
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

LUCAS CARDOSO TAVARES

A Blockchain-Based Platform for Federated
Learning

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Engineering

Advisor: Prof. Dr.
Claudio Fernando Resing Geyer
Coadvisor: Prof. Dr.
Julio Cesar Santos dos Anjos

Porto Alegre
October 2022

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Diretora da Escolha de Engenharia: Profa. Carla Scwengber Ten Caten
Coordenador do Curso de Engenharia de Computação: Prof. Walter Fetter Lages
Bibliotecária-chefe do Instituto de Informática: Alexsander Borges Ribeiro
Bibliotecária-chefe da Escola de Engenharia: Rosane Beatriz Allegreti Borges

ACKNOWLEDGMENTS

Agradeço primeiramente a minha família. Especialmente a minha mãe, Márcia

Helena De Moura Cardoso, meu pai, José Amado Azambuja Tavares e meus irmãos,

Kauê Cardoso e Fábio Cardoso Tavares os quais foram a principal força motriz em todo

meu processo de desenvolvimento. Sempre me apoiaram e me motivaram durante toda a

jornada da graduação, sempre me entendendo e nunca me deixando desamparado. Sem

vocês nada disso seria possível.

Agradeço também aos meus colegas, que tornaram o caminho da graduação mais

fácil e agradável. Que compartilharam lado a lado comigo as frustrações, superações e

realizações que é a árdua batalha da graduação.

Agradeço aos meus amigos, que sempre compreenderam os motivos das inúmeras

ausência e sempre me apoiaram durante todo esse processo.

Agradeço aos meus professores, que me ensinaram a complexa arte de pensar e

resolver problemas. E que, acima de tudo, sempre se mostraram dispostos a disseminar

conhecimento e ajudar nesse duro processo que é aprender.

Agradeço em especial ao meu orientador Prof. Dr.Claudio R. Geyer por toda ajuda

e dúvidas sanadas, ao Dr. Julio Cesar Santos dos Anjos pela coorientação, dica e suporte

durante a elaboração desse trabalho.

ABSTRACT

Federated learning is an emerging AI technique that removes the need to centralize data

on a server. In it, a server distributes machine learning tasks to the edge nodes, which

perform the tasks on their data and send the results back to the server (aka. an update).

This requires the development of a negotiation system between nodes that want to request

machine learning task execution and nodes that want to sell their computation power in

exchange for a reward. Some studies have used Blockchain in conjunction with federated

learning to establish a secure, decentralized, and fair trade environment with a bargaining

chip for these machine learning tasks. A key issue with the studies is that none of them

focus on analyzing the gas fee spent by network transactions, and today, it is known that

the main blockchain networks that guarantee security and privacy properties are public

blockchains, with high transaction costs and low TPS. This work presented a trading plat-

form in which edge nodes realize machine learning tasks previously agreed upon with a

Requester and, after completing them, transmit the results back in exchange for a digital

currency. The platform features a data matching system, sending offers and job contracts.

The platform’s major goal is to combine the security and anonymity of a public blockchain

while providing higher scalability in transaction fee levels. To test the solution feasibility,

the platform’s basic functionalities were developed, and an environment with four nodes

was prototyped running a Convolution Matrix filter in a federated approach. The number

of interactions and fees paid were evaluated and compared to similar research studies.

Keywords: Blockchain, Federate Learning, Big-data, Trading, DAO.

A Blockchain-Based Platform for Federated Learning

RESUMO

O aprendizado federado é uma técnica de IA emergente, que remove a necessidade da

centralização dos dados em um servidor. Nela, um servidor envia tarefas de aprendizado

de máquina para os edge nodes, que então executam a tarefa sobre seus dados e enviam

apenas o resultado de volta para o servidor, um update. Para isso é necessário criar-se

um sistema de negociação entre edge nodes, que queiram executar tarefas de machine

learning, e edge nodes, que queiram vender seu poder computacional em troca de al-

guma recompensa. Nesse contexto, alguns estudos vêm aplicando Blockchain junto ao

aprendizado federado em busca de conseguir criar um ambiente de negociação seguro,

descentralizado, e justo com alguma moeda de troca para que essas tarefas de apren-

dizado de máquina sejam transacionadas. Um problema pivotal entre os estudos é que

nenhum foca em analisar o gasto em taxa de gas por transações na rede, e hoje, sabe-se,

que as principais redes blockchain que garantem as propriedades de segurança e privaci-

dade são blockchains públicas e, por sua vez, com alto custo de transação e baixo TPS.

Nesse trabalho, é proposta uma plataforma de negociação onde edge nodes executam ta-

refas previamente acordadas com um Requisitante e, após executá-las, envia o resultado

de volta em troca de uma moeda digital. A plataforma apresenta um sistema de corres-

pondência de dados, de envio de ofertas e contratos de trabalho. O principal objetivo da

plataforma é unir a segurança e privacidade de uma blockchain pública garantindo uma

maior escalabilidade em níveis de taxa por transação. Para verificar a viabilidade da so-

lução foram implementadas as funcionalidades básicas da plataforma e prototipado um

ambiente com 4 nodos executando um filtro de Matriz de Convolução de forma federada.

O número de interações e os valores gastos em taxas foram analisadas e comparados com

soluções estudadas semelhantes.

Palavras-chave: Blockchain, Federated Learning, Big-Data, Trading, DAO.

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

FL Federated Learning

ML Machine Learning

IGs Interest Groups

POCI Proof of Common Interest

IPFS InterPlanetary File System

DAO Decentralized Autonomous Organization

PoW Proof of Work

PoS Proof of Stake

POCI Proof of Common Interest

CID Content Identifier

IoT Internet of Things

TPS Transactions Per Seconds

ZK Zero Knowledge

TVL Total Value Locked

ICO Initial Coin Offering

LIST OF FIGURES

Figure 2.1 Typically process of a transaction in PoW ..13
Figure 2.2 Federated Learning process steps. ...14
Figure 2.3 Scalability Trilemma. Source: (ZOCHOWSKI, 2018)..................................16
Figure 2.4 Payment Channel ...17
Figure 2.5 Side-Chain ...18
Figure 2.6 Rollup ..19

Figure 4.1 Model Architecture Overview ...27
Figure 4.2 Blockchain structure ..33
Figure 4.3 Sequence diagram of the transaction process ..34

Figure 5.1 Test Environment ...39
Figure 5.2 MetaMask network configuration..40
Figure 5.3 Arbiscan: Transaction details of DAO smart contract deployment40
Figure 5.4 Convolution operation of a 4x4 matrix with a 3x3 kernel. Source: (SHI

et al., 2021) ...41
Figure 5.5 Convolution operation test tasks..42
Figure 5.6 Requester expensive x Number of Trainers for a model of 50 tasks45
Figure 5.7 Rounds to finish training x Number of tasks in parallel46
Figure 5.8 Rounds to finish training x Gas fee ...47

LIST OF TABLES

Table 2.1 DAO x Traditional Organization comparative...15
Table 2.2 Layer 2 solutions trade-off ..16
Table 2.3 Optimistic Rollups x ZK Rollups Source: (BUTERIN, 2021)20

Table 3.1 Summary related work ..24
Table 3.2 Major differences between the proposed model Fan model and the Zheng

model...26

Table 4.1 Notation of Explanation ..27
Table 4.2 Requester Actions ...30
Table 4.3 Trainers Actions ..30

Table 5.1 Functions gas cost ...43
Table 5.2 Functions call ..44
Table 5.3 Totals gas fee spent for each peer..44
Table 5.4 A comparison of the most expensive and cheapest functions of each model .47
Table 5.5 Gas fee comparison between Ethereum and Arbitrum testnet48

CONTENTS

1 INTRODUCTION...10
2 BACKGROUND..12
2.1 Blockchain ...12
2.2 Federated Learning...13
2.3 DAO - Decentralized Autonomous Organization...14
2.4 Layer 2 ...15
2.4.1 State Channel ...17
2.4.2 Side-Chains ..18
2.4.3 Rollup...19
2.5 IPFS - Inter Planetary File System..21
2.6 Ethereum & Arbitrum ...21
3 RELATED WORK ...23
4 PROPOSED MODEL...27
4.1 Overview ..27
4.2 Entities ...29
4.2.1 Requesters ..29
4.2.2 Trainers ..30
4.2.3 DAO ...30
4.3 Blockchain Structure ..32
4.4 Transaction Process ..34
5 EVALUATION & RESULTS ...37
5.1 Enabling Technologies ..37
5.2 Test Environment ..38
5.3 Test Scenario..40
5.4 Evaluation..42
5.5 Results ..46
6 CONCLUSION & FUTURE WORKS ...49
REFERENCES...51

10

1 INTRODUCTION

Big data is a crucial asset in the scientific and economic world (ZHENG et al.,

2020), it has been applied in almost every area, including retail, healthcare, financial ser-

vices, government, agriculture, and customer service (RABAH, 2018). It is a strong tool

that is helpful to any firm that wants to integrate data to solve nagging questions about its

business. Overall, the need for big data is widespread across all industries and businesses.

Big data explosive growth has become a natural process due to its vast applicability, and

the endeavor to secure every part of it has become a hard task. (DOKU; RAWAT; LIU,

2019). Another major issue is the centralized manner in which big data is currently stored,

the majority of it is monopolized by GAFA (Google, Apple, Facebook, and Amazon) and

the Chinese big techs such as Alibaba, Tencent, Baidu, and TikTok (RABAH, 2018;

DOKU; RAWAT; LIU, 2019).

Due to a lack of competition that exists in a monopoly, this not only raises mar-

ket control and privacy concerns but also presents a single point of failure issues in the

architecture (DOKU; RAWAT; LIU, 2019; BEATTIE, 2021). In this context, blockchain

appears as a great ally due to its decentralization, tamper-resistant, and tamper-evident

properties (YAGA et al., 2018). It not only mitigates single-point failure through dis-

tributed consensus but also includes incentive mechanisms to encourage participants to

collaborate and effectively contribute to the system without the need for a centralizing

entity (MA et al., 2020).

The emergence of the Internet of Things (IoT) and social networking apps, among

other things, has resulted in an exponential increase in the generation of data for machine

learning at multiple decentralized edge nodes (WANG et al., 2018). Traditional machine

learning systems, which transmit all data from edge nodes to a central server, not only

lose efficiency but also have significant risks of privacy leakage and information hijack-

ing (MA et al., 2020). To address these problems, a distributed machine learning approach

called Federated Learning (FL) emerges. The main advantage of Federated Learning is

that it decouples the model training from the necessity of direct access to the training data

(MCMAHAN et al., 2016).

While Federated Learning guarantees privacy, it still has some security, and pri-

vacy issues (HOU et al., 2021). In this context, blockchain appears as a great ally, it can

ensure secure interaction in an untrusted environment by enabling the record of trans-

actions in a distributed and shared ledger (YAGA et al., 2018). Apart from that, some

11

blockchains provide a native digital currency which is a suitable and flexible incentive

mechanism that can be used to reward devices that use their computing resources to per-

form machine learning tasks (YUE et al., 2017).

Making federated learning happen in a decentralized, fair, efficient, and secure

environment remains a huge challenge. Although some research integrating blockchain

to federated learning has yielded significant results, few have focused on how to make

this union a gas fee scalable, secure, and efficient way. The main objective of this work

is to present a trading platform for machine learning tasks with mainly focus on gas fee,

autonomy, security, and privacy. These properties are accomplished by the use of a Layer-

2 Roll-up running on top of a public Blockchain, all models are stored using IPFS and the

organization is organized by a DAO.

