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“To the stars who listen and the dreams that are answered.”

— SARAH J. MAAS, A COURT OF MIST AND FURY
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ABSTRACT

When a crime is under investigation, especially when too many questions are unanswered,

it is necessary to reduce the number of suspects to be able to solve the investigation. To

reduce the number of suspects, any detail found at the crime scene is important, such as a

strand of hair, DNA, or even a fingerprint. When the DNA found does not have the com-

plete information to be able to determine the identity of the suspect, some information

can still be extracted from it, like the information of eye color or skin color. This work

presents the application of Machine Learning algorithms, such as Random Forest, and

Support Vector Machine to determine the pigmentation of the eye and skin using Single

Nucleotide Polymorphisms (SNPs) from a DNA sample for forensics use. The follow-

ing chapters will present the necessary studies to investigate a solution for the proposed

problem. Genetic and machine learning theoretical basis are presented, as well as related

works, experiments, and results. Each dataset contains sixty-six SNPs and three classes:

Blue, Intermediate, and Dark Brown are the classes related to eye color, and White, Inter-

mediate, and Brown are the classes related to skin color. 144 experiments were executed

(72 for eye and 72 for skin classification), combining different approaches of feature se-

lection, class balanced, and classifiers to define the best solution. The data used for this

study were collected from the Southern Brazilian population. The final results showed

that 4 SNPs can be used to predict Blue and Dark Brown classes. For skin classification,

56 SNPs can be used when SMOTE is applied to balance the classes, but a further inves-

tigation is necessary to understand if the SMOTE is impacting the selection of the SNPs.

Using 36 SNPs without class balance also achieved a close result. All the experiments

had a bad performance for the Intermediate classes. For future work, a better investigation

of intermediate colors is necessary.

Keywords: Single Nucleotide Polymorphisms. Forensic. Eye color. Skin color.



Previsão da cor dos olhos e da pele para a população brasileiros utilizando

Polimorfismos de Nucleotídeo Único

RESUMO

Quando um crime está sob investigação, especialmente quando muitas perguntas não são

respondidas, é necessário reduzir o número de suspeitos para poder resolver a investiga-

ção. Para reduzir o número de suspeitos, qualquer detalhe encontrado na cena do crime é

importante, como um fio de cabelo, DNA ou até uma impressão digital. Quando o DNA

encontrado não possui as informações completas para poder determinar a identidade do

suspeito, algumas informações ainda podem ser extraídas dele, como a informação da cor

dos olhos ou da pele. Este trabalho apresenta a aplicação de algoritmos de Aprendizado

de Máquina, como Random Forest e Support Vector Machine para determinar a pigmen-

tação do olho e da pele usando Polimorfismos de Nucleotídeo Único (SNPs) a partir de

uma amostra de DNA para uso forense. Os capítulos seguintes apresentarão os estudos

necessários para investigar uma solução para o problema proposto. São apresentadas as

bases teóricas de genéticas e de aprendizado de máquina, bem como trabalhos relaciona-

dos, experimentos e resultados. Cada conjunto de dados contém sessenta e seis SNPs e

três classes: Azul, Intermediário e Marrom Escuro são as classes relacionadas à cor dos

olhos, e Branco, Intermediário e Marrom são as classes relacionadas à cor da pele. Foram

executados 144 experimentos (72 para olho e 72 para classificação de pele), combinando

diferentes abordagens de seleção de features, balanceamento de classe e classificadores

para definir a melhor solução. Os dados utilizados para este estudo foram coletados da

população do Sul do Brasil. Os resultados finais mostraram que 4 SNPs podem ser utili-

zados para prever as classes Azul e Marrom Escuro. Para classificação da pele, 56 SNPs

podem ser utilizados quando SMOTE é aplicado para equilibrar as classes, mas é neces-

sária uma investigação mais aprofundada para entender se o SMOTE está impactando na

seleção dos SNPs. O uso de 36 SNPs sem balanceamento de classe também obteve um

resultado próximo. Todos os experimentos tiveram um desempenho ruim para as classes

Intermediárias. Para trabalhos futuros, é necessária uma melhor investigação de cores

intermediárias.

Palavras-chave: Polimorfismos de Nucleotídeo Único. Forense. Cor do olho. Cor da

pele.
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1 INTRODUCTION

When a DNA found at a crime scene has no match in the police database, or

when it is necessary to endorse the eyewitness’s testimony with more pieces of evidence,

alternatives are necessary to avoid “cold cases”, and the information of skin and eye color

could be one of the alternatives. There are many studies in the forensic field (HART et

al., 2013) (WALSH et al., 2011) (CHAITANYA et al., 2018) trying to find a state-of-the-

art solution using Single Nucleotide Polymorphisms (SNPs) to determine pigmentation

traits, such as skin and eye color.

Single Nucleotide Polymorphisms (SNPs) are mutations at a single nucleotide

position that occurred during evolution and were passed on through heredity, account-

ing for most of the genetic variation among different individuals (SAEYS; INZA; LAR-

RANAGA, 2007). According to Kwok (2003), the human genome has 10 to 30 million

SNPs, but only some of them are related to external traits, making the task of using SNPs

to determine pigmentation traits even harder. Given the number of SNPs to analyze, it is

important to reduce the dimensionality of the problem to have a better understanding of

what SNPs are actually relevant.

IrisPlex is a tool developed by Walsh et al. (2011) to predict blue, intermediate,

and brown eye color for forensic use, using only six SNPs. The SNPs were selected based

on previous studies in the literature. In another work of Walsh et al. (2017), 36 SNPs

were chosen to predict skin color based on the Akaike Information Criterion (AIC). The

AIC estimates the quality of statistical models for a given dataset, estimating how much

information a model loses. Because there is no consensus on the best method to find the

optimal SNPs, each work has different approaches in order to maximize the prediction of

pigmentation traits using only relevant SNPs.

Besides finding the optimal SNPs, some studies have raised the fact that imbal-

anced data can degrade classification tasks. Guan and Zhang (2022) presented a study to

predict diabetes using genotype SNP data and phenotype data. The dataset used for the

task was highly skewed, having much more healthy samples. After some experiments,

the final conclusion was the imbalanced data had a poor performance if compared with

the experiments in a balanced dataset.

Most of the related works published use data collected from Europeans, and the

main challenge of this work is to find a solution using data collected from the Brazilian

population. The focus of this work is to understand which SNPs are relevant for the pro-
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posed problem and build a classifier for forensic use. The paper is organized as follows:

Chapter 2 will give an introduction to the genetic theoretical basis. Chapter 3 will present

some machine learning theoretical bases, such as feature selection, predictive models,

class imbalance problems, and Generative Adversarial Networks. Chapter 4 will review

the use of SNPs for phenotype prediction, and present the proposed problem. Chapter 5

will present experiments and results. Lastly, Chapter 6 will present the conclusion of the

work.
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2 GENETIC THEORETICAL BASIS

2.1 Deoxyribose Nucleic Acid

Deoxyribose nucleic acid (DNA) is a biopolymer constructed from four different

nucleotides attached to a long backbone structure of deoxyribose sugar molecules bonded

to phosphate groups (CRAWFORD, 2017). The order of the nucleotides in the DNA is

the blueprint for all enzymes and proteins. The DNA is composed of a pair of sugar-

phosphate backbone fused to a set of purine and pyrimidine bases. These strands are

joined together through hydrogen bonds between thymine and adenine bases and cytosine

and guanine bases (BISHOYI, 2021).

The genome (the complete DNA sequence), can be divided into two different

classes, based on known functional properties: coding and non-coding regions. The cod-

ing regions are sequence of nucleotides that actually code for protein while non-coding

regions do not code for protein (FOWLER et al., 1988) (AHMAD; JUNG; BHUIYAN,

2017).

Crawford (2017) defined the chromosome as a composition of proteins and DNA,

which carry thousands of genes. In a healthy human cell, there are 23 pairs of chromo-

somes, and in each pair, one chromosome comes from the father and the other one comes

from the mother. In the monogenic inheritance a recessive trait can be observed in indi-

viduals with the dominance of an allele. When the allele is non-dominant in idividuals,

they do not have the recessive trait (BISHOYI, 2021).

A pair of alleles at a locus forms the genotype, while the resultant physical trait is

known as the phenotype. The alleles are replicas of any specific gene, where each allele

in the pair was inherited by each parent (BISHOYI, 2021). Figure 2.1 shows the allele at

a locus in each chromosome. When the individual inherited different alleles from their

parents, they are called heterozygous. When the individual inherited the same alleles from

their parents, they are called homozygous.

2.2 Single Nucleotide Polymorphisms

Using the definition presented by Brookes (1999), Single Nucleotide Polymor-

phisms, or SNPs (pronounced “snips”), are single pair positions in genomic DNA at which

different sequence alternatives (alleles) exist in normal individuals in some population(s),
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Figure 2.1: The figure shows the allele located at a locus in each chromosome. The
heterozygous is determined by different alleles. The homozygous is determined by equal
alleles.

Source: National Human Genome Research Institute (https://www.genome.gov/genetics-
glossary/Allele)

wherein the least frequent allele has an abundance of 1% or greater. Or, in other words,

SNPs are the places in the genome where people differ. For example, if a major part of

a population has the nucleotide C (cytosine) in a specific genome position and a minority

of the same population has the nucleotide A (adenine) in this same genome position, that

indicates that an SNP occurs in that genome position. Most of the SNPs are located in

parts of the genome with no critical function. But some of the SNPs determine individual

characteristics such as eye color, hair color, and skin color (phenotype). Figure 2.2 shows

an example of an SNP.

Figure 2.2: The figure shows two DNA strands. Both DNA strands differ because the
one on the top has the alleles G and C in a particular position, and the one below has the
alleles A and T in the same position, indicating that a SNP occurs in this specific location.

Source: Society for Mucosal Immunology (https://www.socmucimm.org/news-media/single-
nucleotide-polymorphism-snp-allele-frequency-dna-pools/)

From the information of the genes collected, it is possible to obtain SNPs. Each



18

gene has a set of SNPs. Genes are elements within the genome of a living organism that

controls the transmission of a hereditary characteristic by specifying the structure of a

particular protein or by controlling the function of other genetic material. A gene is a

fundamental unit of heredity and contains instructions necessary for the synthesis of its

product which is the RNA (CRAWFORD, 2017).

Many studies are trying to find a state-of-the-art solution to determine the phe-

notype of an individual using SNPs. In the work presented by Walsh et al. (2011), a

tool named IrisPlex was developed to predict the Blue and Brown eye colors for forensic

use. Hart et al. (2013) presented a solution for eye color and skin color prediction us-

ing 8 SNPs, to improve the 7-Plex system, that utilizes 7 SNPs (rs12913832, rs1545397,

rs16891982, rs1426654, rs885479, rs6119471, and rs12203592). Chapter 4 will present

a review about the human phenotype prediction using SNPs.

2.3 Chapter Conclusion

The chapter presented the genetic theoretical basis, reviewing DNA and SNPs

concepts. The DNA is composed of a pair of sugar-phosphate backbones fused to a set

of purine and pyrimidine bases. (BISHOYI, 2021). SNPs, are single pair positions in ge-

nomic DNA at which different sequence alternatives (alleles) exist in normal individuals

in some population(s) (BROOKES, 1999).

The next chapter will present the machine learning theoretical basis.
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3 MACHINE LEARNING THEORETICAL BASIS

Machine learning is an evolving branch of computational algorithms that are de-

signed to emulate human intelligence by learning from the surrounding environment

(NAQA; MURPHY, 2015). It is a research field at the intersection of statistics, artificial

intelligence, and computer science (MüLLER; GUIDO, 2017). Some real-world appli-

cations that utilize machine learning are facial recognition, spam detector in emails, and

product recommendations (FACELI et al., 2011). Techniques based on machine learning

have been applied in different fields, such as finance, computational biology, and medical

applications (NAQA; MURPHY, 2015).

Machine learning is about extracting knowledge from data (MüLLER; GUIDO,

2017). The data is usually tabular, a matrix with attribute-value, where each row repre-

sents an object (the instance), and each column represents the attribute (features). The

attributes can be split into predictive attributes, where the values describe the feature of

the object, and target attributes, where the value labels the object (FACELI et al., 2011).

The following sections will give an introduction to some machine learning theo-

retical bases, such as predictive models, feature selection, and class imbalanced problems.

3.1 Predictive Models

A broad range of machine learning algorithms have been employed in previous

studies in the Bioinformatics field to predict pigmentation traits, such as Random Forests

(MUNEEB; HENSCHEL, 2021) (ZAORSKA; ZAWIERUCHA; NOWICKI, 2019) and

Support Vector Machine (KATSARA et al., 2021) (KUKLA-BARTOSZEK et al., 2021).

The K-Nearest Neighbors is most used in the Bioinformatics field to validate Future Se-

lection (ALZUBI et al., 2018b) or for data imputation (ROBERTS et al., 2007). The use

of the K-Nearest Neighbors to classify pigmentation traits is very unusual. Our work

focused on those three algortithms to predict the eye and skin color. The following sub-

sections will present an introduction to those algorithms.
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3.1.1 Random Forest

Breiman (2001) defined Random Forests as a classifier consisting of a collection

of tree-structured classifiers {h(x,Θk), k = 1, ...} where the {Θk} are independent iden-

tically distributed random vectors and each tree casts a unit vote for the most popular class

at input x. Or, in other words, Random Forest consists of a pre-defined number of Deci-

sion Trees, and after a large number of trees is generated, they vote for the most popular

class. According to Müller and Guido (2017), Decision Trees learn a hierarchy of if/else

questions, leading to a decision. Jiang et al. (2019) introduced the Decision Tree elements

as follows: each interior node of the tree corresponds to one of the input variables, each

edge to children denotes one possible value of the input variable and each leaf represents

the value of the target variable that is represented by the path from the root to the leaf.

Figure 3.1 shows the Decision Tree built for the Iris flowers classification prob-

lem. The image was extracted from Scikit-Learn’s page 1 about Decision Tree. The root

of the tree makes a decision based on the pental length (one of the input variables). If the

pental length is less or equal to 2.45cm, then the final class is Setosa, otherwise, a new

decision will be made based on the petal width. For each node, a feature is selected to

maximize the information gain, or, using Jiang et al. (2019) description, the splitting pro-

cess is recursively repeated on each desired subset of features. The recursion stops when

the subset at a node has all the same value as the target, or when splitting no longer con-

tributes to the predictions. Using Figure 3.1 as an example, the root used the pental length

information and generated a node that could make a final decision about the classification

in case the pental length is less or equal to 2.45cm.

In the work presented by Zaorska, Zawierucha and Nowicki (2019), 14 SNPs were

analyzed to predict skin pigmentation traits using a dataset collected from the Polish popu-

lation. The data contains 222 samples (90 males and 132 females) of unrelated individuals

from Poland. The traits were graded for skin color: dark (olive)/medium/light (pale), for

tanning/skin sensitivity to the sun: high susceptibility to sunburns/initial sunburns (but

turning brown)/moderate tanning (without sunburns)/quick tanning, for freckling: severe

freckling/moderate freckling/non-freckled skin. For the purpose of binomial estimation,

the phenotype categories were adjusted as follows: for skin color: dark vs. non-dark

(comprising moderate and light/pale), for tanning: sunburns (comprising high suscepti-

bility and initial sunburns) vs. non-sunburns (comprising moderate and quick tanning) and

1https://scikit-learn.org/
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for freckling: freckled skin (comprising severe and moderate freckling) vs. non-freckled

skin.

Figure 3.1: The figure shows the Decision Tree for the Iris classification problem, where
each interior node corresponds to a feature of the dataset, and the leafs correspond to a
target).

Source: Scikit-learn (https://scikit-learn.org/stable/modules/tree.html)

The 14 SNPs selected for their work are the rs12913832 in the hect domain and

RCC1-like domain 2 (HERC2) gene, rs1800407, rs7495174, rs4778241, and rs4778138

in the oculocutaneous albinism II (OCA2) gene, rs12896399 in solute carrier family 24,

member 4 (SLC24A4) gene, rs16891982 in solute carrier family 45, member 2 (SLC45A2)

gene, rs12203592 in interferon regulatory factor 4 (IRF4) gene, rs1393350 in tyrosinase

(TYR) gene, rs731236 in vitamin D receptor (VDR) gene, rs6058017, rs1015362 and

rs4911414 in Agouti signaling protein (ASIP) gene, rs1805007 in melanocortin 1 recep-

tor (MC1R) gene. Three algorithms were compared to predict skin pigmentation traits:

General Linear Model based on logistic regression, Random Forest, and Neural Network.

The final results showed that the Random Forest was the most accurate algorithm for 3

and 4 category estimations (total of 58.3% correct calls for skin color prediction, 47.2%

for tanning prediction, 50% for freckling prediction).
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3.1.2 Support Vector Machine

Using the definition presented by Xia (2020), the goal of the SVM algorithm is

to use a training set of objects (samples) separated into classes to find a hyperplane in

the data space that produces the largest minimum distance (called margin) between the

objects (samples) that belong to different classes. According to Müller and Guido (2017),

a subset of the data lies on the border between classes in the plane. Those data points

are called support vectors and the maximum distance between the support vectors and

the hyperplane defines the decision boundary between the classes. Figure 3.2 shows an

example of how the SVM separates the classes. The blue points represent class A, the

brown points represent class B, the dashed line represents the margin, the continuous line

is separating the two hyperplanes created (the decision boundary), and the double circles

in the dashed line represent the support vectors.

Figure 3.2: The figure shows the creation of two hyperplanes to separate the samples from
two different classes, represented by the blue dots (class A) and by the brown dots (class
B).

Source: Scikit-learn (https://scikit-learn.org/stable/modules/svm.html)

To predict a new data point, the distance between the test sample and the support

vectors is calculated using a kernel function: Polynomial, RBF, or Sigmoidal (FACELI et

al., 2011). Equation 3.1 represents the RBF Kernel, where ||x1 − x2||2 is the Euclidean

distance.

krbf (x1, x2) = exp (γ||x1 − x2||2) (3.1)

The algorithm is deterministic, meaning that it will always return the same result

even if the data is presented in a different order. However, the results of the model are not

easy to interpret (FACELI et al., 2011).
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In the work presented by Katsara et al. (2021), an evaluation of supervised machine-

learning methods for predicting appearance traits using SNPs was applied. Three popular

machine learning classifiers were used: support vector machines, random forest, and ar-

tificial neural networks. The evaluation was focused on classifying eye, hair, and skin

color by using the previously established SNPs from the IrisPlex (WALSH et al., 2011),

HIrisPlex (WALSH et al., 2013), and HIrisPlex-S (CHAITANYA et al., 2018) systems

(see Section 2.2). The dataset used contains 1,095 samples for eye, 1,702 for hair, and

1,318 for skin color prediction, originating from Europeans, Americans, South and East

Asians, Africans, Middle Eastern, and a few admixed samples. The eye color was classi-

fied into three categories: blue, intermediate, brown; hair color into four categories: red,

blond, brown, black; and skin color was classified into five categories: very pale, pale,

intermediate, dark, and dark to black.

For the eye color, hair color, and skin color, 6 SNPs from the previously estab-

lished IrisPlex model were selected, 22 SNPs were used for hair color prediction from

the previously reported HIrisPlex model, and 36 SNPs were applied for the skin color

prediction from the previously described HIrisPlex-S model. The results showed that all

classification methods had a similar performance, with no method being considered su-

perior to the others for any of the traits, meaning that any of the classifiers, including the

SVM, can be used to predict pigmentation traits.

IrisPlex performs pretty well for Europeans, but not so good for the Brazilian

population. The authors tested the prediction of Blue eye color in Europeans and one

individual from Brazil. For the Europeans, the probability of the prediction was 0.86,

while for the individual from Brazil, the probability was 0.69. The main challenge of this

work is to find the SNPs to accurately classify skin and eye color, and build a classifier

using data collected from the Brazilian population.

3.1.3 K-Nearest Neighbors

Zhang et al. (2018) defined that the principle of the K-Nearest Neighbors (KNN)

algorithm is that the most similar samples belonging to the same class have a high proba-

bility. The KNN takes into consideration that instances from the same class have similar

behavior and their data points are close to each other in the plane. To classify new in-

stances, the algorithm will search for the K nearest neighbors and decide the classification

for the data using the majority class between the neighbors.



24

The nearest data points can be calculated using a set of different distance metrics

such as Euclidean Distance, Manhattan Distance, and Hamming Distance. Equation 3.2

shows the Euclidean Distance, where d is the number of attributes.

d(xi, xj) =

√√√√ d∑
l=1

(xli − xli)2 (3.2)

For each test instance, the algorithm calculates the distance for each feature be-

tween the test sample and the train instances. After the distances are calculated, they are

ranked and the classes of the K first elements are taken. The final classification will be

the majority class of the K nearest instances. In case of a tie, a random class is chosen

(FACELI et al., 2011). Figure 3.3 shows an example of the prediction of a new data sam-

ple considering three nearest neighbors. Class 0 is represented by the blue dots, while

class 1 is represented by the red triangles, and the stars represent the new data samples to

be classified. Considering the three nearest neighbors, the first star at the top left of the

figure was classified as 1, because there are 2 nearest points from class 1 and only one

nearest data point from class 0.

Figure 3.3: Predictions made by the three-nearest-neighbors model on the forge dataset.

Source: (MüLLER; GUIDO, 2017), p.36

The number of K is a hyperparameter of the model. It is usually necessary to run

the algorithm a couple of times with different values of K to find the best value for it that

minimizes the prediction error. The KNN is a lazy algorithm because it stores the values

and only calculates the distance in the classification moment.

