
Vol. 50, 76–138 ©2022
http://doi.org/10.21711/231766362022/rmc505

Geometrization in Geometry

Izabella de Freitas 1 and Álvaro K. Ramos 2

1Programa de Pós Graduação em Matemática, Universidade Federal do Rio
Grande do Sul, Porto Alegre/Brazil

2Departamento de Matemática Pura e Aplicada, Universidade Federal do Rio
Grande do Sul, Porto Alegre/Brazil

Dedicated to Professor Renato Tribuzy
on the occasion of his 75th birthday

Abstract. So far, the most magnificent breakthrough in mathemat-
ics in the 21st century is the Geometrization Theorem, a bold conjec-
ture by William Thurston (generalizing Poincaré’s Conjecture) and
proved by Grigory Perelman, based on the program suggested by
Richard Hamilton. In this survey article, we will explain the state-
ment of this result, also presenting some examples of how it can be
used to obtain interesting results in differential geometry.
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1 Introduction

In certain sense, a mathematical object is an idealistic representation
of the reality, and in several contexts this idealization suffices to give us
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insight about nature and, more broadly, the universe. However, in the past
few centuries, mathematics have developed to a degree in which it escapes
reality and immerses into the world of imagination. Astonishing is the
fact that, even in its retreat from reality, mathematics has the ability to
provide tools that later can be used to explain natural effects and develop
science and technology as a whole.

In this survey paper, dedicated to Professor Renato Tribuzy, we are in-
terested in the shapes of certain mathematical objects called 3-manifolds.
More specifically, we present what is arguably the most significant devel-
opment on mathematics in the 21st century, which is the geometrization
theorem. Rather than presenting its proof, which was given in a series of
papers [41–43] by Grigory Perelman, we will focus on its precise statement
and on some of the background material necessary for its understanding.

Although the main topic of this article is topology of 3-manifolds, it is
actually a paper in geometric topology, but we would like to mention that
it was written with a special care for differential geometers readers, which
sometimes may have trouble (as we did) for translating the concepts of
topology to a more geometric perspective. We also notice that the main
results concerning basic aspects of geometrization of 3-manifolds that we
present may be found in a deeper level in the books of M. Aschenbrenner,
S. Friedl, H. Wilton [6], B. Martelli [32] or P. Scott [46].

Next, we explain the organization of the manuscript. In Section 2,
we present the intuitive concept of topology and how it is related to ge-
ometry. We also explain the concept of an orbifold, with emphasis for
dimension 2, which is necessary for geometrization. Section 3 is where
we present the geometrization theorem, after making precise the definition
and classification of Seifert fibered spaces. In Section 4, we particularize to
the hyperbolic geometry, presenting Thurston’s hyperbolization criterion,
several examples and some applications.
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2 Topology and Geometry

In an intuitive manner, we may say that Topology is the study of shapes.
If two topological spaces can be obtained one from the other by means
of a homeomorphism, then Topology regards both objects as the same.
On the other hand, Riemannian Geometry is the study of certain smooth
objects, called manifolds, together with their intrinsic distances, measured
by (Riemannian) metrics, and two Riemannian manifolds will be thought
as being the same if there is an isometry (which is a metric preserving
diffeomorphism) between them, see Figure 2.1.

At first glance these two concepts may seem to be disjoint, but there are
several connections between them, which make both theories richer. First
of all, every differentiable manifold M has an intrinsic topology associated
to it1, hence we are allowed to regard M as a topological space and to
use the expression the topology of M to refer to such topological space
structure. For details, see [10, Chapter 2] (which contains a topological
introduction) or [14, Chapter 0] (for a more geometric point of view).

Although there are several topological spaces that are not manifolds

1This intrinsic topology is obtained by stating that a subset U ⊂ M is open if
x−1
α (U ∩ xα(Uα)) is an open set of Rn for every local chart xα : Uα ⊂ Rn → M . It

is important to mention that we assume that this topology is Hausdorff, i.e., any two
points can be separated by disjoint neighborhoods, and that M can be covered by a
countable number of charts. When M is connected, these assumptions are equivalent
to the existence of a differentiable partition of unity on M , which is an essential tool
for the study of several questions on manifolds.
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Figure 2.1: As topological spaces, all these 2-spheres are equivalent, since they are
homeomorphic. However, from a geometric point of view, they are distinguishable
from each other by their respective metrics.

and even homeomorphic manifolds that are not diffeomorphic [35], a strik-
ing observation is that it is possible to relate geometry and topology in
elegant and deep manners. For instance, if S is a closed (compact, without
boundary) surface endowed with a Riemannian metric, then Gauss-Bonnet
Theorem implies that its total Gaussian curvature

∫
SKS (a geometric

quantity) is related with its Euler characteristic (a topological invariant)
χ(S) by ∫

S
KS = 2πχ(S).

In particular, independently on the metric considered on the 2-sphere (for
instance, see the spheres depicted in Figure 2.1), its total curvature will
always equals 4π. We cannot bend a sphere to increase or decrease its total
curvature without tearing it apart, thus changing its topology.

Other interesting results relating topology and geometry are the Bonnet-
Myers Theorem and the Cartan-Hadamard Theorem, which restrict the
topology of a given geometry:

Theorem 2.1 (Bonnet-Myers [9, 39]). Let M be a complete Riemannian
manifold with sectional curvature KM ≥ δ > 0. Then, M is compact and
π1(M) is finite.

Theorem 2.2 (Cartan-Hadamard, see [25] or [14]). Let M be a com-
plete Riemannian manifold with sectional curvature KM ≤ 0. Then, the
exponential map of M at any point p is a covering transformation. In
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particular, the universal covering of M is diffeomorphic to Rn, where
n = dim(M).

But perhaps even more interestingly than the aforementioned results,
geometry can be used to answer an old, natural topology question: what
are all the possible shapes of surfaces? This is going to be discussed in the
next section.

2.1 Surfaces.

In this section, we will discuss what are the possible topologies for a
closed, orientable surface, and we will also present the geometrization2

theorem for surfaces, which will be a starting point for the reader to un-
derstand the geometrization of a closed, orientable 3-manifold.

Definition 2.3. Let S be a closed, orientable surface. Then, the genus
of S is the maximal number of pairwise disjoint simple closed curves in S
whose collection do not separate S.

Example 2.4. Since the sphere S2 is simply connected, every simple closed
curve in S2 separates. Thus, its genus is zero.
The genus of the torus T2 = S1 × S1 is positive, since there exists a
nonseparating simple closed curve (for instance, S1 × {p} for any p ∈ S1)
in T2. However, if γ1 and γ2 are pairwise disjoint simple closed curves that
individually do not separate, then T2 \ γ1 has the topology of S1 × (0, 1),
and we may see γ2 as a nontrivial simple closed curve in S1 × (0, 1), so γ2
is parallel to S1 × {1/2}, thus separating. This proves that the collection
γ1 ∪ γ2 separates T2, showing that its genus is equal to one.

More than an interesting topological invariant, the genus of a closed,
orientable surface is sufficient to completely classify its topology. This fol-
lows from the following Classification Theorem, whose original proof dates

2By geometrization of a manifold M we mean finding a decomposition of M such
that each component admits a geometric structure, which is a complete metric locally
isometric to a given simply connected homogeneous manifold; a detailed description
will be given in Section 3.3.
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back from the 1860’s, and a modern approach presented by J. Conway as
the Zero Irrelevancy Proof (or ZIP proof, for short) can be found in [18].

Theorem 2.5 (Classification Theorem). Let S be a connected, orientable,
closed surface. Then, S is diffeomorphic to a connected sum (see Defini-
tion 2.6 below) of the 2-sphere S2 with g ≥ 0 copies of the 2-torus T2.

We notice that the statement of the Classification Theorem is more
general than the presented above, which was a restriction to the orientable
case. We also used the concept of connected sum, depicted in Figure 2.2
and whose definition we present next in dimensions 2 and 3.

Definition 2.6. Let M1 and M2 be two oriented manifolds of the same
dimension n ∈ {2, 3}3. Then, the connected sum of M1 and M2 is the man-
ifold M1#M2 obtained by the following operation: let B1, B2 be respec-
tive n−balls in M1, M2 with boundaries S1, S2. Let f be an orientation-
reversing diffeomorphism from S1 to S2. Then M1#M2 = (M1 \ B1) ∪
(M2 \B2)/ ∼, where we identify S1 ∋ x ∼ f(x) ∈ S2.

As previously explained, the Classification Theorem allows us to list all
closed, orientable surfaces in terms of their genus, since such a surface has
genus g if and only if it is the connected sum of S2 with g tori. Having this
construction in mind, we may now present the Uniformization Theorem,
which was conjectured by Felix Klein and Henri Poincaré in the 1880’s and
proved independently by Poincaré [45] and Koebe [30] in 1907.

Theorem 2.7 (Uniformization theorem). Let S be an orientable, closed
surface. Then, S admits a metric of constant curvature k. Furthermore,
if g is the genus of S, the following hold:

1. k > 0 if and only if g = 0.

3The definition of connected sum of M1 and M2 can be generalized for any n > 3.
However, in dimensions higher than 3, the differentiable structure of the connected sum
M1#M2 can depend not only on the chosen orientations on M1 and M2 but also on the
choice of the gluing map f , while if n ∈ {2, 3} this does not occur.



82 I. de Freitas and A. Ramos

Figure 2.2: The connected sum of M1 and M2, as in Definition 2.6, removes
an n-ball B1 from M1 and an n-ball B2, and then joins the resulting manifolds
with spherical boundary by an orientation-reversing diffeomorphism, which has
the visual effect of gluing them by a cylindrical neck.

2. k = 0 if and only if g = 1.

3. k < 0 if and only if g ≥ 2.

In Section 3.3 (more precisely in Theorem 3.25), we will revisit Theo-
rem 2.7, justifying the fact that it is also known by the name of geometriza-
tion for surfaces. At the present moment, we will restrain ourselves to
observe that the uniformization theorem shows that a connected, closed
and orientable surface has a special metric of constant curvature, and its
Riemannian universal covering is isometric (after a homothety) to one and
only one of the space forms S2, R2, H2, which will be called the model ge-
ometry for S. In particular, if X is the model geometry for a surface S and
G = ISO(X), there exists a subgroup H of G such that S is diffeomorphic
to the quotient X/H. We also point out that the original statement of
the Uniformization Theorem (which is well-known to be equivalent to the
one presented above) makes use of the theory of Riemann surfaces, stating
that that any simply connected Riemann surface is either conformal to the
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open unit disk, to the complex plane or to the Riemann sphere.

Example 2.8. Let S = T2 be the torus. Then, the model geometry for S
is R2 and if we let H be the group generated by two linearly independent
translations in R2, it follows that S = R2/H.

Generalizing the concept of surfaces, we will next introduce the concept
of orbifolds, which are certain not-so-well behaved quotients of manifolds.
Orbifolds play a major role in the geometrization of 3-manifolds, and this
nomenclature was introduced in the 1970’s by William Thurston, after a
vote by his students, but they appeared earlier in the literature under the
name of V-manifolds.

2.2 Orbifolds

In some sense, orbifolds are structures used to understand group actions
over manifolds, but differently from surfaces, where the group action is
properly discontinuous4 and free5, on orbifolds the groups will act uniquely
in a properly discontinuous manner. We also recall that the quotient of a
topological space X by a group G, denoted by X/G, is the set of orbits,
together with the quotient topology.

Before giving the precise definition of an orbifold, we will present some
examples to bring up some intuition to the reader.

Example 2.9. Let R ⊂ R2 be a rectangle and G the group of isometries
of R2 generated by the reflections along the four lines containing the sides
of R.

4The action of a group G over a manifold X is properly discontinuous if for every
compact K ⊂ X the number of elements g of G that satisfy gK ∩K ̸= ∅ is finite.

5The action of a group G over a set X is called free if it has no fixed points unless
it is the action of the identity element.
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Figure 2.3: Tiling of R2 generated by the reflections a, b, c, d over the sides of R.