The remainder of this work is organized as follows. First, Chapter 2 introduces

some essential concepts for the understanding of this work, then, Chapter 3, is made

a review of some related works. Chapter 4 introduces the proposed system model of

this work, and in Chapter 5 first describes the methodology and prototyping, then the

evaluation and results of the model. Finally, in Chapter 6 is discussed the conclusions and

future works of this dissertation.

12

2 BACKGROUND

This Chapter introduces some background concepts used as the underlying of this

work. The Chapter starts by explaining about Blockchain 2.1, then goes through Feder-

ated Learning 2.2, DAO 2.3, Layer 2 2.4, IPFS 2.5, and finally, Section 2.6 introduces

both blockchain solutions used in this work.

2.1 Blockchain

Blockchain is a distributed digital ledger that organizes cryptographically signed

transactions into blocks. After validation and consensus, each block is cryptographically

connected to the preceding one (making it tamper obvious). Older blocks become increas-

ingly difficult to change when new blocks are added (creating tamper resistance) (DOKU;

RAWAT; LIU, 2019). The immutability and transparency of blockchain technology, in

particular, assist in eliminating human mistakes and the need for manual intervention due

to conflicting data (DINH et al., 2018). There are typically two categories of blockchain,

private blockchain and public blockchain. Public blockchains are decentralized ledgers

open to anyone publishing blocks. Private blockchains are more centralized and the user

must have permission to publish a block (SALIMITARI; CHATTERJEE, 2018).

The seven core components of a blockchain are: cryptographic hash function,

transaction, asymmetric-key, addresses, ledger, block, and consensus models. Each one

of them addresses a specific blockchain functionality and could have a different type of

implementation according to the main necessities of the system (YAGA et al., 2018). One

of the key components of a blockchain, and the one that will be more deeply addressed

here, is the consensus model. Consensus model is the mechanism used to determine which

user will publish the next block. The most common consensus models are Proof of Work

(PoW) and Proof of Stake (PoS).

Proof of Work gives the right to publish the next block to the first user that solves

a high expensive computationally puzzle, usually, a concurrency amount is given to the

winner as a reward for the work done. The puzzle is created in such a way that solving it

is tough but checking a solution is simple. The biggest drawback of PoW is that to solve

the puzzle a lot of energy, in fact, Bitcoin uses 707 kilowatt-hours (kWh) of electricity

per transaction, while Ethereum 1 64 kWh per transaction (POWELL, 2022) both of them

1As I write this work, Ethereum is working on making its proof-of-work to proof-of-stake migration.

13

are PoW. The typical process of a transaction(in PoW blockchain is shown in Fig. 2.1,

adapted from (EUROMONEY, 2020).

Figure 2.1 – Typically process of a transaction in PoW

On the other hand, Proof of Stake gives the right to publish the next block based

on the ratio overall stake amount of users, often an amount of cryptocurrency. PoS is

based on the belief that the greater an user stake in the system, the more likely they are to

desire the system to succeed (DINH et al., 2018). In PoS, different of PoW, the reward for

validate a block is not given to only one user, usually, it is divided between the validators

based on their stake amount. The major benefice of PoS when compared with PoW is

that it does not require energy to validate a block, making it more energy efficient and

eco-friendly. The major drawback of PoS, when compared with PoW, is that validators

with large holdings can have excessive influence on transaction verification, making the

network more centralized (DALY, 2022).

2.2 Federated Learning

Federated Learning (FL) is a decentralized machine learning technique that al-

lows edge devices to train a shared prediction model collaboratively while maintaining all

training data on the device, decoupling machine learning from the obligation to store data

on the cloud/server (MCMAHAN, 2017). It is used to train a global model by the use of

All tests and results in this work were built over Ethereum PoW.

14

multiple edge devices while protecting their privacy. In it, multiple devices are scattered

to execute machine learning tasks locally on their own data set, generating local updates

and then submitting them to a central server that aggregates the results and updates the

global model parameters. A representation of the usual steps done in a Federated Learning

process is shown in Fig. 2.2, adapted from (WIKIPEDIA, 2022).

Figure 2.2 – Federated Learning process steps.

2.3 DAO - Decentralized Autonomous Organization

A Decentralized Autonomous Organization (DAO) is a non-centralized entity

that makes decisions based on a set of rules that are enforced on smart contracts inside a

blockchain (COINTELEGRAPH, 2022). A DAO is operated by a set of smart contracts2,

these contracts define the rules of the organization, hold the membership treasury, are very

straightforward, easy to verify, and open to public auditing. In this way, every member is

able to completely comprehend how the organization works at every stage (SHUTTLE-

WORTH, 2021).

When opposed to traditional organizations, the DAO’s major benefit is that it has

democratized organizations, and any modifications must be approved by a majority of

the members rather than being carried out by a single party (ETHEREUM, 2022a). A

comparison between DAOs and traditional organizations is shown in Table 2.1.

2Smart contracts are digital contracts stored on a blockchain that are automatically executed when pre-
determined terms and conditions are met

15

Property DAO Traditional Organization

Organization Typically straight and completely
democratic Most often hierarchical.

Governance Governance based on community
Governance is mostly based on ex-
ecutives, Board of Directors, ac-
tivist investors

Operation Operates by public smart contracts Operates by owners’ rules

Validation
Interactions are recorded on the
blockchain, making it easy to be
validated/verified by any member.

Interactions may or may not be
recorded, and if recorded, only
some members have permission to
validate/verify.

Changes For any changes to be put into ef-
fect, members must vote

Depend on the arrangement, only
one party may be required to make
changes, or voting may be proposed

Voting
Without a reliable middleman,
votes are counted and the result is
implemented

If voting is permitted, the results of
the vote must be handled manually.
Votes are counted internally

Management

The given services are managed au-
tomatically and decentralized (for
example distribution of philan-
thropic funds)

Require manual handling or cen-
trally managed automation and are
easily manipulable

Transparency Every action is open to the public
and transparent.

The public is often excluded from
the activity and it is private

Table 2.1 – DAO x Traditional Organization comparative

2.4 Layer 2

A Layer 1 network, also named Mainnet, is the underlying infrastructure of a

blockchain. It not only defines the ecosystem’s core rules but also validates and registers

the transactions. Most public Layer 1, such as Ethereum and Bitcoin, have an architecture

with a greater emphasis on decentralization and security and, because of that, they end

up lacking scalability. This is known as the Scalability Trilemma, shown in Fig 2.3. The

Scalability Trilemma states that the scalability trade-offs are unavoidable between three

fundamental properties: decentralization, scalability, and security, in such a way that we

can only have two out of either decentralization, security, or scalability. Because of it

achieving a network with security over a broadly decentralized network while managing

a blazing throughput is the holy grail of blockchain technology.

One of the ways to try to solve the Scalability Trilemma is with the use of Layer

2. The most popular example is the Lightning Network3 used on top of Bitcoin to improve

the transaction speed (STAFF, 2022). With Lightning Network, Bitcoin is capable of pro-

cessing 1,000,000 transactions per second (TPS), while without it can only process about

3The Lightning Network is a "layer 2" payment protocol layered on top of Bitcoin. It is intended
to enable fast transactions among participating nodes and has been proposed as a solution to the bitcoin
scalability problem.

16

7 transactions per second (BITPAY, 2022).

Figure 2.3 – Scalability Trilemma. Source: (ZOCHOWSKI, 2018)

On the other hand, Layer 2 refers to the protocol that runs on top of an existing

blockchain (Layer 1) with the main goal of increasing scalability, transaction speed, and

efficiency of the network. The core concept behind Layer 2 is to provide a framework

that conducts transactions off-chain, lowering the strain on the blockchain and obtaining

faster transaction speeds (SGUANCI; SPATAFORA; VERGANI, 2021). The most popu-

lar Layer 2 solutions approaches are State Channel, Side-chains, and Rollups (Optimistic-

Rollup and ZK-Rollup). The remainder of this Section describes each of the solutions in

detail, explaining their strengths and weaknesses. A summary of their trade-offs can be

seen in Table 2.2, adapted from (ZOCHOWSKI, 2021). As we can see, there is no best

solution, but the one that best applies is dependent on the system constraints.

State Channels Sidechain Optimistic-Rollup ZK-Rollup
User
Experience

Scaling Capability infinite excellent weak general
Cost of Transaction approx. 0 low low low

Security Security off-chain weak weak strong
extremely

strong
Security on-chain no no yes yes

Usability Coding difficulty easy easy medium hard
Applicability weak strong medium medium

Table 2.2 – Layer 2 solutions trade-off

17

2.4.1 State Channel

State Channels allow users to do many transactions off-chain while only submit-

ting two transactions to the bottom layer, one to open the channel and another to close the

channel, resulting in extremely high throughput at a minimal cost (MONOLITH, 2021).

It is a basic peer-to-peer protocol that allows two parties to carry-out several transactions

with another while only posting the final results to the blockchain. The channel employs

cryptography to prove that the summary data it generates is the product of a legitimate

sequence of intermediate transactions, and a "multisig" smart contract guarantees that the

proper parties sign the transactions (ETHEREUM, 2022a). The most popular use case of

State Channels is Payment Channels, and it is shown in Fig 2.4, adapted from (CSIRO,

2022).

While State Channels provide low-cost payments, the expenses of putting up the

on-chain contract on Mainnet during the launching phase might be prohibitively expen-

sive, particularly when gas prices rise. Another drawback of using State Channels is that

it assumes the full availability of both peers to constantly check the activity and contest

challenges when necessary (ZOCHOWSKI, 2021). Also, only the final outcome of the

transaction and the final account status are registered on the main chain; none of the in-

termediate transactions are. Another drawback of State Channel is modifiability, a new

wallet or extension to the existing wallet is needed to support the micropayment protocol.

Figure 2.4 – Payment Channel

18

2.4.2 Side-Chains

Side-Chains work in a separate network with a self-contained consensus mecha-

nism that can be optimized for speed and scalability, running separately from the Mainnet,

and operating independently. Side-Chains are connected with the Mainnet via a two-way

bridge and to send and use it the user must lock their coins in a smart contract on the main

layer and get credits in the side-chain address (MONOLITH, 2021). Once the user has

credits in the side-chain, transactions can occur off the main chain and, in the end, just the

final account balance is submitted to the main chain. A representation of a Side-Chain is

shown in Fig 2.5, adapted from (MONOLITH, 2021).

Depending on the consensus mechanism used in the Side-Chain the transaction

per second (TPS) can increase and the transaction fees reduce significantly. Nonetheless,

the drawback of it is too high, Side-Chains trade off a high degree of decentralization and

trustfulness for scalability (BUTERIN, 2021). Apart from that, it uses its own consensus

mechanism, losing the benefits of the bottom layer consensus like security and requiring

higher trust assumptions over the users and validators.

Figure 2.5 – Side-Chain

19

2.4.3 Rollup

Rollups perform transaction execution outside Mainnet and then compress these

transactions and post them to Mainnet where consensus is reached. Rollup is the name

given to the entire process of executing transactions, taking the data, compressing it, and

rolling it up to the main chain in a single batch. As transaction data is posted in the

bottom layer, this allows Rollups to still fully rely on the security of Mainnet (BUTERIN,

2021). Rollup tries to be the holy grail of scaling as it allows for deploying all of the

existing smart contracts present on Mainnet to a Rollup with no changes while relying on

the bottom layer security.