The work presented by Adam Roberts et al. (ROBERTS et al., 2007) shows a new

approach to impute missing values in SNPs panels. They transform the biallelic SNPs

into an array with three values. They choose to represent the majority allele of the SNP

as a ‘0’, the minority allele as a ‘1’, and an unknown value as a ‘?’. With the vectors with

three values, they created a pairwise mismatch vector of each SNP and generated a matrix
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with all mismatched vectors. This data structure created supports fast K-nearest neighbor

(KNN) searches over sliding windows in the matrix generated. To evaluate their solution,

they randomly inserted missed calls in a dataset and ran 5 simulations with 5, 10, 15, 20,

and 25% of unknown values. The final imputation was compared with the original data

and the final results showed that the method implemented is very efficient.

3.2 Feature Selection

The Feature Selection approach is mostly used in machine learning to reduce and

identify which features have a big impact on predictive models. The reduction of the

dimensionality helps to increase the speed of learning algorithms, improve the accuracy

of the classifier, and to remove the irrelevant and redundant features from the dataset (V;

PUTHIYEDTH; R, 2019).

The work presented by Nicole Dalia Cilia et al (CILIA et al., 2019) shows the eval-

uation of a set of machine learning algorithms to predict different types of cancer (Breast,

Colon, Leukemia, Lymphone, Lung, and Ovarian), training multiple classifiers with a dif-

ferent number of features. The results showed that the models trained with less number

of features had a higher precision than when they were trained with a bigger number of

features. And, in most cases, the results using fewer features were very close to the results

using more features. As an example, one of the experiments using a Random Forest for

Breast Cancer had a recognition rate of 89.70% using 200 features, and a recognition rate

of 89.44% using 50 features. These results show that reducing the dimensionality of the

problem can improve classification precision and the inerpretability (GRISCI; KRAUSE;

DORN, 2021).

Ang et al. (2016) categorized Feature Selection into five categories: filter, wrapper,

embedded, ensemble, and hybrid. The following subsections will give an introduction to

these methods.

3.2.1 Filters

The filter examines the features based on the intrinsic characteristics of the data. A

score is calculated for each feature, correlating to the expected output, and they are ranked

based on the score. The score can be calculated using a statistical approach, like the p-
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value, r-squared, t-test, ANOVA, and chi-squared (O’NEIL; SCHUTT, 2014). The main

advantage of filter methods is the fact they are independent of any machine learning algo-

rithm. Also, filters are largely used for being very efficient and for being computationally

fast(ANG et al., 2016) (LAZAR et al., 2012).

The work presented by Nina Zhou and Lipo Wang (ZHOU; WANG, 2007) com-

pares the results of using a t-test, modified for the problem, and the F-statistics to classify

population groups using the SNPs information. The dataset used for them is the HapMap

(haplotype map of the human genome) dataset, which has four population groups with

about ten million SNPs. To rank the features, first, they ranked features in each chro-

mosome separately. Then they combined the 22 ranking lists for the 22 chromosomes

together and ranked again to obtain the total ranking list, from which they selected 5, 10,

50, 100, 200, 300, 400, 500, and 1,000 top features. After that, a classifier based on SVM

was used to train using the 9 different feature sets at a time. The final results showed

that using the group of 400 SNPs, the accuracy, on average, was 99.29% for the modified

t-test, and 99.57% for the F-statistics. Therefore, it is possible to conclude that only 400

SNPs or so, from the ten million SNPs in the original data, are actually very important for

differentiating the populations.

3.2.2 Wrappers

The wrapper methods select a subset of the features by minimizing the prediction

error for a specific machine learning algorithm. The subsets of features are generated and

validated by training and testing a specific classification model, selecting the subset that

minimizes the prediction error. To search the space of all features subsets, a search al-

gorithm is wrapped around the classification model (O’NEIL; SCHUTT, 2014) (SAEYS;

INZA; LARRANAGA, 2007).

One of the approaches for wrapper methods is the Forward Feature Selection. It

adds features in the subset until the best performance model is found (O’NEIL; SCHUTT,

2014). The approach starts with finding the single feature that minimizes the prediction

error. Then, it generates a two-dimensional array containing the single feature selected

in the previous step and adds one more feature, selecting the best combination of two

features. The process continues until a subset of features that minimize the prediction

error is found (XIONG; FANG; ZHAO, 2001). Another similar approach is Backward

Feature Elimination, but in this case, features are removed from the subset. It starts using
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all features and for each step, it eliminates one feature. The Exhaustive Feature Selection

method tries all possible combinations of features. This approach has a high computa-

tional cost because it needs to test all possible subsets of features.

Chang et al. (2013) presented a study to classify osteoporosis based on SNPs, in

a Taiwanese women population. In their work, three algorithms were applied: multi-

layer feed-forward neural network (MFNN), Naïve Bayes, and logistic regression. The

method they choose to apply Feature Selection to reduce the number of SNPs was the

wrapper method, searching forward for potential feature subsets. The results showed that

the classifiers had a better performance using a feature selection than without the feature

selection. In the case of their study, the MFNN using the wrapper method demonstrated

a superior prediction performance using 4 SNPs, from a total of 22.

3.2.3 Embedded

The embedded method is a built-in feature selection mechanism that embeds the

feature selection in the learning algorithm and uses its properties to guide feature eval-

uation (ANG et al., 2016). Examples of predictive methods that perform embedded

feature selection are LASSO (MUTHUKRISHNAN; ROHINI, 2016), Random Forests

(SYLVESTER et al., 2017) and Gradient Boost (JIANG et al., 2019) (BOMMERT et al.,

2020).

To understand LASSO, first, it is important to understand regression. Regression

expresses the relationship between the features and the expected output through a mathe-

matical expression (O’NEIL; SCHUTT, 2014). For Linear Regression (assuming there is

a linear relationship between the features and the output), for example, the Equation 3.3

represents the formula for a linear model, where x0 to xp denotes the features, p is the

number of features, w is the weight of each feature and b is the y-axis offset. b and w are

the parameter of the model that are learned (MüLLER; GUIDO, 2017).

y = w0 ∗ x0 + w1 ∗ x1 + ...+ wp ∗ xp + b (3.3)

The LASSO method will penalize the weights of some features to force them to be

exactly zero. This means some features will be entirely ignored by the model (MüLLER;

GUIDO, 2017). Equation 3.4 shows the formula for LASSO, where β0 is the constant

coefficient (y-axis offset), β := (β1, β2, . . . , βp) is the coefficient vector (the weights of
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each feature), yi is the output, xi := (x1, x2, . . . , xp)i is the features vector for the ith

case, and t is a prespecified free parameter that determines the degree of regularization

(MUTHUKRISHNAN; ROHINI, 2016).

β = arg min

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2,

subject to

p∑
j=1

|βj| ≤ t

(3.4)

Muthukrishnan and Rohini (2016) experiment used a dataset for Diabetes to com-

pare the prediction results for the measure of the growth of the disease using three differ-

ent approaches for feature selection: LASSO, Ridge Regression (MCDONALD, 2009),

and Ordinary Least Squares (OLS) (BURTON, 2021). The results showed that LASSO

works better than the other methods, and can be used as an alternative for feature selec-

tion.

USAI, GODDARD and HAYES (2009) presented a study for genomic selection

using LASSO. Two datasets were used in the experiment: a simulated dataset with 5,865

individuals and 6,000 Single Nucleotide Polymorphisms (SNPs) and a mouse dataset with

1,885 individuals genotyped for 10,656 SNPs. The prediction equation applied to estimate

the effectiveness of the genomic selection was the Equation 3.5.

GEBVc = Xcβr (3.5)

Where GEBV means genomic estimated breeding values, Xc is the design matrix

allocating the marker genotypes in the candidate population and βr is the SNP effects

vector estimated in the reference population. The results showed that for both datasets,

LASSO often outperformed, and for the candidate population, LASSO reached an accu-

racy of 89% using 156 SNPs. The conclusion was that the LASSO approach is a good

alternative method to estimate marker effects for genomic selection.

Random Forests consist of a pre-defined number of Decision Trees (see Sec-

tion 3.1). Each Decision Tree will be generalized with a random subset of the features

using the bagging method (bootstrap aggregating) with replacement. The features selected

are the ones that maximize the information gain. The information gain is a criterion used

to determine the quality of a split (NOWOZIN, 2012). The number of Decision Trees and

the number of features to be selected are hyperparameters of the model.
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The work presented by Sylvester et al. (2017) shows the use of SNPs for fine-

scale salmon population assignment. Two different datasets were used: Alaskan Chinook

salmon, with 10,944 SNPs, and Atlantic salmon, with 220,000 SNPs. To reduce the

number of SNPs in the datasets, Random Forest, Regularized Random Forest, guided

Regularization Random Forest, and FST rank were applied to create panels of 40 to 700

SNPs. Random Forest methods often outperformed the FST rank. For the Atlantic salmon

data, in the small panel sizes (50-100 SNPs), FST rank had better or comparable self-

assignment accuracy than Random Forest, which performed better with small to medium

panels (101-200 SNPs). For the Alaskan Chinook salmon data, the Random Forest per-

formed better with small to medium panels (up to 200 SNPs). Across all panel sizes, the

Random Forest had an accuracy, on average, bigger than 80% for each dataset.

Gradient Boost methods usually use a combination of weak algorithms to improve

prediction. Weak algorithms are the algorithms with low accuracy when used solo, like

Decision Trees. The gradient boosted regression tree is a method that combines multiple

Decision Trees to create a more powerful model. It works by building trees in a serial

manner, where each tree tries to correct the mistakes of the previous one. The feature im-

portances of the gradient boosted trees are somewhat similar to the feature importances of

the random forests, though the gradient boosting completely ignored some of the features

(MüLLER; GUIDO, 2017).

Jiang et al. (2019) presented a study to predict a certain genetic disease using

the SNPs information from data collected by the Southeastern University of China. The

dataset has the information of 1,000 individuals (500 cases and 500 controls) with 9,000

SNPs each. In their experiment, they applied a Gradient Boosting algorithm slightly mod-

ified by introducing Gini Impurity as a strategy to choose candidate SNPs, and Decision

Trees was chosen as the weak learner. Jiang et al. (2019) defined the gain of Gini Impu-

rity (GI) as being a measure of how often the element would be correctly labeled if it is

randomly labeled. The Gini impurity is calculated as shown in Equation 3.6, where p is

the tree node, pi is the fraction of items labeled with class i in the set, and J is the total

number of classes.

GI(p) =
J∑

i=1

pi(1− pi) = 1−
J∑

i=1

p2i (3.6)

The gain of GI is computed according to Equation 3.7, where N and GI represents
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the quantity of individuals at a node and its GI, respectively. p is the parent node and d is

its child.

Gain(p) = GI(p)−
∑
d∈p

Nd

Np

×GI(d) (3.7)

Comparing the results cross all algortithms applied for the classification (Naïve

Bayes, SVM, Random Forest, and Gradient boosting), the results from the experiment

showed that the Gradient boosting algorithm had a better performance in the classification

than the other algorithms applied, with a precision of 92.92%.

3.2.4 Ensemble

Ang et al. (2016) presented the ensemble method as a method that aims to con-

struct a group of feature subsets and then produce an aggregate result out of the group. It

is purposely designed to tackle the instability and perturbation issues in many feature se-

lection algorithms. Yang et al. (2013) described the two most commonly used approaches

for feature selection using ensemble: Ensemble-based on data perturbation and Ensemble-

based on different data partitioning.

The idea behind the ensemble based on the data perturbation approach is to disturb

the data by creating many versions of it and apply a feature selection method in each

version created for the data. An aggregation of the results will define the features to be

selected. Pengyi Yang et al. used as an example the use of a filter method to rank the

features and the bootstrapping as the perturbation method to create many versions of the

same data. The final rank of the features selected is the average of the rank results.

The ensemble-based on different data partitioning is based on partitioning the

training and testing data differently, generating different training and test samples for

the same data, and applying a wrapper method to select the features. The final feature

subset is determined by calculating the frequency of each feature that was selected from

each partitioning, where the features with a higher frequency will be in the final feature

set.

The work by Abeel et al. (2009) presented a study in biomarker identification for

cancer diagnosis using ensemble for feature selection. The algorithm chosen by the au-

thors was a linear SVM (see Section 3.1). The advantage of the SVM is the fact that

SVMs contain an embedded capability for feature selection. The method chosen to re-
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duce the features was backward elimination. Using the weights calculated by the SVM

model for each feature, the features with lower weights are removed from the feature set,

and the model is trained again with the remaining features. The process stops when all

features have been removed or a desired number of features is reached. For the ensemble

method, the SVMs were trained with different subsets of all features and the output was

aggregated to return the final result. The final results showed that using ensemble feature

selection techniques could improve around 15% the classification performance, other than

that the solution showed an increase of up to almost 30% in the robustness of the selected

biomarkers.

3.2.5 Hybrid

The hybrid method can be either the combination of two different methods, two

methods of the same criterion, or two feature selection approaches. By combining multi-

ple methods, the hybrid approach can take advantage of the associated techniques (ANG

et al., 2016). Alzubi et al. (2018a) proposed a solution for feature selection using a fusion

of filter and wrapper to detect the most informative SNPs. The filter approach chosen was

the Conditional Mutual Information Maximization (CMIM) (FLEURET, 2004), and the

wrapper approach chosen was the Support Vector Machine Recursive Feature Elimination

(SVM-RFE) (GUYON et al., 2002). The CMIM selects features that maximize their mu-

tual information with the class to predict, achieving the balance between individual power

and independence through the comparison of the new feature with the features that have

already been selected. Equation 3.8 shows how the CMIM is calculated for each new

feature, where S are the features already selected, Y is the target, Xj is a feature that was

already picked (j ∈ S), Xn is a new candidate feature to be selected, and H represents

the conditional entropy. A featureX0 is considered good, if I(Y ;X0|X) is large for every

X already selected, meaning that X0 is carrying information about Y that has not been

captured yet.

CMIM(Xn) = min
j∈S

I(Xi;Y |Xj)

I(Xi;Y |Xj) = H(Xi|Xj)−H(Xi|Xj, Y )

(3.8)

The SVM-FRE adopts a backward feature elimination. It begins with all features
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set and eliminates the features that are least important to the SVM classifier, creating a

ranked list where the top features can be selected to obtain an optimal subset of features.

In each iteration, a new SVM is trained and a new feature is removed. The rank is created

by sorting the features by order of elimination, where the first removed features are the

less important ones. The solution proposed by the authors first applies the CMIM to

pre-filter the most relevant SNPs and then applies the SVM-FRE to obtain the optimal

SNPs subset. The CMIM is first applied once the feature space is huge and it would

require a high computational cost for the SVM-FRE to process all the SNPs. Besides

that, the SVM-FRE does not take into consideration the redundancy among SNPs, so it is

necessary to remove the irrelevant and redundant information through the CMIM.

To evaluate the solution, five datasets were chosen from the NCBI GEO reposi-

tory: Thyroid Cancer (TC) (with 1,000,000 SNPs), Autism (ASD) (with 250,000 SNPs),

Colorectal Cancer (CC) (with 250,000 SNPs), Mental Retardation (MR) (with 250,000

SNPs), and Breast Cancer (BC) (with 500,000 SNPs). The proposed novel was com-

pared against four different feature selection approaches: Minimum Redundancy Maxi-

mum Relevance (mRMR) (PENG; LONG; DING, 2005), ReliefF (ROBNIK-ŠIKONJA;

KONONENKO, 2003), Fast Correlation Based Feature Selection (FCBF) (YU; LIU,

2003), and CMIM. Four classifiers were chosen to compare the feature selection ap-

proaches: Support Vector Machine (SVM) (HEARST et al., 1998), K-Nearest Neighbors

(KNN) (FIX; HODGES, 1989), Naïve Bayes (NB) (RISH et al., 2001), and Linear Dis-

criminant Analysis (LDA) (XANTHOPOULOS; PARDALOS; TRAFALIS, 2013). The

results showed that for the ASD dataset, the proposed novel could achieve the best accu-

racy (89.50) using only 100 SNPs and the SVM classifier. For the BC dataset, the solution

achieved the best accuracy (96.39) using only 50 SNPs and the SVM classifier. For the

MR dataset, the solution achieved the best accuracy (85.00) using only 50 SNPs and the

SVM classifier. For the MR dataset, the solution could achieve the best accuracy (85.00)

using only 50 SNPs and the SVM classifier. The TC dataset achieved the best accuracy

(90.37) using only 100 SNPs and the SVM classifier.

3.3 Class Imbalance Problem

The class imbalance problem is one of the main challenges in the machine learn-

ing field. The problem happens when a big number of instances in a dataset are labeled as

one class, called majority class, while fewer are labeled as the other class, called minority
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class. The imbalance degrades the performance of machine learning algorithms because

the decision-making will be biased to the majority class (ELRAHMAN; ABRAHAM,

2013) (GUO et al., 2008). In many real-world scenarios, the prediction of the minority

class is very important for cases such as medical diagnosis, for example, where the num-

ber of patients with a rare disease is much lower than the number of patients that do not

have the disease. According to Guo et al. (2008), from the view of the applications, the

nature of the imbalanced class can be because the data are naturally imbalanced or the

data are not naturally imbalanced but it is too expensive to obtain data of the minority

class.

Kaur, Pannu and Malhi (2020) split the imbalance class approach into four tech-

niques: pre-processing approaches, cost-sensitive learning methods, algorithmic centered

approaches, and hybrid methods. Besides these four approaches, new studies have used

Generative Adversarial Networks (GANs) to generate synthetic samples for the minority

class to deal with the imbalance class problem (CAI et al., 2019a) (DOUZAS; BACAO,

2018) (SANTOS; ARANHA, 2019). The following subsections will address the tech-

niques presented by Kaur, Pannu and Malhi (2020), with the difference that cost-sensitive

learning methods are classified for many authors as an algorithmic centered approache

(GUO et al., 2008) (ELRAHMAN; ABRAHAM, 2013) (SPELMEN; PORKODI, 2018).

Because of this consideration, it was decided to discuss this method in the algorithmic-

centered approach subsection, rather than discussing it as a separate topic. The section 3.4

will present the theoretical concept of GANs and the studies for its use for the imbalance

class problem.

3.3.1 Pre-processing approaches

The pre-processing approaches are performed on the training data, changing the

class distribution to reduce the ratio between them. The most popular way to pre-processing

the data is the sampling methods, which include under-sampling, over-sampling, and hy-

brid sampling (KAUR; PANNU; MALHI, 2020) (ELRAHMAN; ABRAHAM, 2013).

• Over-sampling: Guo et al. (2008) describes over-sampling as a non-heuristic method

that aims to balance the class distribution by random replicating the samples of the

minority class. The main shortcoming of this approach is the model over-fitting

since it makes copies of the minority samples. Nitesh et al. (2002) introduced a
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heuristic solution called Synthetic Minority Over-sampling Technique (SMOTE),

where the main idea is to create synthetic samples rather than over-sampling the mi-

nority class with replacement. It first randomly selects a point in the minority class.

Second, it searches for the k nearest neighbors of the same class. It finally selects

a new point between each closest neighbor and the random point selected. These

new data points are randomly located in the vector between the k nearest neigh-

bors and the point selected in the first step (SANTOS; ARANHA, 2019). SMOTE

avoids the over-fitting problem since it does not replicate the minority samples. He

et al. (2008) presented a solution called Adaptive Synthetic Sampling Approach

(ADASYN), which generates more synthetic data for the minority examples. The

ADASYN method is very similar to the SMOTE, where it searches for the k nearest

neighbors of a selected data point to generate synthetic data. But the key difference

between the two methods is that ADASYN uses a density distribution as a criterion

to automatically decide the number of synthetic data that needs to be generated,

rather than pick up one data point between the first random point selected and each

neighbor.

• Under-sampling: Guo et al. (2008) describes under-sampling as a non-heuristic

method that aims to balance the class distribution by eliminating samples from the

majority class. The shortcoming of this approach is the loss of useful information,

especially when the training data is small. Hart (1968) introduced the Condensed

Nearest Neighbor Rule, where the algorithm sets up bins called STORE and GRAB-

BAG. First, one sample of the data is placed in the STORE bin. Second, it picks a

second sample of the data and classifies this sample using the nearest neighbor rule

comparing it with the samples in STORE. If this sample is classified correctly, it is

placed in the GRABBAG bin, otherwise, it is placed in STORE. After one passes

through the original sample set, the procedure continues to loop through GRAB-

BAG until termination. The termination can occur in two different ways: All the

samples from the GRABBAG were transferred to STORE (in this case, the consis-

tent subset found in the entire original set); no samples were transferred to STORE

because the underlying decision surface has not been changed. Finally, the samples

in the GRABBAG are discarded and the set in STORE is used as reference points.

The main idea is that the Condensed Nearest Neighbor Rule will pick out points

near the boundary between classes. Typically points deeply embedded within a

class will not be transferred to STORE. Kubat and Matwin (1997) presented the
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One-Sided Selection approach, a very similar solution to the Condensed Nearest

Neighbor Rule. Let S be the original training set. Initially, C contains all the sam-

ples from the minority class from S and one randomly selected sample from the

majority class. It first classifies S with the 1 nearest neighbor rule, using the exam-

ples in C, and compares the assigned labels with the original ones. Then, it moves

all the misclassified examples into C. Finally, it removes from C all the examples of

the majority class that is distant from the decision boundary, since these examples

might be considered less relevant for learning (GUO et al., 2008).

• Hybrid sampling: Kaur, Pannu and Malhi (2020) describes hybrid sampling as a

method that applies both resampling techniques, over-sampling, and under-sampling.

Qian et al. (2014) presented a solution for the imbalance class problem where the

minority classes are over-sampled and majority classes are under-sampled. It first

splits the training set into different classes. Second, it applies an under-sampling

technique, randomly selecting samples from the majority class, and applies the

SMOTE technique in the minority class. Wang (2014) presented an approach for

resampling the training set using a hybrid solution based on SVM to address the

imbalance problem. The proposed approach first uses the SVM method to gener-

ate a classification hyperplane and applies an under-sampling technique to reduce

the majority of samples. For that, it deletes some samples far away from the hyper-

plane according to the calculated distances between the samples and the hyperplane.

