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Ahstract 

A new method is discussed for obtaining a validated inclusion of a zero 
of a real or complex function in one variable. The method is given by 
means of a sufficient criterion which can be tested on a digital com- . 
puter. The numerical results show that, compared to other methods, 
the new one frequently yields very narrow bounds for the solution . 

.. 
1. Introduction 

Let lliR, me denote the set of real, complex intervals, resp. In me rectangular, 
circular or any other kind of intervals may be used. For practical applications 
we only require that the operations are executable on digital computers and 
satisfy the basic property of isotonicity: 

v A, B E ns : { a * b I a E A, b E B } ç A * B 
for SE {IR, C} and *E { +, -, ·, / }, 

with O rt B in case of division. For more details refer to [1], [2]. 

(1) 

IP always denotes the power set, U denotes the convex union. We use the 
usual definition of the evaluation of a function over a set, namely 

for f : S --+ S and X Ç S it is 

f(X) := {f(x) I x E X} E IPS, 

S E {IR, C}. int(X) denotes the interior of a set. 

Janeiro 95 Vol.2 Num.l 125 



Artigo Técnico 

2. Basic results 

In [4] the following su:fficient criterion has been given to check whether an 
interval .contains a zero of a nonlinear function. The theorem has been formu
lated for the n-dimensional case; here we only need the l-dimensional case. 
We only give the complex version of it. 

Th~orem 1. Let a holomorphic function f : G --+ C for some closed 
G Ç C be given. Let R E C, z E G and define 

f' : JPC --+ JPC by 

z ç c::::? j'(Z) := n{Y E llC I f'(z) E y for all z E Z}. (2) 

For some Z E llC with O E Z and z + Z Ç G define 

L(Z) :=-R · f(z) + {1- R· j'(z + Z)} · Z. (3) 

lf 

L(Z) Ç int(Z) 

then there exists one and only one z E z + Z with f(z) =O. Furthermore 

z E (z + Z) n (z + L(Z)). 

The proof uses a complex version of the mean-value theorem dueto Bohm 
(cf. [6]): 

Theorem 2. Let a holomorphic function f: G--+ C for some closed set 
G Ç C be given. Then for z, z E C with z U z Ç G here holds 

f(z) E f(z) + j'(z U z) · (z - z). (4) 

In a practical implementation one would choose z s.t. f(z) ~ O and 
R~ f'(zt 1

• 

In Theorem 1 we used the operator L( X) instead of Krawczyk's operator. 
It turned out that computing an inclusion of the difference of the true solution 
z to an approximate solution z yields superior computational results ( cf. [3], 
[4] and the references mentioned in there). 

In the following we show how other operators instead of L(X) can be 
used (cf. [5]). We first derive the results for the real case. 
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Let f : D ---+ lR for closed D Ç lR be differentiable and define 

9R(x) := x - R· f(x). (5) 

In practical computations one thinks of R ~ f'(x) s.t. 9R becomes a 
Newton operator. Then for every x E D with x U x Ç D it holds 

f(x) = f(x) + J'(e). (x- x) for some e E X u X 

and therefore 

9R(x) = x - R· (f(x) + f'(Ç)(x- x)) 
x - R· f(x) + {1- R· f'(e)} · (x - x). 

(6) 

If f is twice differentiable on D then 

f' (f.) = f' ( x) + f" ( TJ) • (e - x) 

if x U e Ç D. Hence (6) implies 

9R(x) =x-R· f(x) + {1- R· f'(x)- R· f"(ry)(e- x)}(x- x). (7) 

If f'(x) i= O then g 9R with R:= (f'(x)r1 becomes 

g(x) = x - f'(x)- 1
- {f(x) + J"(ry) ·(e- x)(x- x)} . 

.. 
Thence 

g(X) Ç x- J'(xt 1 
· {f(x) + f"(X) ·(X - x) 2

} (8) 

(cf. [1], [2]). On the other hand the definition of 9R together with Brouwer's 
Fixed Point Theorem implies for every R i= 0: 

9R(X) Ç X=? :3 x E X : 9R(x) = x =x - R· f(x) 

and therefore 

9R(X) Ç X=? :3 x E X: f(x) =O. (9) 

In other words, any methods for computing outer bounds for 9R(X) for 
some R i= O generates a sufficient criterion for checking the existence of some 
x E X with f( x) = O. ( 6) gives one such formulation which yielded Theorem 
1, (8) is another formulation which has also been given in [5]. In [4] (6) was 
used and the inclusion in the interior of X was supposed thus omitting the 
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requirement that R i- O. In the n-dimensional case R i- O becomes "R not 
singular" and the mentioned formulation becomes important. 