The way the Mainnet knows that the posted data is valid depends on the spe-

cific Rollup implementation. Usually, each Rollup implementation deploys a set of smart

contracts on Mainnet responsible for processing deposits and withdrawals and verifying

proof (JAKUB, 2021). The verifying proof is the major difference between each Rollup

implementation, and the most known type of implementations are Optimistic-Rollup and

ZK-Rollup. A representation of Layer 2 Rollup is shown in Fig. 2.6, adapted from (BU-

TERIN, 2021). Table 2.3 shows a summarized comparison between the Optimistic-Rollup

and ZK-Rollup.

Figure 2.6 – Rollup

1) Optimistic-Rollup: This approach assumes the authenticity of off-chain trans-

actions and does not publish any proof of the legitimacy of transaction batches that are put

on-chain. To identify instances where transactions are submitted by a malicious actor, this

method depends on fraud-proving (BUTERIN, 2021). The network members have a time

window after a batch of transactions is published on the Mainnet to contest the batch’s

authenticity by providing a fraud-proof. Upon the submission of a fraud-proof, the system

20

Property Optimistic Rollups ZK Rollups
Fixed gas cost per
batch

Aprox. 40,000 (a lightweight trans-
action that mainly just changes the
value of the state root)

Aprox. 500,000 (verification of a
ZK is quite computationally inten-
sive)

Withdrawal period 1̃ week (withdrawals need to be de-
layed to give time for someone to
publish a fraud-proof and cancel the
withdrawal if it is fraudulent)

Very fast (just wait for the next
batch)

Complexity of tech-
nology

Low High (ZK are very new and mathe-
matically complex technology)

Generalizability Easier (general-purpose EVM
Rollups are already close to Main-
net)

Harder (ZK proving general-
purpose EVM execution is much
harder than proving simple compu-
tations)

Per-transaction on-
chain gas costs

Higher Lower (if data in a transaction is
only used to verify, and not to cause
state changes, then this data can be
left out, whereas in an Optimistic
Rollup it would need to be pub-
lished in case it needs to be checked
in a fraud-proof)

Off-chain computa-
tion costs

Lower (though there is more need
for many full nodes to redo the
computation)

Higher (Zero-Knowledge proving
especially for general-purpose
computation can be expensive,
potentially many thousands of
times more expensive than running
the computation directly)

Table 2.3 – Optimistic Rollups x ZK Rollups Source: (BUTERIN, 2021)

initiates a dispute resolution process in which the suspicious batch of transactions is once

more carried out, but this time on the Mainnet. The sender of this transaction is penalized

if the execution demonstrates that the transactions are fraudulent.

To solve a dispute resolution Optimistic-Rollup must have a mechanism that can

replay a transaction with the identical state that existed when the transaction was first

conducted on the Rollup in order to be able to execute the batch on Mainnet. One of

the trickier aspects of Optimistic Rollup is often accomplished by establishing a sepa-

rate manager contract that substitutes the state from the Rollup for particular function

calls (AL, 2021). Entering a dispute resolution process is time expensive and it should be

an exception situation, otherwise, it could generate a lot of overhead.

2) ZK-Rollup: Zero-Knowledge Rollups runs computations off-chain like Opti-

mistic Rollup but different from it ZK-Rollup submits the compressed batch with a valid-

ity cryptographic proof to the chain. There is no dispute resolution at all, in this approach,

every batch submitted to Mainnet includes a cryptographic proof called Zero-Knowledge.

This proof can be easily verified by the Mainnet, and if a fraudulent batch is detected it

can be rejected straight away (AL, 2021).

21

The major drawback of ZK-Rollups is due to the complexity of the Zero-Knowledge

technology. This complexity not only makes it more difficult to develop a compatible ZK

Rollup with the Mainnet but also requires a high hardware requirement to compute ZK

proofs, which may encourage centralized control of the chain and/or reduce the number

of participants that can submit batches to the Mainnet (ETHEREUM, 2022a).

2.5 IPFS - Inter Planetary File System

Despite the Internet’s widespread use, its data storage remains largely centralized,

whether it be physically or virtually, on servers or cloud computing platforms. Most parts

of these servers are controlled by big companies like Google, Amazon, Microsoft, Face-

book, and IBM (MUSHARRAF, 2021). This kind of centralization can cause a number of

issues, such as what happened on October 4, 2021, when Facebook, Instagram, and What-

sApp experienced an extended global outage that lasted for hours (ISAAC; FRENKEL,

2021). Where you suddenly lost access to your Facebook and Instagram messages and

posts, as well as your ability to download WhatsApp-sent pictures. That was due to the

"location"—or, to put it another way, the server—where all the data was kept being inac-

cessible.

In this context, the InterPlanetary File System (IPFS) appears as a great solution.

IPFS is a distributed, peer-to-peer system for storing and accessing files, websites, appli-

cations, and data, where contents are accessible through many peers located around the

world (STAFF, 2021). This not only makes the data storage decentralized but also lever-

ages the privacy and security of the data since it uses encrypted Content Identifiers (CIDs)

to store the data. A content identifier, or CID, is a label used to point to material in IPFS.

It doesn’t indicate where the content is stored, but it forms a kind of address based on the

content itself. CIDs are short, regardless of the size of their underlying content.

2.6 Ethereum & Arbitrum

In this Section are presented, Ethereum and Arbitrum, the selected blockchains

to compose the structure of the proposed model. First will be described Ethereum, the

public blockchain used as Layer 1 then Arbitrum, a Layer 2 Optimistic Rollup solution.

1) Ethereum: is a public blockchain that had it is whitepaper written in Novem-

22

ber of 2013 by Vitalik Buterin, and had it is ICO4 in July 2014, is the first blockchain

with smart contract functionality, allowing developers to build Dapps5. Nowadays, the

Ethereum network is the most popular decentralized public blockchain with smart con-

tracts functionality available, it is a proof of work blockchain and has Ether as a native

cryptocurrency. Ethereum is already used for huge companies like Toyota, Samsung, Mi-

crosoft, Intel, and J.P. Morgan, also, it is the second-biggest blockchain with more market

cap (COINMARKETCAP, 2022), losing only to Bitcoin, which has no smart contracts

available.

Apart from that, Ethereum is the fastest growing network with the largest ac-

tive community, with more than 4,000 active developers and with over 900 commits per

week (VENTURES, 2021; CHOY, 2022). As this piece is written, Ethereum is working

on making its proof-of-work to proof-of-stake migration, which means it will no longer

need energy-intensive mining and instead secures the network using staked Ether. This

migration is called "The Merge" and is set to happen on September 13, 2022. It will

bring more scalability, security, and sustainability to the network and make it ESG6-

friendly (ETHEREUM, 2022b). Anyway, all tests and results in this work were built

over Ethereum PoW.

2) Arbitrum: is a second-generation Layer 2 that provides higher throughput and

more efficient dispute resolution than the normal Optimistic solutions. Arbitrum provides

a complete Ethereum-compatible chain running smart contracts applications deployed

in Ethereum Virtual Machine (EVM). It ensures the progress of Layer 2 and relays the

safety of the Mainnet. Arbitrum approaches fraud-proof verification with a fine-combing

method and focuses on a single point of transaction disagreement by employing multi-

round fraud-proof (KALODNER et al., 2018), this translates to higher network perfor-

mance. Similarly, because L2 transactions are not completed on L1, the gas block limit

becomes insignificant. Nowadays, Arbitrum is the major Layer 2 used for Ethereum’s

DApps, being currently the Rollup project with the biggest total locked value, which

means that have more credibility, and with transactions per second up to 40,000, and gas

prices up to 100 times lower than Ethereum (NAMBIAMPURATH, 2022).

4An initial coin offering (ICO) is the cryptocurrency industry equivalent of an initial public offering
(IPO).

5Decentralized applications, or dapps, are a revolutionary new approach of developing applications that
use blockchain to eliminate centralized middlemen

6Environmental, social, and governance (ESG) criteria are used to screen investments based on corporate
policies and encourage companies to act responsibly.

23

3 RELATED WORK

Many research activities concerning a decentralized data-sharing marketplace us-

ing blockchain as the underlying technology to improve privacy and security are being

conducted. (YUE et al., 2017) designed a decentralized data-sharing model that protects

the data owner’s computation and output privacy through safe multiparty computing and

differential privacy. However, his work focuses only on data sharing, dropping off issues

such as dishonesty among participants, and evaluating the quality of the data. (JUNG et

al., 2019) introduced AccountTrades, a set of large-data response protocols that create a

secure environment through bookkeeping and accountability against dishonest users. The

problem with this work is that it does not present a method to evaluate data quality and

assumes that Brokers (who provide shopping services in general such as product listing,

description, payment, delivery, etc...) are trustworthy, which leads to the system becoming

more centralized and consequently to have less privacy.

(DAI et al., 2020) mitigate the existence of dishonest requesters and dishonest

providers by allowing the consumers just to access the result of data analysis rather

than the data itself. Although the system solves some honesty issues, it also 1) makes

it impossible to negotiate the original data, 2) does not present a fair way to deal with

providers/consumers who stop the action before the analysis finishes, and 3) does not

present a way to evaluate the quality of data. (ZHENG et al., 2020) proposes a blockchain-

based decentralized big data trading platform that keeps a summary and history of data

evaluations made by users. It also ensures anonymity, autonomy, and data trading fairness.

However, this system 1) cannot meet the need data trading requirements in the situation

in which the data is only required for a limited time, 2) assumes that the requester’s feed-

back on the data will always be honest, 3) only uses the Requester feedback as a metric

to evaluate the data, and 4) has expensive smart contracts.

(SHAYAN et al., 2018) proposed a blockchain-based Federated Learning with

fault tolerance, defense against some already known attacks, and scalability. However,

it does not present any form of evaluating the quality of data, nor any incentive mech-

anism for the fair competition of heterogeneous nodes, just a payment reward. (DOKU;

RAWAT; LIU, 2019) proposes an approach to determining the relevance of data based

on the concepts of Interest Groups (IGs), and Proof of Common Interest (POCI), both

proposed by the author. They also introduce the use of IPFS to make data storage more

decentralized. However, this work does not provide the implementation and feasibility of

24

those proposed concepts.

(FAN et al., 2021) presents a trading system for FL, enabling heterogeneous nodes

to use their computational capacity and local data to train models in exchange for a re-

ward. The system improves network performance by using a hybrid blockchain-based

model, where the consortium blockchain is responsible for resource trading and the pub-

lic blockchain for payments. The models also ensure the meeting of the budget feasi-

bility, RI, veracity, and computational efficiency by smart contracts implementing the

DQDRA, a proposed reverse auction within the fixed budget to maximize the valuation

of the requester. Finally, a smart contract incorporates a payment channel into the public

blockchain, allowing for credible, rapid, low-cost, and high-frequency payment transac-

tions between Requesters and edge nodes.

However, (FAN et al., 2021) not gives a mechanism to record service evaluations,

and also the use of payment channels requires full peer availability and has high fee ex-

pensive in case of many disconnections between peers. Apart from that, the use of a

private blockchain to run the auction not only makes the system more centralized and

susceptible to malicious actors but also includes usability concerns, the user should be

registered and interact with two blockchains.

Author & Year Approach Strengths Weaknesses
(XIAO et al., 2019) Introduction and evaluation of con-

sensus algorithms against fault tol-
erance, performance, and vulnera-
bilities.

A good deal of consensus al-
gorithms.

Mostly theoretical.

(DINH et al., 2018) Proprietary benchmark to evaluate
against latency and throughput.

Identifies performance bot-
tlenecks. Test environment
with 16 real nodes.

It only evaluates a few
blockchains, and with few
workloads.

