
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

TULIO PEREIRA BITENCOURT

Architecture exploration and VLSI design
of multi-symbol arithmetic encoders for the

AV1 coding format

Thesis presented in partial fulfillment
of the requirements for the degree of
Master in Microelectronics

Advisor: Prof. Dr. Sergio Bampi
Coadvisor: Prof. Dr. Fábio Luís Livi Ramos

Porto Alegre
April 2023

CIP — CATALOGING-IN-PUBLICATION

Pereira Bitencourt, Tulio

Architecture exploration and VLSI design of multi-symbol
arithmetic encoders for the AV1 coding format / Tulio Pereira Bi-
tencourt. – Porto Alegre: PGMICRO da UFRGS, 2023.

108 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2023. Advisor: Sergio Bampi; Coadvisor: Fábio Luís
Livi Ramos.

1. AV1. 2. Video coding. 3. Arithmetic encoder. 4. Hardware
design. 5. VLSI architectures. I. Bampi, Sergio. II. Livi Ramos,
Fábio Luís. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Prof. Tiago Roberto Balen
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“One thing a leader does is to remove the stigma of mistakes.”

— GORDON MOORE

AGRADECIMENTOS

Iniciar um curso de mestrado durante uma pandemia global de Covid-19 foi um

dos maiores desafios que já vivi em toda a minha vida. Durante os dois anos em que me

dediquei incansavelmente à pesquisa e às aulas, fui sortudo o suficiente por poder contar

com toda a minha famliia, que sempre esteve do meu lado e meu deu forças para seguir

lutando pelo meu sonho de obter o título de Mestre.

Graças aos meus pais, Roselene Alves Pereira e Getulio de Oliveira Bitencourt,

que fui capaz de chegar ao final deste curso e de me tornar a pessoa que sou hoje. Graças

ao apoio especial dos meus tios maternos Rui Alves Pereira e Sérgio Alves Pereira, assim

como o suporte dos meus tios paternos, que consegui me dedicar à pesquisa e aos eventos

que participei. Meus irmãos, Gerson Barreto Bitencourt, Loriege Pessoal Bitencourt e

Magnus Cesar Pessoal Bitencourt sempre foram a minha inspiração e me incentivaram a

crescer, amadurecer e me atingir meus objetivos.

Além disso, cada uma das diversas pessoas que conheci durante esses últimos

anos contribuiu de alguma maneira para esse momento. Sou extremamente grato à todas

as pessoas que convivi por terem participado da minha jornada.

ABSTRACT

To reduce the impact of videos in the global Internet capacity, companies rely upon video

coding standards and formats, also known as codecs, to reduce the overall sizes of videos

before transmitting or storing them. AV1, which arises as a promising state-of-the-art

and royalties-free video coding format first released in 2018, aims to reduce the sizes of

videos by applying novel techniques to boost AV1’s compression results.

Amongst its core components, AV1 comprises an entropy coding block, which is re-

sponsible for losslessly encoding symbols generated by other core modules (e.g., intra-

prediction, motion compensation, etc.). The arithmetic encoder, which is part of the en-

tropy encoder, is a bottleneck due to its difficulty to work with parallelizations, and relies

upon two primary operations: CDF Operation and Boolean Operation, where CDF stands

for Cumulative Distribution Function.

This thesis proposes a baseline VLSI design, which was named AE-AV1, as the first

ever AV1 arithmetic encoder found in the literature, and capable of reaching ultra-high

performance (i.e., processing of 8K@120fps videos in real-time). Moreover, additional

versions of this architecture were proposed as AE-AV1-LP and AE-AV1-MB, which are,

respectively, a low-power version and a novel design applying a Multi-Boolean technique

also introduced in this thesis. All the herein proposed designs were synthesized using

the Cadence™ RC tool and the ST 65nm PDK. As the AV1 is well-known for being

an open-source alternative in the video coding industry, the AE-AV1 architecture was

also synthesized from Verilog to GDSII layout using a fully open-source ASIC flow (i.e.,

OpenROAD tool, OpenLane flow, and ASAP7 and SkyWater 130nm PDKs).

The architectures were capable of reaching frequencies of 581 MHz, 563 MHz and 590

MHz for the versions AE-AV1, AE-AV1-LP and AE-AV1-MB 2-bool, respectively. With

regard to throughput rates, all herein introduced architectures are capable of reaching

8K@120fps real-time video processing with rates of 1.032 Gbits/sec, 0.999 Gbits/sec and

1.117 Gbits/sec respectively.

Keywords: AV1. video coding. arithmetic encoder. hardware design. VLSI architec-

tures.

RESUMO

Para reduzir o impacto dos vídeos na capacidade global de Internet, as empresas contam

com padrões e formatos de codificação de vídeo, também conhecidos como codecs, para

reduzir os tamanhos dos vídeos antes de transmiti-los ou armazená-los. O AV1, que surge

como um promissor formato de codificação de vídeo de última geração e livre de royal-

ties lançado pela primeira vez em 2018, visa reduzir os tamanhos dos vídeos aplicando

técnicas inovadoras e aprimoradas para aumentar os resultados de compactação do AV1.

Entre seus componentes principais, o AV1 compreende um bloco de codificação de en-

tropia, que é responsável pela codificação sem perdas de símbolos gerados por outros

módulos (por exemplo, predição intra-quadro, compensação de movimento, etc.). O co-

dificador aritmético, que faz parte do codificador de entropia, é um gargalo devido à sua

dificuldade em trabalhar com paralelizações e conta com duas operações principais: CDF

Operation e Boolean Operation, onde CDF representa Cumulative Distribution Function.

Esta dissertação propõe um projeto VLSI digital, nomeado AE-AV1, como o primeiro

codificador aritmético AV1 encontrado na literatura e capaz de atingir desempenho ultra-

high (ou seja, processamento de vídeos 8K@120fps em tempo real). Além disso, ver-

sões adicionais desta arquitetura foram propostas como AE-AV1-LP e AE-AV1-MB, que

são, respectivamente, uma versão de baixo consumo (low-power) e um design inovador

aplicando uma técnica Multi-Boolean também introduzida nesta dissertação. Todos os

projetos aqui propostos foram sintetizados usando a ferramenta Cadence™ RC e o PDK

ST 65nm. Como o AV1 é conhecido por ser uma alternativa de código aberto na indús-

tria de codificação de vídeo, a arquitetura AE-AV1 também foi sintetizada de Verilog a

layout GDSII usando um fluxo ASIC totalmente de código aberto (ou seja, ferramenta

OpenROAD, fluxo OpenLane e PDKs ASAP7 e SkyWater 130nm).

As arquiteturas foram capazes de atingir frequências de 581 MHz, 563 MHz e 590 MHz

nas versões AE-AV1, AE-AV1-LP e AE-AV1-MB 2-bool, respectivamente. Com relação

às vazões, todas as arquiteturas são capazes de processar vídeos 8K@120fps em tempo

real com taxas de 1.032 Gbits/seg, 0.999 Gbits/seg e 1.117 Gbits/seg respectivamente.

Palavras-chave: AV1, codificação de vídeo, codificador aritmético, projeto de hardware,

arquiteturas VLSI.

LIST OF FIGURES

Figure 1.1 Timeline of video codec releases from 1999 to 2018....................................17

Figure 2.1 Arrangements with 60fps at the top and 24fps at the bottom.24
Figure 2.2 Flip book animation. When the pages are quickly turned, in sequence,

the character appears to be moving...25
Figure 2.3 Sequence of frames in a video sequence. ..25
Figure 2.4 Black and White pixels decomposition. ..26
Figure 2.5 RGB decomposition. ...27
Figure 2.6 RGB pixel decomposition..28
Figure 2.7 YCbCr decomposition. ..29
Figure 2.8 Blocks diagram of a video codec...30
Figure 2.9 Spatial redundacy example. ...31
Figure 2.10 Comparison between the VP9 and AV1 partition trees.33

Figure 3.1 Arithmetic encoding process step-by-step...37
Figure 3.2 Representation of 50% of probability based upon variables FL and FH40
Figure 3.3 DecCDF module proposed by Gomes e Ramos (2021).41

Figure 4.1 Overview of the AE-AV1 pipeline stages (BITENCOURT; RAMOS;
BAMPI, 2022a). ..46

Figure 4.2 In-depth view of the AE-AV1 design. ...47
Figure 4.3 Stage 1 design of AE-AV1...48
Figure 4.4 Primary design of Stage 2 (BITENCOURT; RAMOS; BAMPI, 2021).50
Figure 4.5 Top-entity schematic for Stage 3. ..52
Figure 4.6 Stage 3 renormalization and pre-bitstream generation processes..................54
Figure 4.7 Top-entity schematic of Stage 4. ...56

Figure 5.1 Graph with the compounded calling rate for the Boolean Operation di-
vided by the set of configurations. ..64

Figure 5.2 Simplified diagram for a baseline AV1 arithmetic encoder.68
Figure 5.3 Number of Boolean blocks in parallel (β) vs. Throughput improvement

rate...69
Figure 5.4 Comparison between the throughput rates for AE-AV1-MB versions.70
Figure 5.5 Stage 2 diagram for the 3-bool version of the architecture.71

Figure 6.1 Frequency vs. Area for each used PDK...77
Figure 6.2 GDSII result for the AE-AV1 when synthesized for the ASAP7 PDK.78

LIST OF TABLES

Table 1.1 Comparison between AV1 related works by Domanski et al. (2019), Cor-
rea et al. (2019b), Correa et al. (2019a), Zummach et al. (2020), Correa et al.
(2020), Neto et al. (2020) Freitas et al. (2021) and Domanski et al. (2021)...........20

Table 2.1 Table presenting the commonly used video resolutions..................................26

Table 3.1 Summary of all results for the related works that target arithmetic en-
coders and decoders (i.e., (GOMES; RAMOS, 2021; GOMES et al., 2022;
ZHOU et al., 2015; PASTUSZAK, 2020a; RAMOS et al., 2021; CHOI; LEE;
CHAE, 2021)). ..40

Table 4.1 Map of the FBflag...59

Table 5.1 Analysis upon the Boolean Operation calling rate for 6 120-frame video
sequences in two Constraint of Quality (CQ) configurations (MERCAT; VI-
ITANEN; VANNE, 2020). ..62

Table 5.2 Analysis upon the Boolean Operation calling rate for 8 60-frame video
sequences with a total of 8 configurations for each (MONTGOMERY, 2005)......63

Table 6.1 Maximum real-time processing according to throughput rates defined in
Mbits/second (RIVAZ; HAUGHTON, 2019). ..75

Table 6.2 Comparison between the results for for the ASAP7, Sky130hs, Sky130hd
and Nangate45 PDKs..76

Table 6.3 Comparison between the results accomplished for ASAP7 in (BITEN-
COURT; RAMOS; BAMPI, 2022c), the baseline AE-AV1 (BITENCOURT;
RAMOS; BAMPI, 2021) and other works (Dajiang Zhou et al., 2015; RAMOS
et al., 2021; PASTUSZAK, 2020b; CHOI; LEE; CHAE, 2021).76

Table 6.4 Power analysis for 720p videos from the objective-2 dataset (MONT-
GOMERY, 2005) on the AE-AV1 and AE-AV1-LP designs..................................80

Table 6.5 Throughput rate analysis for 720p videos from the objective-2 dataset
(MONTGOMERY, 2005) on the AE-AV1 and AE-AV1-LP designs.....................81

Table 6.6 Throughput rate and power comparison between AE-AV1 and AE-AV1-
LP for the videos Aspen, Rush_Hour, Netflix_Narrator and Netflix_Dancers
from objective-2 dataset (MONTGOMERY, 2005). ..82

Table 6.7 Throughput rate comparison between the AE-AV1-MB 1-, 2- and 3-bool
versions for the video sequences Boat, Dark, KristenAndSara, Netflix_Driving
and Netflix_RollerCoaster from the objective-2 dataset (MONTGOMERY,
2005). ..84

Table 6.8 Throughput rate comparison between the AE-AV1-MB 1-, 2- and 3-bool
versions for the video sequences Boat, Dark, KristenAndSara, Netflix_Driving
and Netflix_RollerCoaster from the objective-2 dataset (MONTGOMERY,
2005). ..85

Table 6.9 Frequency, area, power consumption, PC/EB (Power Consumption per
Encoded Bit) and throughput rate per cycle comparison between the 1-, 2-
and 3-bool versions of AE-AV1-MB. ...86

Table 6.10 Comparison between the herein presented works (i.e., AE-AV1, AE-
AV1-LP, AE-AV1-MB 2- and 3-bool) and other works targeting the AV1
codec (i.e., (DOMANSKI et al., 2019; CORREA et al., 2019b; CORREA
et al., 2019a; ZUMMACH et al., 2020; CORREA et al., 2020; NETO et al.,
2020; FREITAS et al., 2021; DOMANSKI et al., 2021)).......................................87

Table 6.11 Comparison between the herein presented works (i.e., AE-AV1, AE-
AV1-LP, AE-AV1-MB 2- and 3-bool) and other works targeting the Arith-
metic Encoders/Decoders (i.e., (GOMES; RAMOS, 2021; GOMES et al.,
2022; ZHOU et al., 2015; PASTUSZAK, 2020a; RAMOS et al., 2021; CHOI;
LEE; CHAE, 2021))..88

LIST OF ABBREVIATIONS AND ACRONYMS

ABNT Associação Brasileira de Normas Técnicas

AC Arithmetic Coding

ACM Assiciation for Computing Machinery

AE-AV1 Arithmetic Encoder - AV1

AE-AV1-LP Arithmetic Encoder - AV1 - Low-Power

AE-AV1-MBArithmetic Encoder - AV1 - Multi-Boolean

AOMedia Alliance for Open Media

ASAP7 Arizona State ARM Predictive 7nm PDK

ASIC Application-Specific Integrated Circuit

AV1 AOMedia Video 1

AVC Advanced Video Coding

AVS Audio Video Standard

BAE Binary Arithmetic Encoder

CABAC Context-Adaptive Binary Arithmetic Coding

CBAC Context-based Binary Arithmetic Coding

CDEF Constrained Directional Enhancement Filter

CDF Cumulative Distribution Function

CMOS Complementary Metal-Oxide-Semiconductor

CQ Constraint of Quality

CQs Constraints of Quality

CSV Comma-Separated Values

DecCDF Decoder for the Cumulative Distribution Function

EC Entropy Coder

ET-BAE Energy-Throughput Binary Arithmetic Encoder

FIFO First In, First Out

FME Fractional Motion Estimation

fps frames-per-second

HDL Hardware Description Language

HEVC High Efficiency Video Coding

IEEE Institute of Electrical and Electronics Engineers

IF Interpolation Filter

INF Instituto de Informática

LSB Least Significant Bit

MaAD Multi-alphabet Arithmetic Decoder

MACs Multi-Alphabet Cores

MC Motion Compensation

MHz Mega Hertz

MRTR Maximum Real-Time Resolution

MSB Most Significant Bit

nm nanometer

PDK Process Design Kit

PGMICRO Programa de Pós Graduação em Microeletrônica

RTL Register Transfer Level

ST STMicroelectronics, company

TCF Toggle Count File

TSMC Taiwan Semiconductor Manufacturing Company

UFRGS Universidade Federal do Rio Grande do Sul

UHD Ultra-High-Definition

UNIPAMPA Universidade Federal do Pampa

VLSI Very Large Scale Integration

VoD Video-on-Demand

VP8 Video Codec VP8

VP9 Video Codec VP9

CONTENTS

1 INTRODUCTION...15
1.1 Motivation and Problem Definition...18
1.2 AV1 Related Works ...19
1.3 Objectives...21
1.4 Outline..21
2 VIDEO PROCESSING CONCEPTS..23
2.1 Digital Videos...23
2.1.1 Frames..24
2.1.2 Pixels..26
2.1.3 Colors...27
2.1.3.1 RGB – Red Green Blue...27
2.1.3.2 YCbCr – Luminance Chrominance Blue and Chrominance Red28
2.2 Video Coding ...29
2.2.1 Spatial Redundancy ...31
2.2.2 Temporal Redundancy ...32
2.2.3 Entropic Redundancy...32
2.3 AV1 Codec..32
3 ARITHMETIC CODING ..35
3.1 Basic Concepts of Arithmetic Coding ...35
3.1.1 Encoder ..36
3.2 AV1 Arithmetic Coding ..39
3.3 Related Works About Arithmetic Coding ..40
3.3.1 AV1 Arithmetic Decoders..41
3.3.2 HEVC CABAC works ...42
3.3.3 AVS 2.0 CBAC work ...43
4 AV1 ARITHMETIC ENCODER HARDWARE DESIGN......................................44
4.1 Methodology for the Arithmetic Encoding Design ..44
4.2 AE-AV1 Design..45
4.2.1 AE-AV1 Top-Entity ...45
4.2.2 Pipeline Stages ...48
4.2.2.1 Stage 1...48
4.2.2.2 Stage 2...49
4.2.2.3 Stage 3...52
4.2.2.4 Stage 4...56
4.2.3 Key hardware design decisions..59
5 LOW-POWER AND MULTI-BOOLEAN APPROACHES/ARCHITECTURES61
5.1 AE-AV1-LP: Low-Power Version ..61
5.1.1 Statistical Analysis...61
5.1.2 Low-Power Techniques..64
5.1.2.1 Clock gating ..64
5.1.2.2 Operand Isolation..65
5.1.3 From AE-AV1 to AE-AV1-LP...66
5.2 AE-AV1-MB: Multi-Boolean Version..67
5.2.1 Multi-Boolean Proposal ...67
5.2.2 Multi-Boolean Architecture ...69
6 RESULTS AND DISCUSSION..72
6.1 Analysis Methodology...72

6.2 Baseline AE-AV1 Results..74
6.2.1 Open-Source Results..74
6.3 Low-Power and Multi-Boolean Approaches/Architectures78
6.3.1 Low-Power AE-AV1-LP Results ...79
6.3.2 Multi-Boolean AE-AV1-MB Results...83
6.4 Comparisons..86
7 CONCLUSION ...90
REFERENCES...91
ANNEX A — LIST OF PUBLICATIONS BY THE AUTHOR98
A.1 Journal Publications ..98
A.2 Conference Publications ..98
APPENDIX A — METHODOLOGY FOR THE ARITHMETIC ENCODING

DESIGN ..99
A.1 Data Extraction ..99
A.2 Analysis and Understanding of the Algorithm..101
A.2.0.1 Range and Low Updating Processes...101
A.2.0.2 Bitstream Generation and Carry Propagation ..103
A.3 Key Informations About the Algorithm...104
APPENDIX B — VERIFICATION METHODOLOGY ...107

15

1 INTRODUCTION

The Video-on-Demand (VoD) industry has seen, throughout the last few decades,

a remarkable growth. Not only more costumers are actively joining the streaming services

provided by companies such as Netflix, YouTube, PrimeVideo, Disney Plus, etc, but even

more companies are starting to operate in this industry (e.g., Brazilian company Globo

with its GloboPlay platform).

After decades of evolution in the opened network television market, well-establi-

shed companies such as American Broadcasting Company (ABC) and National Broad-

casting Company (NBC) started their move towards the Internet, as the technology finally

created a good opportunity for these companies. The traditional television has observed a

free fall in demand and costumers ever since the Internet have became wide-spread world-

wide and the price for bandwidth became low enough to allow more people to broadly use

this technology (ROSENBAUM, 2014).

As more people started widely using video-on-demand systems, which have be-

come a backbone for industries based on videos (e.g., live television, movies, news, etc),

videos became a burdensome kind of data to be managed, stored and transmitted. This is

mainly caused by the huge complexity inherent to them, as they can be briefly defined as

a combination of images presented in the right speed and order to a viewer, which causes

a motion sensation in the screen. Hence, the importance of methodologies that allow data

compression of these kind of data emerges as a key element of the ever-increasing VoD

industry of the XXI century, i.e., video coding standards or formats.

Since 1988, industry and academia have combined efforts to develop an effective

coding format that can compress videos, combining a manageable complexity with great

data compression. The first official video codec to be introduced, the H.261 (ITU-T,

1988), was created as a joined effort between the International Telecommunication Union

(ITU), sector Telecommunication Standardization Sector (ITU-T), and companies such as

Hitachi, Toshiba and PictureTel (ITU-T, 1989).

After the H.261 coding format, newer and more enhanced codecs have been re-

leased until reaching the widely used Advanced Video Coding (H.264/AVC) (ITU-T;

ISO/IEC, 2003) and High Efficiency Video Coding (H.265/HEVC) (ITU-T; ISO/IEC,

2013). State-of-art video coding formats are the recently released AOMedia Video 1

(AV1) (HAN et al., 2020) and Versatile Video Coding (VVC, H.266) (ITU-T; ISO/IEC,

2020). The former, which is the target of the acceleration presented throughout this

16

work, inherited its features from the previously released VP8 (FELLER et al., 2016), VP9

(GRANGE; RIVAZ; HUNT, 2016), VP10 (MUKHERJEE et al., 2015), Thor (ROSEN-

BERG, 2015) and Daala (VALIN et al., 2016). Figure 1.1 depicts the timeline of video

codecs from 1999 to 2018 (i.e., the releases of H.261 in 1988, and VVC in 2020, are not

displayed).

The AV1 video codec, which was released in 2018, can be tracked all the way to

2015, when the consortium of companies responsible for its development was formed.

The Alliance for Open Media (AOMedia) (AOMedia, 2020) created the AV1 to become a

royalties-free video coding format, and accomplished that by requesting that the member

companies waived their algorithmic patent rights in favor of the AOMedia. Founding

members of the AOMedia include Amazon, Cisco, Google, Intel, Microsoft, Mozilla and

Netflix (SHANKLAND, 2015), with the general members group including companies

such as Adobe, Vimeo and Xilinx (AOMedia, 2021).

The AV1 codec brought to the market a 50% higher compression rate when com-

pared to the AVC codec and 30% when compared to its predecessor VP9 (HAN et al.,

2020) while holding the royalties-free title. Furthermore, AV1 is considered to be a hy-

brid video codec (i.e., a codec composed of prediction combined with transforms), as its

internal cores are organized in a way that leaves the entropy coding block as the final step

in the codification process.

The arithmetic encoder of the AV1 codec, which is part of the entropy coding

block, is located at the final part of the encoder implementation, receives the thus far

generated symbols and generates bitstreams. This final step is responsible for generating

a more optimal coded file, as it is capable of considerably reducing the overall size of the

thus far generated symbols by applying a lossless codification procedure.

As already experienced in the arithmetic encoding blocks of prior video codecs

(e.g., HEVC, AVC), this step has difficulties to deal with parallelization techniques be-

cause of its sequential structure and the re-feeding of value (e.g., Range and Low, ex-

plained more thoroughly in Chapters 3 and Chapters 4), which emerges as problematic

due to the complexity of its internal operations. A general-purpose arithmetic encoder

relies upon computationally complex operations such as multipliers, which add consider-

able delay to the entire system.

17

Figure 1.1: Timeline of video codec releases from 1999 to 2018.

Source: (BHATIA, 2018).

18

1.1 Motivation and Problem Definition

With the ever-increasing demand for videos to be transmitted on the Internet, video

codecs have become essential tools to tackle the massive traffic of data required to supply

the modern society’s addiction to videos. The AV1, as introduced in this chapter, is a

royalties-free state-of-the-art video codec that is very effective on reducing the sizes of

videos.

At the same time as the demand for videos is growing, streaming platforms, so-

cial networks and the academia is in a forever pursuit for video qualities that accurately

reflect reality. Video resolutions have skyrocketed during the last decades, with current

researches aiming to achieve 16K resolutions. Furthermore, as state-of-the-art video res-

olutions are reaching new levels (i.e., 8K and 16K), previous but still competent technol-

ogy, which create less sizable videos are becoming cheaper (i.e., Full HD and 4K). As it

is a tradition in many areas of the markets worldwide, when a given technology starts to

become cheaper, more people start to have access to it.

Therefore, with the ever-increasing demand for videos, specially observed in so-

cial media networks such as TikTok, Facebook and YouTube, as well as streaming plat-

forms such as Netflix, PrimeVideo and StarPlus, the importance of video coding in the

XXI century has also skyrocketed. As video codecs now need to tackle incredibly sizable

videos, such as the ones recorded in 8K resolutions, their complexity has also catapulted.

State-of-the-art video codecs such as AV1 and VVC, although very competent

on reducing the sizes of videos, need to rely on very complex algorithms and method-

ologies to achieve the impressive compression rates demanded by the video industry in

2022. Hence, with their performance and power efficiency diminished, solutions allowing

real-time video processing, using reasonable power, emerge as critical technologies, and,

sometimes can only be achieved using ASICs (Architecture-Specific Integrated Circuit).

This work targets the AV1 arithmetic encoder block and proposes hardware de-

signs capable of achieving real-time video encoding for 8K videos at up to 120 frames-

per-second (fps). The herein presented research project resulted in three versions of the

AV1 arithmetic encoder architecture, where (i) AE-AV1 is presented as high-throughput,

(ii) AE-AV1-LP is presented as low-power, and (iii) AE-AV1-MB uses a multi-boolean

approach also proposed by this work.

