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ABSTRACT

Machine learning (ML) is a rapidly growing field of computer science that has found many

fruitful applications in several domains, including Health. However, ML is also highly

susceptible to bias, which introduces concerns regarding their ability to inflict harm. Bias

can come from various sources, such as the design of the algorithm, the selection of data,

and the strategies underlying data collection. Thus, data scientists must be vigilant in

ensuring that the developed models do not perpetuate social disparities based on gender,

religion, sexual orientation, or ethnicity. This work aims to explore pre-training bias met-

rics to investigate the existence of bias in Health data. The metrics also analyze how pro-

tected attributes and their correlated features are distributed for the predicted class against

the target attributes, giving insight into how the trained model may produce biased pre-

dictions. Our goal is to evaluate pre-training bias metrics in three different health datasets

and assess the impact of bias on the performance of ML algorithms. Our experiments in-

volve artificially modified versions of the dataset to increase the values of the pre-training

bias metrics to favor privileged classes as well as to lower the values of these metrics to

reduce the discrepancy in the data and the risk of bias. We trained models using four

supervised learning algorithms: Logistic Regression, Decision Tree, Random Forest, and

K-Nearest Neighbors. Each algorithm was tested on six to ten different training sets with

varying random seeds to split the data in each iteration. We evaluated the performance

of the trained models using the same test sets for every dataset variation, reporting the

Accuracy and F1-Score. By analyzing pre-training metric bias and the predictive perfor-

mance of models, this study demonstrates that performance can be significantly affected

by skewed data distribution and that the performance metrics may sometimes mask the

bias incorporated by the algorithm. In some cases, classification errors may be more pro-

nounced in one group (e.g., the disadvantaged group), accentuating specific errors such as

false positives and false negatives, which may have different implications depending on

the clinical prediction problem under analysis

Keywords: Machine learning. bias. pre-training bias metrics. model evaluation. health.
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1 INTRODUCTION

Machine learning (ML) is an increasingly popular field of computer science that is

attracting a lot of interest from both students and professionals. As the volume of collected

data grows, it becomes more difficult to extract insights and detect and analyze patterns

manually or with traditional statistical methods, making ML algorithms indispensable

tools in many domains. In Health, in particular, in which data has always been a central

part of decision-making, we have witnessed a growing increase in the application of ML

algorithms to assist in the definition of diagnosis, prognosis or treatment (GHASSEMI et

al., 2020; MIOTTO et al., 2018). Applications of ML algorithms have become abundant

in most clinical fields and are expected to grow steadily due to the increasing availability

of complex health datasets, even motivating the development of guidelines specifically

aimed at communicating the development and results of ML models in Health (STEVENS

et al., 2020; NAVARRO et al., 2022).

However, the use of ML algorithms also introduces concerns regarding their abil-

ity to inflict harm, especially in sensitive domains such as Health (CHEN et al., 2021).

As the algorithms become more and more sophisticated, it also becomes more difficult

to understand exactly how the input data is being handled and how the model is learning

from it. Thus, a major concern, and also a current challenge in the field, is how to guar-

antee that the model is not introducing or perpetuating social or historical context related

to the domain that can cause the system to be subject to systematic errors in their ability

to classify subgroups of patients, estimate risk levels, or make predictions, especially in a

way considered to be unfair (CHEN et al., 2021). This phenomenon of systematic errors

is commonly referred to as bias, meaning that the decisions made by the algorithm are

skewed toward a particular group of people (MEHRABI et al., 2019).

Many real-world examples of how bias negatively affected the decisions of the

ML algorithms and perpetuated social health disparities already exist. For instance, Ober-

meyer et al. (2019) analyzed an algorithm widely used by US Hospitals and insurers to

allocate health care to patients and identified that the algorithm has been systematically

discriminating against black people. Authors found that the algorithm was less likely to

refer black people than white people who were equally sick to programms that aim to

help patients with complex health needs. Lower social economic status was also asso-

ciated with worse predictive model performance in the study conducted by Juhn et al.

(2022). According to the authors, this may be due to the fact that people with lower so-
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cial economic status usually have less comprehensive medical registers due to less access

to health care resources, which in turn may impact on the models since their predictive

success relies on data completeness and quality.

Thus, analyzing the existence of bias in the data allow scientists to identify gaps

in data collection and in the representation of specific groups of individuals and anticipate

how this bias can perpetuate to training and test sets and affect ML model development.

Moreover, bias analysis is also a useful resource to explain why a model is performing in

a specific way and probably different from expected for a particular group of individuals

with common characteristics.

One of the approaches to investigate bias is using pre-training bias metrics. If we

look deeper into the data that will be used for model development before training takes

place, we can evaluate the existence of pre-training bias with specific metrics, which will

give us an overview, or at least some insights, on how our data carries the information

about the population we are analyzing and how fair it seems to be regarding all the pos-

sible subgroups. The ideal scenario is to have a data that provides enough and equal

representation for the different subgroups that exist in the population. In health-related

applications, where a wrong diagnostic might cause harm to the individual1, it is essential

to expend extra time inspecting the data and seeking for potential biases, and understand-

ing how the underlying patterns are influencing the developed model to avoid errors that

might lead to critical and harmful issues.

Thus, this work aims to evaluate the risk of bias in Health datasets using pre-

training bias metrics and to assess the impact of pre-training bias in the performance of

supervised machine learning algorithms. We analyze four pre-training bias metrics over

three different datasets collected from different sources and related to different prediction

tasks. We train prediction models with four different ML algorithms, computing and re-

porting the pre-training bias metrics from the original dataset and also from two variations

created artificially: one intended to aggravate the existing bias and penalize more the un-

privileged or underrepresented groups, and the other intended to mitigate the existing bias

by manually balancing the distribution of the protected attribute (i.e., the sensitive char-

acteristics, such as race, gender, age, etc). We run multiple rounds of model training and

testing for each dataset, and report the average accuracy of F1-Score for each model, as

well as the values for the pre-training bias metrics calculated over the dataset variations.

Our goal is to show that in a real scenario, it is possible to evaluate the pre-training

1https://www.nytimes.com/2022/12/15/health/medical-errors-emergency-rooms.html
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bias metrics before deploying the model, and that this analysis can provide important

insights about how the model trained upon this data will perform, specially for the his-

torically unprivileged groups. We concluded that the pre-training bias metrics provided

important information for two out of the three scenarios investigated, and that the risk

for poor performance was confirmed by the results from the performance evaluation of

models. We also observed the importance of a correct understanding of the domain and

how choosing the right protected attributes to analyze can provide valuable information.

The remainder of this work is organized as follows. Chapter 2 provides the theo-

retical foundations of the work, defining the notion of bias and protected attributes, and

presenting the pre-training bias metrics and the supervised machine learning algorithms

that are used. Chapter 3 reviews previous works that aimed at identifying, mitigating or

acknowledging bias in ML models, with special interest in the Health domain. Chapter

4 explains the methodology applied in this work, presenting the details about data col-

lection, the modifications applied to data in order introduce or reduce bias artificially,

and the steps involved in model training and validation. Chapters 5 reports and discusses

our experimental results for the three datasets analyzed in this work. Finally, Chapter 6

summarize our findings and conclusions and points out directions for future works.



13

2 THEORETICAL BACKGROUND

The use of machine learning (ML) algorithms is increasingly present in our lives.

From movie recommendations to clinical prediction in healthcare, machine learning mod-

els are used to detect potential issues and guide humans in their decisions. As the use of

machine learning models increases, especially in sensitive domains such as Health, it

raises the concern regarding its ability to inflict harm due to biased data used to train the

models (CHEN et al., 2021). In this chapter, we present the definition of bias and how it

can be identified and classified. Then, we review some key concepts and the definition of

the pre-training bias metrics that are used in this work, along with an overview of each

ML algorithm used.

2.1 Definition of bias and protected attributes

Bias refers to an inclination or prejudice for or against one person or group, espe-

cially in a way considered to be unfair. In machine learning (ML), bias occurs when an

algorithm makes systematic errors due to faulty assumptions during the model develop-

ment cycle, leading to discriminatory or unjust decisions. Bias can exist in many shapes

and forms. In this work, we focus on bias that arises in the data rather than in the al-

gorithm, as existing biases in the training data can affect algorithms, leading to biased

outcomes and ultimately harming specific groups.

According to Mehrabi et al. (2019), biases that stem from data to algorithms can

be categorized into the following types:

• Measurement Bias: This bias is related to the selection, utilization, and measure-

ment of particular features. The use of unrelated features as proxies to determine

the outcome of a model may exclude certain minorities based on attributes1 that do

not define their experience.

• Omitted Attribute Bias: This bias arises when one or more essential attributes are

left out of the model.

• Representation Bias: This bias is related to how a sample is drawn from a popula-

tion during data collection. The under-representation of some groups leads to inac-

curate predictions due to a lack of information about individuals in these groups. It

1We note that the words attributes and features are used interchangeably throughout the text.
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may be caused by external factors (e.g., lack of diversity in the population used) or

the data collection method.

• Aggregation Bias: arises from false conclusions drawn about individuals from ob-

serving the entire population. When a model defines the outcome based on the

entirety of the population, not taking into consideration factors that might differen-

tiate the individual from the majority of the population, like gender and ethnicity.

• Sampling Bias: Similar to representation bias, this bias arises from non-random

sampling of subgroups. The consequence of this type of bias is that the model may

not be general enough to work for a new population.

