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ABSTRACT

In this work, we study an automated approach to the design of heuristic algorithms
to solve the Quadratic Unconstrained Binary Optimization Problem (QUBO). Our
approach is an extension of the work of Souza and Ritt (2018), who represent a
design space of algorithms by a context-free grammar which is later explored by
an algorithm configurator. We extend this work by introducing a new platform for
design space exploration of heuristics for QUBO with a modular architecture and
new components. Using this platform and the grammar-based approach, we were
able to find algorithms that are very competitive and sometimes better than the
state of the art in commonly used instances in the literature.

Keywords: Operations Research. Binary Quadratic Optimization. Automated

Algorithm Design. Automatic Algorithm Configuration.



Gerando Heuristicas para o Problema de Otimizacao Binaria

Quadratica Irrestrita usando Configuracao Automatica de Algoritmos

RESUMO

Neste trabalho, estudamos uma abordagem automatizada para o projeto de algo-
ritmos heuristicos para resolver o Problema de Otimizacao Binaria Quadratica Ir-
restrita (QUBO). Nossa abordagem é uma extensao do trabalho de Souza and Ritt
(2018), que representam um espaco de design de algoritmos por uma gramatica li-
vre de contexto que posteriormente é explorada por um configurador de algoritmos.
Estendemos este trabalho introduzindo uma nova plataforma para exploracao do
espaco de design de heuristicas para QUBO com uma arquitetura modular e no-
vos componentes. Usando essa plataforma e a abordagem baseada em gramatica,
conseguimos encontrar algoritmos muito competitivos e as vezes melhores do que o

estado da arte em instancias comumente usadas na literatura.

Palavras-chave: Pesquisa Operacional. Otimizac¢ao Quadratica Binaria. Design
Automatico de Algoritmos. Metaheuristicas. Configuracao Automatica de Algorit-

mos.
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1 INTRODUCTION

Given a matrix Q € R™" the Quadratic Unconstrained Binary Optimiza-
tion Problem (QUBO) asks to find a binary vector x € {0,1}" that maximizes the
quadratic form xTQx. Several works in the literature use QUBO as a modeling
framework. Rosenberg (2016), for example, shows how QUBO can be used to find
an optimal arbitrage opportunity given a set of financial assets and the conversion
rate between them. Milne, Rounds and Goddard (2017) describe how the problem of
identifying a subset of independent and high-informative features in a credit scoring
data set can be modeled as a QUBO. Neukart et al. (2017) use QUBO to optimize
traffic flow: given a set of possible routes each car can take, they try to find assign-
ments of cars to routes that minimize the overall congestion. A similar approach is
used by Ohzeki et al. (2019), but their goal is to avoid collisions between automated
vehicles transporting materials in manufacturing facilities. Punnen (2022) describes
several other examples of applications.

It is known that QUBO is NP-Hard, and several polynomial-time reduc-
tions from NP problems to QUBO can be found in the literature (PUNNEN;, 2022).
We give as an example a reduction from the maximum weight stable set problem
(MWSS). Given a graph G = (V, E)! and a function w : V' — R that assigns a
weight to each vertex v € V, MWSS asks to find a stable set? S C V with maximum

sum of weights. The sum of weights of a set .S is defined as

s(8) = >_ w(v;)
vES
Every subset S C V' can be encoded as a binary vector x = [z1,...,2,]T such that
x; = 1 if, and only if, v; € S. It is easy to see that, for every stable set S C V and
its corresponding binary vector x, s(S) = X_,.cy w(v;)x; always holds. Maximizing
f(x) = X, ev w(vi)x;, however, is not enough, because not every set is a stable
set. To account for that, we include a penalty term M 35, . yep Tix;. If M is big

enough, every vector x representing a stable set will be better than one that does

'We assume an implicit enumeration of the vertices in V, .i.e., V = {vy, -+ ,v,}.
2A stable set of a graph G' = (V, E) is a subset S C V such that no two vertices vy, vs € S are
connected by an edge.
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not represent a stable set. Hence, to solve MWSS it suffices to maximize

fx) = wv)e =M Yz
v eV (vivj)EE
It is possible to create a matrix @ € RIVI*IVl where each diagonal entry Q;; holds
the value of w(v;) and, for each edge (v;,v;) € E, we set entry @;; to M. Other
entries are set to 0. One can check that f(x) = xT@Qx for every binary vector x.
Therefore, f is an instance of QUBO.

As is common in NP-Hard problems, exact methods are useful to obtain op-
timal solutions for small instances, but when dealing with large instances, heuristic
approaches are often the most effective option. The literature of heuristic procedures
for QUBO is vast and covers most of the standard approaches, including local search
(BOROS; HAMMER; TAVARES, 2007), Tabu Search (WANG et al., 2011), Simu-
lated Annealing (KATAYAMA; NARIHISA, 2001), and Genetic Algorithm (LODI;
ALLEMAND; LIEBLING, 1999). As a matter of fact, if we consider all the works
cited in Kochenberger et al. (2014), Dunning, Gupta and Silberholz (2018), and
Punnen (2022) more than 40 distinct heuristic procedures can be identified.

The design of heuristic algorithms is often laborious and based on a trial-and-
error approach. The main steps of the design cycle usually consist in implementing
a heuristic method and evaluating it experimentally. Based on the obtained results,
new components are included or removed from the heuristic, and a new evaluation
is performed. The experimental evaluation normally takes a considerable amount of
time, which inhibits a wider exploration of the design space. As a consequence, good
combinations of components may be overlooked or not even tested. Besides some
good practices established by the optimization research community (KENDALL et
al., 2016)(JOHNSON, 2002), there is no guiding theory on how to develop good
heuristic algorithms, and the result of the development process often depends a lot
on the experience of the designer.

The reasons mentioned above motivate the study of automated approaches to
the design space of heuristics. These approaches usually consist of the specification of
a design space of algorithms and of a set of training instances. Some strategy is then
employed to explore the design space and find an algorithm that performs well on the
training instances. The standard approach in the literature is to represent the design

space by a context-free grammar, where different algorithms can be instantiated by
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the repeated application of the grammar rules. There is no standard approach,
however, for exploring the design space. Some works encode all the rules of the
grammar as parameters and then use automatic algorithm configuration methods
to search for good algorithms (MASCIA et al., 2014). Other works treat algorithms
as valid expressions in the language encoded by the grammar and define a set of
rules on how expressions can be combined to form new valid expressions. These
operators are then used by a search procedure (e.g., a genetic algorithm) to find
good algorithms (CASEAU; SILVERSTEIN; LABURTHE, 2004). Other approaches
exist, but a complete account is out of scope.

In this thesis, we contribute to the literature of automated algorithm design
by extending the work of Souza and Ritt (2018), who propose a context-free grammar
that encodes a diverse design space of algorithms for QUBO, which is later explored
by an algorithm configurator. More specifically, this thesis presents the following

contributions:

e A modular and easy-to-extend platform for design space exploration of heuris-

tics to QUBO built on top of the code base of Souza and Ritt (2018);
e The implementation of new components in the platform mentioned above;

e The definition of a new context-free grammar that includes these new compo-

nents;

e New automatically-generated algorithms that are very competitive with the

state of the art.

This thesis is the third in a series of works in the fields of heuristic design
and automatic algorithm configuration. In the first work, we proposed a heuristic
algorithm for a variation of the Traveling Salesperson problem where a truck and
a set of drones must be coordinated to deliver a set of parcels to clients as fast as
possible (DELAZERI; RITT, 2021). Throughout the project, we experienced all
the difficulties mentioned above regarding the design process. In a second work, we
studied surrogate models for tuning optimization algorithms (DELAZERI; RITT;
SOUZA, 2023). This project introduced us to the field of automatic algorithm
configuration, and we had the opportunity to learn some of its main methods and
tools. All of this brings us to this work, where we use our experience developing
heuristics and working with automatic algorithm configuration to explore a topic at

the intersection of both fields.
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We close this section by giving an outline of what follows. In Section 2 we in-
troduce some notation and review the literature on heuristic algorithms for QUBO.
We also cover some notions and tools of automatic algorithm configuration and re-
view some works in the field of automated design of algorithms. Section 3 introduces
the context-free grammar that describes our design space, and gives details about
each of the implemented algorithmic components. In Section 4 we describe the plat-
form that was developed to support this work. Section 5 presents computational
experience to validate the efficiency of our platform and the performance of the

algorithms automatically generated. Lastly, in Section 6 we conclude our work.
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2 BACKGROUND

In this section, we give the necessary background to understand this thesis.
Section 2.1 defines the notation that will be used along the text. Section 2.2 presents
a brief survey on some state-of-the-art heuristic approaches to QUBO. In Section
2.3 we give a short background on automatic algorithm configuration and in Section

2.4 we review related works on automated approaches to algorithm design.

2.1 Notation and Conventions

An instance of QUBO is a function f(x) = xTQx, where ) € R™" is a
matrix of real numbers and x € {0,1}" is a vector of binary variables, i.e., x =
[x1,...,2,]). Similarly, we can also work with an instance in its expanded form
f(X) = Yicin) 2jen) ¢ijTitj, where g;; denotes the entry in @ in the ith row and jth
column. Throughout the text we often refer to an entry ¢;; of @) as coefficient g;;,
and we use the letter n to refer to the size of an arbitrary instance (i.e., the number
of variables in x).

It is common in the literature to assume that the matrix () associated to
an instance f is symmetric. This assumption is valid because, given an a matrix
Q € R™™ and a vector x € {0,1}", it is easy to check that xTQx = xTQTx.
Therefore,

1
xTQx =

i(xTQX +xTQTx) = xTOx
where Q = +(Q + QT), which is symmetric.

A solution to an instance f is an assignment of values to each variable z; in
x. It is common to try to improve a solution x by changing the value of one of its
variables. This operation is called a flip. More precisely, to flip a variable z; means
replacing its value by its complement, i.e., x; = 1 — x;. The I-flip neighborhood
of a solution x is the set of all solutions obtained by flipping a single variable of
x. When facing the decision of flipping a variable z; or not, we often consider
the change in the objective value caused by the flip. We denote this quantity by

A(x,7). More precisely, if x’ is the solution we obtain by flipping z; in x, then

Ax,i) = f(x) = f(x).
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2.2 Heuristic Approaches

In this section, we give an overview of the main heuristic approaches that can
be found in the literature. As stated in the first chapter, the literature on heuristic
algorithms for QUBO is vast, and a complete and fair account of all the work that
has been done is out of the scope. In the next paragraphs, we give more details
about heuristics that directly influence this work. For a more complete treatment,

the interested reader is referred to Punnen (2022).

