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Resumo

Este trabalho é centrado na formulação de uma abordagem de cura para cen-
sura dependente sob abordagem de funções cópulas. O modelo de não-mistura é
considerado para permitir fração de cura. A dependência entre o tempo até evento
de interesse e tempo de censura dependente é ajustada por meio de funções cópula.
São apresentadas a função de verossimilhança do modelo proposto e estimação de
máxima verossimilhança. São assumidas as distribuições Weibull e exponencial por
partes para ajuste dos tempos até evento de interesse e tempos de censura depen-
dente. As funções cópulas de Clayton e de Plackett são utilizadas para ajuste da
dependência. Um estudo de simulação foi conduzido para avaliar os modelos pro-
postos, diferentes cenários de dependência foram assumidos para avaliar os efeitos
nas estimativas do modelo. Um conjunto de dados sobre tempo de sobrevivência
de pacientes diagnosticados com câncer de próstata é analisado com os modelos
propostos.

Palavras-Chave: Análise de sobrevivência, Modelo de fração de cura, Tempo de
promoção, Função cópula, Censura dependente, Câncer de próstata.



Abstract

This paper is centered around the formulation of a cure rate model for dependent
censoring under copula functions. Non-mixture model is assumed to allow for a cure
rate. Dependency between time to event if interest and dependent censoring time is
accommodated via copula functions. The model’s likelihood function, as well as, the
maximum likelihood estimation, are presented. Weibull and piecewise exponential
distribution are assumed to model time to event of interest and dependent censo-
ring time. Clayton and Plackett copulas functions are used to capture dependency.
A simulation study was conducted to evaluate the proposed models and different
dependency scenarios were assumed to assess effects on the model’s estimates. A
real world dataset about prostate cancer patients survival time is analyzed with the
proposed models proposed.

Keywords: Survival Analysis, Cure rate model, Promotion time, Copula function,
Dependent censoring, Prostate cancer.
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ABSTRACT: This paper is centered around the formulation of a cure rate model

for dependent censoring under copula functions. Non-mixture model is assumed to

allow for a cure rate. Dependency between time to event if interest and dependent

censoring time is accommodated via copula functions. The model’s likelihood function,

as well as, the maximum likelihood estimation, are presented. Weibull and piecewise

exponential distribution are assumed to model time to event of interest and dependent

censoring time. Clayton and Plackett copulas functions are used to capture dependency.

A simulation study was conducted to evaluate the proposed models and different

dependency scenarios were assumed to assess effects on the model’s estimates. A real

world dataset about prostate cancer patients survival time is analyzed with the proposed

models proposed.

KEYWORDS: Survival Analysis; Cure rate model; Promotion time; Copula function;

Dependent censoring; Prostate cancer.

1 Introduction

This paper aims to present the building of a cure rate model for dependent
censoring under a copula-based approach, a solution to model survival data with a
cure rate in the presence of dependent censoring. A cure rate model is necessary
when the study population is composed of two groups, susceptible and cured
individuals, when some observations are censored. Susceptible individuals can
experience the event of interest if no censoring occurs. On the other hand, cured
individuals will not experience the event, but may be censored (Klein et al., 2016). A
censored observation happens when the event of interest cannot be observed due the
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occurrence of some secondary event, such as end of study, patient withdrawal, failure
due other causes (Lawless, 2011). Although most methods assume independence
between the event of interest time and the censoring time, this assumption is true
in some censoring cases, but not feasible in others.

Many cure rate models assume independence between time to event of interest
and the censoring time (Wang et al., 2021). This offers simplification in the
likelihood formulation because the joint distribution is not required (Kalbfleisch and
Prentice, 2011). The incorrectly assumed independence leads to biased estimates
and misleading conclusion over parameters (Siannis, 2004). There are many cases
in which the independence assumption can be violated. According to William and
Lagakos (1977), in clinical contexts, individuals withdrawing from a study due to
reasons linked to the therapy under study can be a dependent censoring of time to
event of interest. Alternatively, in competing risks, some risks might be correlated,
as stated in Hsu et al. (2016).

Dependent censoring has been addressed in research. Approaches adjusting
dependency include the frailty model in Huang and Wolfe (2002), that adjusted
dependency using random effects, and Emura and Michimae (2017) that used copula
functions, but they do not account for a cure rate. The omission of a cure rate can
also lead to misleading inferences (Rondeau et al., 2013). Some cure rate models
that account for dependent censoring are the following: Li et al. (2007), which used
copulas functions to model dependent censoring in survival data without covariates;
Zhang et al. (2007), which presented a frailty cure model where the covariates effects
on the cure rate and on the event time of susceptible individuals are separately
modeled; Liu et al. (2017), which formulated a regression model that accounts for
dependent censoring and cure rate using latent variables; and Wang et al. (2021),
which allowed a cure rate through a logistic model, using an additive hazards model
with frailty, when interval dependent censoring were present.

In this paper we use copula functions to adjust for dependent censoring. Zheng
and Klein (1995) developed the survival copula model, where the copula parameter
adjusts the dependency between time to event of interest and censoring time. Zheng
and Klein (1995) also explains that copula models are non-identifiable under certain
specifications. Because of this, many authors present a sensitivity analysis (Chen,
2010; Emura and Michimae, 2017). Sensitivity analyses evaluate the effect of the
dependency feature on parameters estimates (Huang and Zhang, 2008). Other
works, such as Escarela and Carriere (2003), Hsu et al. (2016) and Li et al. (2019),
estimate the copula parameter and prove their model’s identifiability.

Copula functions are good options to adjust for dependent censoring because
clustering is not required as in the frailty model. Copula functions are flexible
and there are many copulas with various characteristics. Copula functions can
also be extended to competing risk. This paper will study two particular copulas:
the archimedean Clayton copula from Clayton (1978), and the non-archimedean
Plackett copula from Plackett (1965).

The Clayton copula is a traditional copula choice. Its dependency structure
is asymmetric, with a strong dependence in the lower tail and a weak dependence

2 Rev. Bras. Biom., Lavras, v.xx, n.x, p.1-10, 20xx



in the upper tail (Salvadori et al., 2007). Being an archimedean copula, it presents
a generator function that allows easy extrapolation to higher dimensions (Nelsen,
2007).

The Plackett copula’s parameter is related to the odds ratio association
measure of 2 × 2 contingency tables. It is positive ordered and presents radial
symmetry (Palaro and Hotta, 2006). The Plackett copula is not archimedean and
so does not present a generator function (Salvadori et al., 2007).

Both copulas present parameters that relate to known dependence measures.
The Clayton copula relates directly to Kendall’s correlation coefficient τ , while
Plackett copula is directly related to Spearman’s correlation coefficient ρ. Analyzing
the copula parameter’s range and its relation to the known dependence measure we
are able to conclude the correlation range the copula is able to adjust. For instance,
Farlie-Gumbel-Morgenstern copula cannot adjust correlations with Kendall’s |τ | >
0.33 (Salvadori et al., 2007), or Galambos copula that can only adjust correlations
with Kendall’s τ > 0 (Salvadori et al., 2007). Clayton and Plackett however do
not present such correlation ranges restrictions. The Clayton copula needs some
modifications to express negative dependence as showed in Emura and Chen (2018).

The marginal distributions of the copula model can be parametrically or non-
parametrically specified, and these marginal distributions can depend on covariates
and account for a cure rate. This paper will be present the formulation to model
survival time, conditioned on covariates, and consider a cure rate that can also
depend on covariates.

In order to model a cure rate, two main approaches exist. The first, proposed
in Boag (1949), is held as the standard cure rate model and known as mixture
model. The second class of cure rate model, which is the scope of this paper, is
known as non-mixture cure rate model or promotion time cure rate model, derived
of Yakovlev et al. (1993). It was formulated upon the number of active cancer cells.
In both models, latent variables specify if each individual is cured or not. We will
focus on the coditional approach to the non-mixture cure rate model.

The mixture cure rate model is a special case of the promotion time model.
Medical community agrees that the promotion time model has more meaningful
biological interpretation (Yakovlev et al., 1994). Some recent works include the
following: Cancho et al. (2011), which used Bayesian approach to models cure
rate using promotion time models with negative binomial distribution; Lambert
and Bremhorst (2019), which studied the effect on using same covariates to model
survival time and cure rate; Lambert and Bremhorst (2020), which included time-
varying covariates to model cure rate; and Han et al. (2021), which proposed a
semiparametric estimation method for the promotion time using auxiliary covariates
to model cure rate.

In order to parametrically specify the marginal time to event of interest
distribution we use Weibull and piecewise exponential distributions. Both
distributions are common choices in survival analysis and continue to be researched,
as seen in Almetwally et al. (2018). The study derives the maximum likelihood
estimation and the Bayesian estimation to the Weibull generalized exponential
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distribution. On the other hand, Wey et al. (2020) use piecewise exponential
distribution with time-varying effects to estimate mortality in organ transplant.