Formula (8) can be developed further by using higher derivatives in an 
obvious way. This proves the following Theorem. 

Theorem 3. Let a twice differentiable function f : D ---+ IR for closed 
D Ç IR be given. For O #- R E IR, x E D , X E liiR with O E X and 
x +. X Ç D define 

L2(X) :=-f'(fi;) - 1 
· {f(x) + f"(x + X)· X 2

} (10) 

and, if f is thrice differentiable, 

L3(X) :=-f'(x)- 1 
· {f(x) + (f"(x) + f 111(x +X)· X)· X 2

}. (11) 

If 

so, there is some x Ex + X with f(x) = O. Moreover, 

xE(x+X) n(x+L2 (X)) or xE(x+X)n(x + L3(X)) , 

respectively. 
Proof. Obvious from the foregoing discussion. • 
Using Theorem 2 it im.mediately follows that Theorem 3 remains true in 

C for holomorphic functions. 

3. A new inclusion method 

In [1] the following theorem is given for refining intervals already containing 
a zero of a real function. 

Theorem 4 (Alefeld). Let f: IR---+ IR be a continuous function and x 
be a zero of f within X E liiR. Let f(X) <O and f(X) >O for X= {X, X} 
and suppose 

O<ml~f(x) - ~(x)= f(x)A ~m2<oo 
x-x x-x 

for .all x i- x E X. Then for x E X and M := [m 1 ,m,2 ] it holds 

xEXn{x - f~)}. 
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This theorem requires the knowledge of some X E IIIR containing a zero x 
of f. Whereas this is simple to verify in IR it becomes difficult to verify in GJ. 
As in the preceding discussion we are therefore interested in sufficient criteria 
for X which verify the existence of some x E X with f(x) = O. Theorems 
1 and 3 already give such criteria. Now we are going to develop another 
one which turns the refinement in Theorem 4 into a sufficient criterion. We 
develop it for the complex case. 

Let f : G ---+ GJ be a holomorphic function for closed G Ç Q; and define 
r : G ---+ GJ for fixed but arbitrary i E G by 

{ 

f(z)- f(i) f # _ 
r(z) := z - i or z z 

f' (i) otherwise. 

Then r is continuous. Suppose r(z) # O for z E G then for g : G ---+ C 
with 

f(z) f(z) · (z- i) _ f(i) 
g(z) := z - r(z) = z - f(z)- f(i) = z - r(z) · (12) 

By Theorem 2, ( 4) we know that for every z, z E G with z U i Ç G 

r(z) E j'(z Ui) . .. 
Thence using (2) for the definition of f' we obtain from (12) 

- f(i) 
g(Z) E z- f'(Z) (13) 

provided O ri f' ( Z). This leads to the following Theorem. 
Theorem 5. Let f : G ---+ GJ be holomorphic for closed G Ç GJ and for 

closed and convex 0 # Z Ç G suppose O ri J'(Z). Let i E Z be fixed but 
arbitrary. So 

i - f(i) c z 
f'(Z) -

(14) 

implies the existence and uniqueness of a zero z of f within Z. Moreover 

A - f(i) 
z E Z n { z - f'(Z) }. (15) 
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Proof. According to the previous discussion O (/. f'( Z) implies O (/. r( Z) 
and using (13) implies g(Z) Ç Z. Brouwer's Fixed Point Theorem implies 
the existence of some i E Z with g(i) = i. Hence by (12) 

f(i) / r(i) = O and therefore f(i) =O. 

Furthermore (13) proves (15). Suppose z E Z with f(z) = O. Then by 
Theorem 2 

J(i) E f(z) + f'(z ui) ·(i- z) 

or O E f'(z Ui)· (i- z). O (/. f'(Z) then demonstrates the uniqueness of i 
and finishes the proof. • 

Obviously, Theorem 5 immediately derives for a real function f. The 
main point of Theorem 5 is that there are no assumptions on the quality of 
z and, most important, no a priori assumptions on the set Z. Especially, 
i E Z is not assumed a priori. 

It will turn out from the examples that the formula in Theorem 5 is 
alsways superior to the one in Theorem 1. This, in fact, can be asserted 
theoretically. 