2.2.1 Multistart Tabu Search

Palubeckis (2004) proposed 5 different multistart strategies to solve QUBO,
named MST1, MST2, MST3, MST4 and MST5. Relevant to this thesis are MST2
and MST3, which we explain in the following paragraphs. Both algorithms are based
on the repeated application of two components: a constructive heuristic and a tabu
search. At each iteration, a solution is created using the constructive heuristic and
then refined using the tabu search. The tabu search used in both algorithms is the
same, the main difference between both algorithms is the constructive heuristic.

The tabu search procedure, denoted here by T'Sy, consists of a simple short-
term memory and operates on the 1-flip neighborhood (i.e., each move is a flip of
a variable). The tabu tenure constant is set to min{20,n/4} and the termination
criterion is a maximum number of iterations (there is no termination based on
stagnation). If after applying a move we obtain a solution x that is better than the
best solution found by the top-level algorithm (in this case, MST2 or MST3) so far,
we try to improve it with a local search. Just like the tabu search, this local search
also operates on the 1-flip neighborhood. It iterates over each variable x; in order
(i.e., from z7 to x,), and checks if the objective value can be increased by flipping
x;. If that is the case, we flip x; and proceed to analyze the next variable (i.e., z;11).
If any flip occurred while analyzing variables x; to z,, we start another iteration.

Otherwise, the local search ends.
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2.2.1.1 MST2

As it was stated above, MST2 works by repeatedly constructing new solutions
and refining them with 7'Sy. At each iteration, the solution returned by TSy is
passed as an argument to the constructive heuristic, which we explain in the next
paragraphs.

Let f be an instance and x a solution to f that is given as input to MST2’s
constructive heuristic. The construction of a new solution works as follows: first,
we construct a set I* containing the indices of the variables in f that are likely to
change their values if x were to be transformed into an optimal solution. Second,
we apply a steepest ascent algorithm that decides the value of the variables whose
index is in [*. Variables whose index is not included in I* are set to 0.

We first show how [I* is constructed. Let I = [n] be a set containing the
indices of the variables of f. The indices to be included in [* are selected probabilis-
tically, and the probability of an index i € I being included is based on a measure
of how much its associated variable contributes to the objective function (i.e., how
much f(x) would change if z; were to be flipped in x). To compute this probability,
we first assign to each index ¢ a score e; calculated as follows

1 — Ated) A(x,1) < 0 and G, < 0,

6min

€; = 0, A(X, Z) = 5min = 0,

1 + )\mstQ%xaﬁ)a A(X, Z) > 0

where Omin = milep) A(X, 1), dmax = MaxX;ep) A(X,7), and A\pq2 is a tuning factor.
This formula assigns scores between 0 and \,,42. Indices associated with variables
that decrease the objective value when flipped receive low scores, while the opposite
is true for indices whose associated variable can increase the objective value. An
index zy € [ is picked with probability ex/ > ;c;e;. Each time we pick an index
k, we flip its associated variable in x (i.e. X := [z1,29,...,Zp-1,1 — T, ..., T,])
and remove it from I. Before picking another index, we have to update the score
values e;,7 € I considering the new solution x. We stop this process when |I*| is
max{10, |amnsi2n |}, where ay,g2 is a parameter.

We now describe the steepest ascent algorithm that decides the final value of
the variables whose index is in I*. It takes as input the same solution x received as

input by the procedure that constructed I*. First, all variables whose index is not
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in I* are set to 0 (i.e., x; := 0, for all ¢ € [n]\ I*.) Next, at each iteration, the value
of a variable whose index is in I* is decided as follows: let i = arg max;e/« A(x,1).
If A(x,i) < 0, then z; is set to 0 in x, otherwise it is set to 1. We remove i from I*

and go to the next iteration. Once I* becomes empty, we return x.

2.2.1.2 MSTS3

The constructive algorithm employed by MST3 builds on ideas that are sim-
ilar to the ones employed in MST2. Let f be an instance, x be a solution to f where
all variables are set to 0, and I = [n] be a set with the indices of the variables of f.
To each index i € I we assign a measure of importance ¢;. The value of ¢; is calcu-
lated based on the coefficients g;; of f (Section 2.1). More precisely, ¢; := ;e Gijs
the sum of all coefficients associated to z;.

The algorithm executes |I| iterations, and at each iteration the value of a
variable is decided as follows: first, we sort the indices in I in descending order
according to the value ¢;, and the first min{y, |/|} indices (p is a parameter) are
added to a set I'. To each index i € I" we associate a probability p; = |c;|/ > er ||
and, using these probabilities, we randomly select an index k € I'. If ¢, > 0, we
set x; to 1 in x, otherwise we set it to 0. The index k is then removed from [ and,
if x;, was set to 0, we subtract from each ¢; the coefficients associated with xy, i.e.,

¢ = ¢; — 2qik, 1 € 1. Once I becomes empty, we return Xx.

2.2.2 Iterated Tabu Search

Palubeckis (2006) proposed an iterated tabu search procedure that combines
the tabu search T'Sy described above and a perturbation strategy. The idea is to,
starting from an initial random solution x, 1) improve x with 7Sy until a local mini-
mum is reached, and then 2) escape from this local minimum using the perturbation
strategy. Steps 1) and 2) are repeated until the termination criterion is met.

We now describe the employed perturbation strategy, here denoted PE RT.
Let f be an instance, x be the solution to be perturbed, I = [n] be a set with
the indices of the variables of f, and 7 be an integer randomly selected from the

interval [dy, dan]!. The value of 7 represents the perturbation size (i.e., the number

IThe values of d; and dy are parameters.
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of variables that will be flipped). We repeat the following steps until 7 variables are

flipped:

1. Rank all the indices ¢ € I in decreasing order according to the value of A(x,7);

2. select the b indices with better rank according to 1) and create a set J with
them;

3. randomly pick, with uniform probability, an index k£ € J, flip z; in x, and

remove it from 1.

PERT, always takes as input a solution that is optimal in the 1-flip neigh-
borhood. As a result, A(x,7) < 0 for all ¢ € [n]. When we rank variables in step
1) according to the value of A(x,1), we are actually prioritizing the variables that
cause the smallest decrease in the objective function when flipped in x. Instead
of just flipping the first 7 variables according to the rank of step 1), we introduce
some degree of randomization into the process in steps 2) and 3). The degree of

randomization is controlled by the parameter b.

2.2.3 Diversification-driven Tabu Search

Glover, Li and Hao (2010) proposed a diversification-driven tabu search. It
is based on the repeated application of two components: a simple tabu search and
a perturbation method that works based on information collected from a pool of
high-quality solutions.

The employed tabu search procedure, denoted here by T'S;, works in the 1-
flip neighborhood. Each time a move is applied to a variable z; (i.e., the value of x;
is changed to its complementary value), the tabu tenure associated to this variable
is set to c+rand(10)2. If the tabu tenure of a variable does not allow the application
of a move, but applying this move would result in a solution that is better than the
best known solution, we apply the move anyway. The termination criterion is a
maximum number of non-improving iterations.

The perturbation method, here denoted by PERT, uses aset E = {x!,... x¢}
containing e? locally optimal solutions in the 1-flip neighborhood. Based on the so-

lutions stored in E, two vectors are created: w; and ¢;, for ¢ € [n]. The former holds

2The value of ¢ is a parameter and rand(10) is a function that randomly selects a number
between 1 and 10.
3The value of e is a parameter.
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the number of times the variable x; has been flipped and the latter holds the total
number of solutions stored in £ whose value for z; is 1. Given a solution x to be
perturbed, we assign to each variable a score based on the statistics collected in the
vectors w and ¢. The score s; of a variable z; is
Cbz'(e - ¢z) Wi

- B8 -3
where 3 is a parameter and () := max;c, w;. The score function has two terms.
The first term assigns high scores to variables that do not have a strong tendency
towards a value in solutions in E. For example, if a variable x; assumes the value 1
in half of the solutions in F, then

dile—¢i) _5(e—5) 1

S’i —_= —= = —
e? e? 4

, which is the highest possible score this term can attribute to a variable. On the
other hand, if a variable x; assumes the same value in all elite solutions, then this
terms gives to it a score of 0. The second term gives high scores to variables that are
seldom flipped. Glover, Li and Hao (2010) believe that changing the value of such
variables helps leaving a local minimum. To control the importance of this term in
the final score, the parameter (3 is used.

All the variables are sorted in decreasing order based on the score value,
and to each variable x; we assign a probability P; proportional to how its score
s; is ranked among the other variables. For example, suppose that x; is the kth

highly-scored variable. Its associated probability is

k—)\

Pi= e
Zje[n} ]7)\

where A controls how the rank obtained by a variable impacts its probability of
being selected. Higher values of A make the probabilities assigned to the variables
with highest and lowest score more distant to each other. Using the probabilities
P;, we randomly pick 7,* variables and flip their values.

We are now ready to explain the algorithm. It starts by building a set E of

0

e locally optimal solutions as follows: an initial random solution x” is constructed,

improved with 7'S; and added to E. In the next iterations, a solution is randomly

4The value of Vg is a parameter.
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selected from FE, perturbed by PERT, improved by T'S; and added to E. This
process is repeated until |E| = e. After F is built, we proceed to the main loop,
where at each iteration a solution x is randomly selected from FE, perturbed by
PERT;, and improved by T'S;. Let x’ be the resultant solution. If x’ is different
from all the solutions already in E and is better than the worst solution in £, than

x’ replaces the worst solution in E. At the end, the best solution in E is returned.

2.2.4 Path-relinking

Wang et al. (2012) proposed an algorithm based on the recombination of high-
quality solutions. The algorithm uses two components: a path-relinking procedure
and a tabu-search procedure equivalent to T'S;.

Path-relinking is an intensification strategy based on the recombination of
two solutions. The main idea is to combine two solutions x* and x° to form a series
of intermediary solutions S = {x!,x? ..., x?} that are, in some sense, "between"' x*
and x°.

Let x® and x° be two different solutions to an instance f of QUBO, and P
be an empty set. Path-relinking starts by computing D = {i : i € [n] and z¢ # 27},
i.e., a set with the indices of the variables where x® and x? differ. The method takes
|D| — 1 iterations to complete, and at the kth iteration an index ¢ € D is selected
and added to P. A new solution x* = [2¥ = 2t i € P; 2 = 2¢,i € [n]\ P], which is
in the "path" between x® and x?, is created and added to an ordered set S. Finally,
we remove t from D and go to the next iteration.

