
:0~~,~~.,.__~-\c, ~ ~~-SB1
~6o ~ ~s ~s~D~{:-r::.ç;
v~~ Ç. ·. ()o.-..-e..= . 1d=-e::Lo s

C{\)p\ ~ cO~c..O~~Vo-l.J
Versions and configurations in object-oriented database
systems: a uniform treatment

Lia Goldstein Golendziner
Clesio Saraiva dos Santos ·

Abstract

Object-oriented database models usually allow versions only at the most specialized
type/class in an inheritance hierarchy. The possibility of having versions at different leveis
of abstraction provides a richer model and allows a more natural representation of the
reality. The presence of objects and its corresponding sets of versions at different leveis of
a type/class hierarchy introduces the need for handling version mappings. Integrity
constraints can be associated to these mappings, restricting the set o f possible combinations
of versions appearing at different leveis of the hierarchy. Sets of versions associated with
each levei of an object hierarchy often represent a very large set of possible configurations
for that object, which is difficult to be handled directly by the user.
In this context, adequate mechanisms are very important to define and build object
configurations by means of selections applied to the set of ali possible configurations,
defined by the combinations of versions. This paper proposes an approach in which
versions and configurations may appear at different leveis of an inheritance hierarchy, and
a uniform treatment is given to these two concepts.

Keywords: Versions, object-oriented data models, configurations, dynamic references

1 INTRODUCTION

In the context of object-oriented database systems, versions allow the simultaneous
representation of many object states. A version represents an identifiable state of an object,
considered by the user as semantically significant, and must be handled by the data model
as any other object in the system.

Research related to versions were motivated by the requirements of some application areas,
mainly Engineering applications (CAD-Computer Aided Design), Software Engineering
(CASE-Computer Aided Software Engineering), Manufacturing (CAM-Computer Aided
Manufacturing), Office Automation, Hyperdocuments and Historie Databases.

The work in engineering applications focused mainly at the problems related to object
representation [2, 6, 16, 17, 21, 23, 28, 32], andare based in semantic data models like the
Entity-Relationship Model, that is the most frequently used. The papers from

* clesio@inf.ufrgs.br, Instituto de Informática, UFRGS, Porto Alegre, RS, Brasil 35

Versions and configurations in object-oriented database systems: a uniform tn~atment

Haskin&Lorie [20] and Lorie&Plouffe [30] do not approach directly the version concept,
but are important due to the introduction of the concept of complex object and their related
mechanisms: queries involving complex objects, design transactions and checkin and
checkout operations. In [24] , Katz argues that many proposals presented in the area of
engineering applications are similar, and he proposed a basic terminology together with a
collection of mechanisms that must be present in any apprôach to represent this kind of
information.

In CASE applications, research approaches specially the aspect of systems configuration
(ex: [4 , 31]). Few works give emphasis on database utilization [3, 13, 22].

With historical databases, the emphasis is put on the storage of the information about
entities, organized with respect to time. Some works were developed aiming at the
extension of database models with temporal concepts and mechanisms, starting with the
Relational Model [9, 34, 37]. More recently, object-oriented database models were also
extended [18, 19, 39].

Presently there is a trend to extend object-oriented database models and systems with
version concepts and mechanisms, aiming at the definition of a framework, that may be
refined to support many classes of application [1, 8, 26, 29, 35, 36]. Some works approach
the use o f versions to support data base schema evolution [8, 11, 33, 38, 40].

Object-oriented database models usually allow versions only at the most specialized
type/class in an inheritance hierarchy [1, 3, 26]. The possibility of having versions at
different leveis of abstraction provides a richer model and allows a more natural
representation of the reality. On the other hand, when versions can be associated to
database objects, the user needs to choose from a possibly large set of options, the specific
combination of versions that will compose the object in each situation. Each combination
of specific component versions of an object is called a configuration .

..
Configurations are very important in the context of object-oriented databases that supports
versions, since they are, in fact, the objects handled by the applications. They correspond
to the instances of objects in versionless databases. In this context, adequate mechanisms
are very important to define and build object configurations by means of selections applied
to the set of ali possible configurations defined by the combinations of versions.

This work focuses on version management at the application levei, to support the
representation of sequence- or time-dependent information, as defined by the users. The
user must be allowed to edit the sequence (or graph) of versions, defining when and where
a version must be included or removed.

Versions and configurations are commonly treated as different concepts in most of the
models that support version management. This separation of concepts has some drawbacks,

36 RITA • Volume V • Número 2 • Dezembro 1998

Versions and configuratio~s- in object-oriented database systems: a uniform treatment

such as the impossibility of freely combining versions and configurations to construct
higher levei versions. This kind of distinction is particularly inconvenient in the case of
object-oriented databases, where the uniform treatment of everything as object increases
significantly the possibility of combination of objects to form other higher level objects.