Then, it divides the training dataset into several subsets, in which it synthesizes new

samples for the minority class using SMOTE technique.

Hasibuan, Kusuma and Suwamo (2014) presented the study for identification of

SNP in cultivated soybean using SVM in an imbalanced dataset. Under-sampling and

over-sampling were applied to obtain balanced data. The SNPs were labeled as +1 for

positive SNP, or −1 for negative SNP. The genomic data used was limited to chromo-

some number 16, which has 1,524,576 candidate SNPs. 1,500 random samples were

extracted from the total candidates for the positive SNPs, and 15,000 random samples

were extracted from the total candidates for the negative SNPs. For the under-sampling

technique, the negative SNPs were grouped into 10 clusters, using the K-means algo-

rithm, and from each cluster, the negative SNPs were randomly selected, according to the

Equation 3.9, where m × SizeMI is the total number of selected majority class samples

that it is supposed to have in the final training dataset,
∑K

i=1 Size
i
MA/Size

i
MI is the total

ratio of the number of majority class samples to the number of minority class samples in
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all clusters, K is the number of clusters, and SizeiMA/Size
i
MI is the ratio of the number

of majority class samples to the number of minority class samples in the ith cluster. MI

and MA means the minority class and majority class, respectively.

SSizeiMA = (m× SizeMI)×
SizeiMA/Size

i
MI∑K

i=1 Size
i
MA/Size

i
MI

(3.9)

For the over-sampling technique, after taking 25% of the negative data by the

under-sampling, the positive data was replicated to obtain balance data. The SVM was

trained using three different samplings and the results were compared with the SVM

trained with the imbalance data. The dataset generated by under-sampling with m = 1

(Equation 3.9) had an accuracy of 87.10%, true positive rate (TPR) of 0.96, and false

positive rate (FPR) of 0.21. The dataset generated by under-sampling with m = 2 (Equa-

tion 3.9) had an accuracy of 85.82%, true positive rate (TPR) of 0.88, and false positive

rate (FPR) of 0.15. The dataset generated by over-sampling had an accuracy of 88.97%,

a true positive rate (TPR) of 0.96, and a false positive rate (FPR) of 0.18. The classifier

trained with the original dataset had an accuracy of 93.21%, a true positive rate (TPR) of

0.51, and a false positive rate (FPR) of 0.02.

The final results showed that the classifier trained with a balanced dataset could

identify SNPs better than the one trained using the original data.

3.3.2 Algorithmic centered approaches

The algorithmic centered approaches deal with the bias produced by the imbal-

anced data by improving existing classifiers (HAIXIANG et al., 2017). Many classifier

algorithms produces a score that represents the degree to which an examples is a mesm-

ber of a class (GUO et al., 2008). Changing how these classifiers define the treashold

between the classes is a very commom approach to deal with the imbalanced data (YU et

al., 2015) (WU et al., 2016). Spelmen and Porkodi (2018) classified the algorithmic cen-

tered approaches into ensemble-based methods, threshold methods, one class learning,

cost sensitive learning, and active learning methods.

• Ensemble-based methods: Elrahman and Abraham (2013) defined the ensemble-

based method as a combination of multiple classifiers to improve the generalization

ability and increase the prediction accuracy. The most popular ensemble method

is boosting and bagging. Boosting convert weak learning models into a learning
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model with better generalization (GANAIE et al., 2021), where each classifier is de-

pendent on the previous one, and focuses on the previous one’s error. Data samples

that are misclassified in the previous classifiers are chosen more often or weighted

more heavily (ELRAHMAN; ABRAHAM, 2013). AdaBoost, introduced by Fre-

und and Schapire (FREUND; SCHAPIRE, 1997), trains the classifiers serially and

after each round it updates the weights of the instances, giving more focus to the

misclassified ones. First, all examples start with the same weight and for each itera-

tion, the weights are adjusted, increasing for the instances that are harder to classify

and decreasing for the ones that are correctly classified. Also, each classifier has a

different weight depending on its accuracy, where more confidence is given to more

accurate ones. When a new instance is submitted, each classifier gives a weighted

vote, and the class label is selected by the majority (GALAR et al., 2011). Whereas,

bagging, also known as bootstrap aggregation, trains different learning models by

replicating the original training examples. A new dataset is randomly created (with

replacement, meaning that the same sample can be chosen more than once for the

same new dataset) using the instances from the original dataset. The new examples

generated usually maintain the original data size. When an unknown instance is

presented to each classifier, a majority or weighted vote, from all classifiers, is used

to infer the class (GALAR et al., 2011). The Random Forest (see Section 3.1) uses

the bagging strategy for improving the predictions of the base classifier which is a

decision tree. Each decision tree will learn with a different subset of features and for

each tree, a new dataset is generated using bootstrap with replacement (GANAIE

et al., 2021). When an unknown instance is presented, a majority vote from all the

trees is used to infer the class.

• Threshold methods: According to Esposito et al. (2021), thresholding methods

aim to identify the optimal decision threshold for classification (once the decision

boundary can be biased towards the majority class), typically by maximizing a bal-

anced accuracy metric on a validation set through cross-validation or bootstrapping.

Yu et al. (2015) proposed a support vector machine-based solution to iteratively

search the optimal position for the classification hyperplane. Since the classifi-

cation accuracy is skewed, other specific evaluation metrics are considered in the

solution to evaluate the performance of the learner. Table 3.1 shows the confusion

matrix used for specific metrics, where the columns represent the predicted classes

and the rows represent the actual classes. The positive class is the class of inter-
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est, in this case, the minority class, and the negative class is the other class, in this

case, the majority class. The true positive value is the number of instances in the

positive class that was correctly classified. The false positive value is the number of

instances in the negative class that was misclassified as the positive class. The false

negative value is the number of instances in the positive class that was misclassified

as the negative class. And the true negative value is the number of instances in the

negative class that was correctly classified as the negative class.

Table 3.1: Confusion matrix

Predicted positive class Predicted negative class

Actual positive class TP (True Positive) FN (False Negative)

Actual negative class FP (False Positive) TN (True Negative)

The Equation 3.10 calculates the precision, also known as the positive predictive

value, of the classifier. The Equation 3.11 calculates the recall, also known as

sensitivity or true positive rate (TPR). The Equation 3.12 calculates the harmonic

mean of precision and recall. Equation 3.13 calculates the true negative rate (TNR).

And the Equation 3.14 calculates the geometric mean of sensitivity and specificity,

reflecting the balance between the accuracy of the minority and majority classes.

Precision =
TP

TP + FP
(3.10)

Recall(TPR) =
TP

TP + FN
(3.11)

F −measure =
2×Recall × Precision
Recall + Precision

(3.12)

TNR =
TN

TN + FP
(3.13)

G−mean =
√
TPR× TNR (3.14)

The iterative search algorithm proposed considers the output values for all misclas-

sified instances to generate candidate positions for the optimal classification hyper-

plane. Each candidate position is adjusted to the middle between the corresponding



39

misclassified minority class instance (xi) and its nearest neighbor instance (nxi)

belonging to the majority class that lies far from the original classification hyper-

plane. The adjusted distance θi is calculated according to Equation 3.15, where h is

the original decision function.

θi =
−h(xi)− h(nxi)

2
(3.15)

The G-mean value of all candidate positions is compared to find the optimal position

and its adjusted distance. Then all the G-mean values are ranked in descending

order and the optimal position (θoptimal) corresponding to the highest G-mean is

obtained. The final decision threshold h′ is calculated using Equation 3.16, where

h is the original decision threshold.

h′(x) = h(x) + θoptimal (3.16)

• One class learning: One class learning aims to build models using only a single

class of data, predicting whether an instance belongs to the target class or is an

outlier. The most common approach for it is to use the statistical distribution of

the data from a single class and classify the unknown instances as belonging to the

target class (high-density values) or the set of outlier classes (low-density values)

(BELLINGER; SHARMA; JAPKOWICZ, 2012). From a Bayesian perspective, the

probability density function of the given target class can be represented by Equa-

tion 3.17.

Classification(x) =

target if p(x|ω) ≥ τ

outlier otherwise
(3.17)

Where p(x|ω) is the probability of class ω, for a given example x, and τ is a thresh-

old defined for the classification. Hempstalk, Frank and Witten (2008) presented

a solution where artificial data is generated to take the role of a second class, con-

verting the one-class problem into a binary classification. The solution first obtains

a rough estimation of the density of the target class and then it generates artificial

data that is close as possible to the target class, using the Equation 3.18.

P (X|T ) =
(1− P (T ))P (T |X)

P (T )(1− P (T |X))
P (X|A) (3.18)
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Where T denotes the target class, X is the instance and A is the artificial class. To

use the equation in practice, the value for P (X|A) is chosen and the amount of data

to be generated is specified by the user. After the generation of the artificial class,

the problem can be solved as a binary classification.

• Cost-sensitive learning methods: Kaur, Pannu and Malhi (2020) defined cost-sensitive

learning as a cost-specific technique that finds costs associated with misclassified

examples. The cost learning techniques take the misclassification error cost into

its account by assigning a higher cost to the minority class (ELRAHMAN; ABRA-

HAM, 2013). The method can be incorporated both at the data level and at the al-

gorithm level. Compared with resampling methods, cost-sensitive learning is more

computationally efficient, but less popular (HAIXIANG et al., 2017). The cost

model takes the form of a cost matrix (Table 3.2), where the diagonal elements are

zero, meaning that correct classification has no cost, and the cost of misclassifying

is the entries Cij and Cji (GUO et al., 2008).

Table 3.2: Cost-sensitive learning matrix

Prediction

Class i Class j

True Class
Class i 0 Cij

Class j Cji 0

Domingos (1999) presented a method to make a classifier cost-sensitive (Meta-

Cost), where the main idea behind MetaCost is to relabel the training examples with

their optimal classes. To do that, the algorithm uses a bootstrap with replacement

in the training examples and applies a learning classifier in each bootstrap. Using

the output of each bootstrap, it estimates the class’s probability by the fraction of

votes that it receives from the ensemble of all outputs. Finally, it relabels each ex-

ample of the training set using the equation 3.19, where P (j|x) is the probability

of each class j, for a given example x, and C(i, j) is the cost-sensitive matrix. The

Bayes optimal prediction (R(i|x)) for x is the class i that minimizes the expected

cost of predicting that x belongs to class i. The matrix and the learning classifier

are parameters for the MetaCost algorithm.

R(i|x) = arg min
i

∑
j

P (j|x)C(i, j) (3.19)
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• Active learning methods: The active learning method can actively choose the train-

ing data, and it is usually used to label unknown instances to create a training set

since manually labeling a huge number of instances can be time-consuming and

costly (TONG; KOLLER, 2001). Ertekin et al. (2007) proposed a solution using

SVM and the active learning method to deal with the class imbalance problem.

SVM-based active learning can pick up instances by checking their distances to the

hyperplane since instances close to the hyperplane are more informative for learn-

ing. The empirical solution proposed by the authors is that the imbalance ratio of

the classes within the margin in real-world data is generally much lower than the

entire data. This means that the solution proposed will provide the learner with

more balance classes picking up instances close to the hyperplane. The algorithm

works as follows: First, an SVM learner is trained using all the existing training

data. Second, it selects the closest instance to the hyperplane. Then, this newly

selected instance is added to the training set and the SVM is trained again. Because

each iteration needs to recompute the distance to the new hyperplane, the solution

proposes a selection method that does not search through the entire dataset. Pick-

ing a random instance, with 95% of probability that is among the top 5% closest

instance, and using the Equation 3.20, where p% is the top p percent closest in-

stances with probability 1 − η, the size of the random sampling is 59. This means

that 59 random instances will be picked and the closest instance to the hyperplane

will be selected from the 59 samples in the second step of the iteration.

L = log η/ log(1− p%) (3.20)

Cheng et al. (2015) presented a solution for the class imbalanced problem in bioin-

formatics using boundary movement-based, called BM-ELM. The algorithm proposed

can be divided into three stages: first, it uses an Extreme Learning Machine (ELM) to train

a classifier with the original training set. ELM is a fast algorithm to train single hidden

layer forward networks that randomly generates the weights and bias between the input

layer and the hidden layer, then uses the least-square algorithm to get the solution of the

hidden layer output weights. Second, all the instances are projected on a one-dimensional

space according to the distance between each example and the initial hyperplane. It uses

the kernel density estimation (KDE) approach to obtain the probability density distribu-

tion curves of the two different classes. Third, it finds the intersecting point of the two
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density curves. The distance between the intersecting point and the original point denotes

the optimal movement distance of the original classification hyperplane.

The solution was evaluated using four imbalanced bioinformatics datasets: Mi-

croRNA precursors (XUE et al., 2005), SNP (GENG; YU-QUAN; YANG, 2018), Box

H/ACA snoRNA, and Box C/D snoRNA (HERTEL; HOFACKER; STADLER, 2008).

The MicroRNA precursors dataset has 8,687 instances and a class imbalance ratio of

44.01. The SNP dataset has 3,074 instances and a class imbalance ratio of 15.80. The

Box H/ACA snoRNA dataset has 8,510 instances and a class imbalance ratio of 129.92.

The Box C/D snoRNA has 45,515 instances and a class imbalance ratio of 147.74. The

classifiers used to compare against the BM-ELM were the ELM, weighted ELM, ELM

with random under-sampling (RUS), ELM with random over-sampling (ROS), ELM with

SMOTE, and SVM with RUS. The final results were very similar between all classifiers

using a class imbalance approach. Compared with the ELM without any class imbalance

approach, the other classifiers outperformed by comparing the sensitivity and G-mean.

For the SNP dataset, the BM-ELM obtained a sensitivity of 0.61, a specificity of 0.81,

and a G-mean of 0.70. The ELM obtained a sensitivity of 0.01, a specificity of 0.99, and

a G-mean of 0.06. For the MicroRNA precursors dataset, the BM-ELM obtained a sensi-

tivity of 0.88, a specificity of 0.91, and a G-mean of 0.90. The ELM obtained a sensitivity

of 0.04, a specificity of 1.00, and a G-mean of 0.20. For the Box H/ACA snoRNA, the

BM-ELM obtained a sensitivity of 0.95, a specificity of 0.95, and a G-mean of 0.95. The

ELM obtained a sensitivity of 0.00, a specificity of 1.00, and a G-mean of 0.00. For the

Box C/D snoRNA, the BM-ELM obtained a sensitivity of 0.96, a specificity of 0.95, and

a G-mean of 0.95. The ELM obtained a sensitivity of 0.00, a specificity of 1.00, and a

G-mean of 0.00.

The final results showed that the BM-ELM, and the other classifiers, outperformed

the ELM in sensitivity and G-mean. The BM-ELM could guarantee a small loss of speci-

ficity if compared to the ELM trained without any class imbalance approach.

3.3.3 Hybrid methods

Spelmen and Porkodi (2018) describes the hybrid method as a combination of the

data level and the algorithmic level method, to overcome the problems in both methods,

and also to have a better classification accuracy. Seiffert et al. (2010) proposed a solution

called RUSBoost using random under-sampling (RUS) and AdaBoost technique. The al-
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gorithm works as follows: First, all the instances are weighted initially as 1/m, where

m is the number of examples in the training set. Second, T weak learners are iteratively

trained. For each iteration, RUS is applied to randomly remove examples from the ma-

jority class until the class ratio achieves the desired ratio. After that, this new training set

generated by RUS is passed to the weak learner with their respective weights, and a weak

hypothesis is obtained from the learner. With the hypothesis obtained, a pseudo loss ∈t is

calculated using the Equation 3.21 based on the original training set, where i represents

the ith example, t represents the tth iteration, Dt(i) is the weight of the ith example in

the tth iteration, ht is the hypothesis from the weak learner, xi is the ith example, yi is the

class of the ith example, and y is the class different from yi.

∈t=
∑

(i,y):yi 6=y

Dt(i)(1− ht(xi, yi) + ht(xi, y)) (3.21)

With the∈t calculated, the weight update parameter αt is obtained as∈t /(1− ∈t).

Next, the weight distribution for the next iteraction Dt+1 is uptaed (Equation 3.22) and

normalized (Equation 3.23).

Dt+1(i) = Dt(i)α
1
2
(1+ht(xi,yi)−ht(xi,y:y 6=yi))

t (3.22)

Zt =
∑
i

Dt+1(i)

Dt+1(i) =
Dt+1(i)

Zt

(3.23)

After the T iterations, the final hypothesis is obtained as the weighted vote of the

T weak hypotheses, as shown in Equation 3.24.

H(x) = arg max
T∑
t=1

ht(x, y) log
1

αt

(3.24)

Schubach et al. (2017) presented a novel method for imbalance-aware machine

learning for predicting rare and common disease-associated non-coding variants, called

hyperSMURF. The solution proposed can be split into three phases: first, simultaneous

over-sampling and under-sampling are applied. The negative examples (majority class)

are subdivided into n non-overlapping partitions, and each partition is randomly subsam-

pled to reduce the number of negative samples. For the over-sampling, the SMOTE is
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applied in the positive examples, and, for each partition, the oversampled data is added,

resulting in balanced datasets. Second, each partition generated in the first step is used

to train n Random Forests (RF). Any ensemble of learning machines can be used, but

the authors choose RF. Third, the results of the n classifiers are combined by averaging

across the probabilities estimated by each Random Forest. The combination of the Ran-

dom Forests (ensemble of decision trees), and the ensemble in the third step, results in a

hyper-ensemble (an ensemble of ensembles).

To evaluate the solution, two datasets were used: Mendelian data (SMEDLEY et

al., 2016) and GWAS data (MA et al., 2015). The Mendelian dataset is extremely im-

balanced, by, approximately, one positive regulatory Mendelian mutation to every 36,000

negative non-deleterious variants, and the GWAS dataset has an imbalance of ∼1:700.

The state-of-the-art methods for scoring variants (Combined Annotation–Dependent De-

pletion (CADD) (KIRCHER et al., 2014), Genome-Wide Annotation of variants (GWAVA)

(RITCHIE et al., 2014), Deep Learning–based Algorithmic framework (DeepSEA) (ZHOU;

TROYANSKAYA, 2015), and Eigen (IONITA-LAZA et al., 2016)) were used for perfor-

mance comparison, and the metric for the evaluation was the Area Under the Precision-

Recall Curve (AUPRC). For the Mendelian database, the hyperSMURF had an AUPRC

of 0.42, the CADD had an AUPRC of 0.09, and the Eigen had an AUPRC of 0.01, the

GWAVA had an AUPRC of 0.15, and the DeepSEA had an AUPRC of 0.05. For the

GWAS database, the hyperSMURF had an AUPRC of 0.635, the CADD had an AUPRC

of 0.03, the Eigen had an AUPRC of 0.00, the GWAVA had an AUPRC of 0.40, and

the DeepSEA had an AUPRC of 0.23. The final results showed that the hyperSMURF

achieved significantly better results than the state-of-the-art methods.

3.4 Generative Adversarial Networks

The generative adversarial network (GAN) was first introduced by Goodfellow et

al. (2014) as a framework for estimating generative models via an adversarial process.

The GAN architecture consists of two networks: the generator and the discriminator. The

generator’s goal is to learn the statistical distribution of the real data to be able to generate

fake data that is indistinguishable from real-world data. The discriminator is often a bi-

nary classifier that discriminates real data from the fake data generated by the generator.

The adversarial in the name comes from the fact that both networks are trained simultane-

ously, and in competition with each other (SALEHI; CHALECHALE; TAGHIZADEH,
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2020) (WANG et al., 2017). Gui et al. (2021) describes the optimization of GANs as a

minimax problem, where the goal is to reach the Nash equilibrium. According to Holt

and Roth (2004), the Nash equilibrium can be interpreted as a potential stable point of

a dynamic adjustment process in which individuals adjust their behavior based on the

strategy of other players in the game, searching for a strategy that will give them better

results. This means that a participant cannot change their strategy without altering the

strategy of other participants. The generator and the discriminator reach a state where one

cannot progress without changing the other. The minimax refers to minimizing the loss in

the generator and maximizing the loss in the discriminator (SALEHI; CHALECHALE;

TAGHIZADEH, 2020). The training process of GANs involves finding the parameters

for the discriminator that maximize the classification accuracy and finding the parameters

for the generator that maximally confuse the discriminator (CRESWELL et al., 2018).

Figure 3.4 shows the architecture of the GAN, where Xdata represents the real

data, G(z) represents the fake data generated by the generator, G is the generator, D

is the discriminator, D(x) is the output from the discriminator, z is a noise vector with

uniform distribution or Gaussian distribution, JD and JG are the loss functions that up-

date the learning process of the discriminator and the generator, respectively (SALEHI;

CHALECHALE; TAGHIZADEH, 2020).

Figure 3.4: The architecture of the GAN.

Source: (SALEHI; CHALECHALE; TAGHIZADEH, 2020), p.4

During the training process, the generator tries to capture the distribution of true

examples and generates new data using the noise vector z received as input, mapping

the representation space z, called latent space, to the space of the real data (GUI et al.,

2021) (CRESWELL et al., 2018). According to Wang et al. (2017), eventually, when the

discrimination ability of D has been improved to a high level but cannot discriminate the

data correctly, the generator had captured the distribution of the real data.