At the end of all iterations, we have a sequence of intermediary solutions.
Wang et al. (2012) discard all solutions x* € S such that the Hamming distance
between x* and x® or between x* and x? is less than ~|D|, where v is a real number
between 0 and 0.5. From the remaining solutions, the one with the best objective
value is returned.

The strategy used to select an index t € D to construct x* was not specified
in the description above. Wang et al. (2012) experiment with two strategies: 1) ¢ is
randomly selected and 2) ¢ is the index that, when flipped in x*~1, gives the biggest
increase (or the smallest decrease) in the objective function.

We now explain the algorithm. It starts by building an ordered set £ =
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{x!,...,x"} of r high-quality solutions®. A high-quality solution is constructed in
two steps: 1) a random solution is created and 2) is then improved by T'S;. After
E is built, we enter in the main loop. At each iteration, we select a pair of distinct
solutions x%,x® € E and apply path-relinking from x® to x°. The solution returned
by path-relinking is then improved by 7'S;. Let x? be the solution returned by 7T'5;.
If x? is different from all solutions in E and is better than some solution in F, then
replace the worst solution in £ by zP. We repeat this same process again, but now
applying path-relinking from x® to x%. We iterate inside the main loop until there
is no pair of distinct solutions in E that was not processed. Once this happens, we

rebuild the set E and start again.

2.3 Automatic Algorithm Configuration

Let A be a parameterizable algorithm with parameters pi,pa,...,pm. A
configuration of A is a valid assignment of values to each parameter p;, and is
denoted by 6. The set of all valid configurations is called the configuration space of
A, and is denoted by O.

Each parameter p; has an associated domain D;. For our purposes, parame-
ters can be classified into three classes, depending on their domain. If the domain
D; of a parameter p; is a subset of the integer or real numbers, we call p; an integer
parameter or real parameter. On the other hand, if D; is a set of discrete values
with no defined ordering relation between its elements (e.g., D; = {red, green, blue}),
then we call p; a categorical parameter.

In Automatic Algorithm Configuration we are usually interested in finding
a configuration # € © that maximizes the performance of A on a particular set of
instances. For example, if A is a heuristic algorithm for the Traveling Salesperson
Problem, we would like to find a configuration that minimizes the average tour
length obtained on a set of Euclidean instances. The literature describes a variety
of algorithms that aim to achieve this goal, the so called algorithm configurators
(ACs). Some examples of algorithm configurators are ParamILS (HUTTER et al.,
2009), GGA (ANSOTEGUI; SELLMANN; TIERNEY, 2009), SMAC (LINDAUER
et al., 2022) and irace (LOPEZ-IBANEZ et al., 2016). The last one is used in this

work, and we give an overview of its functionality in the next section.

5The value of 7 is a parameter.
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2.3.1 irace

The irace package (LOPEZ—IBANEZ et al., 2016) is an implementation of
Iterated Racing (IR), a method for algorithm configuration. Let A be an algorithm
we want to optimize and I be a set of training instances. IR starts by randomly
creating® a population of configurations. At each iteration, all the configurations in
the population participate in a selection procedure called racing, which filters the
best configurations (the remaining ones are discarded). New configurations that are
similar to the surviving ones are then sampled and included in the population.

We start by describing the racing process. Suppose we have a population of
configurations C' = {0,6,,...,0,} and let I’ C I be the set of instances. At each
step of the race, we execute all configurations in C' over a single instance i € I'. After
a predetermined number of steps, we apply a statistical test (e.g., Friedman test
(CONOVER, 1998)) to check if any configuration in the race performed statistically
worse than any other configuration on the instances seen so far. If that is the case,
then the configuration is eliminated from the race. The race continues until the
number of surviving configurations is less than or equal to a predetermined constant,
the instance set is exhausted, or the maximum number of algorithm evaluations is
exceeded.

After each race, we have a set of surviving configurations, which we call elite
configurations. As stated above, based on these we sample new configurations to
add to the population. To generate a new configuration, first we randomly select an
elite configuration. Each parameter of a configuration has an associated probability
distribution that is biased towards values that are close to its value. Hence, to
sample a configuration similar to the selected elite we can sample one parameter

value at a time.

2.4 Automated Algorithm Design

A design space is usually defined based on one or more templates of algo-
rithms. Consider, for example, the template of a Greedy Randomized Adaptive

Search Procedure (GRASP) (RESENDE; RIBEIRO, 2003). It consists of basically

6To randomly create a configuration we proceed parameter-wise: a value is uniformly sampled
from the domain of each parameter p;.
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two components: a greedy constructive heuristic and a local search. The exact form
of these components is not specified, so different combinations of them give form to
a design space. In practice, however, this design space can be considerably more

complex, because each component may have its own design space.

1 <grasp> ::= GRASP(<construction>, <search>)
2 <construction> ::= CONSTRUCTION_ 1 | CONSTRUCTION_2
3 <search> ::= SEARCH 1 | SEARCH 2

Figure 2.1 — A simple design space of GRASP algorithms.

As it was stated in the introduction, the standard approach to represent
the design space is to use a context-free grammar. Figure 2.1 gives an example
of simple design space for GRASP algorithms. The instantiation of an algorithm
can be viewed as the repeated application of the grammar rules until all that rests
are terminals. The expression GRASP (CONSTRUCTION 1, SEARCH_2), for instance,
represents a GRASP that uses the constructive heuristic CONSTRUCTION 1 and the
local search SEARCH_2.

A common strategy to explore the grammar is by using an Algorithm Con-
figurator (AC). As we saw in Section 2.2, an AC takes a target algorithm A and a
set of training instances [y.4;,, and it tries to find a configuration that maximizes
the performance of A on I;.4,. It does so by repeatedly evaluating configurations
on instances in I;..;, and, based on the evaluations, decide which configurations to
maintain and which to discard. This workflow implies the existence of two things:
1) a parametric representation of the grammar and 2) a platform that takes a con-
figuration and an instance, builds the algorithm represented by the configuration
and evaluates it on the instance. The parametric representation is usually easy to
obtain, and there are methods in the literature to do this conversion automatically.
Regarding the platform, some works pack all components in a single application,
while others write the source code of the specified algorithm, compile and execute
it on the fly. In the next paragraphs, we review some works that explore the ideas
described so far in this section.

Mascia et al. (2013) propose a grammar describing a design space of Iterated
Greedy (IG) algorithms for the permutation flow-shop scheduling problem. An IG

algorithm iteratively "destructs' the current solution and then "reconstructs" it into
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a full solution using a greedy heuristic. The form of the operations of destruction
and reconstruction depends on the problem being solved. Besides the grammar,
they also provide a method to convert grammars into parameters. They use this
method to create a parametric representation of their grammar and then explore it
using irace. In their system, algorithms are implemented, compiled and executed on
the fly.

Marmion et al. (2013) propose a grammar encoding a design space of Gen-
eralized Local Search (GLS) algorithms to solve the permutation flow-shop with
weighted tardiness problem. Their template allows the instantiation of popular
algorithms, like Simulate Annealing (KIRKPATRICK; GELATT; VECCHI, 1983),
Random Iterative Improvements (HOOS; STUTZLE, 2005), and Variable Neighbor-
hood Search (HANSEN; MLADENOVIC, 2001). A GLS consists of basically three
components: a search procedure (which can be another GLS, thus the template is
recursive), a perturbation method, and an acceptance criterion. At each iteration,
a given solution is perturbed by the perturbation method, improved by the search
procedured and the acceptance criterion decides if it accepts the solution or stays
with the current one. They convert the grammar into parameters using the method
of Mascia et al. (2013), and then use irace to explore the design space. In the same
way as Mascia et al. (2013), algorithms are implemented, compiled and executed on
the fly during the execution of irace. In their platform, algorithms are built using
ParadisEO (DREO et al., 2021), an open-source C++ framework that provides a
library of reusable components.

Mascia et al. (2014) propose two grammars describing a design space of IG
algorithms, one of for the 1-dimensional bin-packing problem and the other for the
permutation flowshop with weighted tardiness. They also introduce an algorithm to
automatically convert a grammar into a parametric representation. The algorithm
is implemented in a tool called grammar2code that automatically generates the
parametric representation of a grammar specified in XML format. This tool is also
responsible for generating source code given the parametric representation of an
algorithm, which is then compiled and executed. Both design spaces are explored
using irace.

Lépez-Ibéniez, Marmion and Stiitzle (2017) propose a grammar describing a
design space of GLS algorithms for the permutation flow-shop with weighted tar-

diness, QUBO, and the travelling salesperson problem with time windows. Parts
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of the grammar derive components that are general and can be used to instantiate
algorithms for all the three problems. Other parts, however, derive problem-specific
components. Following Mascia et al. (2014), they use grammar2code to generate
the parametric representation of the grammar and the source code of an algorithm
given its parametric representation. They also use irace to explore the design space.

More close to this thesis is the work of Souza and Ritt (2018), who built their
own platform. They extracted components from state-of-the-art heuristics to solve
QUBO and developed a platform that is not restricted to algorithms following a
specific template. They proposed a grammar that encodes a diverse design space of
algorithms and allows the instantiation of state-of-the-art algorithms, like the ones
proposed in Palubeckis (2004), Palubeckis (2006), Glover, Li and Hao (2010) and
Wang et al. (2012). They constructed a parametric representation of the grammar
following the ideas of Mascia et al. (2013) and Mascia et al. (2014), and explored it
using irace. As a result, they found new algorithms that are very competitive with

the state-of-the-art for two instance domains.
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3 A GRAMMAR FOR HEURISTIC ALGORITHMS

In this chapter we specify a context-free grammar that compactly encodes a
space of heuristic algorithms. We also show how the grammar can be converted to

a parametric representation.

3.1 Grammar Definition

The grammar encoding our design space is shown in Figure 3.1. It comprises
10 rules and 28 distinct terminals and is based on the grammar proposed by Souza
and Ritt (2018), with some modifications.

The first modification consists in splitting the search procedures into two
levels. In the first level we have strong metaheuristics usually used in state-of-the-
art algorithms. In the second level, we have search procedures that are typically
used as sub-components of the components in the first level. For example, the
popular algorithm proposed by Palubeckis (2006) is basically an iterated local search
(ILS) in combination with a simple tabu search (STS). We hope that with this
modification the search procedure used to explore the design space will spend more
time evaluating promising algorithms.