Theorem 6. Let f : G ~ C be holomorphic for closed G U C and for 
closed and convex 0 # Z Ç G suppose O (/. f'(Z). Then for given z E Z, 
RE C, " 

z- R · f(z) + { 1- R· j'(Z)} · (Z- z) Ç int(Z) 

implies 

-- f(z) c z 
z f(Z) - . 

Proof. (16) implies 

R· (- f(z)) + { 1- R· j'(Z)} · Y Ç int(Y) 

(16) 

(17) 

(18) 

for Y := Z- z. Define A E rrcnxn with A:= f'(Z) and b E cn by b := f(z), 
then (18) implies 

I) A , b) : = { Z E Cn I ::3 A E A : Az = b } Ç Y. 
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This follows e.g. using Theorem 1; the Theorem is explicitly given in [4]. 
Thus 

Y u E f'(Z) : u - 1 
· ( - f(z)) ç Z- z 

which in turn implies (17). • 
It should be mentioned that in case of polynomials we can even do better 

than Theorem 5. Let a polynomial p E C[z] of degree n be given. In this 
case the secant 

) 
{ 

p(z) - p(z) for z =1- z 
r(z = z- z 

p'(z) otherwise, 
(19) 

which is a polynomial of degree ( 71 - 1 ), can be evaluatedexplicitly using 
Horner's scheme at z. Then the following corollary can be used. 

Corollary 7. Let p E C[z] be a polynomial of degree n and 0 =/:- Z Ç <C 

be closed and convex. Define r : <C -----+ <C by (19) and assume O rj_ r(Z). 'Let 
z E Z be fixed but arbitrary. So 

(20) 

implies the existence and uniqueness of a zero z of p in Z. Moreovei, ... 

~ z { - p(z) } 
z E í! z - r( Z) . 

The proof is similar to the one of Theorem 5. • 
4. Numerical results 

In the following examples we are only considering polynomials. Remember 
that our theorems except the last one are valid for general nonlinear func
tions as well. All our computations are performed on an IBM 4361 in double 
precision according to 14 hexadecimal or approximately 16 decimal places. 
For the computation we use the interactive programming environment C,AL-
CULUS ( cf. [7]). 

The following tests are performed. Given an approximation i of a zero, 
usually being good up to a few digits in the last place of the mantissa, we 
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define X := [ -t · x, + t · x] for a given t > O. Then we perform the following 
four tests: 

- J(x) 1 f'(x +X) ç x (21) 

R:= 11 f'(x); -R· f(x) + {1- R· f'(x +X)}· X Ç X (22) 

- {f(x) + f"(x +X) · X 2
} 1 J'(X) ç x (23) 

- {f(x) + (f"(x) + f"'( i:+ X)· X)· X 2
} I j'(X) ç X. (24) 

Due to Theorems 5, 1, and 3 the validity of any of the conditions (21) 
... (24) implies the existence of some x Ex+ X with f(x) =O. 

All calculations in (21) ... (24) are performed using interval operations 
over floating-point real or complex numbers except for the computation of R 
in (22), which is performed in pure floating-point with rounding to nearest. 

For the first set of test samples we take n uniformely distributed real 
random numbers X i in [ -1, 1] and form 

n 

f(x) =li (x- xi)· (25) 
i=l 

f in (25) is computed in pure floating-point hence altering the zeros of f 
from xi. Nevertheless we-- take Xi := [-t: · xi, + t · xi] and test (21) ... (24) 
with Xi, Xi for i = 1 ... n. 

All approximations xi and potential inclusion intervals Xi are real, hence 
up to now only real operations are involved. It turned out that in all cases 
where (21) ... (24) was satisfied, the diameter of the left hand side of (21) 
was the smallest followed by that of (24), (23) and (22). Denote 

di := diameter (l.h.s. of (2i)), 1 ·::; i ::; 4. 