(HUA et al., 2020) Introduce a Federated Learning
framework for intelligent control in
Heavy Haul Railway.

Uses blockchain to improve
security and privacy.

It does not use a reward tech-
nique and does not detail the
blockchain network.

(DOKU; RAWAT;
LIU, 2019)

Proposes an approach to determin-
ing whether data is relevant and
storing that data in a decentralized
way within an interest group.

It uses sharding to improve
blockchain scalability and
IPFS to store data on the net-
work.

It is mostly theoretical and
does not propose any form of
reward.

(SALIMITARI;
CHATTERJEE, 2018)

Compare different consensus algo-
rithms within the context of IoT
constraints.

Evaluate blockchains against
accessibility, scalability, la-
tency, throughput, and IoT
suitability

It is mostly theoretical and
does not evaluate against gas
fee.

(HAN; GRAMOLI;
XU, 2018)

Compare different popular
blockchains, and discuss your
suitability in an IoT environment.

Test environment with 2 up
to 32 real nodes. Evaluate
against latency and through-
put.

Uses a very simple workload.

(ZHENG et al., 2020) Propose a blockchain-based trading
platform for big data.

Anonymity, confidentiality,
and integrity. Stores previous
evaluations to be used in the
future.

Low TPS and high expensive
gas fee.

(FAN et al., 2021) Implements a trading system for
services for Federated Learning us-
ing a Hybrid blockchain over an
auction model.

Payment channel; Auction
model as reward technique.

It requires full peer availabil-
ity and does not store ser-
vice evaluations. Also, the
auction runs over a private
blockchain.

Table 3.1 – Summary related work

Table 3.1 provides a brief comparison of the primary publications researched used

25

as the basis of this work, these papers are compared in terms of approach, strengths, and

weaknesses. As we can see, most of the articles are completely theoretical, with only

concepts and theories, lacking implementation and used technologies. This work not

only shows and explains the model in Chapter 4, but also discusses the methodology and

technologies used in Chapter 5.

Another weak point among the publications is concerning the autonomy of the

system entities. In (FAN et al., 2021) work, neither the Requester nor the Data Provider

has autonomy, since the smart contact is responsible for the entire process, from the se-

lection of the winners to the closing deal. In (ZHENG et al., 2020) work, only the data

provider has autonomy, the Requester has no autonomy to choose the data. The problem

is that the entire selection process is done by an algorithm, leaving the Requester with-

out autonomy during the process. In the proposed platform, the system is responsible for

finding the best candidates for a given service, but the Requester has the autonomy to

choose which, among the best, will be the winners and make them an offer, in turn, once

the Trainer has received an offer, he has the autonomy to accept it or not.

Also, a pivotal problem among those studied is gas fees (transaction fee), in (FAN

et al., 2021) work, a side-chain is used to make the auction, however, side-chains are ex-

tremely weak in terms of security due to the use of their own consensus (ZOCHOWSKI,

2021), and a payment channel is used to decrease the gas fees of the transactions, nonethe-

less, a payment-channel require integral availability of both peers. Also, if peers have

many disconnections, many deploys should be done on the public network (to open the

payment channel again) and the fee expense can be huge. In (ZHENG et al., 2020) work,

no approaches to reduce the gas fees are used, and the entire system ran over a public

blockchain, which makes the gas fees for each transaction not worth it.

This proposed platform uses a Layer 2 Rollup approach to reduce the gas fee while

relaying the security of the Mainnet, a public blockchain. Apart from that, it is the only

model that organizes the entire system using a DAO, and that ensures a high degree of

autonomy and transparency. Table 3.2 summarizes the major differences between the

proposed model and (FAN et al., 2021; ZHENG et al., 2020) works, which are the studied

models with the highest degree of similarity, in autonomy, service evaluation, scalability,

usability, data integrity, security, and the minimum number of interactions to close a deal.

26

Proposed model (FAN et al., 2021) (ZHENG et al., 2020)
Autonomy Requester can choose which of the

winners he wants to make an offer
to. Trainers can choose whether or
not to accept an offer.

Data Provider can choose
whether or not to sell their
data to a Requester.

Service Provider can choose
in to participate in an auction
or not.

Service evaluation Requester evaluates Trainer.
Trainer evaluates Requester.

Requester rates the purchased
data.

N/A

Scalability Optimistic Rollups Side-Chains State Channels
Usability All interactions are done through

the DAO smart contract.
Registrations happen through
a Key Generation Center. In-
teractions happen in two dif-
ferent blockchains.

User should register and in-
teract with two blockchains.
To make payments Requester
must deploy a smart contract
to open the Payment Chan-
nel.

Data integrity IPFS Encrypted N/A
Security Platform relays over public

blockchain security and privacy.
Platform relays over public
blockchain security and pri-
vacy.

Auction relays over private
blockchain security. Pay-
ments are done in a pub-
lic blockchain but using pay-
ment channels.

Min number of inter-
actions to make a deal

3 5 4

Table 3.2 – Major differences between the proposed model Fan model and the Zheng model.

27

4 PROPOSED MODEL

This Chapter first shows an overview of the model architecture, then describes the

entities that compose the system, explains the blockchain structure, and finally, discusses

how the interactions with the system work.

4.1 Overview

An overview of the entire architecture is shown in Figure 4.1, where actors, repre-

sented by stick figures, are the entities who interact with the platform; DAO, represented

by a paper, is the smart contract that organizes the entire platform, and where all actions

start. DAO is deployed over Layer 2, and it is represented by the line connecting both; The

Rollup process occurs internally on Layer 2, once it is done the transactions are stored on

Layer 1, and it is represented by the dotted line. Table 4.1 shows the notations within this

paper.

Figure 4.1 – Model Architecture Overview

Table 4.1 – Notation of Explanation

Notation Explanation

T = {T1, ..., Ti, ...Tm} Set of Trainers, j = 1, ..., m

UITi Unique identifier of Trainer Ti

R = {R1, ..., Ri, ...Rk} Set of Requesters, k = 1, ..., p

UIRi Unique identifier of Requester Ri

JR A job requirement, defined in Definition 1

28

JC A Job Contract

OFcidi An offer, defined in Definition 2

UIOFcidi Unique identifier for the offer OFcidi

UIJCi Unique identifier for the job contract JCi

CIDM The content identifier of model M

CIDTiDP The content identifier of the Trainer Ti preview dataset DP

MUcidi The content identifier a model update

Definition 1 (job requirement). JR: is the summary information of a job requirement,

with the format of:

JR = (Description,MaxV alueByUpdate,MinRating,MinEvaluations, Tags,

NumberOfCandidates),

where Description is the content describing the job information, MaxV alueByUpdate

is the max acceptable value to pay for each model update, MinRating is the minimum

rating a Trainer must have to be considered as a candidate, MinEvaluations is the

minimum number of evaluations that a Trainer must have to be considered as a candi-

date, Tags is a list of tags that will be used to calculate the scores of each Trainer, and

NumberOfCandidates is the number of candidates to be returned for the job.

Definition 2 (offer). OFcidi: is the necessary information to make an offer to a Trainer,

the format of an offer is:

OFcidi = (Description, CIDM, V alueByUpdate,NumberOfUpdates),

where Description is the content describing the offer information, CIDM is the content

identifier of the model, V alueByUpdate is the max acceptable value to pay for each

model update, and NumberOfUpdates is the number of updates requested to the Trainer.

Definition 3 (summary trainer). STi: is the summary information of the Trainer Ti:

STii = (Description,DatasetSize, Processor,RAM,CPU, Tags,

MinV alueByUpdate, CIDTiDP,&Ti),

where Description is the content describing the own Trainer dataset, DatasetSize is the

dataset size, Processor, RAM and CPU are the Trainer PC specifications, Tags is a list

of tags that helps to describe and categorize the Trainer dataset, MinV alueByUpdate is

the minimum acceptable value for each calculated update, and CIDTiDP is an optional

content identifier of the Trainer preview dataset, a small public dataset accessible for users

inside the organization. Finally, &Ti is the address of the Trainer, and it is filled by DAO.

29

Definition 4 (Job Contract). JCcidi: is the information available in a Job Contract JC,

the format of a Job Contract is:

JCcidi = (&Ti,&Ri, Description, CIDM, V alueByUpdate,NumberOfUpdates,

NumberOfUpdatesDone, LockedAmount, AvailableAmount, Status),

where &Ti, is the address of the Trainer, &Ri is the address of the Requester, Description

is the content describing the job contract, CIDM is the content identifier of the global

model, V alueByUpdate is the agreed value to be paid for each model update sent by

Trainer, NumberOfUpdates is the agreed number of updates, LockedAmount is how

much is locked in DAO for this contract (on the begin it is always V alueByUpdate ∗

NumberOfUpdates), AvailableAmount is the amount that the Trainer can withdraw,

and Status is the current status of the Job Contract.

4.2 Entities

This section introduces the entities that compose the entire system and also de-

scribes their responsibilities and actions within the system. The section starts describing

the two actors of the system Requesters and Trainers, in Sub Sections 4.2.2 and 4.2.1,

respectively, and finally, Sub Section 4.2.3 describes DAO, the entity responsible for op-

erating the system. The entities’ implementations are available on the project repository:

https://github.com/luccardozo/PlataformFL/.

4.2.1 Requesters

Any individuals or organizations that wish to train a model by federated learning.

A Requester can match the candidates inside the organization that best fit a specific job,

and then select the winners and submit an offer requesting the execution of a machine

learning task, where the Requester pays once the task is performed. A Requester, once

registered, can perform actions (function calls) within the organization, these actions are

detailed in Table 4.2.

30

Table 4.2 – Requester Actions

Action Function

MatchTrainers(JR) Match the best Trainers for the job JR

MakeOffer(OFcid, UITi) Make a new offer OFcid to Trainer UITi

RemoveOffer(UIOFcidi) Remove the pending offer UIOFcidi

SignJobContract(UIJCi, Amount) Sign the contract UIJCi and lock the contract

Amount

GetJobContract(UIJCi) Get the details of the Job Contract UIJCi

CancelJobContract(UIJCi) Cancel the Job Contract UIJCi

UpdateGlobalModel(UIJCi, CIDM) Update the global model of UIJCi with CIDM

4.2.2 Trainers

Individuals who sell their computing power and/or their dataset to execute ma-

chine learning models for a Requester. A Trainer, once accepting a job offer, downloads a

Requester’s model and runs it on its own data, generating local updates and sending them

to the Requester in exchange for payments. A Trainer, once registered, can perform the

actions detailed in Table 4.3 in DAO.

Table 4.3 – Trainers Actions

Action Function

GetPendingOffers() Get all the pending offers

AcceptOffer(UIOFcidi) Accept the offer UIOFcidi

DeclineOffer(UIOFcidi) Decline the offer UIOFcidi

SignJobContract(UIJCi) Sign the contract UIJCi

SendUpdate(MUcidi, UIJCi) Send the update MUcidi to the job contract

UIJCi

GetJobContract(UIJCi) Get the details of the Job Contract UIJCi

CancelJobContract(UIJCi) Cancel the Job Contract UIJCi

4.2.3 DAO

The most important smart contract in the system, deployed over Layer 2, whose

responsibility is to operate the entire system, this means that every interaction is done by

31

function calls inside this smart contract. The DAO responsibility is to perform Trainers

payments and to lock the amount of a Job Contract, paid by Requester. It not only works

as a middle-ware between Requester and Trainers communications, but it is also the only

entity that can modify the status of the blockchain.