The reflections a, b (and also c, d) over two parallel sides give rise to the
free product groupD∞ = Z2∗Z2. Thus, in this case we haveG = D∞×D∞

and the quotient space R2/G is the rectangle R.
This space is called the rectangular billiard, because if we think the

points of R as pool balls, to hit a certain point y from another point x, it
suffices to aim in any other copy of y into a reflected image of R, as shown
in Figure 2.3.

Example 2.10. Let G = D∞ ×D∞ be the group as in Example 2.9 and
let H be the index-2 subgroup of G given by the orientation preserving
isometries. Then, R2/H is the pillowcase space, which is topologically a
2-sphere with 4 singularities, at the points corresponding to the vertexes
of R (see Figure 2.4).

Figure 2.4: Quotient of R2 by H. Note that H maps the filled rectangles in the
tiling into other filled rectangles with the depicted orientation.
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Taking into consideration the two examples above, we say that an
orbifold O is a topological space locally modelled in the quotient of Rn by
finite group actions with some additional structure. We will first present
the rigorous definition given by Thurston [49], but we notice that the
orbifolds that appear in order to understand geometrization of 3-manifolds
are simpler, and most of the times the intuition behind the definition will
suffice.

Definition 2.11 (Thurston). An n-dimensional orbifold O is a Hausdorff
space XO (called the base space) endowed with the following additional
structure. There exists a covering of XO by a collection of open sets {Ui}
that satisfy:

• The collection {Ui} is closed with respect to finite intersections;

• For each Ui there is a finite group Γi together with an action of Γi

over an open set Ũi ⊂ Rn and a homeomorphism φi : Ui → Ũi/Γi;

• If Ui ⊂ Uj for some i, j, there exists an injective homomorphism
fij : Γi ↪→ Γj and an embedding φ̃ij : Ũi ↪→ Ũj that is equivariant
with respect to fij , in the sense that φ̃ij(γx) = fij(γ)φ̃ij(x) for all
γ ∈ Γi, x ∈ Ui, so the diagram below commutes

We regard φ̃ij as being defined only up to composition with elements of
Γj , and fij as being defined up to conjugation by elements of Γj . It is not
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generally true that φ̃ik = φ̃jk ◦ φ̃ij when Ui ⊂ Uj ⊂ Uk, but there should
exist an element γ ∈ Γk such that γφ̃ik = φ̃jk ◦ φ̃ij and γ · fik(g) · γ−1 =

fjk ◦ fij(g).

If O is an orbifold and x ∈ O, we let Γx denote the isotropy group of
the point x, i.e.,

Γx = {g ∈ Γi | x ∈ Ui and gx = x},

which is well-defined up to conjugation. In other words, in a neighborhood
Ui = Ũi/Γi of x, Γx is the subgroup of Γi that acts over Ũi leaving x̃

invariant, where x̃ ∈ Ũi projects over x.

Definition 2.12. The singular locus of an orbifold O is the set ΣO = {x ∈
O | Γx ̸= {1}}, which means that ΣO is the subset of O for which there
exists a correspondent neighborhood Ũ with nontrivial isotropy group. If
p ∈ ΣO, we say that p is a singular point. Otherwise, p is called regular.
Note that the singular locus is a closed subset of O.

In this article, we are interested in 2-dimensional orbifolds, where the
singular locus is simpler than in the general situation, admitting a simple
description as we next present.

Proposition 2.13 (Thurston [49]). The singular locus of a 2-dimensional
orbifold has one of the three local models below:

1. Lines of reflection. R2/Z2, where Z2 acts by reflection along a
line in R2;

2. Elliptic points of order n ≥ 2. R2/Zn, where Zn acts on R2 by a
rotation of 2π/n;

3. Corner reflectors of order n. R2/Dn, where Dn is the dihedral
group of order 2n, with representation ⟨a, b : a2 = b2 = (ab)n =

1⟩, and the generators a and b correspond to reflections along lines
intersecting themselves at an angle π/n.
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Figure 2.5: Quotients of R2 by the groups Z2,Zn and Dn, giving the respective
singular loci for a 2-dimensional orbifold: a line of reflection, an elliptic point of
order n and a corner reflector of order n.

The proof of the proposition uses that the only finite subgroups of the
orthogonal group O(2) are the ones described above, together with the
fact that given a local coordinate system U = Ũ/Γ to an orbifold O, there
exists a homeomorphism between a neighborhood of U and a neighborhood
of the origin in the orbifold R2/Γ, where Γ ⊂ O(2) is a finite subgroup.
For more details, see Thurston [49, Proposition 13.3.1]

Example 2.14. Recall Example 2.9, where R is a rectangle in R2 and
G is the group of isometries generated by reflections a, b, c, d. Now that
we have the definition of orbifold and singular locus, we may explore the
example with more depth.

Points in R can be inside the rectangle, or on the edge, or a vertex. It
is not hard to notice that points inside the rectangle are not fixed by any
element of G. Given x ∈ int(R) and Ui a neighborhood of x, there is a
homeomorphism φi : Ui → Ũi, where Ũi ⊂ R2.

If x ∈ R is a point in the edge labeled as d, but not a vertex, for each
neighborhood Ui of x we have φi : Ui → Ũi/Γi, where Ũi ⊂ R2. Γi is the
group generated by the reflection d and d2 = id, therefore, G ⊃ Γi

∼= Z2
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and d is a line of reflection.
If x is the vertex of the edges a and d, for each neighborhood Ui of

x we have φi : Ui → Ũi/Γi, where Ũi ⊂ R2. Γi is generated by a and
d according to the relations a2 = id, d2 = id, (ad)2 = id. By definition
G ⊃ Γi

∼= D2 and the vertex is a corner reflector. In fact, all vertices of R
are corner reflectors.

Example 2.15. In Example 2.10 we have H ⊂ G the group of orientation-
preserving isometries generated by reflections a, b, c, d over the lines con-
taining the four sides of R. It is straightforward to see that d ◦ a, a ◦ c,
c ◦ b and b ◦ d are all elements of H, each of which leaves one of the four
vertexes P1, P2, P3, P4 of the original rectangle R invariant. Thus, in the
pillowcase orbifold O = R2/H, {P1, P2, P3, P4} ⊂ ΣO. In fact, these are
all the singular points of this orbifold.

If x is the vertex of the edges a and d, for each neighborhood Ui of
x we have φi : Ui → Ũi/Γi, where Ũi ⊂ R2. Γi is generated by d ◦ a, a
rotation by π, therefore we have that Γi

∼= Z2 and x is an elliptic point of
order 2, and the same holds for all vertices of R.

The next proposition is of great importance to the study of orbifolds in
the context of geometrization. It may even be used as an intuitive (local)
definition of an orbifold.

Proposition 2.16 (Thurston [49, Proposition 13.2.1]). If M is a manifold
and Γ is a group acting properly discontinuously on M, then M/Γ has an
orbifold structure.

The above proposition shows that the structure of an orbifold can
be reasonably wild. Next, we present a definition that will be used to
introduce the concept of a good orbifold.

Definition 2.17. Let O and Õ be two orbifolds with respective base spaces
X, X̃. We say that Õ is a covering orbifold of O if there is a projection
p : X̃ −→ X such that each x ∈ X admits a neighborhood U = Ũ/Γ

(Ũ is an open subset of Rn) for which each component vi of p−1(U) is
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isomorphic to Ũ/Γi, where Γi is a subgroup of Γ and the isomorphism
respect the projections

Remark 2.18. The main distinction between the concept of covering orb-
ifolds and the usual notion of covering spaces of topological spaces is that
when an orbifold Õ covers another orbifold O, the components of the in-
verse images of an open set U of O may not be isomorphic to themselves
or even to U . This is because each component vi that projects onto U is
a quotient of an open set of Rn by a subgroup Γi ⊂ Γ, see the example
below.

Example 2.19. It is not difficult to see that the pillowcase orbifold R2/H

of Example 2.10 is a covering orbifold of the rectangular billiard R2/G of
Example 2.9. However, each component of the inverse images of neighbor-
hoods of each of the four vertexes P1, P2, P3, P4 of R2/G are not isomor-
phic to the image of the projection.

Definition 2.20. An orbifold O is called a good orbifold if O admits a
covering orbifold that is a differentiable manifold. Otherwise, O is called
a bad orbifold.

Since the pillowcase and the billiard orbifolds are both covered by R2,
they are both good orbifolds. In fact, in dimension two there are only a few
bad orbifolds and their classification can be seen in [49, Theorem 13.3.6].
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Figure 2.6: A rectangular billiard with the pillowcase orbifold as a covering orb-
ifold.

3 3-manifolds

After noticing that geometry and topology may be deeply related and
presenting some initial concepts such as orbifolds, we will now start the
study of the geometric topology of 3-manifolds, with the fundamental goal
of presenting the geometrization theorem (for orientable 3-manifolds).

Recall Theorem 2.7, where given an orientable, closed surface S, we
could find a special metric for S, as being a metric of constant curvature
k being −1, 0 or 1, the number k depending uniquely on the topology of
S. The attempt to generalize this result to the class of orientable closed
3-manifolds is quite natural. However, (presently) it is easy to see that
the manifold S2 × S1 is an orientable, closed 3-manifold that does not
admit a metric of constant curvature. Indeed if that was the case, its
Riemannian universal cover would be S2 × R with a metric of constant
curvature. Since S2 × R is simply connected, it would be isometric to a
space form and diffeomorphic to either S3 or to R3.

This creates a great difficulty on understanding what could be the best
metric for a 3-manifold. And even Poincaré, after proving the Uniformiza-
tion Theorem for surfaces, struggled with this question. After trying to
generalize this to 3-manifolds, he noticed it wouldn’t be an easy task. To
get closer to this geometric classification, Poincaré developed several topo-
logical concepts, such as the homology groups and the fundamental group
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of a manifold, arriving at the following question [44, Page 110].

Consider a compact 3-dimensional manifold V without boundary. Is it
possible that the fundamental group of V could be trivial, even though V

is not homeomorphic to the 3-dimensional sphere?

After adding that cette question nous entraînerait trop loin (this question
would take us too far) and trying to prove this result, his question became
known as the Poincaré’s Conjecture, a widely known problem that, in the
year 2000, was deemed by the Clay Mathematics Institute, one of the seven
millennium problems (presently, the only one with a complete solution).

Over the next sections, we will present the theory of the topology
and geometry of 3-manifolds, showing the notion of a model geometry
and explaining the geometrization theorem, which proves (and generalizes)
Poincaré’s conjecture by decomposing any orientable, closed 3-manifold
into components, each of which admits a model geometry that depends
uniquely on its topology.

3.1 Seifert fibered spaces

The next step towards geometrization is to present the concept of a
Seifert fibered space. There are several ways of introducing those spaces,
and we chose to present them from a geometric point of view, as 3-
manifolds that admit a decomposition by circles (or fibers) with a cer-
tain structure called a Seifert fibration. In particular, we must distinguish
these two nomenclatures: a Seifert fibered space will be the total space of
a Seifert fibration (and a Seifert fibered space may have distinct Seifert
fibrations related to it).

As suggested by the denomination of the manifolds studied in this sec-
tion, Seifert fibered spaces were first studied by H. Seifert in the 1930’s,
with the intention of getting closer to the topological classification of closed
3-manifolds (or the “homeomorphism problem for 3-dimensional closed
manifolds”). In [47] (see the book [48], which contains a geometric intro-
duction to Topology and also an English translation of [47]), Seifert was
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able to completely classify, up to fiber-preserving homeomorphisms, his
fibered spaces (gefaserte Räume), and his research was a fundamental step
towards geometrization, as it will become clear in the JSJ decomposition
presented in Theorem 3.22 below.

Before we present the precise definition of a Seifert fibered space, we
will introduce the concept of a fibered solid torus. Consider the (closed)
unit disk of dimension two, D2 := {(x, y) ∈ R2 : x2 + y2 ≤ 1} and let
the trivial fibered solid torus be the product D2 × S1, endowed with the
product foliation by circles, so that, for each y ∈ D2, {y} × S1 is a fiber.