Then we display the minimum and maximum ratio of diameters 

the minimum and maximum taken for all zeros. In some cases some of 
(2i), 1 ::; i ::; 4 were not satisfied for larger values of €. This may partly be 
due to the fact that some zeros of f became complex because of rounding 
errors in the computation of (25). Therefore the number of pairs (xi, Xi) as 
defined above for which (2i), 1 ::; i ::; 4 was satisfied is also displayed. 
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mm mm mm # success of 
n ( dd dl) (d3/d2) ( d4/ d3) 

max max max (21) 1 (22) 1 (23) 1 (24) 
4.7e8 4.2 1.0003 

5 5 5 5 5 
3.5e9 163 1.0105 
3.7e8 * 1.0006 

10 2 2 5 5 
l.Oe9 99.6 1.0933 
5.8e8 26.1 1.003 

15 3 3 3 3 
1.9e9 133 1.030 

Table 1. Random real zeros in [-1, 1) with c= 10-4 

We see that in some cases methods (23) and (24) are more efficient in 
the sense that they allow to verify x E x +X whereas (21) and (22) do not. 
Therefore the minimum ratio di/ dj is denoted by * if the tests fails in cases 
were (2i) succeeds in proving existence (and uniqueness) of a zero in x +X. 

We are especially in the performance for wide intervals x + X. Then the 
first method becorpes even more advantageous. The following table displays 
the results for t = 10-2 . 

mm mm mm # success of 
n (d2/di) (d3/ d2) ( d4/ d3) 

max max max (3.1) 1 (3.2) 1 (3.3) 1 (3.4) 
2.0e12 * 1.03 

5 4 4 5 5 
1.1e13 48 .3 2.10 
2.le12 * * 

10 1 1 2 3 
2.1e12 9.3 2.4 
4.4e12 * 1.2 

15 2 2 3 3 
6.5e12 51.0 5.5 

Table 2. Random real zeros in [-1 , 1) with t = 10-2 
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So up to now methods (21) and (22) enclose the same number of zeros 
whereas there are cases where (24) is better than (23) whereas (23) is better 
than (22) and (21). 

Our next example are real polynomials with uniformly distributed ran
dom coefficients within [-1, 1]. Those polynomials have almost only complex 
zeros. We used the Matlab-function roots to produce approximations Zi to 
the roots of the polyriomial. After that we proceed as before. 

Note that now complex roots are to be included. We ran the same set of 
examples and obtained the following results . 

. , 
mm mm mm # success of 

n ( d2/ di) (d3 / d2) (d4 / d3) 
max max max (21) 1 (22) 1 (23) 1 (24) 

1.3e9 3.7 .1.0002 
5 3 3 3 3 

2.2e9 4.3 1.0004 
1.9e9 4.3 1.0006 

10 9 9 9 9 
5.0e9 18.8 1.0060 
3.0e9 7.8 1.002 

15 12 12 12 12 
8.5e9 50.8 1.027 

Table 3. Random real coefficients in [ -1, 1] with E = 10-4 
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mm mm min # success of 
n (d2/di) ( d3/ d2) ( d4/d3) 

max max max (21) 1 (22) 1 (23) 1 (24) 

2.0e12 * 1.03 
5 4 4 5 5 

1.1e13 48.3 2.10 

* * 1.06 
10 6 3 9 9 

1.2e13 8.3 1.56 

* 
15 * * 1 o 10 12 

3.2 

Table 4. Random real coefficients in [ -1, 1] with E = 10-2 

For E= 10-2 and method (22) does not work for any pair (zi, Zi)· There
fore the first two columns only cóntain a *· Interestingly in this case (23) 
and more (24) perform much better than (21). 

Finally we give two examples for higher degree, namely n = 20 and 
n = 50. In this E has to be fairly small to allow an inclusion because of 
instability of zero~· of polynomials o[ high degree. We choose E = 10-8 and 
10-10. 

mm mm mm # success of 
n E ( d2/ di) (d3/ d2) (d4/d3) 

max max max (21) 1 (22) (23) 1 (24) 

39.4 10.5 1.0000 
20 10-8 16 16 16 16 

126.2 70.9 1.0000 
1.001 1.0009 1.0000 

50 10-10 50 50 50 50 
1.033 1.0342 1.0000 

Table 5.Random real coeffi.cients in [-1, 1] 
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5. Conclusion 

In Theorem 5 a new method for verifying the existence and uniqueness of a 
real or complex zero of a real or complex nonlinear function in one variable 
within an interval is given. It is compareci with other known methods.We 
were especially interested in the contraction property of the Ansatz used in 
Theorem 5. 

The numerical results show that for wider intervals method (24) offers 
the highest chances to be successful in verifying existence and uniqueness 
of a zero within the test interval, followed by method (23), (21) and finally 
(22). If (21) succeeds in verification it produces a very narrow inclusion being 

. better by several orders of magnitude than the others. Moreover, the new 
method (21) requires very little computational effort. 
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