19

1.2 AV1 Related Works

Though very important in the overall evolution of the VoD industry, as it inserts an

option in the coding formats market for a royalties-free solution, the AV1 codec is mostly

untackled by academic work with regard to hardware designs. Among its core compo-

nents, the AV1, as did previous coding formats such as HEVC (ITU-T; ISO/IEC, 2013)

and VP9 (MUKHERJEE et al., 2013), presents several computationally complex blocks

that are unable to achieve ultra-high performance (real-time coding for an 8K@120fps

video, for instance) in a software-only solution. This section presents, in publication date

order, works that target AV1 internal components for hardware accelerations and does

not present, however, any work addressing AV1 arithmetic encoding as, to the best of

the author’s knowledge, this dissertation introduces the first ever proposed designs for the

aforementioned step of the AV1 codec.

The next year after the AV1’s formal release, Domanski et al. (2019), Correa et al.

(2019b) and Correa et al. (2019a) proposed hardware designs for the AV1 codec. The for-

mer worked on the motion compensation capabilities of the codec, whereas the latter two

explored the intra-prediction block. More specifically, the work proposed by Domanski et

al. (2019) aims to present a multi-filter hardware design for the AV1 motion compensation

(MC) operations. This work presented two different MC designs targeting 2160p@30fps

and 4320p@30fps real-time processing.

The works by Correa et al. (2019b) and Correa et al. (2019a) presented solutions

that tackled the AV1 intra-prediction block’s computational complexity by designing effi-

cient hardware architectures. The first publication introduces a high-throughput hardware

architecture for four AV1 intra prediction modes (i.e., Paeth, Smooth, Smooth Vertical

and Smooth Horizontal) and is capable of achieving ultra-high definition (UHD) 4K at

up to 30fps in real-time. Differently, Correa et al. (2019a) proposed a highly parallelized

hardware design for the AV1 Paeth intra predictor, which supports all block sizes allowed

(i.e., 19). The latter work is capable of processing UHD 4K videos at up to 120fps.

The year of 2020 was the time for Zummach et al. (2020) and Correa et al. (2020)

to propose their works on, respectively, the Constrained Directional Enhancement Fil-

ter (CDEF) of the AV1 decoder and the AV1 non-directional intra modes. The former

presented an architecture capable of processing 4K@60fps, whereas the latter processes

4K@30fps.

In 2021, the works by Freitas et al. (2021), Domanski et al. (2021) and Neto

20

Table 1.1: Comparison between AV1 related works by Domanski et al. (2019), Correa et
al. (2019b), Correa et al. (2019a), Zummach et al. (2020), Correa et al. (2020), Neto et al.
(2020) Freitas et al. (2021) and Domanski et al. (2021).

Designs Target
Block

Tech.
(nm)

Freq.
(MHz)

Gates
Count

Power
(mW) MRTR6

Domanski et al. (2019) MC1 279.9 141.1 K 81.3 4K@30
Correa et al. (2019b) 648 109.6 K 16.1 4K@30
Correa et al. (2019a)

Intra-
Prediction

402

315 247.3 K 268.3 4K@120
Zummach et al. (2020) CDEF3 23 369 K 65.0 4K@60

Correa et al. (2020) 648 128.5 K 65.5 4K@30
Neto et al. (2020)

Intra-
Prediction

402

476 691.7 K 382.0 1K@60
Freitas et al. (2021) MC1 654 345 270.4 K 130.7 2K@120

Domanski et al. (2021) FME5 402 686 72.6 K 26.79 8K@30
1 Motion Compensation 4 STMicro PDK
2 TSMC PDK 5 Fractional Motion Estimation
3 Constrained Directional Enhancement Filter 6 Maximum Real-Time Resolution

et al. (2020) were introduced into the literature as other solutions to deal with the AV1

core components’ complexity. More specifically, Freitas et al. (2021) presented a design

for the fractional-pixel interpolation filter, Domanski et al. (2021) proposed a low-power

approximated architecture for the Fractional Motion Estimation (FME), and Neto et al.

(2020) their highly parallelized ASIC solution for directional intra-frame prediction.

Table 1.1 briefly presents results extracted from the herein presented works. As

one may notice, the majority of the works are capable of processing UHD videos (i.e.,

4K and 8K), with some exceptions reaching less demanding resolutions (i.e., 1K and 2K).

One may find this information in the Maximum Real-Time Resolution (MRTR) row of

Table 1.1, which is presented as the most suitable way to compare each of the depicted

works as they have different constraints with regards to throughput rates due to targeting

different blocks of the codec. Regarding the additional information within Table 1.1,

one may find feasible to conclude that frequency, area and power consumption cannot be

defined within an specific range, as there are huge disparities between the works.

At the time this dissertation was being written, academic repositories lack works

targeting the AV1 arithmetic coding block (both encoder and decoder). During the period

in which this research was undergoing, the works (BITENCOURT; RAMOS; BAMPI,

2021; GOMES; RAMOS, 2021; BITENCOURT; RAMOS; BAMPI, 2022a; GOMES

et al., 2022), all from the same research group, were published and became the first-

ever published hardware acceleration for the AV1 entropy coding module. The works by

Gomes e Ramos (2021) and Gomes et al. (2022) are presented, in-detail, in Subsection

3.3.1.

21

1.3 Objectives

Throughout the writing of this Master’s thesis, all research, analysis and imple-

mentation developed during a period of 2 years was included. The major goals to be

achieved during the research that originated this Master’s thesis are listed below.

1. To analyze works connecting Video Coding to Digital Integrated Circuits design.

2. To explore and propose hardware accelerations for the AV1 arithmetic encoder

block.

3. To introduce a novel technique to enhance the throughput rate of the AV1 arithmetic

encoder.

1.4 Outline

This dissertation was organized in a way that all basic knowledge regarding video

and video coding was introduced prior to the presentation of the proposed designs and

results. Hence, this document’s is as follows:

• In Chapter 2, video concepts were introduced. From the origins of videos, through

the emergence of novel technologies such as digital and video coding, Chapter 2

provides insights on how videos became what their are in the XXI century.

• In Chapter 3, arithmetic coding is introduced. This chapter pose a critical role in this

work, as it explains, in detail, how a general-purpose arithmetic encoder behaves

and what to expect from the AV1 arithmetic encoding block, which is also depicted

in Chapter 3.

• In Chapters 4 and 5, the author’s contributions to the AV1 codec and arithmetic

encoder are presented. The former chapter presents the baseline version of the

circuitry created to accelerate the AV1 arithmetic encoder block proposed by the

author, whereas the latter chapter presents the novel techniques and approaches

used to enhance the baseline architecture’s capabilities.

• In Chapter 6, the results obtained after detailed and thorough analysis are presented.

Beyond just presenting the results, Chapter 6 provides insights on how the results

22

were obtained, and discusses the meaning of the results when comparing to related

works that are already published in the literature.

23

2 VIDEO PROCESSING CONCEPTS

Throughout the XX century, the world saw an incredible evolution in video tech-

nology and mass communication tools (e.g., radio, television). One of the greatest prod-

ucts created in the second half of the XX century was the digital video technology, which

can be briefly described as an electronic representation of moving visual images. The

creation of digital videos changed the everyday lives of millions of people forever by al-

lowing videos to be more easily managed (i.e., captured, edited, stored and transmitted)

using computers.

Moreover, combined with the creation of digital videos and the ever-increasing

pursuit for greater image qualities, another problem emerged: the massive quantity of

data required to store and transmit videos. To tackle this problem, scientists developed

different techniques and algorithms to encode and decode digital video with the goal of

reducing the overall size of videos for a brief period of time, while ensuring a good trade-

off between size reduction and quality loss (i.e., when the video is returned to its original

state for display).

This chapter introduces the theory behind the creation and use of digital videos

(Section 2.1) and video coding techniques (Section 2.2). Furthermore, this chapter also

presents key components of the state-of-the-art video codec called AV1 (Section 2.3).

2.1 Digital Videos

Ever since humans developed a way to show and store the views of things, land-

scapes, etc, as images, videos became possible. The concept of videos is based on the

sequential presentation of several images, the so-called frames, with enough speed (i.e.,

minimum of 24 frames-per-second – fps) (RICHARDSON, 2011) to give a viewer the

impression of movement. Although the images themselves are static and unchangeable,

they emulate movement when they are quickly swapped by another image. Figure 2.1

depicts, at the top, an arrangement with 60fps and, at the bottom, an arrangement with

24fps.

With the emergence of electronics, scientists found a way to represent videos by

using analog signals, which originated analog videos (Maxim Integrated, 2002). In the

1980s decade, the first digital video format was introduced by Sony and receive the name

of D-1 (REMLEY, 1986).

24

Figure 2.1: Arrangements with 60fps at the top and 24fps at the bottom.

Source: (TESSEROLI; SEIKE, 2021).

There are a few different concepts that are required to understand how video pro-

cessing works. The following subsections present three concepts that are paramount for

the clear understanding of digital video: frames (Subsection 2.1.1), pixels (Subsection

2.1.2), and color (Subsection 2.1.3).

2.1.1 Frames

The main goal of videos is to present a scene, which is composed by movement,

in a static screen or device. In order to accomplish that, videos emulate movement by pre-

senting several images in sequence. A good example for how videos emulate movement

is a notebook with a drawing in each page, as shown in Figure 2.2. When all pages as

quickly turned, in sequence, a feeling of movement emerges in the viewer.

The state-of-the-art video technologies still follow the same idea presented within

Figure 2.2, with the only different that everything is digitally stored and displayed, instead

of mechanically turning pages in a sketchbook. Additionally, the human eye needs, at

least, 24 images, hereafter referred as frames, per second for the movement to appear

smooth (RICHARDSON, 2011). If less that 24 frames-per-second (fps) are presented,

the viewer will them feel the video lagging. If more than 24 fps is presented, then the

video will appear even smoother and fluid. Figure 2.3 presents a sequence of frames from

a given video to exemplify this concept.

25

Figure 2.2: Flip book animation. When the pages are quickly turned, in sequence, the
character appears to be moving.

Source: (Graphic Communications, 2016).

Figure 2.3: Sequence of frames in a video sequence.

Source: (OWEN, 2012).

26

Figure 2.4: Black and White pixels decomposition.

Source: https://ai.stanford.edu/ syyeung/cvweb/tutorial1.html (Accessed in June 25th,
2022).

Table 2.1: Table presenting the commonly used video resolutions.
PixelsResolution Type Common

Name
Aspect
Ration Row Column Pixel Size

SD (Standard Definition) 480p 4:3 640 480 640x480
HD (High Definition) 720p 16:9 1280 720 1280x720

Full HD 1080p 16:9 1920 1080 1920x1080
QHD (Quad HD) 1440p 16:9 2560 1440 2560x1440

2K 1080p 1:1.77 2048 1080 2048x1080
UHD (Ultra HD) 4K 1:1.9 3840 2160 3840x2160

Full Ultra HD 8K 16:9 7680 4320 7680x4320

2.1.2 Pixels

Pixels were not created for videos, but for static images stored in a digital standard

as they became reality before videos. If a screen of any device (e.g., television, cellphone,

etc.) is analyzed very closely, one may notice the presence of tiny squares arranged in a

matrix (i.e., with rows and columns). Each of the squares is called a pixel and, in modern

devices, they can assume virtually any color found in the real world. Figure 2.4 presents

an example of an image divided into several pixels.

One may notice, after analyzing Figure 2.4, that a combination of colors in pixels

located within a given area creates an object (e.g., the head and face depicted in black

and white in Figure 2.4). The number of pixels located in a row and in a column, when

combined, create what is well-known as resolution of the images and videos. Table 2.1

associates the resolution type with its common name, along with the number of pixels in

a row and in a column, and the combination of Row X Column.

27

Figure 2.5: RGB decomposition.

Source: (CHEN et al., 2017)

2.1.3 Colors

As previously mentioned, each pixel assumes a specified color in a given time,

which allow the video to display objects and scenery according to the combination of

colors in pixels located in a given area of the image. Each pixel’s color definition arrives

to a screen as code and can follow one of the following color spaces: RGB (Red Green

Blue) or YCbCr (Luminance Chrominance Blue and Chrominance Red). The color spaces

are explained in, respectively, 2.1.3.1 and 2.1.3.2.

2.1.3.1 RGB – Red Green Blue

The RGB color space, where RGB stands for Red Green Blue, is a color model

broadly adopted in displays (YANG; YUHUA; ZHAOGUANG, 2007). As one may have

guessed, after analyzing Figure 2.5, the RGB model uses nature’s three fundamental col-

ors (i.e., red, green and blue) to create any other color found in nature (NOWAK; KOŚ-

CIELNIAK, 2019). In the depicted example, the original image (i.e., top-left corner) can

be recreated by combining the three other images, which were created by taking into con-

sideration only one of the color components each (i.e., bottom-left uses green, top-right

uses red and bottom-right uses blue).

When working with digital images, each pixel receives an n-bit code for each color

component of the RGB color model. The greater is the code’s wirdth (i.e., n), the more

precise are the colors presented by each pixel and the more colors are supported by the

model. Figure 2.6 displays an arrangement comprising nine pixels, where pixel number

2 (i.e., top-middle) is being decomposed into RGB values 248, 186 and 0, respectively,

using an 8-bit code for each color component, which totals a 24-bit code for the entire

pixel.

28

Figure 2.6: RGB pixel decomposition.

Source: (GANGURDE; TIWARI, 2020).

2.1.3.2 YCbCr – Luminance Chrominance Blue and Chrominance Red

The YCbCr, also known as YUV, is based on the Recommendation 601 (ITU-R,

2011), which specifies the Y as the luminance, and the Cb and Cr as, respectively, the

blue-difference and red-difference chroma components (ROY; MAITI; GHOSH, 2015).

The YCbCr model has each of its color components represented by an n-bit array, where

the higher the n, the greater it will be the variety of colors supported (i.e., an 8-bit coding

supports colors from 0 to 255 and, therefore, only 256 different colors can be expressed)

(CHAI; BOUZERDOUM, 2000). Figure 2.7 depicts a YCbCr decomposition, where it

is possible to identify each of the color components and how they impact on the original

image on the left.

The YCbCr color space separates the RGB into luminance and chrominance, and

is very useful in compression applications, even though it does not have intuitive color

specifications (CHAI; BOUZERDOUM, 2000). As the YCbCr color model is broadly

used in the video codecs and transmissions, and the RGB model is adopted in display, the

conversion between them is an unavoidable task dealt by modern video systems (YANG;

YUHUA; ZHAOGUANG, 2007).

Furthermore, the YCbCr allows for Chroma Subsampling, which is an encoding

practice that allows the reduction of the chroma signals while keeping the luminance the

same. The idea is that the human eye is more sensible to brightness than it is to color,

which means that subsampling (i.e., reducing) the signals related to color would not affect

the image quality as long as its luminance is kept the same (Xilinx Inc., 2021).

29

Figure 2.7: YCbCr decomposition.

Source: https://www.hisour.com/ycbcr-color-spaces-26075/ (Accessed in June 25th
2022).

2.2 Video Coding

Videos are a challenging class of data to be transmitted and stored due to their

huge sizes. This characteristic, as previously presented (i.e., in Chapter 1), is created by

the combination of multiple frames depicted in each second, and the number of pixels

within a single frame, which creates the video resolution. The precision of the color,

which is defined by the number of bits used to encode a color in a single frame, also has

a huge impact in a video size. As depicted in (2.1), the size of a raw digital video, Svideo,

in bytes, can be calculated by considering all the presented characteristics (i.e., Fsec is the

number of frames-per-second, t is the time in seconds, Pframe is the number of pixels in

a frame, and Wpixel is the width of the color code for a given pixel, in bits). Equation

2.2 defines Wpixel for a video that uses the RGB color model and, therefore, the width of

the binary code that describes each of the three color components (i.e., Wred, Wgreen and

Wblue) must be summated to create the complete color code (e.g., in a video where each

RGB color component is defined by an 8-bit array, 24 bits are used to define the color for

one pixel).

Svideo =
(Fsec × t)× (Pframe ×Wpixel)

8
(2.1)

30

Figure 2.8: Blocks diagram of a video codec.

Source: (STAMENKOVIC et al., 2012).

Wpixel = Wred +Wgreen +Wblue (2.2)

As the demand for videos is increasing, so is the necessity for effective video

coding formats. One may use the example of a 60-fps 4K 10-minute long video using

RGB colors to understand how costly it is to transmit and store a state-of-the-art video:

around 895 Giga Bytes. Streaming companies, such as Netflix, YouTube, PrimeVideo,

etc, have to deal with videos many times longer than 10 minutes and, perhaps, with more

frames-per-second (i.e., 120-fps) and greater resolutions (e.g., 8K).

Figure 2.8 depicts the internal structure of a video codec on its encoder and de-

coder sides (i.e., top and bottom, respectively). As one may notice, the encoding process

starts with the arrival of the image, which is followed by a prediction and a calculation

of the difference to the original image. Then, the resulting residues pass through the

transformation and quantization phases, to finally arrives at the entropy encoder. After

the packing, the images is already encoded and ready to be transmitted or stored. The

decoding process may start right away, or after some time, and it applied the invert set of

process (i.e., starts with unpacking, then entropy decoder, dequantization, inverse trans-

formation, to finally arrives at the loop between add and prediction where the image will

be, in fact, reconstructed).

31

Figure 2.9: Spatial redundacy example.

Source:
http://lookingtothesky.com/2011/02/first-flight-to-salem-sle/blue-horizon/gallery

A general-purpose video codec is a specialized tool able to convert large amounts

of video data into smaller pieces that can be more effectively transmitted through the In-

ternet or stored locally. The main difference between a video codec and simple data com-

pressors is that the former uses video-specific techniques capable of exploring distinct

features of videos such as spatial redundancy, temporal redundancy, and entropic redun-

dancy, whereas the latter usually relies only upon a powerful lossless algorithm. Each

of the enumerated features (i.e., spatial redundancy, temporal redundancy, and entropic

redundancy) are presented, respectively, in 2.2.1, 2.2.2, and 2.2.3.

2.2.1 Spatial Redundancy

The arrangements of pixels in an image, which was more broadly explored in Sub-

section 2.1.2, brings a more accurate depiction of the reality. However, the use of many

pixels in an image sometimes might be redundant and may generate excessive amounts of

unnecessary data to be stored.

A good example for spatial redundancy is an image showing a horizon such as

in Figure 2.9, where half of the image presents the blue sky and the other half shows

a scenary. One might expect to receive the color codes for each pixel from within the

32

figure and the corresponding pixels’ coordinates in the figure’s matrix. However, as more

than half of the image has the same color (i.e., blue), an image compression tool would

store the color code only once and combine it with the range of coordinates where the

pixels with that color are located. Furthermore, slightly different colors might also be

represented by manipulating the already stored color code (e.g., adding or subtract one)

(TAGLIASACCHI et al., 2006).

2.2.2 Temporal Redundancy

When considering the same idea presented in Subsection 2.2.1, one might find

feasible to apply it to a video. As a video is defined as an arrangement of images being

presented quickly to give the viewer a impression of motion, spatial rendundancy can

be applied for the images individually and for the video as a whole by combining the

color codes and pixel coordinates for each image (i.e., frame) and creating a 3D coor-

dinate, where the third number would represent the frame (i.e., or time it is presented)

(TAGLIASACCHI et al., 2006). This process is called Temporal Redundancy and might

be applied, for example, for a video show the scenary depicted in Figure 2.9.

2.2.3 Entropic Redundancy

Entropic redundancy might be considered the final step in processing a video when

using a video codec. As videos might present similar combinations of data on its exten-

tion (i.e., hereafter referred as symbols), one may use lossless algorithms to compress

symbols based upon their frequency of appearence (BAMPIS et al., 2017). These lossless

algorithms (e.g., Huffman coding (HUFFMAN, 1952)) are well-known in the academia

and industry for being capable to considerably reducing the overall size of almost any

kind of data, as long as it has repetitive symbols.

2.3 AV1 Codec

In late 2015 (i.e., September 2015), the Alliance for Open Media (AOMedia),

headed by companies such as Amazon, Google, Netflix, Cisco and Microsoft (SHANK-

LAND, 2015), announced the development of a new video coding format: AV1. Based on

33

Figure 2.10: Comparison between the VP9 and AV1 partition trees.

Source: (CHEN et al., 2018).

previously released video codecs such as VP8 (FELLER et al., 2016), VP9 (GRANGE;

RIVAZ; HUNT, 2016) and Daala (VALIN et al., 2016), AV1 was announced as a highly

capable royalties-free video coding format able to encode videos in up to 8K@120 frames-

per-second (fps) (Alliance for Open Media, 2020; CHEN et al., 2018). A few key features

of the AV1 core include partitioning, intra prediction, inter prediction, transform coding

and entropy coding (TROW, 2020).

One of the main advances introduced in AV1, when compared to VP9, is the dif-

ferent partition tree. VP9 comprises a 4-way partition tree, which starts in 64x64 and

goes down to 4x4, whereas AV1 has a 10-way structure and also increases the largest size

supported to 128x128 blocks, which is referred as a superblock (CHEN et al., 2018). Fig-

ure 2.10, which was initially introduced by Chen et al. (2018), depicts a brief comparison

between the partition tree for VP9, at the top, and for AV1, at the bottom. Furthermore,

as one may notice by analyzing Figure 2.10, AV1 also includes atomic (i.e., unable to

be further divided) 4:1/1:4 rectangular partitions, and adds more flexibility for partitions

below 8x8 (i.e., 2x2 partitions are now available).

Throughout all the other previously cited blocks, the AV1 development team worked

to enhance capabilities, add different modes and optimize existing modules with a major

goal of increasing the compression rates of the codec when compared to VP9. In the

entropy coding specter, AV1 introduced a multi-symbol arithmetic coder, whereas VP9

used a tree-based boolean non-adaptive binary arithmetic encoder to encode all syntax

elements (CHEN et al., 2018).

34

Therefore, as presented throughout this section, the AOMedia development teams

focused its efforts on enhancing the AV1 capabilities by adding new functionalities (e.g.,

more partitioning possibilities) and by improving existing modules of the VP9. The VP9

codec provided the starting point for the AV1 development, as its skeleton was used as

the basis for the novel AV1 codec.

In the next chapter (i.e., Chapter 3), the theory and examples of arithmetic cod-

ing, as well as the AV1 implementation of it, are presented. Related works that target

arithmetic encoders and decoders are also introduced in Chapter 3.

35

3 ARITHMETIC CODING

The use of arithmetic coding (AC) within video coding formats has allowed de-

velopers to achieve impressive compression gains at a relatively low cost. State-of-the-

art video coding formats such as VVC (ITU-T; ISO/IEC, 2020), AVS 3.0 (ZHANG

et al., 2019) and AV1 (RIVAZ; HAUGHTON, 2019) use, respectively, the following

three AC algorithms: CABAC (Context-Adaptive Binary Arithmetic Coding – (MARPE;

SCHWARZ; WIEGAND, 2003)), CBAC (Context-based Binary Arithmetic Coding –

(CHOI; LEE; CHAE, 2021)) and a royalties-free Multi-Alphabet AC (RIVAZ; HAUGHTON,

2019).

The AC algorithms are not, however, presented within the list of main blocks of

the aforementioned video coding formats due to their usage being comprised within a

more robust and complex block: the Entropy Coder (EC). Nevertheless, the AC is, in fact,

the kernel of the entropy encoders of all of the cited standards and formats. A classical

example of an EC is defined by Huffman (1952), which introduces a powerful and lossless

data compression scheme that, among its many versions and implementations, compresses

all symbols comprised within an array and generates a significantly less sizable coded

array.

As will be explored throughout this chapter, a general-purpose AC aims to repre-

sent the most common symbol within an array (i.e., symbol with the largest probability)

with less bits when compared to the least apparent symbol (refer to Section 3.1). In Sec-

tion 3.2, the AV1 adaptation for the arithmetic encoding algorithm is presented. Section

3.3 presents and analyzes published works that tackle the arithmetic encoding complexity

in other video coding formats, such as HEVC and AVS 2.0, and the arithmetic decoding

complexity for the AV1 codec.

3.1 Basic Concepts of Arithmetic Coding

A general-purpose arithmetic coding (AC) algorithm is defined as a lossless cod-

ification process that converts a given set of symbols into a bitstreams (SAID, 2004).

The overall goal of an AC algorithm is to represent the symbols of greater appearance

probability by using less bits in the bitstream (sometimes even no bit). Furthermore, AC

algorithms are usually close to the Shannon Optimal, which aims to reach an optimal

choice of methods for coding and decoding information (DOBRUSHIN, 1961). This sec-

36

tion presents, within its Subsection 3.1.1, the encoding process of a general-purpose AC.

3.1.1 Encoder

A general-purpose arithmetic encoder relies mainly on four variables: Range,

Low, symbol and probability. Equations 3.1 and 3.2 present the definition of the variables,

respectively, Range and Low.

Rangei = Rangei−1 × Psymbol, probability (3.1)

Lowi = Lowi−1 + (Rangei−1 − Crange, symbol, probability) (3.2)

As one may notice, the definition of Rangei, in (3.1), relies upon the usage of

Rangei−1 (i.e., the last Range value, defined in the previous round), and Psymbol, nsyms,

which is defined as a general-purpose probability function that takes into consideration

the encoding symbol and this symbol’s probability. The Lowi definition in (3.2) follows

the same logic of (3.1) and presents function Crange, symbol, probability, which is defined as a

summation of all probabilities for the symbols that appeared before the current symbol.

Arithmetic encoding is a tricky subject that relies on a well-defined encoding

methodology based on the probability for a given encoding symbol. Although (3.1) and

(3.2) already depicted the definition of the main variables of a general-purpose arithmetic

encoder, there is no better way to explain a complex process than through an example,

which is exactly what is depicted within Figure 3.1.