To assess the model’s behavior we conduct a simulation study. We generated
datasets from one model and adjusted them under different dependency scenarios.
In order to see the model’s applicability on real data we fit prostate cancer
dataset from SEER (National Institutes of Health surveillance epidemiology and end
results). Studies indicate that prostate cancer and cardiovascular disease survival
time might be correlated (Escarela and Carriere, 2003; Li et al., 2007; Rowley et al.,
2017; Cardwell et al., 2020). Additionally, due to recent medical developments
prostate cancer patients present high cure chances.

This paper is organized as follows. Section 2 presents definitions of the non-
mixture method to allow cure rate, the formulation of the marginal distributions
of time to event of interest and censoring time, the construction of the likelihood
functions, and Weibull and piecewise exponential marginal models. In Section 3
simulation studies to assess the models estimates are exposed. Section 4 presents
the results for the real dataset application of prostate cancer survival time. Lastly,
in Section 5, final remarks are stated, as well as possible extensions of the present
work.

2 Methodology

In this Section, we will present the likelihood formulation to model survival
data with cure rate and dependent censoring. The approach allows a correlation
between time to event of interest and censoring time in presence of cured individuals.
In order to that promotion time cure rate model will be used. Copula functions
are employed to build the joint probability distributions of time to event of interest
and dependent censoring. In this formulation cure rate and survival times may take
covariates into account.

Finally, we build the likelihood function for the cure rate model for dependent
censoring under the copula-based approach. The proposed models are centered
around Clayton and Plackett copulas with Weibull and piecewise exponential
marginals distributions.

2.1 Cure rate model

A cure rate model is important when the population under study is composed
of susceptible and cured individuals. All susceptible individuals can experience the
event of interest if there is no censoring. On the other hand, cured individuals will
not experience the event, but may be censored (Cancho et al., 2011).

In the approach proposed in this paper the promotion time cure rate model
is considered. Following the formulation in Yakovlev and Tsodikov (1996) and the
explanation in Chen et al. (1999) for this model suppose that for an individual of
the study population, N denotes its number of carcinogenic cells left active after the
initial treatment. Assume that N has a Poisson distribution with mean θ. Also let
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Rj denote the random time for the j-th carcinogenic cell of this individual to produce
a detectable cancer size. The variables Rj , j =1,2,... are assumed to be independent
and identically distributed not related to N . The time of cancer relapse can be
defined by the random variable T = min(R0, R1, ..., RN ), where P (R0 = ∞) = 1.
The survival function for T , and hence the survival function for the population, is
given by Spop(t) = P (N = 0) + P (R1 > t, ..., RN > t|N ≥ 1)× P (N ≥ 1), because
of N ∼ Poisson(θ) follows that the survival function for the population in time t
is Spop(t) = exp(−θF (t)) for t > 0, which leads to

fpop(t) = θf(t) exp(−θF (t)) ,hpop(t) = θf(t) and Hpop(t) = θF (t) , (1)

where fpop(t), hpop(t) and Hpop(t) denote, respectively, the probability density
function, the hazard function and the cumulative hazard function of the population
under study in time t for t > 0, while f(t) and F (t) denote, respectively, the
probability density function and the cumulative distribution function in time t for
t > 0. The fpop(t) is said an improper density function because does not integrate
to 1 as limt−→∞ Spop(t) > 0. Actually limt−→∞ Spop(t) = exp(−θ), which means
that the survival function for the population plateaus on exp(−θ), this represents
the proportion of individuals that will never experience the event of interest.

To formulate the cure rate model for dependent censoring we assume Y an
observable random survival time variable defined as Y = min(T,C,A) where T ,
C and A are random positive variables, T is a random variable that denotes the
time to event of interest of the susceptible population, C is a random variable that
denotes the dependent censoring time and A is a random variable that denotes the
independent administrative censoring time. Meanwhile yi, ti, ci and ai, i = 1, 2, ..., n
denote the i-th observation on Y , T , C and A respectively.

In real data however, only yi is observable, along side with two indicator
variables, δi = I{yi = ti} takes value 1 when the i-th individual experiences the
event of interest and 0 otherwise. And ρi = 1− I{yi = cai} takes value 1 when the
i-th individual experiences either the event of interest or the dependent censoring
and 0 otherwise.

The distributions of T and C can take into account covariates. Let xT be a
n×p matrix of p covariates associated with the time to event of interest distribution
T and xC a n×q vector of q covariates associated with the dependent censoring time
distribution C. By Cox’s proportional hazards model Cox (1972) the covariates take
effect on the hazard function, where βT is a vector p × 1 of regression coefficients
associated with xT and βC , a q× 1 vector of regression coefficients associated with
xC .

The cure rate considered in the time to event of interest distribution is given
by p0 = exp(−θ). It can also depend on covariates, where β, a s × 1 vector of
regression coefficients associated with x a n × s matrix of s covariates. So, the
populational hazard functions for the i-th individual (i = 1, .., n) with cure rate is

hTpop(yi|xTi ,xi) = hT0 (yi|ψT ) exp{xiβ + xTi β
T −HT

0 (yi|ψT ) exp{xTi β
T }}, (2)
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where hT0 (.|ψT ) and HT
0 (.|ψT ) denote, respectively, the baseline hazard function

and the cumulative baseline hazard function of the time to event of interest, ψT is
a parameter vector that specifies the baseline hazard function of T . Whereas the
hazard function of the dependent censoring for i-th individual (i = 1, .., n) is

hC(yi|xCi ) = hC0 (yi|ψC) exp{xCi β
C}, (3)

where hC0 (y|ψC) denotes the baseline hazard function for the censoring time C and
ψC denotes the parameter set associated with the baseline hazard function of C.

To simplify notation let θT = (ψT ,βT ,β), θC = (ψC ,βC), dT = (xT ,x) and
dC = (xC).

Using equations (2) and (3) the probability density and cumulative distribution
functions can be obtained. They are as follow:

fTpop(yi|θ
T ,dT ) = hT0 (yi|ψT ) exp

[
exp

{
xiβ −H0(yi|ψT )ex

T
i β

T
}
−

HT
0 (yi|ψT )ex

T
i β

T

− exiβ + xiβ + xTi β
T

]
,

(4)

FTpop(yi|θ
T ,dT ) = 1− exp

[
exp

{
xiβ −HT

0 (yi|ψT )ex
T
i β

T
}
− exiβ

]
, (5)

fC(yi|θC ,dC) = hC0 (yi|ψC) exp

{
xCi β

C −HC
0 (yi|ψC)ex

C
i β

C
}

, (6)

FC(yi|θC ,dC) = 1− exp{−HC
0 (yi|ψC)ex

C
i β

C

}. (7)

Assuming independence between time to event of interest and the censoring
time we have P (T > yi, C > yi) = P (T > yi)× P (C > yi), which unfolds in

lim
∆yi−→0

P (T ∈ (yi, yi + ∆yi]), C > yi) = fT (yi)S
C(yi), (8)

lim
∆yi−→0

P (C ∈ (yi, yi + ∆yi]), T > yi) = fC(yi)S
T (yi). (9)

However when the assumption of independence between time to event of
interest T and censoring time C is not true, then P (T > yi, C > yi) 6= P (T >
yi) × P (C > yi) . Therefore, it is necessary to consider the joint distribution of
event of interest and censoring times. So, the likelihood function is given by

L =

n∏
i=1

[ lim
∆yi−→0

P (T ∈ (yi, yi + ∆yi], C > yi)]
δiρi×

[ lim
∆yi−→0

P (C ∈ (yi, yi + ∆yi], T > yi)]
ρi(1−δi)×

[P (T > yi, C > yi)]
1−ρi .

(10)
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Defining P (T > yi, C > yi) without independence between T and C is not easy
and requires more knowledge about the joint probability distribution. In this paper,
we will obtain the joint probability distribution through the copula functions.

2.2 Copula functions

A copula function is a multivariate distribution with uniform marginals
in the unit square (Nelsen, 2007). According to Sklar theorem (Sklar, 1959),
be W = (W1,W2, · · · ,Wk) a random vector and C: Rk −→ R a copula
function, F (w1, w2, · · · , wk) a joint probability distribution function and FWi(wi),
i = 1, · · · , k its marginals distributions, then there is a copula C such that
F (w1, w2, · · · , wk) = C(FW1(w1), FW2(w2), · · ·FWk(wk)) for all wi ∈ [−∞,∞],
i = 1, · · · , k. In the 2-dimensional case in the survival context Cν(u, v) is a copula,
where (u, v) = (FT (yi), F

C(yi)) and ν is the copula parameters that outlines the
dependency between the random variables T and C. One copula function example
is the product copula Cν(u, v) = uv of independent time to event of interest and
censoring time.