Apart from that, it is DAO responsibility to find the best Trainers that fit a spe-

cific job requirement (JR) of a Requester. It is done through a MatchTrainers(JR)1

function call, and its implementation is shown in Algorithm 1. There is evaluated the

scores of each Trainer that has 1) Rating greater than or equal to the minimum rating

required in JR.MinRating; 2)Has the minimum value accepted, MinV alueByUpdate,

less than or equal to the MaxV alueByUpdate of the Job Requirement; 3) Has at least

JR.MinEvaluation, and returned only the JR.NumberOfCandidates best candidates.

Algorithm 1 MatchTrainers(JR), match the best Trainers that fit the requirements JR
Input: Job Requirement JR, define in Definition 1.
Output: candidatesArray, an array of STi, define in Definition 3, with the JR.NumberOfCandidates

that best fits the requirements JR.
1: trainersScore is a list of Trainers.Length tuples (Trainer, integer).
2: for T in Trainers do
3: if T.MinValueByUpdate ≥ JR.MaxValueByUpdate then
4: continue
5: end if
6: if T.Rating < JR.MinRating then
7: continue
8: end if
9: if Length(T.Evaluations) < JR.MinEvaluations then

10: continue
11: end if
12: score← CalculateScore(T, JR) ▷ Achieve all requires, so calculate the score
13: trainersScore.insert(T, score)
14: end for
15: trainersScore.sortAscByScore() ▷ Sort asceding the array by scores
16: for i in JR.NumberOfCandidates do ▷ Get just the best JR.NumberOfCandidates STi

17: trainer ← trainersScore[i][0]
18: candidatesArray[i] = trainer.getSummary()
19: end for
20: return candidatesArray

Algorithm 2 shows the implementation of CalculateScore(T, JR), which is used

inside Alg. 1 to calculate the score of each Trainer (T) for a specific JR. The score of a

Trainer is a float number between 0 and 1, and is composed of tagScore, ratingScore and

priceScore, as follows:

1https://github.com/luccardozo/PlataformFL/

32

• 40% tagScore: Represented the proportion of matched tags, Trainer if more matched

tags will have a better tagScore.

• 30% ratingScore: Represented the Trainer rating, Trainer that has a better rating

will have a better ratingScore.S

• 30% priceScore: Represented the spread between the JR.MaxV alueByUpdate

and the Trainer T.MinV alueByUpdate. Trainer lower minimum price will get a

higher spread and a better priceScore.

Algorithm 2 CalculateScore(T, JR), Calculate the score of trainer T for the require-
ment JR
Input: Trainer T and Job Requirement JR, define in Definition 1.
Output: score, the calculated Trainer score 0 up to 1.
1: matchedTags← 0
2: for tag in Trainers.Tags do
3: if tag in JR.Tags then
4: matchedTags← matchedTags+ 1
5: else
6: continue
7: end if
8: end for
9: tagsScore← matchedTags

Length(JR.Tags) × 0.4

10: ratingScore← T.Rating
5 × 0.3

11: priceScore← JR.MaxV alueByUpdate−T.MinV alueByUpdate
JR.MaxV alueByUpdate × 0.3

12: score← tagsScore+ ratingScore+ priceScore
13: return score

4.3 Blockchain Structure

This section first introduces the selected networks that compose the blockchain

structure, then explains in detail the reasons behind the choices, and finally, describes

how the two networks work together, pointing out the strengths of the choice.

The blockchain structure is composed of Layer 2 Optimistic Roll-up running on

top of a public blockchain. The choice of a public blockchain was made because, when

compared with a private blockchain, the public blockchain has a higher degree of decen-

tralization and privacy. It also operates on an incentivizing scheme that encourages new

participants to join and keeps the network agile. The choice of Optimistic Rollup as Layer

2 was made because the platform concerns are about decentralization, security, privacy,

cost per transaction, scalability, and coding difficulty (see Section 2.4). With this rele-

vance, Optimistic-Rollup leads the race. Even though ZK-Rollup could be a good choice

it is still a very new technology that has coding difficulty too high. None of the known

33

solutions have full integration with Solidity, the language used to write smart contracts on

Ethereum, yet.

The public blockchain chosen as Mainnet (the bottom layer) was the Ethereum2

network and for Layer 2 the selected one was Arbitrum3, which is an Optimistic Roll-up

solution. Figure 4.2 shows an overview of the blockchain structure used in this work; here

both blockchains are represented by a blue cloud, and the rollup process from Layer 2 to

the bottom layer is represented inside a square between the blockchains. The DAO smart

contract is deployed inside Layer 2, and all the transactions are done through it.

Figure 4.2 – Blockchain structure

Ethereum is a good choice not only because its digital currency, Ether, is accepted

by most people but also because it is the one with a more long-term value, a more mature

environment, more development tools, and more credibility than the others. However, not

everything is good and the drawback of Ethereum is that as the number of transactions

increases, the gas fee for each transaction also increases. This drawback is addressed by

the use of Arbitrum Layer 2, which provides a complete Ethereum-compatible chain, a

much lower gas fee, and a higher TPS while relying on the security of the bottom layer.

By the use of the major public blockchain, with the biggest active community and

with its own cryptocurrency, this blockchain structure aims to make this platform not only

accessible for everyone but also a secure environment with long-term value for every user

that wants to train a model or sell their computation power to realize a machine learning

task. On the other hand, using Arbitrum Layer 2 the blockchain structure aim to reduce

the gas fee spent over the transaction making the platform cheaper and more scalable.

2https://ethereum.org/en/
3https://bridge.arbitrum.io/

34

4.4 Transaction Process

This session will explain how the system works. For this, the use case of Figure 4.3

is used. There, the Requester first registers in the system and then requests the service of

training a global model to a Trainer. The Trainer first registers on the system and then

accepts the offer. To make the explanation easier, each step of the process shown is

numbered with a value.

Figure 4.3 – Sequence diagram of the transaction process

In the first step (1), a Trainer is registered on the platform by interacting with

the DAO by calling the RegisterAsTrainer(STi), where STi is the Summary of the

Trainer’s Information and is defined in Definition 3. Once this is done, the Trainer and his

STi are registered on the platform, and the DAO takes care of storing it on the blockchain.

35

Then, in step (2), a Requester is registered on the platform by interacting with the DAO

by calling the RegisterAsRequester, once this is done the Requester is registered on the

platform and the DAO takes care of storing it on the blockchain.

In step (3), the Requester interacts with the DAO by calling MatchTrainers(JR),

where JR is the Job Requirement, defined in Def. 1, to get the Trainers that best suit the

requirements JR. MatchTrainers(JR), shown in Alg. 1, calculate the score of each

Trainer that full-fill the basic requirements of JR and return the best candidates. After

DAO calculates the score of each Trainer that satisfy the Job Requirement, it returns the

STi of the bests JR.NumberOfCandidates candidates, on step (4). After receiving the

best Trainers for the job STi , the Requester can analyze the STi of each one of them, and

then select the winners by making an offer to them.

In step (5) the Requester makes an offer to the Trainer by interacting with the DAO

by calling MakeOffer(OFcidi,&Ti), where OFcidi is the offer information, defined in

Definition 2, and &Ti is the address of the Trainer, received as a result of step (3) together

with STi of the Trainer. Once the offer is done, DAO places it into the Trainer pending

offers list, notifies and registers it on the blockchain.

As soon as the Trainer receives notification of a new offer, he calls DAO an

getPendingOffers() and gets all the pending offers for analysis. Once analyzed, in

step (6), it accepts the offer by calling AcceptOffer(UIOFcidi), where UIOFcidi is

the unique identifier of the offer. The DAO creates a Job Contract (JC), defined in Defi-

nition 4, with the state WaitingSignatures and sends it to Trainer and Requester to assign.

When a Requester and Trainer receives a Job Contract (JC) with unique identifier

UIJCi, they can analyze it and accept or decline the Contract. In step (7) Trainer sign the

contract calling SignJobContrat(UIJCi), and in step (8) the Requester sign the con-

tract calling SigJobContract(UIJCi, Amount), where Amount = V alueByUpdate ∗

NumberOfUpdates. DAO locks the amount and updates the Job Contract to signed.

From that, the locked Amount will be used to pay for each update sent by the Trainer. By

locking the Amount it is guaranteed that the Trainer will always be paid when sending an

update, also this makes it possible for both parties to cancel a work contract in progress

and not be harmed. When there is a cancellation of a contract, the Requester takes all the

remaining locked value.

Once the Job Contract is signed, it is Trainer’s responsibility to generate the local

model update by downloading the model and running it over their own data set. As soon

as the Trainer obtains the local model update, MUcidi, he stores it in a decentralized way

36

using IPFS and gets its Content Identifier(see Section 2.5) CIDM . With the Content

Identifier of the model CIDM on hands, the Trainer, in step (9) sends the calculated

update by calling SendUpdate(CIDM,UIJCi). Then, DAO updates the Job Contract

UIJCi by 1) incrementing the number of updates sent on the contract; 2) making the

payment for the update to the Trainer, in step (10), and, finally, notifying the Requester,

in step (11).

As soon as the Requester receives the notification, he downloads the Trainer up-

date and generates the new global model without accessing any data. The Requester

stores it and gets the CID of the new global model (CIDM). In step (12), the Requester

calls UpdateGlobalModel(UIJCi, CIDM) to update the new global model of the Job

Contract UIJCi with CIDM . After that, the looping, shown in red, starts again and the

Trainer must download the new global model, generate the new local model update, and

sent it to the DAO until the submissions of all the agreed local model updates are made or

until one of the parties cancels the contract.

When all updates are sent, the DAO immediately updates the Job Contract sta-

tus to Finished, not accepting more updates nor making payments. Once the Contract

is finished, the Requester and Trainer can send their evaluation of the Job by calling

EvaluatePeer(UIJCi, Description,Rating),in steps (13) and (14), where UIJCi is

the Job Contract identifier, Description is a free text to make a comment on the peer,

and Rating is the rating given to the peer. Finally, DAO store these evaluations on the

Blockchain so that are available for the next jobs.

37

5 EVALUATION & RESULTS

This Chapter has the general objective of describing how the proof of concept of

the proposed platform was implemented in a distributed learning application. First, Sec-

tion 5.1 introduced the used tools and software for the platform implementation. Then,

in Section 5.2 is described the test environment prototyping over evaluation. Section 5.3

describes the use-case for the test and the test scenario running over the platform. In

Section 5.4 is shown the test evaluation, followed by some estimates, and finally, in Sec-

tion 5.5 is shown and discussed the achieved results.

5.1 Enabling Technologies

Solidity programming language was used in conjunction with IDE Remix to im-

plement the smart contracts, their code is available on the platform repository 1. The

Hardhat development tool, together with the VSCode code editor and the MetaMask wal-

let, was used to deploy and interact with smart contracts on Arbitrum’s test network,

RinkArby. To store the global model and the generated updates in a decentralized way

using IPFS was used Pinata. The complete implementation was carried out on a WSL2

utilizing Linux Ubuntu 18.0 LTS from within a Windows 10 machine, and to simulate

other entities inside the organization was used virtual machines with also Ubuntu 18.0

LTS installed.