Equation 3.27 represents the GAN optimization strategy, as a minimax problem.
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Salehi, Chalechale and Taghizadeh (2020) broke down the Equation 3.27 into Equa-

tion 3.25 and Equation 3.26, for a better understanding. According to Equation 3.25,

if X = Xdata, where X is the discriminator input, and Xdata is the real data, the discrim-

inator should display a numeric value close to 1 in the output (D(X) → 1), since the

input is the real data, maximizing V (D,G) (maximizing the classification). According to

Equation 3.26, if X = G(Z), where X is the input of the discriminator and G(Z) is the

fake data generated by the generator, the discriminator has two possible outputs: a close

number to 0, classifying the input as fake, or a close number to 1, classifying the input

as real. If the discriminator correctly predicts that the input data is fake (X = G(Z)),

it maximizes V (D,G) (maximizing the classification). If the discriminator misclassifies

the input as real, the generator minimizes V (D,G), once the main goal of the generator

is to fool the discriminator.

if X = Xdata =⇒ D(X)→ 1 =⇒ max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] (3.25)

if X = G(Z) =⇒

D(X)→ 0; for D =⇒ maxD V (D,G) = Ez∼pz(z)[log(1−D(G(z)))]

D(X)→ 1; for G =⇒ minG V (D,G) = Ex∼pdata(x)[log(D(x))]
(3.26)

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (3.27)

From a mathematical point of view, Equation 3.27 shows a minimax game, where

G represents the generator, D represents the discriminator, z is the noise vector, x is the

real data, pz is the probability density function of the noise vector, pdata is the probability

density function of the real data, D(x) represents the probability that x came from the

real data, and G(z) represents the probability that z came from the fake data.

Giving the noise vector z, the GAN generates a random output that is indistin-

guishable from real-world data. From the current network, it is not possible to control

the data that is being generated (SAXENA; CAO, 2022). To overcome the problem,

Mirza and Osindero (2014) introduced the Conditional Generative Adversarial Network

(CGAN). CGANs can generate examples by conditioning the model on additional in-

formation to direct the data generation process. The generative adversarial nets can be
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extended to a conditional model if the generator and discriminator are conditioned on

some extra information y, where y can be any extra information such as class labels or

other types of data. Equation 3.28 is an updated version of Equation 3.27 for the CGAN,

considering the extra information y.

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x|y))] + Ez∼pz(z)[log(1−D(G(z|y)))] (3.28)

3.4.1 Class imbalance problem with GANs

To overcome the class imbalance problem, recent works have used GANs to gen-

erate synthetic data to create more samples for the minority class (DOUZAS; BACAO,

2018) (SANTOS; ARANHA, 2019) (CAI et al., 2019b) (MARIANI et al., 2018). San-

tos and Aranha (2019) presented a study comparing the use of GANs, SMOTE, and

ADASYN to synthesize datasets as a solution for two main problems: imbalanced data

and to avoid the use of the original data for privacy reasons. Three different datasets were

used during the experimentation: Pima Indians Diabetes (SMITH et al., 1988) 2, Breast

Cancer Wisconsin (Diagnostic) from UCI machine learning repository 3, and Credit Card

Fraud Detection (POZZOLO et al., 2017). All the labels for the datasets used for the

experiment are binary, where 0 represents the majority class label, and 1 represents the

minority class label. Table 3.3 shows a summary of the datasets.

Table 3.3: Summary of the databases used in the Santos and

Aranha (2019) research

Database Name Number of features Size Label Distribution

Pima Indians

Diabetes Database
9 768

No diabetes: 500,

Diabetes: 268

Breast Cancer

Wisconsin (Diagnostic)
32 569

Benign: 357,

Malignant: 212

Credit Card

Fraud Detection
31 284807

Non-frauds: 284315,

Frauds: 492

2https://www.kaggle.com/uciml/pima-indians-diabetes-database
3http://archive.ics.uci.edu/ml/index.php
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The first experiment trained a Decision Tree classifier using only synthetic data

generated by the GAN for the Cancer and Diabetes databases. The experiment had three

steps: first, GAN was trained with the full original dataset, second, they used the trained

GAN to generate a new synthetic dataset with the exact size of the original, third, the De-

cision Tree was trined using only the synthetic data, and then the classifier was evaluated

using the original database. The results showed that the GAN with 2 hidden layers with

sizes of 256 and 512 each, outperformed the classifier trained using the original Cancer

dataset in accuracy and precision. Using the original dataset, the accuracy and precision

for the original data were 0.888 and 0.679, respectively. For the synthetic data generated

by the GAN, the accuracy and precision were 0.935 and 0.853, respectively. The classi-

fier trained using the Diabetes dataset with the original data outperformed the classifier

trained using the synthetic data generated by the GAN with 2 hidden layers with sizes of

256 and 512 each. The accuracy, precision, and recall for the original data were 0.748,

0.784, and 0.367, respectively. For the synthetic data, the accuracy, precision, and recall

were 0.706, 0.582, and 0.584, respectively.

The second experiment trained a Decision Tree classifier using a balanced dataset

for Fraud detection. To generate the balanced data, they first separated the dataset on the

target classes, generating a database only with class 0, and another one only with class 1.

A GAN was trained using only the data from the minority class. The trained GAN was

used to generate data for the minority class until the original dataset becomes balanced.

For comparison, the classifier was trained using the imbalanced data and the balance data.

In both cases, GAN, ADASYN, and SMOTE were applied to over-sampling the minority

class. Using the imbalanced dataset, the GAN with 1 hidden layer with a size of 256

outperformed the accuracy (0.986) and precision (0.077) compared with SMOTE, where

the accuracy was 0.958 and the precision was 0.026, and ADASYN, where the accuracy

was 0.958 and the precision was 0.026. But for the original imbalanced data, without any

under-sampling, the classifier outperformed the SMOTE, ADASYN, and the GAN, with

an accuracy of 0.999 and precision of 0.896. Using the balanced data generated by the

GAN, and using GAN, SMOTE, and ADASYN for under-sampling the minority class,

the results were very similar between ADASYN, SMOTE, and the GAN. SMOTE had an

accuracy of 0.912, a precision of 0.959, and a recall of 0.861. ADASYN had an accuracy

of 0.921, precision of 0.979, and a recall of 0.861. The GAN with 1 hidden layer with a

size of 256 had an accuracy of 0.894, precision of 0.998, and recall of 0.789. The balanced

dataset with no over-sampling technique had an accuracy of 0.782, precision of 1.0, and
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recall of 0.565.

The results showed that the use of GAN to generate synthetic data in the balanced

scenario showed better accuracy and precision than training on the original dataset. For

the imbalanced scenario, the GAN synthetic data performed better than the original data

but did not outperform SMOTE and ADASYN.

Guan and Zhang (2022) presented a study to predict diabetes using genotype SNP

data and phenotype data. The dataset is highly skewed with healthy samples with a ratio

of 20. For comparison, two sampling techniques were chosen and the data was aug-

mented by GAN. The proposed work has two neural networks, one is a genotype neural

network, and the other is a phenotype neural network. For the phenotype neural network,

SMOTE was chosen for the under-sampling method, random under-sampling (RUS) for

the under-sampling method, and a Spearman correlation was used for feature selection.

The genotype neural network predicts diabetes using only SNPs data. The number of

features was reduced by filtering the genes through Genome-Wide Association Studies

(GWAS) Catalog with features and biomarkers that are known highly related to diabetes.

For the resampling, the same techniques used for the phenotype were applied. The results

for the phenotype network compared the SMOTE, random under-sampling, and GAN.

The under-sampling technique had an accuracy of 0.90, specificity (TNR) of 0.91, and

a sensitivity of 0.88. The over-sampling technique had an accuracy of 0.88, specificity

(TNR) of 0.94, and a sensitivity of 0.83. The GAN had an accuracy of 0.89, specificity

(TNR) of 0.94, and a sensitivity of 0.84. The genotype network performed poorly com-

pared with the phenotype network. The SMOTE had an accuracy of 0.60, specificity of

0.7, and Sensitivity of 0.5. The GAN had an accuracy of 0.55, specificity of 0.7, and

sensitivity of 0.5.

The overall results showed that the under-sampling technique has the best perfor-

mance for the problem proposed by the authors, and the phenotype network could achieve

state-of-the-art results. It was also observed that GAN is more suitable to generate con-

tinuous data than discrete data.

3.5 Chapter Conclusion

The chapter presented machine learning theoretical basis, such as feature selec-

tion, predictive models, class imbalance problems, and Generative Adversarial Networks.

The feature selection can be categorized into five categories: filter, wrapper, embedded,
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ensemble, and hybrid Ang et al. (2016). The predictive models addressed in the chapter

were Random Forest, SVM, and K-Nearest Neighbors.

The imbalance class degrades the performance of machine learning algorithms

because the decision-making will be biased toward the majority class (ELRAHMAN;

ABRAHAM, 2013) (GUO et al., 2008). Kaur, Pannu and Malhi (2020) split the im-

balance class approach into four techniques: pre-processing approaches, cost-sensitive

learning methods, algorithmic centered approaches, and hybrid methods. Besides those

approaches, new studies have used Generative Adversarial Networks to overcome the

problem.

The next chapter will present the studies for human phenotype prediction using

SNPs and the proposed problem for this work.



51

4 HUMAN PHENOTYPE PREDICTION USING SNPS

The use of SNPs to determine pigmentation traits has many studies trying to find

a state-of-the-art solution. There is no consensus on the best approach for the problem,

and each study tries a different way to solve it (WALSH et al., 2011) (MUNEEB; HEN-

SCHEL, 2021). The SNPs that accurately predict the phenotype is also under discussion.

Walsh et al. (2011) developed a tool to predict eye coloration using six SNPs, while Hart

et al. (2013) presented a solution for eye coloration using eight SNPs. Studies in the field

are still necessary to build a robust solution for the problem.

IrisPlex was developed by Walsh et al. (2011) to predict Blue, Intermediate, and

Brown eye colors for forensic use. For the creation of the tool, six SNPs were used:

rs12913832, rs1800407, rs12896399, rs16891982, rs1393350 and rs12203592 from the

HERC2, OCA2, SLC24A4, SLC45A2, TYR and IRF4 genes, respectively. They used

the information of 6168 Dutch Europeans to establish that the six SNPs selected carry

the most important eye color information. The IrisPlex presented an AUC (Area Under

The Curve) of 0.93 for brown eyes and 0.91 for blue eyes. But, according to the paper,

intermediate eye colors were more challenging to define using the presented prediction

model and the available SNPs.

Hart et al. (2013) presented a solution for eye color and skin color prediction using

8 SNPs, to improve the 7-Plex system, that utilizes 7 SNPs (rs12913832, rs1545397,

rs16891982, rs1426654, rs885479, rs6119471, and rs12203592). The solution adds the

rs12896399 SNP. The training set used for them has 803 training samples, and the classes

for eye color are Blue, Brown, and Green, while the classes for skin are Dark, Medium,

and Light. The process for eye color prediction occurs in two steps: The first step will

classify the sample as Not Brown or Not Blue using the rs12913832 SNP. Then, in the

second step, it will classify the eye as being Blue, Brown, or Green using the rs12203592,

rs16891982, and rs6119471 SNP.

The eye classification occurs according to the alleles in each SNP. Light and

medium skin color are predicted by any of the two following alleles: G/G at rs12913832,

G/G at rs16891982, A/A at rs1426654, T/T at rs1545397, or A/A at rs885479. Light

skin color is predicted by more stringent conditions: G/G at rs12913832, plus G/G at

rs16891982, and A/A at rs1426654. Non-light skin color, like medium or dark, is pre-

dicted by G/G at rs6119471. Using the European data for test, the call rate for the solution

was approximately 94%, and no errors occurred for eye prediction.
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Muneeb and Henschel (2021) work presented an experiment to classify the eye

color and Type-2 diabetes using 9 types of classifiers: Random Forest, Extreme Gradient

boosting, Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Gated

Recurrent Unit (GRU), Bidirectional LSTM (BILSTM), 1D Convolutional Neural Net-

work (1DCNN), ensembles of ANN, and ensembles of LSTM. The dataset used for eye

color was randomly split into 540 samples for training and 266 samples for test, maintain-

ing the classes proportion (Brown and Green). Each algorithm was trained using different

numbers of SNPs. The results of all models were very close, but in their case, the en-

sembles of LSTM had the higher accuracy (96%) using 1560 SNPs. It is important to

highlight that the ensembles of LSTM trained using 3 SNPs, for their experiment, had an

accuracy of 90%, a close result using fewer attributes.

Chaitanya et al. (2018) presented a tool called HIrisPlex-S to predict eye, hair, and

skin color. The solution utilizes 41 SNPs, where 17 SNPs are used for skin color, and 24

SNPs are used for eye and hair color. Of these 24 SNPs, 17 also contribute to skin color

prediction. The HIrisPlex-S comprises the IrisPlex tool developed previously and has 3

eye, 4 hair, and 5 skin color categories. The eye categories are Blue, Intermediate, and

Brown. The hair categories are Blond, Brown, Red, and Black. The skin categories are

Very Pale, Pale, Intermediate, Dark, and Dark-Black. The 17 SNPs added in the solu-

tion for skin coloration are: rs3114908, rs1800414, rs10756819, rs2238289, rs17128291,

rs6497292, rs1129038, rs1667394, rs1126809, rs1470608, rs1426654, rs6119471,

rs1545397, rs6059655, rs12441727, rs3212355, and rs8051733. To validate the solu-

tion, a comparison with 194 individuals from 17 different populations was made, and the

final results showed an Area Under the Curve (AUC) of 0.75 for Very Pale, 0.73 for Pale,

0.75 for Intermediate, 0.84 for Dark, and 0.98 for Dark-Black skin color.

Most of the solutions proposed so far use data collected from Europeans and only

a few admixed samples. The goal of this work is to understand what are the most relevant

SNPs to determine skin and eye traits to build a machine learning solution for forensics

use, using data collected from the Southern Brazilian population, focused on the state of

Rio Grande do Sul. To achieve this goal, many experiments were applied in the datasets

provided to find the best solution for the proposed problem, dealing with the class imbal-

ance problem and feature selection. Chapter 5 will present all the experiments and results

found.

For this work, the data was collected from the Southern Brazilian population (see

Sections 4.1 and 4.2), and for the study, it was selected sixty-six SNPs in twenty-one
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genes reported in the literature as associated with human pigmentation: ASIP, BNC2,

DDB1, EXOC2, HERC2, IRF4, KITLG, LYST, MC1R, MFSD12, MYO5A, NPLOC4,

OCA2, SLC24A4, SLC24A5, SLC45A2, TMEM138, TTC3, TYR, TYRP1, UTG1A6

(see Table 4.1). The information related to the gene and chromosome can be found in

SNPedia1, dbSNP2, GWAS Catalog3, and Infinome4.

Table 4.1: The sixty-six SNPs selected for the study of this

work

SNP Gene Chromosome

rs3768056 LYST 1

rs2070959
UGT1A6, UGT1A7, UGT1A8,

UGT1A9, UGT1A10
2

rs16891982, rs28777,

rs183671, rs13289
SLC45S2 5

rs12203592 IRF4 6

rs4959270 LOC105374875 6

rs13289810 RNU-47P 9

rs1325127 TYR 9

rs2733832, rs683 LURAP1L-AS1, TYRP1 9

rs10756819 BNC2 9

rs11230664 DDB1 11

rs7948623 TMEM138 11

rs1042602, rs1393350 LOC107984363, TYR 11

rs10777129, rs642742,

rs12821256
KITLG 12

rs12896399 LOC105370627 14

rs2402130 SLC24A4 14

1https://www.snpedia.com/index.php/SNPedia
2https://www.ncbi.nlm.nih.gov/snp/
3https://www.ebi.ac.uk/gwas/home
4https://www.infino.me/welcome
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rs2036213, rs2594935,

rs7170989, rs1900758,

rs1800407, rs1037280,

rs1800404, rs3794606,

rs4778232, rs1448484,

rs1375164, rs1597196,

rs895828, rs895829,

rs4778137, rs4778138,

rs4778241

OCA2 15

rs1129038, rs7494942,

rs6497271, rs12913832,

rs3935591, rs11636232,

rs7170852, rs2238289,

rs2240203, rs916977,

rs4932620, rs8039195,

rs16950987

HERC2 15

rs1426654 MYEF2, SLC24A5 15

rs1724630 MYO5A 15

rs3212345 LOC101927910 16

rs1805005, rs1805006,

rs1110400, rs885479
MC1R 16

rs1805009 MC1R, TUBB3 16

rs9894429 NPLOC4 17

rs10424065 MFSD12 19

rs6119471 ASIP 20

rs2424984 AHCY, ASIP 20

rs2378249 PIGU 20

rs2835630 TTC3 21

Two datasets were provided with information for eye and skin color. Each dataset

contains sixty-six SNPs (Table 4.1) and three classes: Blue, Intermediate, and Dark

Brown are the classes related to eye color, and White, Intermediate, and Brown are the

classes related to skin color. The dataset for eye classification has 653 samples (Table 4.2),

where 154 samples were classified as Blue, 158 samples were classified as intermediate
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and 341 samples were classified as Dark Brown. The Intermediate class corresponds to

green and hazel eyes. The Dark Brown class corresponds to light brown, dark brown, and

black eyes.

The dataset for skin classification has 652 samples (Table 4.3), where 467 samples

were classified as White, 107 samples were classified as Intermediate, and 78 samples

were classified as Brown. The White class corresponds to white and pale skin colors, the

Intermediate class corresponds to beige and light brown skin colors, and the Brown class

corresponds to medium and dark brown skin colors.

Table 4.2: Data distribution for eye color dataset

Class Eye Color Number of samples

Blue Blue 467

Intermediate
Green

107
Hazel

Dark Brown
Black

78
Dark Brown

Table 4.3: Data distribution for skin color dataset

Class Skin Color Number of samples

White
White

467
Pale

Intermediate
Beige

107
Light Brown

Brown
Medium Brown

78
Dark Brown

The data provided for the study is highly skewed, as shown in tables 4.2 and 4.3.

For the skin dataset, most samples were classified as White, while fewer were classified as

Brown or Intermediate. The same occurs with the eye skin dataset, where most samples

were classified as Dark Brown, while fewer were classified as Blue or Intermediate.

The experiments presented in Chapter 5 will focus on finding the SNPs that ac-

curately predict eye and skin color and build a classifier for the proposed problem. The

two main challenges of this work are the class imbalance problem and finding the SNPs
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that will correcttly classify the three classes for each dataset. As presented in Chapter 3.3,

the class imbalance can directly impact the performance of machine learning algorithms.

Besides that, as presented in the related works, many solutions do not perform well for

the Intermediate classes because is not an easy task to find the right SNPs for this class.

4.1 Samples and Phenotypical Characterization

An informed written consent and a survey form on sex, age, self-declared biogeo-

graphical ancestry, place of birth and residency was completed and signed by all voluntary

participants. Oral swabs were collected from 653 individuals from Southern Brazilian

population. Digital photographs of subjects’ eyes were taken and their colors were clas-

sified as: Blue (154), Green (100), Hazel (58), Light Brown (80), Dark Brown (187), and

Black (74).

Amounts of red (R), green (G), and blue (B) color values were measured by ana-

lyzing each photo with COLORS software (OTAKA et al., 2002) to confirm such classifi-

cation. Eye color categorization was performed according to overall accepted perception

for local Southern Brazilian population, and category assignment was independently per-

formed by three different collaborators.

Each participant skin color was identified using the Fitzpatrick Score (Types 1 to

6) and classified independently by at least three collaborators as: White (245), Pale (222),

Beige (67), Light Brown (40), Medium Brown (55), or Dark Brown (23). Amounts of

RGB color values were measured in an inner and hairless portion of the right arm (below

elbow) using a color analyzer equipment ACR-1023 (Instrutherm, Brazil) (PARRA et al.,

2003; FITZPATRICK, 1988).

4.2 DNA Genotyping

Genomic DNA from oral swabs was extracted using the NucleoSpin Tissue kit

(Macherey-Nagel Inc.) following manufacturer instructions or by organic extraction method

(LIU, 2009). Samples were sent to Liggins Institute, from Auckland University, New

Zealand, for SNPs genotyping using iPLEX® Pro reagentes on the MassARRAY® sys-

tem and MassARRAY Typer application software (PROTOCOLS, ; GABRIEL; ZIAU-

GRA; TABBAA, 2009).
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4.3 Chapter Conclusion

The chapter presented studies for human phenotype prediction using SNPs and

the proposed problem for this work. Each work presented has different ways to solve

the proposed problem, and there is no consensus related to the best approach. The main

challenges of this study are class imbalance and finding the SNPs to correctly classify

skin and eye color.

The next chapter will present all the experiments performed to find the best ap-

proach to balance the classes, the selection of the SNPs, and the classifiers construction.
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5 EXPERIMENTS AND RESULTS

The focus of this work is to build a classifier to predict eye and skin color for

forensic use, using the data collected from the Southern Brazilian population. The experi-

ments will focus on finding the SNPs to accurately predict the phenotype for each problem

and find the best classifier. As presented in Chapter 4, the datasets provided for the study

are skewed, and to overcome the problem, different approaches for class imbalance were

tested.

To perform the experiments, the datasets were first split into train and test datasets,

and the proportion of the train size is 70% of the original size. The train size for the skin

dataset is 456 samples, while the test size is 196 samples. For the eye dataset, the train

size is 457 samples, and the test size is 196 samples. Table 5.1 and Table 5.2 show the

distribution for each class for the train and test set for eye and skin data, respectively.

Table 5.1: Data distribution for eye color dataset for train

and test set

Class
Number of samples

in the train set

Number of samples

in the test set

Blue 111 43

Intermediate 120 38

Dark Brown 226 115

Table 5.2: Data distribution for skin color dataset for train

and test set

Class
Number of samples

in the train set

Number of samples

in the test set

White 331 136

Intermediate 76 31

Brown 49 29

All the machine learning models were trained using the same train set and tested

using the same test set. For the training and test process, each dataset was prepared

using the additive model data encoding (see Section 5.1). Random Forest and Support
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Vector Machine were the algorithms selected for the experimentations, based on previ-

ous studies (KATSARA et al., 2021) (ZAORSKA; ZAWIERUCHA; NOWICKI, 2019).