In survival analysis is also useful to define the joint survival function Cν(u, v) =
1 − u − v + Cν(u, v). Assuming u(t) = P (T ≤ t) and v(c) = P (C ≤ c) it is
possible to build a model that allows correlation between times to event of interest
T and dependent censoring time C through the copula parameter using the marginal
distribution functions of T and C. The joint probabilities are expressed as

P (T > yi, C > yi) = Cν(u(yi), v(yi)), (11)

lim
∆yi−→0

P (T ∈ (yi, yi + ∆yi], C > yi) =
∂Cν(u(t), v(c))

∂t

∣∣∣
(t,c)=(yi,yi)

, (12)

lim
∆yi−→0

P (C ∈ (yi, yi + ∆y], T > yi) =
∂Cν(u(t), v(c))

∂c

∣∣∣
(t,c)=(yi,yi)

. (13)

There are many copulas functions to be chosen. We selected the Clayton copula
and Plackett copula to study in this paper.Their joint survival function Cν(u, v) are
given by, respectively,

Cν(u(t), v(c)) = 1− u(t)− v(c) + [u(t)−ν + v(c)−ν − 1]−ν
−1

and (14)

Cν(u(t), v(c)) = 1− u(t)− v(c) +
1 + (ν − 1)(u(t) + v(c))

2(ν − 1)
−√

[1 + (ν − 1)(u(t) + v(c))]2 − 4u(t)v(c)ν(ν − 1)

2(ν − 1)
.

(15)
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As seen in equations (12) and (13), the Clayton joint survival derivatives in
relation to t and c are given by

∂Cν(u(t), v(c))

∂t
=
[
u(t)−ν−1[u(t)−ν + v(c)−ν − 1]−ν

−1−1 − 1
]
u(t)′, (16)

∂Cν(u(t), v(c))

∂c
=
[
v(c)−ν−1[u(t)−ν + v(c)−ν − 1]−ν

−1−1 − 1
]
v(c)′. (17)

The Plackett joint survival function derivatives are given by:

∂Cν(u(t), v(c))

∂t
=
[
− [(ν − 1)(u(t) + v(c)) + 1]− 4(ν − 1)νv(c)

2
√

[(ν − 1)(u(t) + v(c)) + 1]2 − 4(ν − 1)νv(c)u(t)
+

ν − 1

2(ν − 1)
− 1
]
u(t)′,

(18)

∂Cν(u(t), v(c))

∂c
=
[
− [(ν − 1)(v(c) + u(t)) + 1]− 4(ν − 1)νu(t)

2
√

[(ν − 1)(v(c) + u(t)) + 1]2 − 4(ν − 1)νu(t)v(c)
+

ν − 1

2(ν − 1)
− 1
]
v(c)′.

(19)

Now, we can formulate the cure rate model for dependent censoring likelihood
function as in equation (10) using copulas. To that use equations (11), (12) and
(13) in (10). The likelihood function is given by

L =

n∏
i=1

[
∂Cν(u(t), v(c))

∂t

∣∣∣
(t,c)=(y,y)

]δiρi
×

[
∂Cν(u(t), v(c))

∂t

∣∣∣
(t,c)=(y,y)

]ρi(1−δi)
×

[
Cν(u(t), v(c))

∣∣∣
(t,c)=(y,y)

](1−ρi)

(20)

The Clayton copula parameter ν is related to Kendall’s τ correlation
coefficient, whereas the Plackett copula parameter ν is related to Spearman’s
correlation coefficient ρ. The relations are as follow

τs(Clayton’s ν) =
ν

ν + 2
and ρs(Plackett’s ν) =

ν + 1

ν − 1
− 2ν ln(ν)

(ν − 1)2
. (21)
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There is no closed form to find the Spearman’s correlation coefficient ρ under
the Clayton copula, neither there is a closed form to find the Kendall’s correlation
coefficient τ under the Plackett copula. In order to find copula parameters for
the Clayton and Plackett that provide the same correlation, it is necessary to use
computational procedures.

Based on the marginal formulations about T and C and the copula functions we
can express the likelihood function of the cure rate model for dependent censoring,
given by

L(θT ,θC |y, δ,ρ, ν) =
n∏
i=1

[
fTpop(yi|θ

T ,dTi )
∂Cν(FTpop(yi|θ

T ,dTi ), FC(yi|θC ,dCi ))

∂FTpop(yi|θ
T ,dTi )

]δiρi
×

[
fC(yi|θC ,dCi )

∂Cν(FTpop(yi|θ
T ,dTi ), FC(yi|θC ,dCi ))

∂FC(yi|θC ,dCi )

](1−δi)ρi
×[

Cν(FTpop(yi|θ
T ,dTi ), FC(yi|θC ,dCi ))

](1−ρi)

.

(22)

Where y and the indicators variable δ and ρ compose the set of observed data.
θT and θC denote the parameter vectors associated with the T and C respectively,
dT and dC denote the set of covariates.

To obtain maximum likelihood estimates of θT and θC solve the gradient
vector of the likelihood function to zero, or more easily the gradient vector of the
logarithm of the likelihood function. As there is not an analytical solution to these
partial derivatives an optimization algorithm is required. Standard errors can be
obtained from the square roots of the negative Hessian’s inverse principal diagonal
SE =

√
−diag(H−1).

The likelihood function presented in equation (22) besides the copula function
also needs marginal distributions specification for T and C. In survival analysis,
appropriate distributions need to be chosen to model positive data. There are many
options of distributions, each one has benefits and limitations. In this paper, we will
use the Weibull and piecewise exponential distributions to model event of interest
and dependent censoring times.

2.3 Marginal Weibull Model

The Weibull distribution is a common choice in survival analysis, with a
monotonic hazard function and two parameters it has the exponential distribution as
a particular case (Johnson et al., 1995). Assuming that the time to event of interest
T ∼ W (αT , λT ), αT , λT > 0 and dependent censoring time C ∼ W (αC , λC), with
αC , λC > 0; αT and αC are shape parameters, λT and λC are the scale parameters.
For this model we have the following notations ψT = (αT , λT ) and ψC = (αC , λC).
The baseline hazard functions and cumulative baselines hazard functions are
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hT0 (y|ψT ) = αTλT yα
T−1 and hC0 (y|ψC) = αCλCyα

C−1, (23)

HT
0 (y|ψT ) = λT yα

T

and HC
0 (y|ψC) = λCyα

C

. (24)

To obtain the likelihood function of the cure rate model for dependent
censoring under copulas expressed in equation (22), with Weibull distributions
for T and C we need fTpop(y|θ

T ,dT ), FTpop(y|θ
T ,dT ), fC(y|θC ,dC), FC(y|θT ,dT ).

To define these functions use equations (23) and (24) in equations (4),(5),(6),(7),
resulting in the following functions

fTpop(yi|θ
T ,dTi ) = αTλT yi

αT−1 exp

[
exp

{
xiβ − λT yiαT ex

T
i β

T
}
−

λT yi
αT ex

T
i β

T

− exiβ + xiβ + xTi β
T

]
,

(25)

FTpop(yi|θ
T ,dTi ) = 1− exp

[
exp

{
xiβ − λT yiαT ex

T
i β

T
}
− exiβ

]
, (26)

fC(yi|θC ,dCi ) = αCλCyi
αC−1 exp{xCi β

C − λCyiα
C

ex
C
i β

C

}, (27)

FC(yi|θC ,dCi ) = 1− exp{−λCyiα
C

ex
C
i β

C

}. (28)

2.4 Marginal Piecewise Exponential Model

The piecewise exponential distribution is a semiparametric distribution, it
makes no limitation on the shape of the hazard function and this is why it has
become a popular option in survival analysis (Emura and Michimae, 2017). The
piecewise exponential distribution has a step hazard function, constant over each
interval of a time grid.

Assume a time grid for time to event of interest T as γT = {mT
0 ,m

T
1 , · · · ,mT

b },
with mT

0 = 0 and mT
b = ∞, where mT

0 < mT
1 < · · · < mT

b , creating a set of
b disjoint intervals ITk = (mT

k−1,m
T
k ] for k = 1, . . . , b. Assume a similar grid for

censoring time C as γC = {mC
0 ,m

C
1 , . . . ,m

C
d } with mC

0 = 0 and mC
d = ∞, where

mC
0 < mC

1 < · · · < mC
d , creating a set of d disjoint intervals ICj = (mC

j−1,m
C
j ] for

j = 1, . . . , d.
Consider ψT to denote the vector of λTk for k = 1, . . . , b that specifies the

constant hazard function in each interval defined by the grid γT . And ψC to
denote the vector of λCj for j = 1, . . . , d that specifies the constant hazard function

in each interval defined by the grid γC . The baselines hazard function for the
piecewise exponential distribution are
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hT0 (y|ψT ) =

b∑
k=1

λTk I(mT
k−1 ≤ y < mT

k )

and hC0 (y|ψC) =

d∑
j=1

λCj I(mC
j−1 ≤ y < mC

j ) ,

(29)

HT
0 (y|ψT ) =

b∑
k=1

λTk (min{y,mT
k } −min{y,mT

k−1})

and HC
0 (y|ψC) =

d∑
j=1

λCj (min{y,mC
j } −min{y,mC

j−1}) .