• Longitudinal Data Fallacy: This bias arises when researchers analyze temporal

data and fail to use longitudinal analysis to track cohorts over time. Cross-sectional

analysis, which combines cohorts at a single time point, may lead to bias compared

to the longitudinal analysis.

• Linking Bias: This bias arises when network attributes are obtained from user con-

nections, activities, or interactions that differ and misrepresent the true behavior of

the users.

In Suresh and Guttag (2019), bias is defined as having five different sources:

• Historical: Bias can be caused by historical reasons as the data may be collected

at a point in time that does not reflect the current state of society, leading to biased

results.

• Representation: This bias arises from a lack of representation from a part of the

input space, similar to what was described in Mehrabi et al. (2019).

• Measurement: This bias arises from how data is measured, where sometimes prox-

ies for ideal features and labels are used. This can occur in several ways, such as

the granularity of data across different groups, the quality of data, and if the defined

classification is an oversimplification.

• Aggregation: This bias arises from the assumption that the mapping from inputs to

labels can be inconsistent across different groups.

• Evaluation: This bias arises when the benchmark data for an algorithm does not

represent the target population.

Another important concept in investigating bias is the notion of protected at-

tributes. These attributes, such as race, gender, and religion, are crucial components of a

dataset, and models should produce equitable outcomes for all groups. The determination
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of which attributes are protected is application-specific, and there is no universal rule for

identifying them. Depending on the application, it is possible to determine which group

is privileged and which is unprivileged.

2.2 Pre-training metrics for measuring bias

In this work, we use four pre-training metrics to assess bias. The definition and

formulation for these metrics are extracted from Hardt et al. (2021). In this section, we

give an overview of the pre-training metrics for measuring bias, with some examples for

each metric. The following notations are used throughout the definitions:

• facet a represents the feature value that defines a demographic that bias favors (i.e.,

the overrepresented or advantaged group)

• facet d represents the feature value that defines a demographic that bias disfavors

(i.e., the underrepresented or disadvantaged group)

2.2.1 Class Imbalance (CI)

When an attribute has little representation of a specific class or category, there

can be bias for the underrepresented group. This applies not only for the target feature

(i.e., the standard class imbalance problem), but also for predictive features used in the

modeling process. For example, if 80% of a data set has gender MALE, when predicting

for a new entry with gender FEMALE, the model might not be able to generate an accurate

prediction due to data bias introduced while training. In the equation, 2.1, na represents

the number of values in facet a and nd represents the number of values in facet d. CI

values range from -1 to 1. Positive values mean that the facet a has more representation

than facet d, with 1 meaning data only contains value on facet a. Negative values mean

the data has more representation for facet d, -1 meaning only values in facet d. An ideal

CI value is near zero, which means that both groups are equally represented in the data

set.

CI = (na − nd)/(na + nd) (2.1)
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2.2.2 Kullback-Leibler (KL) Divergence

Kullback-Leibler (KL) Divergence measures the divergence between the label dis-

tributions for two facets, a and d, represented by Pa(y) and Pd(y), respectively. However,

it is important to note that KL Divergence is not a true distance metric, as it is asymmetric

and does not satisfy the triangle inequality. The most commonly used implementation

involves using natural logarithms, resulting in KL Divergence being measured in nats.

To illustrate the concept, let’s consider a dataset related to predicting heart disease.

Suppose that for the female facet (facet d), 80% of individuals have a risk of heart disease.

On the other hand, for the male facet (facet a), only 10% of individuals have a risk of heart

disease. Since the favorable outcome is not having heart disease, facet a would have 90%

for Pa(y), while facet d would have 20% for Pd(y). Using the equation for KL Divergence

(Equation 2.2), we can calculate the KL divergence between the two distributions

KL(Pa||Pd) =
∑
Y

Pa(y) ∗ log[Pa(y)/Pd(y)] (2.2)

which, applied to our example, would result in the Equation 2.3

KL = 0, 9 ∗ Ln(0, 9/0, 2) + 0, 1 ∗ Ln(0, 1/0, 8) (2.3)

Since the label is binary, we would have two terms in the formula, but KL diver-

gence also works when the output is not binary, for example in the scenario of college

admissions, where the outcome can be Rejected, Wait-listed or Accepted. In this case,

the formula would have three terms, but the protected attribute will always be binary (it

has the privileged and unprivileged classes, general cases can have some classes as privi-

leged and the others as unprivileged). The range of values for this metric is between 0 and

+∞, with a value near zero meaning the outcomes are similarly distributed for different

facets, and a positive value means divergence, with the larger the value, the bigger the

divergence. In the example shown in Equation 2.3, the outcome would be 1.145, meaning

that for individuals with gender female, there is a divergence in distribution comparing to

the outcomes of individuals from the gender male.
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2.2.3 Kolmogorov-Smirnov (KS)

This metric is equal to the maximum divergence between labels in the distribution

for different facets of a dataset. It finds the most unbalanced label. The formula is as

follows, where Pa(y) is the number of members in facet a and Pd(y) refers to the members

in facet d:

KS = max(|Pa(y)− Pd(y)|) (2.4)

This metric can be used for multicategorical targets as well, since the number of terms in

the equation is related to the number of possible values for target y. As an example, for

the problem of predicting heart disease, in a case where 20% of women would have risk

of heart disease (facet d), and 30% of men would present the same risk, using the formula

in 2.4 we can calculate the KS as in Equation 2.5.

KS = max(|0.3− 0.2|, |0.7− 0.8|) (2.5)

KS results in values ranging between [0, +1], where values near zero indicate that

the labels are evenly distributed between the facets (in this example, if both men and

women had a 20% chance of having heart disease, the terms would all be 0). Values near

one indicate that the labels are unbalanced, with one meaning all outcomes are in one

facet (100% of women with heart disease and 0% of men with heart disease, resulting in

1− 0 in the formula term).

2.2.4 Conditional Demographic Disparity in Labels (CDDL)

This metric aims to provide information about the proportion of negative outcomes

in a specific facet of a dataset. The formula for this metric can be seen in Equation 2.6,

where n in the number of observations in the dataset, and i is for the different outcomes

in the correlated attribute.

CDDL =
1

n
∗
∑
i

ni ∗DDi (2.6)

where DDi is defined according to Equation 2.7.

DDi =
n
(0)
d

n(0)
− n

(1)
d

n(1)
(2.7)



18

For example, for the college admissions case, let’s assume that in a dataset with

20 observations, 10 men and 10 women, 50% of each group is more than 20 years old.

For men over 20 years old, 80% of them are accepted (4 men accepted, 1 man rejected),

and for the others the acceptance rate is 40% (2 approved, 3 rejected). For women over

20 years old, 60% are accepted (3 accepted, 2 rejected) and for women below 20 years

20% are accepted (1 accepted, 4 rejected). Using the formulas in Equation 2.6 and Equa-

tion 2.7, we have the result in Equation 2.8.

DDi =
1

20
∗ 10 ∗ (4

7
− 1

3
) + 10 ∗ (2

3
− 3

7
) = 0.238 (2.8)

The result for this metric ranges between [-1, +1], with 1 meaning there is no re-

jection in facet a or subgroup and no acceptance in facet d or subgroup (in the example,

subgroup means being over 20 years old). Positive values indicate there is a demographic

disparity. In our example, it indicates that the rate at which man over 20 years old are ac-

cepted are higher than the acceptance rates for women in the same subgroup. On the other

hand, negative values indicates no demographic disparity for the facet d or subgroup, as

they have higher acceptance rates than the privileged group, with -1 meaning no rejec-

tions on the unprivileged class or subgroup and no acceptance on the privileged group or

subgroup.

2.3 Supervised learning algorithms

In this work, we use four supervised learning algorithms: Logistic Regression, De-

cision Tree, Random Forest, and K-Nearest Neighbors. This section provides an overview

of each algorithm applied. Our methodology is based on algorithms implementations

provided by Scikit-learn library (PEDREGOSA et al., 2011), an open source machine

learning library for Python.

2.3.1 Logistic Regression

Logistic regression is a simple and efficient classification model for both binary

and linear classification problems. It is also known as logit regression, maximum-entropy

classification, or the log-linear classifier. This model uses a logistic function to model the

probabilities of possible outcomes (PEDREGOSA et al., 2011).
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In this model, the idea of odds can be used to represent the probability of a certain

event occurring. The odds can be defined using Equation 2.9 where p represents the

probability of a positive event (in this case 1).

p

(1− p)
(2.9)

We can then define the logit function, which is the logarithm of the odds, as in Equa-

tion 2.10.

logit(p) = log
p

(1− p)
(2.10)

Using the logit function, we can build a linear expression to represent the relationship

between feature values and log-odds, as seen in Equation 2.11.

logit(p(y = 1|x)) = w0x0 + w1x1 + ...+ wmxm =
m∑
i=0

wixi = wtx (2.11)

In Equation 2.11, p(y = 1|x) is the conditional probability that a particular example be-

longs to class 1 given its features x. Since we are interested in predicting the probability

that an example belongs to a particular class, we look at the inverse form of the logit func-

tion in Equation 2.12, which is also known as the sigmoid function due to its characteristic

S-shape.

ϕ(z) =
1

1 + e−z
(2.12)

In this equation, z is the combination of weights and the inputs, as described in Equa-

tion 2.11. The sigmoid function maps input values into a range of [0,1], with an intercept

at ϕ(z) = 0.5. To understand the execution of the linear regression, an example of the

flow can be seen in Figure 2.1.