The method used for Feature Selection was Recursive Feature Elimination, as a wrapper

method. Python was used for the experiments and the Scikit-Learn library (version 1.1.2)

was used to apply the Machine Learning algorithms. To find the best hyperparameters of

each classifier, a Grid Search was applied to test a set of different hyperparameters for

each classifier. Also, Leave One Out cross validation model was applied in all training

processes. The Grid Search exhaustively searches for the best parameters for an estimator,

given a set of predefined parameters to execute the search. The Leave One Out splits the

entire train set into train/test sets, where each sample of the entire train set is used at least

once as a test set. This approach guarantees the classifiers will be trained using different

combinations of the samples, and a better evaluation of the predictor’s behavior can be

done (FACELI et al., 2011).

For the class imbalance problem, it was compared four different approaches:

SMOTE for over-sampling, SMOTE and Edited Nearest Neighbours (SMOTEENN) for

hybrid sampling, CNN (Condensed Nearest Neighbor) for under-sampling, and Condi-

tional GAN to generate synthetic data. A Conditional GAN was chosen because it is

possible to determine the number of synthetic data necessary to generate as a condition

of the model. The library used to train the CGAN was the SDV (Synthetic Data Vault

Project) library (version 0.15.0). The SMOTE, SMOTEENN, and CNN algorithms are

from the imbalanced-learn library1 (version 0.9.1). It was also evaluated the performance

of the classifiers without applying any feature selection or any class balanced approach.

Table 5.3 shows the possible values of parameters tested for each algorithm. For the ex-

periments, E4 for skin classification using the data generated by the CGAN using the SDV

encoding, E4 and E7 for skin classification using the CNN, E7 for eye classification using

the CNN, E7 for eye classification using the data generated by the CGAN, and E7 for eye

classification using the data generated by the CGAN for additive encoding, a small change

was made in the parameters for the SVM. Because the experiments were not running due

to many values to test in the degree parameter, for those cases, it was necessary to remove

the degrees 21 and 27.

For the RFE algorithm, the metric used to be maximized using the features se-

lected was the recall, to minimize the number of samples in the Intermediate classes (for

both datasets) misclassified as the other two classes, as well as minimizing the number of

1https://imbalanced-learn.org/stable/
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samples from the other two classes misclassified as Intermediate. Figures 5.1, 5.2, 5.3,

5.4, and 5.5 show the pipeline for the experiments using SMOTE, SMOTEENN, CNN,

CGAN, and with no class balancing, respectively. Tables 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9

shows a summary of all experiments and their respective identification, where SVM-RFE

is Recursive Feature Elimination with SVM, and RF-RFE is Recursive Feature Elimina-

tion with RF.

Table 5.3: Paremeter optmization values for each algorithm

Algorithm Parameter Values

Random Forest

bootstrap True, False

max_depth 10, 50, 80, 90, 100, 110

class_weight balanced, balanced_subsample

n_estimators 50, 100, 200, 300, 1000

criterion gini, entropy

SVM

kernel linear, poly, rbf, sigmoid

degree 1, 3, 5, 11, 13, 21, 27

gamma scale, auto

class_weight balanced

decision_function_shape ovo, ovr

RFECV

estimator Random Forest, SVM

step 1

cv Leave One Out

scoring Recall

min_features_to_select 1

GridSearchCV cv Leave One Out

Table 5.4: Summary of the experiments with SMOTE

ID SMOTE

E1
Feature Selection: SVM-RFE

Classifier: RF with Grid Search

E2
Feature Selection: SVM-RFE

Classifier: RF without Grid Search
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E3
Feature Selection: SVM-RFE

Classifier: SVM without Grid Search

E4
Feature Selection: SVM-RFE

Classifier: SVM with Grid Search

E5
Feature Selection: RF-RFE

Classifier: RF with Grid Search

E6
Feature Selection: RF-RFE

Classifier: RF without Grid Search

E7
Feature Selection: RF-RFE

Classifier: SVM with Grid Search

E8
Feature Selection: RF-RFE

Classifier: SVM without Grid Search

E9
Feature Selection: Not applied

Classifier: RF with Grid Search

E10
Feature Selection: Not applied

Classifier: RF without Grid Search

E11
Feature Selection: Not applied

Classifier: SVM with Grid Search

E12
Feature Selection: Not applied

Classifier: SVM without Grid Search

Table 5.5: Summary of the experiments with SMOTEEN

ID SMOTEEN

E1
Feature Selection: SVM-RFE

Classifier: RF with Grid Search

E2
Feature Selection: SVM-RFE

Classifier: RF without Grid Search

E3
Feature Selection: SVM-RFE

Classifier: SVM without Grid Search

E4
Feature Selection: SVM-RFE

Classifier: SVM with Grid Search
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E5
Feature Selection: RF-RFE

Classifier: RF with Grid Search

E6
Feature Selection: RF-RFE

Classifier: RF without Grid Search

E7
Feature Selection: RF-RFE

Classifier: SVM with Grid Search

E8
Feature Selection: RF-RFE

Classifier: SVM without Grid Search

E9
Feature Selection: Not applied

Classifier: RF with Grid Search

E10
Feature Selection: Not applied

Classifier: RF without Grid Search

E11
Feature Selection: Not applied

Classifier: SVM with Grid Search

E12
Feature Selection: Not applied

Classifier: SVM without Grid Search

Table 5.6: Summary of the experiments with CNN

ID CNN

E1
Feature Selection: SVM-RFE

Classifier: RF with Grid Search

E2
Feature Selection: SVM-RFE

Classifier: RF without Grid Search

E3
Feature Selection: SVM-RFE

Classifier: SVM without Grid Search

E4
Feature Selection: SVM-RFE

Classifier: SVM with Grid Search

E5
Feature Selection: RF-RFE

Classifier: RF with Grid Search

E6
Feature Selection: RF-RFE

Classifier: RF without Grid Search
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E7
Feature Selection: RF-RFE

Classifier: SVM with Grid Search

E8
Feature Selection: RF-RFE

Classifier: SVM without Grid Search

E9
Feature Selection: Not applied

Classifier: RF with Grid Search

E10
Feature Selection: Not applied

Classifier: RF without Grid Search

E11
Feature Selection: Not applied

Classifier: SVM with Grid Search

E12
Feature Selection: Not applied

Classifier: SVM without Grid Search

Table 5.7: Summary of the experiments with no class bal-

ancing applied

ID No class balancing applied

E1
Feature Selection: SVM-RFE

Classifier: RF with Grid Search

E2
Feature Selection: SVM-RFE

Classifier: RF without Grid Search

E3
Feature Selection: SVM-RFE

Classifier: SVM without Grid Search

E4
Feature Selection: SVM-RFE

Classifier: SVM with Grid Search

E5
Feature Selection: RF-RFE

Classifier: RF with Grid Search

E6
Feature Selection: RF-RFE

Classifier: RF without Grid Search

E7
Feature Selection: RF-RFE

Classifier: SVM with Grid Search

E8
Feature Selection: RF-RFE

Classifier: SVM without Grid Search
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E9
Feature Selection: Not applied

Classifier: RF with Grid Search

E10
Feature Selection: Not applied

Classifier: RF without Grid Search

E11
Feature Selection: Not applied

Classifier: SVM with Grid Search

E12
Feature Selection: Not applied

Classifier: SVM without Grid Search

Table 5.8: Summary of the experiments and CGAN with the

SDV encoding

ID CGAN with the SDV encoding

E1
Feature Selection: SVM-RFE

Classifier: RF with Grid Search

E2
Feature Selection: SVM-RFE

Classifier: RF without Grid Search

E3
Feature Selection: SVM-RFE

Classifier: SVM without Grid Search

E4
Feature Selection: SVM-RFE

Classifier: SVM with Grid Search

E5
Feature Selection: RF-RFE

Classifier: RF with Grid Search

E6
Feature Selection: RF-RFE

Classifier: RF without Grid Search

E7
Feature Selection: RF-RFE

Classifier: SVM with Grid Search

E8
Feature Selection: RF-RFE

Classifier: SVM without Grid Search

E9
Feature Selection: Not applied

Classifier: RF with Grid Search

E10
Feature Selection: Not applied

Classifier: RF without Grid Search
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E11
Feature Selection: Not applied

Classifier: SVM with Grid Search

E12
Feature Selection: Not applied

Classifier: SVM without Grid Search

Table 5.9: Summary of the experiments with CGAN and the

SDV encoding

ID CGAN with the SDV encoding

E1
Feature Selection: SVM-RFE

Classifier: RF with Grid Search

E2
Feature Selection: SVM-RFE

Classifier: RF without Grid Search

E3
Feature Selection: SVM-RFE

Classifier: SVM without Grid Search

E4
Feature Selection: SVM-RFE

Classifier: SVM with Grid Search

E5
Feature Selection: RF-RFE

Classifier: RF with Grid Search

E6
Feature Selection: RF-RFE

Classifier: RF without Grid Search

E7
Feature Selection: RF-RFE

Classifier: SVM with Grid Search

E8
Feature Selection: RF-RFE

Classifier: SVM without Grid Search

E9
Feature Selection: Not applied

Classifier: RF with Grid Search

E10
Feature Selection: Not applied

Classifier: RF without Grid Search

E11
Feature Selection: Not applied

Classifier: SVM with Grid Search

E12
Feature Selection: Not applied

Classifier: SVM without Grid Search



66

Figure 5.1: The pipeline for the experiment using SMOTE. Table 5.4 shows the experi-
ment’s details.

The metrics collected for each class using the classifiers outputs are the Precision

(Equation 3.10), Recall (Equation 3.11) and F1-Score (Equation 3.12) (see Section 3.3,

Subsection 3.3.2). The following sections will present the data preparation for the exper-

iments, the training proccess of the CGAN for both datasets, and the final results for eye

and skin classification.

5.1 Data Preparation

In the work presented by Mittag, Römer and Zell (2015), the experiment con-

sisted of the preparation of the SNPs and the evaluation of predictive models. The SNPsk
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Figure 5.2: The pipeline for the experiment using SMOTEENN. Table 5.5 shows the
experiment’s details.
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Figure 5.3: The pipeline for the experiment using CNN. Table 5.6 shows the experiment’s
details.
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Figure 5.4: The pipeline for the experiment using CGAN. Tables 5.8 and 5.9 show the
experiment’s details.
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Figure 5.5: The pipeline for the experiment without any class balancing. Table 5.7 shows
the experiment’s details.
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were prepared by the authors in three different ways: Additive model, One-hot encoding

(called genotypic by the authors), and Recessive/dominant model. The algorithms were

trained using the three different data preparation at a time, to determine what data prepa-

ration improves the classification. The algorithms used by the experiment were Decision

Tree, Random Forest, SVM (linear), SVM (RBF), kNN, Multilayer Perceptron, and LVQ

(Learning vector quantization). The datasets used for the experiment was bipolar disorder

(BD), Crohn’s disease (CD), coronary heart disease (CAD), hypertension (HT), rheuma-

toid arthritis (RA), type 1 and type 2 diabetes (T1D and T2D).

The additive model consists of encoding the SNP as a single numeric feature that

reflects the number of minor alleles. Homozygous major, heterozygous and homozygous

minor is encoded as 0, 1, and 2, respectively. As an example, an SNP with possible

genotypes being AA, AB, and BB are encoded as 0, 1, and 2, respectively. The reces-

sive/dominant model creates two columns for each SNP, where each column represents

an allele. The column of each allele is set to 0 if the corresponding allele is not presented

and set to 1 if it is presented. The last one is the One-hot encoding, where the alleles

are represented in a binary way. This model creates a column for each possible genotype

(three new columns) for each SNP. The genotype is set to 1 if is presented and it is set to

0 if it is not presented. Figure 5.6 show the representation additive encoding (Add count),

recessive/dominant (Rec) encoding, and genotypic (Gen) encoding.

Figure 5.6: Illustration of the three different encoding schemes for SNP data.

Source: (MITTAG; RöMER; ZELL, 2015), p. 4

After training the machine learning algorithms using the three different data prepa-

ration. The maximum and the average area under the curve (AUC) were compared for the

three different encodings for each dataset, and the additive had the highest values for

AUC. The final result showed that additive encoding has an advantage in terms of pre-

dictive performance. Figure 5.7 shows the maximum and average AUCs for different

encodings grouped by data set.

Considering the results from the study of Mittag, Römer and Zell (2015), the data

for the experiments of this work was prepared using the additive model.
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Figure 5.7: Maximum and average AUCs for different encodings grouped by data set.

Source: (MITTAG; RöMER; ZELL, 2015), p.10

5.2 CGAN training process

The CGAN was trained using the SDV library with two different approaches:

training the network without any data preparation and training the data using the additive

model data encoding. The SDV already has its way to encode categorical data (one-hot

encoding), but, as presented in Section 5.1, the encoding of the SNPs can directly affect

the algorithm’s performance. To verify what was the best method for the CGAN to learn

the distribution of the real data, both approaches were tested. Figure 5.8 shows the skin

data distribution for real data, represented by the dots in green, and synthetic data, rep-

resented by the dots in red. The figure on the left shows the distribution using the SDV

encode process, and the figure on the right shows the data distribution using an addi-

tive model. Principal Component Analysis (PCA) was used to plot the data distribution.

PCA’s goal is to extract important information from the table and to display the pattern

of similarity of the observations (ABDI; WILLIAMS, 2010). Looking at both pictures, it

seems that both ways learned the same data pattern, even though the data generated by the

network trained using the additive encoding has more data slightly centered to the left.

Figure 5.8: Skin data distribution generated by the CGAN. The figure on the left shows
the distribution using the SDV encode process. The figure on the right show the data
distribution using additive model.
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Figure 5.9 shows the eye data distribution for real data, represented by the dots

in green, and synthetic data, represented by the dots in red. The figure on the left shows

the distribution using the SDV encode process, and the figure on the right shows the data

distribution using an additive model.

Figure 5.9: Eye data distribution generated by the CGAN. The figure on the left shows
the distribution using the SDV encode process. The figure on the right show the data
distribution using additive model.

To evaluate the data synthesized for skin and eye, it was used the evaluation metric

provided by the SDV library. The metric provides a score from 0 to 1 to represent how

similar the real data and the synthetic data are, being 0 the worst and 1 the best possible

score. For the skin data generated, the score using the SDV encoding method was 0.89,

and for the additive model was 0.77. For the eye data generated, the score using the SDV

encoding method was 0.86, and for the additive model was 0.73.

As a condition of the GAN, 331 samples were generated for White, Intermediate,

and Brown skin color. And 226 samples were generated for Blue, Intermediate, and Dark

Brown eye colors. The final hyperparameters chosen for each model are described in

Table 5.10. To find the best hyperparameters, a manual test was applied to change the

values of the parameters, and the best ones had the highest evaluation score. The SDV

does not provide something similar to Grid Search, so manual work was necessary.
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Table 5.10: Hyperparameters used to train the CGAN

Dataset
Model using the SDV

encoding method

Model using additive

encoding method

Skin

epochs=3000,

batch_size=100,

log_frequency=False,

generator_lr=0.00001,

discriminator_lr=0.00002,

generator_decay=0.001,

discriminator_decay=0.002,

generator_dim=(256, 256, 256),

discriminator_dim=(256, 256, 256),

embedding_dim=256,

discriminator_steps=5

epochs=3000,

batch_size=100,

log_frequency=False,

generator_lr=0.00001,

discriminator_lr=0.00002,

generator_decay=0.001,

discriminator_decay=0.002,

generator_dim=(512, 512, 512),

discriminator_dim=(256, 256, 256),

embedding_dim=256,

discriminator_steps=5

Eye

epochs=3000,

batch_size=100,

log_frequency=False,

generator_lr=0.00001,

discriminator_lr=0.00002,

generator_decay=0.001,

discriminator_decay=0.002,

generator_dim=(256, 256, 256),

discriminator_dim=(256, 256, 256),

embedding_dim=256,

discriminator_steps=5

epochs=3000,

batch_size=100,

log_frequency=False,

generator_lr=0.00002,

discriminator_lr=0.00001,

generator_decay=0.0002,

discriminator_decay=0.001,

generator_dim=(256, 256, 256),

discriminator_dim=(256, 256, 256),

embedding_dim=256,

discriminator_steps=5

5.3 Eye color prediction results

For the experiment, we ran 3 replicates for each classifier. Table 5.11, Table 5.12,

Table 5.13, Table 5.14, Table 5.15, and Table 5.16 show the metrics (average and stan-

dard deviation) for the overall results. Table 5.17, Table 5.18, Table 5.19, Table 5.20,

Table 5.21, and Table 5.22, and Table 5.32 show the SNPs selected in each experiment.
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All the experiments had poor performance for the Intermediate class, but the one using

CNN had a very bad precision and recall in almost all combinations. It was also observed

that a very different number and set of SNPs were selected when the class balance ap-

proach changed. For cases like SMOTE, SMOTEENN, and the CGANs, a large number

of SNPs were selected, while in the CNN approach, only a few were chosen.

The best result for eye classification was achieved by the experiment without any

class balancing (E11) using all the 66 SNPs. The E11 experiment does not use feature se-

lection and the classifier was an SVM with GridSearch (Table 5.7). The precision and re-

call, on average, respectively were 0.76 and 0.79 for Blue, 0.41 and 0.63 for Intermediate,

and 0.92 and 0.75 for Dark Brown. The experiment E1 without any class balancing had a

very close result for Blue and Dark Brown classification, using only 4 SNPs (rs6497271,

rs12913832, rs1426654, rs1805006), but the performance for the Intermediate was poor.

The experiment E1 used as feature selection an SVM-RFE and an RF as the classifier

(with GridSeach). The reason why using 4 SNPs had a very close result for Blue and

Dark Brown happens it could be the fact that the SNP rs12913832 is directly linked to

blue and brown eyes, and the SNP rs1426654 influences the skin pigmentation, indicating

light-skinned West Eurasian ancestry. The information related to SNPs can be found in

SNPedia2. The experiment E5 using SMOTE had also a close result using 57 SNPs. The

experiment E5 uses as feature selection an RF-RFE and an RF (with GridSearch) as the

classifier. The precision and recall, on average, respectively were 0.74 and 0.67 for Blue,

0.4 and 0.5 for Intermediate, and 0.86 and 0.82 for Dark Brown.

Figure 5.10, Figure 5.11, Figure 5.12, Figure 5.13, Figure 5.14, and Figure 5.15

show the confusion matrix for all classifiers. The columns of the confusion matrix are

samples that were predicted by the classifier, and the rows show the actual samples of

each class. The main diagonal of the matrix shows the number of samples correctly

predicted by the model. Looking at the matrices, it is possible to notice that most of the

classifiers confuse the Intermediate class with Blue and Dark Brown. The labels 1AZ,

2V3M, and 4CC5CE6PR represent Blue, Intermediate, and Dark Brown, respectively.

The performance of the classifiers using the data generated by the CGAN had bad

performance. A hypothesis is that the CGAN training should be improved, maybe by

using other hyperparameters or using more data for the training process. Because the

results for both types of encodings were very similar, it is not possible to determine which

encoding is the best approach to train the CGAN, but it is important to highlight the study

2https://www.snpedia.com/index.php/SNPedia
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presented in Section 5.1 about the importance of the SNPs encoding.