(30)

To obtain the likelihood function of the cure rate model for dependent
censoring under copulas expressed in equation (22) with piecewise exponential
distribution for T and C we need fTpop(y|θ

T ,dT ), FTpop(y|θ
T ,dT ), fC(y|θC ,dC),

FC(y|θT ,dT ). To derive them use equations (29) and (30) in equations
(4),(5),(6),(7) , resulting in the following functions

fTpop(yi|θ
T ,dTi ) =

[ b∑
k=1

λTk I(mT
k−1 ≤ yi < mT

k )

]
×

exp

{
exp

{
xiβ −

[ b∑
k=1

λTk (min{yi,mT
k } −min{yi,mT

k−1})
]
ex

T
i β

T
}
−

[ b∑
k=1

λTk (min{yi,mT
k } −min{yi,mT

k−1})
]
ex

T
i β

T

− exiβ + xiβ + xTi β
T

}
,

(31)

FTpop(yi|θ
T ,dTi ) = 1− exp

[
exp

{
xiβ −

[ b∑
k=1

λTk (min{yi,mT
k }−

min{yi,mT
k−1})

]xT
i β

T}
− exiβ

]
,

(32)

fC(yi|θC ,dCi ) =

[ d∑
j=1

λCj I(mC
k−1 ≤ yi < mC

j )

]
×

exp

{
xCi β

C −
[ d∑
j=1

λCj (min{yi,mC
j } −min{yi,mC

k−1})
]
ex

C
i β

C
}

,

(33)
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FC(yi|θC ,dCi ) = 1− exp

{[ d∑
j=1

λCj (min{yi,mC
j }−min{yi,mC

k−1})
]
ex

C
i β

C
}

. (34)

3 Simulation Study

To assess the proposed cure rate model for dependent censoring under copula
approach we conduct a Monte Carlo simulation study. The implementation was
done in software R version 4.0.5. We generated 500 data sets with n = 500 assuming
Clayton copula with ν = 3, producing moderate correlation, Kendall’s τ of ∼ 25%.
For the time distributions we considered the Weibull model with parameters αT =
1.5, λT = 0.2, αC = 1.5 and λC = 0.15. The administrative censoring A time
was considered uniform between 0 and 20. For the covariates related to T , C and
the cure rate of T , we generated XT

1 ,XC
1 and X1 from Ber(0.5) and XT

2 , XC
2

and X2 from N(0; 1). The regression coefficients were set as βT = (1.2,−1.2),
βC = (−1.4, 1.4) and β = (−0.6, 0.7, 0.8).

To generate data from cure rate model for dependent censoring under Clayton

copula with Weibull marginals, set ti = FTpop
−1

(ui|θT ,dTi ) , ci = FC
−1

(vi|θC ,dCi )
and ai ∼ U [0; 20], Because of the dependency context ui and vi are correlated.

In order to generate correlated ui and vi, we use the Clayton copula. First,
draw ui from U [0; 1], then draw vi from P (V |U = ui). vi = P (V ≤ wi|U = ui)

−1

where wi is U [0; 1]. For Clayton copula we have:

• Draw ui ∼ U [0; 1]

• Draw wi ∼ U [0; 1]

• Take vi = [u−νi (w
−ν(ν+1)−1

i − 1) + 1]−1/ν .

Set yi = min(ti, ci, ai) to define the observed survival time and let δi = I{yi =
ti} and ρi = 1 − I{yi = ai} be the indicator variables. To obtain ti and ci use
respectively,

ti =

[
− ln

(
1 +

ln(1− ui)
exp{β0 + β1X1,i + β2X2,i}

)
× 1

λT exp{βT1 XT
1,i + βT2 X

T
2,i}

]αT −1

(35)

and ci =

[
− ln(1− vi)

λC exp{βC1 XC
1,i + βC2 X

C
2,i}

]αC−1

. (36)

The Clayton’s copula parameter ν is related to Kendall’s τ as presented by
equation (21).This Kendall’s τ however expresses the correlation value between U
and V , not between T and C. The data was generated setting ν = 3, which denotes

12 Rev. Bras. Biom., Lavras, v.xx, n.x, p.1-10, 20xx



Kendall’s τ = 0.60 between U and V , while correlation between T and C is Kendall’s
τ = 0.2573.

The above specifications generate samples with approximately 38.3% event
outcome, 39, 2% dependent censoring and 22.5% administrative censoring. Each
one of the 500 datasets is fit by the proposed models: Clayton copula cure model
for dependent censoring with Weibull marginals (M1) (generator model) ; Clayton
copula cure model for dependent censoring with piecewise exponential marginals
(M2); Plackett copula cure model for dependent censoring with Weibull marginals
(M3) and Plackett copula cure model for dependent censoring with piecewise
exponential marginals (M4). We fit each model for four different dependency
scenarios. We do this to evaluate the model parameters estimations and to compare
the different dependency scenarios. Table 1 shows the copulas parameters set in
each scenario.

Table 1 - Correlation Scenarios
Scenario Clayton’s ν Plackett’s ν Kendall’s τ

Indep 0.0001 1.0001 ∼0.0005
Under 1 5 ∼0.15

Correct 3 50 ∼0.25
Over 8 300 ∼0.30

The Akaike information criterion and percentage of lowest AIC were used
to determine the adequate number of intervals (see Table 2) for the piecewise
exponential marginal models in M2 and M4. Ten datasets were adjusted by
M1 assuming different number of intervals.The adjustments assuming 5 intervals
provided good mean AIC and presented the highest percentage of lowest AIC. The
intervals cut points were defined using the observed times, allocating the same
number of observations in each interval.

Table 2 - Number of intervals for piecewise exponential marginal
Intervals Weibull 2 3 4 5 6 7 10 15

AIC 1490 1545 1505 1497 1497 1579 1681 2111 2374
% Lowest 10% 20% 20% 40% 10% 0% 0% 0%

AIC is the mean AIC of the ten datasets’s AIC.; % Lowest is the lowest AIC percentage of
interval quantity

Estimates of the parameters were found through Maximum likelihood using a
quasi-Newton method. This optimizer is available in the R software under BFGS
method in the optim function that uses the Shanno (1970) approach. To start
the gradient guided quasi-Newton we first conducted one run of Nelder and Mead
optimizer with initial values of 0.01 for all parameters and used its estimates as
initial values for the BFGS optimizer. To obtain the Hessian matrix we used the
Richardson extrapolation method to approximate derivatives implemented under
the function hessian in numDeriv package in the R software .
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So, each one of the 500 datasets are fitted by four Models (M1, M2, M3,
M4) and four dependency scenarios (Indep, Under, correct, Over). The Tables 3,
4, 5, 6 show the summarized estimates obtained from the fitted models. In order
to evaluate the proposed model’s estimates for different correlation scenarios the
Tables inform the mean estimates (Est) of each regression coefficient βT ,βC and β,
comparing them to their true values Real through the mean relative bias ( %Bias).
CP denotes the Coverage Probability, SE is the mean standard error and SD is
the standard deviation of the Monte Carlo replications. Furthermore we calculated
the mean of the Bayesian information criterion (BIC), Hannan - Quinn information
criterion (HQ) and Akaike information criterion (AIC).

Table 3 presents the summary of M1 estimates. M1 is the data generator
model, and so is expected to present good estimates specially for the correct
scenario. Assuming independence M1 produces very poor estimates. Relative bias
of βC1 , βC0 and β0 are over 30% and the coverage probabilities of these parameters
are low, specially βC2 whose coverage probability is 0.012 (Table 3). The results
of M1 in the Indep scenario reiterate the importance of modeling the dependence.
All parameters estimates present positive relative bias, in other words the model
overestimate parameters. When we look to the M1 model in the Under scenario and
compare it to Indep, relative bias is smaller then those of Indep for all parameters.
Coverage probability is higher for all parameters, but still far from the nominal 0.95
(Table 3).

Under the correct scenario M1 generated good estimates, highest relative bias
is βT2 ’s of only 1.78%. Coverage probability of all parameters also reach close to
nominal level. The Over scenario however produced poor estimates with large
negative relative bias, β0 the cure rate’s intercept presents the largest relative bias
(-18.32%), all parameters also present smaller than ideal coverage probability when
compared to the nominal value (Table 3).