The second modification consists in the introduction of new components.
Inspired by the work of Festa et al. (2002), we introduced a variable neighborhood
search (VNS), a variable neighborhood search with path relinking (VNSPR), and
a GRASP with path-relinking (GRASPPR). Inspired by the work of Palubeckis
(2004), we introduced two new construction methods: PT2 which was used in the
algorithm MST2, and SP which was used in the algorithm MST3 (Section 2.2.1).

In the following sections we give more details about each component. Pseu-

docode for some components is provided in Appendix A.
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1 <start> ::= <search> | <construction> | <recombination>

> <search> ::= ILS(<intensification>, <pert>)

3 | ILSE(<intensification>, <pert>)

1 | VNS(<intensification>, <pert>)

5 | VNSPR(<intensification>, <pert>, <improvement>)
6 <intensification> ::= LS(<improvement>)

7 | NMLS(<improvement>)

8 | VNS(<intensification>, <pert>)

9 | <ts>

10 <ts> ::= STS | RTS

11 <improvement> ::= FI | FI-RR | BI

12 | SI | SI-PARTIAL | SI-PARTIAL-RR

13 <perturbation> ::= RANDOM(<step>)

14 | LEAST-LOSS(<step>)

15 | DIVERSITY(<step>)

16 <step> ::= UNIFORM | GAUSSIAN | EXPONENTIAL | GAMMAM

17 <construction> ::= GRASP(<constructor>, <intensification>)
18 | GRASPR (<constructor>, <intensification>, <improvement>)
19 <constructor> ::= ZERO | HALF | PT2 | SP

20 <recombination> ::= RER(<intensification>, <improvement>)

Figure 3.1 — Context-free grammar encoding our design space.

3.1.1 Search

Our platform implements four search components, namely ILS, ILSE, VNS,
and VNSPR. These templates were inspired by the metaheuristics usually employed
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in state-of-the-art algorithms, like the ones described in Section 2.2.

ILS follows the template of an Iterated Local Search algorithm, as described
by Palubeckis (2006). It requires the specification of perturbation and intensification
components. Algorithm 1 illustrates the implementation.

ILSE stands for Iterated Local Search Elite, and was inspired by the iterated
local search template used by Glover, Lii and Hao (2010). Besides the standard
components of an iterated local search, it also requires the specification of e, the
reference set size. Algorithm 2 depicts the implementation.

VNS follows the basic structure of a variable neighborhood search, as de-
scribed by Festa et al. (2002), with one small modification. Festa et al. (2002)
create a random solution at the beggining of each iteration. In our implementation,
this initial solution is the result of a perturbation of the current solution. We can
replicate the behavior of Festa et al. (2002) by selecting RANDOM as our perturbation
method. In summary, VNS requires the specification of the maximum neighborhood
size kmaz and of intensification and perturbation components. Algorithm 3
depicts the general scheme.

VNSPR stands for Variable Neighborhood Search with Path Relinking. This
template is inspired by an algorithm proposed by Festa et al. (2002). It has the
same basic structure of a VNS, but with the addition of a reference set holding high-
quality solutions that is updated using path-relinking. The path-relinking procedure
implemented in our platform is the same one described in Section 2.2.4, and it
accepts different strategies for choosing the next variable in the path from x° to x°.
These strategies are implemented by an improvement component, hence it is also
necessary to specify one. In addition, a value for v must also be provided. Algorithm

4 gives a high-level view of VNSPR.

3.1.2 Construction

Our platform implements two constructive algorithms: a GRASP and a
GRASP with path-relinking (GRASPPR). The implementation of GRASP follows
the template described by Festa et al. (2002), as Algorithm 5 shows. Its instantiation
requires the specification of constructor and intensification components.

The GRASPPR template, depicted in Algorithm 6, was inspired by one of
the algorithms proposed by Festa et al. (2002). It employs the same intensification
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strategy used in VNSPR, where high-quality solutions are kept in a reference set
E and path-relinking is used to combine solutions in this set. Hence, in addition
to GRASP parameters, GRASPPR also requires an improvement component and a

value for ~.

3.1.3 Constructor

The grammar specifies 4 constructors, namely ZERO, HALF, PT2, and SP.
The last two were extracted from Palubeckis (2004). More specifically, PT2 is
the construction method employed in MST2 and SP is the construction method
employed in MST3 (see Section 2.2 for a description of these two methods). PT2
requires the specification parameters o, and A2, while SP requires a value for
L.

The ZERO constructor is an adaptation of the greedy constructive heuristic
proposed by Festa et al. (2002) to the context of QUBO. The main idea is to start
with a solution where all variables are set to zero and to greedily select a variable
that, when flipped, improves the objective value. More specifically, we start by
creating a solution x where all variables are set to 0, initializing a set I = [n]
containing the indices of all variables, and selecting a value « from the interval [0, 1)
with uniform probability. At each iteration, we try to set a variable to 1. To do
so, first we compute Wy, = min;e; A(x, i) and w™* = max;er A(x,7). These two
values are used to compute a cut-off value p = max{0, wyin + (W™ — Wyin) }-
Using u, we create a restricted candidate set I’ = {i : ¢ € I and A(x,i) > p}. If
I' = 0, we stop the process and return z. Otherwise, we randomly pick an index
k e I', flip x in x, remove k from I and go to the next iteration.

The HALF constructor follows the same approach, but now all variables are

initialized at 0.5, and at each iteration we greedily choose a variable to fix to 0 or 1.

3.1.4 Recombination

Our grammar only comprises one recombination algorithm, RER, which
stands for Repeated Elite Recombination. This template is inspired by the algo-
rithm proposed by Wang et al. (2012). It requires the specification of an intensifica-
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tion procedure and the size r of the reference set. Since RER uses path-renlinking,
an improvement component and a value for v must also be specified. Algorithm 7

illustrates the template.

3.1.5 Intensification

Like search procedures, intensification strategies take as input a solution and
then try to improve it. The difference is that an intensification strategy executes for
a short amount of time, usually limited by a maximum number of iterations. Our
platform implements five intensification procedures.

LS is a simple Local Search procedure based on repeated calls to an improvement
component. As is explained in Section 3.1.6, an improvement component receives a
solution x and tries to find a variable in x that, when flipped, improves the objective
value. If no such variable exists (i.e., x is locally optimal in the 1-flip neighborhood),
the search stops. Algorithm 8 illustrate this component.

NMLS, which stands for Non-Monotonic Local Search, does basically the
same thing, but with a probability p,,.s a random variable is flipped instead of
the variable indicated by the improvement component. It was observed during
experiments that high values of p,.,.s may cause the search to go on forever, since
a random move usually deteriorates the objective value and subsequent calls to
improvement can easily find improvements (just by undoing the flips randomly
made, for example). To avoid this kind of behavior, we introduce a parameter smaz
to terminate the execution after some period of stagnation. Algorithm 9 illustrates
the logic just described.

The VNS component is the same one described in Algorithm 3. When used
as an intensification component, we have to take care to limit the time spent
inside the main loop. We do that by setting the termination criterion to a maximum
number of iterations imazx.

Lastly, our platform also implements two tabu search procedures, STS and
RTS. Both tabu searches work in the 1-flip neighborhood, exploring the variables
in order (from x; to z,). A short-term memory is used to avoid flipping the same
variable twice in a short interval of time. Following Glover, Lii and Hao (2010),
however, we allow a tabu move to be executed if it results in a solution that is

better than any solution found during the search. STS and RTS differ only in one
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aspect: STS always selects the best improving variable and flip it, while RTS, with a
probability p,:s, selects a random variable to flip. Otherwise it proceeds as an STS.

STS and RTS share a set of parameters related to tabu tenure and termina-
tion criteria (maximum number of iterations or maximum stagnation). Regarding
tabu tenure, we implemented 4 strategies: in strategy t; tabu tenure is a specified
constant t,. In strategy t, tabu tenure is (nt,)/100. Strategy t3 sets tabu tenure as
equal to n/ty. Lastly, in strategy t4 tabu tenure is n/t;+rand(1,t.), where rand(1, ¢.)
is a function that randomly picks a number from the interval [1,¢.] with uniform
probability. Regarding the maximum number of iterations, there are 3 available
strategies. Strategy ¢; allows at most i, iterations, strategy i, allows at most n
iterations, and strategy i3 allows an unlimited number of iterations. Regarding the
maximum number of non-improving moves (i.e., stagnation), strategy s; allows at
most s, non-improving iterations, strategy s, allows at most n and strategy s3 does

not impose any limitation.

3.1.6 Improvement

Given a solution x, the purpose of an improvement procedure is to find a
variable x; that, when flipped, improves the objective function. Our platform im-
plements 6 improvement strategies. All strategies investigate variables in ascending
order (i.e., from x; to z,).

Improvement strategy FI returns an improving neighbor as soon as it finds
one. FI-RR does the same thing, but starts the exploration from the point the
previous exploration ended, in a round-robin fashion. BI returns the best neighbor
and SI returns a random improving neighbor. SI-PARTIAL also returns a random
improving neighbor, but it only considers the first (n - f)/100 variables in the ex-
ploration, where f is a parameter. SI-PARTIAL-RR extends SI-PARTIAL with a
round-robin exploration (as is done in FI-RR).

When an improvement strategy is used inside path-relinking (see sections
2.2.4 and 3.1.4, for example), the improvement method must work on a subset D of
the variables. Not only that, but it must return a variable even if this variable will
not improve the objective function. In this case, FI, FI-RR and BI will return the
variable in D that when flipped causes the smallest decrease in the objective value.

In contrast, SI, SI-PARTIAL, and SI-PARTIAL-RR return will return a random
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variable.

3.1.7 Perturbation

The purpose of a perturbation strategy is to select a subset of the variables of
a solution and flip their values. Our platform implements three different perturba-
tion strategies. Perturbation LEAST-LOSS is the same one described in Palubeckis
(2006). It requires the specification of the size of the candidate set of variables b.
Perturbation DIVERSITY, on the other hand, is the one described in Glover, Lii
and Hao (2010), and it requires a value for the selection importance factor A and for
the frequency contribution . Lastly, flipped variables in perturbation RANDOM
are selected with uniform probability. All perturbation methods require the speci-
fication of a step component, which determines the size of the perturbation and is

explained below.

3.1.8 Step

The purpose of a step component is to select the size of a perturbation (i.e.the
number of variables that will be flipped). Our platform implements four strategies.
Three of those strategies, namely UNIFORM, GAUSSIAN and EXPONENTIAL,
select a value from a given interval according to a probability distribution. Let
[d1,ds] be the interval. The UNIFORM strategy samples a value uniformly from
this interval. The GAUSSIAN strategy samples a value from a normal distribution
with mean (d; +ds)/2 and standard deviation do—d;. The EXPONENTIAL strategy
samples a value from an exponential distribution with A = 1/((dz + d1)/2).