As one may notice, Figure 3.1 presents the three main phases of an arithmetic

encoding process: Figure 3.1a is the initial bar found at the beginning of the process

(i.e., when no symbol was encoded yet), Figure 3.1b represents the new bar created when

symbol ‘1’ is encoded and before the renormalization process (i.e., just after symbol ‘1’

arrived), and Figure 3.1c represents the final bar (i.e., when the codification of ‘1’ is com-

pleted). The relations between the aforementioned variables and the bar are as follows:

Low represents the left-most value (i.e., zero in Figure 3.1a) and is used to generate the

bitstreams when a renormalization of Range is needed. The Low variable repre-

sents the base for the interval and, when combine to Range, creates the bar pre-

sented in Figure 3.1.

37

Figure 3.1: Arithmetic encoding process step-by-step.
(a) Phase 1: initial bar.

(b) Phase 2: new bar prior to renormalization af-
ter receiving Symbol 1.

(c) Phase 3: final bar.

Source: (SAID, 2004).

Range is combined with Low to create the bar from Figure 3.1 (i.e., as Range = 1 in

Figure 3.1a, then Low +Range = 1). Furthermore, Range represents the summa-

tion of all symbols’ probabilities at any given point of the codification process, and

is used to define if whether a renormalization process is needed or not.

Symbols are represented by the numbers 0, 1, 2 and 3 above the bar. In Figure 3.1, the

symbols are depicted as labels for each probability interval. In any arithmetic cod-

ing algorithm, the number of symbols is defined by the length of the alphabet (i.e.,

4-symbol alphabet in Figure 3.1). Moreover, symbols are considered the “encoding

items” for any arithmetic coding algorithm.

Probabilities are the numbers below the bar and represent the probability of appearance

of each symbol. The probabilities might be adaptive, and change according to the

appearance of the symbols, or fixed.

For example, if symbol number one is being encoded, as depicted in Figure 3.1,

then the new bar (i.e., 3.1b) is created according to the symbol’s probability when the ‘1’

arrives as input for the arithmetic encoder using (3.1) and (3.2). The idea is to use the

sub-bar within the red vertical dividers corresponding to symbol ‘1’ (i.e., the probabilistic

limits for symbol ‘1’, which represents a 22% – 0.22 – probability) and create the new

bar. As one may notice, the new bar also comprises all other symbols and their adjusted

probabilities, which ensures that the correlation between the summation of all symbols

38

probabilities and Range is kept according to (3.3).

3∑
i=0

Pi = Range (3.3)

There is, however, a rule that must be followed to achieve the final bar: 0.5 ≤

Range ≤ 1.0. In order to accomplish this rule, the renormalization process must multiply

both Low and Range by 2 (i.e., a left-shift in computational solutions) concurrently, so

their values are equally incremented. If Low eventually goes above one (i.e., Low ≥

1.0) after the multiplication, a bitstream ‘1’ is generated and 1 is subtracted from the

Low value. Otherwise, a bitstream ‘0’ is generated and the value of Low is kept as the

multiplication result.

Algorithm 1, which is an adaptation from the algorithm presented by Said (2004),

depicts the behavior of the renormalization procedure of a general-purpose Arithmetic

Encoder. As one may notice, loop keeps multiplyingRange by two until its value reaches

the required interval (i.e., 0.5 ≤ Range ≤ 1.0). Meanwhile, the Low variable generates

a bit ‘1’ if it goes about 1.0, or ‘0’ if it does not.

Algorithm 1: Encoder renormalization process adapted from (SAID,
2004).

Data: Low, Range
Result: d[t]

1 {Renormalization loop};
2 while Range ≤ 0.5 do
3 t← t+ 1; {Increment bit counter and scale interval length};
4 Range← 2×Range;
5 if Low ≥ 0.5 then
6 {Test most significant bit of interval base};
7 dt ← 1; {Output bit 1};
8 Low ← 2× (Low0.5); {shift and scale interval base};
9 else

10 dt ← 0; {Output bit 0};
11 Low ← 2× Low; {scale interval base};
12 end
13 end

After executing two multiplications upon the Range and Low values defined in

the bar from Figure 3.1b, it is possible to achieve the targeted Range, which is displayed

in Figure 3.1c. The outcome from this execution is the bitstream ‘00’, as the Low value

was never greater than one after the operations.

39

3.2 AV1 Arithmetic Coding

The AV1 arithmetic encoder, which is part of the entropy encoding block of the

AV1 codec, is defined as a lossless multi-symbol multi-alphabet compressing algorithm

(HAN et al., 2020; CHEN et al., 2018). It is responsible for converting the thus far

generated syntax elements (i.e., the results from previous modules in the AV1 execution

line) into less sizable bitstreams (SAID, 2004).

The AV1 arithmetic encoder operates under two different modes: CDF (Cumula-

tive Distribution Function) and Boolean. The former is comprised of multi-symbol alpha-

bets in which the number of symbols is defined by the incoming nsyms variable. The

lowest possible value for nsyms is two, whereas the maximum is 16. The CDF Opera-

tion also differs from the Boolean Operation due to its adaptive probabilities for each of

the possible symbols within a given alphabet, where a symbol symbol must be comprised

within the 0 ≤ symbol < nsyms interval.

The latter mode, the Boolean Operation, is composed of a 2-symbol (i.e., ‘0’ and

‘1’) alphabet, where the probability for both symbols are equally set, and fixed, to 50%.

When one considers that two 16-bit signals (i.e., FL and FH) are, together, responsible

for representing the probability range for the encoding symbol, and that the 100% of prob-

ability is defined by the decimal number 32768, which is also the initial Range, one may

conclude that 50% is, therefore, represented by the decimal number 16384. Furthermore,

when considering a 2-symbol alphabet, previous modules of the AV1, which generate the

syntax elements to be encoded, are responsible for choosing whether to use CDF Op-

eration or Boolean Operation for the arithmetic encoding step (RIVAZ; HAUGHTON,

2019). This is chosen according to the type of syntax element that is being encoded, and

not by the number of symbols in the alphabet (i.e., nsyms is an input signal only for the

CDF Operation and is not comprised within the Boolean Operation).

Figure 3.2 depicts the relation between variables FL and FH , and the 50% prob-

ability given for the boolean symbols, which are processed by the Boolean Operation. As

one may notice, the minimum value for FL is defined as zero, whereas the maximum

value for FH is defined as 32,768 (i.e., 16-bit array where MSB is set to ‘1’). The dif-

ference between FL and FH defines the probability for a given symbol (i.e., the entire

arrow depicted).

40

Figure 3.2: Representation of 50% of probability based upon variables FL and FH .

Source: The Author (2022).

Table 3.1: Summary of all results for the related works that target arithmetic encoders
and decoders (i.e., (GOMES; RAMOS, 2021; GOMES et al., 2022; ZHOU et al., 2015;
PASTUSZAK, 2020a; RAMOS et al., 2021; CHOI; LEE; CHAE, 2021)).

Video
Codec Coder Tech.

(nm)
Freq.

(MHz)
Gates
Count

bins
cycle

Gbins
sec

Power
(mW) MRTR1

� AV1 AD2 653 462 31.3 K 1.62 0.748 26.8 8K@60
© AV1 AD2 653 473 35 K 1.62 0.766 14.3 8K@60
4 HEVC CABAC 904 420 64.1 K 4.37 1.836 - 8K@120
† HEVC CABAC 904 700 120.4 K 9.65 6.755 111.7 8K@120
♣ HEVC CABAC 653 507 21.22 K 4.31 2.185 26.18 8K@120
? AVS 2.0 CBAC 654 735 133.5 K 4.78 3.51 79.6 8K
1 Maximum Real-Time Resolution 2 Arithmetic Decoder
3 ST PDKs 4 TSMC PDKs
� (GOMES; RAMOS, 2021)
© (GOMES et al., 2022)
4 (ZHOU et al., 2015)
† (PASTUSZAK, 2020a)
♣ (RAMOS et al., 2021)
? (CHOI; LEE; CHAE, 2021)

3.3 Related Works About Arithmetic Coding

On the time this section was being written, the literature was still lacking works

on the AV1 arithmetic encoder, aside from the proposals presented within Chapters 4

and 5. This section analyzes the works by Gomes e Ramos (2021) and Gomes et al.

(2022), which introduced a hardware designs to accelerate the AV1 arithmetic decoder, in

Subsection 3.3.1, by Zhou et al. (2015), Pastuszak (2020a) and Ramos et al. (2021), which

presented works related to the HEVC CABAC, in Subsection 3.3.2, and, finally, by Choi,

Lee e Chae (2021), which targeted the AVS 2.0 CBAC, in Subsection 3.3.3. Table 3.1

presents a summary of all results obtained by the related works introduced and analyzed

in this section.

41

Figure 3.3: DecCDF module proposed by Gomes e Ramos (2021).

Source: Gomes e Ramos (2021).

3.3.1 AV1 Arithmetic Decoders

Although the literature still lacks works targeting the AV1 arithmetic encoder,

Gomes e Ramos (2021) and Gomes et al. (2022) proposed approaches to accelerate the

AV1 arithmetic decoder side using hardware designs. The former work introduced the

MaAD (i.e., Multi-alphabet Arithmetic Decoder) design, which was characterized by the

author as mono-cycle architecture that was divided into two modules named DecCDF

(i.e., responsible for multi-symbol codification and related to the AV1 CDF presented in

Section 3.2), and DecBool (i.e., responsible for binary symbols codification) (GOMES;

RAMOS, 2021).

The work by Gomes e Ramos (2021) aims to maximize the use of parallelism

techniques as it explores a trial and error approach to decode symbols. As one may

notice, after analyzing Figure 3.3, out of the 16 possible symbols available in the AV1

CDF codification side, the DecCDF block uses 15 parallel MACs (i.e., Multi-Alphabet

Cores) to decode the symbols. For instance, if the first MAC does not recognize the

decoding symbol, the symbol is surely not 0, and if none of the MACs is able to decode the

symbol, then the symbol must only be the maximum value possible (i.e., 15). Therefore,

by processing 15 different analysis at the same time, and by prioritizing the MACs in

ascend order (i.e., from 0 to 14), the proposed design can more effectively decode a given

symbol by pointing out which MAC comprises the right value at a given round.

42

The design proposed by Gomes et al. (2022), which is in line with (GOMES;

RAMOS, 2021), introduces the addition of low-power techniques to reduce the power

consumption of the architecture. More specifically, Gomes et al. (2022) applied Operand

Isolation to MACs 5 through 14, which reduced the power consumption by, on average,

46.69% when compared to the original work (i.e., (GOMES; RAMOS, 2021)).

With regards to the results, both (GOMES; RAMOS, 2021) and (GOMES et al.,

2022) were capable of achieving enough throughput rates for real-time decoding of 8K

at 60 frames-per-second (fps) videos. Concerning frequency and area, Gomes e Ramos

(2021) accomplished, respectively, 467 MHz and 34.3 K gates count, whereas Gomes et

al. (2022) reached 478 MHz and 35.5 K gates count. Both works were synthesized to a

65nm technology

3.3.2 HEVC CABAC works

The works (ZHOU et al., 2015), (PASTUSZAK, 2020a) and (RAMOS et al.,

2021) proposed architectural solutions to accelerate the HEVC CABAC (ITU-T; ISO/IEC,

2013) encoder. The work by Zhou et al. (2015) aimed ultra-high-throughput for UHDTV

applications and proposed improvements on prenormalization, hybrid path coverage and

lookahead rLPS with the goal of reducing the critical path delay of BAE (Binary Arith-

metic Encoding).

Furthermore, Zhou et al. (2015) proposed the use of a pipeline arrangement, where

the Range and Low updating processes are located in two different stages. This method-

ology is discussed in more details in Chapter 4, as this is a critical designing feature used

in the circuits proposed in this thesis.

Pastuszak (2020a) proposed a multi-symbol architecture of the entropy coder of

the HEVC video coding standard. The design created by Pastuszak (2020a) works by

processing the syntactic elements with the least probability of appearance, as their results

are pre-calculated and stored in a Look-up Table (LUT), before processing the other ele-

ments. By using this approach, the (PASTUSZAK, 2020a) work was able to accomplish

the greatest throughput rates, but is comprised within the largest area among the other

related works.

Ramos et al. (2021) introduced a novel configurable high-throughput BAE design,

which was named ET-BAE and relies upon a combination of a modified Multiple-Bypass

Bins Scheme (MBBS) and upon a power-saving approach with a two-mode configura-

43

tion. Ramos et al. (2021) applied the low-power techniques clock gating and operand

isolation, which were also applied in the novel designs introduced in this thesis. There-

fore, this works targets low-power and high-throughput capabilities as critical features for

the proposed architecture.

Regarding the results, all three works achieved enough throughput rates for 8K

real-time video coding. Furthermore, the works presented frequency and area of, respec-

tively, 420 MHz and 64.1 K gates count in 90nm technology for (ZHOU et al., 2015),

570 MHz and 273 K gates count in 90nm technology for (PASTUSZAK, 2020a), and 507

MHz and 21.22 K gates count in 65nm technology for (RAMOS et al., 2021).

3.3.3 AVS 2.0 CBAC work

The work developed by Choi, Lee e Chae (2021) targets an acceleration on the

CBAC (Context-based Binary Arithmetic Coding) of the novel AVS 2.0 codec. The pro-

posal is based on a bin-merging technique that converts a sub-sequence of bins into a

merged bin without affecting the functionality of the CBAC encoder. The design com-

prises, according to the author, a 4-stage pipeline and lookup tables for context updates.

Choi, Lee e Chae (2021) was able to accomplish 735 MHz of frequency and 182.5

K gates count of area in a TSMC 65nm technology. Furthermore, the achieved throughput

rate is high-enough to accomplish real-time encoding of an 8K video.

Therefore, the works presented in Subsections 3.3.1 and 3.3.2 achieved similar

results when compared to (CHOI; LEE; CHAE, 2021). Although it is difficult to make

a fair comparison when analyzing three distinct video codecs, all presented works were

able to accomplish real-time coding capabilities of at least 8K videos.

Chapter 4 introduces the baseline proposal, which received the name AE-AV1.

The methodology used to develop AE-AV1, and important designing decisions are also

highlighted.

44

4 AV1 ARITHMETIC ENCODER HARDWARE DESIGN

The designing process of any hardware architecture is done by following a care-

fully defined methodology that provides the most certainty that the final product will be

functional and work as expected. This chapter aims to go through the entire process of

designing a hardware architecture from scratch to accelerate the AV1 arithmetic encoder.

The baseline architecture, which was named AE-AV1, is defined as a high-throughput

design capable of executing, in real-time, videos with 8K resolution at 120 frames-per-

second (fps). Throughout this chapter, the methodology used to design the architecture

(Section 4.1), the hardware design created (Section 4.2) and the verification methodol-

ogy (Section B) are presented. Furthermore, as additional reading for this chapter, the

Appedixes A and B present an in-depth analysis on how the AV1 reference software works

and how was the verification methodology applied to ensure the right functionality of the

designs introduced.

4.1 Methodology for the Arithmetic Encoding Design

The AV1, as already described in previous chapters, is a well-defined coding for-

mat very capable to encode videos. However, one of its drawbacks is the fact that it

uses lots of very complex and computationally demanding techniques that require (i) long

studies and analysis to understand, and (ii) a very detail-oriented implementation to cover

all the encoder’s features.

The AOMedia, as a proof-of-concept, developed the AV1 reference software (Al-

liance for Open Media, 2020) comprising all the necessary features for the effective cod-

ification of videos using the codec. Hence, as the first step towards proposing a novel and

enhanced technology is to acquire a good understanding of the problem, the AV1 refer-

ence software, combined with the AV1 specification (RIVAZ; HAUGHTON, 2019) also

created by the AOMedia are seen as the starting point.

By analyzing the AV1 reference software and combining the features observed

in the code with the AV1 specification, one shall be able to more accurately understand

important details of the codec. Moreover, executing slightly modified versions of the AV1

reference software allows for a further understanding on how some changes might affect

the overall codification process. The entire analysis upon the AV1 reference software is

presented in Appendix A.

45

As this section’s goal is to give an overall description of the designing process,

one shall consider the analysis of the AV1 reference software and AV1 specification as

the first step. The second step is defined by the acquisition of data from internal parts of

the AV1 AV1 reference software, which was accomplished by writing values from internal

variables into CSV (Comma-Separated Values) files. Besides serving as a baseline tool to

be using during the designing process, these files were also used in the Verification Phase,

which is out of the scope of this thesis, but is presented in detail in Appendix B.

Therefore, by studying the AV1 reference software and the AV1 specification, as

well as extracting internal data from the AV1 AV1 reference software, one shall be able to

acquire enough knowledge about the codec’s functionality. The next step, which is deeply

described in Section 4.2, is to design the de facto RTL (Register Transfer Level) circuit

using the Verilog HDL (Hardware Description Language).

4.2 AE-AV1 Design

This section introduces the herein proposed AE-AV1 architecture, which is a high-

throughput baseline design for the AV1 arithmetic encoder. This section’s organization is

as follows: introduction of the architecture arrangement in Subsection 4.2.1, the pipeline

stages in Subsection 4.2.2 and a brief presentation of essential decisions that impacted the

architecture’s development in Subsection 4.2.3.

4.2.1 AE-AV1 Top-Entity

The AE-AV1, which is considered to be the baseline and first version of the AV1

Arithmetic Encoder architecture, is comprised of four stages of pipeline. This number was

achieved after considering the minimum block division without creating bubbles on the

pipeline and after taking into consideration the works by (ZHOU et al., 2015), (RAMOS

et al., 2021) and (RAMOS et al., 2018), which target the HEVC CABAC and use the same

pipeline structure since the update of the main variables follow a similar flow, no matter

which arithmetic encoder proposal is being used.

Figure 4.1 briefly presents the top-level of the architecture and the connections

between the stages. As one may notice, the variables Low, Range and cnt are re-fed to

the stages that generate them. This re-feeding is necessary because these variables are

46

Figure 4.1: Overview of the AE-AV1 pipeline stages (BITENCOURT; RAMOS; BAMPI,
2022a).

Source: The Author (2022).

directly dependent on their previous values, as they are in constant evolution throughout

the execution.

The variables Low, Range and cnt, therefore, are responsible for preventing the

architecture from being broken into more pipeline stages. An uncareful breaking into

more than four stages would create bubbles due to Stage 2 (Range updating process)

reliance on a previously generated range (i.e., Rangei−1) for the Rangei definition. Al-

though the split would significantly increase the architecture’s frequency, the throughput

rate would drop to half due to the inability of the architecture to update Range in only

one round and, therefore, external blocks would have to set inputs in every other round.

Figure 4.2 provides a more in-depth view of the architecture. As one may notice,

Stages 2 and 3 are mainly composed by two blocks: CDF Operation and Boolean Oper-

ation, whereas Stage 4 is comprised by Final Bits and Carry Propagation (each block is

independently described in Subsection 4.2.2).

47

Figure 4.2: In-depth view of the AE-AV1 design.

Source: The Author (2022).

48

Figure 4.3: Stage 1 design of AE-AV1.

Source: The Author (2022).

4.2.2 Pipeline Stages

4.2.2.1 Stage 1

Stage 1 of the AE-AV1 is mainly responsible for pre-calculations. The primary

idea behind the Stage 1’s creation is the fact that, as presented in 4.2.2.2, Stage 2 com-

prises the critical path for the entire architecture. Hence, the necessity to reduce the delay

created by the critical path served as inspiration to create Stage 1, which is composed

of operations from the Range generation that could be accomplished without the use of

Rangei−1.

As previously presented, and defined by Figures 4.1 and 4.2, the architecture in-

puts are: bool_flag, FL, FH , nsyms and symbol. As an additional information, which

is also presented within Figure 4.2, the architecture receives flag_last, which helps any

external circuitry to learn the exact time when the final symbol is encoded and the Final

Bits block already generated the last bitstreams. Other control variables, which are not

depicted in Figure 4.2, are a clock and a reset signals that are propagated throughout the

design.

Stage 1 comprises two look-up tables (LUTs), which are shown in Figure 4.3.

Each LUT stores all possible results for (4.1) and (4.2), where symbol is a 4-bit array

and nsyms is a 5-bit array with its maximum number set to 16 and suffering, upon its

arrival on the architecture, a subtraction by one. Therefore, as the maximum value used

49

for nsyms throughout the architecture is 15, nsyms should be considered to be a 4-bit

array, which allows the possibility of addressing the LUTs with an 8-bit array defined by

the concatenation of nsyms and symbol, and resulting in a 256-position memory.

LUTU = 4× [(nsyms− 1)− (symbol − 1)] (4.1)

LUTV = 4× [(nsyms− 1)− (symbol + 0)] (4.2)

Furthermore, Stage 1 also executes two right-shift operations upon the arrival of

the FL and FH variables as shown in (4.3) and (4.4). The shifts calculated are by six on

both FL and FH , which reduces the width of the signals and allows for more efficient

multiplication in Stage 2 (see 4.2.2.2). The last and simplest functionality of Stage 1 is

to propagate the Bool_Flag, which defines whether to use CDF Operation or Boolean

Operation in the upcoming Stages 2 and 3.

UU = FL� 6 (4.3)

V V = FH � 6 (4.4)

4.2.2.2 Stage 2

Once the results from Stage 1 are safely stored in the registers connected to Stage

2 inputs, the latter starts theRange updating process. This process comprises the comple-

tion of the already-started (and presented) Equations (A.1) and (A.2), which were started

by (4.1), (4.2), (4.3) and (4.4). Therefore, until this point, stage 1 already calculated the

values for the signals UU , V V , LUTU and LUTV .

The Stage 2 has the responsibility to take the previously generated Range (i.e.,

Rangei−1), multiply it by each UU and V V , and add LUTU and LUTV to the result.

All these operations will generate the variables named u and v, which are represented by

Equations (4.5) and (4.6), respectively.

u = [(Rangei−1 � 8)× UU � 1] + LUTU (4.5)

v = [(Rangei−1 � 8)× V V � 1] + LUTV (4.6)

50

Figure 4.4: Primary design of Stage 2 (BITENCOURT; RAMOS; BAMPI, 2021).

Source: The Author (2022).

Figure 4.4 depicts the main operations within Stage 2. One may notice that the

figure highlights the critical path of the architecture in gray color, which is also the CDF

Operation block of Stage 2.

The CDF Operation, which roughly defines half of the Stage 2 circuitry according

to Figure 4.1 (i.e., in area, CDF Operation is around 3 to 4 times larger than Boolean

Operation), comprises two 8-bit by 10-bit multiplications. Moreover, it is possible to

notice the combination of the previously defined variables u and v with a multiplexer in

which the selector is defined by the logical equation FL < 32768 to generate Sel.

The previously defined variables u and v are here combined to generate the so-

called Rangeraw (Range variable before the renormalization process). As presented by

(4.7), the CDF Operation block uses the already generated Sel variable, which is created

by Stage 1, to decide which sub=equation to use as Range generation.

Rangeraw =

u− v, if Sel = ‘1’

Rangei−1 − v, otherwise
(4.7)

On the other hand, the Boolean Operation in Stage 2 is mainly defined by the

combination between the variables Rangei−1 and v, as already shown in Figure 4.4. The

already presented (4.6) is also valid for the Boolean Operation, as the fixed and single

51

probability defined for the Boolean Operation was configured to occupy the FH signal

due to the similarities between the CDF Operation’s v equation and the Boolean Opera-

tion original equation.

However, as the probability for the Boolean Operation is fixed to 50%, which

in the scale used by the AV1 reference software (i.e., 0 through 32768) and defined by

Rivaz e Haughton (2019) represents 16,384, it is possible to assume a simplification for

the equation. This simplification is presented in Equation 4.8, which defines the entire

Boolean Operation Range updating process. Moreover, this simplification allowed the

so-called AE-AV1-MB version of the architecture, which is presented in Section 5.2.

Rangeraw =

Rangei−1 − [(Rangei−1 � 8)� 7] + 4, if symbol = ‘1’

Rangei−1, otherwise
(4.8)

The renormalization process is one of the most important parts of the arithmetic

encoding process. According to the AV1 reference software, the renormalization process

is responsible for the pre-bitstream generation and for ensuring that Rangei (Range final

for round i) respects the 0.5 ≤ Range ≤ 1.0 rule.

As previously mentioned, theRange within the AV1 reference software is defined

by a 16-bit array, where its maximum value is 65,535 in decimal. Hence, 50% of the

maximum value of Range is represented by 32768, which in binary is indicated by only

the most significant bit (MSB) of a 16-bit array set to ‘1’.

Therefore, the critical goal of the renormalization process is to ensure that Range

MSB is set to one following a set of multiplications by two (or left-shifts). In order

to accomplish that, the architecture was designed to use a low-power and high-speed

Leading Zero Counter (LZC) proposed by Dimitrakopoulos et al. (2008), which was later

swapped by Miao e Li (2018) proposal due to its reduced delay. This circuitry aims to

define a value that represents the number of zeros before the first bit ‘1’ in a 16-bit array

(i.e., it defines the so-called d variable).

After establishing the correct number of zeros before the first bit ‘1’ in Rangeraw,

the architecture executes a left-shift of Rangeraw by d to generate the Rangei. The result

from the LZC circuitry is also used as an output to Stage 2, as Stage 3 relies on its value

for the Low renormalization process and pre-bitstream generation.