Figure 3.1: Trivial fibered solid torus: each fiber is of the type {y}×S1, for y ∈ D2.

This trivial decomposition of D2 × S1 by circles is a particular case
of the next more general construction, which, in the context of orientable
Seifert fibered spaces, provides the local picture.

Definition 3.1. Given a pair p, q of co-prime integers with p > 0, the
standard fibered solid torus T (p, q) is obtained from the trivial fibered solid
torus D2×S1 by cutting along a disk D2×{y} and gluing it back together
after a twist of 2qπ

p in one of its sides, i.e.,

T (p, q) =
D2 × [0, 1]

{(z, 0) ∼ (ψp,q(z), 1)}
,

where ψp,q : D2 → D2 is defined by ψp,q(z) = e
2πq
p

i
z. Then, T (p, q) is a

solid torus, naturally endowed with a fibration by circles where we have a
central fiber (or core fiber) that comes from {0}× [0, 1] and any other fiber
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rotates p times around the generator of the fundamental group of the solid
torus and q times around the central fiber.

Example 3.2. Let p = 8, q = 3 and let T (8, 3) be the corresponding
standard fibered solid torus, given by the identification (D2 × [0, 1])/ ∼
where D2 × {0} ∋ (z, 0) ∼ (e

3π
4
iz, 1) ∈ D2 × {1}.

Let x ∈ D2 be given. If x = 0, then the line {0} × [0, 1] in D2 × [0, 1]

descends to the central fiber of T (8, 3). Otherwise, let x1 = x and let
xj+1 = e

3π
4
ixj , for j ∈ N. Then x9 = x1 and the union of the eight lines

{xj}× [0, 1], j = 1, 2, . . . , 8, descend to T (8, 3) as one fiber, that intersects
any of the meridianal disks D2 × {t} in T (8, 3) eight times.

Figure 3.2: xj is the intersection of the fiber with the disk after j − 1 turns.

In the torus T (p, q), p is called the multiplicity of the central fiber.
When p > 1, we say that the central fiber is singular, because this fiber
goes around the solid torus one time, while all the other fibers go around
p times. Otherwise, the central fiber is called regular.

Having defined the structure of the standard fibered solid torus, we
will next present the concept of a Seifert Fibered space in the context of
orientable 3-manifolds.

Definition 3.3. A Seifert fibered space is an orientable 3-manifold M that
admits a decomposition into circles (called fibers) such that each fiber ad-
mits a neighborhood U that is the union of other fibers and U is isomorphic
(as a fibered space) to a standard fibered solid torus. A fiber of a Seifert
fibered space is called regular if it admits a neighborhood isomorphic (as a
fibration) to the trivial fibered solid torus. Otherwise, it is called singular.
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We notice that the same manifold M may admit more than one dis-
tinct decomposition by circles. Hence, whenever we say that M is a Seifert
fibered space, we are assuming that the circle decomposition is fixed. We
also observe that there are manifolds which do not admit any such decom-
position, such as open simply connected spaces, see [47, 48].

Example 3.4. Let C = [0, 1]× [0, 1]× [0, 1] be a solid cube and let C be
the 3-manifold obtained by identifying the opposite sides of C as follows
(see Figure 3.3):

(0, y, z) ∼ (1, y, z) (left to right), (x, 0, z) ∼ (x, 1, z) (front to back),

(x, y, 0) ∼ (1− x, 1− y, 1) (top to a 180◦ rotation of the bottom).

Figure 3.3: Identifications of the cube constructing the Seifert fibered space of
Example 3.4.

We may see that the closed, orientable 3-manifold C is a Seifert fibered
space. Indeed, C admits a decomposition in circles that arise from the
vertical lines in C, joining the top side to the bottom side of C. In the
remainder of this example, we will let I(x,y) ⊂ C denote the equivalence
class of the vertical segment {(x, y, t) | t ∈ [0, 1]} ⊂ C and we will let γ(x,y)
denote the respective fiber in C that contains I(x,y). We have that, for all
(x, y) ∈ [0, 1] × [0, 1], γ(x,y) = I(x,y) ∪ I(1−x,1−y) = γ(1−x,1−y) is a regular
fiber with the following four exceptions, each of which has a neighborhood
isomorphic to T (2, 1) (see Figure 3.4).
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• γ(0,0) = γ(1,0) = γ(1,1) = γ(0,1), which comes from I(0,0) = I(0,1) =

I(1,1) = I(1,0);

• γ(0,1/2) = γ(1,1/2), which comes from I(0,1/2) = I(1,1/2);

• γ(1/2,0) = γ(1/2,1), which comes from I(1/2,0) = I(1/2,1);

• γ(1/2,1/2), which comes from I(1/2,1/2).

Figure 3.4: Identification of a neighborhood of γ(1/2,1/2) in C and T (2, 1).

A fundamental result by Epstein [17] is that in the context of 3-
manifolds, a foliation by circles is equivalent to being a Seifert fibered
space.

Theorem 3.5 (Epstein). If M is a compact 3-manifold that admits a
foliation by circles, then M has the structure of a Seifert fibered space.

The topology of a Seifert fibered space can be understood in terms
of the way the fibers lie in the manifold. In this sense, we introduce the
definition of a Seifert fibration and of the base space of a Seifert fibered
manifold.

Definition 3.6 (Seifert fibration). Let M be a 3-dimensional Seifert
fibered space and let X be the topological space obtained by collapsing
each fiber of M to a point. More precisely, X is the quotient of M by the
equivalence relation x ∼ y if and only if x and y are in the same fiber of
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M. We say that X is the base space for M. Furthermore, if π is the map
π : M → X that maps a point x in a given fiber of M to the equivalence
class [x] ∈ X, we say that the triple (M, X, π) is the Seifert fibration of
M.

One of the most important properties of X as above is that it admits
a structure of a good orbifold, where each singular fiber of M becomes a
cone point in X and π : M → X is a fibration in the orbifold sense. With
that in mind, we will say that X is the base orbifold of M.

Proposition 3.7. Let M be a 3-dimensional Seifert fibered space and let
(M, X, π) be the Seifert fibration of M. Then, X admits the structure of
a good orbifold.

A rigorous proof of Proposition 3.7 can be found in [46, Chapter 3].
We next present a pictorial description of this good orbifold structure.

Idea of the proof of Proposition 3.7. Let M be a Seifert fibered space with
respective Seifert fibration (M, X, π). Let x be a point in X with respec-
tive fiber S = π−1({x}) ⊂ M. Then, S admits a neighborhood V , com-
posed by fibers, that descends to a a neighborhood U of x in X. First,
assume that V is isomorphic to a standard fibered solid torus T (p, q).
Then, if p = 1, U is diffeomorphic to the disk D and if p > 1, U is iso-
morphic to a neighborhood of the cone point in the orbifold R2/Zp. On
the other hand, if V is isomorphic to a standard fibered Klein bottle, X
will be an orbifold with nonempty boundary and U is double-covered by
D with a Z2−action, being a neighborhood of a line of reflection.

Example 3.8. Let C be the Seifert fibered space given by Example 3.4.
Next, we will show that the base orbifold X of C is the pillowcase orbifold
of Example 2.10. The fibers of C are parameterized by (x, y) ∈ [0, 1]×[0, 1],
so the quotient of [0, 1]× [0, 1] by the identifications (x, y) ∼ (1−x, 1−y),
(x, 0) ∼ (x, 1) and (0, y) ∼ (1, y) give the structure of X. It is not difficult
to see that this structure is the same as D = [0, 1]× [0, 1/2], glued along its
boundaries by (0, y) ∼ (1, y), (x, 0) ∼ (1−x, 0) and (x, 1/2) ∼ (1−x, 1/2)
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Figure 3.5: The domain D with the respective identifications along its boundary.
The points x1 (representing γ(0,0)), x2 (representing γ(1/2,0)), x3 (representing
γ(0,1/2)) and x4 (representing γ(1/2,1/2)) are the four cone points of the orbifold X,
each of which comes from a singular fiber of C.

(see Figure 3.5), showing that X is topologically a sphere with four cone
points which is the pillowcase orbifold.

3.1.1 Classification and the Euler number

As seen previously, we may interpret a Seifert fibered space as a fibra-
tion over an orbifold where the fibers are all diffeomorphic to S1. Along
this section, we will follow the construction of A. Hatcher [24, Section 2.1]
to present a classification (up to isomorphisms6) of Seifert fibered spaces
and introduce a topological invariant called the Euler number. This invari-
ant will be useful both for distinction of Seifert fibered spaces and also for
identifying existence of horizontal surfaces (see Definition 3.13) on closed
Seifert fibered spaces.

We start this discussion by presenting a general construction of a Seifert
fibered space.

Let S be a compact surface (S is either orientable or non orientable, and
has possibly nonempty boundary). For a given n ∈ N, let D1, D2, . . . , Dn

6We say that two Seifert fibrations (M1, X1, π1) and (M2, X2, π2) are isomorphic if
there exists a diffeomorphism φ : M1 → M2 that carries the fibers of π1 to the fibers
of π2.
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be a pairwise disjoint collection of closed disks in the interior of S and let
S′ be the closure of S \ (D1 ∪ . . . ∪Dn), so S′ is a compact surface with
nonempty boundary. Let M ′ be the total space of the orientable circle
bundle over S′. Specifically, if S′ is orientable, M ′ = S′ × S1. Otherwise,
M ′ = S′×̃S1 can be defined as follows. Let S′ be given by an identification
of pairs ai, bi of oriented arcs in the boundary of a topological closed disk
D (see the example in Figure 3.6). Then, M ′ can be obtained from D×S1

by identifying the surfaces ai×S1 and bi×S1 via the product of the given
identification ai ∼ bi with either the identity or a reflection in the S1

factor, whichever makes M ′ orientable. In particular, M ′ is compact and
each boundary component of M ′ has the topology of a 2-torus.

The construction presented above allows us to see the circle bundle
π : M ′ → S′ as the double of an [0, 1]-bundle, thus, there exists a well
defined global cross section σ : S′ → M ′, i.e., σ is a continuous function
and π(σ(x)) = x for all x ∈ S′. Next, we will make use of σ, together
with an orientation on M ′, to obtain a well-defined notion of slopes7 for
nontrivial simple closed curves in the boundary components of M ′. Fix T
a component of ∂M ′ and let m = σ(σ−1(T )). Since σ−1(T ) is a boundary
component of S′, m is a nontrivial closed curve in T . Now, choose any
p ∈ m and consider the fiber over p, l = π−1({p}). Once again, l is a
nontrivial closed curve in T and, since σ is a cross section of π, m∩l = {p}.
Moreover, the curves m and l (which are also known as natural curves for
T , see Figure 3.7) generate π1(T, p). Then, there exists a diffeomorphism
φ : T → S1×S1 such that φ maps m to S1×{0} (a slope 0 curve) and l to
{0} × S1 (a slope ∞ curve). For simplicity, when we talk about the slope
r
s of a given curve, we are assuming that r and s are co-primes.

The next step in our construction of a Seifert fibered 3-manifold is to fill

7Recall that the 2-torus T2 = S1 ×S1 has universal covering map defined by (x, y) ∈
R2 7→ (e2πxi, e2πyi), and that a line {y = αx} ⊂ R2 descends to T2 as a simple closed
curve cα ⊂ T2 if and only if α ∈ Q. We may also extrapolate this definition to allow the
curve {x = 0} to be seen as the α = ∞ case. Moreover, using this model, a nontrivial
simple closed curve in T2 is always isotopic to a unique curve cα as defined above, for
some α ∈ Q ∪ {∞}, and the number α is defined as the slope of the curve.
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Figure 3.6: Let S′ be the Klein bottle with one disk removed. Then, S′ can
be constructed from a topological disk D (highlighted in the above figure) by
identifying the oriented arcs a1 ∼ b1, a2 ∼ b2 and a3 ∼ b3. Note that c1 and c2 are
not identified other than by its shared endpoints with the arcs a1, b1, a2 and b2.

the boundary components of M ′ that are generated from ∂D1, . . . , ∂Dn

by attaching solid tori to them. By an abuse of notation, in the remainder
of this construction when we choose a boundary component of M ′ we will
assume, without further comments, that it is one of the n components we
just described. Note that for each such component, there are infinitely
many ways of doing such a gluing, which is called a Dehn filling. Let T be
a boundary component of M ′ with natural curves m and l as defined in
the previous discussion. Then, after choosing orientations, (m, l) provides
a positively oriented basis for the first homology group H1(T,Z) and the
curve with slope r

s , defined as γ = rl + sm is prime, in the sense that it
is not a multiple kγ′ (in homology) of another curve γ′ unless |k| = 1 and
γ′ = ±γ.