Differently from the first three strategies, the GAMMAM strategy selects a

fix perturbation size, n/g, where g is a positive integer.

3.2 Parameters

As sections 3.1.1 to 3.1.8 pointed out, some components require the speci-
fication of numerical and categorical parameters, besides the subcomponents. The

existence of these parameters was hidden in the grammar presented in Figure 3.1
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for presentation purposes. To account for that, we present a Table 3.1, which sum-

marizes all the parameters mentioned in the last sections.

Table 3.1 — List of all parameters.

Parameter Type Component Description
t Categorical <ts> Strategy for tabu tenure
ty Integer <ts> Tabu tenure is t,
t, Integer <ts> Tabu tenure is (¢,N)/100
tq Real <ts> Tabu tenure is N/t4
te Integer <ts> Tabu tenure is N/t + rand(1,t.)
s Categorical <ts> Strategy for maximum stagnation
Sp Integer <ts> Maximum stagnation is s,
Sm Integer <ts> Maximum stagnation is s, /N
i Categorical <ts> Strategy for maximum number of iterations
1y Integer <ts> Maximum number of iterations is t,
DPrmis Real NMLS Probability of flipping a random variable
Prts Real RTS Probability of a random move
f Real SI-PARTIAL [-RR] Size of the partial exploration
dy Integer <pert> Min. perturbation size
do Integer <pert> Max. perturbation size is N/dy
g Integer GAMMAM Perturbation size is N/g
b Integer LEAST-LOSS Candidate variables for perturbation
153 Real DIVERSITY Frequency contribution
A Real DIVERSITY Selection important factor
e Integer ILSE Reference set size for ILSE
r Integer RER Reference set size for RER
RER
¥ Real VNSPR Distance scale for path-relinking
GRASPPR
1 Integer SP Upper bound on the number of candidate variables
st Real PT2 Multiplier used to compute the size of I*
Anst2 Integer PT2 Tuning factor of the measure of attractiveness of a variable
imax Real VNS Maximum number of iterations
kmazx Integer VNS VNSPR Maximum neighborhood size
smax Integer NMLS Maximum stagnation

3.3 Parametric Representation

As stated in Section 2.4, algorithm configurators usually work on a finite

space of parameters. As a result, the space encoded by the grammar has to be

converted to a parametric representation. To solve this problem, we follow the ap-
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proach proposed by Mascia et al. (2013), which Souza and Ritt (2018) also follow. It
basically consists in representing by categorical parameters the decisions on how to
apply a rule (e.g., which constructor to choose in the rule <constructor>). Some-
times a decision depends on previous decisions (e.g. we only have to use the rule
<constructor> if <algorithm> is chosen to be <construction>). These situations
can be encoded by conditional parameters, a type of parameter that is only activated
if the attached conditions are satisfied.

In the next paragraphs, we explain how we encoded the derivations of the
grammar depicted in Figure 3.1 using the approach of Mascia et al. (2013).} Table
3.2 summarizes all the parameters that will be mentioned. The first and second
columns show the name of the parameter and its domain. The third column shows
the main condition required for its activation. We say main condition because
sometimes a parameter depends on another conditional parameter. For example,
the parameter pertl depends on the parameter search assuming the value LS,
ILSE, VNS or VNSPR, which in turn depends on the parameter start assuming the
value SEARCH.

We start by encoding the first rule of the grammar as a parameter: a categor-
ical parameter named start is introduced, which can assume the value SEARCH,
CONSTRUCTION, or RECOMBINATION. Since we always have to make a deci-
sion regarding this rule, no matter the derivation, the parameter has no attached
conditions. If the value of start is RECOMBINATION, the algorithm must be
RER, so we do not have to encode any decision. If start is SEARCH or CON-
STRUCTION, however, we have to choose between more than one option. We add
parameters search and construction to take care of that. Parameter search is
only activated when start is set to SEARCH and can assume the values ILS, ILSE,
VNS, or VNSPR, while parameter construction depends on start being set to
CONSTRUCTION and can assume the values GRASP or GRASPPR.

Every possible derivation of the grammar will require at some point the
selection of an intensification procedure, so we add parameter intensl, without
any attached conditions, to encode this decision. If intensl is set to VNS, an
additional intensification procedure is required, so we add a separate parameter,
named intens2, that is only activated when the value of intensl is VNS. To limit

the recursion depth, we do not allow VNS in this second choice of intensification

IParameters that are specific to a component (Table 3.1) are not considered here, but they can
be included in the parametric representation following a similar logic.
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procedure.

Most intensification procedures, with the exception of TS, require an im-
provement method.? As a result, the parameter controlling this decision must re-
strict its activation to situations where the chosen intensification procedure is not
TS. Parameter improvl takes care of that. A second improvement method may
be necessary if the high-level procedure requires path-relinking, as is the case with
VNSPR, GRASPPR and RER. Parameter improv2 deals with this case.

If start assumes the value CONSTRUCTION, we have to choose a construc-
tor method, thus parameter constructor is added. In the same way, some search
procedures require a perturbation method (i.e., ILS, ILSE, VNS, VNSPR), and pa-
rameter pertl encodes this decision. If the intensification procedure is VNS, another
perturbation method is required, and this decision is encoded by parameter pert2.
Perturbation strategies LEAST-LOSS and DIVERSITY require the specification of
step components, and parameters stepl and step2 encode these decisions.

Finally, we add some parameters to decide which tabu search will be selected,
STS or RTS. Since there are two parameters encoding intensification procedures
(i.e.intensl and intens2), we need two parameters to deal with each case. Param-
eter tsl is active only when intensl is TS, while ts2 is active only when intens2

is active and set to TS.

2Although VNS does not directly require one, the intensification procedure embedded in it
(selected by parameter intens2) will require an improvement method.



Table 3.2 — Main categorical parameters of the parametric representation.

Parameter Name Options Main Conditions
SEARCH
start CONSTRUCTION -
RECOMBINATION
search LS ILSE VNS VNSPR start == SEARCH
construction GRASP GRASPPR start == CONSTRUCTION
intensl LS NMLS TS VNS -
intens2 LS NMLS TS intensl == VNS

) L FI FI-RR BI RI SI tensl s not TS
rmprov SI-PARTIAL SI-PARTIAL-RR mtensk 1s no

FI FL.RR BI RI SI (start == RECOMBINATION) or

improv2 (construction == GRASPPR) or
SI-PARTTAL SI-PARTIAL-RR (search —— VNSPR)
constructor ZERO HALF PT2 SP start == CONSTRUCTION

pertl RANDOM LEAST-LOSS DIVERSITY search in {LS, ILSE, VNS, VNSPR}

pert2 RANDOM LEAST-LOSS DIVERSITY intensification == VNS
UNIFORM GAUSSIAN .

stepl EXPONENTIAL GAMMAM pertl in {LEAST-LOSS, DIVERSITY}
UNIFORM GAUSSIAN .

step2 EXPONENTIAL GAMMAM pert2 in {LEAST-LOSS, DIVERSITY}

tsl STS RTS intensl == TS

ts2 STS RTS intens2 == TS
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4 A PLATFORM FOR DESIGN SPACE EXPLORATION

This section describes the platform that was built to support this work.

4.1 Architecture

Souza and Ritt (2018) introduced in the literature a platform named Auto-

BQP!, which implements their approach. This platform, however, has some limita-

tions that inhibit further research on the topic, which we intend to overcome with

our new platform. We discuss some of these limitation below:

e AutoBQP is fully coupled to the grammar and its parametric representation,

so minimal changes to the design space require a modification to the source
code. In addition, algorithms are specified by their parametric representation,
which is not pleasant for humans to work with and, consequently, makes the
countless tests and small experiments carried out during a research project

more laborious.

AutoBQP generates source code for the specified algorithm, which must be
compiled and run. In the author’s experience, this approach adds unnecessary
complexity to the research work, as the artifacts produced during compilation

can be cumbersome to manage.

AutoBQP only allows termination based on maximum run time, which is a
commonly used criterion in the research literature for reporting results. How-
ever, this criterion is highly dependent on the conditions of the desktop or the
server running the algorithm, especially when the algorithm uses all available
resources, such as memory and CPU. It is not uncommon to see significantly
different results on the same platform for two runs of the same algorithm due
to background processes stealing some of the algorithm’s processing cycles.
Consequently, reproducing results from previous experiments can be challeng-

ing.

The platform we built was written in C+-+ in an object-oriented style. The

grammar presented in Figure 3.1 has 28 distinct terminals, hence our platform has

28 different components. From these 28 components, 23 come from the code base

1 <https://github.com/souzamarcelo/ AutoBQP >


https://github.com/souzamarcelo/AutoBQP
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1 class Constructor {

2 public:
3 virtual void construct(Solution &S) = 0;
PR

Figure 4.1 — Constructor interface.

Table 4.1 — Components in our platform and its respective interfaces.

Interface Components
LS NMLS ILS ILSE
Algorithm VNS VNSPR STS RTS

GRASP GRASPPR RER

Constructor ZERO HALF PT2 SP

FI FI-RR BI SI
Improvement SI-PARTIAL
SI-PARTIAL-RR

RANDOM LEAST-LOSS

Perturbation DIVERSITY

UNIFORM GAUSSIAN

Step EXPONENTIAL GAMMAM

of Souza and Ritt (2018). The implementation of the constructors PT2 and SP
was extracted from the work of Dunning, Gupta and Silberholz (2018), while the
implementation of VNS, VNS with path-relinking and GRASP with path-relinking
is ours.

Each component is implemented as a class, and each class implements an
interface, depending on its function. Figure 4.1 gives an example. The interface
Constructor defines a method called construct that takes as an argument a ref-
erence to a Solution object. All components in our platform whose goal is to
construct a new solution must implement this interface. Our platform defines five
interfaces, and Table 4.1 shows which components implement which interface. Note
that, although the grammar makes a distinction between search and intensifica-
tion procedures, in our platform they implement the same interface, because their
function is the same (i.e., they take a solution and try to improve it).

