for the

deployment infrastructure to know the health status of its applications periodically. If a

service is unable to handle requests, the load should be routed to another service. In our

DT solution, all microservices use Spring Boot Actuator (WALLS, 2019).

Spring Boot Actuator is a sub-project of the Spring Boot Framework. It offers

health, monitoring, and metrics services to an application, all exposed via HTTP end-

points. In addition, the Actuator can easily return information about the internal state of

a microservice, such as configuration properties, logging levels, memory consumption,

HTTP traces, and much more. Table 5.11 shows a few of the exposed actuator endpoints.

The Actuator works using health indicators, gathering data from all external systems such

as databases and message brokers, and condenses the information into a single report. In

our DT microservices, most Actuator endpoints are disabled by default for security rea-

sons, but can be enabled by changing the application properties file. To demonstrate, the

virtual-choke-valve microservice has all Actuator endpoints made available.

Table 5.11 – Actuator endpoints

Path Description
/actuator/health Returns the aggregate health of the application and (possibly) the

health of external dependent applications.
/actuator/env Produces a report of all property sources and their properties

available to the Spring application.
/actuator/metrics Returns a list of all metrics categories.

/actuator/httptrace Produces a trace of the most recent 100 requests.

Source: Author. Descriptions by (WALLS, 2019)

44

6 MONITORING

A Digital Twin solution will always consist of dozens or even hundreds of mi-

croservices, and software developers and operations teams should observe the system’s

health periodically. Unfortunately, tracing and troubleshooting distributed systems is no-

toriously hard, requiring more effort than the former monolithic solutions. If an applica-

tion is misbehaving or degrading, developers must be alerted and take action preemptively

before any customers are impacted. In the microservice architecture, software malfunc-

tions can also easily create a big chain of events, propagating issues over multiple services

and hiding the real root cause of a failure. With such an ever-changing environment, mon-

itoring data should be persisted, or else they will not be available after service restarts or

scaling. Metrics like throughput, latency, resource utilization, and log files should all be

aggregated in a single place for easier access (BRUCE; PEREIRA, 2020).

For these reasons, we built a robust monitoring stack for the Oil Well Digital Twin.

We make use of the Elastic Stack (ELK), which is a collection of open-source products to

aid us with log aggregation, distributed tracing, exception tracking, and metrics collection.

The following section describes the responsibilities of each component of the ELK. Then,

section 6.2 goes over how the ELK is implemented and used by the Oil Well DT.

6.1 Elastic Stack

The ELK is a famous logging infrastructure, allowing users to search, analyze,

and visualize log data in real-time. It consists of Elasticsearch, Logstash, and Kibana.

Subsequently, a family of data shippers called Beats was also added to the stack.

6.1.1 Elasticsearch

Elasticsearch (ELASTICSEARCH, 2022) is a search and analytics engine that

stores data in a centralized, NoSQL database. Elasticsearch has many different use-cases,

but its most common is of a scalable, easy-to-use logging server. It excels in indexing

text and semi-structured data, performing efficient JSON-based search and aggregation

operations.

45

6.1.2 Logstash

Logstash (LOGSTASH, 2022) is a log pipeline that aggregates data from multiple

sources, parses and enriches it, and then writes them to Elasticsearch. It has a vast number

of plugins to configure data collection and transformation. Logstash also allows the devel-

oper to route data to different outputs, opening up a vast possibility of use-cases. Lastly,

Logstash provides pipeline monitoring features to observe the active node’s performance

and availability, as seen in Figure 6.1.

Figure 6.1 – Logstash node monitoring in Kibana

Source: Author

6.1.3 Kibana

Kibana (KIBANA, 2022) is a highly customizable user interface for visualizing

Elasticsearch data. It can also work as a search and analytics tool, allowing users to create

a variety of graphs, tables, and dashboards using the Elasticsearch indices. Kibana is

essential to understanding how requests flow through the deployed microservices, helping

developers detect anomalies, troubleshoot issues, and query huge loads of log data. Figure

6.2 shows a small dashboard created from the Oil Well DT logs.

46

Figure 6.2 – Simple Kibana dashboard in discover mode

Source: Author

6.1.4 Beats

Beats (BEATS, 2022) is a family of single-purpose, open-source data shippers.