• Solidity 0.8.12: Programming language for smart contracts that run on the pub-

lic Ethereum blockchain. Used for implementing smart contracts, available at:

https://github.com/ethereum/solidity/releases;

• Hardhat 2.11.2: Development environment for the Ethereum network. Used to

deploy contracts and interact with the contract using the javascript programming

language, available at: https://www.npmjs.com/package/hardhat/v/2.11.2;

• Python 3.10.X: Programming language used to implement and run the Convolution

Matrix filter algorithm, available at:

https://www.python.org/downloads/release/python-3100;

• NumPy 1.22.3: Offers comprehensive mathematical functions, random number

generators, and linear algebra routines. Used to implement the Convolution Matrix

1https://github.com/luccardozo/PlataformFL

38

filter algorithm, available at: https://pypi.org/project/numpy/1.21.1/

• VSCode 1.71.X: Open source editing tool, available at:

https://code.visualstudio.com/updates/v1_71

• RinkArby: Arbitrum’s testnet that uses the same source code, but runs on top of

Ethreum’s Rinkeby testnet.

• Rinkeby: Ethereum test network that uses the same source code but uses a faceut

process to distribute funds to wallets.

• Pinata: A plataform to save data on an IPFS node. Used to store the Requester

global model or the model update generated by Trainer, available at:

https://www.pinata.cloud/

• MetaMask: A cryptocurrency blockchain wallet. Used to create private chain ac-

counts, available at: https://metamask.io/

• Arbiscan: An explorer to on-chain data for the Arbitrum testnet. It was used to

monitor gas price, gas used, and the transaction fee of the network, available at:

https://arbiscan.io/

5.2 Test Environment

The network used for the evaluation was the RinkArby network, which is an Ar-

bitum test network that runs on top of the Rinkeby network, an Ethereum test network.

Due to the need to spend real money for transactions, neither Ethereum nor Arbitrum

production networks were used. However, the test networks run on the same code base

as Mainnet and on these networks to get fake money (fake ETH in this case) it is only

necessary to do a faceut2 process. Once this process is done, the test network user earns

funds and is able to make transactions/deployments on the network. Note that although

the test network uses the same source code as the production network, the network delay

of the test network is not the same as the production network.

The test environment designed for the validation of the platform implementa-

tion is shown in Figure 5.1 at a high level. It is composed of 5 peers connected on

the same blockchain, 3 of which are Trainers, 1 Requester, and 1 Server. The Server

is responsible for both deploying the DAO smart contract on the RinkArby network and

to running the virtual machines. The DAO smart contract implementation is available

2A crypto faucet lets users earn small crypto rewards by completing simple tasks.

39

at: https://github.com/luccardozo/PlataformFL. The remaining peers are virtual machines

connected on the same blockchain and that interact with DAO smart contract deployed by

the Server.

Figure 5.1 – Test Environment

For each virtual machine was created a private chain account, aka. "wallet", using

MetaMask and they were all configured to connect on the same network, RinkArby -

Arbitrum testnet. The used configuration on MetaMask is shown in Figure 5.2. A faucet

process, using Rinkeby Faucet3, was done for each VM in order to get funds into their

wallet to transact.

Also, an account was created on Pinata for each virtual machine. These accounts

are used to store the Requester global model(task) and the model update generated(task

result) by the Trainer. Once the file is stored on Pinata, it automatically generates the file’s

CID, which is used to share the file with other peers.

To monitor the network and get statistics such as gas prices, gas used, and trans-

action fees, Arbiscan, an explorer for on-chain data on the Arbitrum testnet, was used.

Figure 5.3 shows the transaction details of DAO smart contract deployment on the Arbi-

trum test network; the deployment of the DAO smart contract cost 3,424,656 units of gas,

at a gas price of 0.0000000001 ETH (0.1 Gwei), for a total of 0.0003424656 ETH.

3A developer tool to get testnet Ether (ETH) in order to test and troubleshoot your decentral-
ized application or protocol before going live on Ethereum Mainnet, where one must use real Ether.
https://rinkebyfaucet.com/

40

Figure 5.2 – MetaMask network configuration

Figure 5.3 – Arbiscan: Transaction details of DAO smart contract deployment

5.3 Test Scenario

To achieve the objective, the proof of concept was done using a distributed Con-

volution Matrix filter, many used in Deep Learning. Figure 5.4 shows a convolution oper-

ation on a 4x4 matrix with a 3x3 kernel/filter using padding 1. In a convolution operation,

the kernel first moves horizontally, then shifts down, and again moves horizontally. The

sum of the dot product of the image pixel value and kernel pixel value gives the output

matrix, on Figure 5.4 the first sum of the doc products is shown in red, the second one in

41

green, and the fifth in blue.

Figure 5.4 – Convolution operation of a 4x4 matrix with a 3x3 kernel. Source: (SHI et al., 2021)

As the value calculated for one pixel in the resulting matrix does not affect the

value calculated for another pixel, the values of the resulting matrix can be calculated

separately in a distributed way and then aggregated to generate the output matrix. This

distributed process is the one used in this work to evaluate the platform.

In the executed test scenario, the Requester wants to run the convolution process

on a 5x5 matrix with a 3x3 kernel/filter in a distributed way. The Requester requests

service from 3 trainers in the organization, where each one is responsible for applying the

kernel on just a few pixels and sending the result obtained to the Requester. At the end

of the process, the requester aggregates all received updates to get the result of the entire

process. The sequence diagram of this entire process is the same as presented previously

in Section 4.4 but expanded to 3 Trainers and where the model is a convolution task.

The test execution and monitoring environment are the same as described in Sec-

tion 5.1. The entire process is split into 5 tasks, each task calculates the convolution result

over a group of strides. In this context, each task is a global model (MUcidi), and each

task result is a model update generated by Trainer.

Figure 5.5 shows the used matrix, kernel/filter, and the arrangement of pixels that

will be covered for each task by the colors. Two of the Trainers are requested to realize

two tasks each, while the remaining Trainer is requested to realize just one. The task

assignments for each Trainer and their CIDs4(to check the implementation of the tasks) is

summarized as follows:

• Trainer 1: Responsible for realize Tasks 1 and 4.
4To access data on Pinata just use https://gateway.pinata.cloud/ipfs/<CID> replacing <CID>

42

MUcid1: QmbpKij4aqK3yMF9QFN76kycsTa1bHfYfFQ7qB8uuphqGG

MUcid4: QmeDQF2SKNceDq3ZRRo9n7iVA2DQEgZ9AuUeeMXgwQf3J8

• Trainer 2: Responsible for realize Tasks 2 and 5.

MUcid2: QmYsVZ6E5axx4U8ndPZGo3R9K5JTfpekYPeCpTExbNAnp4

MUcid5: QmQwPaHDtSeWqbmVToy8q3aMrjzxuR2NewfL3daVtKrPtr

• Trainer 3: Responsible for realize Task 3.

MUcid3: QmaSPY4zBwSpA3RAHMFwgVEZZ43X9sPpdBvZUJSMZRYYeo

Figure 5.5 – Convolution operation test tasks

5.4 Evaluation

This section’s goal is to evaluate the platform on the scenario introduced in the

previous session, Section 5.3. To achieve this, this section first introduces the used metrics

to calculate the transaction fee (gas fee). Then, it discusses the data captured from the

interactions of peers within the organization during the Convolution Matrix filter process.

Finally, it expands the achieved result to estimate how the number of Trainers affects the

Requester gas fee expense.

Because each Ethereum transaction necessitates the use of computing resources,

each transaction necessitates a fee. The charge necessary to complete an Ethereum trans-

action is referred to as gas. Gas fees are paid in ether, Ethereum’s native currency (ETH).

• Gas Used: Refers to the amount of computational power required to execute a

specified network operation.

• Gas Price: Is the price of a simple transaction, one gas.

43

• Gas Fee: Is the fee paid to execute a specific function on the blockchain, the same

as transaction fee. Typically, GasFee = GasUsed ∗GasPrice

The gas cost and gas used for each function implemented on the proposed plat-

form are shown in Table 5.1. The most expensive functions are those that modify the

blockchain the most; functions that do not modify the blockchain, such as MatchTrainer

and GetPendingOffers, have no cost. The cost of registering a Trainer on the network

is higher than that of registering a Requester since the Trainer must give his Summary

Trainer (STI , see Def. 3) to be saved on the network.

Table 5.1 – Functions gas cost

Function Gas used (unit) Gas Fee (ETH) Gas Price (ETH)

Deploy DAO 3424656 0,0003424656 0,0000000001

RegisterAsTrainer 1401532 0,0001401532 0,0000000001

SignJobContract 71544 0,000071544 0,0000000001

MakeOffer 67774 0,000067774 0,0000000001

UpdateGlobalModel 63047 0,0000630,47 0,0000000001

SendUpdate 51358 0,000051358 0,0000000001

EvaluatePeer 31580 0,000031580 0,0000000001

AcceptOffer 30895 0,000030895 0,0000000001

RegisterAsRequester 26937 0,000026937 0,0000000001

MatchTrainers 0 0 0,0000000001

GetPendingOffers 0 0 0,0000000001

Table 5.2 shows how many times each function was called by a peer, and Table 5.3

shows the total gas fee spent by a peer. The total gas fee spent over the Convolution Matrix

process was 0,001673488 ETH. Both Trainer 1 and Trainer 2 spent 0,0003768882 ETH.

It is because they have made the same number of tasks and their Summary Trainer used to

register on the organization had the same size. On the other hand, Trainer 3 which made

only one update spent less. The Requester is the one who spends the most on fees during

the process, it is because he needs to make an offer and a contract for each Trainer, also

he needs to send new tasks (UpdateGlobalModel) to Trainers 1 and 2. Observe that the

number of UpdateGlobalModel calls made is just 2, it is because the first 3 tasks are

already attached in the contract, and just the other 2 tasks must be sent when a Trainer

becomes free.

Another piece of information that we can take from Table 5.2 is that the minimum

number of transactions happens when is requested for only one task to the Trainer, and it

took 4 interactions: 1 MatchTrainers, 1 MakeOffer, 1 SignJobContract, and in the

44

end 1 EvaluatePeer. This means that the minimum number of interactions to make a

deal with one Trainer is 3 interactions. The other interactions are all exchanges of updates.

Table 5.2 – Functions call

Function Requester Trainer 1 Trainer 2 Trainer 3

RegisterAsTrainer 0 1 1 1

AcceptOffer 0 1 1 1

SignJobContract 3 1 1 1

SendUpdate 0 2 2 1

EvaluatePeer 3 1 1 1

RegisterAsRequester 1 0 0 0

MatchTrainers 1 0 0 0

MakeOffer 3 0 0 0

UpdateGlobalModel 2 0 0 0

Total 13 6 6 5

Table 5.3 – Totals gas fee spent for each peer

Requester Trainer 1 Trainer 2 Trainer 3 Sum

Total Gas Fee (ETH) 0,000594181 0,0003768882 0,0003768882 0,0003255302 0,001673488

From Table 5.2 we can conclude that the Requester functions call to MakeOffer,

EvaluatePeer, and SignJobContract will always be equal to the number of Trainers

he makes a deal with. This is obvious since to each Trainer it is necessary at least to make

an offer, assign the contract and, in the end, send a peer evaluation. Also is known that

the number of function calls to UpdateGlobalModel will always be equal to the number

of tasks minus the number of Job Contracts. This is obvious since one task is always

attached to the contract, and the remains must be sent. That said, and using the gas fee

calculated by each function call in Table 5.1 we can estimate how the number of trainers

affects the gas fee expenses and the number of interactions for a requester.