The LZC circuitry is a fundamental part of the architecture and directly impacts

the architecture’s frequency, as its execution follows the multiplication used during the

52

Figure 4.5: Top-entity schematic for Stage 3.

Source: The Author (2022).

Range updating process. Hence, it is crucial to find a good and effective LZC proposal

capable of executing this task effectively. According to several analysis and tests, the LZC

circuit proposed by Miao e Li (2018) was chosen, as it accomplishes a better result than

the work by Dimitrakopoulos et al. (2008).

4.2.2.3 Stage 3

Stage 3 is mainly defined by its responsibility to update the Low variable. This

variable, similarly to the Range variable, is defined by two different operations, where

each compose the CDF and Boolean blocks of Stage 3.

The structure of the herein presented stage is depicted in Figure 4.5, where one

may notice the presence of each of the mentioned blocks. Furthermore, as previously

explained in 4.2.2.2, Stage 3 does not comprise any leading zero counter (LZC) circuitry

as it relies entirely on Stage 2 LZC for the Low renormalization process. It is possible to

observe, in Figure 4.5, the definition of Lowraw, which represents the Low variable prior

to its renormalization and suffers a left-shift by d to reach its final value (i.e., Lowi, where

i identifies the current round of execution).

Stage 3 is, however, different from previous stages. Its main difference falls upon

the fact that it is responsible for generating the pre-bitstream values every time Low goes

above a certain number. As one may remember from Chapter 3, Algorithm 1, during the

renormalization process, several multiplications by 2 (left-shifts) are executed upon the

Range and Low variables, and every time Low goes above 1.0, it suffers a subtraction by

1, which generates a bitstream.

53

Stage 3, as expected, follows the same logic using more efficient and hardware-

friendly techniques. In order to accomplish the same functionality, Stage 3 keeps track

of a counter, the so-called cnt variable, which is combined to the incoming d (otherwise

known as the number of multiplications by two needed, or the LZC result), to decide

whether to reduce Low or not. Therefore, Paragraphs 4.2.2.3.1 and 4.2.2.3.2 detail the

process to generate the first Low (i.e., Lowinitial), whereas everything from Paragraph

4.2.2.3.3 to the next subsection presents the definition of Lowraw and the pre-bitstreams

generation.

4.2.2.3.1 The CDF Operation for the Low updating process uses the u variable defined

by Stage 2, which is associated with the incoming Rangei−1 and Lowi−1, according to

(4.9). As one may notice, (4.9) defines a combination of two sub-equations that are chosen

to be the output by the previously presented Sel variable generated by Stage 1.

Lowinitial =

Lowi−1 + (Rangei−1 − u), if Sel = ‘1’

Lowi−1, otherwise
(4.9)

4.2.2.3.2 On the other side of Stage 3 there is the Boolean Operation block. This block

is also a combination between a variable generated in Stage 2, in this case vbool (also

known as the v variable set by the Stage 2 Boolean Operation block). Equation 4.10,

again using a combination of two sub-equations, defines the Lowraw, which is chosen by

the incoming 1-bit symbol (i.e., the least significant bit of the 4-bit symbol).

Lowinitial =

Lowi−1 + (Rangei−1 − Vbool), if symbol = ‘1’

Lowi−1, otherwise
(4.10)

4.2.2.3.3 The renormalization process of Stage 3 is quite tricky. Not only it is in charge

of generating the Lowi variable, but it also needs to generate the pre-bitstreams, which

are, as explained previously, 9-bit arrays that will later originate the 8-bit arrays released

by the architecture as final bitstreams. Figure 4.6 defines the entire renormalization and

pre-bitstream generation processes, which is presented after 4.2.2.3.4.

To critically analyze Figure 4.6, it is important to understand the equations behind

that circuitry. Firstly, a combination between the incoming cnti−1 and d (i.e., Scomp,

54

Figure 4.6: Stage 3 renormalization and pre-bitstream generation processes.

Source: The Author (2022).

where ‘comp’ represents ‘comparison’) is done in (4.11). This combination is used to

define whether to reduce the Low and generate pre-bitstreams or not.

Scomp = cnti−1 + d (4.11)

The next step is to define, in parallel, the three possible output values for cnti and

Lowraw. The number three also represents the number of possible decisions taken in this

process, according to the following list:

• Scomp < 9 prevents the Low reduction and does not allow any pre-bitstream gener-

ation;

• 9 ≤ Scomp < 17 defines the generation of only one pre-bitstream and a Low reduc-

tion;

• Scomp ≥ 17 indicates the generation of two pre-bitstreams and a greater Low re-

duction.

The Low reduction happens by the definition of a mask m, which is calculated in

parallel for each reduction case according to (4.12) and (4.13), where m1 and m2 repre-

sent, respectively, the cases 9 ≤ Scomp < 17 and Scomp ≥ 17.

m1 = [1� (cnti−1 + 7)]− 1 (4.12)

55

m2 = [1� (cnti−1 − 1)]− 1 (4.13)

Each of the masks, m1 and m2, is used upon the Lowinitial variable, which orig-

inates the two possibilities for Lowraw, according to (4.14). The definition of cnti (i.e.,

the final value for the cnt counter) is done by (4.15), following the same three conditions.

Lowraw =

Lowinitial ∧m1, if 9 ≤ Scomp < 17

Lowinitial ∧m2, if Scomp ≥ 17

Lowinitial, otherwise

(4.14)

cnti =

Scomp − 8, if 9 ≤ Scomp < 17

Scomp − 16, if Scomp ≥ 17

Scomp, otherwise

(4.15)

4.2.2.3.4 The pre-bitstream generation, which was already depicted in Figure 4.6, relies

on the same cnt counter variable and on the three previously presented cases for the

Low reduction. The pre-bitstream generation is mainly defined by (4.16), (4.17) and

(4.18), where pre-bitstream 1 (PB1), pre-bitstream 2 (PB2) and the flag (PBflag) are,

respectively defined. PBflag is the variable that identifies to any outside circuitry (i.e.,

testbench or a following module on the codec execution line) that (0) no pre-bitstream is

valid, (1) only PB1 is valid, or (2) both PB1 and PB2 are valid.

PB1 =

Lowinitial � (cnti−1 + 7), if Scomp ≥ 9

0, otherwise
(4.16)

PB2 =

(Lowinitial ∧m1)� (cnti−1 − 1), if Scomp ≥ 17

0, otherwise
(4.17)

PBflag =

1, if 9 ≤ Scomp < 17

2, if Scomp ≥ 17

0, otherwise

(4.18)

56

Figure 4.7: Top-entity schematic of Stage 4.

Source: The Author (2022).

4.2.2.4 Stage 4

The final stage of the architecture, the so-called Carry Propagation stage, is re-

sponsible for the carry propagation of the pre-bitstreams, which generates the 8-bit final

bitstreams. As explained in previous sections, and shown in (4.19), (4.20) and (4.21), the

carry propagation combines the 9-bit arrays PBi−1 with PBi to generate an 8-bit final

bitstream. Figure 4.7 shows the top schematic of Stage 4 and its sub-modules.

FB1 = Bprevious + PB1[8] (4.19)

FB2 = PB1[7 : 0] + PB2[8] (4.20)

Bprevious = PB2[7 : 0] (4.21)

The situation depicted by (4.19), (4.20) and (4.21) considers a PBflag = 2, which

generates PB1 and PB2 at the same round. Another situation, presented by (4.22) and

(4.23), defines the scenario where PBflag = 1 and, therefore, only PB1 is valid. If

PBflag = 0, the Bprevious = Bprevious−1, which is the same as affirming that Bprevious

does not change.

FB1 = Bprevious + PB1[8] (4.22)

57

Bprevious = PB1[7 : 0] (4.23)

As one may notice after analyzing (4.19), (4.20), (4.21), (4.22) and (4.23), the

Verilog (Cadence, 2021) notation [8] is used to express that only the most significant bit

(MSB), in a 9-bit array (i.e., the 9th bit), is being used for the given equations. When

[7 : 0] is presented, then the equation considers the eight least significant bits (LSB) of

the given array.

Although oversimplified by the previously presented equations, Stage 4 also has to

deal with an exception that compromises the entire process described so far. The so-called

255 Exception, which is identified in a scenario where Bprevious = 255 and PB1 > 255,

forces the architecture to propagate the carry not only to Bprevious, but also to Bprevious−1,

which is not kept in the registers.

In order to solve the 255 Exception, a 255counter is used, which counts the number

of arrays representing the decimal number 255 received, in sequence, as pre-bitstream

until the first PB1 6= 255 or PB2 6= 255 arrives. Once the 255 Exception is broken, then

the architecture releases four outgoing final bitstreams, according to (4.24), (4.25), (4.26),

(4.27) and (4.28).

FB1 = Bprevious+ PB1[8] (4.24)

FB2 = 255 + PB1[8] (4.25)

FB3 = 255counter (4.26)

FB4 = PB1[7 : 0] + PB2[8] (4.27)

Bprevious = PB2[7 : 0] (4.28)

The scenario presented by (4.24), (4.25), (4.26), (4.27) and (4.28) considers PBflag =

2, where PB1 6= 255 and PB2 6= 255. If PB1 = 255, then 255counter receives an incre-

ment, whereas if PB2 = 255, then the 255 Exception is restarted. Another possible

scenario is PBflag = 1, where FB4 will not be generated and Bprevious = PB1[7 : 0].

58

4.2.2.4.1 Last Bits block Within Figure 4.7, one may notice, besides the Carry Prop-

agation block, the Last Bits blocks. This block is activated once for each frame being

encoded and its use relies on the idea that any remaining Low needs to be transformed in

the last bitstreams of the frames, so it can be accurately used in the decoding process.

The Finalflag, which is a flag set by outside circuitry or testbenches to identify the

last symbol in a frame, is used to activate the Last Bits block. This block will then take the

final Low and cnt values and apply (4.29), (4.30), (4.31) and (4.32), where m = 65535

in decimal.

e1 = [(Lowi +m) ∧m] ∨ (m+ 1) (4.29)

LB1 = e1 � (cnti + 7) (4.30)

LB2 = {e1 ∧ [1� (cnti + 7)− 1]} � (cnti − 1) (4.31)

LBflag =

1, if 9 < (cnti + 10) ≤ 17

2, if (cnti + 10) > 17

0, otherwise

(4.32)

The LBflag, LB1 and LB2 variables generated by (4.29), (4.30), (4.31) and (4.32)

are then propagated by the multiplexers presented within Figure 4.7 until they reach the

Carry Propagation block.

Moreover, another implication created by the Finalflag = 1 scenario is the re-

lease of the Bprevious as final bitstream. Usually, as the logic mandates for all rounds of

codification, Stage 4 keeps the Bprevious stored for further carry propagation executions

upon the arrival of upcoming pre-bitstreams. However, as the Finalflag identifies the

last round of execution before a complete reset of the architecture, the Bprevious must be

released as final bitstream.

As one may guess at this point, the combination between the 255 Exception with

the Finalflag = 1 might be the only case where the output pin FB5 is used. As this

combination is considered rare, Bprevious always uses the next available FB pin, and a

given flag is defined to describe the valid output pins. Table 4.1 defines every possible

combination of flag generated by Stage 4.

59

Table 4.1: Map of the FBflag.
Flag

Binary
Flag

Decimal FB1 FB2 FB3 FB4 FB5

000 0 - - - - -
001 1 Valid Bits - - - -
010 2 Valid Bits Valid Bits
011 3 Valid Bits Valid Bits Valid Bits
100 4 - - - - -
101 5 Valid Bits 255 + Carry 255counter - -
110 6 Valid Bits 255 + Carry 255counter Valid Bits -
111 7 Valid Bits 255 + Carry 255counter Valid Bits Valid Bits

4.2.3 Key hardware design decisions

This subsection has the goal of briefly describing some important decisions taken

during the architecture’s design and how they affected the outcome of the project. The first

one, and perhaps the most important, is the definition of the number of pipeline stages.

As already presented in previous sections, the number of stages in the pipeline

is a direct reflex of the possibility to differently divide the logic. The number four was

reached after taking into considering (i) what was the critical path, and (ii) how to reduce

the critical path without creating bubbles. With regards to (i), the critical path was locate

around the multiplications in the Range updating process, whereas regarding the (ii),

bubbles would only be created if Range or Low required more than one round (i.e., one

clock cycle) to be generated.

Moreover, definition that the Low updating process would be located one stage

after Range (i.e., Range in Stage 2 and Low in Stage 3) emerges as a good idea due to

Low relying on some of the values generated during the Range processing. Therefore, if

Low was to be updated in in same stage as Range, then the critical path would be greater,

as it would comprise, in sequence, the Range and Low processes.

Another important decision to take into consideration was the carry propagation

process. According to the AV1 reference software, the carry propagation occurs after the

entire codification of a frame and the storage of all pre-bitstreams into a buffer. As the

goal of this project is to design a hardware architecture, the buffer would me limited and,

therefore, this approach would create a possibility for overflow.

As one may also notice, the use of a buffer prior to the carry propagation where

all pre-bitstreams were to be stored would also create a synchronizing problem. Imagine

Frame 1 generated 100 pre-bitstreams and Frame 2 comprises 50 symbols, for example.

60

Assuming it takes one round to propagate the carry for each pre-bitstream, Frame 2 would

be done with its encoding process before Frame 1 finishes its carry propagation. The

complexity created by this approach would be enormous and uncountable problems could

emerge simply by encoding a larger video.

Therefore, the use of a logic that allows the carry propagation to be executed

exactly one round after the generation of each pre-bitstream reduces the chances for prob-

lems and avoids reserving area in the chip for buffers that could never be used. Moreover,

the predictability of storing only two values (Bprevious and 255counter) allows a simpler

logic than by using the buffer approach.

The analysis herein presented of different scenarios and different implementations

allow the creation of a more robust and closer to error-free architecture. Designing an

architecture implies the use a different techniques and approaches for problems that can

be tackle in a non-efficient way in software, but that need to be efficient in hardware.

Dealing with memories and/or buffers that need to store an unpredictable amount of data

is always complicated, as a large chip area might be allocated memory positions that will

rarely be used. Therefore, avoiding memories as much as possible, and relying mostly on

combinational logic are good practices when designing a hardware architecture.

Chapter 5 introduces the versions obtained during the architectural exploration of

the AV1 Arithmetic Encoder. During that phase, the designs AE-AV1-LP, and AE-AV1-

MB 1-, 2-, and 3-bool were implemented. As also mentioned in Chapter 5, a AE-AV1-MB

4-bool version was implemented, but found to be inefficient during to huge frequency and

throughput rate drops when comparing to the baseline AE-AV1 design.

61

5 LOW-POWER AND MULTI-BOOLEAN APPROACHES/ARCHITECTURES

The architecture named AE-AV1 presented throughout Chapter 4 as the first ever

published AV1 arithmetic encoder architecture. The AE-AV1, then, emerges as the most

important version of this work due to its creation as the baseline design used for compari-

son with other versions, which aim to apply specific improvements into the architecture to

achieve better results regarding specific aspects such as power consumption and through-

put rate. The following sections present the additional versions the AV1 arithmetic en-

coder architecture and are organized as follows: low-power version (AE-AV1-LP) in 5.1,

and a multi-boolean version (AE-AV1-MB) in 5.2.

5.1 AE-AV1-LP: Low-Power Version

AE-AV1-LP is defined as a low-power version of the baseline AE-AV1 architec-

ture presented throughput Chapter 4. This section’s main goal is to provide information

regarding the methodology used to implement the low-power version (Subsection 5.1.1),

the low-power techniques applied (Subsection 5.1.2) and the main changes between AE-

AV1 and AE-AV1-LP (Subsection 5.1.3).

5.1.1 Statistical Analysis

In order to effectively add low-power techniques into the baseline architecture,

which are presented within Subsection 5.1.2, it was necessary analyze the AV1 Arith-

metic Encoder process to understand how it behaves when exposed to real-world data.

During the entire designing process of the AE-AV1, the aim was to create a hardware so-

lution able to accelerate real-world video sequences and still achieve enough throughput

rates for a real-time coding of an UHD (Ultra-High Definition) video (i.e., 8K@120fps,

where 800MBits/second is the minimum throughput rate established by the AV1 docu-

mentation (RIVAZ; HAUGHTON, 2019)). Thus, the creation of a low-power version of

the architecture needs to follow the same principles and be based on real-world data.

In order to follow the presented principles, several video sequences from mainly

two datasets (MERCAT; VIITANEN; VANNE, 2020; MONTGOMERY, 2005) were ana-

lyzed and their main behaviors and patters were observed. Among different analysis made

62

Table 5.1: Analysis upon the Boolean Operation calling rate for 6 120-frame video
sequences in two Constraint of Quality (CQ) configurations (MERCAT; VIITANEN;
VANNE, 2020).

CQ Resolution Video Boolean Operation rate
20 1080p @ 120 8-bit Beauty 17.75%
20 1080p @ 120 8-bit Bosphorus 20.17%
20 1080p @ 120 8-bit HoneyBee 19.58%
20 1080p @ 120 8-bit Jockey 17.99%
20 4K @ 120 10-bit ReadySetGo 19.47%
20 4K @ 120 10-bit YachtRide 21.94%
55 1080p @ 120 8-bit Beauty 12.33%
55 1080p @ 120 8-bit Bosphorus 15.43%
55 1080p @ 120 8-bit HoneyBee 17.63%
55 1080p @ 120 8-bit Jockey 9.41%
55 4K @ 120 10-bit ReadySetGo 11.02%
55 4K @ 120 10-bit YachtRide 12.87%

Average 16.30%

(i.e., symbols rate, nsyms rate, etc), it was analyzed the frequency to which the Boolean

Operation was used over the total number of encoded symbols.

As one may notice after analyzing Tables 5.1 and 5.2, the Boolean Operation

calling rate is directly connected to the Constraint of Quality (CQ) configuration. Addi-

tionally, in Table 5.2, the allintra and good configurations do not display any apparent

effect upon the calling rate of Boolean Operation.

Figure 5.1 depicts a graph with the compounded calling rate of the Boolean Op-

eration divided by CQ group, which was calculated based on the average of the results

presented in Tables 5.1 and 5.2. As one may notice, for the allintra configuration, the

higher is the CQ, the lower will be the number of calls for the Boolean Operation. As one

may notice, on the other hand, the Boolean Operation calling rate for the good configura-

tion also decreases with the increase of the CQ, but with a less steep curve.

Moreover, despite the changes in the Boolean Operation rate according to the

encoding configurations, none of the video sequence displays any Boolean Operation

rate greater than 30%. As one may remember from Stages 2 and 3 descriptions (refer to

4.2.2.2 and 4.2.2.3), the entire AE-AV1 architecture is mainly divided into two circuitry:

CDF Operation and Boolean Operation.

Therefore, as hardware architectures can be simply defined as several circuitry

blocks connected by internal wires, one may expect that once the input pins are set to

a value, all connected components shall generate output values even if their values are

useless (i.e., when running a CDF Operation, Boolean Operation blocks will generate

63

Table 5.2: Analysis upon the Boolean Operation calling rate for 8 60-frame video se-
quences with a total of 8 configurations for each (MONTGOMERY, 2005).

CQ Config. Resolution Video Boolean Operation rate
20 allintra 720p Boat 20.50%
20 allintra 720p Dark 23.44%
20 allintra 720p Kristen And Sara 23.93%
20 allintra 720p Netflix Driving 29.34%
20 allintra 720p Netflix Roller Coaster 27.60%
20 good 720p Boat 25.86%
20 good 720p Dark 25.91%
20 good 720p Kristen And Sara 26.61%
20 good 720p Netflix Driving 32.73%
20 good 720p Netflix Roller Coaster 28.54%
32 allintra 720p Boat 16.14%
32 allintra 720p Dark 17.51%
32 allintra 720p Kristen And Sara 20.11%
32 allintra 720p Netflix Driving 25.61%
32 allintra 720p Netflix Roller Coaster 24.53%
32 good 720p Boat 23.37%
32 good 720p Dark 25.74%
32 good 720p Kristen And Sara 23.34%
32 good 720p Netflix Driving 31.05%
32 good 720p Netflix Roller Coaster 28.07%
43 allintra 720p Boat 12.51%
43 allintra 720p Dark 12.65%
43 allintra 720p Kristen And Sara 16.07%
43 allintra 720p Netflix Driving 19.78%
43 allintra 720p Netflix Roller Coaster 19.45%
43 good 720p Boat 20.75%
43 good 720p Dark 24.48%
43 good 720p Kristen And Sara 22.52%
43 good 720p Netflix Driving 29.01%
43 good 720p Netflix Roller Coaster 26.72%
55 allintra 720p Boat 16.14%
55 allintra 720p Dark 8.49%
55 allintra 720p Kristen And Sara 11.30%
55 allintra 720p Netflix Driving 12.93%
55 allintra 720p Netflix Roller Coaster 14.19%
55 good 720p Boat 17.87%
55 good 720p Dark 20.16%
55 good 720p Kristen And Sara 23.31%
55 good 720p Netflix Driving 25.95%
55 good 720p Netflix Roller Coaster 24.19%

Average 21.96%

64

Figure 5.1: Graph with the compounded calling rate for the Boolean Operation divided
by the set of configurations.

Source: The Author (2022).

useless and invalid values, which shall be discarded). Hence, in order to reduce the overall

power consumption of the architecture, emerges as an interesting option the isolation of

the Boolean Operation blocks from their input signals to avoid processing and storing

useless values.

5.1.2 Low-Power Techniques

With the goal of reducing power consumption already during the design phase

(i.e., without relying on physical design techniques), clock gating and operand isolation

emerge as effective low-power techniques to reduce dynamic power consumption. These

techniques were explored in the (BITENCOURT; RAMOS; BAMPI, 2021) worked, which

was written by the author, and included in this thesis in 5.1.2.1 and 5.1.2.2.

5.1.2.1 Clock gating

The application of the clock gating technique seeks to prevent registers from stor-

ing non-essential values. This action is achieved by restricting the clock signal from

reaching the registers once the architecture detects that a specific component is not needed

65

at a given time (Qing Wu; PEDRAM; Xunwei Wu, 2000).

As one may notice after reading Chapter 4, the Stages 2 and 3 are basically di-

vided in two different parallel circuitry: CDF and Boolean operations. Hence, the regis-

ter barriers after the cited stages comprise registers only useful when executing Boolean

Operation and, as the power analysis presented Subsection 5.1.1 shows, this specific op-

eration occurs at a considerably lower rate than the CDF Operation. Therefore, applying

clock gating on the registers only connected to the Boolean Operation creates a decrease

in power consumption.

Furthermore, according to 4.2.2.3, the Stage 3 does not generate pre-bitstreams in

every clock cycle and, hence, the architecture does not always release bitstreams. There-

fore, the addition of clock gating into the registers responsible for pre-bitstream and bit-

stream storage (i.e., after Stages 3 and 4) also creates a significant reduction on power

consumption.

5.1.2.2 Operand Isolation

On the other hand, the operand isolation technique aims to reduce power con-

sumption by not allowing non-essential operations to be completed. This technique seeks

to isolate each operand and force the outputs of logical or mathematical operations to

be constant (preferably set to zero) when the operations are not critical (MUNCH et al.,

2005). The use of operand isolation is important because some of the operations do not

depend on registers. Thus, even though their results will not be stored, they still generate

output and, hence, consume energy.

Again, as explained in Subsection 5.1.2.1, the distinction between CDF and Boolean

operations allows for the application of low-power techniques. In this specific case, in-

stead of targeting the registers, it is necessary to isolate the operands for each of the

Boolean Operation sub-steps presented in 4.2.2.2 and 4.2.2.3. Moreover, the pre-bitstream

and bitstream generation processes also allow for the application of operand isolation for

the same reason explained in 5.1.2.1.

Operand isolation can also be added into the Last Bits block within Stage 4, as the

block is only used upon the arrival of each frame’s last symbol. Therefore, as none of the

other symbols’ arrival will generate significant results from Last Bits block, the technique

can be added to each of the components presented within 4.2.2.4.

66

5.1.3 From AE-AV1 to AE-AV1-LP

The low-power version of AE-AV1, the so-called AE-AV1-LP, is featured as a

solution that reduces the power consumption (i.e., by around 19.89% as is later pre-

sented in Chapter 6) while ensuring enough throughput rate for ultra-high performance

(8K@120fps in real-time). As presented throughout previous subsections of this section

(i.e., 5.1.1 and 5.1.2), the idea of the AE-AV1-LP is to include the Clock Gating and

Operand Isolation low-power techniques into the original and baseline AE-AV1 design to

save power by avoiding, respectively, the storage and calculation of useless values gener-

ated by the Boolean Operation block when executing a CDF Operation. Moreover, this

is possible due to the analysis presented within Subsection 5.1.1, which shows that, on

average, only 16.97% of the total clock cycles required to encode a video sequence uses

the Boolean Operation block.

The following list presents the equations and registers that received each of the

aforementioned low-power techniques:

Stage 1: Clock Gating applied into registers connected to (4.3) and (4.1). As all Boolean

Operation variables are also used within the CDF Operation, the Clock Gating tech-

niques aim to avoid storing results for the CDF Operation. No Operand Isolation

was applied.

Stage 2: Clock Gating applied into registers connected to, in one side (4.5), and on the

other (4.6). The reason is that Stage 3 uses or u or vbool, never both. Operand

Isolation was applied into (4.5).

Stage 3: As PB1 and PB2 are not generated in every clock cycle, Clock Gating was indi-

vidually applied into each register for either variables and was triggered by PBflag.