They are responsible for sending operational data to Logstash or Elasticsearch, where that

data can be further enhanced. In our DT solution, we use Filebeat (FILEBEAT, 2022) and

Metricbeat (METRICBEAT, 2022). Filebeat is a lightweight shipper for forwarding and

centralizing log data, whereas Metricbeat ships system and service statistics. Figures 6.3

illustrates some of the data collected periodically from the Oil Well DT applications and

backing services.

Figure 6.3 – Metrics explorer in Kibana

Source: Author

47

6.2 Monitoring stack implementation

Figure 6 illustrates how the ELK tools interact with each other and the Digital

Twin.

Figure 6.4 – Interaction between the Oil Well DT monitoring services

Source: Author

To begin with, all DT microservices implement the same logging library, which

in this case, is Logback (LOGBACK, 2022) and SLF4J (SLF4J, 2022). As advised in the

Twelve-Factor methodology (WIGGINS, 2017), all application logs are written to stdout,

and the logging infrastructure is the one responsible for handling the output. Before that,

however, logs are enhanced with tracing details. With distributed tracing, every request is

48

assigned with a unique ID (often called correlationId or traceId), which flows from one

microservice to the other until the task is completed. Combined with log aggregation,

this technique allows the developers and operations team to debug and understand inter-

actions between applications much quicker. To automatically add tracing information to

our logs, all DT microservices use the Spring Cloud Sleuth framework (SLEUTH, 2022).

Spring Cloud Sleuth autoconfigures tracing information, injecting a traceId whenever a

new service call is made. The tool also manages ingress and egress points from Spring

applications, ensuring that the traceId is properly propagated. Figure 6.5 shows a set of

logs in Kibana filtered by the traceId.

Figure 6.5 – DT requests filtered by traceId

Source: Author

When any of the DT applications start running in their respective containers, they

begin to write our enhanced logs in the Docker file-system. After that, we can use the File-

beat auto-discovery feature to track running containers and collect data from the log files.

Considering that we want our log entries to be human-readable but also easily parsable

by a machine, the log messages are decoded in a JSON format. Afterward, once Filebeat

starts collecting log events, they are sent to Logstash for processing. Logstash has three

types of plugins: input plugins, which are used to consume data from a specified source;

optional filter plugins, which can modify the incoming data; and output plugins which

write data to a specified destination. In this POC, we do not do any heavy transformations

with the filter plugin and basically just route the data to an output. All this log data is

ultimately stored in Elasticsearch, queried by Kibana, and then visualized by the end user.

At the same time, as the log aggregation process is happening, Metricbeat is gath-

ering a collection of system metrics from the containers. Metricbeat works identically

49

to Filebeat, though it re-routes the data directly to Elasticsearch. Those metrics are ex-

tremely important for operations teams to monitor the health of the applications and back-

ing services. Using Kibana, developers can visualize CPU, memory, disk usage, request

number, and latency in real-time. Kibana and Metricbeat also enable thresholds to be set

dynamically as the metrics are collected, sending alerts to the developers when any of the

configured limits are surpassed. Additionally, this monitoring stack could also be used

as a performance test tool, highlighting system bottlenecks and vulnerabilities. Chapter 7

describes how the monitoring stack is configured in the Docker containers and how to set

Kibana index patterns.

50

7 SYSTEM SETUP AND USAGE

Our Oil Well Digital Twin solution uses Docker as a deployment tool. Working

with microservices and multi-container applications can become hard to manage with

only scripts and docker commands, so we use Docker Compose to simplify this process.

With Docker Compose, we can describe the entire DT solution in a single declarative con-

figuration file, deploy it, and then manage its entire lifecycle. Furthermore, the onboard-

ing of new developers is significantly reduced, as all backing services, dependencies, and

configurations are centralized in a Docker Compose YAML file (POULTON, 2020).

7.1 Docker set up

The docker-compose file for the DT services is located in the root folder of the

well-orchestrator microservice. In the YAML file, the top-level service key defines the

ScyllaDB nodes, the Mosquitto instance, the ELK services, and the virtual DT applica-

tions, generating containers with the same names. The ports key maps the network traffic

from a container port to the declared host’s port, and all the DT services use the same

single-host Docker network to connect containers with each other. Figure 7.1 shows all

the Docker containers of the Oil Well DT and their respective ports. Lastly, the volumes

key is used to mount custom configurations directly into the DT containers, which are

also declared in the well-orchestrator root folder. For service discovery, the containers’

IPs are injected in the containers as environment variables.