Definition 3.9. The Dehn filling of T generated by r
s ∈ Q is the unique

(up to homeomorphism) manifold generated by gluing a solid torus D×S1

to T by its boundary in such a way that the boundary of the meridianal
disk D× {0} is glued (by a diffeomorphism) to a curve of slope r

s in T . In
other words, the Dehn filling of T determined by r

s glues a solid torus to
T , making the curve rl+ sm (and therefore any of its multiples) trivial in
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Figure 3.7: The natural curves m and l on a torus boundary component T of a
Seifert fibered space.

homology.

Let M1 be the manifold obtained by performing a Dehn filling gener-
ated by a slope r1

s1
in a torus boundary of M ′. Then, the circle bundle over

M ′ extends naturally to a circle bundle over M1, since the fibers (slope ∞)
are not isotopic to meridian circles in the attached D×S1. Intuitively, the
Dehn-filling as above glues a neighborhood with the structure of a T (s1, r1)
fibered solid torus to the original Seifert fibration of M ′. In particular, the
base space of the new fibration has the structure of an orbifold (possibly
with boundary) which has one cone point of multiplicity s1 (if s1 = 1, the
fiber is regular).

The above observation that the original circle bundle M ′ → S′ ex-
tended after performing one Dehn filling in one boundary component of
M ′ allows us to repeat the process, generating the following resulting man-
ifold.

Definition 3.10. Let S be a compact surface and let r1
s1
, r2
s2
, . . . , rn

sn
∈ Q.

Then, the 3-manifold

M(S,
r1
s1
,
r2
s2
, . . . ,

rn
sn

)
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is the resulting Seifert-fibered space after performing n Dehn fillings with
slopes ri

si
on the boundary components of M ′ as previously described.

Note that, by construction, M(S, r1
s1
, r2
s2
, . . . , rn

sn
) has a Seifert fibration

over the orbifold (S, x1, ..., xn), where each xi is a cone point in S with
multiplicity si. There are several questions regarding this construction,
and we expect the next proposition to answer many, if not all of them. A
proof of it can be found in Hatcher [24, Proposition 2.1].

Proposition 3.11. Using the notation introduced by Definition 3.10, the
following hold:

1. Every compact, orientable Seifert fibered 3-manifold is isomorphic to
one of the models M(S, r1

s1
, r2
s2
, . . . , rn

sn
).

2. M(S, r1
s1
, r2
s2
, . . . , rn

sn
) is isomorphic to M(S, r1

s1
, r2
s2
, . . . , rn

sn
, 0).

3. M(S, r1
s1
, r2
s2
, . . . , rn

sn
) and M(S, − r1

s1
, − r2

s2
, . . . , − rn

sn
) are related by

a change of orientation.

4. M(S, r1
s1
, r2
s2
, . . . , rn

sn
) is isomorphic to M(S,

r′1
s′1
,
r′2
s′2
, . . . , r′n

s′n
) by an

orientation preserving diffeomorphism if and only if the following
two conditions hold:

(a) After a permutation of indices, it holds, for all i ∈ {1, 2, . . . , n},
ri
si

≡ r′i
s′i
mod 1.

(b) If ∂S = ∅,
n∑

i=1

ri
si

=

n∑
i=1

r′i
s′i

.

Proposition 3.11, together with the construction of Definition 3.10,
gives a complete classification of Seifert fibrations, up to isomorphisms.
We note that, in order to obtain a classification of Seifert fibered spaces
up to diffeomorphisms, more work still needs to be done, since there are
diffeomorphic Seifert fibered spaces which are not isomorphic as Seifert
fibrations (in other words, there are manifolds with more than one Seifert
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fibration structure). For such a classification, we suggest [32, Chapter 10]
or [24, Theorem 2.3].

We are now ready to define an invariant of a Seifert fibration, which is
the Euler number. Note that this invariant is well defined by item 4b of
Proposition 3.11.

Definition 3.12 (Euler number). Let η be a Seifert fibration given by
M(S, r1

s1
, r2
s2
, . . . , rn

sn
) with a closed, orientable total Seifert fibered space

M. Then, the Euler number of η is

e(η) =

n∑
i=1

ri
si
.

Intuitively, other than being helpful for distinguishing Seifert fibra-
tions, the Euler number measures how far we are from obtaining a section
for the respective fiber bundle. The next definition (and the following
Proposition 3.14) make this intuition precise.

Definition 3.13. Let M be a compact Seifert fibered space (together with
a Seifert fibration) and let Σ ⊂ M be a closed surface embedded in M.
We say that Σ is vertical if it is a union of regular fibers (in this case, Σ is
either a torus or a Klein bottle whose projection over the base orbifold X
is a simple closed curve in the complement of the cone points of X). On
the other hand, we say that Σ is horizontal if Σ is everywhere transverse
to the fibers.

A proof to Proposition 3.14 can be found in [24, Proposition 2.2].

Proposition 3.14. Let M be a compact, orientable Seifert fibered space
with respective Seifert fibration η. Then:

1. If ∂M ≠ ∅, then there exists a horizontal surface in M.

2. If ∂M = ∅, then there exists a horizontal surface in M if and only
if e(η) = 0.
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3.2 Decomposition of 3-manifolds

Having defined the concept of a Seifert fibered space, we are able to
present some of the main developments of the theory of 3-manifolds before
geometrization. The natural path for understanding any mathematical
object is to try to break it up into simpler pieces, and that was firstly
obtained using the concept of connected sum (see Definition 2.6). Note
that the 3-sphere S3 acts as the neutral element for the connected sum
of 3-manifolds, since for any 3-manifold M , the connected sum M#S3 is
diffeomorphic to M .

Definition 3.15. A 3-manifold M is called prime if any connected sum
M = M1#M2 is trivial in the sense that either M1 or M2 is the 3-sphere
S3.

Note that if a 3-manifold M is not prime, then there exists a decompo-
sition of M in a nontrivial connected sum M = M1#M2. In particular,
there is an embedded topological 2-sphere S ⊂ M that separates M into
two regions, one diffeomorphic to M1 \ B3 and another diffeomorphic to
M2 \ B3, where B3 represents the 3-ball. Thus, we may introduce the
closely related notion of an irreducible manifold as follows:

Definition 3.16. We say that a 3-manifold M is irreducible if any em-
bedded 2-sphere in M is the boundary of a 3-ball in M.

It is straightforward to see that if M is irreducible, then M is prime.
The converse does not hold, since for a given p ∈ S1, the sphere S2 × {p}
does not bound any 3-ball in the prime 3-manifold S2×S1. But in fact, the
only closed, orientable prime 3-manifold that is not irreducible is S2 × S1.

The next result, due to Kneser [29] and Milnor [36], establishes that
any closed orientable 3-manifold admits a unique decomposition by prime
factors.

Theorem 3.17 (Kneser-Milnor). Let M be a closed, oriented 3-manifold.
Then, there are closed, oriented, prime 3-manifolds M1, M2, . . . , Mk
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such that M is homeomorphic to the connected sum M1#M2# . . .#Mk.
Furthermore, the nontrivial factors in this decomposition are unique up to
reordering and orientation-preserving diffeomorphisms.

Although Theorem 3.17 cuts a closed, oriented 3-manifold along spheres,
providing a standard decomposition over prime factors (and thus along ir-
reducible and S2 × S1 factors), it is not sufficient to understand the topol-
ogy of 3-manifolds, since even restricting to irreducible, closed, oriented
3-manifold, this classification is not an easy task. Another step towards
this goal was to obtain another standard decomposition, by the (in some
sense) second simplest topology of a surface, which is the decomposition of
any irreducible, closed and orientable 3-manifold along tori. This decom-
position (which will be presented in Theorem 3.22 below) is called the JSJ
decomposition, an acronym to the names of the researchers that proved
its existence: Jaco-Shalen [26] and Johannson [27]. Before presenting the
statement of this decomposition, we need a few extra definitions.

Definition 3.18. Let M be a compact 3-manifold and let S be a surface
properly embedded8 in M. A compression disk D for S is an embedded
disk in M which intersects S transversely, and such that ∂D = D∩S does
not bound a disk in S. Furthermore, if S admits a compression disk, we
say that S is compressible, and if S is not compressible and not a 2-sphere,
we say that S is incompressible.

In some sense, the next definition gives the equivalent definition of a
prime 3-manifold in the context of a torus decomposition.

Definition 3.19 (Atoroidal manifold). Let M be a compact 3-manifold
with empty or toroidal boundary. We say that M is atoroidal (or homo-
topically atoroidal) if any (immersed) incompressible torus is homotopic
to a component of ∂M.

Closely related to the notion of atoroidal manifolds is the following
definition.

8In this setting, we say that S is proper if S is compact and ∂S = S ∩ ∂M .
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Figure 3.8: Let X be a pair of pants, i.e. X = D \ {p1, p2} is the open disk,
punctured twice. Then, the manifold M = X × S1 is geometrically atoroidal
(since any torus in D × S1 separates) but not homotopically atoroidal, since the
torus γ × S1, where γ is the curve depicted above, is incompressible and not
boundary-parallel. However, M is a small Seifert fibered space.

Definition 3.20 (Geometrically atoroidal manifold). Let M be a compact
3-manifold with (possibly empty) toroidal boundary. We say that M is
geometrically atoroidal if any embedded, incompressible torus is isotopic
to a component of ∂M.

Remark 3.21. Any atoroidal manifold is geometrically atoroidal. How-
ever, the converse does not hold, as it is easy to see by the example of
Figure 3.8. Nonetheless, it is true that if M is a compact 3-manifold with
(possibly empty) toroidal boundary and M is geometrically atoroidal, then
M is atoroidal unless it is a small Seifert fibered space, in the sense that it
is a Seifert fibered space and the base orbifold has genus zero and the num-
ber of cone points, together with the number of boundary components, is
at most three.

Having defined the concepts of a Seifert fibered space and of an atoroidal
manifold, we may now present the JSJ decomposition theorem.
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Theorem 3.22 (JSJ decomposition). Let M be an irreducible, compact
and orientable 3-manifold with empty or toroidal boundary. Then, M
admits a (possibly empty) pairwise disjoint collection T1, T2, . . . , Tn of
embedded, incompressible tori that separate M into components, each of
which is either atoroidal or Seifert fibered. Furthermore, any collection of
such tori with the minimal number of elements is unique, up to isotopy.

Theorem 3.22 gives a good reason for we to work with incompress-
ible tori, since using this concept avoids artificial decompositions such as
cutting S3 by some knotted torus, separating it into a component that is
a solid torus and another component a knot complement (we will revisit
knot complements in Section 4).

After the JSJ decomposition, the next step in order to classify the
topology of 3-manifolds was to understand atoroidal and Seifert fibered
compact 3-manifolds with (possibly empty) toroidal boundary that ap-
peared in a finer version of the JSJ decomposition (see Remark 3.27 in
Section 3.3). However, this was not an easy task, as it is easy to as-
sume because the Poincaré Conjecture, which arguably dealt with the
simplest possible topology among 3-manifolds, was still open and would
play a definite role on this subject. The next step towards this goal was
given by Thurston, which put the Poincaré Conjecture as a particular
case in a broad context, by understanding that that geometrization could
be achieved for toroidal decompositions for 3-manifolds. We remark that
there are several equivalent (but perhaps not so easily seen as being equiv-
alent) statements of the geometrization in the literature, and we will focus
in presenting the ones that appear more geometric.