Operand isolation was applied into all components connected to the Boolean Oper-

ation.

Stage 4: Clock Gating applied into all FB1–FB5 registers. Operand Isolation added into

the entire Last Bits circuitry because it is only used for one round per frame.

67

5.2 AE-AV1-MB: Multi-Boolean Version

As AE-AV1-LP, the AE-AV1-MB is presented as an alternate version of the base-

line AE-AV1 architecture. AE-AV1-MB aims to increase the throughput rate of the archi-

tecture by parallelizing the Boolean Operation in Stages 2 and 3. For that, a proposal for

the Range updating process is introduced in Subsection 5.2.1 and the actual architecture

is elucidated in Subsection 5.2.2.

5.2.1 Multi-Boolean Proposal

As highlighted in Chapter 4, the AV1 arithmetic encoding process relies upon

two operations: CDF Operation and Boolean Operation. For a hardware design of AV1

arithmetic encoding, (5.1) features part of the critical path for the entire process (i.e., the

common equation for the Range updating step used on both CDF and Boolean opera-

tions), where F , Rangei−1 and Rangeraw represent, respectively, the 16-bit probability,

the incoming Range and the Range prior to renormalization. Equation (5.1) is analog to

(4.7), which relies on (4.5) and (4.6).

Rangeraw = (Rangei−1 � 8)× (F � 6)� 1 (5.1)

Considering F as a 16-bit variable and the maximum probability being 32768

(RIVAZ; HAUGHTON, 2019), the Boolean Operation probability, which is fixed in 50%,

is represented by the decimal value 16384, thus reaching 256 after a right-shift by 6. As

one may notice, 28 = 256, which allows the removal of the multiplication from (5.1),

obtaining (5.2).

Rangeraw = (Rangei−1 � 8)� 7 (5.2)

When converting the new Range updating process for the Boolean Operation

into architecture, it is feasible to assume that the new Boolean Operation from (5.2) cre-

ates less delay than CDF Operation, which does not allow the same transformation due

to its always-changing probabilities. Furthermore, if considered Figure 5.2 as being a

simplified diagram for a 4-stage baseline AV1 arithmetic encoder architecture, one may

find feasible to allocate multiple Boolean blocks into Stage 2 (Range updating process),

which will result in an increased number of Boolean symbols being encoded during the

68

Figure 5.2: Simplified diagram for a baseline AV1 arithmetic encoder.

Source: The Author (2022).

same time taken by one CDF symbol. Stages 1 and 4 from Figure 5.2 comprise the

pre-calculations and carry propagation blocks respectively (BITENCOURT; RAMOS;

BAMPI, 2021), whereas Stage 3 is the Low updating process.

The herein proposed parallel approach for the Boolean Operation takes advantage

of the CDF Operation complexity to increase the number of symbols encoded per round

of execution. Figure 5.3 displays a graph resulting from analysis made using twelve video

sequences from (MERCAT; VIITANEN; VANNE, 2020) (i.e., video sequences Beauty,

Bosphorus, HoneyBee, Jockey, ReadySetGo and YachtRide encoded under Constraints of

Quality – CQs – 20 and 55) and forty video encodings from (MONTGOMERY, 2005)

(Boat, Dark, KristenAndSara, Netflix_RollerCoaster and Netflix_Driver, encoded under

CQs 20, 32, 43 and 55, using configurations allintra and good), and considering different

scenarios of β, where β represents the number of Boolean blocks in parallel. While

disregarding any increase in delay, which is deeply analyzed in Subsection 5.2.2, the

graph presents the throughput improvement rates for different versions of the architecture

in which β hangs within 1 ≤ β ≤ 10.

As one may conclude after analyzing Figure 5.3, the greatest improvements hap-

pen when 2 ≤ β ≤ 4. When β > 4, the improvements turn smaller until reaching

asymptotically the value of around 17%.

69

Figure 5.3: Number of Boolean blocks in parallel (β) vs. Throughput improvement rate.

Source: The Author (2022).

5.2.2 Multi-Boolean Architecture

The association for the Boolean Operation presented in (5.2) makes it possible

to add multiple Boolean blocks to be executed in parallel with only one CDF block and

therefore create the proposed AE-AV1-MB architecture. As suggested by Figure 5.2, for

each Boolean block or CDF block added into architecture’s Stage 2, one corresponding

block must be added into Stage 3 (Low updating process) likewise.

Moreover, the Carry Propagation block (i.e., pipeline Stage 4) is capable of dealing

with up to two pre-bitstreams and one flag (PB1, PB2 and PBflag) per round. Analysis

upon the use of different values for β show that when β ≥ 4, one extra Carry Propagation

block must also be added.

The herein presented AE-AV1-MB architecture aims to include more RangeBool

blocks, which forces the addition of an equal β number of LowBool blocks into Stage

3 and, perhaps, a few Carry Propagation blocks into Stage 4. Furthermore, assuming

RangeCDF � RangeBool and RangeCDF > LowBool with regards to delay, where

LowBool is defined by a set of several sequential simple operations (RIVAZ; HAUGHTON,

2019; Alliance for Open Media, 2020), the most likely scenario to happen first is that

when β reaches a certain λ, the critical path of the architecture migrates from Stage 2 to

Stage 3.

As suggested by Figure 5.4, the λ value is four, which indicates that when β ≥

λ, the critical path of the architecture becomes Stage 3 instead of Stage 2. Figure 5.4

displays the throughput per second (Mbits/second) for 1 ≤ β ≤ 4 versions (i.e., ‘β-

70

Figure 5.4: Comparison between the throughput rates for AE-AV1-MB versions.

Source: The Author (2022).

bool’) and, therefore, takes into consideration the frequency results obtained from the

synthesis process using Cadence™ RTL Compiler (RC) tool with the ST 65nm PDK.

Figure 5.5 displays the Stage 2 diagram for the β = 3 (i.e., 3-bool) version of

the architecture. As one may conclude, each of the Boolean blocks receives one symbol

from the sequence Si, Si+1 and Si+2, where S represents a symbol being encoded and i

the current round of execution. Upon the end of the current round, a certain number of

Boolean symbols Φ, where Φ is comprised within 0 ≤ Φ ≤ β, might arrive according

to upcoming Boolean symbols found within the video sequence. The Last multiplexer

represents a choice of the last valid Boolean block in a round to define Rangei (i.e., final

Range), whereas the Bool multiplexer chooses between the CDF and Boolean operations.

The incoming Range values for each Boolean block (e.g., Range1 for Bool2) must be

used in Stage 3 and are, therefore, set into their respective output pins from Stage 2.

Stage 2 in Figure 5.5 is capable, therefore, of encoding up to three Boolean sym-

bols in one clock cycle. Furthermore, it is important to notice that each block presented

within Figure 5.5 comprises a renormalization process (i.e., a 3-input multiplexer for the

Boolean blocks, and a 16-bit Leading Zero Counter, LZC, circuitry (MIAO; LI, 2018) on

the CDF side). As the renormalization result d for (5.2) approach is never greater than 2,

a 3-input multiplexer does the task more effectively than a LZC for the Boolean side.

As one may conclude, Stage 3 of the architecture’s 3-bool version looks similar to

what is displayed in Figure 5.5. The main differences rely upon the pre-bitstream gener-

ation process and the internal characteristics of each block, where the CDF and Boolean

blocks need to calculate the Low value. The Boolean block in Stage 3 is represented by

71

Figure 5.5: Stage 2 diagram for the 3-bool version of the architecture.

Source: The Author (2022).

(5.3), where PL = Rangei−1 − (Rangeraw + 4) calculated in Stage 2 and stands for

‘PreLow’. No extra Carry Propagation block needs to be added for this version as β < 4

(i.e., β = 3).

LowrawBool
= Lowi−1 + PL (5.3)

The herein described 3-bool version of the AE-AV1-MB was presented as an ex-

ample to facilitate the understanding of the parallel proposal. If respecting the technology

and hardware limitations with regards to area, delay, and power consumption, any β num-

ber of Boolean blocks can be added into Stages 2 and 3. Section 6 displays and analyzes

the results for the AE-AV1-MB 1- (baseline version), 2- and 3-bool versions, which re-

spect the already-presented β < λ limitation for maximum optimization.

Chapter 6 present the methodology used to obtain the results for all designs pre-

sented in Chapters 4 and 5 (i.e., AE-AV1, AE-AV1-LP, and AE-AV1-MB 1-, 2- and

3-bool). Furthermore, the results are introduced and compared with related works.

72

6 RESULTS AND DISCUSSION

Throughout the Chapters 4 and 5, three versions of an AV1 arithmetic encoder

architecture were presented. The first one, presented within Chapter 4, defines a baseline

architecture for the AV1 arithmetic encoder block and was named AE-AV1. The second

version, named AE-AV1-LP, is defined as a low-power version of the baseline, whereas

the third version is a Multi-Boolean design named AE-AV1-MB.

The results presented in the following subsections were obtained by synthesizing

all aforementioned architectures using the Cadence™ RTL Compiler (RC) tool with the

ST 65nm PDK. Additional results for the AE-AV1, which are presented within Subsection

6.2.1, were achieved by synthesizing the design using open-source-only solutions (i.e.,

OpenROAD (OpenROAD, 2021; KAHNG; SPYROU, 2021) tool with SkyWater 130nm

PDK (SkyWater; Google, 2021; ENE, 2020) and ASAP7 PDK (CLARK et al., 2016)).

This chapter is organized as follows: Section 6.1 presents the methodology used to

achieve the herein presented results, Section 6.2 presents the information regarding AE-

AV1, Section 6.3 shows the results for the additional versions designed (i.e., AE-AV1-LP

in Subsection 6.3.1, and AE-AV1-MB in Subsection 6.3.2), and Section 6.4 depicts a

variety of comparisons between the introduced versions of the AV1 arithmetic encoder

architecture and related works.

6.1 Analysis Methodology

This section introduces the methodology used to accomplished the herein pre-

sented results. The Cadence™ RTL Compiler (RC) (RAMANI; AHMED, 2016) was the

mainly used tool for synthesis. It was chosen due to its powerful capabilities, for being

a highly capable tool used throughout the Microelectronics market, and for being capa-

ble of delivering realistic results. Additionally, the open-source-focused results used the

OpenLane flow (GHAZY; SHALAN, 2020; EDWARDS; SHALAN; KASSEM, 2021),

which comprises the OpenROAD (OpenROAD, 2021) tool as one of its core elements.

The reason for using the OpenROAD toolset is because of its (i) relevance in the global

microelectronics scenario, and (ii) for being a state-of-the-art open-source tool that is very

efficient and straightforward to be used.

The choosing of an adequate standard-cell library, also known as PDK (Process

Design Kit), is critical for the synthesis process and further procedures of the ASIC flow

73

(KOMMURU; MAHMOODI, 2009). For this process, the chosen PDKs were the ST

65nm (ST, 2015), SkyWater 130nm, nangate 45nm (TORNG, 2020), (EDWARDS, 2020;

Google, 2022; TEODOR-DUMITRU, 2020) and ASAP7 (CLARK et al., 2016). The

former was applied in the high-throughput designs (i.e., AE-AV1, AE-AV1-LP and AE-

AV1-MB), whereas the latter three were used for the open-source analysis that targeted

only the baseline AE-AV1 architecture.

Using the AV1 reference software (Alliance for Open Media, 2020), five video

sequences from a datasets (MONTGOMERY, 2005) were encoded under different con-

straints of quality (CQs) and configuration modes. According to Rivaz e Haughton (2019),

the AV1 comprises configuration modes such as allintra and good, which flags to the

software the use of only the intra-prediction block or either inter- and intra-prediction,

respectively.

The 60-frame 720p 8-bit depth videos Boat, Dark, KristenAndSara, Netflix_Driving

and Netflix_RollerCoaster, the 60-frame 1080p 8-bit depth videos Aspen and Rush_Hour,

and the 60-frame 4K 8-bit depth Netflix_Narrator and Netflix_Dancers were taken from

the dataset named objective-2 published by Montgomery (2005). Each of the aforemen-

tioned videos was encoded under the CQs 20, 32, 43 and 55, and the configuration modes

allintra and good, totaling 72 videos encoded (i.e., videos encoded will be referred, from

now on, as video sequences for the sake of simplification).

Moreover, in order to accurately estimate the throughput rates (bits/cycle and

Gbits/second), software analysis were created to emulate the architectural behavior of

a given version while reading the encoded video sequences. For example, when analyz-

ing the video sequences to acquire the throughput rate information for the AE-AV1-MB

version of the architecture, the software eventually was required to read rows without in-

creasing the clock cycle counter to accurately define the bits/cycle throughput rate for

the AE-AV1-MB version.

Furthermore, the Gbits/second presented in following sections are a direct result

from the combination of the aforementioned software analysis to estimate the bits/cycle

throughput rate with the frequency resulted by the synthesis process. This methodology

was created to avoid increasing simulation complexity using the already-computationally

heavy simulation tools (Cadence, 2021). The power estimation, however, relied upon

simulation tools (i.e., Cadence™ irun utility (Cadence, 2021)), which generated the TCF

(Toggle Count Format) used in the RC (INFN, 2021) to estimate power based upon the

switch activity of the design when stimulated with real-world data.

74

Therefore, the herein presented methodology aims to reduce the analysis com-

plexity while ensuring the achievement of accurate results. Seventy-two video codifica-

tions (i.e., also referred as video sequence for the sake of simplicity) were analyzed and

generated the throughput rate results depicted in the following sections of this chapter.

Although the throughput rate analysis did not rely on hardware simulation, the power

analysis required such execution, which combined the Cadence™ irun utility with the RC

power estimation methodology.

6.2 Baseline AE-AV1 Results

The baseline version of the AV1 arithmetic encoder architecture, the so-called

AE-AV1, was capable of achieving 581 MHz when encoded using the ST 65nm PDK.

Additionally, the AE-AV1 version accomplished 11.7k gates count of area and 9.072 mW

of power. The herein presented results were calculated based on the average of the results

obtained for each video codification (i.e., a video codification is defined as the encoding

of one video sequence using a given set of configurations), which are presented in Table

6.4.

With regards to the throughput rates, the AV1 documentation stipulates, according

to Table 6.1, that an 8K@120fps (i.e., 7680x4320@120fps) resolution requires at least

800 Mbits/seconds of throughput rate for real-time processing (RIVAZ; HAUGHTON,

2019). The AE-AV1 achieves, on average, and after analyzing all video sequences pre-

sented within Section 6.1, 1.775 bits/cycle and 1.032 Gbits/second of throughput rates.

Therefore, the AE-AV1 version of the AV1 arithmetic encoder architecture is capable of

8K@120fps real-time processing when synthesized for the ST 65nm PDK.

Tables 6.4 and 6.5 presented within Subsection 6.3.1 depict, in detail, the through-

put rate and power consumption for the AE-AV1 baseline design. The reason those tables

are within Subsection 6.3.1 is due to the comparison they present between the results for

the AE-AV1 and AE-AV1-LP designs.

6.2.1 Open-Source Results

The herein presented results for the AE-AV1 design were achieved using the

OpenROAD (OpenROAD, 2021) in combination with the following Package Design Kits

75

Table 6.1: Maximum real-time processing according to throughput rates defined in
Mbits/second (RIVAZ; HAUGHTON, 2019).

Level MainMbps
(Mbits/sec)

HighMbps
(Mbits/sec) Resolution

2.0 1.5 - 426x240@30fps
2.1 3.0 - 640x360@30fps
3.0 6.0 - 854x480@30fps
3.1 10.0 - 1280x720@30fps
4.0 12.0 30.0 1920x1080@30fps
4.1 20.0 50.0 1920x1080@60fps
5.0 30.0 100.0 3840x2160@30fps
5.1 40.0 160.0 3840x2160@60fps
5.2 60.0 240.0 3840x2160@120fps
5.3 60.0 240.0 3840x2160@120fps
6.0 60.0 240.0 7680x4320@30fps
6.1 100.0 480.0 7680x4320@60fps
6.2 160.0 800.0 7680x4320@120fps
6.3 160.0 800.0 7680x4320@120fps

(PDKs): Nangate 45nm (nangate45), SkyWater 130nm high density (sky130hd), SkyWa-

ter 130nm high speed (sky130hs) and, finally, the ASAP 7nm (ASAP7) (CLARK et al.,

2016). Moreover, the AE-AV1 architecture used the entire OpenROAD flow as defined

by (AJAYI et al., 2019) and classified as ‘from RTL to GDSII’.

To effectively compare the results for each PDK, Table 6.2 displays the frequency,

throughput rates, and area for each analyzed PDK. The gates count information (i.e., area)

of the post-layout synthesis for all technologies was calculated by the actual area obtained

by each circuit, and then divided by the smaller two-input gate available on the PDK

(i.e., commonly a NAND-2 gate). One may notice that ASAP7 is presented as the best

alternative with regards to frequency, hence throughput rate, and area. As the number of

symbols encoded per clock cycle is always one, the throughput rate per second is directly

related to the achieved frequency. Furthermore, Fig. 6.1 depicts a graph presenting the

correlation between area and frequency between the used PDKs.

As one may notice after analyzing Table 6.2 and Fig. 6.1, the frequency increases

in opposition to the technology size, whereas the area decreases with the technology size.

When compared to the nangate45 PDK, the ASAP7 technology presents a 83.07% in-

crease in frequency and a 24.48% decrease in area. Both nangate45 and ASAP7 were

able to accomplish enough throughput rate per second for real-time 8K@120fps process-

ing, whereas sky130hd and sky130hs achieve, respectively, 4K@30fps and 4K@120fps.

When considering the ASAP7 as having the best results among the presented

76

Table 6.2: Comparison between the results for for the ASAP7, Sky130hs, Sky130hd and
Nangate45 PDKs.

PDKs � 4 © ASAP7
Design AE-AV1
Tech. 130 nm 130 nm 45 nm 7 nm
Freq.1 97 152 513 938
Area2 7.7 K 8.7 K 8.2 K 6.2 K

bits/cycle 4.37
Gbits/sec 0.17 0.27 0.91 1.67
MRTR3 4K@30 4K@120 8K@120 8K@120
� sky130hd 4 sky130hs
© nangate45 1 MHz
2 Gates Count 3 Maximum Real-Time Resolution

Table 6.3: Comparison between the results accomplished for ASAP7 in (BITENCOURT;
RAMOS; BAMPI, 2022c), the baseline AE-AV1 (BITENCOURT; RAMOS; BAMPI,
2021) and other works (Dajiang Zhou et al., 2015; RAMOS et al., 2021; PASTUSZAK,
2020b; CHOI; LEE; CHAE, 2021).

Design � © 4 † ♣ ?

Video
Codec HEVC HEVC HEVC AVS 2.0 AV1 AV1

Coder CABAC CABAC CABAC CBAC Multi-Symbol Multi-Symbol
Tech.
(nm) 901 652 901 651 652 73

Freq.
(MHz) 420 507 700 735 581 938

Gates
Count 110.9 K 21.22 K 120.4 K 133.5 K 11.7 K 6.2 K

bins/cycle 4.37 4.31 4.67 3.94 4 4

Gbins/sec 1.836 2.185 3.269 2.90 1.032 1.675

MRTR6 8K@120 8K@120 8K@120
1 TSMC PDK 2 ST PDK 3 ASAP
4 bits/cycle 5 Gbits/second 6 Maximum Real-Time Resolution
� (Dajiang Zhou et al., 2015)
© (RAMOS et al., 2021)
4 (PASTUSZAK, 2020b)
† (CHOI; LEE; CHAE, 2021)
♣ (BITENCOURT; RAMOS; BAMPI, 2021)
? (BITENCOURT; RAMOS; BAMPI, 2022c)

77

Figure 6.1: Frequency vs. Area for each used PDK.

Source: The Author (2022).

PDKs, a comparison between related works from the literature can be made using such

numbers. Table 6.3 depicts the results for the works (BITENCOURT; RAMOS; BAMPI,

2021) and (Dajiang Zhou et al., 2015; RAMOS et al., 2021; PASTUSZAK, 2020b; CHOI;

LEE; CHAE, 2021), where the former represents the baseline AV1 arithmetic encoder de-

sign synthesized with ST 65nm and the latter four are CABAC architectures. As one may

notice, the herein presented flow with ASAP7 has the best results regarding the area, fre-

quency, and throughput rates, and can accomplish up to 8K@120fps real-time processing

(i.e., highest resolution supported by AV1 (RIVAZ; HAUGHTON, 2019)).

Although very effective in depicting the overall capabilities of the designs we are

proposing and analyzing in this manuscript, Table 6.3 does not provide a fair comparison

due to the differences in the throughput rate units used for CABAC and CBAC when com-

pared to AV1. While AV1 relies upon bits/cycle and Gbits/second units, CABAC and

CBAC solutions use bins/cycle and Gbins/second, which are not directly convertible

and, therefore, do not allow a direct comparison. To go around the unfair comparison, we

included the MRTR row in Table 6.3, which highlights and stands for the maximum real-

time resolution for each of the analyzed designs. Hence, as one may notice, the results

achieved for ASAP7, as well as for sky130hs and nangate45 PDKs presented in Table 6.2,

are in the same performance level when compared to the other designs displayed in Table

6.3 (i.e., real-time processing of 8K@120fps).

78

Figure 6.2: GDSII result for the AE-AV1 when synthesized for the ASAP7 PDK.

Source: The Author (2022).

The OpenROAD Flow arrangement (AJAYI et al., 2019) supports a flow starting

at the RTL level and going all the way to the GDSII level. Fig. 6.2 presents the GDSII

result for the AE-AV1 when synthesized for the ASAP7 PDK. As depicted in Table 6.2,

the layout obtained 6.2 K gates count of area, and used six metal layers. Both VDD and

GND are represented in layers of metals 1, 2, 5 and 6.

6.3 Low-Power and Multi-Boolean Approaches/Architectures

As presented throughout this work, a baseline version (i.e., AE-AV1) and addi-

tional versions of the AV1 arithmetic encoder architecture were introduced. This section

displays the results for the AE-AV1-LP and AE-AV1-MB versions in, respectively, Sub-

sections 6.3.1 and 6.3.2.

79

6.3.1 Low-Power AE-AV1-LP Results

The low-power adaptation of the baseline AE-AV1 architecture was named AE-

AV1-LP and aims to include Clock Gating and Operand Isolation circuitry throughout the

entire design to avoid, respectively, storing and calculating non-essential values. The AE-

AV1-LP achieved a frequency of 563 MHz and an area of 11.2k gates count. Its average

power consumption, taking into consideration all eighty-two presented video sequences

coded, is 7.267 mW.

Tables 6.4 and 6.5, when combined, present an in-depth throughput rate and power

consumption, respectively, analysis for each 720p video sequence taken from the objective-

2 dataset (MONTGOMERY, 2005) and encoded under constraints of quality 20, 32, 43

and 55, and configurations good and allintra. Table 6.6 present the same analysis for

1080p and 4K video sequences from Montgomery (2005).

The power results were accomplished by simulating all the synthesized designs

with real-world data obtained from the encodings, using a lower frequency than their

maximum (i.e., 400 MHz), the same testbench environment used for the verification and

delays back-annotated to the netlist. After that, we executed analysis with the RC tool

upon the architecture switches generated by the simulations. The Boolean Rate (i.e., col-

umn Bool Rate) is presented as a percentage of Boolean symbols over the total of encoded

symbols, whereas the Power Saving column displays the percentage of power saved for

each video when comparing AE-AV1 and AE-AV1-LP (e.g., 20, allintra, Netflix Driv-

ing consumes 8.926 mW in AE-AV1 and only 7.233 mW in AE-AV1-LP, representing

18.97% of power saving).

As one may notice, 4K video sequences lean towards requiring higher throughput

rates than lower resolutions and, for the 4K sequences encoded under lower CQs, there is

a tendency to present higher power-saving capabilities in the AE-AV1-LP design, which

is highlighted by the tonality of the color green in the column Power Saving (i.e., the

darker the green, the higher is the power saving).

The AE-AV1-LP version is capable of processing 8K@120fps videos, as it ac-

complishes 1.775 bits/cycle and 0.999 Gbits/second of throughput rates. Additionally,

the AE-AV1-LP saves, on average, 19.89% of power when compared to AE-AV1.

80

Table 6.4: Power analysis for 720p videos from the objective-2 dataset (MONT-
GOMERY, 2005) on the AE-AV1 and AE-AV1-LP designs.