Figure 7.1 – Oil Well Digital Twin containers overview

Source: Author

51

7.1.1 Repositories

All the mentioned microservices are versioned in the following Github repository:

• https://github.com/guscorrea

To run the solution, run the docker-compose up -d –build command in the well-

orchestrator root folder. If the Docker images are not found locally in the host machine,

they are also uploaded to the following DockerHub repository:

• https://hub.docker.com/u/guscorrea

Make sure the backing services are up, and that the ScyllaDB datacenter is work-

ing as shown in Figure 7.2.

Figure 7.2 – ScyllaDB data-center

Source: Author

7.2 Making API requests with the dashboard-service

The easiest way to consume and test the Digital Twin APIs is through the dashboard-

service, as it provides the user with a visual interface and doesn’t require any external tools

to perform HTTP requests. After starting up, the dashboard-service container exposes the

port number 8083 and is accessible through the context path /dashboard-service/.

7.2.1 Managing resources and creating associations

On the index page, the dashboard-service will perform GET requests to retrieve

all resources from the DT. At the first start-up, wells or components will not be found, as

shown in Figure 7.3. The users can then proceed to create Well resources with the Create

Well button, which will enable the Update, Delete, and Details actions, as shown in Figure

52

7.4. When performing those actions, the dashboard-service will make API requests to the

endpoints described in Table 5.4.

Figure 7.3 – dashboard-service index page without any resources

Source: Author

Below the Virtual Wells tables on the index page, users can also use the other

Create buttons to create choke-valve, anm, and tubing resources, making service calls to

the endpoints described in Tables 5.5, 5.6, and 5.7, respectively. The Update and Delete

actions will be available at resource creation (as shown in Figure 7.5), and the ANM flow

valves (M1, M2, W1, W2, XO, and PXO) and Tubing ICV status can be either opened or

closed using the Update button. Figure 7.6 shows an anm and tubing resource with their

respective flow valves opened and closed.

To associate a component to a specific Well, the user should use the Details button,

illustrated in Figure 7.4, and then click the Add component button, as shown in Figure 7.7.

These interactions will trigger requests to the well-orchestrator add-component endpoint

described in Table 5.4, and after the association is done, it can also be undone with the

Remove button, creating a service call to the remove-component endpoint. An association

requires a virtual well and at least a single component to be created beforehand.

The tubing microservice also has a dedicated feature mentioned in chapter 5,

53

Figure 7.4 – dashboard-service Virtual Wells table with two resources

Source: Author

Figure 7.5 – dashboard-service page with two choke-valve resources

Source: Author

which is the possibility to manage PDGs gauges. Clicking on the Details button shown in

Figure 7.6 and then clicking on the Add PDG button illustrated in Figure 7.8, a user will

be able to perform all CRUD operations with PDG resources. In short, these actions will

make service calls to the endpoints listed in Table 5.8.

7.3 Generating sensor data with the data-provider

A significant part of the DT solution is the generation and handling of mock IoT

sensor data. The dashboard-service allows the user to visualize and filter this informa-

tion using the Check Component Readings button, which can be seen in the component

list of Figure 7.7. In the case of sensor data related to a PDG, the user can use the

54

Figure 7.6 – dashboard-service page with anm and tubing resources

Source: Author

PDG Readings button seen in Figure 7.8. To generate the mock data, however, the user

should make HTTP requests to the data-provider endpoints described in Table 5.2. The

dashboard-service does not provide any type of visual interface with the data-provider,

so it’s recommended to use an API tool like Postman 1 or Insomnia 2 to perform the re-

quests. The data-provider port is exposed on number 8080, and the request body should

use the parameters described in Table 5.3. A data-provider payload example is shown

in Figure 7.9. As soon as the payloads are generated, sent to the Mosquitto broker, and

consumed by the virtual microservices, the user can visualize the sensor data using the

aforementioned buttons in the details page. An example of visualizing mock sensor data

with the dashboard-service is illustrated in Figure 7.10 and 7.11.