3.3 Geometrization of 3-manifolds

The history of geometrization actually starts with Henri Poincaré,
which, after proving the Uniformization theorem (Theorem 2.7, also known
as the geometrization for surfaces), developing several important tools for
geometry and topology, such as homology, homeomorphism and fundamen-
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tal group, started to wonder whether homology could be sufficient to char-
acterize a topology (the answer is no, as Poincaré himself answered with his
example of a homology sphere), generating, in this process, the Poincaré
Conjecture. But it was William Thurston that was able to tackle the
problem of bringing the geometrization for 3-manifolds. In fact, Thurston
proved several results concerning geometrization of 3-manifolds, including
the fact that there are 8 maximal model geometries (see Definition 3.23
below) of dimension 3 that admit compact quotients, and the geometriza-
tion itself for a broad class of 3-manifolds. For his groundbreaking work,
he was awarded with a Fields medal in the ICM held in Warsaw, Poland,
19829.

Definition 3.23 (Model geometry). A geometry X is a pair (X,G) where
X is a simply connected manifold and G is a Lie group acting on X tran-
sitively, via diffeomorphisms, and with compact isotropy10 groups. When
the group G is maximal with respect to all Lie groups acting on X transi-
tively, via diffeomorphisms and with compact isotropy groups, X = (X,G)

is called a model geometry11. We say that two geometries (X,G) and
(X ′, G′) are equivalent if there exists a diffeomorphism X → X ′ that maps
the action of G to the action of G′.

Geometrically, a model geometry can be seen as a simply connected
homogeneous manifold X, together with the action of its full isometry
group ISO(X), and two geometries are equivalent if the corresponding
Riemannian manifolds are isometric. Using this point of view, we say that
a manifold M has a geometric structure modelled over a geometry X =

(X, ISO(X)) if M admits a Riemannian metric such that its Riemannian
universal covering is isometric to X, and we say that such a geometric

9Actually, due to the introduction of the Martial Law in Poland in December 1981,
the conference was postponed until 1983.

10If G is a group acting on a manifold X, for each x ∈ X the isotropy group over x

is the stabilizer subgroup Gx = {g ∈ G | gx = x}.
11Note that if (X,G) is a geometry that is not maximal, it can always be extended

to a model geometry (X,G′).
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structure is complete if this metric over M is complete. Next, we present
a more rigorous, group-theoretical, definition for a geometric structure.

Definition 3.24 (Geometric structure). Let M be a manifold. We say
that M admits a geometric structure over a geometry X = (X,G) if there
exists a diffeomorphism between M and X/Π, where Π is a discrete sub-
group of G acting freely on X.

Using the concepts of a model geometry and of a geometric structure,
we notice that Theorem 2.7 has the following interpretation.

Theorem 3.25 (Geometrization of surfaces). Let S be an orientable,
closed surface. Then, S admits a geometric structure over a model ge-
ometry X. Furthermore, if g is the genus of S, it holds that g = 0 if and
only if X = S2, g = 1 if and only if X = R2 and g ≥ 2 if and only if
X = H2.

A consequence of Theorem 3.25 is that any closed, orientable surface is
geometrizable and that there are 3 possible model geometries (in fact, if a
manifold admits a geometric structure over a model geometry X, although
the geometric structure is not unique, the geometry is). In the context
of 3-manifolds, it is not difficult to find examples of closed, orientable
3-manifolds that do not admit any geometric structure; for instance, a
nontrivial connected sum M1#M2 does not admit a geometric structure,
with the unique exception of RP3#RP3.

But even among orientable, closed irreducible 3-manifolds we may find
examples that do not admit a geometric structure12. Therefore, we need
to consider a further decomposition to obtain geometrization. The natural
context to do so is to attempt to show that the pieces that appear in the
JSJ decomposition of an irreducible closed 3-manifolds (Theorem 3.22),

12Let M1 and M2 be compact, irreducible 3-manifolds with both ∂M1 and ∂M2

diffeomorphic to a 2-torus T . In comparison to the connected sum, we may choose a
gluing diffeomorphism φ : ∂M1 → ∂M2 to obtain a 3-manifold M = (M1∪M2)/(∂M1 ∋
x φ(x) ∈ ∂M2). Depending on φ and on M1, M2, it holds that M will be irreducible
and not geometrizable.
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which are compact manifolds with toroidal boundary, are geometric. More
precisely, we have the following definition.

Definition 3.26. Let M be a compact 3-manifold with (possibly empty)
toroidal boundary. We say that M is geometric if int(M) admits a com-
plete geometric structure of finite volume.

As explained above, the main goal of the geometrization is to obtain
a standard decomposition of an orientable, irreducible, closed 3-manifold
such that any component is geometric, and the JSJ decomposition is the
natural decomposition to start the analysis. However, there exists one
final obstacle to avert.

Remark 3.27 (Geometric decomposition). There is one special compact
3-manifold with toroidal boundary that may appear as a component of the
JSJ decomposition, which is the total space of the oriented twisted [0, 1]-
bundle over the Klein bottle13, denoted by K×̃[0, 1]. This manifold is
not geometric, although its interior admits a complete geometric flat (i.e.,
modelled over R3) structure, but of infinite volume. In order to avoid the
issue of a nongeometric component appearing in a good decomposition by
tori, if M ≠ K2×̃[0, 1] is as in Theorem 3.22 and U is one of the components
of a minimal JSJ decomposition which is diffeomorphic to K×̃[0, 1], we may
replace the torus boundary T = ∂U in the decomposition by the central
Klein bottle of U , thus generating a different decomposition for M. After
performing this procedure on each component diffeomorphic to K×̃[0, 1],
we obtain a new decomposition for M, where each component is now a
compact manifold with (possibly empty) boundary composed of tori and
Klein bottles. This decomposition (which, when minimal, is also unique
up to isotopy) is called the geometric decomposition of M, for more details
see [32, Section 11.5.3].

13Let f : T2 → K denote the oriented double cover of the Klein bottle K by the 2-torus
T2 and let σ : T2 → T2 be the nontrivial covering transformation related to f . Then,
K×̃[0, 1] is diffeomorphic to the quotient (T2 × [−1, 1])/φ, where φ : T2 × [−1, 1] →
T2 × [−1, 1] is defined as φ(x, t) = (σ(x),−t). Then, K×̃[0, 1] is orientable and has a
central Klein bottle identified with T2 × {0}/φ.
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Having defined what we mean by a geometric manifold and by the
geometric decomposition of a closed, orientable 3-manifold, we will next
present Thurston’s geometrization conjecture.

Conjecture 3.28 (Thurston, 1982 [51]). Let M be a closed, orientable
and irreducible 3-manifold. Then, the geometric decomposition of M is in
such a way that each resulting component is geometric.

The geometrization conjecture (which implies the Poincaré’s conjec-
ture, as we will see later on this section) was proved by G. Perelman on
a series of articles [41–43] posted on the ArXiv but never officially pub-
lished. For proving the Geometrization conjecture (and, consequently, the
Poincaré’s conjecture), Perelman was awarded with a Fields Medal in 2006
and with a one million dollars prize given by the Clay Institute for Math-
ematics for solving one of the so-called Millennium Problems. He refused
both prizes, and later he explained

The Fields Medal was completely irrelevant for me. Everybody understood
that if the proof is correct then no other recognition is needed.

After Perelman’s refusal on the prize, the Clay Institute used the one
million dollars dedicated for the prize to fund the Poincaré Chair at the
Paris Institut Henri Poincaré. The arguments that Perelman used in order
to prove the geometrization conjecture were deeply analytic, based on the
program proposed by R. Hamilton [21–23] using the Ricci Flow. A more
detailed version of Perelman’s arguments can be found in articles such as
B. Kleiner and J. Lott [28] or in the monographs by J. Morgan and G.
Tian [37,38].

Although Thurston was not able to prove Conjecture 3.28 in its full gen-
erality, his work completely revolutionized 3-dimensional topology. First,
we mention his classification of all possible maximal geometries which ad-
mit compact quotients.

Theorem 3.29 (Thurston [50]). Let (X,G) be a model geometry that ad-
mits a compact quotient. Then, (X,G) is equivalent to one of the eight
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geometries (X, ISO(X)), where X is one of the following Riemannian man-
ifolds:

R3, H3, S3, H2 ×R, S2 ×R, S̃L2(R), Nil3, Sol3. (3.1)

Remark 3.30. The geometries given by R3, H3, S3, H2 ×R and S2 ×R
are well-known. For completeness, we will briefly introduce the geometries
S̃L2(R), Nil3, Sol3. They are all defined as Lie groups endowed with a
left-invariant metric.

• S̃L(2,R) is the universal covering of the special linear group SL(2,R),
which is the group of 2× 2 real matrices with determinant equal to
1. The family of non-isometric left invariant metrics on S̃L(2,R) has
three parameters (which are the three nonzero structure constants
when we regard S̃L(2,R) as a unimodular Lie group, for more details
see [33, Section 2.7]). Inside this family, there is a two-parameter
family of metrics for which the isometry group has dimension four,
and when we think as S̃L(2,R) as a model geometry, we think it is
endowed with any metric in this family (for a general metric, the
isometry group will have dimension three and will not be maximal).

• The Lie group Nil3 is easily defined as the group of upper triangular
3× 3 real matrices with diagonal entries equal to one:

Nil3 =


 1 x z

0 1 y

0 0 1

 | x, y, z ∈ R

 .

Up to homotheties, there is only one left-invariant metric on Nil3,
and its isometry group has dimension four.

• The solvable group Sol3 is defined as a matrix group as

Sol3 =


 ez 0 x

0 e−z y

0 0 1

 | x, y, z ∈ R

 .
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Sol3 is the least symmetric model geometry of all, since any left-
invariant metric (it admits a 2-parameter family of them) on it gives
rise to a 3-dimensional isometry group. The left-invariant metrics
that makes this geometry maximal are the ones that admit some
planar reflections, where the full isometry group has 8 connected
components.

The eight model geometries that appear in Theorem 3.29 are presently
known as Thurston’s geometries. Note that there are infinitely many non-
equivalent model geometries that do not admit any compact quotient, but,
as we will see next, they are not relevant for geometrization of 3-manifolds.

Other than classifying 3-dimensional model geometries that admit com-
pact quotients, Thurston was able to prove Conjecture 3.28 for the follow-
ing class of manifolds.

Definition 3.31 (Haken manifold). A compact, orientable 3-manifold M
is called Haken if it is irreducible and it contains an embedded, two-sided,
incompressible surface Σ of genus g ≥ 1.

A simple consequence of Definition 3.31 is that if M is a compact,
orientable and irreducible manifold with toroidal boundary, it is Haken.
In particular, although geometrization is a result for closed 3-manifolds, a
great part of Thurston’s work was dedicated on understanding geometriza-
tion of noncompact manifolds, seen as the interior of compact manifolds
with toroidal boundaries. The geometrization theorem proved by Thurston
can be stated as follows.

Theorem 3.32 (Thurston’s geometrization theorem). Let M be a com-
pact, orientable, Haken 3-manifold with either empty or toroidal boundary
that is not diffeomorphic to D × S1, T2 × [0, 1] or to K×̃[0, 1]. Then, M
admits a geometric decomposition such that each resulting component is
geometric and modelled by one of the eight model geometries that admit a
compact quotient.

The three exceptions in Theorem 3.32 are necessary for two reasons.
First, they do not appear as components in the geometric decomposition of
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any closed, orientable 3-manifold. Secondly, they are not geometric in the
sense that any complete geometric structure in their interiors is of infinite
volume. Also, if a closed manifold M has finite fundamental group, then it
is never Haken, so Theorem 3.32 does not apply to them (and does not help
to solve the Poincaré conjecture). However, it is worthwhile mentioning
that Thurston’s geometrization theorem (and his geometrization conjec-
ture) put the Poincaré conjecture in a broad perspective, and changed the
point of view that the topologist community had on the subject. We next
quote the words of John Morgan, in his talk at the 2018 Clay Research
Conference.