The approach: proposed in this paper does not make substantial distinction between
versions and configurations, which may be freely combined. Special attention is dedicated
to object-oriented database systems. The need to incorporate new concepts to the data
model is discussed. Emphasis is given to the versioning of objects participating in
inheritance hierarchies, as well as relationships between objects and versions located at
different leveis of the hierarchy.

A version model is proposed, in which the versioning of objects at ali leveis of an
inheritance hierarchy is allowed, not restricting the versioning to the leaf leveL It is shown
how these extensions to the object-oriented paradigm allow a more natural modeling of
many real world situations, specially when the objects are constructed in a top-down
process.

The next sections are organized as follows: Section 2 presents the main concepts related to
versions in object-oriented databases, which are used in this paper. The aspects related to
object and version hierarchy are discussed in Section 3. The main effects of object
versioning at different leveis of an inheritance hierarchy are presented. The advantages of
this approach in modeling applications are discussed and compared to the traditional
approach where versions are concentrated at the leaves of the hierarchy. Configurations are
discussed in Section 4. Section 5 presents the operations defined for manipulation of
objects and versions in the inheritance hierarchy and Section 6 presents the facilities
required for configuration specification. The main conclusions of this work are presented
in Section 7,

2 CONCEPTÜAL BASE
2.1 Version and versioned object concepts

A version is a description of an object at certain time or from a certain point of view, which
is considered relevant for a defined application. In an object-oriented model, a version is a
first class object, having an Object Identifier (OID). A version can then be directly
manipulated or queried.

Versions of a real world entity must be kept together and constitute a versioned object. A
versioned object is also a first class object and maintains information about its associated
versions. A versioned object can have properties, which should be common to all its
versions. Each version belongs to exactly one versioned object

Considering that applications can not always determine if an object will present versions or

RITA • Volume V • Número 2 • Dezembro1998 37

Versions and configurations in object-oriented database systems: a uniform treatment

not, objects can dynamically change from non versioned to versioned.

Objects (versioned or not) having the same properties and behavior can be grouped into
classes. Since the feature of being versioned belongs to an object and not to a class, a class
can have versioned and non versioned objects as insta~ces. An automobile being
designed can be considered as a versioned object, having several versions
associated, which represent the different stages throughout its . design. Figure 1
illustrates this example. The notation used is based on that introduced in [25].
Being objects, both versions and versioned objects can be referenced by other
objects throqgh its respective OID, as well as be used as parameters of operations.

c=J Class c::::> Versioned Object O Version

Each versioned object has one
version considered as its current
version (sometimes called default
version). The current version is
automatically maintained by the
system as the most recently one.
The designer can specify a
different version to be the current

Figure 1- Versioned object and its versions one, but in this case, the current

version will remain fixed, not
being affected with the creation of new versions. The current version is used
whenever an operation is applied to a versioned object, without specifying one of
its versions.

2.2 V ersion Properties

Versions of a versioned object are related through a derivation relationship, which forma
directed acyclic graph. For the version mille (figure 1), version cs is called its predecessor
and version elx, its successor. A version can have severa) successors and predecessors.

When a version is created as a successór of another one, a copy is made of its predecessor.
When a version is created as a successor of more than one version, only the first version
indicated is copied, and a relationship is established with the others indicated. The idea is
that the new version should be a merge of its predecessors, but it is user's responsibility to
extract the necessary information from the severa! versions. Merge operation is a difficult
task, not implemented by any system at the present moment.

Versions have a status, reflecting its robustness, that can be working, stable or consolidated
(similar to the classification in [3, 26]). Operations on versions are restricted, according to
their status. A working version is essentially a temporary version that has to undergo

38 RITA • Volume V • Número 2 • Dezembro 1998

: .. ~ .,_

Versions and configurations in object-oriented database systems: a uniform treatment

modifications to reach a more stable status. A stable version has reached more stability and
can be shared. Stable versions can not be modified, but can be removed. A consolidated
version is a final version that can neither be modified nor removed.

New versions ,are created with working status. When a version is derived from another one,
its predecessors are automatically promoted to stable, thus avoiding modifications on
versions that were important from a historical point of view. The user can explicitly
promote versions from working to stable, or from stable to consolidated.

2.3 Static and Dynamic References

When an object having versions is used as component of another one, references to it can
be made in one of two ways: reference to a specific version -called static reference- or
reference to the versioned object -called dynamic reference [1, 26] (or generic in [3]). A
static reference behaves as a simple reference to an object, and the composite object is said
to be statically bound [26] to the version. A dynamic reference means that a specific
version will be chosen at run time, and the composite object is said to be dynamically
bound to the versioned object.

Composite objects can be built recursively, resulting in an aggregation hierarchy. Figure 2
shows two versions of a composite object from the class Automobile. The version cs has a
static reference to the first version of the object fiat-motor, i.e., the value of the attribute
motor is the OID of the first version of the object fiat-motor. The version new contains a
dynamic reference to the versioned object fiat-motor, i.e., the value of the attribute motor
is the OID o f the versioned object.