Figure 2.1 – Example of a linear regression flow.
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Source: Adapted from Raschka and Mirjalili (2019).

The goal in the logistic regression algorithm is to find the weights (vector of values
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w) that satisfies certain criteria. In Pedregosa et al. (2011) scenario, which is used in this

work, the goal is to minimize the cost function in Equation 2.12 with regularization term

r(w).

minwC
n∑

i=1

(−yilog(p̂(Xi))− (1− yi)log(1− p̂(Xi))) + r(w) (2.13)

2.3.2 Decision Tree

Decision Trees are supervised learning algorithms that are commonly used for

both classification and regression tasks. The primary objective of this algorithm is to learn

decision rules from the available training data. However, decision trees can suffer from

overfitting, which occurs when the generated rules are too specific to the training data,

and therefore, fail to generalize well to new data. While the generated tree may perform

perfectly on the training set, any outlier data will have a significant impact, leading to

poor performance on the test set. To illustrate, Figure 2.2 shows an example of a decision

tree generated in this work, with a depth of 3.

Figure 2.2 – Example of decision tree generated for the dataset related to heart attack prediction.

Source: The Author

At each node in the tree, an attribute is selected, and the data is split based on

whether the condition is true or false, until the tree reaches the terminal nodes. For in-

stance, node #42 in the figure is a terminal node that predicts the class 0. It is worth

noting that the depth of the tree is a hyperparameter that needs to be tuned during the

model training process. A tree that is too deep may capture noise in the training data,

which can lead to overfitting, whereas a tree that is too shallow may fail to capture im-

portant patterns in the data, leading to underfitting. Thus, finding the optimal tree depth
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is crucial for achieving good performance on the test set.

Decision trees require a metric to select in which attribute we will split the tree at

a given point. In this work, we use the concept of Entropy, also known as cross-entropy or

multinomial deviance, which is equivalent to minimizing the log loss. The evaluation of

the log loss is based on Equation 2.14. Here, T is the tree model computed on the dataset

D, which comprises n pairs, and m is a node.

LL(D,T ) =
∑
m∈T

nm

n
H(Qm) (2.14)

The definition for H(Qm) can be found in Equation 2.15. Here, k is the predicted

class, Qm is the data at node m, and pmk is the proportion of class k observations in node

m.

H(Qm) =
∑
k

pmk(1− pmk) (2.15)

2.3.3 Random Forest

Random Forests are a popular ensemble method that uses Decision Trees to solve

classification and regression tasks. As Decision Trees are prone to overfitting and can be

unstable, Random Forests employ a perturb-and-combine strategy to create a collection of

trees that can combine their predictions and yield more accurate predictions on new data

(BREIMAN, 1998). In this work, we use bagging (bootstrapping and aggregation), which

involves training each decision tree in the ensemble on a sample drawn with replacement

from the training set. The implementation used in this work differs from the classic imple-

mentation, as it combines the classifiers by averaging their predictions, instead of letting

each tree vote for a single class (BREIMAN, 2001).

2.3.4 K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm is a machine learning algorithm that

can be used both for classification and regression problems. When making a prediction,

the algorithm identifies the K closest labeled data points in the training set and assigns

the label or predicts the value based on the most common label or average value among
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Figure 2.3 – Decision Boundary for the KNN algorithm

Source: The Author

those K neighbors. The algorithm establishes a decision boundary in the space such that

all points within the boundary belong to the output label that it represents. This can be

visualized in a plot by comparing two features, as shown in Figure 2.3, which presents the

decision boundary for a modified version of the Heart Attack Dataset used in this work,

based on two features (i.e., age and cp). The predicted label for any given combination of

these features is either 0 (blue) or 1 (orange), as illustrated in the plot.

To determine the K-Nearest neighbors, we need to establish the value of K, i.e.,

the number of neighbors to consider when predicting the label, and the metric used to

calculate the distance between each point. In this work, we empirically calculate the error

and accuracy for each value of neighbors, ranging from 1 to the number of samples in

the dataset to determine the optimal number of neighbors. We select the value of K that

minimizes the error and maximizes the accuracy. To compute the distance between two

points in Rq, we use the Minkowski metric (also known as p-norm) with p=2, which

corresponds to the Euclidean distance. The formula for the distance is shown in 2.16,

where x and y are two points in Rq. (KRAMER, 2013)

||x′ − xj||p = (

q∑
i=1

|(xi)
′ − (xi)j|p)1/p (2.16)
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3 RELATED WORKS

In recent years, various libraries and open-source tools have been developed to

address machine learning fairness. For instance, the AIF 360 library (BELLAMY et

al., 2018) provides different techniques to identify and mitigate bias, with over five fair-

ness metrics and support for more than ten algorithms for bias mitigation. Zehlike et al.

(2017) offers fairness metrics such as difference of means, disparate impact, and odds ra-

tio, which utilize trained data to quantify bias. FairML (ADEBAYO, 2016) uses statistical

parity to measure bias and presents its advantages and disadvantages. FairTest (TRAMER

et al., 2015) is another open-source tool that detects bias by examining the association be-

tween the model outcome and protected attributes, with eight different metrics.

Studies have shown that word embedding algorithms may encode marginalized

populations differently, perpetuating social bias. For example, Zhang et al. (2020) demon-

strated that such models associated African Americans and Blacks with prison and Whites

and Caucasians with hospital in a fill-in-the-blank style course of action. The study used

post-training metrics to verify demographic disparity and equality of opportunity, con-

cluding that biased data would generate/amplify biased results. Similarly, Júnior et al.

(2022) analyzed the COMPAS dataset on criminal recidivism, comparing the accuracy,

false and true positive and false and true negative rates for models generated using each

cohort of the original data. The study used race as a sensitive attribute and found that

the classifier was more accurate when predicting recidivism for Black people and when

predicting that it would not happen for every other ethnicity. Alelyani (2021) used a gen-

eral dataset with information about the census to detect representational bias that might

be generating inaccurate predictions for women and non-white people. They used the KL

Divergence metric to evaluate the bias, trained the model, and performed a swap on the

protected attributes to analyze the impact of the bias in the dataset. The work concludes

that data is biased by nature as it reflects the cognition of human brains. It suggests that

we should think about why we have bias in the first place and what would be the conse-

quences of swapping the privileged classes. The objective is to have interpretable models

that can justify and handle existing bias.

AI models trained on health data can be biased due to protected attributes, such

as ethnicity and race. To address this issue, various studies have explored different ap-

proaches for evaluating and mitigating bias in these models.

For instance, Noseworthy et al. (2020) evaluated the performance of a convolu-
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tional neural network trained on a dataset of different cohorts containing ethnicity and race

for protected attributes, and recommended that AI tools report the model’s performance

for diverse ethnic, racial, age and sex groups. Park et al. (2021) used disparate impact and

equal opportunity difference to assess bias in predictive models for postpartum depression

and found that bias mitigation algorithms outperformed removing the attribute that might

cause bias. Pfohl, Foryciarz and Shah (2021) analyzed two datasets and characterized the

impact of penalizing group fairness violations on model performance and group fairness

using different performance and fairness metrics. Mandhala et al. (2022) used pre-training

bias metrics to evaluate bias in models trained on three datasets, focusing on the model’s

performance and defining a function to augment data to make it balanced while reduc-

ing disparity, minimizing a loss function while maximizing the model performance, this

work found that mitigation strategies can be used improved model performance. Finally,

Fletcher, Nakeshimana and Olubeko (2021) focused on predicting pulmonary diseases

over a set of patients from India and used equality of odds to tune the model and analyze

the bias induced by the gender attribute. The study highlighted the challenges of fairness

criteria in developing countries, where there is no legal framework to regulate or enforce

discrimination prevention and economic disparities present serious obstacles to fair access

and benefits from technologies.

While related work has focused on various aspects of bias in health data, there

is a gap in the literature regarding pre-training bias metrics for this domain. Table 3.1

presents a summary of the related work. In this work, we will address this gap, evaluating

the impact of pre-training bias metrics in the performance of ML algorithms applied to

Health datasets.

Table 3.1 – Related work summary

Post-training Pre-training Health Data General Data

Zhang et al. (2020) x x
Júnior et al. (2022) x x

Noseworthy et al. (2020) x x x
Park et al. (2021) x x x

Pfohl, Foryciarz and Shah (2021) x x x
Alelyani (2021) x x

Mandhala et al. (2022) x x x
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4 METHODOLOGY

This chapter describes the methodology applied in the present work to assess the

impact of pre-training bias in ML algorithms trained with datasets from the Health do-

main. Our methodology involves the following steps:

• Collecting datasets related to the Health domain to conduct experiments;

• Adjusting bias manually to create highly unbalanced versions and equally balanced

versions of each dataset;

• Measuring pre-training bias with the metrics described in Section 4.1: class imbal-

ance, KL divergence, Kolmogorov-Smirnov and Conditional Demographic Dispar-

ity in Labels;

• Optimizing hyperparameters for the ML algorithms selected (i.e., Logistic Regres-

sion, Decision Tree, Random Forest, K-Nearest Neighbors);

• Training and evaluating the ML models using the four different algorithms and the

different versions of each dataset: the original one, the highly unbalanced, with two

variations for the Depression in Medical Students Dataset, and the equally balanced.