AE-AV1 AE-AV1-LP
CQ Config. Video bits/cycle Power

(mW)
Power
(mW)

Power
Saving

20 allintra Boat 1.827 9.367 7.569 19.20%
20 allintra Dark 1.776 9.263 7.341 20.75%
20 allintra KristenAndSara 1.787 8.984 7.222 19.61%
20 allintra Netflix_Driving 1.746 8.926 7.233 18.97%
20 allintra Netflix_RollerCoaster 1.782 8.692 6.946 20.09%
20 good Boat 1.705 9.089 7.311 19.56%
20 good Dark 1.668 9.004 7.333 18.56%
20 good KristenAndSara 1.702 9.018 7.151 20.70%
20 good Netflix_Driving 1.678 8.561 6.978 18.49%
20 good Netflix_RollerCoaster 1.687 8.564 6.810 20.48%
32 allintra Boat 1.876 8.557 6.767 20.92%
32 allintra Dark 1.871 9.668 7.723 20.12%
32 allintra KristenAndSara 1.831 9.139 7.339 19.70%
32 allintra Netflix_Driving 1.785 8.987 7.203 19.85%
32 allintra Netflix_RollerCoaster 1.828 9.050 7.251 19.88%
32 good Boat 1.703 9.059 7.288 19.55%
32 good Dark 1.673 9.481 7.670 19.10%
32 good KristenAndSara 1.688 8.803 6.849 22.20%
32 good Netflix_Driving 1.656 8.741 7.125 18.49%
32 good Netflix_RollerCoaster 1.675 8.618 6.862 20.38%
43 allintra Boat 1.924 8.441 6.683 20.83%
43 allintra Dark 1.965 9.945 8.017 19.39%
43 allintra KristenAndSara 1.882 9.356 7.511 19.72%
43 allintra Netflix_Driving 1.846 9.156 7.283 20.46%
43 allintra Netflix_RollerCoaster 1.886 9.403 7.556 19.64%
43 good Boat 1.700 8.990 7.173 20.21%
43 good Dark 1.687 9.542 7.577 20.59%
43 good KristenAndSara 1.690 8.318 6.603 20.62%
43 good Netflix_Driving 1.644 8.954 7.257 18.95%
43 good Netflix_RollerCoaster 1.675 8.865 7.102 19.89%
55 allintra Boat 1.876 8.557 6.767 20.92%
55 allintra Dark 2.035 10.020 8.096 19.20%
55 allintra KristenAndSara 1.948 9.387 7.539 19.69%
55 allintra Netflix_Driving 1.936 9.459 7.629 19.35%
55 allintra Netflix_RollerCoaster 1.961 9.709 7.823 19.43%
55 good Boat 1.691 8.624 6.796 21.20%
55 good Dark 1.706 9.444 7.497 20.62%
55 good KristenAndSara 1.679 9.007 7.241 19.61%
55 good Netflix_Driving 1.662 9.052 7.262 19.77%
55 good Netflix_RollerCoaster 1.676 9.098 7.280 19.98%

Average 1.775 9.072 7.267 19.91%

81

Table 6.5: Throughput rate analysis for 720p videos from the objective-2 dataset (MONT-
GOMERY, 2005) on the AE-AV1 and AE-AV1-LP designs.

AE-AV1 AE-AV1-LPCQ Config. Video bits/cycle Gbits/sec Gbits/sec
Power
Saving

20 allintra Boat 1.827 1.062 1.028 19.20%
20 allintra Dark 1.776 1.033 1.000 20.75%
20 allintra KristenAndSara 1.787 1.039 1.005 19.61%
20 allintra Netflix_Driving 1.746 1.015 0.982 18.97%
20 allintra Netflix_RollerCoaster 1.782 1.036 1.003 20.09%
20 good Boat 1.705 0.991 0.960 19.56%
20 good Dark 1.668 0.970 0.939 18.56%
20 good KristenAndSara 1.702 0.989 0.958 20.70%
20 good Netflix_Driving 1.678 0.975 0.944 18.49%
20 good Netflix_RollerCoaster 1.687 0.981 0.949 20.48%
32 allintra Boat 1.876 1.090 1.055 20.92%
32 allintra Dark 1.871 1.088 1.053 20.12%
32 allintra KristenAndSara 1.831 1.065 1.030 19.70%
32 allintra Netflix_Driving 1.785 1.038 1.005 19.85%
32 allintra Netflix_RollerCoaster 1.828 1.063 1.029 19.88%
32 good Boat 1.703 0.990 0.958 19.55%
32 good Dark 1.673 0.973 0.942 19.10%
32 good KristenAndSara 1.688 0.981 0.950 22.20%
32 good Netflix_Driving 1.656 0.963 0.932 18.49%
32 good Netflix_RollerCoaster 1.675 0.974 0.943 20.38%
43 allintra Boat 1.924 1.119 1.083 20.83%
43 allintra Dark 1.965 1.143 1.106 19.39%
43 allintra KristenAndSara 1.882 1.094 1.059 19.72%
43 allintra Netflix_Driving 1.846 1.073 1.039 20.46%
43 allintra Netflix_RollerCoaster 1.886 1.097 1.061 19.64%
43 good Boat 1.700 0.989 0.957 20.21%
43 good Dark 1.687 0.981 0.950 20.59%
43 good KristenAndSara 1.690 0.982 0.951 20.62%
43 good Netflix_Driving 1.644 0.956 0.925 18.95%
43 good Netflix_RollerCoaster 1.675 0.974 0.943 19.89%
55 allintra Boat 1.876 1.090 1.055 20.92%
55 allintra Dark 2.035 1.183 1.145 19.20%
55 allintra KristenAndSara 1.948 1.132 1.096 19.69%
55 allintra Netflix_Driving 1.936 1.126 1.089 19.35%
55 allintra Netflix_RollerCoaster 1.961 1.140 1.103 19.43%
55 good Boat 1.691 0.983 0.952 21.20%
55 good Dark 1.706 0.992 0.960 20.62%
55 good KristenAndSara 1.679 0.976 0.945 19.61%
55 good Netflix_Driving 1.662 0.966 0.935 19.77%
55 good Netflix_RollerCoaster 1.676 0.974 0.943 19.98%

Average 1.775 1.032 0.999 19.91%

82

Table 6.6: Throughput rate and power comparison between AE-AV1 and AE-AV1-LP for
the videos Aspen, Rush_Hour, Netflix_Narrator and Netflix_Dancers from objective-2
dataset (MONTGOMERY, 2005).

AE-AV1 AE-AV1-LP
CQ Config. Resol. Video Bool

Rate
bits
cycle Gbits

sec

Power
(mW)

Gbits
sec

Power
(mW)

Power
Saving

20 allintra 1080p ♣ 26.50% 1.763 1.025 9.131 0.993 7.32 19.83%
20 allintra 1080p ♥ 25.26% 1.802 1.047 8.95 1.014 7.14 20.22%
20 allintra 4K � 15.06% 1.863 1.082 6.776 1.049 4.645 31.45%
20 allintra 4K ? 21.38% 1.820 1.057 8.04 1.025 6.245 22.33%
20 good 1080p ♣ 20.68% 1.709 0.993 8.69 0.962 6.785 21.92%
20 good 1080p ♥ 19.85% 1.700 0.988 8.41 0.957 6.44 23.42%
20 good 4K � 19.53% 1.763 1.024 8.926 0.993 7.143 19.98%
20 good 4K ? 16.21% 1.770 1.028 8.444 0.997 6.713 20.50%
32 allintra 1080p ♣ 23.33% 1.793 1.042 9.065 1.009 7.189 20.69%
32 allintra 1080p ♥ 19.45% 1.864 1.083 9.15 1.049 7.286 20.37%
32 allintra 4K � 11.46% 2.001 1.162 7.994 1.126 6.431 19.55%
32 allintra 4K ? 14.21% 1.921 1.116 9.329 1.082 7.457 20.07%
32 good 1080p ♣ 16.77% 1.680 0.976 8.312 0.946 6.486 21.97%
32 good 1080p ♥ 17.32% 1.681 0.977 8.346 0.947 6.969 16.50%
32 good 4K � 20.82% 1.729 1.004 8.876 0.973 6.575 25.92%
32 good 4K ? 14.57% 1.759 1.022 8.43 0.990 6.483 23.10%
43 allintra 1080p ♣ 21.82% 1.830 1.063 8.945 1.030 7.029 21.42%
43 allintra 1080p ♥ 17.86% 1.910 1.110 9.203 1.075 7.339 20.25%
43 allintra 4K � 6.63% 2.095 1.217 7.546 1.179 6.051 19.81%
43 allintra 4K ? 10.81% 2.001 1.163 9.848 1.127 7.989 18.88%
43 good 1080p ♣ 13.50% 1.654 0.961 9.083 0.931 7.272 19.94%
43 good 1080p ♥ 13.88% 1.657 0.963 8.682 0.933 6.888 20.66%
43 good 4K � 13.71% 1.739 1.010 8.056 0.979 5.897 26.80%
43 good 4K ? 12.31% 1.734 1.008 7.529 0.976 5.684 24.51%
55 allintra 1080p ♣ 18.44% 1.903 1.106 8.849 1.072 6.943 21.54%
55 allintra 1080p ♥ 15.12% 1.979 1.150 9.164 1.114 7.346 19.84%
55 allintra 4K � 2.87% 2.162 1.256 6.78 1.217 5.413 20.16%
55 allintra 4K ? 7.50% 2.096 1.218 9.658 1.180 7.872 18.49%
55 good 1080p ♣ 9.40% 1.615 0.938 9.261 0.909 7.41 19.99%
55 good 1080p ♥ 9.47% 1.591 0.924 8.888 0.896 7.047 20.71%
55 good 4K � 5.90% 1.485 0.863 8.774 0.836 6.941 20.89%
55 good 4K ? 11.19% 1.599 0.929 7.526 0.900 5.816 22.72%

Average 15.40% 1.787 1.047 8.583 1.015 6.758 21.39%
♣ Aspen ♥ Rush
� Netflix Dancers ? Netflix Narrator

83

6.3.2 Multi-Boolean AE-AV1-MB Results

As already presented throughout Section 5.2, the AE-AV1-MB versions of the

AV1 arithmetic encoder architecture were created as a successful attempt to increase the

throughput rates when comparing to the baseline AE-AV1 version. The AE-AV1-MB,

however, deals with constraints inherent to the number of Boolean blocks added into

pipeline stages 2 and 3. For instance, when including four Boolean blocks into the cited

stages, the design suffers a severe frequency drop (i.e., β ≥ λ) that directly affects the

throughput rate per second and making the architecture incapable of real-time processing

of 8K@120fps. Hence, the herein presented results do not include the 4-bool version of

the AE-AV1-MB design.

Table 6.7 depicts the 1-, 2- and 3-bool versions of the AE-AV1-MB design and

their respective throughput rates per second in Gbits/second for the videos Boat, Dark,

KristenAndSara, Netflix_Driving and Netflix_RollerCoaster from the objective-2 dataset.

On the other hand, Table 6.8 displays the throughput results for the remaining videos

(i.e., Aspen, Rush_Hour, Netflix_Narrator and Netflix_Dancers from objective-2 (MONT-

GOMERY, 2005), and Beauty, Bosphorus, HoneyBee, Jockey, ReadySetGo and YachtRide

from Mercat, Viitanen e Vanne (2020) dataset).

As one may notice after analyzing Tables 6.7 and 6.8, there is a slightly difference

between the 2-bool and 3-bool versions of the AE-AV1-MB (i.e., in the former table 2-

bool has higher average throughput rate, whereas in the latter table the 3-bool gains).

When adding the architectural information of each version, which is presented within

Table 6.9, one may conclude that the 2-bool version is presented as the best trade-off

between throughput gains and area and power consumption losses.

Therefore, when comparing the throughput rates of both 2- and 3-bool versions

with the AE-AV1-MB 1-bool (similar to the baseline AE-AV1 design), one may find that

they gain, respectively, 10.81% and 8.23%. The area and power consumption losses for

2-bool version are 39.31% and 51.18%, whereas the 3-bool version presents 73.50% and

82.32%. Finally, one may conclude the superiority of the 2-bool version over the 1-, 3-

and 4-bool versions.

As explained in Section 6.1, the power consumption estimation is done by sim-

ulating a given architecture’s behavior with real-world data (i.e., video sequences) and

using the resulting TCF file in the Cadence™ RC tool. The simulations of the AE-AV1-

MB versions, which are limited by time, are capable of encoding a different number of

84

Table 6.7: Throughput rate comparison between the AE-AV1-MB 1-, 2- and 3-bool ver-
sions for the video sequences Boat, Dark, KristenAndSara, Netflix_Driving and Net-
flix_RollerCoaster from the objective-2 dataset (MONTGOMERY, 2005).

1-bool 2-bool 3-boolVideo CQ Config. Bool
Rate Gb/sec Gb/sec Gb/sec

Boat 20 allintra 19.83% 1.062 1.197 1.177
Dark 20 allintra 24.41% 1.033 1.194 1.186

KristenAndSara 20 allintra 22.99% 1.039 1.192 1.180
Netflix_Driving 20 allintra 26.32% 1.015 1.187 1.183

Netflix_RollerCoaster 20 allintra 24.17% 1.036 1.196 1.187
Boat 20 good 19.07% 0.991 1.113 1.092
Dark 20 good 22.32% 0.970 1.108 1.095

KristenAndSara 20 good 20.05% 0.989 1.117 1.098
Netflix_Driving 20 good 18.70% 0.975 1.092 1.071

Netflix_RollerCoaster 20 good 16.46% 0.981 1.085 1.059
Boat 32 allintra 16.36% 1.090 1.206 1.177
Dark 32 allintra 18.08% 1.088 1.214 1.189

KristenAndSara 32 allintra 19.53% 1.065 1.198 1.177
Netflix_Driving 32 allintra 23.18% 1.038 1.192 1.180

Netflix_RollerCoaster 32 allintra 21.27% 1.063 1.208 1.191
Boat 32 good 16.56% 0.990 1.096 1.070
Dark 32 good 19.06% 0.973 1.092 1.071

KristenAndSara 32 good 19.27% 0.981 1.102 1.082
Netflix_Driving 32 good 16.69% 0.963 1.067 1.042

Netflix_RollerCoaster 32 good 14.05% 0.974 1.064 1.033
Boat 43 allintra 12.79% 1.119 1.213 1.176
Dark 43 allintra 12.63% 1.143 1.238 1.199

KristenAndSara 43 allintra 15.75% 1.094 1.206 1.175
Netflix_Driving 43 allintra 18.79% 1.073 1.203 1.180

Netflix_RollerCoaster 43 allintra 17.67% 1.097 1.221 1.195
Boat 43 good 14.19% 0.989 1.081 1.050
Dark 43 good 19.47% 0.981 1.104 1.084

KristenAndSara 43 good 17.08% 0.982 1.090 1.066
Netflix_Driving 43 good 15.37% 0.956 1.051 1.024

Netflix_RollerCoaster 43 good 12.14% 0.974 1.053 1.019
Boat 55 allintra 16.34% 1.090 1.206 1.177
Dark 55 allintra 8.44% 1.183 1.254 1.205

KristenAndSara 55 allintra 10.81% 1.132 1.216 1.173
Netflix_Driving 55 allintra 12.90% 1.126 1.222 1.184

Netflix_RollerCoaster 55 allintra 12.81% 1.140 1.237 1.198
Boat 55 good 11.08% 0.983 1.057 1.021
Dark 55 good 14.55% 0.992 1.086 1.056

KristenAndSara 55 good 14.71% 0.976 1.070 1.041
Netflix_Driving 55 good 13.01% 0.966 1.050 1.017

Netflix_RollerCoaster 55 good 9.75% 0.974 1.040 1.002
Averages 16.97% 1.032 1.145 1.120

85

Table 6.8: Throughput rate comparison between the AE-AV1-MB 1-, 2- and 3-bool ver-
sions for the video sequences Boat, Dark, KristenAndSara, Netflix_Driving and Net-
flix_RollerCoaster from the objective-2 dataset (MONTGOMERY, 2005).

1-bool 2-bool 3-boolVideo CQ Config. Bool
Rate mW mW mW

Boat 20 allintra 19.83% 9.278 13.515 16.206
Dark 20 allintra 24.41% 9.184 13.837 16.565

KristenAndSara 20 allintra 22.99% 8.971 13.657 16.518
Netflix_Driving 20 allintra 26.32% 8.964 14.126 17.248

Netflix_RollerCoaster 20 allintra 24.17% 8.655 13.501 16.512
Boat 20 good 19.07% 9.049 13.797 16.730
Dark 20 good 22.32% 8.997 13.779 16.569

KristenAndSara 20 good 20.05% 8.998 13.870 16.799
Netflix_Driving 20 good 18.70% 8.642 13.789 17.173

Netflix_RollerCoaster 20 good 16.46% 8.510 13.269 16.212
Boat 32 allintra 16.36% 8.381 12.388 14.741
Dark 32 allintra 18.08% 9.563 14.029 16.619

KristenAndSara 32 allintra 19.53% 9.065 13.594 16.348
Netflix_Driving 32 allintra 23.18% 8.951 13.775 16.707

Netflix_RollerCoaster 32 allintra 21.27% 9.007 13.869 16.785
Boat 32 good 16.56% 8.996 13.656 16.530
Dark 32 good 19.06% 9.416 14.156 16.948

KristenAndSara 32 good 19.27% 8.670 12.999 15.654
Netflix_Driving 32 good 16.69% 8.801 13.997 17.355

Netflix_RollerCoaster 32 good 14.05% 8.574 13.339 16.368
Boat 43 allintra 12.79% 8.279 11.908 14.034
Dark 43 allintra 12.63% 9.869 14.250 16.776

KristenAndSara 43 allintra 15.75% 9.263 13.609 16.195
Netflix_Driving 43 allintra 18.79% 9.052 13.489 16.197

Netflix_RollerCoaster 43 allintra 17.67% 9.336 13.939 16.701
Boat 43 good 14.19% 8.881 13.263 15.765
Dark 43 good 19.47% 9.473 14.094 16.790

KristenAndSara 43 good 17.08% 8.247 12.634 15.431
Netflix_Driving 43 good 15.37% 8.996 14.110 17.272

Netflix_RollerCoaster 43 good 12.14% 8.843 13.721 16.701
Boat 55 allintra 16.34% 8.381 12.388 14.741
Dark 55 allintra 8.44% 9.934 14.159 16.592

KristenAndSara 55 allintra 10.81% 9.265 13.317 15.667
Netflix_Driving 55 allintra 12.90% 9.367 13.480 15.856

Netflix_RollerCoaster 55 allintra 12.81% 9.623 13.951 16.450
Boat 55 good 11.08% 8.440 12.427 14.847
Dark 55 good 14.55% 9.339 13.848 16.507

KristenAndSara 55 good 14.71% 8.978 13.684 16.570
Netflix_Driving 55 good 13.01% 9.028 13.879 16.840

Netflix_RollerCoaster 55 good 9.75% 9.035 13.834 16.698
Averages 16.97% 9.008 13.573 16.330

86

Table 6.9: Frequency, area, power consumption, PC/EB (Power Consumption per En-
coded Bit) and throughput rate per cycle comparison between the 1-, 2- and 3-bool ver-
sions of AE-AV1-MB.

1-bool 2-bool 3-bool
Frequency (MHz) 581 590 559
Gates Count (K) 11.7k 16.3k 20.3k

bits/cycle 1.734 1.892 1.952
Gbits/second 1.008 1.117 1.091
Power (mW) 8.924 13.492 16.271

PC/EB1 1.236 1.678 1.948
MRTR2 8K@120fps 8K@120fps 8K@120fps

1 Power Consumption per Encoded Bit (µW/bit)
2 Maximum Real-Time Resolution

bits according to the AE-AV1-MB version used. Hence, in order to accurately compare

the power consumption results for the AE-AV1-MB versions, Table 6.9 introduces the

variable PC/EB (Power Consumption per Encoded Bit). When taking into consideration

the PC/EB comparison between 2- and 3-bool against 1-bool, the power losses are, re-

spectively, 35.76% and 57.60%.

6.4 Comparisons

As part of the effort to effectively design an AV1 arithmetic encoder architecture,

one key step is to compare the solution created with related works. Comparisons allow

the development team to understand what are the strengths and flaws of the designed

solution to then, if feasible, improve the architecture. This section compares all versions

of the AV1 arithmetic encoder architecture (i.e., AE-AV1, AE-AV1-LP, and AE-AV1-

MB) among themselves and to other works found within the literature.

As presented in Subsections 1.2 and 3.3, some related works might be classified

as, respectively, AV1 hardware designs targeting different blocks or arithmetic coding

architectures targeting different video coding formats. Table 6.10 presents a comparison

between the works introduced in this document and works that target other blocks of

the AV1 codec. As presented in Table 6.11, the variable MRTR (Maximum Real-Time

Resolution) was added into Table 6.10 to facilitate the comparison as the each block of

the AV1 and each video codec have different throughput rate constraints. Moreover, for

the sake of simplifying Tables 6.10 and 6.11, only the versions 2-bool and 3-bool of AE-

AV1-MB were added due to their better trade-off (throughput gains vs. area and power

87

Table 6.10: Comparison between the herein presented works (i.e., AE-AV1, AE-AV1-LP,
AE-AV1-MB 2- and 3-bool) and other works targeting the AV1 codec (i.e., (DOMANSKI
et al., 2019; CORREA et al., 2019b; CORREA et al., 2019a; ZUMMACH et al., 2020;
CORREA et al., 2020; NETO et al., 2020; FREITAS et al., 2021; DOMANSKI et al.,
2021)).

Coder Tech.
(nm)

Freq.
(MHz)

Gates
Count bits/cycle Gbits/sec Power

(mW) MRTR1

© MC5 404 279.9 141.1K - - 81.3 8K@30
4 Intra6 404 648 109.6K - - 16.1 4K@30
† Intra6 404 315 247.3K - - 268.3 4K@120
♣ CDEF7 404 23 369K - - 65 4K@60
? Intra6 404 648 128.5K - - 65.5 4K@30
♦ Intra6 404 686 72.6K - - 26.79 8K@30
♠ IF8 404 476 691.7K - - 382 1K@60
� FME9 653 345 270.4K - - 130.7 2K@120
♥ AE2 653 581 11.7k 1.775 1.032 9.072 8K@120
§ AE2 653 563 11.2k 1.775 0.999 7.267 8K@120
] AE2 653 590 16.3k 1.892 1.117 13.492 8K@120
� AE2 653 559 20.3k 1.952 1.091 16.271 8K@120
1 Maximum Real-Time Resolution 2 Arithmetic Encoder
3 ST 65nm PDK 4 TSMC 40nm PDK
5 Motion Compensation (MC) 6 Intra-prediction
7 Constrained Directional Enhancement Filter (CDEF)
9 Fractional Motion Estimation (FME) 8 Interpolation Filter (IF)
© (DOMANSKI et al., 2019) ♠ (FREITAS et al., 2021)
4 (CORREA et al., 2019b) � (DOMANSKI et al., 2021)
† (CORREA et al., 2019a) ♥ AE-AV1
♣ (ZUMMACH et al., 2020) § AE-AV1-LP
? (CORREA et al., 2020)] AE-AV1-MB 2-bool
♦ (NETO et al., 2020) � AE-AV1-MB 3-bool

consumption losses) than the 3-bool.

As one may notice, the AV1 related works presented within Table 6.10 cannot be

fairly compared to the arithmetic encoder designs introduced in the thesis, but the authors

claim as maximum real-time resolution (MRTR) supported by their designs 8K@30fps,

4K@(30, 60, and 120)fps, going as low as 1K@120fps resolutions. The herein intro-

duced designs are all capable of reaching up to 8K@120fps, which is also the maximum

supported quality for the AV1 format (RIVAZ; HAUGHTON, 2019). Furthermore, one

may notice that the related works targeted an interesting variety of modules of the AV1

codec, but none of them targeted the Arithmetic Encoder, or even the Entropy Encoder,

which makes the designs presented within this thesis unique at this time.

With regards to the arithmetic encoder and decoder works presented in Table 6.11,

one will find works targeting the AV1 Decoder, and HEVC and AVS 2.0 Encoders. More-

88

Table 6.11: Comparison between the herein presented works (i.e., AE-AV1, AE-AV1-LP,
AE-AV1-MB 2- and 3-bool) and other works targeting the Arithmetic Encoders/Decoders
(i.e., (GOMES; RAMOS, 2021; GOMES et al., 2022; ZHOU et al., 2015; PASTUSZAK,
2020a; RAMOS et al., 2021; CHOI; LEE; CHAE, 2021)).

Video
Codec Coder Tech.

(nm)
Freq.

(MHz)
Gates
Count

bins
cycle

Gbins
sec

Power
(mW) MRTR1

� AV1 AD10 653 462 31.3 K 1.62 0.748 26.8 8K@60
© AV1 AD10 653 473 35 K 1.62 0.766 14.3 8K@60
4 HEVC CABAC 904 420 64.1 K 4.37 1.836 - 8K@120
† HEVC CABAC 904 700 120.4 K 9.65 6.755 111.7 8K@120
♣ HEVC CABAC 653 507 21.22 K 4.31 2.185 26.18 8K@120
? AVS 2.0 CBAC 654 735 133.5 K 4.78 3.51 79.6 8K
♥ AV1 AE2 653 581 11.7k 1.77511 1.03212 9.072 8K@120
§ AV1 AE2 653 563 11.2k 1.77511 0.99912 7.267 8K@120
] AV1 AE2 653 590 16.3k 1.89211 1.11712 13.492 8K@120
� AV1 AE2 653 559 20.3k 1.95211 1.09112 16.271 8K@120
1 Maximum Real-Time Resolution 2 Arithmetic Encoder
3 ST PDKs 4 TSMC PDKs
5 Motion Compensation (MC) 6 Intra-prediction
7 Constrained Directional Enhancement Filter (CDEF)
9 Fractional Motion Estimation (FME) 8 Interpolation Filter (IF)
10 Arithmetic Decoder 11 bits/cycle 12 Gbits/sec
� (GOMES; RAMOS, 2021)
© (GOMES et al., 2022)
4 (ZHOU et al., 2015) ♥ AE-AV1
† (PASTUSZAK, 2020a) § AE-AV1-LP
♣ (RAMOS et al., 2021)] AE-AV1-MB 2-bool
? (CHOI; LEE; CHAE, 2021) � AE-AV1-MB 3-bool

89

over, all the works presented within Table 6.11 are capable of reaching at least 8K@60fps

and have chip area and power consumption superiors than the designs proposed in this

thesis.