Figure 2 - Static and dynamic references

The replacement of a versioned object reference by a reference to a specific version is
called dynamic reference resolution. Mechanisms are needed for this resolution, that

RITA • Volume V • Número 2 • Dezembro1998 39

Versions and configurations in object-oriented database systems: a uniform treatment

occurs in two situations: 1) when the referenced object is accessed and 2) when a
configuration is built for the composite object. In the first situation, the current version is
used. In the configuration process, different options are provided for selecting a version
associated to the versioned object. For example, selection can be based on pre-defined
criteria, such as the first, the most recent, or in expressions. containing attribute values of
the versions.

3 OBJECT AND VERSION HIERARCHIES

3.1 Inheritance

Inheritance is one of the basic concepts in object-oriented databases [5] and one of the
reusability mechanisms. Refinement and extension [7] are the two ways in which
inheritance can occur.

Inheritance by refinement is the most traditional approach, corresponding to the is-a
relationship between objects. In this case, there is a migration of properties through the
leveis of the hierarchy, from top to bottom. The leaves may be seen as complete instances
of the objects, including all the non-conflicting properties of their ascendants, as well as
properties that result from conflict resolution. This type of inheritance is present in many
object-oriented database systems, such as 02 [15], ORION [27], GemStone [10].

Extension inheritance is related to the idea of prototypes and appears in data models such
as PEGASUS [7, 36] (extension of EXTRA [12]). In this case, each property refers to a
specific levei of the hierarchy, modeling some relevant aspect of the real world object. The
union of alllevels models the complete object corresponding to the considered hierarchy.

3.2 Object and version mapping •.

When refinement inheritance is used, versions appear only at the leaves of the hierarchies
[3 , 8, 26]. In the model proposed in this paper, where extension inheritance is used,
versions are allowed at alllevels simultaneously. In this way, object modeling can be done
at various leveis of abstraction, either defining or redefining properties of the objects, one
levei at a time.

Considering the schema presented in Figure 3, the example in Figure 4 shows the modeling
of versions at more than one levei of the abstraction hierarchy. The real world entity fiat­
uno is represented at two leveis of abstraction : Vehicle, with the properties motor andfuel,
and Automobile, with the properties drivetrain and accessories. In each of these leveis,
there are versions associated to the corresponding versioned objects. Each version must
have at least one corresponding ascendant, to which it is bound at creation time. In some
situations, one version may have more than one ascendant.

40 RITA • Volume V • Número 2 • Dezembro 1998

Versions and configurations in object-oriented database systems: a uniform treatment

.·.·::.

. . • motor
Veh1cle • fuel ·

........... / ~
Áútomobile Truck
· • di"ivetrain · · · -:toéld capacit)Í ''

Figure 3 - Example schema

..
1 correspondence

Figure 4 - Versions represented at more than one levei o f the inheritance hierarchy and
their correspondences

In the example, the same characteristics defined for version cs (of fiat-uno-a, at the
Automobile levei) may be bound to different versions of fiat-uno-v (at the Vehicle levei),
representing the two options for the model fiat-uno cs, one using gas and the other using
alcohol. On the other hand, the same version in a superclass may correspond to more than

RITA • Volume V • Número 2 • Dezembro1998 41

Versions and configurations in object-oriented database systems: a uniform treatment

one version in a subclass. This situation occurs in the example of Figure 4, where one
version o f fiat-uno-v (ex: v4) corresponds to two versions of fiat-uno-a (mille, elx).

As illustrated, the design of a new automobile may be carried on starting at the top levei
and having the details of the other leveis specified !ater. In the example, a new automobile
(or truck) may be designed starting with its characteristics at the Vehicle levei, and thus
creating the versions at this levei. In a further step, the versions at the Automobile levei
may be created and bound to their ascendants.

In this way, CQrrespondences (mappings) are defined between versions of an object at one
levei and versions of their correspondent ascendants in the superclass(es). In Figure 4, the
mapping is n:m. Each version in the class Automobile may correspond to n versions in the
superclass Vehicle, and vice versa. The mapping defines an integrity constraint, which is
specified with the definition of the inheritance relationship between a class and its
superclass, in the database schema. It is system's responsibility to enforce the constraint.
The mappings defined between versions may be n:m, as in figure 4, 1:1, 1:n or n:l.

When one needs to get an object with the properties defined at ali leveis, the process starts
at the most specialized levei, with the choice of one ascendant for each related superclass.
The ascendant may be explicitly identified by its OID, or by means of pre-defined cri teria:
recent (most recent), first (the oldest) or current (the one specified as current). The
criteria will be used when more than one ascendant version is bound to the desired version
or object.

Versioned and non versioned objects may be present at the same hierarchy. Non versioned
objects and versioned objects that have no versions, are considered as one version when the
mapping constraint is verified.