[Before Thurston’s work,] there was no strong reason to believe that
Poincaré’s conjecture was either true or false. [...] But the fact that you
put the Poincaré conjecture, which was about one particular 3-manifold,
in a vast conjecture that is supposed to classify all 3-manifolds, and has
some positive evidence for it, makes you believe that you shouldn’t spend

your time looking for a counterexample.

As we already mentioned, the full geometrization theorem was proved
by Perelman, and its statement, unifying both closed (Conjecture 3.28)
and compact 3-manifolds with toroidal boundary (Theorem 3.32) in the
same result, can be read as follows.

Theorem 3.33 (Geometrization theorem, Perelman). Let M be a com-
pact, orientable, irreducible 3-manifold with either empty or toroidal bound-
ary that is not diffeomorphic to D × S1, T2 × [0, 1] or to K×̃[0, 1]. Then,
we can cut M along a finite, possibly empty collection of incompressible,
disjointly embedded surfaces, each of which either is a torus or a Klein
bottle, such that each resulting component is geometric and modelled by
one of the eight Thurston’s geometries.

While Thurston’s proof of Theorem 3.32 is mostly topological, the
proof of Theorem 3.33 when M is a closed, non-Haken manifold carried
out by Perelman is radically different, being deeply analytic. Both proofs
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are out of the scope of this manuscript, but we next present an intuitive
and superficial account of Perelman’s proof. This approach was first sug-
gested by Richard Hamilton, which defined the Ricci flow and thought
that it could be used to prove the geometrization conjecture. This flow
may intuitively be regarded as a heat flow for manifolds, but instead of
distributing temperature uniformly, it changes the metric of a manifold,
distributing curvature uniformly, hopefully converging to a stationary state
where the underlying smooth manifold now has a geometric metric. The
main difficulty on this argument is that the Ricci flow generates certain
singularities in finite time, preventing one to obtain a geometric limit,
but Hamilton visualized that the singularities, if controlled, could actually
provide the geometric decomposition of the original manifold14. Perelman,
after a deep analysis that (under some technical assumptions) classified all
possible singularities on the Ricci flow, could then perform the Ricci flow
with surgeries, controlling the topology of the original manifold where a
singularity appeared and continuing the flow past this singularity, doing
so only a finite number of times and obtaining a convergence as Hamilton
envisaged.

When a closed 3-manifold M is geometrizable, its underlying geometry
is unique (see [46, Theorem 5.2]). Moreover, it is possible to determine the
underlying geometry of M in terms of its topology. The next two theorems
provide this description. The first result deals with the 6 geometries that
give rise to Seifert fibered spaces, and classify the geometry in terms of
the Euler characteristic χ of the base orbifold and the Euler number e of
the Seifert fibration, while the second treats with the Sol3 geometry.

Theorem 3.34 (P. Scott [46, Theorem 5.3 (ii)]). A closed 3-manifold M
admits a geometric structure modelled on R3, S3, S2×R, H2×R, S̃L(2,R)
or Nil3 if and only if M is a Seifert fibered space. In this case, the relation

14In fact, the geometric decomposition is not provided by the singularities themselves,
but by components that even after rescaling are collapsing, in the Gromov-Hausdorff
sense, to a lower dimensional space with curvature bounded from below by −1.
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between the underlying geometry of M and the Euler number e and the
Euler characteristic χ of the Seifert fibration is given by the following table.

χ < 0 χ = 0 χ > 0

e = 0 H2 ×R R3 S2 ×R

e ̸= 0 S̃L2(R) Nil3 S3

Theorem 3.35 (P. Scott [46, Theorem 5.3 (i)]). A closed 3-manifold M
admits a geometric structure modelled in Sol3 if and only if M is finitely
covered by a torus bundle15 over S1 with hyperbolic identification map.

Together, Theorems 3.34 and 3.35 provide a complete classification of
a closed, geometric 3-manifold M in terms of its topology: if M is a
Seifert-fibered space, the underlying geometry is one of the Seifert fibered
geometries of Theorem 3.34. If M is finitely covered by a torus bundle
with hyperbolic identification map, it is modelled by Sol3. Otherwise, the
underlying geometry is H3.

Another result that classify the underlying geometry of a geometric 3-
manifold in terms of its topology (in some sense extending Theorems 3.34
and 3.35) is the following Theorem 3.36, which can be found in [6, Sec-
tion 1.8] or as [32, Proposition 12.8.3]. It makes use of the following nomen-
clature: if P is a certain group property, we say that a group G is virtually
P if G admits a finite index subgroup that satisfies the property P .

Theorem 3.36. Let M be a closed, orientable 3-manifold modelled by a
geometry X. Then, the following hold:

• If π1(M) is finite, then X = S3. In this case, M is finitely covered
by S3 and has a structure of a Seifert fibered space with χ > 0 and
e ̸= 0.

15Let T2 be the 2-torus and let f : T2 → T2 be a orientation preserving homeomor-
phism. The torus bundle generated by f is the 3-manifold M(f) = (T2 × [0, 1])/ ∼,
where ∼ is the identification T2 × {0} ∋ (x, 0) ∼ (f(x), 1) ∈ T2 × {1}.
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• Otherwise, if π1(M) = Z or D∞, then X = S2 × R. In this case,
M is either S2 × S1 or RP3#RP3, so it has a structure of a Seifert
fibered space with χ > 0 and e = 0.

• Otherwise, if π1(M) is virtually Z3, then X = R3. In this case, M is
finitely covered by T 3 = S1× S1× S1 and has a structure of a Seifert
fibered space with χ = 0 and e = 0.

• Otherwise, if π1(M) is virtually nilpotent, then X = Nil3. In this
case, M is finitely covered by a torus bundle with nilpotent mon-
odromy, and has a Seifert fibered structure with χ = 0 and e ̸= 0.

• Otherwise, if π1(M) is solvable, then X = Sol3. In this case, M (or
a double cover) is a torus bundle with Anosov monodromy and M
does not admit a Seifert fibered structure.

• Otherwise, if π1(M) is virtually a product Z × F , where F is non-
cyclic and free, then X = H2×R. In this case, M is finitely covered
by Σ×S1, Σ a surface with χ(Σ) < 0 and M admits a Seifert fibered
structure with χ < 0 and e = 0.

• Otherwise, if π1(M) is a nonseparable extension of a noncyclic free
group F by Z, then X = S̃L(2,R). In this case, M is finitely covered
by an S1 bundle over a surface Σ with χ(Σ) < 0 and M admits a
Seifert fibered structure with χ < 0 and e ̸= 0.

• Otherwise, then X = H3. In this case, M is atoroidal and does not
admit a Seifert fibered structure.

An important observation is that when we are classifying the under-
lying geometry of a geometric 3-manifold, the hyperbolic case is always
the otherwise case. In fact, the two most difficult steps into proving ge-
ometrization in its full generality were the elliptization conjecture and the
hyperbolization conjecture, that dealt with the respective S3 and H3 ge-
ometries.
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Theorem 3.37 (Elliptization Theorem). Let M be a closed, orientable
3-manifold with finite fundamental group. Then M is elliptic, i.e., M
admits a geometric structure modelled by the 3-sphere S3.

Theorem 3.38 (Hyperbolization Theorem). Let M be a compact, ori-
entable and irreducible 3-manifold with (possibly empty) toroidal boundary,
M ̸= D×S1, M ̸= T2× [0, 1], M ̸= K×̃[0, 1]. If M is atoroidal and π1(M)

is infinite, then M is hyperbolic, i.e., M admits a geometric structure of
finite volume modelled by H3.

As already mentioned, Thurston proved the geometrization in the class
of Haken manifolds, and the most crucial step in his proof was to prove
Theorem 3.38 for this class of manifolds. Next, we will show how both the
hyperbolization and elliptization theorems follow from the geometrization
theorem.

Sketch of the proof of Theorems 3.37 and 3.38. Let M be a compact, ori-
entable 3-manifold that satisfies either the hypothesis of Theorem 3.37 or
of Theorem 3.38. Note that if M is closed and π1(M) is finite, M is
irreducible, and in both cases there is no Z×Z subgroup in π1(M), so the
JSJ decomposition of M, given by Theorem 3.22, must be trivial. Hence,
Theorem 3.33 gives that M is itself geometric and admits a model geome-
try E. The fact that π1(M) does not contain any Z×Z subgroup implies
directly that E is not one of S̃L(2,R), R3, H2 × R, Nil3 and Sol3 (whose
quotients always have such a subgroup). Hence, either E = S3 or E = H3.
Since a quotient of S3 has finite fundamental group while no (nontrivial)
quotient of H3 does so, this proves both theorems.

At this point, it is almost irrelevant to present (or prove) the next
statement. However, due to its beautiful and old history, we chose to do
so.

Corollary 3.39. The Poincaré conjecture is true.

Proof. Let M be a simply connected, closed, orientable 3-manifold. Then,
Theorem 3.37 implies that the total space of its universal covering is S3.
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But since π1(M) is trivial, the covering map π : S3 → M must be a
diffeomorphism.

To finish this section, we note that the Geometrization Theorem has
several deep applications not only to topology but also to differential ge-
ometry, and next we present just a few of them, in order to illustrate the
advances it made possible. First, we observe that geometrization allowed
for the solution of the so called homeomorphism problem, which asks for
an algorithm to decide if two given compact 3-manifolds are homeomor-
phic, for details see [8, Section 1.4.1]. Also the complete proof of the
Poincaré conjecture, together with previous results by Gromov-Lawson
and Schoen-Yau, made possible to obtain the topological classification of
closed 3-manifolds that admit a metric of positive scalar curvature (see,
for instance, [12] or [28]). Moreover, it also was used in the classification
of 3-manifolds with non-negative Ricci curvature [31].

4 Hyperbolization of noncompact 3-manifolds

As seen in Section 3, the richest topology of all is the one of the hy-
perbolic 3-manifolds, and a great part in the work of Thurston was to
obtain a deep understanding of the topology of such manifolds. In this
section, we will focus our attention to the hyperbolization of noncompact
3-manifolds. We will present an algorithmic characterization, equivalent
to the hyperbolization theorem, that allows us to decide whether the inte-
rior of a compact, orientable 3-manifold with nonempty toroidal boundary
admits a complete hyperbolic metric of finite volume. We will also present
a few applications of this criterion. We would like to point out that several
recent developments in the theory of hyperbolic 3-manifolds were achieved
by the works of Agol, Kahn, Markovic, Wise and many others and we sug-
gest the book [6] by Aschenbrenner, Friedl and Wilton and its extensive
list of references for aspects of hyperbolic 3-manifolds not covered in this
manuscript. We also suggest the book [7] by Benedetti and Petronio for
several classical results for hyperbolic 3-manifolds.
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4.1 Thurston’s hyperbolicity criterion

Although presently we know that among the geometries appearing on
the geometric decomposition of closed 3-manifolds, the hyperbolic geome-
try is the most prominent, until the work of Thurston very few explicit ex-
amples of noncompact hyperbolic 3-manifolds of finite volume were known.
In the words of Thurston [52], we quote:

To most topologists at the time, hyperbolic geometry was an arcane side
branch of mathematics, although there were other groups of

mathematicians such as differential geometers who did understand it from
certain points of view.

We start this section by stating a celebrated result in knot theory,
proved by Thurston, that provided infinitely many examples of hyperbolic
3-manifolds as complements of knots in S3 (recall that a knot in a man-
ifold P is the image of an embedding f : S1 → P ). Along this section,
by a hyperbolic 3-manifold we mean a noncompact, orientable 3-manifold
endowed with a complete hyperbolic metric of finite volume. Also, when
K is a subset of a 3-manifold, N(K) will denote a small, open, regular
tubular neighborhood around K and N(K) will denote its closure, when
these concepts make sense.