Table 5.11: Results for eye classification using SMOTE

ID Class Precision Recall F1

E1

Blue 0.72±0.01 0.65±0.04 0.69±0.03

Intermediate 0.39±0.03 0.47±0.05 0.43±0.04

Dark Brown 0.85±0.01 0.82±0.00 0.84±0.00

E2

Blue 0.69±0.03 0.63±0.02 0.66±0.03

Intermediate 0.36±0.03 0.45±0.05 0.40±0.03

Dark Brown 0.85±0.00 0.83±0.00 0.84±0.00

E3

Blue 0.72±0.00 0.65±0.00 0.68±0.00

Intermediate 0.33±0.00 0.47±0.00 0.39±0.00

Dark Brown 0.85±0.00 0.77±0.00 0.80±0.00

E4

Blue 0.68±0.00 0.65±0.00 0.67±0.00

Intermediate 0.29±0.00 0.39±0.00 0.33±0.00

Dark Brown 0.83±0.00 0.75±0.00 0.79±0.00

E5

Blue 0.74±0.03 0.67±0.02 0.71±0.02

Intermediate 0.40±0.00 0.50±0.01 0.44±0.00

Dark Brown 0.86±0.01 0.82±0.00 0.83±0.00

E6

Blue 0.73±0.05 0.70±0.06 0.71±0.05

Intermediate 0.38±0.01 0.50±0.04 0.43±0.02

Dark Brown 0.86±0.01 0.80±0.02 0.84±0.01

E7

Blue 0.65±0.00 0.65±0.00 0.65±0.00

Intermediate 0.36±0.00 0.45±0.00 0.40±0.00

Dark Brown 0.83±0.00 0.77±0.00 0.80±0.00

E8

Blue 0.72±0.00 0.67±0.00 0.70±0.00

Intermediate 0.35±0.00 0.5±0.00 0.41±0.00

Dark Brown 0.86±0.00 0.77±0.00 0.81±0.00

E9

Blue 0.73±0.02 0.67±0.02 0.71±0.02

Intermediate 0.38±0.01 0.47±0.02 0.42±0.01

Dark Brown 0.85±0.00 0.83±0.01 0.84±0.00

E10

Blue 0.74±0.00 0.67±0.02 0.71±0.01

Intermediate 0.38±0.01 0.47±0.00 0.42±0.01

Dark Brown 0.85±0.00 0.82±0.01 0.84±0.00
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E11

Blue 0.63±0.00 0.6±0.00 0.62±0.00

Intermediate 0.31±0.00 0.42±0.00 0.36±0.00

Dark Brown 0.83±0.00 0.75±0.00 0.79±0.00

E12

Blue 0.71±0.00 0.7±0.00 0.71±0.00

Intermediate 0.36±0.00 0.5±0.00 0.42±0.00

Dark Brown 0.87±0.00 0.77±0.00 0.81±0.00

Table 5.12: Results for eye classification using SMOTEENN

ID Class Precision Recall F1

E1

Blue 0.67±0.02 0.60±0.05 0.63±0.03

Intermediate 0.25±0.01 0.63±0.01 0.36±0.01

Dark Brown 0.96±0.00 0.48±0.01 0.64±0.00

E2

Blue 0.67±0.02 0.65±0.01 0.66±0.01

Intermediate 0.25±0.00 0.63±0.01 0.36±0.00

Dark Brown 0.97±0.00 0.49±0.02 0.65±0.01

E3

Blue 0.69±0.00 0.77±0.00 0.73±0.00

Intermediate 0.28±0.00 0.66±0.00 0.39±0.00

Dark Brown 0.95±0.00 0.48±0.00 0.64±0.00

E4

Blue 0.65±0.00 0.60±0.00 0.63±0.00

Intermediate 0.25±0.00 0.66±0.00 0.36±0.00

Dark Brown 0.96±0.00 0.47±0.00 0.63±0.00

E5

Blue 0.64±0.00 0.65±0.02 0.64±0.01

Intermediate 0.27±0.00 0.63±0.01 0.38±0.01

Dark Brown 0.98±0.01 0.51±0.02 0.67±0.05

E6

Blue 0.67±0.01 0.70±0.01 0.67±0.01

Intermediate 0.26±0.00 0.63±0.01 0.37±0.00

Dark Brown 0.98±0.01 0.50±0.01 0.66±0.01

E7

Blue 0.64±0.00 0.70±0.00 0.67±0.00

Intermediate 0.24±0.00 0.55±0.00 0.33±0.00

Dark Brown 0.92±0.00 0.48±0.00 0.63±0.00

E8

Blue 0.67±0.00 0.74±0.00 0.70±0.00

Intermediate 0.29±0.00 0.68±0.00 0.40±0.00
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Dark Brown 0.95±0.00 0.47±0.00 0.63±0.00

E9

Blue 0.62±0.03 0.67±0.02 0.64±0.03

Intermediate 0.26±0.00 0.63±0.02 0.37±0.00

Dark Brown 0.97±0.00 0.50±0.02 0.66±0.02

E10

Blue 0.64±0.00 0.67±0.04 0.66±0.01

Intermediate 0.26±0.00 0.66±0.03 0.38±0.01

Dark Brown 0.98±0.00 0.48±0.00 0.64±0.00

E11

Blue 0.64±0.00 0.67±0.00 0.66±0.00

Intermediate 0.23±0.00 0.55±0.00 0.33±0.00

Dark Brown 0.92±0.00 0.48±0.00 0.63±0.00

E12

Blue 0.67±0.00 0.77±0.00 0.72±0.00

Intermediate 0.29±0.00 0.68±0.00 0.41±0.00

Dark Brown 0.95±0.00 0.48±0.00 0.64±0.00

Table 5.13: Results for eye classification using CNN

ID Class Precision Recall F1

E1

Blue 0.71±0.00 0.81±0.00 0.76±0.00

Intermediate 0.00±0.00 0.00±0.00 0.00±0.00

Dark Brown 0.78±0.00 0.97±0.00 0.86±0.00

E2

Blue 0.71±0.00 0.81±0.00 0.76±0.00

Intermediate 0.00±0.00 0.00±0.00 0.00±0.00

Dark Brown 0.77±0.00 0.96±0.01 0.86±0.00

E3

Blue 0.71±0.00 0.81±0.00 0.76±0.00

Intermediate 0.00±0.00 0.00±0.00 0.00±0.00

Dark Brown 0.78±0.00 0.99±0.00 0.87±0.00

E4

Blue 0.71±0.00 0.81±0.00 0.76±0.00

Intermediate 0.00±0.00 0.00±0.00 0.00±0.00

Dark Brown 0.78±0.00 0.99±0.00 0.87±0.00

E5

Blue 0.70±0.00 0.81±0.00 0.75±0.00

Intermediate 0.19±0.00 0.18±0.00 0.19±0.00

Dark Brown 0.81±0.00 0.77±0.00 0.79±0.00

E6

Blue 0.70±0.00 0.81±0.00 0.75±0.00

Intermediate 0.00±0.00 0.00±0.00 0.00±0.00
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Dark Brown 0.78±0.00 0.99±0.00 0.87±0.00

E7

Blue 0.70±0.00 0.81±0.00 0.75±0.00

Intermediate 0.00±0.00 0.00±0.00 0.00±0.00

Dark Brown 0.78±0.00 0.99±0.00 0.87±0.00

E8

Blue 0.70±0.00 0.81±0.00 0.75±0.00

Intermediate 0.19±0.00 0.18±0.00 0.19±0.00

Dark Brown 0.81±0.00 0.77±0.00 0.79±0.00

E9

Blue 0.69±0.01 0.81±0.02 0.74±0.01

Intermediate 0.38±0.02 0.34±0.04 0.36±0.03

Dark Brown 0.85±0.00 0.86±0.02 0.86±0.01

E10

Blue 0.69±0.00 0.79±0.03 0.73±0.01

Intermediate 0.46±0.02 0.34±0.03 0.39±0.03

Dark Brown 0.87±0.00 0.88±0.00 0.87±0.00

E11

Blue 0.67±0.00 0.72±0.00 0.70±0.00

Intermediate 0.41±0.00 0.39±0.00 0.40±0.00

Dark Brown 0.86±0.00 0.84±0.00 0.85±0.00

E12

Blue 0.58±0.00 0.88±0.00 0.70±0.00

Intermediate 0.56±0.00 0.24±0.00 0.33±0.00

Dark Brown 0.87±0.00 0.86±0.00 0.86±0.00

Table 5.14: Results for eye classification without class bal-

ancing

ID Class Precision Recall F1

E1

Blue 0.70±0.00 0.81±0.00 0.75±0.00

Intermediate 0.28±0.00 0.45±0.00 0.35±0.00

Dark Brown 0.90±0.00 0.67±0.00 0.77±0.00

E2

Blue 0.71±0.00 0.81±0.00 0.76±0.00

Intermediate 0.00±0.00 0.00±0.00 0.00±0.00

Dark Brown 0.78±0.00 0.99±0.00 0.87±0.00

E3

Blue 0.71±0.00 0.81±0.00 0.76±0.00

Intermediate 0.00±0.00 0.00±0.00 0.00±0.00

Dark Brown 0.78±0.00 0.99±0.00 0.87±0.00

E4

Blue 0.70±0.00 0.81±0.00 0.75±0.00
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Intermediate 0.28±0.00 0.45±0.00 0.35±0.00

Dark Brown 0.90±0.00 0.67±0.00 0.77±0.00

E5

Blue 0.70±0.01 0.70±0.04 0.70±0.01

Intermediate 0.37±0.06 0.34±0.05 0.37±0.03

Dark Brown 0.84±0.00 0.85±0.04 0.85±0.01

E6

Blue 0.72±0.00 0.67±0.02 0.70±0.01

Intermediate 0.41±0.05 0.34±0.06 0.37±0.06

Dark Brown 0.83±0.02 0.90±0.00 0.86±0.01

E7

Blue 0.65±0.00 0.72±0.00 0.68±0.00

Intermediate 0.35±0.00 0.53±0.00 0.42±0.00

Dark Brown 0.88±0.00 0.7±0.00 0.78±0.00

E8

Blue 0.72±0.00 0.77±0.00 0.74±0.00

Intermediate 0.34±0.00 0.29±0.00 0.31±0.00

Dark Brown 0.83±0.00 0.85±0.00 0.84±0.00

E9

Blue 0.71±0.01 0.68±0.02 0.70±0.00

Intermediate 0.40±0.04 0.38±0.05 0.39±0.04

Dark Brown 0.84±0.00 0.87±0.01 0.85±0.00

E10

Blue 0.72±0.01 0.72±0.02 0.72±0.02

Intermediate 0.37±0.04 0.29±0.04 0.32±0.04

Dark Brown 0.83±0.01 0.89±0.01 0.86±0.00

E11

Blue 0.76±0.00 0.79±0.00 0.77±0.00

Intermediate 0.41±0.00 0.63±0.00 0.50±0.00

Dark Brown 0.92±0.00 0.75±0.00 0.83±0.00

E12

Blue 0.69±0.00 0.72±0.00 0.70±0.00

Intermediate 0.39±0.00 0.39±0.00 0.39±0.00

Dark Brown 0.86±0.00 0.84±0.00 0.85±0.00

Table 5.15: Results for eye classification for the CGAN us-

ing SDV encoding

ID Class Precision Recall F1

E1

Blue 0.56±0.03 0.67±0.04 0.61±0.03

Intermediate 0.24±0.08 0.29±0.11 0.26±0.09



81

Dark Brown 0.84±0.03 0.73±0.01 0.77±0.02

E2

Blue 0.54±0.04 0.56±0.09 0.52±0.06

Intermediate 0.20±0.00 0.26±0.04 0.24±0.01

Dark Brown 0.86±0.02 0.77±0.04 0.81±0.01

E3

Blue 0.48±0.00 0.53±0.00 0.51±0.00

Intermediate 0.23±0.00 0.32±0.00 0.26±0.00

Dark Brown 0.87±0.00 0.72±0.00 0.79±0.00

E4

Blue 0.50±0.00 0.67±0.00 0.57±0.00

Intermediate 0.24±0.00 0.26±0.00 0.25±0.00

Dark Brown 0.85±0.00 0..71±0.00 0.78±0.00

E5

Blue 0.58±0.00 0.81±0.00 0.68±0.00

Intermediate 0.26±0.00 0.47±0.00 0.34±0.00

Dark Brown 0.91±0.00 0.54±0.00 0.68±0.00

E6

Blue 0.59±0.06 0.63±0.11 0.61±0.08

Intermediate 0.26±0.09 0.29±0.04 0.30±0.05

Dark Brown 0.84±0.01 0.74±0.07 0.79±0.04

E7

Blue 0.58±0.00 0.81±0.00 0.68±0.00

Intermediate 0.38±0.00 0.21±0.00 0.27±0.00

Dark Brown 0.84±0.00 0.84±0.00 0.84±0.00

E8

Blue 0.69±0.00 0.81±0.00 0.74±0.00

Intermediate 0.37±0.00 0.29±0.00 0.32±0.00

Dark Brown 0.84±0.00 0.84±0.00 0.84±0.00

E9

Blue 0.53±0.01 0.60±0.04 0.58±0.02

Intermediate 0.25±0.05 0.34±0.04 0.29±0.05

Dark Brown 0.87±0.05 0.70±0.04 0.77±0.02

E10

Blue 0.54±0.02 0.60±0.06 0.58±0.02

Intermediate 0.23±0.01 0.26±0.05 0.23±0.03

Dark Brown 0.88±0.01 0.74±0.02 0.80±0.02

E11

Blue 0.50±0.00 0.67±0.00 0.57±0.00

Intermediate 0.23±0.00 0.26±0.00 0.24±0.00

Dark Brown 0.86±0.00 0.70±0.00 0.78±0.00

E12

Blue 0.47±0.00 0.56±0.00 0.51±0.00

Intermediate 0.24±0.00 0.32±0.00 0.27±0.00
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Dark Brown 0.87±0.00 0.71±0.00 0.78±0.00

Table 5.16: Results for eye classification for the CGAN us-

ing additive encoding

ID Class Precision Recall F1

E1

Blue 0.36±0.01 0.47±0.02 0.40±0.01

Intermediate 0.29±0.00 0.39±0.01 0.34±0.00

Dark Brown 0.86±0.00 0.66±0.01 0.75±0.00

E2

Blue 0.35±0.01 0.40±0.04 0.37±0.02

Intermediate 0.29±0.02 0.45±0.04 0.35±0.03

Dark Brown 0.85±0.01 0.67±0.01 0.75±0.00

E3

Blue 0.44±0.00 0.56±0.00 0.49±0.00

Intermediate 0.28±0.00 0.34±0.00 0.31±0.00

Dark Brown 0.83±0.00 0.69±0.00 0.75±0.00

E4

Blue 0.41±0.00 0.51±0.00 0.45±0.00

Intermediate 0.26±0.00 0.37±0.00 0.30±0.00

Dark Brown 0.84±0.00 0.64±0.00 0.73±0.00

E5

Blue 0.30±0.14 0.40±0.14 0.34±0.14

Intermediate 0.21±0.08 0.21±0.18 0.21±0.12

Dark Brown 0.62±0.13 0.56±0.05 0.59±0.08

E6

Blue 0.52±0.03 0.60±0.08 0.53±0.11

Intermediate 0.27±0.01 0.45±0.00 0.34±0.00

Dark Brown 0.87±0.00 0.59±0.04 0.70±0.02

E7

Blue 0.61±0.00 0.72±0.00 0.66±0.00

Intermediate 0.28±0.00 0.39±0.00 0.33±0.00

Dark Brown 0.86±0.00 0.69±0.00 0.76±0.00

E8

Blue 0.64±0.00 0.63±0.00 0.64±0.00

Intermediate 0.30±0.00 0.53±0.00 0.38±0.00

Dark Brown 0.86±0.00 0.66±0.00 0.75±0.00

E9

Blue 0.50±0.02 0.60±0.08 0.55±0.05

Intermediate 0.24±0.07 0.32±0.11 0.27±0.09

Dark Brown 0.87±0.03 0.73±0.02 0.77±0.01

E10

Blue 0.48±0.01 0.56±0.07 0.52±0.02
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Intermediate 0.23±0.01 0.34±0.06 0.27±0.04

Dark Brown 0.87±0.01 0.68±0.01 0.76±0.01

E11

Blue 0.49±0.00 0.67±0.00 0.57±0.00

Intermediate 0.24±0.00 0.29±0.00 0.27±0.00

Dark Brown 0.86±0.00 0.69±0.00 0.76±0.00

E12

Blue 0.52±0.00 0.65±0.00 0.58±0.00

Intermediate 0.24±0.00 0.29±0.00 0.26±0.00

Dark Brown 0.86±0.00 0.72±0.00 0.79±0.00

Table 5.17: SNPs for eye classification selected for the

SMOTE experiments

ID
Number

of SNPs
SNPs

E1, E2,

E3, E4
59

rs3768056, rs2070959, rs16891982, rs28777, rs13289,

rs12203592, rs4959270, rs1325127, rs2733832, rs683,

rs10756819, rs11230664, rs7948623, rs1042602

rs1393350, rs642742, rs12821256, rs12896399, rs2402130,

rs2594935, rs7170989, rs1900758, rs1800407, rs1037208,

rs3794606, rs4778232, rs1448484, rs1375164, rs1597196

rs895828, rs895829. rs4778137, rs4778138, rs4778241,

rs1129038, rs7494942, rs6497271, rs12913832, rs3935591,

rs11636232, rs7170852, rs2238289, rs2240203, rs916977

rs4932620, rs8039195, rs16950987, rs1426654,

rs1724630, rs3212345, rs1805006, rs1110400, rs885479

rs1805009, rs9894429, rs10424065, rs2424984,

rs2378249, rs2835630
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E5 57

rs3768056, rs2070959, rs16891982, rs28777,

rs183671, rs13289, rs12203592, rs4959270, rs13289810

rs1325127, rs2733832, rs683, rs10756819, rs11230664,

rs1042602, rs1393350, rs10777129, rs642742

rs12896399, rs2402130, rs2036213, rs2594935,

rs7170989, rs1900758, rs1037208, rs1800404, rs3794606

rs4778232, rs1448484, rs1375164, rs1597196,

rs895828, rs895829, rs4778137, rs4778138, rs4778241

rs1129038, rs7494942, rs6497271, rs12913832, rs3935591,

rs11636232, rs7170852, rs2238289, rs2240203

rs916977, rs8039195, rs16950987, rs1426654, rs1724630,

rs3212345, rs1805005, rs885479, rs9894429

rs2424984, rs2378249, rs2835630

E6 48

rs3768056, rs2070959, rs16891982, rs28777, rs183671, rs13289

rs4959270, rs13289810, rs1325127, rs2733832, rs683, rs10756819

rs1042602, rs1393350, rs10777129, rs642742, rs12896399,

rs2402130, rs2036213, rs2594935, rs7170989, rs1900758,

rs1037208, rs1800404, rs3794606, rs4778232, rs1375164

rs1597196, rs895829, rs4778137, rs4778138, rs4778241,

rs1129038, rs7494942, rs12913832, rs3935591, rs11636232,

rs7170852, rs2238289, rs916977, rs8039195, rs1426654

rs1724630, rs3212345, rs9894429, rs2424984, rs2378249, rs2835630
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E7, E8 57

rs3768056, rs2070959, rs16891982, rs28777,

rs183671, rs13289, rs12203592, rs4959270, rs13289810,

rs1325127, rs2733832, rs683, rs10756819, rs11230664,

rs1042602, rs1393350, rs10777129, rs642742,

rs12896399, rs2402130, rs2036213, rs2594935, rs7170989,

rs1900758, rs1037208, rs1800404, rs3794606,

rs4778232, rs1448484, rs1375164, rs1597196, rs895828,

rs895829, rs4778137, rs4778138, rs4778241,

rs1129038, rs7494942, rs6497271, rs12913832, rs3935591,

rs11636232, rs7170852, rs2238289, rs2240203,

rs916977, rs8039195, rs16950987, rs1426654, rs1724630,

rs3212345, rs1805005, rs885479, rs9894429,

rs2424984, rs2378249, rs2835630

Table 5.18: SNPs for eye classification selected for the

SMOTEEN experiments

ID
Number

of SNPs
SNPs

E1, E2,

E3, E4
46

rs3768056, rs2070959, rs16891982, rs13289, rs12203592,

rs1325127, rs2733832, rs683, rs10756819, rs1393350,

rs10777129, rs12896399, rs2402130, rs2594935,

rs1800407, rs1037208, rs3794606, rs4778232, rs1448484,

rs1375164, rs1597196, rs895828, rs895829, rs4778137,

rs4778138, rs4778241, rs1129038, rs7494942, rs6497271,

rs12913832, rs11636232, rs7170852, rs2238289, rs2240203,

rs916977, rs8039195, rs16950987, rs1426654, rs3212345,

rs1110400, rs885479, rs10424065, rs6119471, rs2424984,

rs2378249, rs2835630
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E5 54

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs12203592, rs4959270, rs13289810,

rs1325127, rs2733832, rs683, rs10756819, rs1042602,

rs1393350, rs10777129, rs642742, rs12896399, rs2402130,

rs2036213, rs2594935, rs7170989, rs1900758, rs1037208,

rs1800404, rs3794606, rs4778232, rs1448484, rs1375164,

rs1597196, rs895828, rs895829, rs4778137, rs4778138,

rs4778241, rs1129038, rs7494942, rs6497271, rs12913832,

rs3935591, rs11636232, rs7170852, rs2238289, rs2240203,

rs916977, rs8039195, rs16950987, rs1426654, rs1724630,

rs3212345, rs9894429, rs2424984, rs2378249, rs2835630

E6 54

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs4959270, rs13289810, rs1325127, rs2733832,

rs683, rs10756819, rs1042602, rs1393350, rs10777129,

rs642742, rs12896399, rs2402130, rs2036213, rs2594935,

rs7170989, rs1900758, rs1037208, rs1800404, rs3794606,

rs4778232, rs1448484, rs1375164, rs1597196, rs895828,

rs895829, rs4778137, rs4778138, rs4778241, rs1129038,

rs7494942, rs6497271, rs12913832, rs3935591, rs11636232,

rs7170852, rs2238289, rs2240203, rs916977, rs8039195,

rs16950987, rs1426654, rs1724630, rs3212345, rs9894429,

rs6119471, rs2424984, rs2378249, rs2835630
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E7, E8 54

rs3768056, rs2070959, rs16891982, rs28777,

rs183671, rs13289, rs12203592, rs4959270,

rs13289810, rs1325127, rs2733832, rs683,

rs10756819, rs1042602, rs1393350, rs10777129, rs642742,

rs12896399, rs2402130, rs2036213, rs2594935, rs7170989,

rs1900758, rs1037208, rs1800404, rs3794606, rs4778232,

rs1448484, rs1375164, rs1597196, rs895828, rs895829,

rs4778137, rs4778138, rs4778241, rs1129038, rs7494942,

rs6497271, rs12913832, rs3935591, rs11636232, rs7170852,

rs2238289, rs2240203, rs916977, rs8039195, rs16950987,

rs1426654, rs1724630, rs3212345, rs9894429, rs2424984,

rs2378249, rs2835630

Table 5.19: SNPs for eye classification selected for the CNN

experiments

ID
Number

of SNPs
SNPs

E1, E2,

E3, E4
5 rs7948623, rs1448484, rs12913832, rs1426654, rs1805006

E5 3 rs1129038, rs12913832, rs9894429

E6 1 rs12913832

E7, E8 3 rs1129038, rs12913832, rs9894429

Table 5.20: SNPs for eye classification selected for the ex-

periments without class balancing

ID
Number

of SNPs
SNPs

E1, E2,

E3, E4
4 rs6497271, rs12913832, rs1426654, rs1805006
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E5 47