To conclude, all of the operations mentioned in this chapter will generate applica-

tion logs, which can be seen in the Kibana tool exposed on port 5601. Yet, to use Kibana

properly for the first time, the user should create a Kibana index pattern so data can be

1Postman: https://www.postman.com
2Insomnia: https://insomnia.rest

55

Figure 7.7 – Virtual Well details page

Source: Author

retrieved from Elasticsearch. Figure 7.12 shows an index pattern created by Logstash.

To filter log events, the index pattern should use the timestamp field. Then, all of the

generated DT logs will be available when clicking the Discover icon. It is also worth

mentioning that all operations described in this chapter can be performed without the

dashboard-service. The only requirement is a tool like Postman or Insomnia to make

requests, using the Tables listed in chapter 5 as reference.

7.4 API Documentation

A more detailed description of all the APIs defined in this work is also available

in the Swagger documentation (SMARTBEAR, 2022). Swagger is a set of open-source

tools built around the OpenAPI Specification that can help you design, build, document,

and consume REST APIs. As every microservice uses the SpringDoc Open API library,

a user can automatically generate documentation for all the mentioned endpoints, listing

56

Figure 7.8 – Virtual Tubing details page

Source: Author

Figure 7.9 – data-provider payload example

Source: Author

HTTP operations and all request and response payloads with examples. By making a

GET request to the /v3/api-docs endpoint in any microservice, a YAML documentation

of the service will be returned as a response. This can then be posted in a Swagger editor

and visualized, as shown in Figures 7.13, 7.14, and 7.15.

Links for the Swagger editor:

• https://editor.swagger.io/

• https://editor-next.swagger.io/

57

Figure 7.10 – dashboard-service temperature and pressure readings visualization

Source: Author

Figure 7.11 – dashboard-service custom and flow readings visualization

Source: Author

58

Figure 7.12 – Kibana index pattern using Logstash

Source: Author

Figure 7.13 – data-provider endpoint documentation in Swagger

Source: Author

59

Figure 7.14 – data-provider endpoint HTTP responses documentation in Swagger

Source: Author

Figure 7.15 – data-provider request payload in Swagger documentation

Source: Author

60

8 CONCLUSION

Digital Twin (DT) is one of the most promising enabling technologies for realizing

Industry 4.0. And yet, different interpretations of a DT exist without any architectural

template, leading to implementations driven by specific use cases (STEINDL et al., 2020).

Nevertheless, academic researchers concur that cloud solutions and microservice patterns

are vital to achieving the non-functional requirements of a Digital Twin, such as reliability,

scalability, and maintainability. (KASTNER; STEINDL, 2021).

By working on the DT solution for the flow assurance process of an oil well,

we can demonstrate the importance of breaking down the functional requirements of the

Oil Well into small and scalable microservices. The oil industry context is too complex,

and the landscape is constantly changing to be approached in a monolithic manner. The

microservice architectural pattern can be compared to developing discrete Digital Twins,

and hierarchical associations in the microservice and API level can be used to model the

relationships between components.

Following that principle, we presented and developed a high-level Digital Twin

architecture for the Flow Assurance process of an Oil Well, working alongside a complete

monitoring stack. We modeled three main components used in the Well plant to the

virtual world (anm, choke-valve, and tubing) in the form of microservices, possessing

several resource-management APIs. We simulated the IoT devices of an Oil Well with

the data-provider microservice, publishing mock messages to an MQTT broker, which

are then consumed by the virtual layer of the DT. We also covered basic communication

and data fundamentals and implemented a simple UI in the service layer to consume

the APIs. Naturally, we identified several pitfalls and improvements that could be made

to the overall architecture along the way, especially regarding security, scalability, and

continuous deployments.

A crucial missing piece in this current DT solution is security. Digital Twins

should possess high levels of safety and security, ensuring integrity, confidentiality, and

traceability. Data privacy is of extreme importance in DTs, even more so if a multitenancy

architecture is employed. Several frameworks can provide security abstractions, but the

Spring security libraries should be easily integrated into the current code.

Another key area that could be improved is the deployment process. The DT so-

lution should be moved to a cloud platform such as AWS, Google Cloud Platform (GCP),

or Microsoft Azure. A cloud-native platform could help with many of these tasks: secu-

61

rity and compliance, multitenancy, change control assurance, and control of the deploy-

ment process. This change would also allow the developer to perform scalability tests,

as Docker itself is not sufficient to achieve good results with dynamic scaling. To en-

compass these changes, modifications related to service discovery will be required, or the

deployment infrastructure itself should take care of routing.