Theorem 4.1 (Classification of knots in S3). Let K be a knot in S3. Then,
one of the following holds (see Figure 4.1):

• K is a torus knot, i.e., there exists an ambient isotopy that maps K
to the boundary of a standard16 solid torus in S3;

• K is a satellite knot, i.e., there exists a knot K̃ in S3 such that K
is contained in a regular, tubular neighborhood around K̃, and K is
not isotopic to K̃;

16Using the model S3 ⊂ R4, a standard torus (or a unknotted torus) is any torus that
is isotopic to {(x, y, z, w) | x2 + y2 = 1

2
, z2 + y2 = 1

2
} ∼ S1 × S1.
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Figure 4.1: (a) The torus knot (2, 3); (b) A satellite knot of the knot 52; (c) An
example of a hyperbolic knot, 41

• K is a hyperbolic knot, i.e., the open manifold S3 \N(K) admits a
complete hyperbolic metric of finite volume.

Remark 4.2. The first known example of a noncompact, complete hyper-
bolic 3-manifold of finite volume was given by H. Gieseking [19] in 1912.
Such a manifold is actually nonorientable and C. Adams [1] proved that
it is the noncompact hyperbolic 3-manifold with the smallest possible vol-
ume17 V ≃ 1.0149, where V is the volume of the ideal regular tetrahedron
in H3. The first description of a hyperbolic 3-manifold as a knot comple-
ment in S3 is due to R. Riley, and it is the complement of the Figure-eight
knot, which is the double cover of the Gieseking manifold. It was proven
by Cao and Meyerhoff [11] that the Figure-eight knot complement and its
sibling manifold (which is not a knot complement in S3 but can be de-
scribed as (5, 1) Dehn surgery on the right-handed Whitehead Link), are
the two unique orientable, noncompact hyperbolic 3-manifolds with the

17Among several results about hyperbolic 3-manifolds of finite volume we are omitting
in this article is the Mostow-Prasad rigidity theorem, which states that the geometry of
hyperbolic 3-manifolds is rigid. In contrast with the case of hyperbolic surfaces, where
the same topology may admit infinitely many hyperbolic metrics, in dimension three any
diffeomorphism between two hyperbolic 3-manifolds is isotopic to an isometry. Thus,
the hyperbolic volume of a given hyperbolic 3-manifold is a well-defined topological
invariant.
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minimum volume 2V ≃ 2.0298.

Theorem 4.1 provides a great intuition of how to find noncompact
hyperbolic 3-manifolds. Let P be a closed 3-manifold and let L be a
link in P (i.e. a finite, pairwise disjoint collection of knots). Then, the
manifold M = P \N(L) is a compact 3-manifold with toroidal boundary.
Each boundary component comes from a component of the original link
L and gives rise to an end (with the topology of T2 × [0,∞)) of the open
manifold P \ N(L). Moreover, Theorem 3.38 gives us the intuition that
if the link L is sufficiently complicated, the interior of M will admit a
complete hyperbolic metric of finite volume. This intuition will be put in
a rigorous form in Theorem 4.4 below, right after a definition necessary
for its statement. Here, we will let M denote a connected, orientable,
compact 3-manifold with toroidal boundary and, once again, we will use
the nomenclature a surface Σ in M to represent a properly embedded
surface Σ ⊂ M, i.e., Σ is compact, embedded in M and ∂Σ = Σ ∩ ∂M.

Definition 4.3.

1. A sphere S in M is essential if S does not bound a ball in M.
If M does not admit any essential sphere, M is irreducible (as in
Definition 3.16).

2. A disk D in M is essential if ∂D is homotopically nontrivial in ∂M.
If M does not admit any essential disks, M is called boundary-
irreducible.

3. A torus T in M is essential if T is incompressible (as in Defini-
tion 3.18) and not boundary parallel, in the sense that it is not
isotopic to a component of ∂M. If M does not admit any essential
torus, M is geometrically atoroidal (as in Definition 3.20).

4. An annulus A is essential in M if A is incompressible, boundary-
incompressible18 and not boundary parallel, in the sense that it is

18If Σ is a surface in M, a boundary-compression disk for Σ is a disk D in M with
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not isotopic, relative to ∂A, to an annulus A′ ⊂ ∂M. If M does not
admit any essential annuli, we say M is acylindrical.

5. If M is irreducible, boundary-irreducible, geometrically atoroidal
and acylindrical, we say that M is simple.

The above definition allows us to obtain a criterion for hyperbolicity
that generates noncompact, complete hyperbolic 3-manifolds of finite vol-
ume. It follows directly from Theorem 3.38, so it is also commonly known
as the Hyperbolization theorem.

Theorem 4.4 (Thurston’s hyperbolization criterion). Let M be an ori-
entable, compact 3-manifold with nonempty toroidal boundary. Then, M
is hyperbolic if and only if M is simple.

Proof. Let M be as stated and assume that M is simple. We will show
that M satisfies the hypothesis of Theorem 3.38. First, M is irreducible by
the definition of being simple. Also, since ∂M is nonempty and toroidal,
π1(M) is infinite. Furthermore, the fact that there are no essential disks
implies that M ≠ D×S1. Since both T2×[0, 1] and K×̃[0, 1] contain essen-
tial annuli, M is neither of them. It remains to show that M is atoroidal.
By hypothesis, M is geometrically atoroidal, so the other option (see Re-
mark 3.21) is that M is a small Seifert fibered space. But since ∂M ̸= ∅,
we may use Proposition 3.11 to see that if the number of components in
∂M is one, then M admits an essential disk and if it is two or three, it
admits an essential annulus, a contradiction since M is simple.

On the other hand, assume that M is hyperbolic. Then, there exists
a complete hyperbolic metric of finite volume in int(M) and a standard
minimization argument (such as in [20] or in [16]) shows that any essential
sphere, disk, torus or annulus in M would provide a properly embedded
minimal surface in the hyperbolic metric of int(M) with nonnegative Euler

∂D = D ∩ (Σ ∪ ∂M) such that ∂D = α ∪ β, where α = D ∩ Σ and β = D ∩ ∂M are
arcs intersecting only in their endpoints, and α does not cut a disk from Σ. If Σ does
not admit any boundary-compression disk, we say that Σ is boundary-incompressible.
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characteristic. Since there are no such a surface in a hyperbolic 3-manifold
of finite volume (see, for instance, [15, Theorem 2.1] or [34, Corollary 4.7]),
M is simple.

To finish this section, we will present some examples of link comple-
ments in S3. Sometimes, we shall talk about projections of links, which is
an intuitive concept, but we suggest [2] as a first reference to the reader
interested in the topic. As in Theorem 4.1, we say that a link L in S3

is hyperbolic if S3 \ N(L) admits a complete hyperbolic metric of finite
volume.

Example 4.5 (The unknot, Figure 4.2 (a)). LetK ⊂ S3 be the trivial knot
(i.e., K is isotopic in S3 to {(x, y, z, w) ∈ S3 | x2 + y2 = 1, z = w = 0}).
Via stereographic projection, we may see that S3 \K is diffeomorphic to
R3 \ Z, where Z is the z-axis. Since R3 \ Z admits a product structure
S1 × (0,∞) × R, we can see that S3 \K is diffeomorphic to S1 × R2 and
to S1 ×D. In particular, using the coordinates of S1 ×D, we may see that
for any given p ∈ S1, {p}×D is an essential disk in S3 \K, hence K is not
hyperbolic.

Example 4.6 (The trefoil knot, Figure 4.2 (b)). If K is the trefoil knot,
K is a torus knot, hence it is not hyperbolic. Note that S3 \N(K) admits
an essential annulus. The complement of the trefoil knot was among the
first 3-manifolds (since the trefoil is the simplest nontrivial knot, in the
sense that it has the projection with the fewest possible crossings) which
Thurston attempted to endow with a complete hyperbolic metric of finite
volume, before he developed his criterion. He didn’t succeeded because it
was not possible, although he still wasn’t aware of that.

Example 4.7 (The figure-eight knot, Figure 4.2 (c)). If K is the figure-
eight knot, S3 \ N(K) is hyperbolic and its complement has a hyper-
bolic volume of approximately 2.0298. Although its hyperbolicity was
proved first by R. Riley, this was the first noncompact 3-manifold in which
Thurston could find a hyperbolic structure of finite volume.
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Example 4.8 (The Hopf link, Figure 4.2 (d)). The Hopf link L is the
union of two trivial knots C1, C2. It is not hyperbolic, since its complement
admits an essential annulus. Using the stereographic projection about a
point (say in C1) turns S3 \ C1 diffeomorphically into R3 \ Z, where Z
denotes the z−axis. In particular, S3 \ L is diffeomorphic to R3 \ (Z ∪
C), where C = {(x, y, 0) ∈ R3 | x2 + y2 = 1}, which is easily seen as
diffeomorphic to T2× (0,∞) since it admits a foliation by tori having C as
their core curves. In particular, the manifold S3 \ N(L) is diffeomorphic
to T2 × [0, 1], which can also be seen as non-hyperbolic, but this time we
go further and notice it admits not one (or two, which are easy to find
in S3 \ L) but infinitely many non-isotopic essential annuli, just take a
nontrivial curve γ in T2 and look at the annulus γ × [0, 1] in T2 × [0, 1].

Example 4.9 (Borromean rings, Figure 4.2 (e)). The Borromean rings
with three components are three disjoint, trivially embedded circles such
that each two of them are not linked (in the sense that there exists a sphere
which separates one from the other), but the three components together
are linked. It is hyperbolic, and its complement has a hyperbolic volume
of approximately 7.3277.

Example 4.10 (The (n, s)-chain, Figure 4.2 (f)). For given n ≥ 3 and
s ∈ Z, a (n, s)-chain is a link with n trivial components C1, C2, . . . , Cn in
such a way that for each i ∈ {1, . . . , n} the component Ci is linked only
with Ci−1 and with Ci+1 (where we extend our notation to allow C0 = Cn

and Cn+1 = C1), and each pair Ci and Ci+1 is linked as in the Hopf link.
Also, we add s left half twists to one of the components (if s ≥ 0, the link
is alternating, otherwise we add −s right twists to one component and the
projection of the link will no longer be alternating). It was proven by W.
Neumann and A. Reid [40] that the (n, s)-chain is hyperbolic if and only
if {|n+ s|, |s|} ̸⊂ {0, 1, 2}. In particular, a chain with 3 components is not
hyperbolic if and only if s = −1 or s = −2, a chain with 4 components
is hyperbolic unless s = −2 and any chain with 5 or more components is
hyperbolic.
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Example 4.11 (Composite knots, Figure 4.2 (g)). There is a notion of
composition for oriented knots, and a knot is called a composite knot if it
can be obtained from such an operation. A knot is called prime if it cannot
be obtained from two nontrivial knots by composition. There is a simple
characterization to identify if a knot K in S3 is a composite knot. Let S be
an embedded sphere in S3, separating S3 into two ball regions B1, B2. If
S ∩K consists of a transversal intersection in two points and the resulting
components γ1 = K ∩ B1 and γ2 = K ∩ B2 are nontrivial, in the sense
that there is no isotopy in Bi that fixes the endpoints of γi and maps γi
to S (in other words, the two pieces of K in each of B1, B2 are themselves
knotted while fixing their endpoints in S), then L is a composite. Note
that a composite knot is never hyperbolic, since the sphere S with the two
points removed provides an essential annuls in S3 \N(L).

Example 4.12 (Unlinked knots, Figure 4.2 (h)). Let K1, K2 be two dis-
tinct knots in S3. If there is an embedded sphere S that separates K1 and
K2, then the knots are not linked. Since, in this case, S is an essential
sphere to S3 \N(K1 ∪K2), the link K1 ∪K2 is not hyperbolic.

A useful tool for deciding whether a given link in S3 is hyperbolic or
not is the software SnapPy [13], which allows the user to draw a projection
of a knot or a link and computes several topological invariants (including
hyperbolic volume, if the link is hyperbolic). According to the developers,
SnapPy is a program for studying the topology and geometry of 3-manifolds,
with a focus on hyperbolic structures. It was written using the kernel of a
previous program, SnapPea, by Jeff Weeks.