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs4959270, rs13289810, rs1325127, rs2733832,

rs683, rs10756819, rs1042602, rs1393350, rs10777129,

rs642742, rs12896399, rs2402130, rs2036213, rs2594935,

rs7170989, rs1900758, rs1800404, rs4778232, rs1375164,

rs1597196, rs895829, rs4778137, rs4778138, rs4778241,

rs1129038, rs7494942, rs12913832, rs3935591, rs11636232,

rs7170852, rs2238289, rs916977, rs8039195, rs1426654,

rs1724630, rs3212345, rs1805005, rs9894429, rs2424984,

rs2378249, rs2835630

E6 50

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs4959270, rs13289810, rs1325127, rs2733832,

rs683, rs10756819, rs1042602, rs1393350, rs10777129,

rs642742, rs12821256, rs12896399, rs2402130, rs2036213,

rs2594935, rs7170989, rs1900758, rs1037208, rs1800404,

rs3794606, rs4778232, rs1375164, rs1597196, rs895829,

rs4778137, rs4778138, rs4778241, rs1129038, rs7494942,

rs12913832, rs3935591, rs11636232, rs7170852, rs2238289,

rs916977, rs8039195, rs1426654, rs1724630, rs3212345,

rs1805005, rs9894429, rs2424984, rs2378249, rs2835630

E7, E8 47

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs4959270, rs13289810, rs1325127, rs2733832,

rs683, rs10756819, rs1042602, rs1393350, rs10777129,

rs642742, rs12896399, rs2402130, rs2036213, rs2594935,

rs7170989, rs1900758, rs1800404, rs4778232, rs1375164,

rs1597196, rs895829, rs4778137, rs4778138, rs4778241,

rs1129038, rs7494942, rs12913832, rs3935591, rs11636232,

rs7170852, rs2238289, rs916977, rs8039195, rs1426654,

rs1724630, rs3212345, rs1805005, rs9894429, rs2424984,

rs2378249, rs2835630
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Table 5.21: SNPs for eye classification selected for CGAN

experiments using additive encoding

ID
Number

of SNPs
SNPs

E1, E2,

E3, E4
13

rs13289, rs7948623, rs1393350, rs1900758, rs3794606,

rs895829, rs1129038, rs3935591, rs1805006,

rs1110400, rs885479, rs10424065, rs6119471

E5 19

rs2070959, rs16891982, rs4959270, rs1325127,

rs2733832, rs683, rs10756819, rs1042602,

rs12896399, rs2036213, rs3794606, rs4778137,

rs1129038, rs7494942, rs12913832, rs3935591,

rs3212345, rs9894429, rs2835630

E6 18

rs2070959, rs16891982, rs13289, rs4959270, rs2733832,

rs683, rs10756819, rs1042602, rs12896399, rs2036213,

rs3794606, rs1129038, rs7494942, rs12913832, rs3935591,

rs3212345, rs9894429, rs2835630

E7, E8 19

rs2070959, rs16891982, rs4959270, rs1325127, rs2733832,

rs683, rs10756819, rs1042602, rs12896399, rs2036213,

rs3794606, rs4778137, rs1129038, rs7494942, rs12913832,

rs3935591, rs3212345, rs9894429, rs2835630
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Table 5.22: SNPs for eye classification selected for CGAN

experiments using SDV encoding

ID
Number

of SNPs
SNPs

E1, E3, E4 65

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs12203592, rs4959270, rs13289810,

rs1325127, rs2733832, rs683, rs10756819, rs11230664,

rs7948623, rs1042602, rs1393350, rs10777129, rs12821256,

rs12896399, rs2402130, rs2036213, rs2594935, rs7170989,

rs1900758, rs1800407, rs1037208, rs1800404, rs3794606,

rs4778232, rs1448484, rs1375164, rs1597196, rs895828,

rs895829, rs4778137, rs4778138, rs4778241, rs1129038,

rs7494942, rs6497271, rs12913832, rs3935591, rs11636232,

rs7170852, rs2238289, rs2240203, rs916977, rs4932620,

rs8039195, rs16950987, rs1426654, rs1724630, rs3212345,

rs1805005, rs1805006, rs1110400, rs885479, rs1805009,

rs9894429, rs10424065, rs6119471, rs2424984, rs2378249,

rs2835630

E2 15

rs7948623, rs12821256, rs4778232, rs1448484,

rs1375164, rs12913832, rs7170852, rs2238289,

rs4932620, rs16950987, rs1805005, rs1805006,

rs1110400, rs10424065, rs6119471

E5, E7, E8 4 rs1129038, rs7494942, rs12913832, rs2835630

E6 50

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs4959270, rs13289810, rs1325127, rs2733832,

rs683, rs10756819, rs1042602, rs1393350, rs10777129,

rs642742, rs12896399, rs2402130, rs2036213, rs2594935,

rs7170989, rs1900758, rs1037208, rs1800404, rs3794606,

rs4778232, rs1375164, rs1597196, rs895828, rs895829,

rs4778137, rs4778138, rs4778241, rs1129038, rs7494942,

rs12913832, rs3935591, rs11636232, rs7170852, rs2238289,

rs916977, rs8039195, rs16950987, rs1426654, rs1724630,

rs3212345, rs9894429, rs2424984, rs2378249, rs2835630
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Figure 5.10: Confusion matrix for SMOTE experiments for eye classification.

1AZ, 2V3M, and 4CC5CE6PR represent the Blue, Intermediate, and Dark Brown classes, respec-
tively.

5.4 Skin color prediction results

For the experiment, we ran 3 replicates for each classifier. Table 5.23, Table 5.24,

Table 5.25, Table 5.26, Table 5.27, and Table 5.28 show the metrics (average and stan-

dard deviation) for the overall results. Table 5.29, Table 5.30, Table 5.31, Table 5.32,

Table 5.33, and Table 5.34 show the SNPs selected in each experiment.

All the experiments had a poor performance for the Intermediate class, and the

results for the White and Brown classification were very similar. It was also observed that

a very different number and set of SNPs were selected when the class balance approach

changed. For cases like SMOTE, SMOTEENN, the CGANs, and without any class bal-

ancing, a large number of SNPs were selected, while in the CNN approach, only a few

were chosen.
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Figure 5.11: Confusion matrix for SMOTEENN experiments for eye classification.

1AZ, 2V3M, and 4CC5CE6PR represent the Blue, Intermediate, and Dark Brown classes, respec-
tively.

The best result for skin classification was achieved by the experiment using SMOTE

(E3) with 56 SNPs. The precision and recall, on average, respectively, were 0.90 and 0.94

for White, 0.56 and 0.48 for Intermediate, and 0.85 and 0.79 for Brown. The experi-

ment E3 used as feature selection the SVM-RFE and an SVM as the classifier (without a

GridSearch). The experience E6 without class balancing had a very similar result using

36 SNPs (Table 5.32). The experiment E6 used as feature selection the RF-RFE and an

RF as the classifier (without a GridSearch). The precision and recall, on average, respec-

tively, were 0.88 and 0.99 for White, 0.58 and 0.42 for Intermediate, and 0.90 and 0.66

for Brown. Of the 36 SNPs selected in experiment E6 without class balancing, 3 were

not selected in experiment E3 using SMOTE (rs13289, rs642742, rs2424984). The SNP

rs13289, rs642742, and rs2424984 are directly related to pigmentation traits. The study

presented by Valenzuela et al. (2010) showed that one of the SNP rs2424984 is one of the

SNPs with a high proportion of phenotypic variance of skin reflectance. Besides the ex-

periment E3 using SMOTE had a slightly better performance, it seems the SMOTE could
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Figure 5.12: Confusion matrix for CNN experiments for eye classification.

1AZ, 2V3M, and 4CC5CE6PR represent the Blue, Intermediate, and Dark Brown classes, respec-
tively.

have affected the selection of the best SNPs for skin classification.

Figure 5.16, Figure 5.17, Figure 5.18, Figure 5.19, Figure 5.20, and Figure 5.21

show the confusion matrix for all classifiers. The columns of the confusion matrix are

samples that were predicted by the classifier, and the rows show the actual samples of each

class. The main diagonal of the matrix shows the number of samples correctly predicted

by the model. Looking at the matrices, it is possible to notice that most of the classifiers

confuse the Intermediate class with White and Brown. In the images, 1WHITE-2PALE,

3BEIGE-4LIG-BRW, and 5MED-BRW-9DRK-BRW represent the White, Intermediate,

and Brown classes, respectively.

The performance of the classifiers using the data generated by the CGAN had a

bad performance. Looking at the confusion matrices for the classifiers using the data

generated by the CGAN, it is possible to notice the classifiers confuse the classes White

and Intermediate much more frequently than in the other experiments. One of the hy-

potheses for it is that the CGAN generated very similar samples for both classes, and it
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Figure 5.13: Confusion matrix eye classification without class balancing.

1AZ, 2V3M, and 4CC5CE6PR represent the Blue, Intermediate, and Dark Brown classes, respec-
tively.

couldn’t learn the difference between them. Another hypothesis is that the CGAN train-

ing should be improved, maybe by using other hyperparameters or using more data for

the training process. Because the results for both types of encodings were very similar, it

is not possible to determine which encoding is the best approach to train the CGAN, but

it is important to highlight the study presented in Section 5.1 about the importance of the

SNPs encoding.

Table 5.23: Results for skin classification using SMOTE

ID Class Precision Recall F1

E1

White 0.88±0.00 0.96±0.00 0.91±0.00

Intermediate 0.46±0.03 0.39±0.02 0.42±0.02

Brown 0.83±0.04 0.69±0.01 0.75±0.03

E2

White 0.90±0.00 0.94±0.00 0.92±0.00

Intermediate 0.48±0.03 0.42±0.03 0.46±0.02
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Brown 0.85±0.00 0.79±0.04 0.82±0.02

E3

White 0.90±0.00 0.94±0.00 0.92±0.00

Intermediate 0.56±0.00 0.48±0.00 0.52±0.00

Brown 0.85±0.00 0.79±0.00 0.82±0.00

E4

White 0.88±0.00 0.92±0.00 0.90±0.00

Intermediate 0.44±0.00 0.39±0.00 0.41±0.00

Brown 0.81±0.00 0.76±0.00 0.79±0.00

E5

White 0.88±0.00 0.94±0.00 0.91±0.00

Intermediate 0.46±0.01 0.35±0.02 0.40±0.01

Brown 0.84±0.04 0.72±0.00 0.78±0.01

E6

White 0.88±0.01 0.94±0.00 0.91±0.00

Intermediate 0.46±0.02 0.35±0.05 0.40±0.04

Brown 0.85±0.04 0.76±0.03 0.82±0.02

E7

White 0.85±0.00 0.90±0.00 0.88±0.00

Intermediate 0.29±0.00 0.23±0.00 0.25±0.00

Brown 0.75±0.00 0.72±0.00 0.74±0.00

E8

White 0.89±0.00 0.91±0.00 0.90±0.00

Intermediate 0.45±0.00 0.45±0.00 0.45±0.00

Brown 0.85±0.00 0.76±0.00 0.80±0.00

E9

White 0.89±0.01 0.95±0.01 0.91±0.00

Intermediate 0.50±0.05 0.45±0.07 0.47±0.06

Brown 0.84±0.02 0.69±0.01 0.77±0.01

E10

White 0.90±0.00 0.94±0.01 0.92±0.00

Intermediate 0.47±0.03 0.42±0.03 0.46±0.02

Brown 0.81±0.02 0.72±0.02 0.76±0.02

E11

White 0.88±0.00 0.93±0.00 0.90±0.00

Intermediate 0.44±0.00 0.35±0.00 0.39±0.00

Brown 0.78±0.00 0.72±0.00 0.75±0.00

E12

White 0.89±0.00 0.93±0.00 0.91±0.00

Intermediate 0.48±0.00 0.45±0.00 0.47±0.00

Brown 0.85±0.00 0.76±0.00 0.80±0.00
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Figure 5.14: Confusion matrix for CGAN experiments using SDV encoding for eye clas-
sification.

1AZ, 2V3M, and 4CC5CE6PR represent the Blue, Intermediate, and Dark Brown classes, respec-
tively.

Table 5.24: Results for skin classification using SMO-

TEENN

ID Class Precision Recall F1

E1

White 0.95±0.00 0.81±0.01 0.87±0.00

Intermediate 0.36±0.01 0.65±0.03 0.47±0.01

Brown 0.81±0.02 0.72±0.03 0.78±0.02

E2

White 0.95±0.00 0.77±0.01 0.85±0.00

Intermediate 0.35±0.01 0.65±0.03 0.45±0.01

Brown 0.82±0.03 0.76±0.03 0.80±0.03

E3

White 0.94±0.00 0.81±0.00 0.87±0.00

Intermediate 0.38±0.00 0.65±0.00 0.48±0.00

Brown 0.81±0.00 0.76±0.00 0.79±0.00
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E4

White 0.95±0.00 0.79±0.00 0.86±0.00

Intermediate 0.36±0.00 0.58±0.00 0.44±0.00

Brown 0.78±0.00 0.86±0.00 0.82±0.00

E5

White 0.95±0.00 0.80±0.01 0.87±0.01

Intermediate 0.37±0.01 0.71±0.03 0.49±0.01

Brown 0.84±0.03 0.76±0.02 0.79±0.01

E6

White 0.95±0.00 0.78±0.00 0.85±0.00

Intermediate 0.35±0.00 0.65±0.02 0.45±0.00

Brown 0.81±0.01 0.76±0.00 0.79±0.01

E7

White 0.96±0.00 0.80±0.00 0.87±0.00

Intermediate 0.35±0.00 0.55±0.00 0.42±0.00

Brown 0.73±0.00 0.83±0.00 0.77±0.00

E8

White 0.95±0.00 0.81±0.00 0.87±0.00

Intermediate 0.40±0.00 0.68±0.00 0.50±0.00

Brown 0.81±0.00 0.76±0.00 0.79±0.00

E9

White 0.95±0.00 0.79±0.01 0.86±0.00

Intermediate 0.37±0.01 0.65±0.01 0.48±0.01

Brown 0.81±0.02 0.76±0.02 0.79±0.02

E10

White 0.95±0.00 0.78±0.00 0.85±0.00

Intermediate 0.34±0.02 0.65±0.03 0.45±0.02

Brown 0.79±0.03 0.76±0.03 0.77±0.03

E11

White 0.96±0.00 0.79±0.00 0.87±0.00

Intermediate 0.34±0.00 0.55±0.00 0.42±0.00

Brown 0.73±0.00 0.83±0.00 0.77±0.00

E12

White 0.95±0.00 0.81±0.00 0.87±0.00

Intermediate 0.39±0.00 0.68±0.00 0.49±0.00

Brown 0.81±0.00 0.72±0.00 0.76±0.00

Table 5.25: Results for skin classification using CNN

ID Class Precision Recall F1

E1

White 0.90±0.00 0.88±0.00 0.89±0.00

Intermediate 0.35±0.00 0.45±0.00 0.39±0.00
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Brown 0.79±0.00 0.66±0.00 0.72±0.00

E2

White 0.90±0.00 0.88±0.00 0.89±0.00

Intermediate 0.35±0.00 0.45±0.00 0.39±0.00

Brown 0.79±0.00 0.66±0.01 0.72±0.01

E3

White 0.90±0.00 0.88±0.00 0.89±0.00

Intermediate 0.36±0.00 0.45±0.00 0.40±0.00

Brown 0.80±0.00 0.69±0.00 0.74±0.00

E4

White 0.90 ±0.00 0.88±0.00 0.89±0.00

Intermediate 0.36±0.00 0.45±0.00 0.40±0.00

Brown 0.80±0.00 0.69±0.00 0.74±0.00

E5

White 0.90±0.00 0.88±0.00 0.89±0.00

Intermediate 0.35±0.00 0.45±0.00 0.39±0.00

Brown 0.79±0.00 0.66±0.00 0.72±0.00

E6

White 0.89±0.01 0.89±0.03 0.90±0.02

Intermediate 0.36±0.04 0.45±0.01 0.39±0.02

Brown 0.77±0.01 0.59±0.07 0.67±0.04

E7

White 0.90±0.00 0.88±0.00 0.89±0.00

Intermediate 0.36±0.00 0.45±0.00 0.40±0.00

Brown 0.80±0.00 0.69±0.00 0.74±0.00

E8

White 0.90±0.00 0.88±0.01 0.89±0.00

Intermediate 0.36±0.00 0.45±0.01 0.40±0.00

Brown 0.80±0.01 0.69±0.05 0.74±0.04

E9

White 0.88±0.01 0.96±0.01 0.92±0.00

Intermediate 0.50±0.03 0.19±0.02 0.28±0.01

Brown 0.73±0.06 0.83±0.04 0.78±0.02

E10

White 0.90±0.01 0.96±0.01 0.93±0.00

Intermediate 0.69±0.09 0.29±0.01 0.41±0.00

Brown 0.71±0.01 0.90±0.02 0.79±0.01

E11

White 0.89±0.00 0.97±0.00 0.93±0.00

Intermediate 0.55±0.00 0.39±0.00 0.45±0.00

Brown 0.85±0.00 0.76±0.00 0.80±0.00

E12

White 0.89±0.00 0.99±0.00 0.94±0.00

Intermediate 0.78±0.00 0.23±0.00 0.35±0.00
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Brown 0.74±0.00 0.90±0.00 0.81±0.00

Table 5.26: Results for skin classification without class bal-

ancing

ID Class Precision Recall F1

E1

White 0.86±0.00 1.00±0.00 0.92±0.00

Intermediate 0.55±0.05 0.19±0.03 0.29±0.04

Brown 0.85±0.01 0.79±0.01 0.81±0.01

E2

White 0.89±0.00 1.00±0.00 0.94±0.00

Intermediate 0.62±0.03 0.39±0.04 0.47±0.03

Brown 0.81±0.02 0.72±0.03 0.76±0.03

E3

White 0.88±0.00 1.00±0.00 0.93±0.00

Intermediate 0.69±0.00 0.29±0.00 0.41±0.00

Brown 0.82±0.00 0.79±0.00 0.81±0.00

E4

White 0.88±0.00 0.90±0.00 0.89±0.00

Intermediate 0.37±0.00 0.42±0.00 0.39±0.00

Brown 0.87±0.00 0.69±0.00 0.77±0.00

E5

White 0.89±0.01 0.99±0.00 0.93±0.01

Intermediate 0.53±0.06 0.35±0.08 0.42±0.08

Brown 0.90±0.00 0.66±0.02 0.76±0.01

E6

White 0.88±0.00 0.99±0.01 0.93±0.00

Intermediate 0.58±0.03 0.42±0.04 0.50±0.04

Brown 0.90±0.00 0.66±0.02 0.76±0.01

E7

White 0.93±0.00 0.85±0.00 0.89±0.00

Intermediate 0.41±0.00 0.61±0.00 0.49±0.00

Brown 0.88±0.00 0.76±0.00 0.81±0.00

E8

White 0.88±0.00 0.99±0.00 0.93±0.00

Intermediate 0.55±0.00 0.35±0.00 0.43±0.00

Brown 0.87±0.00 0.69±0.00 0.77±0.00

E9

White 0.84±0.00 1.00±0.00 0.92±0.00

Intermediate 0.57±0.01 0.19±0.06 0.29±0.08

Brown 0.88±0.03 0.72±0.02 0.81±0.01

E10

White 0.87±0.00 1.00±0.00 0.93±0.00
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Intermediate 0.65±0.06 0.35±0.03 0.46±0.04

Brown 0.88±0.02 0.72±0.01 0.79±0.02

E11

White 0.94±0.00 0.88±0.00 0.91±0.00

Intermediate 0.50±0.00 0.71±0.00 0.59±0.00

Brown 0.88±0.00 0.79±0.00 0.84±0.00

E12

White 0.87±0.00 1.00±0.00 0.93±0.00

Intermediate 0.62±0.00 0.32±0.00 0.43±0.00

Brown 0.91±0.00 0.72±0.00 0.81±0.00

Table 5.27: Results for skin classification for the CGAN us-

ing SDV encoding

ID Class Precision Recall F1

E1

Blue 0.85±0.00 0.65±0.00 0.74±0.00

Intermediate 0.21±0.00 0.35±0.00 0.27±0.00

Dark Brown 0.46±0.00 0.66±0.00 0.54±0.00

E2

Blue 0.85±0.01 0.62±0.02 0.72±0.01

Intermediate 0.20±0.01 0.35±0.05 0.26±0.02

Dark Brown 0.48±0.01 0.69±0.01 0.56±0.01

E3

Blue 0.85±0.00 0.63±0.00 0.73±0.00

Intermediate 0.24±0.00 0.45±0.00 0.31±0.00

Dark Brown 0.49±0.00 0.62±0.00 0.55±0.00

E4

Blue 0.88±0.00 0.61±0.00 0.72±0.00

Intermediate 0.22±0.00 0.26±0.00 0.24±0.00

Dark Brown 0.42±0.00 0.93±0.00 0.57±0.00

E5

Blue 0.93±0.02 0.70±0.00 0.80±0.01

Intermediate 0.32±0.02 0.58±0.09 0.41±0.04

Dark Brown 0.58±0.00 0.76±0.01 0.66±0.14

E6

Blue 0.95±0.02 0.67±0.01 0.78±0.00

Intermediate 0.29±0.01 0.55±0.06 0.38±0.02

Dark Brown 0.57±0.02 0.79±0.01 0.67±0.02

E7

Blue 0.91±0.00 0.71±0.00 0.80±0.00

Intermediate 0.31±0.00 0.52±0.00 0.39±0.00



101

Dark Brown 0.61±0.00 0.79±0.00 0.69±0.00

E8

Blue 0.91±0.00 0.71±0.00 0.80±0.00

Intermediate 0.31±0.00 0.52±0.00 0.39±0.00

Dark Brown 0.61±0.00 0.79±0.00 0.69±0.00

E9

Blue 0.92±0.00 0.70±0.00 0.79±0.00

Intermediate 0.30±0.01 0.52±0.01 0.39±0.01

Dark Brown 0.59±0.01 0.79±0.01 0.67±0.01

E10

Blue 0.91±0.00 0.71±0.01 0.79±0.01

Intermediate 0.28±0.03 0.48±0.05 0.36±0.04

Dark Brown 0.57±0.00 0.79±0.00 0.67±0.00

E11

Blue 0.92±0.00 0.71±0.00 0.80±0.00

Intermediate 0.33±0.00 0.55±0.00 0.41±0.00

Dark Brown 0.59±0.00 0.79±0.00 0.68±0.00

E12

Blue 0.92±0.00 0.71±0.00 0.80±0.00

Intermediate 0.33±0.00 0.55±0.00 0.41±0.00

Dark Brown 0.59±0.00 0.79±0.00 0.68±0.00

Table 5.28: Results for skin classification for the CGAN us-

ing additive encoding

ID Class Precision Recall F1

E1

Blue 0.89±0.00 0.74±0.00 0.81±0.00

Intermediate 0.21±0.00 0.29±0.00 0.24±0.00

Dark Brown 0.59±0.01 0.79±0.02 0.68±0.01

E2

Blue 0.91±0.00 0.73±0.01 0.81±0.00

Intermediate 0.23±0.02 0.32±0.04 0.27±0.02

Dark Brown 0.57±0.01 0.83±0.02 0.68±0.01

E3

Blue 0.92±0.00 0.60±0.00 0.73±0.00

Intermediate 0.19±0.00 0.39±0.00 0.26±0.00

Dark Brown 0.60±0.00 0.93±0.00 0.73±0.00

E4

Blue 0.90±0.00 0.73±0.00 0.80±0.00

Intermediate 0.33±0.00 0.32±0.00 0.33±0.00

Dark Brown 0.48±0.00 0.93±0.00 0.64±0.00

E5

Blue 0.92±0.02 0.66±0.01 0.76±0.00
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Intermediate 0.26±0.01 0.55±0.01 0.35±0.01