Lastly, the current architecture doesn’t demonstrate any calculations or operations

related to the DT components, as most APIs are more focused on handling the sensor

data. Functionalities related to calculus, alert services, and simulations could be added to

test how well this arrangement does. Operations that involve more than one component

could also have a dedicated microservice, and the PDG resource could have its own appli-

cation as well, further testing how the hierarchy would behave. In short, the current DT

architecture was designed with extensibility in mind, so many of these changes should be

considered low-effort. On a functional level, the current design is not the only possible

arrangement. Oil Wells can have very similar sets of equipment configurations, so another

alternative would be to organize the microservices as a family of components instead of a

type-based approach. And yet, regardless of our design choices, the key requirements of

a DT solution remain the same.

Digital Twin APIs should be extensible and flexible, possessing a dynamic mes-

saging format that can keep pace with changes and evolve over time. Event-driven archi-

tectures using message brokers and asynchronous communication are favored, improving

service availability and ensuring loose coupling. Applications should be stateless, and

backing services should be treated as attached resources and avoid being technology-

dependent. Deployment technologies and cloud-native platforms are vital: they should

offer resilience and redundancy capabilities in case of unexpected failures and handle

abstractions such as environment configurations and service discovery. To make trou-

bleshooting and analytics quicker and easier, a robust monitoring stack that offers services

like log aggregation, visualization, and performance metrics is also essential.

It is clear that a successful Digital Twin comes from a team effort between devel-

opers and operations. As the oil industry begins to shift toward digitalization, we believe

more DT success cases will arise in the market, and architectural design standards will

become more defined. Ultimately, our proof of concept reveals how dependent a Digital

Twin can be on cutting-edge cloud technologies and microservice patterns to succeed.

62

REFERENCES

ADAMENKO, D.; KUNNEN, S.; NAGARAJAH, N. Comparative analysis of platforms
for designing a digital twin. John Wiley & Sons ltd., 2020.

APACHE-FOUNDATION. Apache Maven. 2022. Last accessed 02 August 2022.
Disponível em: <https://maven.apache.org/index.html>.

BARRICELLI, B.; CASIRAGHI, E.; FOGLI, D. A survey on digital twin: Definitions,
characteristics, applications, and design implications. IEEE Access, vol. 7, pp. 167653-
167671, 2019.

BEATS. Beats. 2022. Last accessed 21 August 2022. Disponível em: <https://www.
elastic.co/pt/beats>.

BOOTSTRAP. Bootstrap. 2022. Last accessed 29 July 2022. Disponível em: <https:
//getbootstrap.com/>.

BRUCE, M.; PEREIRA, P. A. Microservices in Action. 1. ed. [S.l.]: MANNING, 2020.

CARNELL, J. Spring Microservices in Action. 1. ed. [S.l.]: MANNING, 2017.

CHANDRAKANT, K. Why Choose Spring as Your Java Framework? 2022.
Last accessed 02 August 2022. Disponível em: <https://www.baeldung.com/
spring-why-to-choose>.

DAVIS, C. Cloud Native Patterns. 1. ed. [S.l.]: MANNING, 2019.

DEBLAUWE, W. Taming Thymeleaf. 1. ed. [S.l.]: Lulu, 2020.

ECLIPSE. Eclipse Paho Java Client. 2022. Last accessed 26 July 2022. Disponível em:
<https://www.eclipse.org/paho/index.php?page=clients/java/index.php>.

ELASTICSEARCH. Elasticsearch. 2022. Last accessed 21 August 2022. Disponível em:
<www.elastic.co/products/elasticsearch>.

FILEBEAT. Filebeat. 2022. Last accessed 21 August 2022. Disponível em: <https:
//www.elastic.co/beats/filebeat>.

FISHER, M. et al. Spring Integration Reference Guide. 2022. Last accessed 26 July
2022. Disponível em: <https://docs.spring.io/spring-integration/reference/html/index.
html>.

FREEMAN, J. What is JSON? A better format for data exchange. 2022. Last
accessed 27 July 2022. Disponível em: <https://www.infoworld.com/article/3222851/
what-is-json-a-better-format-for-data-exchange.html>.