4.2 Applications to knot and link complements

With a little effort, it is not difficult to obtain Theorem 4.1 from The-
orem 4.4. In fact, any complement of a torus knot will admit an essential
disk (if the knot is the unknot) or an essential annulus (the projection of
the knot to the standard torus separates it into annuli), and any satellite
knot admits an essential torus. In this section, we will present some recent
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Figure 4.2: (a) The Unknot; (b) The Trefoil knot; (c) The Figure-eight knot; (d)
the Hopf link; (e) The Borromean rings with three components; (f) An (n, s)-chain
with n = 7 and s = 3; (g) A composite knot, obtained by the composition of a
figure-eight knot and the knot 63; (h) Two knots (figure-eight knot and 63) which
are unlinked.
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Figure 4.3: Inside the 3-ball B, replacing the component C by the two components
C1, C2 preserves hyperbolicity of the complement, provided that (P \B)∩L is not
a rational tangle in a 3-ball.

results concerning hyperbolicity of link complements in 3-manifolds that
use Thurston’s hyperbolicity criterion in their proofs. These results are
based on the works of Adams, Meeks and the second author [4, 5] and al-
lowed the construction of new examples of hyperbolic 3-manifolds of finite
volume, containing totally umbilic surfaces for any admissible topology
and mean curvature.

The setting to be considered is the following. Let P be a closed 3-
manifold and let L be a link in P such that the compact manifold with
nonempty toroidal boundary M = P \ N(L) is hyperbolic (this will be
assumed throughout all the statements that follow). We consider two
moves that one can perform on L to obtain a new link L′ in P such that
the corresponding manifold M ′ = P \N(L′) will also be hyperbolic.

The first move we consider is called the chain move [4, Theorem 3.1].
Here, we start with a trivial component bounding a twice-punctured disk
in a ball B ⊂ P as in Figure 4.3, and we replace the tangle on the left with
the tangle on the right in Figure 4.3, where k is any integer. Assuming
that the (P \B)∩M is not the complement of a rational tangle in a 3-ball
(in particular this is trivially satisfied if P ̸= S3, see [2, Chapter 2]), the
result is hyperbolic. We note that there are counterexamples to extending
the result to the case where P = S3 and (P \ B) ∩M is a rational tangle
complement in a 3-ball, but they are completely classified in the appendix
of [4].

The second move is called the switch move [4, Theorem 4.1]. Suppose
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Figure 4.4: The switch move replaces the arcs g and g′ in a neighborhood of a
complete geodesic by the tangle γ1 ∪ γ2 ∪ C.

that α is an embedded arc in P that intersects L only on its two distinct
endpoints and with interior that is isotopic (in P \ L) to an embedded
geodesic in the hyperbolic metric of M . Let B be a small neighborhood
of α in P . Then B intersects L in two arcs, as in Figure 4.4 (a). The
switch move allows us to surger L and add in a trivial component as in
Figure 4.4 (b) while preserving hyperbolicity.

The proofs of the moves above follow step by step Thurston’s criterion
presented in Theorem 4.4 above. Namely, the authors analyze all possibil-
ities for an essential surface that would prevent M ′ from being hyperbolic
and show that whenever such obstruction exists, there is an obstruction
for the hyperbolicity of M as well. Together, they allowed the following
construction, which is one of the main results of [5].

Theorem 4.13 (Adams-Meeks-Ramos [5, Theorem 1.2]). A connected
surface S appears as a properly embedded totally umbilic surface with con-
stant mean curvature H ∈ [0, 1) in some hyperbolic 3-manifold of finite
volume if and only if S has finite negative Euler characteristic.

Remark 4.14. In fact, Theorem 1.1 of [5] implies that any embedded
totally umbilic surface in a hyperbolic 3-manifold of finite volume is proper.
Also, the same theorem proves that if Σ is a totally umbilic surface properly
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embedded in a hyperbolic 3-manifold of finite volume, then χ(Σ) < 0 if and
only if the mean curvature of Σ satisfies |HΣ| < 1. Thus, in some sense,
Theorem 4.13 is sharp, since it shows that any possible pair of topological
type and mean curvature H ∈ [0, 1) actually exists.

Main steps in the proof of Theorem 4.13. First, we briefly sketch the com-
plete proof of the theorem. Let S be a connected surface with finite,
negative Euler characteristic. For simplicity, we will assume that S is ori-
entable, hence S is an orientable surface of genus g with n open disks
removed, so that χ(S) = 2 − 2g − n < 0. We will construct an explicit
compact 3-manifold M with toroidal boundary that satisfies Thurston’s
conditions and where there exists an order-two diffeomorphism R with
fixed point set a properly embedded, possibly disconnected, separating
surface S ⊂ M , where one connected component Σ of S is diffeomorphic
to S (and this part of the proof is divided in cases depending on g and n).

Since the interior of M admits a complete hyperbolic metric of finite
volume, Mostow-Prasad rigidity Theorem implies that R is isotopic to an
isometry φ, which will also be an order-two diffeomorphism (since φ2 is
an isometry isotopic to the identity, hence equal to it). In particular, the
fixed point set of φ, which is itself isotopic to S and contains a compo-
nent diffeomorphic to S, is totally geodesic. After producing this explicit
totally geodesic example, we will fix H ∈ (0, 1) and use a property of the
fundamental groups of hyperbolic 3-manifolds of finite volume to construct
finite covers of int(M) where Σ lifts and there is a totally umbilic surface
ΣH , isotopic to the lift of Σ and with constant mean curvature H.

Case 1. S is an n-punctured sphere (g = 0) for n ≥ 3.

In this case, let P = S3 and let Ŝ be an equatorial sphere S2 in S3. Then,
there exists a reflection R : S3 → S3 with Ŝ = Fix(R). Consider the daisy
chain link L2n in S3 with 2n components, where every other component
lies in Ŝ and the other components are perpendicular to Ŝ in the sense
that they are invariant under R. Since 2n ≥ 6, L2n is hyperbolic by
Example 4.10. In particular, as explained above, the restriction of R to
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N = S3 \L2n is an isometry of the hyperbolic metric in N . The fixed point
set of such isometry contains n components diffeomorphic to 3-punctured
spheres and one component diffeomorphic to S.

Case 2. S is closed, i.e., g ≥ 2 and n = 0.

Consider P = S×S1 and, after identifying S1 = {(x, y) ∈ R2 | x2+y2 = 1},
let P+ = P ∩{y ≥ 0}, P− = P ∩{y ≤ 0} and let R : P → P be the reflec-
tion that interchanges P+ and P−, leaving P+∩P− = S×{(−1, 0), (1, 0)}
fixed. Both P+ and P− have the topology of S × [0, 1], so the work of
Adams et al. [3, Theorem 1.1] imply that there exists a hyperbolic link L1

in P+ such that P+ \L1 admits a complete hyperbolic metric of finite vol-
ume with totally geodesic boundary. After letting L2 = R(L1) ⊂ P− and
L = L1∪L2, it follows that the manifold P \L is hyperbolic, the reflection
R restricts to an isometry with fixed point set equal to S×{(−1, 0), (1, 0)},
providing two totally geodesic surfaces diffeomorphic to S.

Case 3. n = 1 and g ≥ 2, i.e., S is a one-time-punctured surface of genus
g ≥ 2.

Let Sg denote the closed surface of genus g and let P = Sg × S1 and L be
as in Case 2. In the hyperbolic metric of P \ L, let γ+ be a minimizing
geodesic ray joining a point in Sg × {(−1, 0)} to a point (at infinity) in
L1. Then, γ+ is orthogonal to Sg ×{(−1, 0)} and we may use R to reflect
γ+ and obtain an arc γ = γ+ ∪R(γ+) which is a complete geodesic in the
hyperbolic metric of P \L. But a small neighborhood in P of γ is a 3-ball
B which intercepts L in two arcs g1 ⊂ L1 and g2 ⊂ L2. We can choose B
so that R(B) = B and R(g1) = g2. Then, we can use the Switch Move as
described previously to replace the arcs g1 and g2 by a tangle such as in
Figure 4.4, and do so in an equivariant manner so the trivial circle C added
lies (and bounds a disk in) Sg×{(−1, 0)}. This creates a new link L′ which
is hyperbolic in P and satisfies R(L′) = L′. Furthermore, the reflection
R once again restricts to an isometry of this hyperbolic metric and the
fixed point set of such isometry has three components: Sg × {(1, 0)}, a
3-punctured sphere (more easily seen as a twice-punctured disk) bounded
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by C in Sg × {(−1, 0)} and the other component of (Sg × {(−1, 0)}) \ C,
which is diffeomorphic to S.

Case 4. g ≥ 2 and n ≥ 2.

This case once again follows from the previous one. Just note that in
Case 3 we created a hyperbolic link L′ in P = Sg × S1 in the ball B, and
the tangle B ∩ L′ is such that we can apply the Chain Move, again in an
equivariant manner with respect to R, and add punctures to one of the
totally geodesic surfaces in (Sg × {(−1, 0)}) \ C.

Case 5. g = 1 and n ≥ 1, so S is a torus punctured at least one time.

Since this case deals with a surface of genus 1 in a hyperbolic 3-manifold, it
is probably the most difficult to solve. Again by [3], there exists a link L1

in the interior of the compact 3-manifold P+ = T2 × [0, 1] such that P+ \
N(L1) is hyperbolic, but this time, in a distinction from Case casebase1,
the resulting hyperbolic manifold is complete, so it has no boundary and
the Chain Move does not apply directly. However, it is possible to adapt
the proof of the Chain move, together with the fact that the only obstacle
for hyperbolicity of the manifold M = (T2 × [−1, 1]) \ N(L1 ∪ R(L1)),
where R : T2 × [−1, 1] → T2 × [−1, 1] is R(x, t) = (x,−t), is the existence
of the essential torus T2 × {0}, to prove that the ad hoc analogous of the
Switch move to this specific setting applies. From here, the proof follows
analogously as in Cases 3 and 4, firstly obtaining a once-punctured totally
geodesic torus and then adding punctures to it using the Chain move.

The arguments in the above cases show that any admissible orientable
topology for a totally geodesic surface in a hyperbolic 3-manifold of finite
volume actually can be realized as such. Similar arguments can be done
for nonorientable topologies, see [5]. To finish the sketch of the proof of
Theorem 4.13, we need the following result, which was obtained in a series
of recent works (see [6] for an appropriate list of references).
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Theorem 4.15. Let N be a noncompact hyperbolic 3-manifold of finite
volume. Then, π1(N) is Locally Extendable Residually Finite (for short,
LERF), i.e., for every finitely generated subgroup K of π1(N) and any
finite set F ⊂ π1(N), F∩K = ∅, there exists a representation σ : π1(N) →
F to a finite group F such that σ(F) ∩ σ(K) = ∅.

The main idea to produce a totally umbilic example from a totally
geodesic one is to use the notion of a t-parallel surface. Specifically, if Σ
is a two-sided totally geodesic surface in a hyperbolic 3-manifold of finite
volume N as produced before, and Σ is oriented with respect to a unitary
normal vector field η, for any t > 0 we let

Σt = {expp(tη(p)) | p ∈ Σ}.

Then, Σt is totally umbilic and has mean curvature Ht = tanh(t). More-
over, it is not difficult to use the ambient geometry of the ends of N to
see that Σt is proper and that for small values of t > 0, Σt is embedded.
With this in mind, one can look at the first time t0 > 0 where Σt0 is not
embedded. Such t0 exists (so the first intersection point of the family {Σt}
is not at infinity) and, for some p ∈ Σ, the set {expp(sη(p)) | s ∈ [0, 4t0]}
is a closed geodesic of length 4t0, orthogonal to Σ in exactly two distinct
points (see [5, Lemma 5.2]).

The next (and last) step in the proof is to assume that tanh(t0) < H

(otherwise the theorem follows) and use that π1(N) is LERF to construct
a finite cover Π: N̂ → N where Σ lifts to a totally geodesic surface Σ̂

and there is no closed geodesic in N̂ with length less than or equal to
5 tanh−1(H). In such a manifold, for t = tanh−1(H) the corresponding
t-parallel surface to Σ̂, Σ̂t, will be a properly embedded totally umbilic
surface as promised.
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