..
3.3 Representation of versions at many leveis of a hierarchy

The previous section showed how the presence of versions at many leveis of a hierarchy
allows the modeling of a real world entity in many leveis of abstraction. Without this
possibility, other features of a data model could be used, but do not result in adequate
models in many situations.

Considering the example of the previous section, one alternative would be to start creating
one version of a Vehicle object, which would be !ater on refined, by the addition of
Automobile properties. The solution would be to migrate the Vehicle object to the
Automobile subclass. The problem with this solution is that object migration is not allowed,
in general. The reasons commonly pointed out are the need to redefine the OID of the
migrating object (because the class is part of the OID [27]), and the possible existence of
versions derived from the migrating version/object.

42 RITA • Volume V • Número 2 • Dezembro 1998

Versions and configurations in object-oriented database systems: a uniform treatment

Another possibility is the creation of versions directly in the class Automobile, but only
with the Vehicle properties (the other properties receiving null values, which are redefined
!ater). In this case, a restriction must be imposed: the actuai values for the undefined
properties mu~! be set before deriving a new version from this one (when a new version is
derived, its ancestors may not be changed anymore).

When versions are allowed at only one levei, it is difficult to find out differences and
similarities between the versions, concerning the characteristics defined at different leveis
of the inheritance hierarchy. Figure 5 presents a possible representation of the situation
modeled in Figure 4, but with versions appearing at one levei only.

Figure 5- Versions only at the most specialized class

In the representation with many leveis, versions are grouped according to the values of
their properties. In Figure 4, for example, one may obtain ali versions of fiat-uno at the
Automobile levei, which have the 1.0 motor and gas fuel, by getting the descendants of the
version v3 (Automobile levei). Versions at one levei may be considered as alternatives, for
which versions are created at the lower leveis of the hierarchy.

RITA • Volume V • Número 2 • Dezembro1998 43

Versions and configurations in object-oriented database systems: a uniform tr.fatment

4 CONFIGURATIONS
4.1 The configuration concept

In a composed object, where components can be versioned objects, a configuration binds
exactly one version of each of its components to the composed object. Since objects are
hierarchically composed, a configuration must recursively include definitions for ali the
objects in the aggregation hierarchy. Dynamic references must be resolved and the system
must choose a version according to some pre-defined cri teria.

In the proposed model, since a real world entity can be modeled at various leveis of
abstraction in the inheritance hierarchy, the configuration must also define a single version
for each levei in which the entity is represented. A single ascendant version must be chosen
when severa! ascendants correspond to the a given version. Different choices of versions
for compone~ts and/or ascendants generate different configurations for the same object,
leading to the consideration that a configuration is a special version of an object, that we
call configured version. In the following, we shall consider the terms configuration and
configured version as synonyms.

The operation get_configuration is applied to a version (called base version) to produce a
configured version for it. This operation defines one single version for each existing
ascendant in the inheritance hierarchy, as well as one single version for each component in
the aggregation hierarchy. Lets consider the scenario shown in Figure 6. Building a
configuration for version b 1 would consist o f the following steps:

l) b1 has two corresponding ascendants in the superclass A, so one must be
chosen. Assume a2 is chosen.

2) there is a dynamic reference from a2 to the versioned object y in class Q that
must be resolved. Assume q2 is chosen.

3) q2 also has two corresponding ascendants in superclass P, from which p2 is
chosen.

Each choice defines "part" of the configuration. When the configuration is completely
defined at one levei, a configured version is created as a successor of its base version.
Figure 7 shows the configured versions created. Version c1 is the starting point; versions
c2, c3 and c4 were created as the result of choices made in step 1, 2 and 3, respectively. In
this example, only one choice had to be made for each version that should be configured.

However, several choices could be necessary for one version, if there were more
than one dynamic reference and/or multiple ascendants in several superclasses.
Thus, the configuration process is recursive, consisting of the following steps for
each version:

1) dynamic reference resolution, choosing one of the versions associated
to the referenced versioned object;

44 RITA • Volume V • Número 2 • Dezembro 1998

Versions and configurations irí 'object-oriented database systems: a uniform treatment

2) ascendant version definition, for eacb of the superclasses.

Figure 6 - Scenario for configuration

Q configured version

Figure 7 - Configured versions and their relationships

A configured version can only reference other configured versions, so that the
system can insure that a configuration is completely specified - no dynamic
references or multiple ascendants exist anymore. Configured versions can be

RITA • Volume V • Número 2 • Dezembro1998 45

Versions and configurations in object-oriented database systems: a uniform treatment

shared by other objects, either regular versions or configured ones. Versions c2, c3
and c4 can be considered as "partial configurations", which can be referenced by
other configurations. Providing partial configurations is advantageous when
objects are composed of a great number of components, since the choices made for
these components can be reused in new configurations.