In Table 4 we present the summary of the M3 models estimates. The results
are very similar to those seen in M1 model estimates. The Indep scenario produces
large (from 10.7% to 35.7%) positive bias estimates with low (0.012 - 0.88) coverage
probability. Again, βC2 present worst metrics, 0.012 coverage probability and 31.7%
relative bias. The Under scenario shows improvements for all parameters estimates
when compared to Indep, the bias is reduced and coverage probability increases.
The correct scenario produces good estimates, this is important because M3 is
not the data generator model. M3 model uses the Plackett copula to adjust
for dependency instead the Clayton copula. The correct scenario presented good
coverage probability for all parameters, and all parameters except β2 have positive
small relative bias (from 0.5% to 1.9%) (Table 4). The Over scenario produced
mostly negative biased estimates, only β0 presented positive relative bias (1.087%),
this bias is actually smaller then that seen in the correct scenario (1.905%). All
other parameters, besides β0, present relative bias smaller than -5% (Table 4).

Table 5 presents the summary of the M2 model estimates. The M2 model
uses Clayton copula to adjust the dependency and assumes piecewise exponential
marginals. Once again, the model in the Indep scenario produces estimates with
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large positive relative bias (from 7.9% to 32.9%) and low coverage probability (from
0.91 to 0.04 ). The parameter β0 presents the largest relative bias (32.9%) and again,
βC2 has an extremely low coverage probability (0.04) whereas βT1 however presents
much better (0.91) . The M2 model in Under scenario shows improvements for
all parameters estimates in relation to de Indep scenario, relatives bias lowers and
coverage probability increases. The parameters βT1 , βT2 and β1 present very high
coverage probability (0.94, 0.93, 0.94). For the correct scenario all parameters
present negative relative bias (from -2.5% to -0.6%), although close to zero, this
diverges from the other models that had mostly small positive relative bias (See
Tables 3 and 4) . Coverage probability value is close to the nominal level, for
all parameters. However βT1 , βT2 and β1 present reduced coverage probability in
comparison with the Under scenario (Table 5). The M2 model in the Over scenario
produces large negative biased estimates (from -23.5% to -15.4%)) with low coverage
probability (from 0.12 to 0.61).The worst behavior is for the β0 parameter that
presents -23.5% relative bias. These parameters presented the worst relative bias
in all scenarios of M2 model(Table 5). Comparing the Over scenarios, M2 model
has the worst performance between M1 and M3 in terms of relative bias for all
parameters. Even so, M2 model in the Over scenario is better than the Indep
scenario for βC1 ,βC2 and β0 (Table 5).

Table 6 presents the summary of M4 model estimates. The M4 model
uses Plackett copula to adjust the dependency and assumes piecewise exponential
marginals, this is important because M4 model differs completely from M1
model(data generator model), M1 models uses Clayton copula to adjust the
dependency and assumes Weibull marginals. The M4 model in the Indep scenario
produces estimates with large positive bias (from 7.8% to 32.8%). The parameter β0

with 32.8% has the highest relative bias. the parameter βT1 presents a high coverage
probability (0.912). The Under scenario presents improved estimates in comparison
to Indep scenario present improved estimates because all the parameters reduced
bias and increased coverage probability. Relative bias is still large (from 6% to 16%).
Parameters βT1 , βT2 , β0 and β1 present high coverage probability (0.92, 0.9, 0.92)
(Table 6). The M4 model in the correct scenario presents negative close to zero bias
(from -3.1% to -1.8%) for all parameters and good coverage probability (from 0.92
to 0.95). Parameter βT1 presents reduced coverage probability in comparison to the
Under scenario, but still is close to the nominal level. The Over scenario present
all the parameter’s estimates with negative relative bias ( from -11.2% to -4.8%)
and loss coverage probability, compared to Under and correct scenarios (Table 6).

Analyzing the simulations results as a whole we can see that the mean
standard errors are close to the standard deviation in all models and all scenarios.
The coverage probability reaches the nominal level when correctly setting the
dependency.

Estimates of all four models show increased bias as the dependency
misspecification gets worse. In our simulation for Indep scenario all models
presented large positive relative bias, while for the Over scenario all models
presented large negative bias. Simulations show that ,to a certain degree, it is
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better to misspecify the dependency than to assume independence.
Comparing models that used Plackett copula and models that used Clayton

copula no differences draws attention. Models are much more sensitive to the
copula parameter than the copula choice. Comparing the models that assume
Weibull marginals and the models that assume piecewise exponential, showed
that the piecewise exponential models are able to fit the data generated from
the Weibull model as expected. Even though the piecewise exponential models
presented negative relative bias further from zero than Weibull, in the Over scenario
the piecewise exponential model presented higher coverage probability for some
parameters.

Assessing all parameters of each scenario, the Indep scenario presented the
worst estimates, followed by the Over scenario, then the Under. This indicates that
for our simulation both misspecification of dependency scenarios are better then the
Indep scenario. M3 model performed better in terms of bias than the M1 model for
the Over scenario. All parameters present lower relative bias in the Over scenario
of M3 model than in Over scenario of M1 model.

A broader simulation might elucidate more about the models behaviors,
specially the comparison of the piecewise exponential and the Weibull model, in this
simulation study we only generated data from the M1 model, it would be interesting
to generate data from other models as well. Although the copula function did not
matter much we know that the marginal model may, as the piecewise exponential
model is able to fit non-monotonic hazard functions.
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Table 3 - Simulations results for the proposed model M1:Clayton copula cure model
for dependent censoring with Weibull marginals

Model Par Real Est %Bias CP SE SD

M1
βT1 1.2 1.330 10.870 0.880 0.190 0.203
βT2 - 1.2 - 1.329 10.785 0.774 0.110 0.110

Indep
βC1 - 1.4 - 1.850 32.110 0.236 0.168 0.174
βC2 1.4 1.845 31.757 0.012 0.111 0.120

BIC 1597.0 β0 - 0.6 - 0.814 35.721 0.648 0.133 0.130
HQ 1568.9 β1 0.7 0.812 15.954 0.882 0.152 0.152
AIC 1550.7 β2 0.8 0.914 14.274 0.724 0.083 0.083

M1
βT1 1.2 1.306 8.843 0.898 0.177 0.183
βT2 - 1.2 - 1.307 8.941 0.812 0.103 0.101

Under
βC1 - 1.4 - 1.624 15.993 0.684 0.142 0.141
βC2 1.4 1.622 15.872 0.340 0.094 0.096

BIC 1557.9 β0 - 0.6 - 0.713 18.760 0.868 0.122 0.118
HQ 1529.7 β1 0.7 0.777 11.058 0.926 0.138 0.134
AIC 1511.5 β2 0.8 0.877 9.675 0.824 0.076 0.075

M1
βT1 1.2 1.216 1.340 0.962 0.155 0.159
βT2 - 1.2 - 1.221 1.783 0.938 0.092 0.094

Correct
βC1 - 1.4 - 1.416 1.139 0.936 0.118 0.120
βC2 1.4 1.416 1.178 0.936 0.081 0.085

BIC 1536.6 β0 - 0.6 - 0.611 1.762 0.956 0.108 0.109
HQ 1508.4 β1 0.7 0.712 1.770 0.960 0.117 0.115
AIC 1490.2 β2 0.8 0.806 0.780 0.946 0.068 0.070

M1
βT1 1.2 1.045 - 12.933 0.688 0.124 0.156
βT2 - 1.2 - 1.058 - 11.829 0.538 0.078 0.102

Over
βC1 - 1.4 - 1.198 - 14.433 0.440 0.094 0.120
βC2 1.4 1.199 - 14.359 0.230 0.070 0.089

BIC 1565.9 β0 - 0.6 - 0.490 - 18.321 0.710 0.093 0.111
HQ 1537.7 β1 0.7 0.607 - 13.327 0.754 0.089 0.112
AIC 1519.5 β2 0.8 0.689 - 13.921 0.500 0.056 0.075
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Table 4 - Simulations results for the proposed model M3:Plackett copula cure model
for dependent censoring with Weibull marginals

Model Par Real Est %Bias CP SE SD

M3
βT1 1.2 1.330 10.870 0.880 0.190 0.203
βT2 - 1.2 - 1.329 10.785 0.774 0.110 0.110

Indep
βC1 - 1.4 - 1.850 32.124 0.236 0.168 0.174
βC2 1.4 1.845 31.770 0.012 0.111 0.120

BIC 1597.1 β0 - 0.6 - 0.814 35.736 0.648 0.133 0.130
HQ 1568.9 β1 0.7 0.812 15.957 0.882 0.152 0.152
AIC 1550.7 β2 0.8 0.914 14.277 0.724 0.083 0.083

M3
βT1 1.2 1.312 9.367 0.902 0.182 0.190
βT2 - 1.2 - 1.315 9.587 0.818 0.107 0.104

Under
βC1 - 1.4 - 1.672 19.402 0.586 0.148 0.152
βC2 1.4 1.673 19.498 0.216 0.101 0.104