4.1 Data Collection

4.1.1 Intersectional-Bias Dataset

The first dataset used in this study is the Intersectional-Bias Dataset, presented in

the ACM FAccT 2022 conference (MASLEJ et al., 2022). The dataset was artificially

generated and contains demographic and clinical features that can be used to train a clas-

sifier to predict a diagnosis of schizophrenia or depression. This dataset contains two

protected attributes, race and sex. The distribution for each attribute along the different

target labels can be found in Figure 4.1. The original dataset contains 11000 instances,

with Diagnosis being the target attribute. In the dataset analysis, we see that the target

variable (Diagnosis) is highly correlated with Rumination and Tension, and Sex is highly

correlated with Rumination as well (values above 0.5). The full heatmap for this dataset

can be seen in Figure 4.2. From the original study, a False Positive is the most hurtful re-

sult (Diagnostic predicted as 1, schizophrenia), as it is agreed between clinicians that it is

better to be misdiagnosed with affective disorder than schizophrenia, so when analyzing
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this dataset we will also pay attention to the false positive rate.

Figure 4.1 – Class distribution for protected attributes in the Intersectional-Bias Dataset

Source: The Author

Figure 4.2 – Heatmap for Intersectional-Bias Dataset

Source: The Author
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4.1.2 Heart Attack Dataset

The second dataset used in the work is the Heart Attack Analysis & Prediction

Dataset extracted from Newman et al. (1998). This dataset contains 303 instances and 14

features, which are described in Table 4.1. The dataset is associated with classification

tasks, where the goal is to predict whether a patient has heart disease or not. For the

protected attribute in this dataset, we have the feature sex, with female (0) being the

unprivileged value. The heatmap for feature correlations can be found in Figure 4.3, in

which we can see that cp and thal are highly correlated with target (0.509 and 0.521,

respectively).

Table 4.1 – Features in the Heart Attack Dataset.
Type Definition

age Numeric The age of the patient in years
sex Categorical The gender of the patient (1 = male; 0 = female)
cp Categorical The type of chest pain experienced by the patient (1 = typical angina; 2 = atypical angina; 3 = non-anginal pain; 0 = asymptomatic)
trestbps Numeric The resting blood pressure (in mm Hg on admission to the hospital)
chol Numberic The serum cholesterol level of the patient in mg/dl
fbs Binary Fasting blood sugar >120 mg/dl (1 = true; 0 = false)
restecg Categoric The resting electrocardiograph results (0 = normal; 1 = having ST-T wave abnormality; 2 = hypertrophy)
thalach Numeric The maximum heart rate achieved
xang Binary Exercise induced angina (1 = yes; 0 = no)
oldpeak Numeric ST depression induced by exercise relative to rest
slope Categorical The slope of the peak exercise ST segment (1 = upsloping; 2 = flat; 0 = downsloping)
ca Numeric Number of major vessels colored by flourosopy
thal Categorical A blood disorder called thalassemia (0 = normal; 1 = fixed defect; 2 = reversable defect)
target Binary Diagnosis of heart disease (angiographic disease status) (0 =<diameter narrowing; 1 =>50% diameter narrowing)

Figure 4.3 – Heatmap for feature correlations in Heart Attack Dataset.

Source: The Author

For the protected attribute, we see that the majority of instances are related to
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Figure 4.4 – Target x Sex for Heart Attack Dataset.

Source: The Author

men: almost 70% of the total instances (i.e., 207) correspond to men, while near 30%

of the data (i.e., 96) correspond to women. We also notice that in this dataset, women

are more likely to have heart disease, with 75% of them having the target value set to 1,

against 45% of men linked to the same target value. The comparison between gender and

target is in Figure 4.4.

4.1.3 Depression in Medical Students Dataset

The third dataset used in this study is the Depression in Medical Students Dataset.

It contains personal information, university status and mental health indicators from 4840

medical students from Brazil. The dataset was collected in Marcon et al. (2020) and

further analyzed in the study by Pereira (2020), in which 43 features were used to identify

pathological patterns about the consumption of alcohol among medical students in Brazil.

For this study, we have removed some features to simplify the dataset and make it easier

to visualize the key concept we wanted to understand about the bias in the data. We used

29 features from the study conducted by Pereira (2020), which are described in Table 4.2,

and we used the diagnosis of depression (i.e., phq_diagnosis feature) as the target in our

classification models.

From the transformed dataset, we have three protected attributes: cotas, which
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Table 4.2 – Depression in Medical Students Dataset Features
Type Definition

age Numeric The age of the student in years
cotas Binary If the student used racial/economic quota in his application
gender Categorical Student gender identity (1=Female, 2=Male)
sexual_orientation Categorical Student sexual orientation (1=Heterossexual, 2=Homossexual, 3=Bissexual, 4=Other)
marital_status Binary If the student is married (1=yes, 0=no)
children Binary If the student has children
live_with Categorical Student living situation (1=Alone, 2=With parents/spouse,3=With friends/students,4=Pension/Republic)
tobacco Categorical Student tobacco use (1=Not in the last 3 months,2=Once or twice,3=Monthly,4=Weekly,5=Daily)
alcohol Categorical Student alcohol frequence of ingestion (0=Never, 1=Monthly,2=2-4 times a month,3=2-4 times a week, 4=Four+ times a week)
cannabis Categorical Student cannabis use (1=Not in the last 3 months,2=Once or twice,3=Monthly,4=Weekly,5=Daily)
cocaine Categorical Student cocaine use (1=Not in the last 3 months,2=Once or twice,3=Monthly,4=Weekly,5=Daily)
family_relations Categorical Student’s view on the relationship with their family (1=Bad,2=Regular,3=Good,4=Great,5=Excelent)
friends_relations Categorical Student’s view on the relationship with their friends (1=Bad,2=Regular,3=Good,4=Great,5=Excelent)
physical_activities Binary If the student practices physical activities
Sleep Categorical Student’s sleeping habits (1=Bad,2=Regular,3=Good,4=Great,5=Excelent)
workload Categorical Student’s current workload on college (1=Light,2=Moderate,3=Heavy,4=Very Heavy)
colleagues_relations Categorical Student’s view on the relationship with their colleagues (1=Bad,2=Regular,3=Good,4=Great,5=Excelent)
professors_relations Categorical Student’s view on the relationship with their professors (1=Bad,2=Regular,3=Good,4=Great,5=Excelent)
bullying_school Binary If the student experienced bullying in school
bullying_university Binary If the student experienced bullying in university
repeat_university Categorical Student grade retention history (1=Never,2=1 time,2=2 times,3= 3 times, 4=4 or more times)
satisfaction Categorical Student current satisfaction with their course (1=Deeply unsatisfied,2=Unsatisfied,3=Indifferent,4=Satisfied,5=Very satisfied)
change_giveup Binary If the student has ever though of giving up on college
child_abuse Binary If the student has experienced abuse in their childhood
adult_abuse Binary If the student has experienced abuse in their adulthood
phq_diagnosis Binary If the student presents a depressive disorder
suicide_ideation_life Binary If the student has ever attempted suicide
suicide_family Binary If the student has a family member who ever attempted suicide

Figure 4.5 – Heatmap for feature correlations in Depression in Medical Students Dataset

Source: The Author

indicates if the student has used social or racial quotas to enter in college, with "Yes"

being the unprivileged group, gender, with female being the unprivileged group and age,

with age below 18 years old being the unprivileged group, as the study was conducted
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related to alcohol abuse and this can be considered the age at which people are allowed to

buy alcohol in Brazil (where the study was conducted).

Moreover, this dataset does not show any high correlation between its features, as

it can be seen in the complete heatmap of Figure 4.5. Thus, we use the highest correlation

found for with the target attribute (phq_diagnosis) as the correlated attribute in CDDL,

which will be change_giveup. In the dataset, we see that 76% of the students are female

against 24% of male, but the female students in the dataset are more likely to have a

diagnosis of depression, as 65% of women belongs to the class 1, against 49% from men

with the same outcome. For the cotas attribute, almost 80% of the students have not

used the quotas’ system to get into college, and among the two classes, the proportion

of students with or without quota with the diagnosis positive is very similar (37% and

40% respectively). The analysis of class distribution for the attributes gender and cotas is

shown in Figure 4.6, and the class distribution for age can be found in Figure 4.7, showing

all ages (left) and grouping instances by ages over 18 (right).

Figure 4.6 – Class distribution for gender and cotas on Depression in Medical Students Dataset.

Source: The Author

4.2 Manual bias introduction or reduction

To generate and evaluate different effects in the trained model in terms of the

presence of bias, we manually modified the original datasets to change the representation

for each protected attribute. Modifications were made in two directions, either adding

more representation bias artificially to create a highly unbalanced dataset, or reducing

representation bias artificially to create an equally balanced dataset. To achieve that, we
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Figure 4.7 – Class distribution for age on Depression in Medical Students Dataset, showing all
ages (left) and grouped by ages over 18 or not (right).

Source: The Author

manually remove instances from the original data in order to affect the metrics results,

analyzing over the variations and the original dataset for each of the selected datasets.

Since this operation depends on the dataset being analyzed, more details will be provided

in Chapter 5, which is divided in three sections per dataset that will detail how each

dataset was transformed to introduce or reduce the bias, and then the experimental results

are shown for each transformed dataset.

4.3 Measurement of pre-training bias

The risk of bias was evaluated with the pre-training bias metrics presented in Sec-

tion 2.2: class imbalance, KL divergence, Kolmogorov-Smirnov, and Conditional De-

mographic Disparity in Labels. For Kolmogorov-Smirnov, we used the pandas profiling

tool (BRUGMAN, 2019) to find what are the correlated attributes for each dataset. The

measurement of pre-training bias was conducted for the original dataset, as well as for

the generated datasets with artificial changes aiming to create highly unbalanced and an

equally balanced datasets.