4.2 Configuration properties

A configured' version is always created for an existing version, to which it is connected as
its successor. Since a configuration is a version (and thus an object), it has the following
properties:

• it has an object identifier (OID), built according to the same rules that apply to
regular versions;

• it has ascendants and descendants, which are configured versions at other leveis
of the inheritance hierarchy;

• it is associated to a versioned object, in the same way as its base version;
• it has a status, that can be working, stable or consolidated. In this way,

configured versions can be tested, being approved or removed by the designer. If a
configured version is approved, its remova! can be avoided by promoting it to status
consolidated;

• it can be used as component of other configurations, as well as other objects
(versions, versioned objects or non-versioned objects). This feature allows the storage of
approved configurations and its use as components of new objects;

• operations defined for regular versions can also be applied to configured
versions (as well as those defined for objects), bringing uniformity to the model.

Although being a version, a configuration Kas some special features:
• it is a complete specification of an object, which do not present dynamic

references or multiple ascendants in the same superclass. It is a successor of its base
version, but can differ from the latter by presenting a single ascendant in each superclass
where there were severa! ones, and references to configured versions where there were
references to versioned objects. A configured version does not differ from its base version
in the values of the remaining attributes;

• it is always a leaf in the derivation graph. This feature insures that a
configuration can always be removed (unless the designer explicitly promotes the
configuration), avoiding a proliferation of non approved configurations. Severa!
configurations can be created for a base version;

• modifications in a configured version can only occur for existing references,
that is, references to configured versions can only be substituted by references to other
configured versions. Otherwise, a configured version would no longer be a configuration,
for example, if a reference to a configured version could be changed to a reference to a
versioned object.

46 RITA • Volume V • Número 2 • Dezembro 1998

·i:.,
Versions and configurations,in object-oriented database systems: a uniform treatment

5 OPERA TIONS ON THE HIERAR,CHY OF OBJECTS, VERSIONS
AND CONFIGURATIONS

The operations defined for objects and versions (also applied to configured versions) can
be classified ,i.n three groups: operations for creation, operations for navigation in the
inheritance hierarchy and operations for retrieval o f versions/objects.

The operators for creation of versions are the following:

create_versioned_object (class): OID;
derive_ version (set(OID)

[, ascendant: [classl:] set(OID) ...]
[, descendant: [class2:] set(OID) ...]): OID;

get_configuration (OID [, configuration expression]): OID;

Version creation can occur in one o f four ways:
1) creation of a versioned object and afterwards creation of versions for it. The

possibility of creating a versioned object without versions allows references to the
versioned object, so that top-down designs can be carried on. Derivation of versions can
then go on, using the versioned object OID as parameter. When a version is created, it must
be necessarily connected to an ascendant version/object. Optionaliy, descendants can be
informed;

2) derivation of a version from an existing one (or more than one). The new
version is a copy of its predecessor. If more than one version is used as parameter, only the
first one is copied, but a derivation relationship is kept with ali o f them;

3) a version can be derived for an object that was non-versioned up to this
moment. In this case, the non versioned object becomes the first version of a new
versioned object, and a new version is derived from it.

4) a configured version is created with the operator get_configuration. A
•· configuration expression can be provided, based on object's properties. If this expression is

not supplied, the configuration process considers the current version in case of dynamic
references, and the most recent ascendant, in case o f multiple ascendants.

The derive operation can also be applied to configured versions. The result of this
operation is a copy of the configured version, connected as a successor of the same base
version o f the copied version.

Operations for navigation in the inheritance hierarchy aliow the retrieval o f ascendants and
descendants of an object, in given classes. The operations are:

get_ascendant (OID, class [criterion/"*"]): set (OID ascendant object);
get_descendant (OID, class [criterion/"*"]): set (OID descendant object);

If more than one ascendant version exists for the desired version, ali the versions can be

RITA • Volume V • Número 2 • Dezembro1998 47

Versions and configurations in object-oriented database systems: a uniform treatment

returned (option *) or only one, according to the specified criterion. The criterion could
eilher indicate a manual selection, when the OID of the ascendant version is given, or an
automatic selection, when one of the pre-defined options is given. The pre-defined criteria
are: recent, first or current (recent is used as default). The get_descendant operation is
similar to the get_ascendant, but applied to descendant objects in the subclass identified.

Retrieval o f objects can be made through the following operations:
get_object (OID): list(attribute values);
get_complete_object (OID [, ascendant: classl [: criterion]

[, class2 [: criterion]] ...]): list(OID);

The operator get_object retrieves attribute values of an object defined at the specified
class. This operation returns only the attributes defined at one levei of the inheritance
hierarchy. To retrieve ali the attributes of a real world entity modeled in the database,
navigation must occur in the hierarchy, so that ali objects representing the given entity be
retrieved. The operation get_complete_object was defined with this purpose and it returns
the ascendants of an object in the inheritance hierarchy, one for each superclass. If only
some ascendants are desired, the desired classes must be identified.