An important aspect of our implementation is the way components interact
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1 class ConstructorFactory {

2 public:

3 static Constructor *get_constructor(const json &description) {
4 std::string type = description["type"].get<std::string>();
5 if (type == "ZERQ")

6 return new ZERO(Q);

7 else if (type == "HALF")

8 return new HALF();

0 else if (type == "PT2")

10 return new PT2(description["alpha"].get<double>(),

1 description["lambda"] .get<double>());

12 else if (type == "SP")

13 return new SP(description["mu"].get<int>());

14 else{

15 // Code removed for clarity

16 +

17 }

18

Figure 4.2 — Constructor factory.

with each other. An iterated local search (ILS), for example, requires the specifi-
cation of an intensification procedure (which, as Table 4.1 shows, implements the
interface Algorithm). We solve this problem by using factory methods, a popular
design pattern in software engineering. Each type of component (e.g., constructor)
has an associated factory class. This factory class has a static factory method that,
given a JSON description of the component, returns a pointer to an object with
the same type of the interface implemented by the component. Figure 4.2 gives an
example.

As Figure 4.2 implies, components are typically constructed using the infor-
mation contained in a JSON object. Figure 4.3 shows the JSON description of a
VNS. Note how improvement and perturbation components are embedded in the
description. Figure 4.4 shows the implementation of a constructor that takes such
a JSON description and constructs a VNS component.

By embedding JSON objectives insided each other, we can instantiate com-
plex algorithms like the one proposed by Glover, Lii and Hao (2010) and explained
in Section 2.2.3. Figure 4.5 shows its JSON description.
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g

2 "search": {

3 "type": "LS",

1 "description": {
5 "improvement": {
6 type": "BI"

7 }

8 }

0 1,

10 "perturbation": {
1 "type": "RANDOM"
12 } s

13 "kmax": 100

14 }

Figure 4.3 — JSON description of a VNS.

1 VNS::VNS(const json &description){

2 search = SearchFactory::get_search(description["search"]);

3 pert = PerturbationFactory::get_perturbation(description["perturbation"]);
4 kmax = description["kmax"].get<unsigned>();

5}

Figure 4.4 — VNS constructor.

4.2 Flip Evaluation

The most fundamental operation of practically all heuristic procedures is to
check the change in the objective function obtained by flipping a variable from 0 to
1 and vice versa. Hence, the efficiency of an implementation is strongly influenced
by the complexity of that operation. At the backbone of our platform there is a fast
flip evaluation technique extracted from the code base of Souza and Ritt (2018).

Given a solution x and solution x’ in the one-flip neighborhood of x, naively
computing f(x’) — f(x) results in a time complexity of O(n?). Put simply, the
implemented flip evaluation technique works by keeping in memory a vector A of
size n holding the change in the objective value obtained by flipping any variable,
hence checking whether or not flipping a variable would results in a better solution
can be done in constant time. Every time a variable is actually flipped, A can
be updated in O(n). For more details about this technique we refer the reader to

Alidaee, Kochenberger and Wang (2010).
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o

> "algorithm": {

3 "type": "SEARCH",

1 "description": {

5 "type": "ILSE",

6 "description": {

7 "search": {

8 "type": "STS",

9 "description": {

10 g g4,

11 "td": 100,

12 "tc": 10,

13 "s': o "s2M,

14 "sm": 20,

15 tivari3"

16 }

17 },

18 "perturbation": {

19 "type": "DIVERSITY",
20 "description": {

21 "beta": 0.3,

22 "plambda": 1.2,
23 "step": {

24 "type": "GAMMAM",
25 "description": {
26 "g": 4
27 }

28 }

29 }

30 },

31 "r": 8

32 }
33 }

34 }

I

Figure 4.5 — JSON specification of the algorithm proposed by Glover, Lii and Hao (2010)
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4.3 Termination Criteria

It is common practice in the literature to use wall-clock time as the termi-
nation criterion of an algorithm. The performance of an algorithm as measured by
wall-clock time, however, is sensitive to the conditions of the underlying platform
(e.g., CPU usage by other processes), which can make it difficult to reproduce ob-
tained results. To account for that, we implemented in our platform a termination
criterion based on the number of basic operations realized during an execution. This
mechanism consists in a regression model that converts a desired time limit into a
maximum number of basic operations.

There are three basic operations that, together, dominate the running time
of an algorithm. These operations are listed below, together with their time com-

plexity:

1. Creating a new solution, which has complexity O(n?).
2. Flipping a variable of a solution, which has complexity O(n).

3. Checking the change in the objective function caused by flipping a variable,
which has complexity O(1).

The time complexity of the first two operations is due to the update of internal data
structures.

To build our regression model, we selected 10 algorithms and 25 instances
and executed each algorithm on each instance 5 times with different seed values.
The time limit of each run depends on the size and density of the instance, and for
our set of 25 instances it varied from 150 seconds to 2250 seconds. During each run,
we kept track of the amount of basic operations executed and, with this information,
we built a plot associating running time to an estimate of the number of steps taken
by the algorithm. Consider an instance f with n variables, an algorithm A, and
a time limit ¢ given in seconds. Also, let ¢; be the number new solutions created
during the execution of A on f for ¢ seconds (operation 1, in the list above), ¢y the
number of flips (operation 2), and ¢3 the number of times the change in the objective
function caused by a flip was checked (operation 3). We consider that the number

of steps s completed by algorithm A during its execution for ¢ seconds is

s=cn’+cn+cy (4.1)
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We computed this quantity for each of the 1250 runs and plotted against the
running time. As Figure 4.6 shows, there is a strong correlation between these two
quantities. We used this correlation to build our regression model that, given a time
limit, returns an estimate s’ of the number steps. Our hypothesis is that s ~ a - t°,
for real numbers a and b. We computed a linear regression of our hypothesis in the

log-log space, i.e., logyo(s) = blog,,(t) +log,y(a), and obtained the following model:
s’ = 107" (4.2)
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Figure 4.6 — Data collected in the 1250 runs and the regression curve. Each dot
represents a combination of algorithm, instance and seed value. Dots are colored
according to the algorithm they represent.

In summary, our platform allows the specification of a desired time limit,
which is converted to a maximum number of steps completed by the algorithm
according to Equation 4.2. Once the actual number of steps (as defined by Equation
4.1) exceeds the maximum number, execution is stopped.

A small experiment was conducted to validate the new termination criterion.
We selected five of the 10 algorithms and executed them on 10 of the 25 instances

mentioned above. We ran each algorithm on each instance using the termination
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Figure 4.7 — Relation between the specified running time and the time taken to execute
the estimated number of steps. Each dot represents a combination of algorithm and
instance. Dots are colored according to the associated algorithm.

Table 4.2 — Average absolute and relative difference between the objective value obtained
by both termination criteria across all 10 instances.

Algorithm Abs. Difference Rel. Difference

1 -32.8 -0.00009
2 0.2 0.00006
3 294 0.00024
4 -0.7 -0.00021
) 32.7 0.00006
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criterion just described. The specified maximum running times were the same ones
used to produce the data displayed in Figure 4.6.

Figure 4.7 shows how the specified time limit (x-axis) relates to the time
spent executing the estimated number of steps (y-axis) for each of the 50 runs. As
we can see, both times are about the same, which constitutes evidence that the
regression model works and the overhead caused by the implementation is small.

It is also important to make sure that the new termination criterion does not
deteriorate solution quality. To verify that, we executed again the same 50 combi-
nations of algorithm and instance, but now using wall-clock time as the termination
criterion. All 50 runs occurred in parallel, using 12 cores.

For each of the 50 combinations of algorithm and instance, let s; denote
the objective value obtained in the ith run when the termination criterion was
the estimated number of steps. Similarly, let w; be the equivalent quantity when
the termination criterion was wall-clock time. Table 4.2 shows the average of the
absolute difference, w; — s;, and the relative difference, ws;s, grouped by algorithm
(i.e., each line is the average of 10 values). As we can see, both termination criteria

obtain similar results on average.
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5 EXPERIMENTS

In this section we present some computational experience. All the exper-
iments presented in the next sections were executed on a AMD Ryzen 9 3900X

12-Core Processor with 32 GB of available memory. Our platform was compiled

using GCC 9.4.0 with the flag -O3.

5.1 Instances

All the instances used in our experiments were created using the generator
described by Palubeckis (2006). They have sizes ranging from 3000 to 7000 variables,
densities varying from 50% to 100%, and integer coefficients sampled uniformly from

the interval [—100, 100].

Table 5.1 — Composition of the test set regarding instance size.

. Number of
Instance Size

Instances
3000 5
4000 5
5000 5
6000 3
7000 3

Table 5.2 — Composition of the training and validation sets regarding instance size.

Number of
Instance Size
Instances
3000 4
4000

4
5000 8
8
8

6000
7000
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As is common in the machine learning literature, we splitted our instances
into three sets: training, validation and test. Our test set consists of 21 instances
commonly used in the literature to benchmark heuristics for QUBO (PALUBECKIS,
2006) (SOUZA; RITT, 2018). Its composition regarding instance sizes is depicted
in Table 5.1. Our training and validation sets have 32 instances each and share the
same composition regarding instance sizes. Table 5.2 illustrates the composition.
More importantly, all three sets are disjoint.

The composition of the test set differs from the other two sets because in
previous experiments we noticed that algorithms found by irace consistently per-
formed worse than state-of-the-art algorithms on bigger instances. We hope that by
increasing the number of large instances in the training phase, algorithms with this
problem can be more easily identified and discarded by the AC.

In all experiments the termination criterion is running time as measured by
a wall clock (i.e., we did not use the feature described in Section 4.3), and the
maximum running time is determined by the size of the instance. Table 5.3 presents

the maximum running time in seconds for each instance size.

Table 5.3 — Time limit for each instance size.

. Maximum
Instance Size

Running Time (s)

3000 150
4000 300
5000 600
6000 900
7000 1500

5.2 Results

In the next three sections, we present experiments to validate our work.
Section 5.2.1 presents computational experience to assess the performance of our
platform. In Section 5.2.2 we present the results of the exploration of our design
space using irace. Lastly, in Section 5.2.3 we analyze the algorithms found in Section

5.2.2.
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Table 5.4 — Selected algorithms used in the comparison between our platform and

MQLib.
Algorithm MQLib Owur Platform
Wang et al. (2012) - wang
Palubeckis (2006) PALO6 p06
Glover, Lii and Hao (2010)  GLOIO0 d2ts
Palubeckis (2004) PALOAT?2 ;
Palubeckis (2004) PAL04T3 -

5.2.1 Performance

To make sure the algorithms in our platform are competitive to what is best
in the literature, we make some comparisons against MQLib!, a platform that imple-
ments several heuristics for the Max-cut and QUBO problems. MQLib is a product
of the work of Dunning, Gupta and Silberholz (2018), where they make a large-
scale study comparing the performance of 37 heuristics evaluated on 3296 instances
from different domains. We selected four heuristics that had top performance on
instances created using the generator mentioned above and compared them against
three state-of-the-art algorithms that can be instantiated in our platform.