4.4 Model hyperparameters configuration

Each of the machine learning algorithms used in this work has its specific hy-

perparameters, as discussed in Section 2.3, that need to be configured. For the logistic
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regression, the maximum number of iterations was initially set to 1000, and increased at

each run to reach a limit where the algorithm would converge naturally. For the decision

tree and random forest, the criterion was set to entropy, as it is the most commonly used in

the literature. The maximum depth of each tree and the number of trees in the ensemble

were set empirically by observing the results in test runs.

Figure 4.8 – Analysis of the K value for the KNN algorithm.

Source: The Author

For the number of neighbors in the KNN algorithm, a script was developed to test

different values of K and get the model performance (i.e., accuracy, F1-score, and error

rate). The initial value was set to one (only the "closest" neighbor) and was increased

at each iteration. For the Heart Attack and the Depression in Medical Students Dataset,

the maximum value allowed was the number of entries in the dataset, which would mean
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"every neighbor". For the Intersectional Bias dataset, the maximum value allowed was the

number of instances divided by 4, as it gave acceptable performance metrics when exe-

cuted. The final values of K for the Intersectional Bias Dataset, Heart Attack Dataset, and

Depression in Medical Students Dataset were defined as 318, 42, and 296, respectively.

The complete graphs for the K value analysis can be found in Figure 4.8. For the weight

function used in the KNN prediction, the uniform method was chosen, so all points in the

neighborhood are weighted equally.

4.5 Model training and performance evaluation

To evaluate the model performance, our goal is to have the metrics calculated over

a number of variations of the training datasets. Thus, we split the dataset to be used for

model development and evaluation into training and test sets using the train_test_split

function from Scikit-learn (PEDREGOSA et al., 2011), with the test sets corresponding

to 20% of the original dataset. For each dataset, we create the variations mentioned in

Section 4.2 by adjusting the proportions on the training sets, leaving the test sets with the

same original proportion for the protected attributes across all variations. For the Inter-

sectional Bias dataset and the Depression in Medical Students Dataset, the data split is

performed 6 times with a different random seed, while for the Heart Attack Dataset, it

is repeated 10 times. The pre-training bias metrics and the model performance for the

datasets are calculated as the average between the different values calculated over each

split. This way, it is possible to compare the experimental results among different varia-

tions of training sets, using varied test sets with distributions similar to the original data

and investigating the impact of bias in the performance of machine learning algorithms.

Performance evaluation was carried out with the following metrics: Accuracy and

F1-Score (GOUTTE; GAUSSIER, 2005).

4.5.1 Accuracy

Accuracy is the base metric used for model evaluation. It can be calculated as the

ratio of correct predictions over all predictions made for a given dataset. The formula can
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be found in Equation 4.1.

ACC =
Number of correct predictions
Total number of predictions

(4.1)

4.5.2 F1-Score

F1 score can be calculated as the harmonic average of precision and recall, as in

Equation 4.4. Precision estimates the proportion of positive instances predicted correctly

by the model, while Recall measures the ability of a model to correctly identify positive

instances. The definition of precision and recall can be found in equations 4.2 and 4.3,

respectively, where TP stands for True Positive (values that were predicted correctly with

the positive output), FP stands for False Positive (values predicted positive but were ac-

tually negative) and FN stands for False Negative (values predicted as negative but were

actually positive). The analysis of the confusion matrix enables a visual analysis of these

factors, as shown in Table 4.3.

precision =
TP

TP + FP
(4.2)

recall =
TP

TP + FN
(4.3)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(4.4)

Table 4.3 – Confusion Matrix definition

Actual Values

Positive Negative

Predicted Values
Positive TP (True Positive) FP (False Positive)
Negative FN (False Negative) TN (True Negative)
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5 EXPERIMENTS AND RESULTS

To assess the impact of the pre-training bias on machine learning algorithms, we

have artificially introduced bias in three datasets, aiming to increase or reduce the val-

ues of the pre-training bias metrics analyzed. In the following sections, we report how

each variation was generated from the original dataset, along with the results obtained

for the pre-training bias metrics and for model performance evaluation considering all the

original and modified datasets.

5.1 Intersectional-Bias Dataset

In the first dataset analyzed, two variations were created: one with high imbalance,

where we tried to increase the value of the pre-training metrics for all the metrics at the

same time, and one where the goal was to have the minimum possible value for all the

pre-training bias metrics. This dataset had two protected attributes, Sex, which had male

as the privileged class and female as the unprivileged class, and Race, which had white as

the privileged class and Asian, Black and Hispanic as unprivileged classes (which were

grouped into "Non-White" to ease the visualization in the figures). The feature used for

the correlated attribute on CDDL was Rumination.

The split into training and test data was executed 6 times, each time with a different

random seed. The distributions for the test set were kept the same for all dataset variations,

changing only the distribution for the training sets. The test sets for this dataset can be

found in Figure 5.1.

To identify which features might have contributed to the predicted class, we also

calculated the feature importance for each algorithm when this analysis is embedded in

the process of model training: for Random Forest and Decision Tree, Scikit-learn already

provides the feature importance as evaluated during model training (PEDREGOSA et

al., 2011), and for Logistic Regression, feature importance can be estimated based on the

weights of the equation (the w values in Figure 2.1). Feature importance was not analyzed

for the KNN algorithm.

The table containing the full report of the pre-training bias metrics for this dataset

can be found in Table 5.1, and the table with the report of the performance for the four

machine learning algorithms can be found in Table 5.2. The next sections will discuss

these results in more details.
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Figure 5.1 – Test sets for the Intersectional-Bias Dataset. For each test set, the distributions for
the two protected attributes, sex and race, are shown.

(a) Sex (b) Race

Source: The Author

Table 5.1 – Pre-training bias metrics values for the Intersectional-Bias Dataset.
Metric name Original Dataset High Imbalance Equal Balance

Class Imbalance (Sex) -0.103 0.755 0.000
KL Divergence (Sex) 0.077 0.474 0.000

KS (Sex) 0.195 0.459 0.000
CDDL (Sex, Rumination) -0.184 -0.207 0.005
Class Imbalance (Race) -0.268 0.235 0.000
KL Divergence (Race) 0.018 0.938 0.000

KS (Race) 0.096 0.503 0.000
CDDL (Race, Rumination) 0.079 0.500 -0.007



37

Table 5.2 – Performance results for the Intersectional-Bias Dataset.
Metric Training Algorithm Original Dataset High Imbalance Equal Balance

Accuracy

Logistic Regression 89.061 84.917 88.508
Decision Tree 84.386 78.553 83.462

Random Forest 88.705 80.545 87.894
KNN 88.402 81.227 87.318

F1-Score

Logistic Regression 89.437 86.464 89.050
Decision Tree 84.808 80.151 84.262

Random Forest 89.146 83.431 88.679
KNN 89.010 84.428 88.388

5.1.1 Original dataset

The original dataset for the Intersectional-Bias had more representation for the

unprivileged classes on the protected attributes. The full training set (the sum of the 6

splits) used in the original dataset can be found in Figure 5.2.

Thus, as expected, the values seen in Table 5.1 for class imbalance were negative

for both sex and race. In general, the values for the pre-training bias metrics for the

original dataset were close to zero, which indicates that the dataset was not free of bias,

but the distribution across the protected attributes was close to being equally distributed.

The performance for the original dataset, shown in Table 5.2, was considered high

for all the algorithms. Accuracy values ranged from 84.386 to 89.061, while F1-score

ranged from 84.808 to 89.437. However, if we look at the rates at which the models

performed in relation to the value of the Sex attribute, we may notice that the algorithms

are more likely to make wrong predictions for female than male, and the false positive

rate was higher on the unprivileged class, which was considered worse than having a

false negative for this scenario. The complete chart for the sex attribute can be seen in

Figure 5.3. Looking at the race attribute, the unprivileged value was also more prune to be

mislabeled, with a higher error rate and a higher false positive rate. The complete Chart

for the Race attribute can be seen in Figure 5.4.

Looking at how each feature contributed to the models, we see that sex was con-

sidered important for Decision Tree and Logistic Regression, for the Random Forest the

protected attributes were not among the most important attributes, but the performance

was similar to the logistic regression. The complete graphs with the feature importance

values can be seen in Figure 5.5
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Figure 5.2 – Train sets for the original Intersectional-Bias Dataset. For each train set, the
distributions for the two protected attributes, sex and race, are shown.

(a) Sex (b) Race

Source: The Author

5.1.2 Highly unbalanced

To create the highly unbalanced dataset, we needed to remove both female and

non-white instances from the dataset to increase the values for the pre-training bias met-

rics. To decide the proportion at which we would remove from each class and what is

the target for the dropped attribute, a script was developed to combine the possible values

for diagnosis and the proportion of instances that would be randomly dropped, so at each

iteration, we could calculate the different pre-training bias metrics values. At the end,

we had to empirically decide which metrics we would favor in the dataset, so the chosen

values were the ones that had the most number of pre-training bias metrics close to be

considered high.
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Figure 5.3 – Chart for the sex attribute in the original Intersectional-Bias Dataset

Source: The Author

Figure 5.4 – Chart for the race attribute in the original Intersectional-Bias Dataset

Source: The Author
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Figure 5.5 – Feature importance for the original Intersectional-Bias Dataset

Source: The Author

The complete train sets for this dataset variations (the sum of the six iterations)

can be found in Figure 5.6, for a) sex and b) race attributes.