When there is more than one ascendant for a version, the criterion is used to select only
one, in the same way that happens in the operations get_ascendant and get_descendant.

Besides these operations, operations for navigation on the derivation graph are provided
(get_first_ version, get_Iast_ version, get_successor, get_predecessor, get_
versioned_object).

It must be noted that ali these operations apply also to versioned objects, giving uniformity
and orthogonality to the proposed model. ,

6 FACILITIES FOR CONFIGURATION SPECIFICATION

The get_configuration operation can be applied to any object that has components or
ascendants that must be resolved. Resolution can follow the pre-defined criteria or can be
based on a configuration expression supplied by the user. The pre-defined criteria are the
following : a) a dynamic reference is replaced by a reference to the current version of the
versioned object; b) the ascendant version is the current one, if this version is among the
correspondent versions associated to the version being configured. Otherwise, the most
recent version of the set of correspondent versions is chosen.

Version selection through the pre-defined criteria is automatic, though restricted. To build
configured versions with more flexibility, allowing the user the selection of versions
through different criteria, additional facilities are necessary. lt is desirable to select
versions based on its properties, having the facilities of a query Janguage. However,

48 RITA • Volume V • Número 2 • Dezembro 1998

Versions and configuratióhs.i,n object-oriented database systems: a uniform treatment

facilities must be added to a query language to allow references to versions, as well as to
express conditions involving the relationships among versions in the derivation and
inheritance hierarchies.

The facilities that must be added can be classified in three types: facilities for referencing
objects, facilities for navigation in the inheritance hierarchy and facilities for navigation in
the derivation hierarchy

Considering a SQL-like language (for example as in [14, 36]), the mentioned facilities are
exemplified in the following:

1) Facilities for referencing objects
Along with the existing facilities (dot notation for referencing components of aggregates,
use of cursor for referencing set elements), facilities are necessary to reference versions of
objects.

Example:
select x.motor, x.fuel
from Vehicle v, versions(v) x
where x.motor > 1.0 and

x.fuel -.= 'A';

The term versions(v) allows visiting versions of a versioned object v, which is an instance
of class Vehicle. In Figure 4 this expression identifies version vl.

2) Facilities for navigation in the inheritance hierarchy

With extension inheritance, navigation in the inheritance hierarchy, in the direction
descendant-ascendant, is done automatically for non versioned objects, through value
inheritance and delegation [Bil 90]. That is, whenever an attribute or method that was not
defined for one object at a specific levei is referenced, the ascendants of the object are
recursively visited until such attribute or operation is found.

However, since the correspondence among versions of an object at different leveis can be
n:m, there is a need to visit the different versions associated to a given one. The teims
is_ascendant_of and is_descendant_of allow the navigation in the inheritance hierarchy.

Example:
select va.*
from Vehicle v, versions(v) vv, Automobile a, versions(a) va,
where vv.motor= l.O and

va is_descendant_of vv;

In Figure 4, this expression selects versions mille and elx, which are descendants of
versions that have property motor equal to 1.0 (v3 and v4) .

RITA • Volume V • Número 2 • Dezembro1998 49

Versions and configurations in object-oriented database systems: a uniform tr;~.at!llent

3) Faci!ities for navigation in the derivation híerarchy

Sometimes it is necessary to identify versions according to its relative or absolute position
in the derivation hierarchy. The terms is_first, is_last, is_successor_of, is_predecessor_of
allows, respectively, the identification of the first or most recent version in a derivation
graph, or the successor or predecessor version of a given one.

,.

Considering the correspondences among versions at different leveis of the hierarchy, there
is a need to choose one ascendant or descendant version, but constraining the set of visited
versions to that corresponding to the given one. The criteria less_recent and more_recent
apply to a subset of versions in one levei that correspond to a given version in another levei
o f the inheritance hierarchy.

Example:
select vv.*
from Automobile a, versions(a) va, Vehicle v, versions(v) vv
where va.acessories='y' and

vv is_ascendant_of va and
vv is_less_recent;

This expression selects version v3, which is the least recent version among the ascendants
of the version mille (with property accessories='y'), assuming that it was created before
version v4.

7 CONCLUSIONS

Presently there are many kinds of applications for which the concept of version is
considered essential. Common examples of those applications are Computer Aided Design
and Manufacturing (CAD, CASE, CAM), Office Automation and Hyperdocuments.

In this paper the concept of version was discussed in the context of object-oriented
database models and systems. The possÍbility of having versions at any levei of an
inheritance hierarchy was discussed, eliminating the need to concentrate ali aspects related
to the versioning of objects at the leaf levei of the hierarchy. It was shown how the
liberation of this constraint allows a more natural modeling of real world situations,
specially those in which the objects are constructed in a top-down process. In this case,
objects at higher leveis o f the hierarchy may be versioned before the creation o f lower levei
objects, without the need of null values or similar constructions.