GEEWAX, J. API Design Patterns. 1. ed. [S.l.]: MANNING, 2021.

GRIEVES, M. Digital twin: Manufacturing excellence through virtual factory replication.
White paper, 2014.

https://maven.apache.org/index.html
https://www.elastic.co/pt/beats
https://www.elastic.co/pt/beats
https://getbootstrap.com/
https://getbootstrap.com/
https://www.baeldung.com/spring-why-to-choose
https://www.baeldung.com/spring-why-to-choose
https://www.eclipse.org/paho/index.php?page=clients/java/index.php
www.elastic.co/products/elasticsearch
https://www.elastic.co/beats/filebeat
https://www.elastic.co/beats/filebeat
https://docs.spring.io/spring-integration/reference/html/index.html
https://docs.spring.io/spring-integration/reference/html/index.html
https://www.infoworld.com/article/3222851/what-is-json-a-better-format-for-data-exchange.html
https://www.infoworld.com/article/3222851/what-is-json-a-better-format-for-data-exchange.html

63

HOHPE, G.; WOOLF, B. Enterprise Integration Patterns. 2022. Last ac-
cessed 24 July 2022. Disponível em: <https://www.enterpriseintegrationpatterns.com/
PublishSubscribeChannel.html>.

JONES, D. et al. Characterising the digital twin: A systematic literature review. CIRP
Journal of Manufacturing Science and Technology 29 (2020) 36–52, 2020.

KASTNER, W.; STEINDL, G. Semantic microservice framework for digital twins. Appl.
Sci. 2021, 11, 5633, 2021.

KIBANA. Kibana. 2022. Last accessed 21 August 2022. Disponível em: <www.elastic.
co/products/kibana>.

KNEBEL, F.; WICKBOLDT, J. An open digital twin framework based on microservices
in the cloud. UFRGS, 2020.

LIGHT, R. A. Mosquitto: server and client implementation of the mqtt protocol. The
Journal of Open Source Software, vol. 2, no. 13, DOI: 10.21105/joss.00265, 2017.

LOGBACK. Logback. 2022. Last accessed 21 August 2022. Disponível em: <https://
logback.qos.ch>.

LOGSTASH. Logstash. 2022. Last accessed 21 August 2022. Disponível em: <www.
elastic.co/products/logstash>.

MALAKUTI, S. et al. Digital twins for industrial applications. definition, business values,
design aspects, standards and use cases. An Industrial Internet Consortium White Paper,
2020.

METRICBEAT. Metricbeat. 2022. Last accessed 21 August 2022. Disponível em:
<https://www.elastic.co/beats/metricbeat>.

NICKOLOFF, J. Docker in Action. 1. ed. [S.l.]: MANNING, 2020.

ORACLE. Java. 2022. Last accessed 04 August 2022. Disponível em: <https://www.
java.com/pt-BR/download/help/whatis_java.html>.

PENG, S.; ZHANG, Z.; WU, C. Geological cloud platform based on micro service archi-
tecture. Atlantis Press, 2017.

PERNO, M.; HVAM, L.; HAUG, A. Implementation of digital twins in the process indus-
try: A systematic literature review of enablers and barriers. Elsevier B.V. CCBY4.0, 2021.

POULTON, N. Docker Deep Dive. 1. ed. [S.l.]: Independently published, 2020.

PRESTON-WERNER, T. Semantic Versioning. 2022. Last accessed 27 July 2022.
Disponível em: <https://semver.org/#semantic-versioning-200>.

RASHEED, A.; SAN, O.; KVAMSDAL, T. Digital twin: Values, challenges and enablers
from a modeling perspective. IEEE Access, 2020.

RICHARDSON, C. Microservices Patterns. 1. ed. [S.l.]: MANNING, 2019.

https://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
https://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
www.elastic.co/products/kibana
www.elastic.co/products/kibana
https://logback.qos.ch
https://logback.qos.ch
www.elastic.co/products/logstash
www.elastic.co/products/logstash
https://www.elastic.co/beats/metricbeat
https://www.java.com/pt-BR/download/help/whatis_java.html
https://www.java.com/pt-BR/download/help/whatis_java.html
https://semver.org/#semantic-versioning-200

64

RICHARDSON, L. et al. Richardson Maturity Model. 2022. Last accessed 27
July 2022. Disponível em: <https://martinfowler.com/articles/richardsonMaturityModel.
html>.