BIC 1567.9 β0 - 0.6 - 0.703 17.246 0.890 0.125 0.121
HQ 1539.8 β1 0.7 0.785 12.079 0.924 0.140 0.137
AIC 1521.6 β2 0.8 0.885 10.584 0.822 0.078 0.078

M3
βT1 1.2 1.206 0.539 0.938 0.160 0.168
βT2 - 1.2 - 1.215 1.260 0.958 0.096 0.096

Correct
βC1 - 1.4 - 1.414 1.015 0.936 0.120 0.128
βC2 1.4 1.419 1.354 0.954 0.087 0.088

BIC 1551.9 β0 - 0.6 - 0.611 1.905 0.936 0.109 0.113
HQ 1523.8 β1 0.7 0.702 0.290 0.954 0.114 0.122
AIC 1505.6 β2 0.8 0.794 - 0.789 0.938 0.069 0.077

M3
βT1 1.2 1.118 - 6.836 0.862 0.141 0.170
βT2 - 1.2 - 1.129 - 5.939 0.818 0.088 0.102

Over
βC1 - 1.4 - 1.293 - 7.670 0.744 0.107 0.133
βC2 1.4 1.298 - 7.280 0.718 0.082 0.091

BIC 1574.1 β0 - 0.6 - 0.607 1.087 0.890 0.100 0.122
HQ 1546.0 β1 0.7 0.650 - 7.073 0.812 0.097 0.134
AIC 1527.8 β2 0.8 0.736 - 8.050 0.744 0.064 0.086
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Table 5 - Simulations results for the proposed model M2: Clayton copula cure
model for dependent censoring with Piecewise Exponential marginals

Model Par Real Est %Bias CP SE SD
βT1 1.2 1.302 8.523 0.912 0.191 0.201

M2
βT2 - 1.2 - 1.296 7.996 0.874 0.110 0.105
βC1 - 1.4 - 1.804 28.842 0.322 0.168 0.166

Indep
βC2 1.4 1.786 27.571 0.040 0.107 0.108

BIC 1645.8 β0 - 0.6 - 0.797 32.839 0.696 0.134 0.129
HQ 1602.3 β1 0.7 0.805 15.014 0.896 0.152 0.150
AIC 1574.2 β2 0.8 0.905 13.162 0.756 0.082 0.081

βT1 1.2 1.264 5.337 0.948 0.177 0.180
M2

βT2 - 1.2 - 1.260 5.037 0.934 0.101 0.096
βC1 - 1.4 - 1.594 13.828 0.764 0.142 0.137

Under
βC2 1.4 1.586 13.264 0.500 0.093 0.090

BIC 1606.1 β0 - 0.6 - 0.688 14.682 0.922 0.123 0.116
HQ 1562.5 β1 0.7 0.764 9.203 0.946 0.137 0.131
AIC 1534.4 β2 0.8 0.861 7.664 0.896 0.075 0.073

βT1 1.2 1.170 - 2.474 0.936 0.154 0.157
M2

βT2 - 1.2 - 1.172 - 2.322 0.928 0.090 0.089
βC1 - 1.4 - 1.380 - 1.393 0.946 0.118 0.118

Correct
βC2 1.4 1.380 - 1.461 0.956 0.081 0.082

BIC 1584.4 β0 - 0.6 - 0.585 - 2.534 0.950 0.108 0.106
HQ 1540.8 β1 0.7 0.696 - 0.608 0.958 0.116 0.112
AIC 1512.7 β2 0.8 0.786 - 1.724 0.958 0.066 0.067

βT1 1.2 1.005 - 16.245 0.608 0.123 0.155
M2

βT2 - 1.2 - 1.015 - 15.414 0.356 0.077 0.097
βC1 - 1.4 - 1.151 - 17.810 0.284 0.094 0.118

Over
βC2 1.4 1.153 - 17.656 0.126 0.070 0.088

BIC 1610.7 β0 - 0.6 - 0.458 - 23.594 0.618 0.093 0.108
HQ 1567.1 β1 0.7 0.585 - 16.399 0.678 0.088 0.109
AIC 1539.0 β2 0.8 0.664 - 16.990 0.350 0.055 0.073
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Table 6 - Simulations results for the proposed model M4: Plackett copula cure
model for dependent censoring with Piecewise Exponential marginals

Model Par Real Est %Bias CP SE SD
βT1 1.2 1.302 8.523 0.912 0.191 0.201

M4
βT2 - 1.2 - 1.296 7.996 0.874 0.110 0.105
βC1 - 1.4 - 1.804 28.842 0.322 0.168 0.166

Indep
βC2 1.4 1.786 27.571 0.040 0.107 0.108

BIC 1645.8 β0 - 0.6 - 0.797 32.839 0.696 0.134 0.129
HQ 1602.3 β1 0.7 0.805 15.014 0.896 0.152 0.150
AIC 1574.2 β2 0.8 0.905 13.162 0.756 0.082 0.081

βT1 1.2 1.281 6.712 0.928 0.183 0.188
M4

βT2 - 1.2 - 1.278 6.483 0.906 0.105 0.099
βC1 - 1.4 - 1.631 16.523 0.690 0.147 0.145

Under
βC2 1.4 1.626 16.108 0.368 0.098 0.095

BIC 1617.6 β0 - 0.6 - 0.685 14.219 0.924 0.126 0.120
HQ 1574.1 β1 0.7 0.776 10.905 0.932 0.140 0.136
AIC 1546.0 β2 0.8 0.874 9.282 0.854 0.078 0.076

βT1 1.2 1.166 - 2.854 0.922 0.159 0.166
M4

βT2 - 1.2 - 1.170 - 2.493 0.938 0.094 0.091
βC1 - 1.4 - 1.371 - 2.076 0.924 0.119 0.123

Correct
βC2 1.4 1.374 - 1.852 0.948 0.086 0.084

BIC 1599.9 β0 - 0.6 - 0.585 - 2.436 0.936 0.109 0.110
HQ 1556.4 β1 0.7 0.685 - 2.075 0.948 0.113 0.119
AIC 1528.2 β2 0.8 0.775 - 3.152 0.918 0.069 0.073

βT1 1.2 1.074 - 10.526 0.798 0.140 0.170
M4

βT2 - 1.2 - 1.081 - 9.904 0.666 0.087 0.096
βC1 - 1.4 - 1.242 - 11.250 0.648 0.106 0.127

Over
βC2 1.4 1.248 - 10.882 0.514 0.081 0.087

BIC 1619.7 β0 - 0.6 - 0.571 - 4.889 0.878 0.100 0.118
HQ 1576.2 β1 0.7 0.627 - 10.420 0.794 0.096 0.128
AIC 1548.1 β2 0.8 0.710 - 11.260 0.624 0.063 0.081

20 Rev. Bras. Biom., Lavras, v.xx, n.x, p.1-10, 20xx



To complement the evaluation of the estimates we present the AIC in Figure
1 for the four models and four scenarios. The M1 model in the correct scenario
has the lowest median among all models and scenarios, as expected for the data
generator model. Other models when fitted in the correct scenario present AIC
similar to M1.

The correct scenario presents the lowest median among all scenarios, the
median AIC increases as the dependency misspecification increases. In all models
the Under scenario and the Over scenario present almost the same AIC median.
The independent scenario presents a higher median than any other scenario for
the four models. This shows that AIC and log-likelihood might be used to help
determine the copula parameter (Figure 1).

Figure 1 - Akaike information criterion for the four models and four scenarios

The relative bias is presented in Figure 2 for each parameter for all models
scenarios. Figure 2 shows the bias reduction in the estimates as the dependency
parameter is rightly set. The independent scenario has the greatest bias. The Figure
also shows that even with the change of the copula function or the marginal model,
the estimates are similar in terms of bias direction and interquartile range.

The independent case for β2, β1,βC2 and βT1 present median positive relative
bias while β0, βC1 and βT2 present median negative relative bias (Figure 2). These
relative biases get closer to zero in the Under scenario and even more so in the
correct scenario. In the Over scenario these biases get further away from zero, but
in the other direction. This can be observed for the four models. Figure 2 also
presents the variability of the estimates, β0 and β1 present the largest interquartile
range, while βC2 and βT1 present the smallest.

Figure 3 presents the survival curves of T and C for each model and scenario, to
asses the impact of the estimates on the model’s survival curve. The survival curves
are obtained from the mean estimates of the parameters for xT1 = xC1 = x1 = 1
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Figure 2 - Parameters estimate’s relative bias by model and scenario

and xT2 = xC2 = x2 = 0.5. First, we note that the cure rate that can be seen in
the curves. The red lines represent estimated survival function for T and it flattens
out around 0.23 for all models, this means that cure probability is around 0.23
(Figure 3). Comparing all models and scenarios we see that the estimated survival
curves overestimate the true curve when dependency is set bellow true value, and
underestimates the true curve when dependency is set above the true dependency.
This happens both for T and C but seems to be more drastic for C.
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Figure 3 - Survival Curves by model and scenario
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4 Analysis of prostate cancer data

Medical literature and review papers suggest that prostate cancer and
cardiovascular disease might be correlated. According to Li et al. (2007) high
cholesterol is a risk factor for both prostate cancer and cardiovascular disease. The
prostate cancer treatment is often based on androgen deprivation therapies which
have been associated with various cardiovascular diseases (Cardwell et al., 2020).