Therefore, after analyzing the comparisons between the designs introduced in this

thesis and related works, either targeting other blocks of the AV1 codec or Arithmetic En-

coder/Decoder blocks of other coding formats, one shall conclude that all versions intro-

duced here are capable of achieving similar results with the related works. Furthermore,

the introduced designs consume less power and have lower gates count.

The works proposed by Gomes e Ramos (2021) and Gomes et al. (2022) present

similar results to the versions introduced in this work, but have lower MRTR (i.e., 8K@60fps).

90

7 CONCLUSION

Video coding is a very complex and challenging technology for both industry and

academia. In one side (i.e., industry), video codecs are critical tools for allowing the

continuous growth in number of concurrent users, as well as video quality improvements

in streaming providers (e.g., TikTok, YouTube, Netflix, etc.). On the other side (i.e.,

academia), video coding is a highly difficult concept that needs to be tackled to allow

video technology to keep improving and to reach levels previously unimaginable (e.g.,

16K).

The AV1 coding format, which was introduced by the Alliance for Open Me-

dia (AOMedia) in 2018, is a very capable codec that supports up to 8K@120fps video

processing, and introduces novel and enhanced techniques for its core components (e.g.,

intra-prediction, inter-prediction). The AV1, however, has a sequential logic located at the

final part of the codification process, which is the so-called Entropy Coding, that is seen

as bottleneck due to the necessity for encoding all Syntax Elements and for the difficulty

for this block to deal with parallelizations.

This work proposed a baseline design (i.e., AE-AV1) to accelerate the AV1 Arith-

metic Encoder block, which is located inside the Entropy Encoder. By applying hardware

designing techniques, such as pipelining, the AE-AV1 architecture was able to achieve

ultra-high performance (i.e., 8K@120fps real-time processing).

Furthermore, this Master’s thesis also developed a new and low-power design (i.e.,

AE-AV1-LP) and a new AE-AV1-MB architecture, where the latter comprises a novel

parallelization strategy, which was also proposed in this work, called Multi-Boolean. With

regards to the former, the low-power techniques clock gating and operand isolation were

used to allow for a power consumption reduction, whereas the latter presents a trade-off

between area and power increases, and improvements on throughput rates.

Therefore, this work introduced three novel designs (i.e., AE-AV1, AE-AV1-LP

and AE-AV1-MB) to accelerate the AV1 Arithmetic Encoder block and compared these

architectures with published related works that target (i) Arithmetic Encoders, and (ii)

different blocks of the AV1 codec. This thesis, as well as the manuscripts published by

the author, are the first ever works to tackle the AV1 Arithmetic Encoder.

91

REFERENCES

AJAYI, T. et al. OpenROAD: Toward a Self-Driving, Open-Source Digital Layout
Implementation Tool Chain. Government Microcircuit Applications and Critical
Technology Conference, p. 1105–1110, 2019.

Alliance for Open Media. AV1 Reference Software. 2020. Disponível em:
<https://aomedia.googlesource.com/aom/>.

AOMedia. Alliance for Open Media. 2020. Disponível em: <http://aomedia.org/>.

AOMedia. They Developed It. They Benefit From It. They Stand Behind It. | Alliance
for Open Media. 2021. Disponível em: <https://aomedia.org/membership/members/>.

BAMPIS, C. G. et al. SpEED-QA: Spatial Efficient Entropic Differencing for Image
and Video Quality. IEEE Signal Processing Letters, v. 24, n. 9, p. 1333–1337, 9 2017.
ISSN 1070-9908.

BHATIA, H. Strong Winds Loom Against the Video Codec Succes-
sor HEVC, Challenging the Licensing Model. 2018. Disponível em:
<https://www.counterpointresearch.com/13270/>.

BITENCOURT, T. P.; RAMOS, F. L. L.; BAMPI, S. High-Throughput and
Low-Power Architectures for the AV1 Arithmetic Encoder. In: 2021 34th
SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems
Design (SBCCI). IEEE, 2021. p. 1–6. ISBN 978-1-6654-2170-6. Disponível em:
<https://ieeexplore.ieee.org/document/9529994/>.

BITENCOURT, T. P.; RAMOS, F. L. L.; BAMPI, S. Power-Saving 8K Real-Time AV1
Arithmetic Encoder Architecture. IEEE Design & Test, p. 1–1, 2022. ISSN 2168-2356.
Disponível em: <https://ieeexplore.ieee.org/document/9800932/>.

BITENCOURT, T. P.; RAMOS, F. L. L.; BAMPI, S. Power-Throughput Trade-off
Analysis for a Novel Multi-Boolean AV1 Arithmetic Encoder Design. In: 2022 Picture
Coding Symposium (PCS). [S.l.]: IEEE, 2022. p. 25–29. ISBN 978-1-6654-9257-7.

BITENCOURT, T. P.; RAMOS, L.; BAMPI, S. AV1 Arithmetic Encoder Design on
Open-Source EDA. Journal of Integrated Circuits and Systems, v. 17, n. 2, p. 1–9,
2022. Disponível em: <https://jics.org.br/ojs/index.php/JICS/article/view/564>.

Cadence. Incisive SystemC, VHDL, and Verilog Simulation. 2021. Disponível em:
<https://www.cadence.com/en_US/home/training/all-courses/82115.html>.

CHAI, D.; BOUZERDOUM, A. A Bayesian approach to skin color classification
in YCbCr color space. In: 2000 TENCON Proceedings. Intelligent Systems and
Technologies for the New Millennium (Cat. No.00CH37119). IEEE, 2000. p. 421–424.
ISBN 0-7803-6355-8. Disponível em: <https://ieeexplore.ieee.org/abstract/document/
888774>.

CHEN, W. et al. RGB color decomposition and image feature extraction of flame image
in rear of sintering machine. In: 2017 36th Chinese Control Conference (CCC). [S.l.]:
IEEE, 2017. p. 5460–5463. ISBN 978-988-15639-3-4.

https://aomedia.googlesource.com/aom/
http://aomedia.org/
https://aomedia.org/membership/members/
https://www.counterpointresearch.com/13270/
https://ieeexplore.ieee.org/document/9529994/
https://ieeexplore.ieee.org/document/9800932/
https://jics.org.br/ojs/index.php/JICS/article/view/564
https://www.cadence.com/en_US/home/training/all-courses/82115.html
https://ieeexplore.ieee.org/abstract/document/888774
https://ieeexplore.ieee.org/abstract/document/888774

92

CHEN, Y. et al. An Overview of Core Coding Tools in the AV1 Video Codec. In:
2018 Picture Coding Symposium (PCS). [s.n.], 2018. p. 41–45. Disponível em:
<https://ieeexplore.ieee.org/abstract/document/8456249>.

CHOI, Y.-K.; LEE, H.-J.; CHAE, S.-I. High Throughput CBAC Hardware Encoder
With Bin Merging for AVS 2.0 Video Coding. IEEE Transactions on Circuits and
Systems for Video Technology, Institute of Electrical and Electronics Engineers
Inc., v. 31, n. 11, p. 4439–4453, 11 2021. ISSN 1051-8215. Disponível em:
<https://ieeexplore.ieee.org/document/9310296/>.

CLARK, L. T. et al. ASAP7: A 7-nm finFET predictive process design kit.
Microelectronics Journal, Elsevier, v. 53, p. 105–115, 7 2016. ISSN 0026-2692.

CORREA, M. et al. A High Throughput Hardware Architecture Targeting the AV1
Paeth Intra Predictor. In: 2019 IEEE 10th Latin American Symposium on Circuits &
Systems (LASCAS). IEEE, 2019. p. 93–96. ISBN 978-1-7281-0453-9. Disponível em:
<https://ieeexplore.ieee.org/document/8667544/>.

CORREA, M. et al. High Throughput Hardware Design for AV1 Paeth and
Smooth Intra Modes. In: 2019 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2019. p. 1–5. ISBN 978-1-7281-0397-6. Disponível em:
<https://ieeexplore.ieee.org/document/8702258/>.

CORREA, M. M. et al. A High-Throughput Hardware Architecture for AV1
Non-Directional Intra Modes. IEEE Transactions on Circuits and Systems I:
Regular Papers, v. 67, n. 5, p. 1481–1494, 5 2020. ISSN 1549-8328. Disponível em:
<https://ieeexplore.ieee.org/document/8998190/>.

Dajiang Zhou et al. Ultra-High-Throughput VLSI Architecture of H.265/HEVC CABAC
Encoder for UHDTV Applications. IEEE Transactions on Circuits and Systems for
Video Technology, v. 25, n. 3, p. 497–507, 3 2015. ISSN 1051-8215. Disponível em:
<http://ieeexplore.ieee.org/document/6851145/>.

DENG, Z.; MOCCAGATTA, I. Hardware-friendly inter prediction techniques for
AV1 video coding. In: 2017 IEEE International Conference on Image Processing
(ICIP). IEEE, 2017. p. 948–952. ISBN 978-1-5090-2175-8. Disponível em:
<http://ieeexplore.ieee.org/document/8296421/>.

DIMITRAKOPOULOS, G. et al. Low-Power Leading-Zero Counting and Anticipation
Logic for High-Speed Floating Point Units. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, v. 16, n. 7, p. 837–850, 7 2008. ISSN 1063-8210.
Disponível em: <http://ieeexplore.ieee.org/document/4539802/>.

DOBRUSHIN, R. Mathematical problems in the Shannon theory of optimal coding of
information. In: Proc. 4th Berkeley Symp. Mathematics, Statistics, and Probability.
[S.l.: s.n.], 1961. p. 211–252.

DOMANSKI, R. et al. High-Throughput Multifilter Interpolation Architecture for
AV1 Motion Compensation. IEEE Transactions on Circuits and Systems II:
Express Briefs, v. 66, n. 5, p. 883–887, 5 2019. ISSN 1549-7747. Disponível em:
<https://ieeexplore.ieee.org/document/8682095/>.

https://ieeexplore.ieee.org/abstract/document/8456249
https://ieeexplore.ieee.org/document/9310296/
https://ieeexplore.ieee.org/document/8667544/
https://ieeexplore.ieee.org/document/8702258/
https://ieeexplore.ieee.org/document/8998190/
http://ieeexplore.ieee.org/document/6851145/
http://ieeexplore.ieee.org/document/8296421/
http://ieeexplore.ieee.org/document/4539802/
https://ieeexplore.ieee.org/document/8682095/

93

DOMANSKI, R. et al. Low-Power and High-Throughput Approximated Architecture for
AV1 FME Interpolation. In: 2021 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2021. v. 2021-May, p. 1–5. ISBN 978-1-7281-9201-7. ISSN
02714310. Disponível em: <https://ieeexplore.ieee.org/document/9401224/>.

EDWARDS, R. T. Google/SkyWater and the Promise of the Open PDK. 2020. Disponível
em: <https://woset-workshop.github.io/PDFs/2020/a03.pdf>.

EDWARDS, R. T.; SHALAN, M.; KASSEM, M. Real Silicon Using Open-Source EDA.
IEEE Design & Test, IEEE Computer Society, v. 38, n. 2, p. 38–44, 4 2021. ISSN
2168-2356. Disponível em: <https://ieeexplore.ieee.org/document/9336682/>.

ENE, T.-D. DESIGN AND CHARACTERIZATION OF A STANDARD CELL
LIBRARY FOR THE SKYWATER 130NM PROCESS. 2020.

FELLER, C. et al. The VP8 video codec - overview and comparison to H.264/AVC.
2011 IEEE International Conference on Consumer Electronics -Berlin
(ICCE-Berlin), p. 57–61, 9 2016. ISSN 2166-6814. Disponível em: <https:
//api.semanticscholar.org/CorpusID:37800094#id-name=S2CID>.

FREITAS, D. et al. Hardware Architecture for the Regular Interpolation Filter of the
AV1 Video Coding Standard. In: 2020 28th European Signal Processing Conference
(EUSIPCO). IEEE, 2021. v. 2021-Janua, p. 560–564. ISBN 978-9-0827-9705-3. ISSN
22195491. Disponível em: <https://ieeexplore.ieee.org/document/9287551/>.

GANGURDE, S.; TIWARI, K. LSB Steganography Using Pixel Locator Sequence with
AES. 12 2020. Disponível em: <http://arxiv.org/abs/2012.02494>.

GHAZY, A. A.; SHALAN, M. OpenLANE: The Open-Source Digital ASIC
Implementation Flow. In: Workshop on Open-Source EDA Technology (WOSET).
[S.l.: s.n.], 2020.

GOMES, J. S. et al. Low-Power High-Throughput Architecture for AV1 Arithmetic
Decoder. IEEE Design & Test, p. 1–1, 2022. ISSN 2168-2356. Disponível em:
<https://ieeexplore.ieee.org/document/9807340/>.

GOMES, J. S.; RAMOS, F. L. L. High-Performance Design for the AV1 Multi -
Alphabet Arithmetic Decoder. In: 2021 34th SBC/SBMicro/IEEE/ACM Symposium
on Integrated Circuits and Systems Design (SBCCI). IEEE, 2021. p. 1–6. ISBN
978-1-6654-2170-6. Disponível em: <https://ieeexplore.ieee.org/document/9529970/>.

Google. SkyWater PDK Github. 2022. Disponível em: <https://github.com/google/
skywater-pdk>.

GRANGE, A.; RIVAZ, P. de; HUNT, J. VP9 Bitstream & Decoding Process
Specification v0.6. [S.l.], 2016. Disponível em: <https://storage.googleapis.com/
downloads.webmproject.org/docs/vp9/vp9-bitstream-specification-v0.6-20160331-draft.
pdf>.

Graphic Communications. Flip Book Project. 2016. Disponível em: <http:
//grid14.weebly.com/assignments/flip-book-project>.

https://ieeexplore.ieee.org/document/9401224/
https://woset-workshop.github.io/PDFs/2020/a03.pdf
https://ieeexplore.ieee.org/document/9336682/
https://api.semanticscholar.org/CorpusID:37800094#id-name=S2CID
https://api.semanticscholar.org/CorpusID:37800094#id-name=S2CID
https://ieeexplore.ieee.org/document/9287551/
http://arxiv.org/abs/2012.02494
https://ieeexplore.ieee.org/document/9807340/
https://ieeexplore.ieee.org/document/9529970/
https://github.com/google/skywater-pdk
https://github.com/google/skywater-pdk
https://storage.googleapis.com/downloads.webmproject.org/docs/vp9/vp9-bitstream-specification-v0.6-20160331-draft.pdf
https://storage.googleapis.com/downloads.webmproject.org/docs/vp9/vp9-bitstream-specification-v0.6-20160331-draft.pdf
https://storage.googleapis.com/downloads.webmproject.org/docs/vp9/vp9-bitstream-specification-v0.6-20160331-draft.pdf
http://grid14.weebly.com/assignments/flip-book-project
http://grid14.weebly.com/assignments/flip-book-project

94

HAN, J. et al. A Technical Overview of AV1. p. 1–25, 8 2020. Disponível em:
<http://arxiv.org/abs/2008.06091>.

HUFFMAN, D. A. A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the IRE, v. 40, n. 9, p. 1098–1101, 1952. ISSN 00968390.

INFN. Power Analysis. 2021. Disponível em: <https://wiki.to.infn.it/vlsi/workbook/
digital/syn/power>.

ITU-R. Recommendation ITU-R BT.601-7 Studio encoding parameters
of digital television for standard 4:3 and wide-screen 16:9 aspect ratios
BT Series Broadcasting service (television). [S.l.], 2011. Disponível em:
<https://www.itu.int/rec/R-REC-BT.601/>.

ITU-T. H.261 : Video codec for audiovisual services at p x 384 kbit/s -
Recommendation H.261 (11/88). [s.n.], 1988. Disponível em: <http://www.itu.int/rec/
T-REC-H.261-198811-S/en>.

ITU-T. ITU-T Recommendation declared patent(s). [S.l.], 1989. Disponível em:
<https://www.itu.int/ITU-T/recommendations/related_ps.aspx?id_prod=1088>.

ITU-T; ISO/IEC. Advanced video coding for generic audiovisual services, ITU-T
Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4 AVC). [S.l.], 2003.
Disponível em: <https://www.itu.int/rec/T-REC-H.264-201906-I/en>.

ITU-T; ISO/IEC. High Efficiency Video Coding, ITU-T Recommendation H.265
and ISO/IEC 23008-2. [S.l.], 2013. Disponível em: <https://www.itu.int/rec/T-REC-H.
265-201304-S/en>.

ITU-T; ISO/IEC. Infrastructure of audiovisual services – Coding of moving video
(H.266). [S.l.], 2020.

KAHNG, A. B.; SPYROU, T. The OpenROAD Project: Unleashing Hardware
Innovation. 2021. Disponível em: <https://theopenroadproject.org/>.

KOMMURU, H. B.; MAHMOODI, H. ASIC design flow tutorial using synopsys
tools. Nano-Electronics \& Computing Research Lab, School of Engineering, San
Francisco State University San Francisco, CA, Spring, 2009.

MARPE, D.; SCHWARZ, H.; WIEGAND, T. Context-based adaptive binary arithmetic
coding in the H.264/AVC video compression standard. IEEE Transactions on Circuits
and Systems for Video Technology, v. 13, n. 7, p. 620–636, 7 2003. ISSN 1051-8215.
Disponível em: <http://ieeexplore.ieee.org/document/1218195/>.

Maxim Integrated. Understanding Analog Video Signals. 2002. Disponível em: <https:
//www.maximintegrated.com/en/design/technical-documents/tutorials/1/1184.html>.

MERCAT, A.; VIITANEN, M.; VANNE, J. UVG dataset: 50/120fps 4K sequences for
video codec analysis and development. In: Proceedings of the 11th ACM Multimedia
Systems Conference. [S.l.: s.n.], 2020. p. 297–302.

MIAO, J.; LI, S. A design for high speed leading-zero counter. In: Proceedings of
the International Symposium on Consumer Electronics, ISCE. [S.l.]: Institute of
Electrical and Electronics Engineers Inc., 2018. p. 22–23. ISBN 9781538654330.

http://arxiv.org/abs/2008.06091
https://wiki.to.infn.it/vlsi/workbook/digital/syn/power
https://wiki.to.infn.it/vlsi/workbook/digital/syn/power
https://www.itu.int/rec/R-REC-BT.601/
http://www.itu.int/rec/T-REC-H.261-198811-S/en
http://www.itu.int/rec/T-REC-H.261-198811-S/en
https://www.itu.int/ITU-T/recommendations/related_ps.aspx?id_prod=1088
https://www.itu.int/rec/T-REC-H.264-201906-I/en
https://www.itu.int/rec/T-REC-H.265-201304-S/en
https://www.itu.int/rec/T-REC-H.265-201304-S/en
https://theopenroadproject.org/
http://ieeexplore.ieee.org/document/1218195/
https://www.maximintegrated.com/en/design/technical-documents/tutorials/1/1184.html
https://www.maximintegrated.com/en/design/technical-documents/tutorials/1/1184.html

95

MONTGOMERY, C. Derf’s Test Media Collection. 2005. Disponível em:
<https://media.xiph.org/video/derf/>.

MUKHERJEE, D. et al. The latest open-source video codec VP9 - An overview
and preliminary results. In: 2013 Picture Coding Symposium (PCS). IEEE, 2013.
p. 390–393. ISBN 978-1-4799-0294-1. Disponível em: <http://ieeexplore.ieee.org/
document/6737765/>.

MUKHERJEE, D. et al. An overview of new video coding tools under consideration
for VP10: the successor to VP9. In: TESCHER, A. G. (Ed.). [s.n.], 2015. p. 95991E.
Disponível em: <http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/
12.2191104>.

MUNCH, M. et al. Automating RT-level operand isolation to minimize power
consumption in datapaths. In: Proceedings Design, Automation and Test in Europe
Conference and Exhibition 2000 (Cat. No. PR00537). IEEE Comput. Soc, 2005. p.
624–631. ISBN 0-7695-0537-6. Disponível em: <http://ieeexplore.ieee.org/document/
840850/>.

NETO, L. et al. Directional Intra Frame Prediction Architecture with Edge Filter
and Upsampling for AV1 Video Coding. In: 2020 33rd Symposium on Integrated
Circuits and Systems Design (SBCCI). IEEE, 2020. p. 1–6. ISBN 978-1-7281-9625-1.
Disponível em: <https://ieeexplore.ieee.org/document/9189902/>.

NOWAK, P. M.; KOŚCIELNIAK, P. What Color Is Your Method? Adaptation of the
RGB Additive Color Model to Analytical Method Evaluation. Analytical Chemistry,
v. 91, n. 16, p. 10343–10352, 8 2019. ISSN 0003-2700.

OpenROAD. OpenROAD – Foundations and Realization of Open and Accessible
Design. 2021. Disponível em: <https://theopenroadproject.org/>.

OWEN, D. Frame Rates. 2012. Disponível em: <https://www.mediacollege.com/video/
frame-rate/>.

PASTUSZAK, G. Generative Multi-Symbol Architecture of the Binary Arithmetic
Coder for UHDTV Video Encoders. IEEE Transactions on Circuits and Systems I:
Regular Papers, IEEE, v. 67, n. 3, p. 891–902, 3 2020. ISSN 1549-8328. Disponível
em: <https://ieeexplore.ieee.org/document/8897118/>.

PASTUSZAK, G. Generative Multi-Symbol Architecture of the Binary Arithmetic
Coder for UHDTV Video Encoders. IEEE Transactions on Circuits and Systems I:
Regular Papers, IEEE, v. 67, n. 3, p. 891–902, 3 2020. ISSN 1549-8328. Disponível
em: <https://ieeexplore.ieee.org/document/8897118/>.

Qing Wu; PEDRAM, M.; Xunwei Wu. Clock-gating and its application to low
power design of sequential circuits. IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, v. 47, n. 3, p. 415–420, 3 2000. ISSN
10577122. Disponível em: <http://ieeexplore.ieee.org/document/841927/>.

RAMANI, A. S.; AHMED, A. H. Cadence Encounter RTL Compiler. 2016.
Disponível em: <https://sudip.ece.ubc.ca/rtl-compiler/>.

https://media.xiph.org/video/derf/
http://ieeexplore.ieee.org/document/6737765/
http://ieeexplore.ieee.org/document/6737765/
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2191104
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2191104
http://ieeexplore.ieee.org/document/840850/
http://ieeexplore.ieee.org/document/840850/
https://ieeexplore.ieee.org/document/9189902/
https://theopenroadproject.org/
https://www.mediacollege.com/video/frame-rate/
https://www.mediacollege.com/video/frame-rate/
https://ieeexplore.ieee.org/document/8897118/
https://ieeexplore.ieee.org/document/8897118/
http://ieeexplore.ieee.org/document/841927/
https://sudip.ece.ubc.ca/rtl-compiler/

96

RAMOS, F. L. L. et al. High-Throughput Binary Arithmetic Encoder using Multiple-
Bypass Bins Processing for HEVC CABAC. In: 2018 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 2018. p. 1–5. ISBN 978-1-5386-4881-0.
Disponível em: <https://ieeexplore.ieee.org/document/8350885/>.

RAMOS, F. L. L. et al. Energy-Throughput Configurable Design for Video Processing
Binary Arithmetic Encoder. IEEE Transactions on Circuits and Systems for Video
Technology, v. 31, n. 3, p. 1163–1177, 3 2021. ISSN 1051-8215. Disponível em:
<https://ieeexplore.ieee.org/document/9082025/>.

REMLEY, F. M. Introduction to the Papers on the Type D-1 Digital Video Recorder.
In: Digital Television Tape Recording and Other New Developments: 20th Annual
SMPTE Television Conference. IEEE, 1986. p. 11–12. ISBN 978-1-61482-915-7.
Disponível em: <http://ieeexplore.ieee.org/document/7268266/>.

RICHARDSON, I. E. The H. 264 advanced video compression standard. [S.l.]: John
Wiley & Sons, 2011.

RIVAZ, P. de; HAUGHTON, J. Av1 bitstream & decoding process specification. The
Alliance for Open Media, p. 182, 2019. Disponível em: <https://aomediacodec.github.
io/av1-spec/av1-spec.pdf>.

ROSENBAUM, S. Why Television Is Dead. 2014. Disponível em: <https://www.forbes.
com/sites/stevenrosenbaum/2014/01/28/why-television-is-dead/?sh=368e3ec54262>.

ROSENBERG, J. World, Meet Thor – a Project to Hammer Out a Royalty
Free Video Codec. 2015. Disponível em: <https://blogs.cisco.com/collaboration/
world-meet-thor-a-project-to-hammer-out-a-royalty-free-video-codec>.

ROY, A.; MAITI, A. K.; GHOSH, K. A perception based color image adaptive
watermarking scheme in YCbCr space. In: 2015 2nd International Conference on
Signal Processing and Integrated Networks (SPIN). [S.l.]: IEEE, 2015. p. 537–543.
ISBN 978-1-4799-5991-4.

SAID, A. Introduction to Arithmetic Coding - Theory and Practice. [S.l.], 2004.

SHANKLAND, S. Tech giants join forces to hasten high-quality on-
line video. CNET, 2015. Disponível em: <https://www.cnet.com/news/
tech-giants-join-forces-to-hasten-high-quality-online-video/>.