Table 5.4 shows which algorithms were selected. The first column shows the
work who proposed the algorithm, the second column indicates how the algorithm is
identified by MQLib, and the third column shows how the algorithm is identified in
our platform. MQLib does not provide an implementation of the algorithm proposed
by Wang et al. (2012). Similarly, our platform is not able to instantiate exactly the
algorithms proposed by Palubeckis (2004).

We executed each of the seven algorithms on five instances five times (using
different seeds). The five instances we used were sampled from the test set, one for
each instance size. For each execution, we recorded the best objective value obtained
during the execution and the time taken to obtain it. All 175 executions happened

in parallel in 12 cores.

L <https://github.com/MQLib/MQLib>


https://github.com/MQLib/MQLib
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Table 5.5 — Absolute gap of selected algorithms.

Algorithm Average Gap

wang 52
d2ts 80.56
p06 99.32
PALO6 124.16
PALO4T2 262.6
GLO10 789.52
PALO4T3 2266.6

Given the objective value objv obtained by an algorithm on an instance i,
the absolute gap is the difference between the best known value of instance ¢ and
objv. The absolute gap can be viewed as a measure of solution quality, and we use
it here to compare the quality of solutions found by our platform to MQLib’s. In
Table 5.5, the average absolute gap obtained by each algorithm on its 25 executions is
displayed. We can see that the first three smallest absolute gaps are from algorithms
of our platform. Not only that, but algorithms p06 and d2ts have better results than
their counterparts implemented in MQLib.

Table 5.6 — Time to best of selected algorithms.

Algorithm Average Time to Best

PALO6 202.7
p06 2104
PAL0O4T2 247.7
d2ts 251.3
wang 268.4
GLO10 325.6
PALO4T3 363.6

We also evaluate how fast, on average, an algorithm takes to arrive at the
best solution it could find. Table 5.6 shows these values. The average time taken
for algorithms in our platform to arrive at the best solution are very similar to what

we observe in MQLib’s algorithms. In particular, MQLib’s PAL0O6 tends to arrive
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Figure 5.1 — Performance evolution of configurations found by irace.

at the best solution faster than its counterpart in our platform. On the other hand,
we observe the opposite behavior when we consider GLO10 and d2ts.
In summary, the results above are good evidence that our platform is at least

efficient enough to produce results comparable to the literature.

5.2.2 Optimization Process

Using the parametric representation described in Chapter 4, we search the
space of algorithms using irace. We ran irace with the training set mentioned in
Section 5.1 and a budget of 7000 runs?. It took 6 days and 17 hours to complete its
execution using 12 cores, and a total of 12 iterations were performed.

Before evaluating the configurations found by irace on the test set, we perform
some analyses to check for a possible overfitting on the training data. To do that,

when irace finished its execution we collected all elite configurations returned at

2The term budget refers to the maximum number of algorithm executions irace is allowed to
make.
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Figure 5.2 — Composition of the population of configurations maintained by irace along
the 12 iterations.

the end of each iteration and evaluated them on the validation set, replicating each
execution 3 times. Since irace produced 30 elite configurations along its execution,
this experiment resulted in 2880 runs, which were executed in parallel using 12 cores.
Using the data of this experiment, we associated to each elite configuration a score:
the average objective value obtained considering all 96 executions (32 instances times
3 replications).

Figure 5.1 shows the score, mapped to the interval [0, 1], obtained by the
best elite configuration of each iteration. As we can see, the population of elite
configurations maintained by irace consistently obtain better scores as the iteration
count increases. This trend, however, stops at iteration 5, and from this point on the
score value stagnates. One possible reason for this behavior is the homogeneity of the
population of configurations. We expand on this hypothesis in the next paragraphs.

Configurations can be classified according to the type of algorithm they rep-
resent. As we can see by looking at the grammar (Figure 3.1), the top level rule
defines three types of algorithms, i.e., search, construction, and recombination. Fig-
ure 5.2 shows the composition of the population of configurations at the beginning

and at the end of each iteration. Each line shows how much of the population is



o1

composed by algorithms of a certain type. Consider the green line, for example. At
Iteration=1, one point shows how much of the population at the end of iteration 1
is composed of recombination algorithms. The other point shows the same informa-
tion, but now about the population at the beginning of iteration 2. Remember that,
as it was explained in Section 2.3.1, at the start of each iteration irace samples new
configurations and adds them to the population of elite configurations. Between the
start and the end of an iteration the population is filtered through racing.

As we can see, at the beginning of the first iteration the population has ap-
proximately the same number of configurations of each type, due to the random
sampling. At the end of the first iteration, however, almost 60% of the population is
composed of recombination algorithms. This means that the racing process ended
up eliminating several configurations of type SEARCH and CONSTRUCTION. At
the beginning of iteration 2 the proportion of search and construction algorithms
increases a bit because of the new sampled configurations, but most of these config-
urations are again eliminated by racing as the point representing the end of iteration
2 shows. This trend causes the sampling process to be biased towards recombination
algorithms and, as a result, from iteration 5 on the population is composed almost
entirely of recombination algorithms. A population with less diversity may help to
explain the stagnation in performance on the validation set.

We now turn our attention to Table 5.7, which displays some information
about the 30 elite configurations. The first column gives an identifier for the al-
gorithm (each configuration represents an algorithm), the second column shows at
which iteration the algorithm was first sampled, the third column shows the rank
the algorithm obtained in the validation set, and the fourth column shows how the
algorithm was ranked by irace (algorithms that are not part of the final set of elites
do not receive a rank). Lastly, the last column shows the type of the algorithm.

By looking at the last column we can see that almost all elite configurations
are recombination algorithms. As a matter of fact, just the first two iterations
produced some elite configurations that are search or construction algorithms, and
recombination algorithms represent approximately 86% of all elite configurations.
This is expected, considering the composition of the population of configurations
maintained by irace depicted in Figure 5.2.

By looking at the second column, we can see that few of the 30 elite con-

figurations were sampled at the end of the search. The histogram in Figure 5.3
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Table 5.7 — Elite configurations found by irace.

Algorithm First Iteration

Rank on
Validation Set

irace Rank Algorithm Type

1527
1447
1345
157
1744
1383
1490
454
i24
1250
1517
717
i371
1325
1508
1776
33
1163
1422
1234
1568
1533
1203
1136
1365
175
167
i12
1225
1129
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Figure 5.3 — Distribution of elite configurations considering the iteration in which they
were sampled.

illustrates this behavior. From iteration 6 to 12, only 4 new elite configurations
were sampled, which means that the majority of the high-quality solutions found by
irace was sampled between iterations 1 and 5.

In summary, our study indicates that the quality of the configurations found
by irace did not deteriorate over time due to overfitting. The stagnation on the score
value, however, may be a signal that a budget as high as 7000 does not necessarily

result in better configurations.

5.2.3 Benchmark

In this section we compare some of the algorithms found by irace with state-
of-the-art algorithms that can be instantiated in our platform. We selected the
first five best algorithms as ranked by irace and the first five algorithms with best
performance on the validation (see Table 5.7). It turns out that there is an overlap
between these two sets of algorithms, so we end up with 7 algorithms.

In addition to these seven algorithms, we also consider the three algorithms
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used in Section 5.2.1, namely wang, d2ts, and p06, and the best algorithm found by
Souza and Ritt (2018), which here we name hhpal. We executed the 11 algorithms
on all 21 test instances 15 times in parallel using 12 cores. In order to compare the
heuristics, we consider the same metrics used in the large-scale study of Dunning,
Gupta and Silberholz (2018), which we explain below. Let h be any of the 11

considered heuristics:

e First-equal percentage: is the percentage of instances for which the mean
objective value obtained by h across the 15 replicates was no worse than the

mean solution of any of the other 10 heuristics.

e First-strict percentage: is the percentage of instances for which the mean
objective value obtained by h across the 15 replicates was strictly better than

the mean solution of any of the other 10 heuristics.

e Best achieved percentage: is the percentage of instances for which h

achieved the best-known solution in at least one replicate.

e Worst-of-15 deviation: let w! denote the worst objective value obtained by
h on instance ¢ among the 15 replicates divided by the best value obtained by
any heuristic on i. The value of the metric is the average of w across all test

instances 1.

e Mean-of-15 deviation: let m! denote the mean objective value obtained by
h on instance ¢ among the 15 replicates divided by the best value obtained by
any heuristic on 4. The value of the metric is the average of m? across all test

instances 1.

e Best-of-15 deviation: let b denote the best objective value obtained by h
on instance ¢ among the 15 replicates divided by the best value obtained by
any heuristic on 7. The value of the metric is the average of b across all test

instances 1.

e Average rank: let r! be the rank heuristic h obtained on instance i among
all heuristics according to the mean value obtained across the 15 replicates
(in the case of ties, all tied heuristics are given the minimum rank). Rank 1
indicates the best mean performance on instance ¢, while rank 11 indicates the
worst performance. The value of this metric is the average of 7 across all test

instances 2.

Table 5.8 shows the value that each considered algorithm obtained for each metric.
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The rows are ordered according to the values of the columns, from left to right.

By looking at the last column we can see that six out of the seven algorithms
with better average rank were found by irace, including the top scorer in this metric.
The Best-Achieved column shows that all algorithms found by irace obtained the
best known value in at least one replicate in all instances. In particular, algorithm
447 is very competitive since, as the First-Equal column indicates, it obtained the
best mean value across all 15 replicates in 76.2% of the 21 instances. The picture
changes a bit when we analyze the Worst-of-15 Deviation column. The best
heuristic according to this metric is hhpal, followed by d2ts, 1447, p06, and wang.
This means that, although algorithms found by irace are usually competitive (as
indicated by the first column), on some fraction of the instances their performance

is notably bad.