Figure 5.6 estimates the gas fee spent and the number of interactions necessary

to train a model with 50 tasks while variating the number of Trainers. When the num-

ber of Trainers is equal to 1, the number of interactions is equal to 52 (1 for making

a trainer offer, 1 for signing the contract, 49 for sending the remains tasks, and 1 for

the peer evaluation), otherwise, when the number of Trainers is equal to 50, the num-

ber of interactions go up to 150 (50 for make trainers offer, 50 for sign contracts, 50

for peer evaluation). It means that, the number of Requester interaction is equal to

(NumberOfTask−NumberOfTrainers)+ (3 ∗NumberOfTrainers). We can also

45

Figure 5.6 – Requester expensive x Number of Trainers for a model of 50 tasks

equate the estimated expenditure on transaction fees of each member of the network, it

will be the sum of the number of all the functions called times the cost of each function

(
∑functions

f=1 funcionCallsi∗functionCosti). Below is a summary of the equations, there

RI is the Requester interactions, TI is the Trainer interactions, and GasFeemember is the

estimated gas fee for a member.

GasFeemember =
functions∑

f=1

funcionCallsi ∗ functionCosti

RI = (numberOfTasks−NumberOfTrainers) + (3 ∗NumberOfTrainers)

TI = numberOfTasks+ 3

Also, Fig. 5.6 shows that increasing the number of Trainers affects less the number

of interactions than the gas fee spent. Making it clear that making the process more

distributed makes it more expensive. However, if more tasks are being done in parallel

the process will probably be faster. In this work, the time that each function takes to

be executed was not measured, and the subsequent estimation of data is based on the

assumption that all transactions are executed at the same time interval.

If all transactions took the same amount of time to be executed and happened

in perfect parallelism, where all Trainers took the same amount of time to conclude a

task, we would arrive at Fig. 5.7 which shows that the number of rounds (a round is the

46

Figure 5.7 – Rounds to finish training x Number of tasks in parallel

conclusion of all tasks in parallel) drops as the number of tasks in parallel increases. With

only 1 Trainer it will take 52 rounds, but with 5 Trainers the number drops to 5 rounds,

because every round 5 tasks will be concluded, and with 50 Trainers it will take only

3 rounds (1 round to make trainers offer, 1 round to sign contract trainers contract, and

1 round to peer evaluation). Observe that the number of rounds decreases faster in the

first Trainers that are added, and then the number of rounds starts to become more stable,

making it less advantageous to continue increasing the number of Trainers. This is more

clearly in Figure 5.8, where it shows how the number of tasks in parallel affect both the

gas fee and the rounds to finish.

5.5 Results

The number of interactions to make a deal with a Trainer is only 3, and all the

remaining interactions are exchanges of updates. In this way, the platform achieves a

linear growth in the number of interactions as the number of Trainers grows. Another

interesting point of the results, visualized in Figures 5.7 and 5.8, is that the platform scales

better in relation to the gas fee spent, and rounds to finish a model training for the first

Trainers that are added. This is because after a certain degree of decentralization adding

a new Trainer does not increase the level of parallelism so much, but linearly affects the

47

Figure 5.8 – Rounds to finish training x Gas fee

gas used making it less advantageous to add more Trainers.

When evaluating the proposed model front of (ZHENG et al., 2020) work, just

the deployment of his platform had a cost of 0.0740 ETH, which is already more than

44 times greater than the total value of running the distributed convolution process on the

proposed platform with 4 peers. Table 5.4 shows a comparison of the gas fee spent on the

cheapest and most expensive functions of both solutions (note that, the (ZHENG et al.,

2020) gas fee was adjusted to use the gas price of the day the tests were run, for a fair

comparison). This is mainly for two reasons 1)(ZHENG et al., 2020) does not use any

solution to improve the scalability and high-cost problem of the Ethereum network; 2)

Its architecture uses an entity to intermediate the interactions, the addition of this entity

increases the number of changes that must be recorded in the blockchain, making the gas

used in his smart contracts bigger.

Table 5.4 – A comparison of the most expensive and cheapest functions of each model

function Proposed Model (ZHENG et al., 2020)

Most expensive 0,0003424656 ETH 0,0740 ETH

Cheapest 0,000026937 ETH 0,000684 ETH

The only other study studied that presents a similar solution is (FAN et al., 2021)

work, however, he does not shows the spent on gas fee, nor the gas used in each smart

contract, which makes direct comparisons of the results impossible. However, it is known

48

that his solution uses a payment channel to relieve the Ethereum network delay problem,

it is also known that a payment channel to be opened requires the deployment of a smart

contract on the bottom layer. This can be seen as a fragility from a cost perspective if the

payment channel between the peers drops a lot, it will increase the number of deploys in

the bottom layer, which has a high gas fee.

Table 5.5 compares the costs of the proposed platform functions running directly

on the Ethereum test network with the values calculated in Table 5.1, running the platform

on the Arbitrum Test Layer 2. As we can see the costs without the solution are 25 times

higher.

Table 5.5 – Gas fee comparison between Ethereum and Arbitrum testnet

Function Ethereum Testnet

(ETH)

Arbitrum Testnet (ETH)

Deploy DAO 0,0085616 0,0003424656000

RegisterAsTrainer 0,0035038 0,0001401532000

SignJobContract 0,0000018 0,0000000715440

MakeOffer 0,0000017 0,0000000677740

UpdateGlobalModel 0,0000016 0,0000000630470

SendUpdate 0,0000013 0,0000000513580

EvaluateRequester 0,0000008 0,0000000315800

EvaluateTrainer 0,0000008 0,0000000315800

AcceptOffer 0,0000772 0,0000030895000

MatchTrainers 0 0

GetPendingOffers 0 0

49

6 CONCLUSION & FUTURE WORKS

This work aims to build a blockchain-based platform for federated learning, re-

moving the need to centralize data on a server and encouraging edge nodes, called Train-

ers here, to sell their computing power to execute machine learning tasks. On this plat-

form, Requesters can request for Trainers to perform machine learning tasks in exchange

for cryptocurrency payments. The main requirements of this platform were to build some-

thing that has a low gas fee, autonomy, security, and privacy. Such requirements were

met with the implementation of architecture with few entities, few message exchanges,

and running on a Layer 2, which saves the transactions and then stores them in a public

blockchain with greater security and decentralization.

The results obtained show that the platform is more economical in terms of gas rate

than the others studied. This is mostly due to the simple communication process, where it

only takes 3 interactions on the platform to finish contracting a Trainer and start training

the model. This work is the result of research and the use of tools for the decentralization

of information, which has its birth in the financial market area and great growth in the

cryptocurrency and supply chain. Although some studies linking Blockchain to Feder-

ated Learning are being done, they are still few and most of them very theoretical in an

environment of very fast growth. This work brings together some of the most recently

studied technologies from the cryptocurrency environment and applies them to a platform

for Federated Learning. The platform proposed Blockchain-based platform for Feder-

ated Learning was implemented and its feasibility was verified, the results obtained were

analyzed and compared with similar models studied.

Although the initial proposal of a Blockchain-based platform for Federated Learn-

ing has been developed and verified, there are still many points that can be improved,

added, and even analyzed. Thus, here are some suggestions for future work that could

build on the work already done:

1. Integrate the codes developed with a high-level language, such as JavaScript and

Python, to facilitate the execution of tests on a larger scale and to configure data

capture to calculate latency and throughput. An example is a process of sending

an update, which depends on the update being stored in a decentralized way using

IPFS and generating CIDs. This process is very manual, and it can be automated

using a high-level language with Solidity integration.

2. Apply the platform over an IoT environment, which is where the largest cluster of

50

nodes where federated learning takes place is in fact, and analyze results such as

latency, scalability, and hardware necessities.

3. Implement a Voting system, giving the power to make changes within the organiza-

tion to the members. While smart contracts were implemented in such a way as to

facilitate the addition of a voting system feature, it was not implemented.

51

REFERENCES

AL xianxiongwang et. LAYER 2 ROLLUPS. 2021. [Online; last edit 28-October-
2021]. Available from Internet: <https://ethereum.org/en/developers/docs/scaling/
layer-2-rollups>.

BEATTIE, A. A History of U.S. Monopolies. 2021.

BITPAY. What is the Lightning Network? 2022. [Online]. Available from Internet:
<https://bitpay.com/blog/what-is-the-lightning-network/>.

BUTERIN, V. An Incomplete Guide to Rollups. 2021. [Online]. Available from Internet:
<https://vitalik.ca/general/2021/01/05/rollup.html>.

CHOY, D. Project Strength: Which Blockchain Has The Highest Developer Count,
And Why It Matters. 2022. [Online; last edit 01-February-2021]. Available from Inter-
net: <https://chaindebrief.com/which-blockchain-highest-developer-count/>.

COINMARKETCAP. Criptocurency Market Cap. 2022. [Online; last edit 22-
September-2022]. Available from Internet: <https://coinmarketcap.com/>.

COINTELEGRAPH. What is a decentralized autonomous organization, and
how does a DAO work? 2022. [Online]. Available from Internet: <https:
//cointelegraph.com/decentralized-automated-organizations-daos-guide-for-beginners/
what-is-decentralized-autonomous-organization-and-how-does-a-dao-work>.

CSIRO. Payment Channel (aka., State Channel). 2022. [Online]. Avail-
able from Internet: <https://research.csiro.au/blockchainpatterns/general-patterns/
blockchain-payment-patterns/payment-channel/>.

DAI, W. et al. Sdte: A secure blockchain-based data trading ecosystem. IEEE Transac-
tions on Information Forensics and Security, v. 15, p. 725–737, 2020.

DALY, L. What Is Proof of Stake (PoS) in Crypto? 2022. [Online; last edit
28-June-2022]. Available from Internet: <https://www.fool.com/investing/stock-market/
market-sectors/financials/cryptocurrency-stocks/proof-of-stake/>.

DINH, T. T. A. et al. Untangling blockchain: A data processing view of blockchain sys-
tems. IEEE Transactions on Knowledge and Data Engineering, v. 30, n. 7, p. 1366–
1385, 2018.

DOKU, R.; RAWAT, D. B.; LIU, C. Towards federated learning approach to determine
data relevance in big data. In: 2019 IEEE 20th International Conference on Informa-
tion Reuse and Integration for Data Science (IRI). [S.l.: s.n.], 2019. p. 184–192.

ETHEREUM. Decentralized autonomous organizations. 2022. [Online; last edit 01-
Setember-2022]. Available from Internet: <https://ethereum.org/en/dao/>.

ETHEREUM. The Merge. 2022. [Online; last edit 15-Setember-2022]. Available from
Internet: <https://ethereum.org/en/upgrades/merge/>.

https://ethereum.org/en/developers/docs/scaling/layer-2-rollups
https://ethereum.org/en/developers/docs/scaling/layer-2-rollups
https://bitpay.com/blog/what-is-the-lightning-network/
https://vitalik.ca/general/2021/01/05/rollup.html
https://chaindebrief.com/which-blockchain-highest-developer-count/
https://coinmarketcap.com/
https://cointelegraph.com/decentralized-automated-organizations-daos-guide-for-beginners/what-is-decentralized-autonomous-organization-and-how-does-a-dao-work
https://cointelegraph.com/decentralized-automated-organizations-daos-guide-for-beginners/what-is-decentralized-autonomous-organization-and-how-does-a-dao-work
https://cointelegraph.com/decentralized-automated-organizations-daos-guide-for-beginners/what-is-decentralized-autonomous-organization-and-how-does-a-dao-work
https://research.csiro.au/blockchainpatterns/general-patterns/blockchain-payment-patterns/payment-channel/
https://research.csiro.au/blockchainpatterns/general-patterns/blockchain-payment-patterns/payment-channel/
https://www.fool.com/investing/stock-market/market-sectors/financials/cryptocurrency-stocks/proof-of-stake/
https://www.fool.com/investing/stock-market/market-sectors/financials/cryptocurrency-stocks/proof-of-stake/
https://ethereum.org/en/dao/
https://ethereum.org/en/upgrades/merge/

52

EUROMONEY. How does a transaction get into the blockchain? 2020. [Online].
Available from Internet: <https://www.euromoney.com/learning/blockchain-explained/
how-transactions-get-into-the-blockchain>.