Dark Brown 0.63±0.05 0.76±0.00 0.69±0.02

E6

Blue 0.92±0.01 0.65±0.01 0.76±0.01

Intermediate 0.24±0.01 0.52±0.05 0.33±0.02

Dark Brown 0.59±0.07 0.76±0.07 0.65±0.07

E7

Blue 0.92±0.00 0.72±0.04 0.81±0.02

Intermediate 0.31±0.04 0.55±0.05 0.40±0.05

Dark Brown 0.66±0.05 0.79±0.01 0.72±0.04

E8

Blue 0.92±0.00 0.72±0.00 0.81±0.00

Intermediate 0.31±0.00 0.55±0.00 0.40±0.00

Dark Brown 0.66±0.00 0.79±0.00 0.72±0.00

E9

Blue 0.92±0.01 0.68±0.00 0.78±0.01

Intermediate 0.30±0.04 0.58±0.06 0.40±0.05

Dark Brown 0.62±0.04 0.76±0.10 0.72±0.05

E10

Blue 0.91±0.03 0.64±0.00 0.75±0.00

Intermediate 0.28±0.01 0.58±0.07 0.38±0.02

Dark Brown 0.62±0.04 0.69±0.01 0.67±0.02

E11

Blue 0.93±0.00 0.71±0.00 0.80±0.00

Intermediate 0.29±0.00 0.55±0.00 0.38±0.00

Dark Brown 0.66±0.00 0.79±0.00 0.72±0.00

E12

Blue 0.93±0.00 0.73±0.00 0.82±0.00

Intermediate 0.32±0.00 0.55±0.00 0.40±0.00

Dark Brown 0.65±0.00 0.83±0.00 0.73±0.00
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Figure 5.15: Confusion matrix for CGAN experiments using additive encoding for eye
classification.

1AZ, 2V3M, and 4CC5CE6PR represent the Blue, Intermediate, and Dark Brown classes, respec-
tively.
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Table 5.29: SNPs for skin classification selected for SMOTE

experiments

ID
Number

of SNPs
SNPs

E1, E2,

E3, E4
56

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs12203592, rs4959270, rs13289810, rs1325127,

rs2733832, rs683, rs10756819, rs11230664,

rs7948623, rs1042602, rs1393350, rs12821256,

rs12896399, rs2402130, rs2036213, rs2594935,

rs7170989, rs1900758, rs1800407, rs1037208,

rs1800404, rs3794606, rs1448484, rs1375164,

rs1597196, rs895829, rs4778137, rs4778138,

rs4778241, rs1129038, rs7494942, rs6497271,

rs12913832, rs3935591, rs11636232, rs7170852,

rs2238289, rs916977, rs8039195, rs16950987,

rs1426654, rs1724630, rs3212345, rs1805005,

rs885479, rs1805009, rs9894429, rs10424065,

rs6119471, rs2378249, rs2835630

E5, E7, E8 48

rs2070959, rs16891982, rs28777, rs183671, rs13289,

rs4959270, rs1325127, rs2733832, rs683, rs10756819,

rs11230664, rs7948623, rs1042602, rs10777129, rs642742,

rs12896399, rs2402130, rs2036213, rs2594935, rs7170989,

rs1900758, rs1800404, rs3794606, rs1448484, rs1375164,

rs895829, rs4778137, rs4778138, rs4778241, rs1129038,

rs7494942, rs6497271, rs12913832, rs3935591, rs11636232,

rs7170852, rs2240203, rs916977, rs8039195, rs16950987,

rs1426654, rs1724630, rs3212345, rs9894429, rs6119471,

rs2424984, rs2378249, rs2835630



105

E6 59

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs12203592, rs4959270, rs13289810, rs1325127,

rs2733832, rs683, rs10756819, rs11230664, rs7948623,

rs1042602, rs1393350, rs10777129, rs642742, rs12896399,

rs2402130, rs2036213, rs2594935, rs7170989, rs1900758,

rs1800407, rs1037208, rs1800404, rs3794606, rs4778232,

rs1448484, rs1375164, rs1597196, rs895828, rs895829,

rs4778137, rs4778138, rs4778241, rs1129038, rs7494942,

rs6497271, rs12913832, rs3935591, rs11636232, rs7170852,

rs2238289, rs2240203, rs916977, rs8039195, rs16950987,

rs1426654, rs1724630, rs3212345, rs1805005, rs9894429,

rs6119471, rs2424984, rs2378249, rs2835630

Table 5.30: SNPs for skin classification selected for SMO-

TEENN experiments

ID
Number

of SNPs
SNPs

E1, E2,

E3, E4
57

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs12203592, rs4959270, rs13289810, rs1325127,

rs2733832, rs683, rs10756819, rs11230664, rs7948623,

rs1042602, rs1393350, rs10777129, rs642742, rs12896399,

rs2402130, rs2036213, rs2594935, rs1900758, rs1800407,

rs1037208, rs1800404, rs3794606, rs4778232, rs1448484,

rs1375164, rs1597196, rs895829, rs4778137, rs4778138,

rs4778241, rs7494942, rs6497271, rs12913832, rs3935591,

rs11636232, rs7170852, rs2238289, rs2240203, rs916977,

rs4932620, rs8039195, rs16950987, rs1426654, rs1724630,

rs3212345, rs1805005, rs1805006, rs885479, rs6119471,

rs2378249, rs2835630
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E5 62

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs12203592, rs4959270, rs13289810, rs1325127,

rs2733832, rs683, rs10756819, rs11230664, rs7948623,

rs1042602, rs1393350, rs10777129, rs642742, rs12896399,

rs2402130, rs2036213, rs2594935, rs7170989, rs1900758,

rs1800407, rs1037208, rs1800404, rs3794606, rs4778232,

rs1448484, rs1375164, rs1597196, rs895828, rs895829,

rs4778137, rs4778138, rs4778241, rs1129038, rs7494942,

rs6497271, rs12913832, rs3935591, rs11636232, rs7170852,

rs2238289, rs2240203, rs916977, rs4932620, rs8039195,

rs16950987, rs1426654, rs1724630, rs3212345, rs1805005,

rs885479, rs9894429, rs10424065, rs6119471, rs2424984,

rs2378249, rs2835630

E6 35

rs16891982, rs28777, rs183671, rs13289, rs4959270,

rs2733832, rs683, rs11230664, rs7948623, rs1042602,

rs10777129, rs2402130, rs2036213, rs7170989, rs1900758,

rs1800404, rs3794606, rs1448484, rs895829, rs4778138,

rs4778241, rs1129038, rs7494942, rs6497271, rs12913832,

rs3935591, rs7170852, rs2240203, rs916977, rs8039195,

rs16950987, rs1426654, rs1724630, rs3212345, rs2835630

E7, E8 62

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs12203592, rs4959270, rs13289810, rs1325127,

rs2733832, rs683, rs10756819, rs11230664, rs7948623,

rs1042602, rs1393350, rs10777129, rs642742, rs12896399,

rs2402130, rs2036213, rs2594935, rs7170989, rs1900758,

rs1800407, rs1037208, rs1800404, rs3794606, rs4778232,

rs1448484, rs1375164, rs1597196, rs895828, rs895829,

rs4778137, rs4778138, rs4778241, rs1129038, rs7494942,

rs6497271, rs12913832, rs3935591, rs11636232, rs7170852,

rs2238289, rs2240203, rs916977, rs4932620, rs8039195,

rs16950987, rs1426654, rs1724630, rs3212345, rs1805005,

rs885479, rs9894429, rs10424065, rs6119471, rs2424984,

rs2378249, rs2835630
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Table 5.31: SNPs for skin classification selected for CNN

experiments

ID
Number

of SNPs
SNPs

E1, E2, E3,

E4, E5, E7,

E8

2 rs11230664, rs1426654

E6 1 rs1426654

Table 5.32: SNPs for skin classification selected for the ex-

periments without class balancing

ID
Number

of SNPs
SNPs

E1, E2,

E3, E4
34

rs3768056, rs2070959, rs16891982, rs183671, rs12203592,

rs13289810, rs1325127, rs683, rs10756819, rs11230664,

rs7948623, rs1393350, rs12896399, rs7170989, rs1900758,

rs1800404, rs3794606, rs4778232, rs1448484, rs4778241,

rs3935591, rs11636232, rs2240203, rs8039195, rs16950987,

rs1426654, rs1724630, rs3212345, rs1805005, rs885479,

rs1805009, rs10424065, rs6119471, rs2378249

E5, E7, E8 23

rs16891982, rs28777, rs183671, rs2733832, rs10756819,

rs11230664, rs1042602, rs642742, rs2036213, rs2594935,

rs1800404, rs1448484, rs4778138, rs6497271, rs12913832,

rs916977, rs1426654, rs1724630, rs3212345, rs9894429,

rs6119471, rs2424984, rs2835630



108

E6 36

rs16891982, rs28777, rs183671, rs13289, rs4959270,

rs13289810, rs2733832, rs683, rs10756819, rs11230664,

rs7948623, rs1042602, rs642742, rs12896399, rs2036213,

rs2594935, rs7170989, rs1900758, rs1800404, rs3794606,

rs1448484, rs1375164, rs4778138, rs1129038, rs7494942,

rs6497271, rs12913832, rs7170852, rs916977, rs1426654,

rs1724630, rs3212345, rs9894429, rs6119471, rs2424984,

rs2835630

Table 5.33: SNPs for skin classification selected for CGAN

experiments using additive encoding

ID
Number

of SNPs
SNPs

E1, E2,

E3, E4
10

rs11230664, rs7948623, rs1448484, rs6497271,

rs12913832, rs916977, rs1426654, rs1805006,

rs1805009, rs10424065

E5, E7, E8 56

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs12203592, rs4959270, rs13289810, rs1325127,

rs2733832, rs683, rs10756819, rs11230664, rs1042602,

rs1393350, rs10777129, rs642742, rs12896399, rs2402130,

rs2036213, rs2594935, rs7170989, rs1900758, rs1800407,

rs1037208, rs1800404, rs3794606, rs4778232, rs1448484,

rs1375164, rs1597196, rs895828, rs895829, rs4778137,

rs4778138, rs4778241, rs1129038, rs7494942, rs12913832,

rs3935591, rs11636232, rs7170852, rs2238289, rs2240203,

rs916977, rs8039195, rs16950987, rs1426654, rs1724630,

rs3212345, rs1805005, rs9894429, rs2424984, rs2378249,

rs2835630
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E6 50

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs4959270, rs13289810, rs1325127, rs2733832,

rs683, rs10756819, rs11230664, rs1042602, rs1393350,

rs10777129, rs642742, rs12896399, rs2402130, rs2036213,

rs2594935, rs7170989, rs1900758, rs1037208, rs1800404,

rs3794606, rs1448484, rs1375164, rs1597196, rs895828,

rs895829, rs4778137, rs4778138, rs1129038, rs7494942,

rs12913832, rs3935591, rs11636232, rs7170852, rs2238289,

rs2240203, rs916977, rs8039195, rs1426654, rs1724630,

rs3212345, rs9894429, rs2424984, rs2378249, rs2835630

Table 5.34: SNPs for skin classification selected for CGAN

experiments using SDV encoding

ID
Number

of SNPs
SNPs

E1, E2,

E3, E4
5 rs1900758, rs1129038, rs3935591, rs4932620, rs1110400

E5, E7, E8 57

rs3768056, rs2070959, rs16891982, rs28777, rs183671,

rs13289, rs4959270, rs13289810, rs1325127, rs2733832,

rs683, rs10756819, rs11230664, rs1042602, rs1393350,

rs10777129, rs642742, rs12896399, rs2402130, rs2036213,

rs2594935, rs7170989, rs1900758, rs1800407, rs1037208,

rs1800404, rs3794606, rs4778232, rs1448484, rs1375164,

rs1597196, rs895828, rs895829, rs4778137, rs4778138,

rs4778241, rs1129038, rs7494942, rs6497271, rs12913832,

rs3935591, rs11636232, rs7170852, rs2238289, rs2240203,

rs916977, rs8039195, rs16950987, rs1426654, rs1724630,

rs3212345, rs1805005, rs9894429, rs6119471, rs2424984,

rs2378249, rs2835630
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E6 34

rs16891982, rs28777, rs13289, rs4959270, rs1325127,

rs2733832, rs683, rs642742, rs12896399, rs2036213,

rs2594935, rs7170989, rs1900758, rs1800404, rs3794606,

rs4778232, rs1375164, rs1597196, rs895829, rs4778137,

rs4778138, rs4778241, rs1129038, rs7494942, rs12913832,

rs3935591, rs7170852, rs2238289, rs2240203, rs916977,

rs8039195, rs16950987, rs3212345, rs9894429

Figure 5.16: Confusion matrix for SMOTE experiments for skin classification.

1WHITE-2PALE, 3BEIGE-4LIG-BRW, and 5MED-BRW-9DRK-BRW represent the White, In-
termediate, and Brown classes, respectively.

5.5 Chapter Conclusion

This chapter presented the experiments for eye and skin classification using data

from the Southern Brazilian population. A set of different approaches were tested for
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Figure 5.17: Confusion matrix for SMOTEENN experiments for skin classification.

1WHITE-2PALE, 3BEIGE-4LIG-BRW, and 5MED-BRW-9DRK-BRW represent the White, In-
termediate, and Brown classes, respectively.

class balancing, feature selection, and classifiers to determine what is the best approach

for the proposed problem. Combining all different approaches, it was 144 totalized exper-

iments (72 for skin classification and 72 for eye classification). The final results showed

that, for eye classification, only 4 SNPs are necessary to classify Blue and Dark Brown

eyes (rs6497271, rs12913832, rs1426654, rs1805006), but only those 4 SNPs are not suf-

ficient enough to classify the Intermediate class. The best result for eye classification was

achieved by the experiment without any class balancing (E11) using all the 66 SNPs. The

E11 experiment does not use feature selection and the classifier was an SVM with Grid-

Search (Table 5.7). The precision and recall, on average, respectively were 0.76 and 0.79

for Blue, 0.41 and 0.63 for Intermediate, and 0.92 and 0.75 for Dark Brown. As men-

tioned before, using only 4 SNPs a very close result can be obtained for Blue and Dark

Brown using only 4 SNPs. The experiment E5 using SMOTE had also a similar result.

The class imbalance seems to not affect the eye classifier as much as the selection of the

SNPs. Both classifiers (SVM and RF) had similar performance, allowing the use of either
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Figure 5.18: Confusion matrix for CNN experiments skin eye classification.

1WHITE-2PALE, 3BEIGE-4LIG-BRW, and 5MED-BRW-9DRK-BRW represent the White, In-
termediate, and Brown classes, respectively.

of the two as the classifier.

For skin classification, the best result was achieved by the experiment using SMOTE

(E3) with 56 SNPs. The precision and recall, on average, respectively, were 0.90 and 0.94

for White, 0.56 and 0.48 for Intermediate, and 0.85 and 0.79 for Brown. The experi-

ment E3 used as feature selection the SVM-RFE and an SVM as the classifier (without

a GridSearch). But it was noticed that the approach using SMOTE could have affected

the selection of the SNPs because three SNPs that are known to be directly related to

skin pigmentation were not chosen (rs13289, rs642742, rs2424984). A similar result was

achieved by the experience E6 without class balancing using 36 SNPs (Table 5.32). The

experiment E6 used as feature selection the RF-RFE and an RF as the classifier (without

a GridSearch). The precision and recall, on average, respectively, were 0.88 and 0.99

for White, 0.58 and 0.42 for Intermediate, and 0.90 and 0.66 for Brown. Both classi-

fiers (SVM and RF) had similar performance, allowing the use of either of the two as the

classifier.
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Figure 5.19: Confusion matrix skin classification without class balancing.

1WHITE-2PALE, 3BEIGE-4LIG-BRW, and 5MED-BRW-9DRK-BRW represent the White, In-
termediate, and Brown classes, respectively.

The next chapter will present the conclusion of the work.
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Figure 5.20: Confusion matrix for CGAN experiments using SDV encoding for skin clas-
sification.

1WHITE-2PALE, 3BEIGE-4LIG-BRW, and 5MED-BRW-9DRK-BRW represent the White, In-
termediate, and Brown classes, respectively.
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Figure 5.21: Confusion matrix for CGAN experiments using additive encoding for skin
classification.

1WHITE-2PALE, 3BEIGE-4LIG-BRW, and 5MED-BRW-9DRK-BRW represent the White, In-
termediate, and Brown classes, respectively.
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6 CONCLUSION

The proposed problem of this study was to find a solution for forensic use to pre-

dict eye and skin color using Single Nucleotide Polymorphisms for the Brazilian popula-

tion. For the work, a study about the current solutions was made, as well as a theoretical

basis study for biology and machine learning techniques. Most of the studies in the field

have a solution using data from the Europen population, and each study has a different ap-

proach to solve the prediction of the phenotype problem, once there is no consensus about

the best SNPs to use and the best approach for it. The main challenge of this work was to

find the best solution using the data collected from the Southern Brazilian population.

For the proposed problem, 144 experiments were executed (72 for eye and 72

for skin classification). Each experiment had a different combination of techniques, to

find the best approach. Two datasets were used in this study. The dataset for eye clas-

sification has 653 samples (Table 4.2), where 154 samples were classified as Blue, 158

samples were classified as Intermediate and 341 samples were classified as Dark Brown.

The dataset for skin classification has 652 samples (Table 4.3), where 467 samples were

classified as White, 107 samples were classified as Intermediate, and 78 samples were

classified as Brown.

To deal with the class imbalanced problem, it was tested the SMOTE, SMO-

TEENN, CNN, and synthetic data generated by CGAN. Tests with no class balancing

approach were also executed. The feature selection algorithm chosen was the recursive

feature elimination, and some experiments without selecting the SNPs were also tested.

For the classifiers, two algorithms were tested, Random Forest and Support Vector Ma-

chine. The most difficult task of this study was to find the best solution that accurately

classifies the Intermediate class for eye and skin. The Intermediate class for both cases

had poor performance. One hypothesis for the problem is the difficulty to define the SNPs

that distinguish the intermediate colors from Blue and Dark Brown. Previous studies had

raised the same difficulty. Walsh et al. (2011) mentioned that the Intermediate class was

the most challenging to predict during the development of IrisPlex.

The final results showed that for the classifiers, both Random Forest and Support

Vector Machine have a good performance to classify eye and skin color. For eye classi-

fication, 4 SNPs can be used (rs6497271, rs12913832, rs1426654, rs1805006) to predict

the Blue and Dark Brown colors, and no class balance was necessary for this case. To

have a better performance for the Intermediate, more SNPs are necessary, once only those
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4 are not enough to distinguish the Intermediate from the other two classes. But even us-

ing more SNPs, the performance for the Intermediate was not good, as mentioned before.

The best performance for eye classification had precision and recall, on average, respec-

tively of 0.76 and 0.79 for Blue, 0.41 and 0.63 for Intermediate, and 0.92 and 0.75 for

Dark Brown. The experiment using 4 SNPs with no class balancing had a precision and

recall, on average, respectively of 0.70 and 0.81 for Blue, 0.28 and 0.45 for Intermediate,

and 0.9 and 0.67 for Dark Brown. For skin classification, the best result was achieved by

the experiment using SMOTE to deal with the class imbalance, using 56 SNPs. It was

observed that 3 SNPs known to be directly related to skin pigmentation were not selected

in the list of 56 SNPs using SMOTE. A further investigation is necessary to understand

if the SMOTE technique has affected somehow the selection of the SNPs. The preci-

sion and recall, on average, respectively, were 0.90 and 0.94 for White, 0.56 and 0.48 for

Intermediate, and 0.85 and 0.79 for Brown.

For future work, a deep investigation of the Intermediate classes is necessary. Hav-

ing a better understanding of which SNPs define the intermediate colors for eye and skin

is crucial and still very necessary to have better solutions.
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