Analyzing the pre-training metrics values provided in Table 5.1, only CDDL for

Sex and CI for Race were considered low values. But the overall values obtained suggest

that we reached the goal of introducing a distribution that differs from the original dataset.

For the Sex attribute, we saw a high increase in the FP rate in all the models,

reaching an increase of over 19% on the KNN algorithm for the unprivileged class. The

increase, however, was much less prominent in the privileged class. For Male, the largest

differences were seen in the Random Forest and Decision Tree, with an approximate 3%

increase in the FP rates. The complete chart is in Figure 5.7.

In the Race attribute, the models had an increase in the GP rates for Non-White

individuals for all the trained models. The higher increase was observed in the Random

Forest classifier, which has an FP rate around 2% in the original dataset and reached

over 24% in the highly unbalanced dataset. For the privileged attribute, we only saw an

increase in the FP rate for KNN (below 5%), while for the other algorithms, the values

were similar or decreased. The complete chart for the Race attribute can be found in

Figure 5.8.

The feature importance for the highly unbalanced variation was very similar to

the original dataset, except for the Random Forest, where Race became the second most

important attribute. Tension was the most important attribute for the Decision Tree and

the Random Forest, and Sex was the most important for Logistic Regression.
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5.1.3 Equally balanced

In order to force the same proportions for all protected attributes on the dataset,

we iterated through all the possible combinations of values for the protected attributes

and the target, removing from the original set the difference between them on the subset

with higher number of individuals. This approach resulted in the training sets shown in

Figure 5.10 (the sum of the 6 iterations). The impact of removing these instances in the

training sets caused each train iteration to have, in average, 3600 fewer instances than for

the original dataset. The pre-training bias metrics calculated over this dataset variations,

shown in Table 5.1, were close to zero.

Analyzing the sex attribute with focus in the FP rate, the performance was sim-

Figure 5.6 – Train sets for the Highly unbalanced Intersectional-Bias Dataset. For each train set,
the distributions for the two protected attributes, sex and race, are shown.

(a) Sex (b) Race

Source: The Author
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Figure 5.7 – Chart for the sex attribute in the highly unbalanced Intersectional-Bias Dataset.

Source: The Author

Figure 5.8 – Chart for the race attribute in the highly unbalanced Intersectional-Bias Dataset.

Source: The Author

ilar to the original dataset. On average, we observed 3% increase pf FP rates for the

unprivileged class, and in the privileged class the FP rate variation was below 1% for all

algorithms, with the FP rate being slightly higher in the original dataset. The KNN model

was an exception in this analysis, for which the FP rate was 0.07% higher in the equally



43

Figure 5.9 – Feature importance for thehighly unbalanced Intersectional-Bias Dataset.

Source: The Author

Figure 5.10 – Train sets for the equally balanced Intersectional-Bias Dataset. For each train set,
the distributions for the two protected attributes, sex and race, are shown.

(a) Sex (b) Sex

Source: The Author

balanced dataset. The complete chart for the sex attribute can be found in Figure 5.11.

In the Race attribute, the protected attribute also had a similar increase in the FP rate, on
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average 2% in the unprivileged class for each model. For the privileged class, the FP rates

were also similar to the original dataset, with variations under 1% for each model. The

chart for the Race attribute can be found in Figure 5.12.

Figure 5.11 – Chart for the sex attribute in the equally balanced Intersectional-Bias Dataset

Source: The Author

Figure 5.12 – Chart for the race attribute in the equally balanced Intersectional-Bias Dataset

Source: The Author

The feature importance of this dataset variation were similar to the original ver-
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sion, but we see some changes, specially in the protected attribute Sex, that lost its impor-

tance in the three algorithms, and Race becomes the most important feature in the Logistic

Regression. The full graphs can be seen in Figure 5.13.

Figure 5.13 – Feature importance for the equally balanced Intersectional-Bias Dataset.

Source: The Author

5.2 Heart Attack Analysis & Prediction Dataset

In this dataset, we introduced bias by changing the proportions of the protected

attribute sex in the training sets, creating two variations over the original dataset: one

highly unbalanced and one equally balanced. Each algorithm was run 10 times, varying

the seed supplied to the algorithm responsible for generating random numbers used to

split the data into training and test sets. The test sets have a common distribution across

all the datasets variations, and can be found in Figure 5.14. The table with the pre-training

bias metrics calculated over all the variations of the dataset can be found in Table 5.3, and

the performance for each algorithm can be found in Table 5.4.

Table 5.3 – Heart Attack Dataset pre-training bias metrics values

Metric name Original Dataset High Imbalance Equal balance

Class Imbalance (sex) 0.357 0.548 0.000
KL Divergence (sex) 0.202 1.346 0.000

KS (sex) 0.299 0.524 0.000
CDDL (sex, cp) 0.291 0.375 0.086

CDDL (sex, thal) 0.108 0.275 -0.123
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Figure 5.14 – Test sets for Heart Attack Dataset

Source: The Author
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Table 5.4 – Performance results for Heart Attack Dataset
Metric Training Algorithm Original Dataset High Imbalance Equal Balance

Accuracy

Logistic Regression 84.590 83.934 80.656
Decision Tree 76.885 79.344 73.115

Random Forest 83.607 83.443 79.672
KNN 67.377 68.197 53.115

F1-Score

Logistic Regression 85.826 85.518 83.226
Decision Tree 77.977 80.720 76.938

Random Forest 84.564 85.021 82.961
KNN 71.017 72.486 69.019

5.2.1 Original dataset

As we have seen in Figure 4.4, this dataset has more representation of male in-

dividuals than females. This unbalance is reflected in the test sets (Figure 5.14) and in

the training set, which is shown in Figure 5.15 (the sum of the 10 executions). We can

see that men correspond to around 68% of the dataset, whereas women are only 32% of

instances.

Figure 5.15 – Train sets for the original Heart Attack Dataset

Source: The Author

As we can see in the Figure 5.16, the models are prone to achieve more accurate

predictions for men (in absolute quantity), which is expected since this value for the sex

attribute has more representation both in training and test data. Moreover, this behavior

can be seen in all four algorithms analyzed. By the proportions of instances correctly pre-

dicted for women and men, we might infer that the unbalancing was not heavily affecting
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individuals by their gender. If we look at the rate at which the algorithms classified men

and women correctly, the differences are under 12% for all algorithms, and the proportion

at which the models correctly predicted the class for women was higher than for men.

To understand what is the impact of the features on the trained models, the fea-

ture importance analysis for the three possible algorithms was calculated and the graphs

reporting the values can be found in Figure 5.17. We can see that the sex attribute contri-

bution was very little to the final class prediction in all the three algorithms.

Figure 5.16 – Chart for the original Heart Attack Dataset.

Source: The Author

Figure 5.17 – Feature importance for the original Heart Attack Dataset

Source: The Author
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5.2.2 Highly unbalanced

In order to generate a highly unbalanced dataset, we firstly looked at the distribu-

tion for each of the correlated features in relation to the sex attribute, tested the possible

combinations for the values and evaluated the pre-training bias metrics reported on each

iteration. To generate the final unbalanced dataset, we removed 85% and 80% of women

with thal equals to 2 and 3 and target equals to 0, respectively. From the resulting dataset,

80% of women with cp equals to 2 or 0 and target equals to 0 were removed as well, and

finally 20% of women with target equal to one were removed. The complete train set

(with the sum of the 10 splits) can be observed in Figure 5.18.

Figure 5.18 – Train sets for the highly unbalanced Heart Attack Dataset.

Source: The Author

The numbers in Table 5.3 related to the pre-training bias metrics evaluated in the

highly unbalanced dataset show that all metrics are affected with the unbalance, meaning

the dataset has more male representation. The distributions for classes were highly af-

fected (percentage of women with positive output higher than the percentage of men with

positive output) and there was a disparity in the labels for women with thalassemia and

chest pain generated by the removals. The performance for the models can be found in

Table 5.4.

By analyzing the proportions of correct and incorrect predictions for male and

female, we can see that although the accuracy and F1-score might have actually improved

for some models (e.g., the Decision Tree). The rate at which the model is getting correct
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Figure 5.19 – Chart for the highly unbalanced Heart Attack Dataset.

Source: The Author

predictions for the unprivileged classes has decreased for Logistic Regression. These

results are shown in the charts of Figure 5.19.

If we look at the importance of each feature for this dataset, as shown in Fig-

ure 5.20, we can see that for the Decision Tree, the ones affected by changes in its pro-

portions contributed significantly to the result, whereas in other models, like the Random

Forest, these variables contributed less, and the performance for women in test set was

slightly affected. Finally, in the Logistic Regression model, where cp was the most signif-

icant variable, thal and sex contributed very little. For the privileged class, the accuracy

reached by all models were almost the same (varying around 1% for each model).

Figure 5.20 – Feature importance for the highly unbalanced Heart Attack Dataset

Source: The Author
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5.2.3 Equally balanced

To generate equal balance in the dataset, we firstly need to look at the correlated

attributes in the dataset (cp and thal). Based on the original distribution, it is not possible

to achieve the perfect balance for these features, but the values were low enough to be

acceptable. The values can be seen in Table 5.3. To balance the sex attribute, we simply

removed men from the dataset, computing the difference in the absolute number of women

and men for each possible output and removing this number from the train set. The

complete dataset used for training (the sum of 10 repetitions) can be seen in Figure 5.21.