SkyWater; Google. Welcome to SkyWater SKY130 PDK’s documentation! —
SkyWater SKY130 PDK 0.0.0-331-gf70d8ca documentation. 2021. Disponível em:
<https://skywater-pdk.readthedocs.io/en/main/>.

ST. Rad hard 65nm CMOS technology platform for space applications. [S.l.], 2015.
Disponível em: <https://www.st.com/en/space-products/c65space.html>.

STAMENKOVIC, Z. et al. Rear view camera system for car driving assistance. In: 2012
28th International Conference on Microelectronics Proceedings. [S.l.]: IEEE, 2012.
p. 383–386. ISBN 978-1-4673-0238-8.

https://ieeexplore.ieee.org/document/8350885/
https://ieeexplore.ieee.org/document/9082025/
http://ieeexplore.ieee.org/document/7268266/
https://aomediacodec.github.io/av1-spec/av1-spec.pdf
https://aomediacodec.github.io/av1-spec/av1-spec.pdf
https://www.forbes.com/sites/stevenrosenbaum/2014/01/28/why-television-is-dead/?sh=368e3ec54262
https://www.forbes.com/sites/stevenrosenbaum/2014/01/28/why-television-is-dead/?sh=368e3ec54262
https://blogs.cisco.com/collaboration/world-meet-thor-a-project-to-hammer-out-a-royalty-free-video-codec
https://blogs.cisco.com/collaboration/world-meet-thor-a-project-to-hammer-out-a-royalty-free-video-codec
https://www.cnet.com/news/tech-giants-join-forces-to-hasten-high-quality-online-video/
https://www.cnet.com/news/tech-giants-join-forces-to-hasten-high-quality-online-video/
https://skywater-pdk.readthedocs.io/en/main/
https://www.st.com/en/space-products/c65space.html

97

TAGLIASACCHI, M. et al. Exploiting Spatial Redundancy in Pixel Domain Wyner-Ziv
Video Coding. In: 2006 International Conference on Image Processing. [S.l.]: IEEE,
2006. p. 253–256. ISBN 1-4244-0480-0.

TEODOR-DUMITRU, E. Design and Characterization of a Standard Cell
Library for the SkyWater 130nm Process. Tese (Doutorado), 2020. Disponível em:
<http://www.akrabjuara.com/index.php/akrabjuara/article/view/919>.

TESSEROLI, C. R.; SEIKE, J. Extração de frames em canais ao
vivo. 2021. Disponível em: <https://aws.amazon.com/pt/blogs/aws-brasil/
extracao-de-frames-em-canais-ao-vivo/>.

TORNG, C. mflowgen/freepdk-45nm: ASIC Design Kit for FreePDK45 + Nangate
for use with mflowgen. 2020. Disponível em: <https://github.com/mflowgen/
freepdk-45nm>.

TROW, I. AV1: Implementation, Performance, and Application. SMPTE Motion
Imaging Journal, Society of Motion Picture and Television Engineers, v. 129, n. 1, p.
51–56, 1 2020. ISSN 21602492.

VALIN, J.-M. et al. Daala: Building a next-generation video codec from unconventional
technology. In: 2016 IEEE 18th International Workshop on Multimedia Signal
Processing (MMSP). IEEE, 2016. p. 1–6. ISBN 978-1-5090-3724-7. Disponível em:
<http://ieeexplore.ieee.org/document/7813362/>.

Xilinx Inc. Video Beginner Series 10: YCbCr Chroma subsampling/resampling.
2021. Disponível em: <https://support.xilinx.com/s/article/887486?language=en_US>.

YANG, Y.; YUHUA, P.; ZHAOGUANG, L. A Fast Algorithm for YCbCr to RGB
Conversion. IEEE Transactions on Consumer Electronics, v. 53, n. 4, p. 1490–1493,
11 2007. ISSN 0098-3063.

ZHANG, J. et al. Recent Development of AVS Video Coding Standard: AVS3. In: 2019
Picture Coding Symposium (PCS). IEEE, 2019. p. 1–5. ISBN 978-1-7281-4704-8.
Disponível em: <https://ieeexplore.ieee.org/document/8954503/>.

ZHOU, D. et al. Ultra-High-Throughput VLSI Architecture of H.265/HEVC
CABAC Encoder for UHDTV Applications. IEEE Transactions on Circuits and
Systems for Video Technology, v. 25, n. 3, p. 497–507, 2015. Disponível em:
<https://ieeexplore.ieee.org/abstract/document/6851145>.

ZUMMACH, E. et al. High-Throughput CDEF Architecture for the AV1 Decoder
Targeting 4K@60fps Videos. In: 2020 IEEE 11th Latin American Symposium
on Circuits & Systems (LASCAS). IEEE, 2020. p. 1–4. ISBN 978-1-7281-3427-7.
Disponível em: <https://ieeexplore.ieee.org/document/9068979/>.

http://www.akrabjuara.com/index.php/akrabjuara/article/view/919
https://aws.amazon.com/pt/blogs/aws-brasil/extracao-de-frames-em-canais-ao-vivo/
https://aws.amazon.com/pt/blogs/aws-brasil/extracao-de-frames-em-canais-ao-vivo/
https://github.com/mflowgen/freepdk-45nm
https://github.com/mflowgen/freepdk-45nm
http://ieeexplore.ieee.org/document/7813362/
https://support.xilinx.com/s/article/887486?language=en_US
https://ieeexplore.ieee.org/document/8954503/
https://ieeexplore.ieee.org/abstract/document/6851145
https://ieeexplore.ieee.org/document/9068979/

98

ANNEX A — LIST OF PUBLICATIONS BY THE AUTHOR

A.1 Journal Publications

1. Power-Saving 8K Real-Time AV1 Arithmetic Encoder Architecture, IEEE De-

sign & Test, (BITENCOURT; RAMOS; BAMPI, 2022a).

2. AV1 Arithmetic Encoder Design on Open-Source EDA, Journal of Integrated

Circuits and Systems (JICS), (BITENCOURT; RAMOS; BAMPI, 2022c).

3. Low-Power High-Throughput Architecture for AV1 Arithmetic Decoder, IEEE

Design & Test, (GOMES et al., 2022).

A.2 Conference Publications

1. High-Throughput and Low-Power Architectures for the AV1 Arithmetic En-

coder, 2021 34th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and

Systems Design (SBCCI), (BITENCOURT; RAMOS; BAMPI, 2021).

2. Power-Throughput Trade-off Analysis for a Novel Multi-Boolean AV1 Arith-

metic Encoder Design, 2022 Picture Coding Symposium (PCS), (BITENCOURT;

RAMOS; BAMPI, 2022b)

3. Area and Power Efficient High-Throughput Design for AV1 Arithmetic Decod-

ing, 2022 Picture Coding Symposium (PCS), approved for publication.

99

APPENDIX A — METHODOLOGY FOR THE ARITHMETIC ENCODING

DESIGN

The methodology used to design a new process, both software or hardware, has

the primary goal of ensuring that the process is done only once. In order to create an

architecture capable of tackling the problem at the first trial, it is vital to understand pre-

cisely how the process works, what its flaws are, and how to make the process as efficient

as possible.

Accomplishing these goals takes a considerable amount of analysis (especially

data analysis) and a well-defined project. These topics are presented in subsections or-

ganized as follows: data extraction (Section A.1), data analysis and understanding of the

algorithm (Section A.2), and the catalog of essential information taken from the analysis

made (Section A.3).

A.1 Data Extraction

The first task to be done, which is prior to the designing phase itself, was the

data extraction from the AV1 reference software (Alliance for Open Media, 2020). As

explained in previous chapters, the AV1 itself is a definition of methods, algorithms,

and procedures that, when combined, are capable of effectively compressing videos. To

demonstrate the effectiveness of the process, the developers responsible for the coding

format definition created a software solution capable of encoding and decoding videos.

This software is herein referred to as the AV1 reference software.

As the AV1 reference software is presumed to represent the exact behavior ex-

pected from the codecs, analyzing its implementation brings a certain level of confidence

of understanding the video coding format itself. Moreover, as the AV1 is an open-source

solution, its software source code is available on the Internet and can be modified to ex-

tract data from intermediate execution stages.

In order to accomplish that, it was taken a dataset of six video sequences with

resolutions ranging from 720p up to 4K (MERCAT; VIITANEN; VANNE, 2020). These

videos were then encoded using a modified entropy encoder process that allows the cre-

ation of CSV (Comma-Separated Values) files comprising the intermediate values of in-

ternal functions.

100

Each row of the the so-called “main_data" CSV file generated indicates one round

of execution (i.e., the encoding of one symbol). As one may notice, the file comprises the

following columns that represent internal variables within the AV1 reference software:

bool_flag: represents the flag indication if the current round is (1) Boolean Operation or

(0) CDF Operation;

Rangei−1: indicates the Range value at the beginning of the round. When the row does

not represent the first round of a frame, this value must match the Rangefinal from

the previous round;

Lowi−1: represents the Low at the beginning of the round and also should match the

previous Lowfinal;

FL: represents the lower probability of the current symbol;

FH: represents the higher probability of the current symbol;

nsyms: represents the number of symbols in the alphabet currently being encoded;

symbol: represents the symbol being encoded;

Rangeraw: represents the Range value sent as input for the renormalization function;

Lowraw: represents the Low value sent as input for the renormalization function;

Rangei: represents the final Range value obtained after the renormalization;

Lowi: represents the final Low value obtained after the renormalization.

The analysis made upon the generated files allows the understanding of a few

important information regarding the AV1 arithmetic encoding process:

1. Rangeinitial and Lowinitial should always match their counterparts Rangefinal and

Lowfinal when there is not a frame changing or, in other words, a reset in the archi-

tecture;

2. FL and FH individually do not give anything information. However, when com-

bined, they represent the red bars observed in Figure 3.1 and, hence, the probability

of the current symbol of a CDF Operation round;

101

3. nsyms is always greater than symbol. The former represents the number of sym-

bols in the given alphabet, whereas the latter represents the symbol being encoded,

which is comprised within the range 0 ≤ symbol < nsyms.

To understand the bitstream generation, which represents a crucial part of the en-

tropy encoding process, the so-called “bitstream" CSV file was created. This file is written

by the function responsible for the carry propagation process, and its structure is as simple

as possible: one decimal number representing an 8-bit bitstream per row. The analysis

of this file made it possible to understand how the bitstream generation works, which is

analyzed in Section A.2.

Therefore, the extraction of data from the AV1 reference software allowed an in-

depth comprehension of how the AV1 codec works and how it generates the output bit-

streams. Moreover, this data extraction allowed a more precise verification process, which

is explained in Section B.

A.2 Analysis and Understanding of the Algorithm

The analysis and comprehension of the AV1 reference software allow better hard-

ware designing, which is the primary goal of this research. This subsection aims to explain

the conclusions regarding the algorithm’s behavior and how they affected the architecture

designing process.

In order to accomplish that, the following topics are presented: the Range and

Low updating process in A.2.0.1, and the bitstream generation including the carry propa-

gation in A.2.0.2.

A.2.0.1 Range and Low Updating Processes

The AV1 reference software comprises three main functions for the Range and

Low updating processes: CDF Operation, Boolean Operation and renormalization. The

first two functions, CDF Operation and Boolean Operation, are the ones receiving the

inputs (mainly FL, FH , nsyms and symbol) for the arithmetic encoding process. These

variables are then manipulated inside these functions by (A.1) and (A.2) in the case of

102

CDF Operation, and only (A.2) in the case of Boolean Operation.

u = [(Rangei−1 � 8)× (fl� 6)� 7] + 4× [(nsyms− 1)− (symbol − 1)] (A.1)

v = [(Rangei−1 � 8)× (fh� 6)� 1] + 4× [(nsyms− 1)− (symbol + 0)] (A.2)

As one may notice after analyzing equations (A.1) and (A.2), they are comprised

of two multiplications each. The first multiplication in each one involves the Range

resulted from previous rounds, characterized as Rangei−1 in the “main_data” CSV file

presented in Section A.1. This multiplication, unfortunately, has its operands ranging

within 0 < Range ≤ 65535 and 0 < [(FL or FH) � 6] ≤ 1023, which makes it

unfeasible to create a multiplication-free architecture by using a look-up table (LUT)

(i.e., the presented multiplication is needed because there are too many possible results

for a LUT).

On the other hand, the second multiplication is related to the values nsyms and

symbol, which rang within the range 2 ≤ nsyms ≤ 16 and 0 ≤ symbol ≤ 15, respec-

tively. The combination of all possible values for these variables can be feasibly allocated

into a fairly small LUT (i.e., 256 16-bit positions). Therefore, this multiplication can be

avoided in hardware, thus reducing delays, area, and power consumption.

With regards to the renormalization process, this function, implemented in the

C programming language, uses a built-in leading zero counter (LZC), followed by the

pre-bitstreams (PB1 and PB2) generation. As one may remember from Chapter 3, the

renormalization process in a general-purpose arithmetic encoder is done by multiplying

by two both Low and Range. In binary, however, a multiplication by two can be effec-

tively swapped by a left-shift and, as the renormalization aims to make Range fit within

the interval 0.5 ≤ range ≤ 1.0, and assuming 1.0 = 65535 due to the Range’s 16-bit

array, 0.5 = 32768. As one may conclude, 32768 in binary is represented by a 16-bit

array in which only the most significant bit (MSB) is set to one. Therefore, the use of

an LZC reduces the complexity of the renormalization process considerably, as only one

left-shift is needed to ensure that Range fits within the required final interval.

Furthermore, Algorithm 2 displays the so-called pre-bitstream generation method.

This process generates a 9-bit array based upon the Low and LZC values, where the latter

103

is expressed by the letter d.

Algorithm 2: Low renormalization process and pre-bitstreams generation.
Data: Lowraw,0, cnti−1, d
Result: PBflag, PB1, PB2, Lowi, cnti

1 m1 ← [1� (cnti−1 + 7)]− 1; {Mask 1 for renorm.}
2 m2 ← [1� (cnti−1 − 1)]− 1; {Mask 2 for renorm.}
3 Lowraw,1 ← Lowraw,0 ∧m1; {Reduced Low1.}
4 Lowraw,2 ← Lowraw,0 ∧m2; {Reduced Low2.}
5 Scomp ← cnti−1 + d; {Cumulative renorm. checker.}
6 PB1 ← Lowraw,0 � (cnti−1 + 7); {Possible PB1.}
7 PB2 ← Lowraw,1 � (cnti−1 − 1); {Possible PB2.}
8 if (Scomp ≥ 9) ∧ (Scomp < 17) then
9 Lowi ← Lowraw,1 � d; {Use Low1 and renorm.}

10 cnti ← cnti−1 + d− 8; {Cumulative renorm. 1.}
11 PBflag ← 012; {Generate PB1 only.}
12 else if Scomp ≥ 17 then
13 Lowi ← Lowraw,2 � d; {Use Low2 and renorm..}
14 cnti ← cnti−1 + d− 16; {Cumulative renorm. 2.}
15 PBflag ← 102; {Generate PB1 and PB2.}
16 else
17 Lowi ← Lowraw,0 � d; {Just renorm. Low.}
18 cnti ← Scomp; {Just update cnt}
19 PBflag ← 002; {Do not generate PB.}
20 end

A.2.0.2 Bitstream Generation and Carry Propagation

After the 9-bit pre-bitstream generation presented in A.2.0.1, the AV1 reference

software stores the generated values into a list to be later processed by the carry prop-

agation function upon the arrival of the last symbol in the encoding frame. This list,

which might comprise a reasonably significant number of pre-bitstreams, is analyzed on

its entirety using a loop and the analysis process is accomplished by the Algorithm 3.

Algorithm 3: Carry propagation behavior when flag ← 2.
Data: PBflag, PBprevious, PB1, PB2, flag_last
Result: FBflag, FB1, FB2, FB3, FB4, FB5

1 FBflag ← 2;{Set output flag for the design.};
2 FB1 ← Bprevious[7 : 0] +PB1[8];{Set the FB1 based on Bprevious and PB1};
3 FB2 ← PB1[7 : 0] + PB2[8];{Set FB2 based on PB1 and PB2};
4 Bprevious ← PB2[7 : 0];{Set the next Bprevious based on the 8 LSB for PB2};
5 if flag_last == 1 then
6 FB3 ← PB2[7 : 0];{Set FB3 when the flag_last is 1.};

104

A functionality designed in hardware to behave exactly like the AV1 reference

software carry propagation process presented in the Algorithm 3 would imply the use of

a buffer or a FIFO (First In, First Out) circuitry. Moreover, this circuitry would spend

a considerable amount clock cycles digging through all pre-bitstreams generated for the

just-encoded frame, which might be in the order of millions, while the rest of the ar-

chitecture would be waiting without encoding new symbols. As one may conclude, this

would create a critical bottleneck that could easily suffer from overflow when encoding

ultra-high definition (UHD) videos, for example.

As it is presented in Subsection 4.2.2.4, the carry propagation process had to be

changed and executed right after each pre-bitstream generation. For that, and after care-

fully analyzing pre-bitstreams and final bitstreams extracted by the AV1 reference soft-

ware, it was possible to conclude that the carry propagation is defined by the addition

of the MSB (the ninth bit in a 9-bit array) of the just generated pre-bitstream into the

previously generated one.

Equation (A.3) defines the transcribed process. PBi−1 and PBi represent the

previously and currently generated bitstreams, respectively, whereas FBi−1 identifies the

output for the final bitstream number i− 1.

FBi−1 = PBi−1 + PBi[8] (A.3)

Another critical behavior of the carry propagation function is to generate the last

bitstreams of a frame, which occurs upon the arrival of the current frame’s last symbol

during a video encoding, and when the Low variable is not in its resetting value (i.e., 0).

The main idea of this sub-function is to use the remaining Low to generate the frame’s

last bitstreams and ensure that all symbols of the frame are indeed being covered by

the bitstreams generated throughout the codification. Algorithm 4 depicts the process of

generating the last pre-bitstreams of a frame. These last pre-bitstreams are then passed

through the carry propagation process to generate the last final bitstreams.

A.3 Key Informations About the Algorithm

The herein presented analysis upon the AV1 reference software allows some con-

clusions to be made. The first one, and perhaps the most important, is the fact that,

although the entire structure of the AV1 codec is considered to be hardware-friendly

105

Algorithm 4: Last Bits sub-block of Stage 4.
Data: Lowi−1, cnti−1
Result: PBflag, PB1, PB2

1 m← 3FFF16; {Set default mask.};
2 n← [1� (cnti−1 + 7)]− 1; {Set cumulative mask.};
3 e1 ← [(Lowi−1 +m) ∧m] ∨ (m+ 1);
4 e2 ← e1 ∧ n; {Apply cumulative mask.};
5 Scomp ← cnti−1 + 10; {Renormalization checker.};
6 if (Scomp > 9) ∧ (Scomp ≤ 17) then
7 PBflag ← 012; {Generate PB1 only.};
8 else if Scomp > 17 then
9 PBflag ← 102; {Generate PB1 and PB2.};

10 else
11 PBflag ← 002; {Do not generate PB.};
12 end
13 PB1 ← e1 � (cnti−1 + 7); {Set PB1.};
14 PB2 ← e2 � (cnti−1 − 1); {Set PB2.};

(DENG; MOCCAGATTA, 2017), the arithmetic encoder step is implemented with a lower

rate of care for hardware adaptations. This hardware-unfriendly arithmetic encoder is con-

firmed due the carry propagation step reliance on storing all pre-bitstreams generated for

a frame by the renormalization process before, finally, propagating the carry and releasing

the final bitstreams.

Another important conclusion taken after analyzing the AV1 reference software

is the necessity for the Range and Low updating processes to rely upon previously gen-

erated values for these variables. Moreover, the Low step is also a continuation of the

Range process and can, therefore, be combined into the same pipeline stage, or divided

into two stages, as presented in Subsections 4.2.2.2 and 4.2.2.3.

With regards to the nsyms and the symbol variables, it is accurate to assume that

one combination of symbol, nsyms, FH and FL is received per round of execution. The

AV1 reference software does not create any kind of parallelization upon the arithmetic en-

coder step, as the current set of inputs are directly dependent on results from the previous

round of execution.

Taking into consideration the herein presented conclusions from the AV1 reference

software and combining the knowledge acquired from previously designed architectures

and already published works (RAMOS et al., 2018), it was feasible to predict the necessity

for a 4-stage pipeline in the AE-AV1 baseline design. This number of stages is defined

based on the Range multiplication, which creates the architecture’s critical path and is

explained in Subsection 4.2.2.2. As explained in Subsection 4.2.1, the division into more

106

than four stages of pipeline is unfeasible due to the Range and Low processes relying on

their previous results, whereas a lower number of stages would result in a greater critical

path, which would, therefore, increase the architecture delay and reduce the throughput

rate per second.

107

APPENDIX B — VERIFICATION METHODOLOGY

Section 4.2 introduced the AE-AV1 architecture and all important decisions taken

to accomplish the best possible architecture with regards to frequency, area and through-

put rate. However, a crucial part of the designing process is the verification phase, where

the architecture receives random and/or real-world data be ensure that all its functionali-

ties are working properly.

Usually, when working for companies as part of teams, there are mainly two dif-

ferent teams: design and verification. The former has the goal of designing an architecture

capable of executing a given procedure or functionally, whilst the latter has to, indepen-

dently, prepare a verification environment and test-cases for the given problem. As each

team works in its solution separately and based on the same parameters and definitions

(i.e., specification), there is a greater chance that both teams, when combined, will reach

a solution that is exactly what was proposed initially.

The verification phase is where both of the presented teams get closer and connect

their solutions (architecture and testbenches). The testbench stimulates the architecture

and analyzes its outputs to ensure that the architecture works as planned for all possible

scenarios (defined by the testbench functional and code coverages). Once a mismatch

occurs, the designers and verification engineers need to establish which of the teams im-

plemented the wrong solution according to the testbench analysis.

In an academic research, as normally the human resources are limited, the same

team or person will be in charge of designing the architecture and creating the testbenches.

Hence, the use of real-would data emerges as a solution to break that person’s biases to

commit the same error on both sides, which will create a unexpected match for a wrong

result.

For the AE-AV1 verification process, it were extracted, from the AV1 reference

software, several input and output CSV files containing all stimuli for the architecture

and all final bitstreams generated by the software. Each combination of input and output

files represented a single video sequence from selected datasets (MERCAT; VIITANEN;

VANNE, 2020; MONTGOMERY, 2005).

Therefore, in order to created a valid testbench that allowed the verification of the

architecture without any bias to commit an error on both sides, it was defined that real-

world data would be used. In total, round 500 million symbols were encoded using the

architecture and each output bitstream was analyzed to ensure total compatibility between

108

expected and generated. Moreover, it is interesting to note that some problems occurred

in an extremely small rate, which makes then fairly hard to find using not-big-enough

datasets.

	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation and Problem Definition
	1.2 AV1 Related Works
	1.3 Objectives
	1.4 Outline

	2 Video Processing Concepts
	2.1 Digital Videos
	2.1.1 Frames
	2.1.2 Pixels
	2.1.3 Colors
	2.1.3.1 RGB – Red Green Blue
	2.1.3.2 YCbCr – Luminance Chrominance Blue and Chrominance Red

	2.2 Video Coding
	2.2.1 Spatial Redundancy
	2.2.2 Temporal Redundancy
	2.2.3 Entropic Redundancy

	2.3 AV1 Codec

	3 Arithmetic Coding
	3.1 Basic Concepts of Arithmetic Coding
	3.1.1 Encoder

	3.2 AV1 Arithmetic Coding
	3.3 Related Works About Arithmetic Coding
	3.3.1 AV1 Arithmetic Decoders
	3.3.2 HEVC CABAC works
	3.3.3 AVS 2.0 CBAC work

	4 AV1 Arithmetic Encoder Hardware Design
	4.1 Methodology for the Arithmetic Encoding Design
	4.2 AE-AV1 Design
	4.2.1 AE-AV1 Top-Entity
	4.2.2 Pipeline Stages
	4.2.2.1 Stage 1
	4.2.2.2 Stage 2
	4.2.2.3 Stage 3
	4.2.2.4 Stage 4

	4.2.3 Key hardware design decisions

	5 Low-Power and Multi-Boolean Approaches/Architectures
	5.1 AE-AV1-LP: Low-Power Version
	5.1.1 Statistical Analysis
	5.1.2 Low-Power Techniques
	5.1.2.1 Clock gating
	5.1.2.2 Operand Isolation

	5.1.3 From AE-AV1 to AE-AV1-LP

	5.2 AE-AV1-MB: Multi-Boolean Version
	5.2.1 Multi-Boolean Proposal
	5.2.2 Multi-Boolean Architecture

	6 Results and Discussion
	6.1 Analysis Methodology
	6.2 Baseline AE-AV1 Results
	6.2.1 Open-Source Results

	6.3 Low-Power and Multi-Boolean Approaches/Architectures
	6.3.1 Low-Power AE-AV1-LP Results
	6.3.2 Multi-Boolean AE-AV1-MB Results

	6.4 Comparisons

	7 Conclusion
	References
	Annex A — List of Publications by the Author
	A.1 Journal Publications
	A.2 Conference Publications
	Appendix A — Methodology for the Arithmetic Encoding Design
	A.1 Data Extraction
	A.2 Analysis and Understanding of the Algorithm
	A.2.0.1 Range and Low Updating Processes
	A.2.0.2 Bitstream Generation and Carry Propagation

	A.3 Key Informations About the Algorithm
	Appendix B — Verification Methodology