With this in mind we conduct the analysis of the SEER (National Institutes
of Health surveillance epidemiology and end results) Prostate cancer data. The
dataset, from which we randomly selected 25,000 cases are from patients diagnosed
with prostate cancer in the year of 2000. From these 25,000 patients, 3,005(12.2%)
passed away due the prostate cancer, 3,338(7.1%) due to heart diseases and the
remaining 18,657(74.6%) are either alive ate the end of study or passed away due
to other causes.

The variables selected to enter this study are the continuous age at diagnoses,
that ranges form 40 to 90, with mean of 67.9 years and standard deviation of 9.40.
We used the standardized age in the adjustment. We consider Race, dichotomized
in White and Non white. Marital status dichotomized in yes and no, Surgery status
with three classes: None for patients that did not underwent surgery; Resec which
specifies patients that had tissue resection surgery; Destruc that specifies patients
that had tissue destruction surgery. Lastly cancer stage, I if the information is not
sufficient to assign a stage, II or III for an invasive neoplasm confined entirely to
the prostate and IV if a neoplasm that has spread to other parts of the body.

Table 7 presents the prostate cancer dataset summary. Count denotes the
number of patients that experienced each outcome, (%) denotes the percentage of
patients that experienced the outcome and Med represents the median survival
time of those patients. Is also presented the the total numbers and totals for all
variable.

We assumed Alive or Other causes of death to be a right censoring, that is
independent from the prostate cancer survival time. Heart disease we consider
dependent censoring of the prostate cancer survival time. We will fit the four
models to this dataset (M1, M2, M3 and M4). To choose which variables will
model each outcome and the cure fraction we conducted marginal analysis. For the
prostate cancer survival time all selected variables are significant and therefore will
be used to model the prostate cancer. For the marginal fit of heart disease time,
are significant age and marital status, we dichotomized surgery further into yes and
no, which made this new variable significant. For the cure fraction we selected age
and marital status.

So for M2 and M4 models we assumed grids with 5 intervals to adjust prostate
cancer and heart disease. We selected 5 intervals as a more conservative view point,
Li et al. (2016) uses 3 intervals and Loeb et al. (2011) uses 2, we understand that
with 5 intervals we allow the model to be more flexible and therefore fit better
the dataset. In order to fit the cure model with dependent censoring under copula
approach we set Kendall’s τ = 0.4, based on Escarela and Carriere (2003) that

24 Rev. Bras. Biom., Lavras, v.xx, n.x, p.1-10, 20xx



Table 7 - Summary and distribution of the variables included in study and
comparison between Prostate Cancer. Heart disease and Alive/Other
death causes

Prostate Cancer Heart diseases Alive/Other deaths
Count (%) Med Count (%) Med Count (%)

Total 3005 12.02 5 3338 13.352 7.1 18657 74.628
Age

40-60 441 7.8 6.3 188 3.3 8.7 5039 88.9
61-68 656 9.4 6.5 554 7.9 8.5 5773 82.7
69-75 807 12 5.8 1098 16.4 7.8 4796 71.6
76-90 1101 19.5 3.4 1498 26.5 5.9 3049 54

Race
White 2355 11.5 5.2 2768 13.5 7.3 15327 74.9

N White 650 14.3 4.7 570 12.5 6.3 3330 73.2
Marital Status

Yes 1847 10.7 5.3 2142 12.4 7.4 13302 76.9
No 1158 15 4.5 1196 15.5 6.5 5355 69.5

Surgery
None 2332 14.8 4.8 2584 16.4 7.1 10797 68.7

Ressec 508 6.1 6.4 572 6.8 7.8 7301 87.1
Destruc 165 18.2 4.3 182 20.1 5.3 559 61.7

Cancer Stage
I 345 26.7 4.4 213 16.5 5.5 732 56.7

II or III 1951 8.6 6.8 3032 13.4 7.3 17715 78
IV 709 70.1 1.7 93 9.2 2.1 210 20.8

proved an identifiable model using Frank’s copula that estimated ν = 4.28 as the
dependency among Prostate cancer and heart diseases, which relates to τ = 0.41.
So, we take the Clayton copula ν = 1.35 and Plackett copula ν = 7.03. We also
do not provide adjustment diagnosis, in a more robust health data study residual
analysis is recommended.

The Tables 8 ,9, 10 and 11 present the models regression coefficients estimates
compared to the independent scenario estimates. In the tables Est stands for
estimate, SE for standard error, LCL and UCL for lower and upper asymptotic
Wald confidence interval limit, and Diff est is the dependent and independent
model’s estimates difference. We do not provide proof of asymptotic theory in this
work as it is still lacking in the literature. asymptotic theory is well formulated for
the cure models, but we could not find much on copula survival models, simulation
study showed good performance of the Wald asymptotic confidence intervals and
therefore we use it in our real data application.

Table 8 presents the regression coefficients estimates produced by M1 for ν =
1.35 and compared to the independent scenario estimates. There is some differences
in the estimates, Marital status, surgery (destructive) and stage(IV) present higher
estimates in the independent model for the prostate cancer survival time. Surgery
(destructive) is not significant in the dependent model. The signs of parameters
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Table 8 - M1 model adjustment of Prostate cancer dataset
M1 Model

Setting ν = 1.35 Independent
Parameter Est SE LCL UCL Est SE LCL UCL

Diff est

age 0.495 0.079 0.340 0.649 0.420 0.072 0.278 0.562 0.075
race white -0.089 0.035 -0.157 -0.021 -0.171 0.050 -0.269 -0.074 0.082
marr yes -0.713 0.178 -1.062 -0.365 -0.383 0.136 -0.650 -0.115 -0.331
surg resc -0.379 0.041 -0.459 -0.300 -0.482 0.055 -0.589 -0.375 0.103
surg destr 0.013 0.066 -0.117 0.143 0.230 0.091 0.052 0.408 -0.217
stage II/III -0.814 0.050 -0.911 -0.717 -1.267 0.066 -1.395 -1.138 0.453
stage IV 2.170 0.075 2.023 2.317 2.366 0.082 2.205 2.527 -0.196
age 0.941 0.018 0.906 0.975 1.095 0.023 1.051 1.139 -0.154
marr yes -0.259 0.029 -0.317 -0.202 -0.221 0.036 -0.293 -0.150 -0.038
surg2 yes -0.311 0.035 -0.380 -0.243 -0.266 0.043 -0.350 -0.181 -0.046
β0 0.544 0.103 0.342 0.747 0.702 0.095 0.515 0.888 -0.157
age 0.160 0.074 0.014 0.306 0.078 0.066 -0.052 0.209 0.081
marr yes 0.419 0.166 0.093 0.745 0.107 0.125 -0.138 0.351 0.312

however are the same, both models find the same effect direction to each variable.
For Heart diseases all parameters present lower values when considering dependency
and all parameters are significant in both models. For the prostate cancer cure rate
the independent model does not find significance for age and marital status, whereas
the dependent model does. When comparing the standard errors in prostate cancer,
only age and marital status present higher values for the dependent model. All
parameters of heart diseases have lower standard error in the dependent model.
All estimates from the independent model present lower standard error then the
dependent model.

Table 9 presents the regression coefficients estimates produced by M3 for ν =
7.04 and compared to the independent scenario estimates. M3 uses the Plackett
copula to adjust dependency and assumes Weibull marginals. Analyzing difference
in the estimates of the dependent model and the independent model we see that Age
and stage II/III present higher estimates in the dependent model, for the prostate
cancer survival time, all other parameters all smaller in the dependent model.As
for Heart diseases all parameters present lower values when considering dependency
(Table 9 ). For M3, Surgery (destructive) is not significant in the dependent model.
In the independent model all parameters (from Prostate cancer and heart disease)
are significantly different from zero. For the cure rate age and marital status are
not significant under the independent model (Table 9 ). For the prostate cancer
cure rate, the independent M3 model does not find significancy for age and marital
status, as for the dependent M3 model the significancy is found. Only β0 is lower
in the dependent model, all other parameters present higher values (Table 9 ).