Figure 5.21 – Train sets for the equally balanced Heart Attack Dataset.

Source: The Author

Analyzing the Figure 5.22, we can see that the pattern of having a higher percent-

age of women predicted correctly (when compared to the total number of women in the

testing sets) was kept the same as the other datasets. However, in this specific case, we

can notice that comparing with the correct prediction for women with the original dataset,

KNN had an improvement of almost 15% in the overall accuracy, and its false negative

rate decreased substantially, achieving almost zero for the unprivileged class. In the priv-

ileged class, all the algorithms had worse performance when comparing with the original

dataset, with the higher difference being in the KNN, where the correct predictions went

from 70% to 43%. If we look at the feature importance for the equally balanced dataset,

in Figure 5.23, we can see that the protected attribute had no significant impact for any

algorithm.
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Figure 5.22 – Chart for the equally balanced Heart Attack Dataset.

Source: The Author

Figure 5.23 – Feature importance for the equally balanced Heart Attack Dataset.

Source: The Author

5.3 Depression in Medical Students Dataset

In this dataset, we focus mainly on the analysis of the age attribute, with some

discussion on the gender attribute, as we want to see the differences between changing the

pre-training bias metrics for values that contribute differently to our models predictions.

The tests were run for the three protected attributes, but since the scope of experiments

got too wide and the analysis of feature importance for the algorithms (i.e., Random

Forest, Decision Tree and Logistic Regression) showed that not all attributes were highly

contributing to the outcome, we decided to reduce the scope of the analysis and focus on
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attributes suggests having a more important impact on the outcome.

For this dataset, we generate two highly unbalanced variations, one related to the

age attribute and one related to the gender attribute. For the equally balanced variation,

we attempt to level the proportions of both attributes on the dataset. The experiment was

repeated with 6 different random seeds for the dataset split into train and test data. Similar

to the previous experiments, when varying the attribute distributions in dataset, we only

modified in the training data and kept the original distribution in the test set. Figure 5.24

shows the 6 different datasets used for testing, with the distribution for the protected

attributes. The tables with the pre-training bias metrics and models performance for all

the dataset variations can be found in Table 5.5, and in Table 5.6, respectively.

Table 5.5 – Depression in Medical Students Dataset pre-training bias metrics values
Metric name Original Dataset High Imbalance (gender) High Imbalance (age) Equal Balance

Class Imbalance (gender) -0.528 0.668 -0.433 0.000
KL Divergence (gender) 0.049 0.786 0.029 0.000

KS (gender) 0.154 0.452 0.093 0.000
CDDL (gender, change_giveup) 0.106 0.251 0.122 0.004

Class Imbalance (age>18) 0.794 0.802 0.577 0.000
KL Divergence (age>18) 0.004 0.003 0.741 0.000

KS (age>18) 0.044 0.040 0.575 0.000
CDDL (age>18, change_giveup) 0.025 0.015 0.632 0.012

5.3.1 Original dataset

The original dataset in this case is inherently unbalanced for the protected attribute

gender and for the attribute age, as it has more female representation than male and more

representation of individuals over 18 years old, so we have a negative value for CI in

gender and a positive value for CI in age. The KL, KS and CDDL values indicate that

even though the dataset has more representation from a certain class, the outputs are fairly

distributed across the difference facets, since none of these metrics reported a value above

0.2 (the complete table can be found in Table 5.5). The complete train set can be found in

Table 5.6 – Performance results for Depression in Medical Students Dataset
Metric Training Algorithm Original Dataset High Imbalance (gender) High Imbalance (age) Equal Balance

Accuracy

Logistic Regression 71.212 65.599 48.123 66.271
Decision Tree 61.398 64.704 48.140 56.990

Random Forest 69.542 65.582 43.578 65.031
KNN 69.025 68.165 39.652 57.989

F1-Score

Logistic Regression 77.522 76.828 28.900 71.004
Decision Tree 68.094 75.139 35.217 62.477

Random Forest 76.338 76.742 18.206 70.198
KNN 76.853 75.024 3.045 61.309
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Figure 5.24 – Test sets for the Depression in Medical Students Dataset. For each test set, the
distributions for the two protected attributes, gender and age, are shown.

(a) Gender (b) Age

Source: The Author

Figure 5.25.

Analyzing the predictions for this dataset, we can see that the model was slightly

more prone to get correct predictions for women than for men, both in absolute number

(which is expected due to the higher number of individuals in this class on the test sets)

and in proportion (72%, 62%, 70% and 70% of correct instances for women against 67%,

58%, 67% and 64% from men on Logistic Regression, Decision Tree, Random Forest and

KNN, respectively). The complete chart for the original dataset concerning the gender

attribute can be found in Figure 5.26.
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Figure 5.25 – Train sets for the original Depression in Medical Students Dataset.

(a) Age (b) Gender

Source: The Author

In the age attribute, we see that even with the distribution across the labels being

very disproportional, the model was able to get accurate predictions for both individuals

under and over 18 years old, achieving similar values for accuracy in all models. We

observed the privileged class (under 18 years old) having a slightly higher accuracy. The

complete chart for the age attribute can be found in Figure 5.27.

The feature importance chart (in Figure 5.28) shows that for both Random Forest

Figure 5.26 – Chart for gender in the original Depression in Medical Students Dataset

Source: The Author
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Figure 5.27 – Chart for age in the original Depression in Medical Students Dataset.

Source: The Author

Figure 5.28 – Feature importance for the original Depression in Medical Students Dataset

Source: The Author

and Decision Tree, the age feature highly contributed to the predicted class, while gender

is not really contributing to the models predictions. The change_giveup (which was the

correlated attribute chosen for CDDL) contributed more for the logistic regression than

for the other algorithms.

5.3.2 Highly unbalanced in relation to gender

To make the dataset highly unbalanced, it was necessary to drop instances from

the class with the majority of individuals in the training sets, which made the training sets
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to be around one third the size of the original training sets. We note that this reduction

in the number of training instances can impact the models’ performance. We removed

99% of the women in the original dataset with negative output and 91% of women with

positive output. Figure 5.29 shows the complete training set (sum of 6 iterations) used for

this variation.

Figure 5.29 – Train sets for the highly unbalanced (gender) Depression in Medical Students
Dataset.

Source: The Author

Removing this percentage increased the values of all pre-training bias metrics,

as we see more instances in the privileged class (which affects directly the CI), and the

proportion for the target was also affected in these groups, since we kept more instances

with the positive output (affecting KS and KL). For CDDL, it was not possible to increase

the value above 0.251 as it would negatively impact the other pre-training bias metrics.

In this variation, we see that the accuracy for men was kept almost the same as the

original dataset, as it can be seen in Figure 5.30, varying around 2% between the algo-

rithms. For women, we see that the performance was slightly affected when comparing

to the predictions on the original dataset, with logistic regression having around 7% less

accuracy on this variation. We also see that some models had clear variations on the false

positive rates, as it would be expected by the proportion of women with negative output in

this dataset variation. The KL and KS values for this dataset (0.786 and 0.452) also indi-

cate that the training set has more representation in one facet for the unprivileged group.

Figure 5.31 shows the feature importance for this dataset variation. We see that gender

was important in both Random Forest and Decision Tree, whilst in Logistic Regression it

did not make significant impact.
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Figure 5.30 – Chart for gender on the highly unbalanced (gender) Depression in Medical
Students Dataset.

Source: The Author

Figure 5.31 – Feature importance for the highly unbalanced (gender) Depression in Medical
Students Dataset.

Source: The Author

5.3.3 Highly unbalanced in relation to age

To generate a highly unbalanced dataset for the age attribute, it was necessary to

drop instances for the positive outcome from the privileged group for this attribute. So,

95% of the students over 18 years old with the target value equals to one were removed

from the dataset. The complete train set used for this variation can be found in Figure 5.32.

In this variation, it was possible to increase the values for the pre-training metrics

for all metrics, with all pre-training bias metrics related to this feature reporting values
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Figure 5.32 – Train sets for the highly unbalanced (age) Depression in Medical Students Dataset.

Source: The Author

above 0.5. The full table with the metrics for this variation can be found in Table 5.5,

and the performance for the models can be found in Table 5.6. The feature importance

analysis for this dataset can be found in Figure 5.35, with age being the most important

feature for Random Forest and Decision Tree. For the Logistic Regression model, age

was not among the most important attributes. Each training iteration had an average of

1885 instances, while the original dataset average training size was around 3871.

For students under 18 years old, we see that when comparing to the original

dataset, KNN showed the biggest difference in accuracy, reporting a great portion of

values with false negative, from 5.85% in the original dataset to 59.24% in this variation.

It is worth noticing that the training set has more individuals related to the positive output

for this class. This might indicate that the decision boundary in the KNN algorithm was

not using the age attribute for the decision process as much as the other algorithms. For

all other algorithms, the accuracy was on average 3% lower than the original dataset.

Analyzing students over 18 years old, the performance for all algorithms was

highly impacted. Comparing with the original dataset, we see that all models were af-

fected. If we look at the accuracy, we see that all models labeled fewer instances correctly

than the original model, with an average of 24% less accuracy across the models, in Fig-

ure 5.33, we report for each model the number of correct predictions compared with the

number of wrong predictions. The false negative rate in these models was also increased,

with most of the errors being false negatives. The complete chart for this model variation

can be found in Figure 5.34.