On the other hand, versions appearing at different leveis of a hierarchy introduce the idea
of mappings between versions. Those mappings allow a more natural and concise
representation of the alternatives for object configuration. Configurations are obtained by
the choice of the most adequate version at each levei, without the need to explicitly
represent the entire set of combinations permitted, as in the models where versions are

50 RITA • Volume V • Número 2 • Dezembro 1998

..

Versions and configurations in object-oriented database systems: a uniform treatment

~,\ :"
allowed only at the leaf levei 'of 'the hierarchies. In this context, where the (often very
large) set of all possible combinations of versions is implicitly represented in the
inheritance hierarchies, the notion of object configuration is very important, which denotes
a completely resolved object instance, having only static references to its components.
Configurations correspond to the concept of instances in a database without the version
concept.

The approach -proposed in this paper treats configurations as versions, improving the
orthogonality of the model and introducing a very useful possibility of combining versions
and configurations to build other versions, as well as deriving new versions from
configurations. This approach allows the use of configurations representing the final result
of a design as a component in other composed objects of higher levei. Modularity can be
increased and reusability of database objects is provided. This uniform treatment also
results in a more concise model, since the set of operations defined for handling versions is
the same used for configurations.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[lO]

Agrawal, R.; Buroff, S.; Gehani, N.; Shasha, D. Object Versioning in Ode. In:
Proc. Data Engineering, 1991, Kobe, Japan. p. 446-455.
Batory, D.S.; Kim, W. Modeling concepts for VLSI CAD objects. ACM
Transactions on Database Systems, v. lO, n.3, p.322-346, Sept. 1985.
Beech, D.; Mahbod, B. Generalized Version Control in an Object-Oriented
Database. In: Proc. Data Engineering, 1988, Los Angeles-EUA. p.14-22.
Belkhatir, N.; Estublier, J. Experience with a database of programs. Sigplan
Notices, v.22, n.l, p.84-91, Jan 1987.
Bertino, Elisa; Martino, Lorenzo. Object-Oriented Database Systems: Concepts
and Architectures. Addison-Wesley Publishers Ltd., 1993.
Berkel, T. Et AI. Modelling CAD-objects by abstraction. In: Proc. Int. Conf on
Data And Knowledge Bases, 1988, Jerusalem, Israel. p. 227-240.
Biliris, A. Modeling design object relationships in PEGASUS. In: Proc. Data
Engineering, 1990. Los Angeles-USA. p. 228-236.
Bjornerstedt, A. ; Hultén, C. Version Control in an Object-Oriented Architecture.
In: Kim, W.; Lochovsky, F.H. (eds.). Object-Oriented Concepts, Databases, and
Applications. ACM Press, chap. 18, p. 451-485, 19S9.
Blanken, H. Implementing version support for complex objects. Data &
Knowledge Engineering, v.6, p. 1-25, 1991.
Breitl, R. The Gemstone data management system. In: Kim, W.; Lochovsky, F.H.
(eds.). Object-Oriented Concepts, Databases, and Applications. ACM Press, p.
283-308, 1989.

RITA • Volume V • Número 2 • Dezembro1998 51

Versions and configurations in object-oriented database systems: a uniform tréatment

[11] Byeon, K.J.; McLeod, D. Towards the unification of views and versions for object
databases. In: Proc. Int. Symp. on Object Technologies for Advance Software, Nov.
1993, Konazawa-Japan.

[12] Carey, Michael J. ; Dewitt, David J.; Vandenberg, S. A data model and query
language for EXODUS. In: Proc. ACM S/GMOD Conference , 1988, Chicago.

[13] Cellary, W.; Vossen, G. ; Jomier, G. Multiversion .object consteUations: a new
approach to support a designer's database work. Giessen, Universitãt Giessen,
Nov. 1991. (Bericht Nr. 9105)

[14] Delobel, Claude; Lecluse, Christophe; Richard, Philippe. LOOQ: a query
language for object-oriented databases, informal presentation. Rapport
Technique Altair 22-88, 8 Oct. 1988

[15] Deux Et ai. The story of 02. IEEE Transactions on Knowledge and Data
Engineering, v.2, n.1, p.91-108, Mar. 1990.

[16] Dittrich, K.R.; Gotthard, W.; Lockemann, P.C. DAMOKLES-a database system for
software engineering environments. In: Proc. Int. Workshop on Advanced
Programming Environments, June 1986, Trondheim-Norway. p. 353-371.

[17] Dittrich, K.; Lorie, R. Version support for engineering database systems. IEEE
Transactions on Software Engineering, v.14, n.4, p. 429-437, Apr. 1988.

[18] Edelweiss, N.; Oliveira, J.P.M. De; Pernici, B. An Object-Oriented Temporal
Model. In: Proc. CAISE'93, Paris, 1993. p.397-415.