Table 10 presents the regression coefficients estimates produced by M2 for
ν = 1.35 and compared to the independent scenario estimates. Analyzing differences
in the estimates of the dependent model and the independent model we see that
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Table 9 - M3 model adjustment of Prostate cancer dataset
M3 Model

Setting ν = 7.04 Independent
Parameter Est SE LCL UCL Est SE LCL UCL

Diff est

age 0.477 0.068 0.344 0.610 0.444 0.074 0.300 0.589 0.033
race white -0.157 0.044 -0.244 -0.069 -0.151 0.050 -0.249 -0.053 -0.006
marr yes -0.687 0.141 -0.962 -0.411 -0.376 0.137 -0.645 -0.107 -0.311
surg resc -0.494 0.052 -0.596 -0.392 -0.472 0.055 -0.579 -0.365 -0.021
surg destr 0.101 0.081 -0.058 0.259 0.268 0.090 0.092 0.445 -0.168
stage II/III -1.015 0.057 -1.128 -0.902 -1.246 0.066 -1.376 -1.117 0.231
stage IV 2.335 0.078 2.183 2.487 2.388 0.082 2.227 2.550 -0.053
age 1.071 0.021 1.030 1.112 1.095 0.023 1.051 1.139 -0.024
marr yes -0.243 0.034 -0.309 -0.177 -0.233 0.036 -0.304 -0.161 -0.010
surg2 yes -0.309 0.040 -0.387 -0.230 -0.250 0.043 -0.334 -0.166 -0.059
β0 0.492 0.087 0.323 0.662 0.718 0.097 0.527 0.909 -0.226
age 0.153 0.063 0.030 0.276 0.057 0.068 -0.076 0.190 0.096
marr yes 0.367 0.129 0.115 0.620 0.111 0.125 -0.135 0.357 0.256

Age and stage II/III present higher estimates in the dependent model for the
prostate cancer survival time, all other parameters are smaller in the dependent
model. Surgery (destructive) is not significant in the dependent M2 model, in the
independent model all parameters related to prostate cancer survival time and heart
disease survival time are significantly different from zero (Table 10). The prostate
cancer cure rate of the independent M2 model does not find significance for age
and marital status, in the dependent model significance is found for all variables.
β0 estimate is smaller in the dependent model than the dependent model, all other
parameters present higher values in the dependent model (Table 10).

Table 10 - M2 model adjustment of Prostate cancer dataset
M2 Model

Setting ν = 1.35 Independent
Parameter Est SE LCL UCL Est SE LCL UCL

Diff est

age 0.495 0.045 0.407 0.582 0.486 0.049 0.389 0.583 0.009
race white -0.080 0.059 -0.196 0.037 -0.302 0.086 -0.472 -0.133 0.222
marr yes -0.811 0.134 -1.073 -0.549 -0.735 0.128 -0.986 -0.484 -0.076
surg resc -0.438 0.071 -0.577 -0.299 -0.332 0.068 -0.465 -0.200 -0.106
surg destr 0.017 0.098 -0.174 0.209 0.313 0.099 0.119 0.506 -0.295
stage II/III -0.803 0.075 -0.950 -0.656 -1.342 0.071 -1.482 -1.202 0.539
stage IV 2.022 0.080 1.866 2.179 1.998 0.070 1.860 2.135 0.024
age 0.824 0.023 0.780 0.868 0.975 0.025 0.927 1.023 -0.151
marr yes -0.447 0.043 -0.530 -0.363 -0.383 0.040 -0.460 -0.305 -0.064
surg2 yes -0.281 0.075 -0.428 -0.134 -0.235 0.076 -0.385 -0.085 -0.046
β0 0.466 0.077 0.316 0.616 0.732 0.087 0.561 0.903 -0.266
age 0.129 0.056 0.020 0.238 0.011 0.056 -0.099 0.120 0.119
marr yes 0.549 0.119 0.317 0.782 0.102 0.123 -0.138 0.343 0.447
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Table 11 presents the regression coefficients estimates produced by M4 for ν =
7.04 and compared to the independent scenario estimates. Marital status, surgery
(destructive) and stage IV present higher estimates in the independent model for
the prostate cancer survival time, all other parameters are smaller in the dependent
model. Looking at the confidence interval we see that Surgery (destructive) is not
significant in the dependent M4 model, in the independent model all parameters
are significantly different from zero (Table 11). For Heart diseases all parameters
present lower values when considering dependent M4 compared to the independent
model, all parameters are significant. Under the independent M4 model for prostate
cancer’s cure rate, age and marital status are not significant, as for the dependent
model significance is found for all variables related to the cure rate. Moreover, only
β0 is smaller in the dependent model, all other parameters present higher values in
this model (Table 11).

Table 11 - M4 model adjustment of Prostate cancer dataset
M4 Model

Setting ν = 7.04 Independent
Parameter Est SE LCL UCL Est SE LCL UCL

Diff est

age 0.481 0.041 0.400 0.562 0.469 0.047 0.377 0.560 0.013
race white -0.163 0.066 -0.292 -0.034 -0.263 0.085 -0.429 -0.097 0.101
marr yes -0.821 0.125 -1.066 -0.575 -0.714 0.118 -0.945 -0.483 -0.107
surg resc -0.293 0.061 -0.413 -0.173 -0.315 0.067 -0.445 -0.185 0.022
surg destr 0.125 0.104 -0.079 0.329 0.277 0.101 0.080 0.474 -0.152
stage II/III -0.963 0.064 -1.088 -0.837 -1.344 0.071 -1.484 -1.205 0.382
stage IV 2.002 0.071 1.864 2.140 2.054 0.067 1.923 2.184 -0.052
age 0.965 0.024 0.918 1.012 0.989 0.025 0.941 1.037 -0.024
marr yes -0.480 0.038 -0.555 -0.405 -0.390 0.039 -0.466 -0.313 -0.090
surg2 yes -0.298 0.067 -0.430 -0.167 -0.243 0.076 -0.392 -0.094 -0.055
β0 0.551 0.068 0.417 0.685 0.729 0.087 0.559 0.900 -0.178
age 0.184 0.047 0.092 0.275 0.028 0.054 -0.079 0.134 0.156
marr yes 0.708 0.102 0.507 0.909 0.109 0.116 -0.118 0.336 0.599

We see that all four models reach similar conclusions when comparing the
dependent scenarios. The regression coefficients estimates are similar between
models, this shows that the Weibull and piecewise exponential model were able
to fit the data and agree on the regression coefficients and their significance. Both
copula functions produced similar results, reinforcing that the selection of the copula
parameter is more important than the copula function.

Comparing the independent scenarios the same behavior is seen. All models
found similar estimates for the parameters and agree on their significance. Copula
function and marginal models did not have great influences on the estimates, as
they are similar throughout the models.

There might be some model specification problem that arise from the fact
that we do not have much information on general health status of the prostate
cancer patient, for example diabetes, cholesterol and blood pressure, known to be
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important risk factor.

5 Discussion and conclusion

In this paper we constructed cure rate models for dependent censoring under
copula approach. We used the non-mixture method to build models that allows a
cure rate. To account the dependency among the time to event of interest and time
to dependent censoring we used copula functions. Our study focused on two copula
functions: Clayton and Plackett, to adjust the dependency between lifetime and
dependent censoring. We focused on two marginal time distributions, Weibull and
piecewise exponential distributions.

With the proposed models we proceeded a simulation study. The simulation
study showed the models are reliable in analyzing survival times with cure rate, as
well as, with dependency between lifetime and censoring time. The simulation study
reinforced the importance of the dependency modeling, and additionally, showed the
estimation bias that raises from the independence assumption. The simulations also
showed that the cure rate model for dependent censoring under copula approach
estimates, in general, present small relative bias, small standard errors and adequate
coverage probabilities when the dependency is properly set.

The piecewise exponential distribution was able to adjust the generated
datasets, which were built from the Weibull distribution. Furthermore, it find
regression coefficient estimates with small bias and good coverage probability. The
copulas function choice seems to be less important than the copulas parameter.

After the simulations, we conducted the adjustment to the Prostate cancer
dataset. We assumed a fixed copula parameter, Kendall’s correlation coefficient
τ was set to 0.4. We also fit the models assuming independency to compare the
results with the dependent assumptions.

The dependent models found similar estimates for the parameters and agreed
on the significances. The same behavior can be seen in the independent scenario, all
the models found similar estimates and agreed on their significances. Comparing
the adjustments under the the independent scenario and the adjustments under
the dependent scenario the parameters estimates differed. Models in the dependent
scenario found more parameters to be significant, specially those related to the cure
rate. Models under the dependent scenario present most parameters with smaller
estimates then those found under independent scenario.

The proposed models are a general formulation, that can easily be
extended to accommodate other baseline parametric distributions or non-parametric
distributions, as well as, other copula functions. In this paper we do not estimate
copula parameter ν that adjust the dependency between time to event of interest
and dependent censoring time, instead we use a fixed value for the prostate cancer
dataset and use dependency scenarios in the simulations. The estimation of the
copula parameters remains as a future goal.
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