Analyzing the feature importance results for this variation of dataset, we observed
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Figure 5.33 – Percentage of correct predictions for each algorithm in the highly unbalanced High
(age) Depression in Medical Students Dataset.

Source: The Author

Figure 5.34 – Chart for age on the Highly unbalanced (age) Depression in Medical Students
Dataset

Source: The Author

that age was by far the most important feature for the Random Forest and Decision Tree

classifiers. For Logistic Regression, age was the least important feature. The most impor-

tant feature for this model was marital_status and change_giveup. The results are shown

in Figure 5.35.
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5.3.4 Equally balanced

To equally balance the original dataset, we had to remove students over 18 years

old and women, checking all the possible combinations for these features and the target

attribute and then removing instances from the training set. The complete train set can

be found in Figure 5.36. The metrics values in Table 5.5 show that for this variation,

all pre-training bias metrics were very close to zero. The downside of this variation is

that the number of entries in each training set was drastically reduced, from around 3871

instances in the original dataset to an average of 176 on each training iteration for this

variation. The accuracy and F1-Score for this dataset variation can be found in Table 5.5.

The performance for this variation decreased in all training algorithms, with an

increase of over 10% in the error rate when compared to the original dataset for the KNN

algorithm for the unprivileged class in the gender attribute. The average decrease in ac-

curacy for the gender attribute in the unprivileged class was around 6.5% for this metric

when compared to the original dataset, and around 5% for the privileged class.

In the age attribute, we see that the privileged class decreased in accuracy for

around 6% for the privileged class, while the unprivileged class decreased over 8% across

the four models. The chart for the complete dataset for the protected attributes age and

gender can be found in figures 5.38 and 5.37, respectively.

By looking at the feature importance for this dataset, it is possible to see that

age is still among the most relevant attributes for Random Forest and Decision Tree, but

the same behavior is not present in Logistic Regression. Comparing the results with the

unbalanced datasets, the performance in this variation was closer to the highly unbalanced

Figure 5.35 – Feature importance for the highly unbalanced (age) Depression in Medical
Students Dataset

Source: The Author
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Figure 5.36 – Train sets for the Equally balanced Depression in Medical Students Dataset.

(a) Age (b) Gender

Source: The Author

Figure 5.37 – Chart for gender in the equally balanced Depression in Medical Students Dataset.

Source: The Author

on gender than to the highly unbalanced on age. The graph containing the complete

feature importance for this variation can be found in Figure 5.23.
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Figure 5.38 – Chart for age in the equally balanced Depression in Medical Students Dataset.

Source: The Author

Figure 5.39 – Feature importance for the Equally Balanced Depression in Medical Students
Dataset

Source: The Author
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6 CONCLUSION

Fairness in Machine Learning has been a hot topic in recent years. The challenge

of automating human decisions without incorporating inherent biases has been the focus

of several works, and is a challenge that needs to be addressed before we are able to rely

on any decision made by an algorithm. Defining algorithm fairness itself is complex and

varies by location and domain. The notion of algorithm fairness itself is not something

easily defined, as it can vary according to the domain in which the models are deployed,

and what is valid in one country may not be the same in other countries (WACHTER;

MITTELSTADT; RUSSELL, 2020).

Pre-training bias metrics can quantify how datasets are positioned in a spectrum

of distribution for different protected attributes. These values can represent the popula-

tion from which the data was collected or reveal issues with access and equality to certain

groups if the values do not reflect how society is in general or in reality. Although pro-

tected attributes may be relevant to a study, such as in gender-related disease research,

relying solely on these attributes can lead to inaccurate models. In these cases, it makes

sense to have more instances from the gender more affected by the disease in question.

However, when the trained model is deployed in another hospital or location where this

disease is not common or where the prevalence is not so high for that specific gender, the

model may generate wrong predictions due to inherent bias.

The analysis conducted in this work intends to provide preliminary evidence that

health data might cause harm depending on the way it was acquired for the study. Highly

unbalanced datasets can result in mislabeling, which in turn can lead to misdiagnosing a

patient’s health status. Table 6.1 shows the average accuracy and F1-Score for all models

used in this study, along with the average accuracy for all the protected attributes (val-

ues are separated by comma for the datasets with multiple protected attributes, (i.e., sex,

race for the Intersectional-bias, and gender, age for the Depression in Medical Students

Dataset).

Table 6.1 – Comparative table for all the experimental results obtained in this work.
Dataset Variation Average Accuracy Average F1-score Average Accuracy Unprivileged Class Average Accuracy Privileged Class

Intersectional-Bias
Original Dataset 87.638 88.100 81.310, 85.846 95.343, 90.733

Highly Unbalanced 81.311 83.618 70.477, 76.576 94.499, 89.489
Equally Balanced 86.795 87.595 80.175, 84.064 94.856, 91.513

Heart Attack
Original Dataset 78.115 79.846 80.000 77.294

Highly Unbalanced 78.730 80.936 81.622 77.471
Equally Balanced 71.639 78.036 84.595 66.000

Depression in medical students

Original Dataset 67.794 74.702 68.885, 70.537 64.440, 67.459
Highly Unbalanced (gender) 66.012 75.933 66.623, 70.774 64.061, 65.43

Highly Unbalanced (age) 44.873 21.342 42.624, 59.242 52.058, 43.116
Equally Balanced 61.570 66.247 62.333, 62.322 59.134, 61.478
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In the Intersectional-Bias Dataset, changing the proportion of protected attributes

resulted in lower accuracy on the unprivileged classes (i.e., a decrease of about 10%) and

small variation of about 1% for the privileged class. The models trained for this dataset

showed smaller values for the highly unbalanced variation of the dataset. However, these

values alone do not indicate how protected classes were affected, nor do they provide

information about how the dataset performed on the unprivileged classes regarding false

positives or false negatives, which depending on the context might mean a different form

of harm for that class. When we applied manual variations to the dataset aiming at low-

ering the pre-training bias metrics values to reduce the bias from the dataset, we were

able to observe higher accuracy on the unprivileged classes, and even some increase on

performance for the privileged classes on the dataset.

In the Heart Attack Dataset, when the bias was introduced and the pre-training

bias metrics values increased, we did not observe a high impact on the performance of

models. On the contrary, we noted a curious improvement, with the accuracy for both the

privileged and unprivileged classes showing a slight increase in relation to the original

dataset. This observation can be related to the impact caused by randomly removing in-

stances from the dataset, or to how the data was gathered in the first place. Also, the fact

that the test sets have less female representation could imply in higher performance. The

analysis of features importance for this dataset did not return high values for the protected

attributes, which may corroborate the results of no significant changes in performance

for a highly unbalanced dataset. When we aimed to reduce the values of pre-training

bias metrics, the performance of the models was impacted. We observed an increase in

the accuracy for the unprivileged value, while the privileged class seemed to be nega-

tively impacted with the manual modification of the dataset distribution. Thus, we raise

the question whether this dataset needs the imbalance to actually perform well on both

classes.

For the Depression in Medical Students Dataset, two different situations emerged

from the introduced bias. In the analysis related to the gender attribute, we had to remove

instances from the class with the majority of values, such that the training sets were highly

reduced when compared to the original dataset (i.e., approximately 28% of the original

dataset). So, the expectation was that the performance would be the worst of the study.

However, this expectation did not translate into the experimental results, and the average

accuracy for the complete dataset and for the protected attributes were very close to the

original dataset variation. In the second highly unbalanced variation for this dataset, re-
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lated to the age attribute, we focused in keeping all the metrics high at the same time and

not worrying about the imbalance for the attribute itself, as the original variation already

had a high class imbalance. The result for the second variation showed that unbalancing

the labels by removing the positive output representation from the privileged class caused

a huge impact in the accuracy for the protected attributes, both in the privileged and un-

privileged classes. This variation also significantly impacted the overall performance of

models, especially in terms of F1-score, allowing us to conclude that for this dataset, age

could be a source of bias when predicting the outcome (i.e., diagnostic of depression).

The equally balanced dataset in this scenario showed that even with fewer instances in

the training set (around 352 per algorithm iteration), if the data is balanced and represents

equally different portions of the population, it can reach satisfactory results. This is espe-

cially true when comparing with the highly unbalanced on age version, since the equally

balanced had fewer instances and reported higher accuracy and F1-score.

Through the experiments conducted in this work, we conclude that analyzing the

pre-training bias metrics for a dataset before deploying the trained model can be really

beneficial to the study. The pre-training bias metrics can indicate issues in the quality or

in the distribution of the data, avoiding us to spend a large time or too many computa-

tional resources in training models with biased data. Moreover, the analysis of the pre-

training bias can help explain some results obtained with the trained model, especially

if the performance is not satisfactory, suggesting direction in which the data collection

should be improved if possible (e.g., attributes values that should be added to the dataset

to enhance the predictive performance). Even though we had some results showing how

the pre-training bias metrics can reflect on the overall performance of models, or more

specifically on the false positive and false negative rates, some questions remain open and

deserve further investigation. For instance, how can we mitigate the bias inherent to the

data and reduce the original values of the pre-training bias metrics without removing in-

stances from the dataset? How can we judge if an attribute should be protected or not? Is

there a pattern to be identified in the dataset, or can we expect that the protected attributes

are the same for all datasets considering a common domain (e.g., Health)? Recent studies

have attempted to address some of these questions, emphasizing the need for data scien-

tists to take responsibility for the machine learning models they develop. It is crucial to

ensure that these models accurately represent our society and that no group is excluded

or harmed by the limited predictive power of models due to their personal characteristics

used as model inputs.
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