[19] Greenspan, S.J.; Borgida, A.; My1opou1os, J. A Requirements modeling 1anguage
and its logic. In: M.L. Brodie; J. Mylopoulos (eds.) On Knowledge Base Systems.
Springer-Verlag, 1986. p.471-502.

[20] Haskin, R.L.; Lorie, R.A. On extending the functions of a relationa1 database
system. In: Proc.ACM SIGMOD Conference , 1982, Orlando. p.207-212.

[21] Hudson, S.E.; King, R. Object-oriented database support for software environments.
In: Proc. ACM SIGMOD Conference , 1987, San Francisco, CA. p.491-503.

[22] Hudson, S.E. ; King, R. The Cactis project: database support for software
environments. IEEE Transactions on Software Engineering, v.14, n.6, p. 709-
719, June 1988.

[23] Katz, R.; Chang, E. ; Bhateja, R. Version modelling concepts for computer aided
databases. In: Proc. ACM S/GMOD Conference, 1986, Washington. p.379-386.

[24] Katz, R.H. Toward a unified framework for version modeling in engineering
databases. ACM Computing Surveys, v.22, n.4, p. 375-408, Dec. 1990.

[25] Kim, W. ; Banerjee, J.; Chou, H.T.; Garza, J.F. ; Woelk, D. Composite object
support in an object-oriented database system. In: Proc. Object-Oriented
Programming Systems and Languages (OOPSLA), 1987. p. 118-125.

[26] Kim, W.; Bertino, E.; Garza, J.F. Composite objects revisited. In: Proc. ACM
SIGMOD Conference, 1989, Oregon. p.337-347.

[27] Kim, W. Et AI. Features of the ORION Object-Oriented Database System. In:
Kim, W. ; Lochovsky, F.H. (eds.). Object-Oriented Concepts, Databases, and
Applications. ACM Press, chap. 11, p. 251-282, 1989.

52 RITA • Volume V • Número 2 • Dezembro 1998

Versions and configurations in object-oriented database systems: a uniform treatment
, . --'-....,

[28] Klahold, P.; Schlageter, G.; Wilkes, W. A general model for version management
in databases. In: Proc. VLDB, 1986, Kyoto, Japan. p. 319-327.

[29] Lamb, Charles W.; Landis, Gordon; Orenstein, Jack A.; Weinreb, Daniel L.
ObjectStore. Communications of the ACM, v.34, n.10, p.51-63, Oct. 1991.

[30] Lorie, R.L.; Plouffe, W. Complex objects and their use in design transactions. In:
Proc. ACM SIGMOD Conference, 1983, San Jose, Calif. p.llS-122.

[31] Mahler;· A.; Lampen, A. An integrated toolset for engineering software
configurations. In: Proc. ACM-SIGSOFT-SIGPLAN Symposium on Practical
Software Development Environments, Boston, MA, 1988.

[32] McLeod, D.; Narayanaswamy, K.; Bapa Rao, K. An approach to information
management for CADNLSI applications. In: Proc. ACM Conference on Databases
for Engineering Applications, May 1983, San Jose, CA. p.39-50.

[33] Monk, S.R.; Sommerville, L A model for versioning of classes in object- oriented
databases. In: Proc. BNCOD, July 1992, Aberdeen, Scotland.

[34] Rowe, L.A.; Stonebraker, M.R. The POSTGRES data model. In: Proc. VLDB,
Sept. 1987, Brighton, Engl. p. 83-96.

[35] Sciore, E. Using annotations to support multiple kinds of versioning in an object­
oriented database system. ACM Transactions on Database Systems, v.16, n.3,
p.417-438, Sept. 1991.

[36] Sciore, E. Versioning and configuration management in an object-oriented data
model. VLDB Journal, v.3, p. 77-106, Jan. 1994.

[37] Snodgrass, R.; Ahn, L A taxonomy of time in databases. In: Proc. ACM S/GMOD
Conference, May 1985, Austin.

[38] Talens, G.; Oussalah, C.; Colinas, M.F. Versions of simple and composite objects.
In: Proc. VLDB, Sept. 1993, Dublin, Ireland. p. 62-72.

[39] Wuu, G.T.D. ; Dayal, U. A uniform model for temporal and versioned object-
oriented databases. In: Temporal Databases: Theory, design and
implementation. Benjamin/Cummings, 1993. p. 230-247.

[40] Zdonik, S. Object-Oriented Type Evolution. In: Bancilhon, F; Buneman, P. (Eds).
Advances in Database Programrning Languages. Addison-Wesley, p.277-288,

" 1990.

Este artigo recebeu a Menção Honrosa no Prêmio COMPAQ de Estímulo a Pesquisa e
Desenvolvimento em Informática, categoria Pesquisa Científica. Foi originalmente
publicado nos Proceedings of the Seventh International Conference on Management of
Data, Pune, India, dezembro de 1995.

RITA • Volume V • Número 2 • Dezembrol998 53