SCYLLADB. ScyllaDB. 2022. Last accessed 20 August 2022. Disponível em: <https:
//www.scylladb.com>.

SLEUTH, S. C. Spring Cloud Sleuth. 2022. Last accessed 21 August 2022. Disponível
em: <https://spring.io/projects/spring-cloud-sleuth>.

SLF4J. Slf4j. 2022. Last accessed 21 August 2022. Disponível em: <https://www.slf4j.
org>.

SMARTBEAR. Swagger. 2022. Last accessed 21 September 2022. Disponível em:
<https://swagger.io/>.

SPRYMEDIA. DataTables | Table plug-in for jQuery. 2022. Last accessed 29 July
2022. Disponível em: <https://datatables.net/>.

STEINDL, G. et al. Generic digital twin architecture for industrial energy systems. Appl.
Sci. 2020, 10, 8903, 2020.

TAO, F. et al. Digital twin in industry: State-of-the-art. IEEE TRANSACTIONS ON
INDUSTRIAL INFORMATICS, VOL. 15, NO. 4, APRIL 2019, 2019.

THYMELEAF. Thymeleaf. 2022. Last accessed 29 July 2022. Disponível em: <https:
//www.thymeleaf.org/>.

URMA, R.-G.; FUSCO, M.; MYCROFT, A. Modern Java in Action. 1. ed. [S.l.]: MAN-
NING, 2019.

VMWARE. 2022. Last accessed 02 August 2022. Disponível em: <https://tanzu.vmware.
com/pivotal>.

WALLS, C. Spring in Action. 5. ed. [S.l.]: MANNING, 2019.

WANASINGHE, T. et al. Digital twin for the oil and gas industry. overview, re-
search trends, opportunities, and challenges. Digital Object Identifier 10.1109/AC-
CESS.2020.2998723, 2020.

WEBB, P. et al. Spring Boot Reference Documentation. 2022. Last accessed 26
July 2022. Disponível em: <https://docs.spring.io/spring-boot/docs/current/reference/
htmlsingle/#legal>.

WIGGINS, A. The Twelve Factor App. 2017. Last accessed 25 July 2022. Disponível
em: <https://12factor.net/>.

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.scylladb.com
https://www.scylladb.com
https://spring.io/projects/spring-cloud-sleuth
https://www.slf4j.org
https://www.slf4j.org
https://swagger.io/
https://datatables.net/
https://www.thymeleaf.org/
https://www.thymeleaf.org/
https://tanzu.vmware.com/pivotal
https://tanzu.vmware.com/pivotal
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#legal
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#legal
https://12factor.net/

	Acknowledgements
	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 Digital Twin
	2.2 Cloud Native Software and Microservices

	3 Proposal
	3.1 Motivation
	3.2 Architecture overview
	3.2.1 Physical
	3.2.2 Virtual
	3.2.3 Service
	3.2.4 Connection
	3.2.5 Data

	4 Technologies
	4.1 Java
	4.2 Spring Boot Framework
	4.3 Maven
	4.4 Mosquitto broker
	4.5 Scylla DB
	4.6 Docker

	5 API Definition
	5.1 Design Principles
	5.1.1 Resource-oriented API
	5.1.2 Message Format
	5.1.3 Versioning and compatibility
	5.1.4 MQTT outbound and inbound channel

	5.2 Microservice endpoints
	5.2.1 data-provider
	5.2.2 well-orchestrator
	5.2.3 virtual-choke-valve
	5.2.4 virtual-anm
	5.2.5 virtual-tubing
	5.2.6 dashboard-service
	5.2.7 Sensor data endpoints
	5.2.8 Health check endpoint

	6 Monitoring
	6.1 Elastic Stack
	6.1.1 Elasticsearch
	6.1.2 Logstash
	6.1.3 Kibana
	6.1.4 Beats

	6.2 Monitoring stack implementation

	7 System setup and usage
	7.1 Docker set up
	7.1.1 Repositories

	7.2 Making API requests with the dashboard-service
	7.2.1 Managing resources and creating associations

	7.3 Generating sensor data with the data-provider
	7.4 API Documentation

	8 Conclusion
	References