FAN, S. et al. Hybrid blockchain-based resource trading system for federated learning in
edge computing. IEEE Internet of Things Journal, v. 8, n. 4, p. 2252–2264, 2021.

HAN, R.; GRAMOLI, V.; XU, X. Evaluating blockchains for iot. In: 2018 9th IFIP
International Conference on New Technologies, Mobility and Security (NTMS). [S.l.:
s.n.], 2018. p. 1–5.

HOU, D. et al. A systematic literature review of blockchain-based federated learning: Ar-
chitectures, applications and issues. In: 2021 2nd Information Communication Tech-
nologies Conference (ICTC). [S.l.: s.n.], 2021. p. 302–307.

HUA, G. et al. Blockchain-based federated learning for intelligent control in heavy haul
railway. IEEE Access, v. 8, p. 176830–176839, 2020.

ISAAC, M.; FRENKEL, S. Gone in Minutes, Out for Hours: Outage Shakes Face-
book. 2021. [Online; last edit 08-October-2022]. Available from Internet: <https://www.
nytimes.com/2021/10/04/technology/facebook-down.html>.

JAKUB. Rollups – The Ultimate Ethereum Scaling Solution. 2021. [Online]. Available
from Internet: <https://finematics.com/rollups-explained/>.

JUNG, T. et al. Accounttrade: Accountability against dishonest big data buyers and sell-
ers. IEEE Transactions on Information Forensics and Security, v. 14, n. 1, p. 223–234,
2019.

KALODNER, H. et al. Arbitrum: Scalable, private smart contracts. In: 27th USENIX
Security Symposium (USENIX Security 18). Baltimore, MD: USENIX Association,
2018. p. 1353–1370. ISBN 978-1-939133-04-5. Available from Internet: <https://www.
usenix.org/conference/usenixsecurity18/presentation/kalodner>.

MA, C. et al. When federated learning meets blockchain: A new distributed learning
paradigm. 09 2020.

MCMAHAN, B. Federated Learning: Collaborative Machine Learning without Cen-
tralized Training Data. 2017. [Online; last edit 06-April-2017]. Available from Internet:
<https://ai.googleblog.com/2017/04/federated-learning-collaborative.html>.

MCMAHAN, H. B. et al. Federated learning of deep networks using model averag-
ing. CoRR, abs/1602.05629, 2016. Available from Internet: <http://arxiv.org/abs/1602.
05629>.

MONOLITH. Understanding DeFi: Layer 2 explained. 2021. [Online;
posted 16-March-2021]. Available from Internet: <https://medium.com/monolith/
understanding-defi-layer-2-explained-6981ef6c8990>.

MUSHARRAF, M. What is InterPlanetary File System (IPFS)? 2021. [Online; last
edit 05-September-2022]. Available from Internet: <https://www.ledger.com/academy/
what-is-ipfs>.

https://www.euromoney.com/learning/blockchain-explained/how-transactions-get-into-the-blockchain
https://www.euromoney.com/learning/blockchain-explained/how-transactions-get-into-the-blockchain
https://www.nytimes.com/2021/10/04/technology/facebook-down.html
https://www.nytimes.com/2021/10/04/technology/facebook-down.html
https://finematics.com/rollups-explained/
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://medium.com/monolith/understanding-defi-layer-2-explained-6981ef6c8990
https://medium.com/monolith/understanding-defi-layer-2-explained-6981ef6c8990
https://www.ledger.com/academy/what-is-ipfs
https://www.ledger.com/academy/what-is-ipfs

53

NAMBIAMPURATH, R. Arbitrum vs. Optimism: What’s the Difference Between
These Ethereum Rollups? 2022. [Online]. Available from Internet: <https://www.
makeuseof.com/arbitrum-vs-optimism-whats-the-difference/>.

POWELL, J. S. . F. Why Does Bitcoin Use So Much Energy? 2022.
[Online; last edit 18-Mayo-2022]. Available from Internet: <https://www.
forbes.com/advisor/investing/cryptocurrency/bitcoins-energy-usage-explained/#:~:
text=To\%20verify\%20transactions\%2C\%20Bitcoin\%20requires,intensive\%20than\
%20many\%20people\%20realize.>

RABAH, K. V. O. Convergence of ai, iot, big data and blockchain: A review. In: . [S.l.:
s.n.], 2018.

SALIMITARI, M.; CHATTERJEE, M. An overview of blockchain and consensus pro-
tocols for iot networks. CoRR, abs/1809.05613, 2018. Available from Internet: <http:
//arxiv.org/abs/1809.05613>.

SGUANCI, C.; SPATAFORA, R.; VERGANI, A. M. Layer 2 blockchain scaling: a sur-
vey. CoRR, abs/2107.10881, 2021. Available from Internet: <https://arxiv.org/abs/2107.
10881>.

SHAYAN, M. et al. Biscotti: A ledger for private and secure peer-to-peer machine learn-
ing. CoRR, abs/1811.09904, 2018. Available from Internet: <http://arxiv.org/abs/1811.
09904>.

SHI, J. et al. Improvement of damage segmentation based on pixel-level data balance
using vgg-unet. Applied Sciences, v. 11, p. pp.518.1–17, 01 2021.

SHUTTLEWORTH, D. What is a decentralized autonomous organiza-
tion, and how does a DAO work? 2021. [Online; last edit 07-October-
2021]. Available from Internet: <https://consensys.net/blog/blockchain-explained/
what-is-a-dao-and-how-do-they-work/>.

STAFF, C. The Blockchain Trilemma: Fast, Secure, and Scalable Networks. 2022.
[Online; last edit 28-June-2022]. Available from Internet: <https://www.gemini.com/
cryptopedia/blockchain-trilemma-decentralization-scalability-definition>.

STAFF, I. What is IPFS? 2021. [Online; last edit 22-July-2021]. Available from Internet:
<https://docs.ipfs.io/concepts/what-is-ipfs/>.

VENTURES, O. Blockchain Development Trends. 2021. [Online; last edit 15-January-
2021]. Available from Internet: <https://outlierventures.io/wp-content/uploads/2021/02/
OV-Blockchain-Dev-Q1-2021-_v7.pdf>.

WANG, S. et al. When edge meets learning: Adaptive control for resource-constrained
distributed machine learning. CoRR, abs/1804.05271, 2018. Available from Internet:
<http://arxiv.org/abs/1804.05271>.

WIKIPEDIA. Federated Learning. 2022. [Online]. Available from Internet: <https://en.
wikipedia.org/wiki/Federated_learning>.

https://www.makeuseof.com/arbitrum-vs-optimism-whats-the-difference/
https://www.makeuseof.com/arbitrum-vs-optimism-whats-the-difference/
https://www.forbes.com/advisor/investing/cryptocurrency/bitcoins-energy-usage-explained/#:~:text=To\%20verify\%20transactions\%2C\%20Bitcoin\%20requires,intensive\%20than\%20many\%20people\%20realize.
https://www.forbes.com/advisor/investing/cryptocurrency/bitcoins-energy-usage-explained/#:~:text=To\%20verify\%20transactions\%2C\%20Bitcoin\%20requires,intensive\%20than\%20many\%20people\%20realize.
https://www.forbes.com/advisor/investing/cryptocurrency/bitcoins-energy-usage-explained/#:~:text=To\%20verify\%20transactions\%2C\%20Bitcoin\%20requires,intensive\%20than\%20many\%20people\%20realize.
https://www.forbes.com/advisor/investing/cryptocurrency/bitcoins-energy-usage-explained/#:~:text=To\%20verify\%20transactions\%2C\%20Bitcoin\%20requires,intensive\%20than\%20many\%20people\%20realize.
http://arxiv.org/abs/1809.05613
http://arxiv.org/abs/1809.05613
https://arxiv.org/abs/2107.10881
https://arxiv.org/abs/2107.10881
http://arxiv.org/abs/1811.09904
http://arxiv.org/abs/1811.09904
https://consensys.net/blog/blockchain-explained/what-is-a-dao-and-how-do-they-work/
https://consensys.net/blog/blockchain-explained/what-is-a-dao-and-how-do-they-work/
https://www.gemini.com/cryptopedia/blockchain-trilemma-decentralization-scalability-definition
https://www.gemini.com/cryptopedia/blockchain-trilemma-decentralization-scalability-definition
https://docs.ipfs.io/concepts/what-is-ipfs/
https://outlierventures.io/wp-content/uploads/2021/02/OV-Blockchain-Dev-Q1-2021-_v7.pdf
https://outlierventures.io/wp-content/uploads/2021/02/OV-Blockchain-Dev-Q1-2021-_v7.pdf
http://arxiv.org/abs/1804.05271
https://en.wikipedia.org/wiki/Federated_learning
https://en.wikipedia.org/wiki/Federated_learning

54

XIAO, Y. et al. A survey of distributed consensus protocols for blockchain networks.
CoRR, abs/1904.04098, 2019. Available from Internet: <http://arxiv.org/abs/1904.
04098>.

YAGA, D. et al. Blockchain Technology Overview. [S.l.]: NIST Interagency/Internal
Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD,
2018.

YUE, L. et al. Big data model of security sharing based on blockchain. In: . [S.l.: s.n.],
2017. p. 117–121.

ZHENG, S. et al. A blockchain-based trading platform for big data. In: IEEE INFOCOM
2020 - IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). [S.l.: s.n.], 2020. p. 991–996.

ZOCHOWSKI, M. Everything You Know about the Scalability Trilemma is Probably
Wrong. 2018. [Online]. Available from Internet: <https://medium.com/logos-network/
everything-you-know-about-the-scalability-trilemma-is-probably-wrong-bc4f4b7a7ef>.

ZOCHOWSKI, M. A Comparison Analysis of Layer2 Solu-
tions. 2021. [Online]. Available from Internet: <https://blog.zk.link/
a-comparison-analysis-of-layer2-solutions-35dc5958253e?gi=ac65d47101d2>.

http://arxiv.org/abs/1904.04098
http://arxiv.org/abs/1904.04098
https://medium.com/logos-network/everything-you-know-about-the-scalability-trilemma-is-probably-wrong-bc4f4b7a7ef
https://medium.com/logos-network/everything-you-know-about-the-scalability-trilemma-is-probably-wrong-bc4f4b7a7ef
https://blog.zk.link/a-comparison-analysis-of-layer2-solutions-35dc5958253e?gi=ac65d47101d2
https://blog.zk.link/a-comparison-analysis-of-layer2-solutions-35dc5958253e?gi=ac65d47101d2

	acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Background
	2.1 Blockchain
	2.2 Federated Learning
	2.3 DAO - Decentralized Autonomous Organization
	2.4 Layer 2
	2.4.1 State Channel
	2.4.2 Side-Chains
	2.4.3 Rollup

	2.5 IPFS - Inter Planetary File System
	2.6 Ethereum & Arbitrum

	3 Related Work
	4 Proposed Model
	4.1 Overview
	4.2 Entities
	4.2.1 Requesters
	4.2.2 Trainers
	4.2.3 DAO

	4.3 Blockchain Structure
	4.4 Transaction Process

	5 Evaluation & Results
	5.1 Enabling Technologies
	5.2 Test Environment
	5.3 Test Scenario
	5.4 Evaluation
	5.5 Results

	6 Conclusion & Future Works
	References