Table 5.8 — Comparison between state-of-the-art algorithms and the algorithms found by

irace.
Worst-of-15 Mean-of-15 Best-of-15
Heuristic First- Flrst- Best- Deviation Deviation Deviation Average
Equal (%) Strict (%) Achieved (%) Rank
(%) (%) (%)

447 76.2 9.5 100 99.998586 99.999615 100 2.23
hhpal 76.2 4.8 100 99.999188 99.999657 100 2.66
345 66.7 4.8 100 99.998366 99.999303 100 3.09
527 66.7 0 100 99.998153 99.999490 100 2.61
wang 61.9 0 100 99.998287 99.999509 100 3.61
i517 61.9 0 100 99.997517 99.999477 100 3.14
ir17 61.9 0 100 99.997485 99.999330 100 3.52
i744 61.9 0 100 99.997400 99.999142 100 4.14
p06 61.9 0 95.2 99.997510 99.999551 99.9 4.04
d2ts 52.4 0 100 99.9988 99.999620 100 3.76
i57 52.4 0 100 99.997727 99.999456 100 3.47
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6 CONCLUSIONS

In this work we studied an automated approach to the design of algorithms
for the Quadratic Unconstrained Binary Optimization Problem. We extend the
work of Souza and Ritt (2018), where they use a context-free grammar to encode a
design space of algorithms that is explored by an algorithm configurator.

In Section 3, we introduced an extension of the grammar proposed by Souza
and Ritt (2018), with new components and other modifications aiming to help the
algorithm configurator to spend more time on promising algorithms. We also pro-
posed a parametric representation for this new grammar, which was explained in
Section 3.3. To support our work, we developed a platform for design space explo-
ration of heuristics to QUBO. Our platform comprises 28 algorithmic components
and is easy to extend with new components. Besides the modular architecture, its
main features are a fast technique to evaluate the value of flipping variables and the
possibility of terminating executions based on the number of executed operations,
facilitating the production of reproducible research. In computational experiments
we showed that algorithms instantiated in our platform are as efficient as standard
implementations of the literature.

Using our platform and irace, we explored the design space encode by the
grammar. Our results show a great dominance of recombination algorithms over
search and constructions algorithms in all 12 iterations completed by irace. We
performed experiments to check for a possible deterioration in performance due
to overfitting, but our results indicate that this did not happen. Additionally, we
observed that the optimization process converged quite quickly to a few high-quality
solutions, which indicates that a smaller budget could achieve similar results.

Finally, we compared the best algorithms found by irace to state-of-the-
art algorithms that can be instantiated in our platform using seven performance
metrics. As our experiments show, algorithms found by irace are, if not better, at
least competitive to the state-of-the-art algorithms.

As future work, we would like to use the insights presented in Section 5.2.2
to make the configuration process more efficient. As we stated before, there is
a strong convergence toward recombination algorithms, but search algorithms are
the majority between the state-of-the-art approaches we analyzed. Hence, why

irace does not spend more time on the space of search algorithms is still an open
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question. We would also like to define a new design space that generalizes the
neighborhood size on which most algorithms operate. It is known that working on
large neighborhoods is computationally expensive, but new works on closed-form
formulas for evaluating r-flips may turn such explorations possible in practice (see

Wang (2022), for example).



o8

REFERENCES

ALIDAEE, B.; KOCHENBERGER, G.; WANG, H. Theorems supporting r-flip
search for pseudo-boolean optimization. International Journal of Applied
Metaheuristic Computing, v. 1, n. 1, p. 93-109, January 2010.

ANSOTEGUI, C.; SELLMANN, M.; TIERNEY, K. A Gender-Based Genetic Al-
gorithm for the Automatic Configuration of Algorithms. In: GENT, I. P. (Ed.).

Principles and Practice of Constraint Programming - CP 2009. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009. p. 142-157. ISBN 978-3-642-04244-7.

BOROS, E.; HAMMER, P. L.; TAVARES, G. Local search heuristics for quadratic
unconstrained binary optimization (QUBO). Journal of Heuristics, v. 13, n. 2,
p. 99-132, February 2007.

CASEAU, Y.; SILVERSTEIN, G.; LABURTHE, F. Learning hybrid algorithms for
vehicle routing problems. Theory and Practice of Logic Programming, v. 1,
p. 779-806, June 2004.

CONOVER, W. J. Practical Nonparametric Statistics. 3. ed. Nashville, TN:
John Wiley & Sons, 1998. (Wiley Series in Probability and Statistics).

DELAZERI, G.; RITT, M. Fast heuristics for traveling salesman problems with mul-
tiple flying sidekicks. In: 2021 TEEE Congress on Evolutionary Computation
(CEC). [S.1.: s.n.], 2021. p. 1365-1371.

DELAZERI, G.; RITT, M.; SOUZA, M. de. Comparing Surrogate Models for Tuning
Optimization Algorithms. In: Learning and Intelligent Optimization: 16th
International Conference, LION 16, Milos Island, Greece, June 5-10,
2022, Revised Selected Papers. Berlin, Heidelberg: Springer-Verlag, 2023. p.
347-360. ISBN 978-3-031-24865-8. Available from Internet: <https://doi.org/10.
1007/978-3-031-24866-5_ 26>

DREO, J. et al. Paradiseo: From a modular framework for evolutionary computation
to the automated design of metaheuristics: 22 years of paradiseo. In: CHICANO,
F. (Ed.). Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion. New York, NY, USA: Association for Computing Machinery,
2021. p. 1522-1530. ISBN 9781450383516.

DUNNING, I.; GUPTA, S.; SILBERHOLZ, J. What Works Best When? A Sys-
tematic Evaluation of Heuristics for Max-Cut and QUBO. INFORMS Journal
on Computing, Institute for Operations Research and the Management Sciences
(INFORMS), v. 30, n. 3, p. 608-624, August 2018.

FESTA, P. et al. Randomized heuristics for the max-cut problem. Optimization
Methods and Software, Informa UK Limited, v. 17, n. 6, p. 1033-1058, January
2002.

GLOVER, F.; Li, Z.; HAO, J.-K. Diversification-driven tabu search for uncon-
strained binary quadratic problems. 40R, Springer Science and Business Media
LLC, v. 8, n. 3, p. 239-253, Janurary 2010.


https://doi.org/10.1007/978-3-031-24866-5_26
https://doi.org/10.1007/978-3-031-24866-5_26

99

HANSEN, P.; MLADENOVIC, N. Variable neighborhood search: Principles and
applications. European Journal of Operational Research, v. 130, n. 3, p. 449—
467, May 2001.

HOOS, H. H.; STUTZLE, T. Stochastic Local Search. 1. ed. San Francisco:
Morgan Kaufmann, 2005. ISBN 978-1-55860-872-6.

HUTTER, F. et al. ParamILS: An Automatic Algorithm Configuration Framework.
Journal of Artificial Intelligence Research, v. 36, p. 267-306, October 2009.

JOHNSON, D. A theoretician’s guide to the experimental analysis of algorithms.
In: GOLDWASSER, M.; JOHNSON DAVID ANDMCGEOCH, C. (Ed.). Data
Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth
DIMACS Implementation Challenges. Providence, RI: American Mathemati-
cal Society, 2002. v. 59, p. 215-250. ISBN 978-1-4704-4017-6.

KATAYAMA, K.; NARIHISA, H. Performance of simulated annealing-based heuris-
tic for the unconstrained binary quadratic programming problem. European Jour-
nal of Operational Research, v. 134, n. 1, p. 103-119, Octorber 2001.

KENDALL, G. et al. Good Laboratory Practice for optimization research. Journal
of the Operational Research Society, v. 67, n. 4, p. 676689, April 2016.

KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. Optimization by simulated
annealing. Science, American Association for the Advancement of Science (AAAS),
v. 220, n. 4598, p. 671-680, may 1983.

KOCHENBERGER, G. et al. The unconstrained binary quadratic programming
problem: a survey. Journal of Combinatorial Optimization, v. 28 n. 1, p.
58-81, July 2014. ISSN 1573-2886.

LINDAUER, M. et al. SMAC3: A Versatile Bayesian Optimization Package for
Hyperparameter Optimization. Journal of Machine Learning Research, v. 23,
n. 54, p. 1-9, 2022. Available from Internet: <http://jmlr.org/papers/v23/21-0888.
html>.

LODI, A.; ALLEMAND, K.; LIEBLING, T. M. An evolutionary heuristic for
quadratic 0-1 programming. European Journal of Operational Research,
v. 119, n. 3, p. 662—670, December 1999.

LOPEZ-IBANEZ, M. et al. The irace package: Iterated racing for automatic algo-
rithm configuration. Operations Research Perspectives, v. 3, p. 43-58, 2016.

LOPEZ-IBANEZ, M.: MARMION, M.-E.. STUTZLE, T. Technical Report, Au-
tomatic Design of Hybrid Metaheuristics from Algorithmic Compo-
nents. 2017. Available from Internet: <https://iridia.ulb.ac.be/IridiaTrSeries/link/
IridiaTr2017-012.pdf>.

MARMION, M.-E. et al. Automatic Design of Hybrid Stochastic Local Search Algo-
rithms. In: BLESA, M. J. et al. (Ed.). Hybrid Metaheuristics. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013. p. 144-158. ISBN 978-3-642-38516-2.


http://jmlr.org/papers/v23/21-0888.html
http://jmlr.org/papers/v23/21-0888.html
https://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2017-012.pdf
https://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2017-012.pdf

60

MASCIA, F. et al. From Grammars to Parameters: Automatic Iterated Greedy
Design for the Permutation Flow-Shop Problem with Weighted Tardiness. In:
NICOSIA, G.; PARDALOS, P. (Ed.). Learning and Intelligent Optimization.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. p. 321-334. ISBN 978-3-642-
44973-4.

MASCIA, F. et al. Grammar-based generation of stochastic local search heuristics
through automatic algorithm configuration tools. Computers & Operations Re-
search, v. 51, p. 190-199, 2014. ISSN 0305-0548.

MILNE, A.; ROUNDS, M.; GODDARD, P. White paper, Optimal feature selec-

tion in credit scoring and classification using a quantum annealer. 2017.

NEUKART, F. et al. Traffic flow optimization using a quantum annealer. Frontiers
in ICT, Frontiers Media SA, v. 4, dec. 2017.

OHZEKI, M. et al. Control of automated guided vehicles without collision by quan-
tum annealer and digital devices. Frontiers in Computer Science, Frontiers Me-
dia SA, v. 1, nov. 2019.

PALUBECKIS, G. Multistart Tabu Search Strategies for the Unconstrained Binary
Quadratic Optimization Problem. Annals of Operations Research, Springer Sci-
ence and Business Media LLC, v. 131, n. 1-4, p. 259-282, October 2004.

PALUBECKIS, G. Iterated Tabu Search for the Unconstrained Binary Quadratic
Optimization Problem. Informatica, Vilnius University Press, v. 17, n. 2, p. 279-
296, January 2006.

PUNNEN, A. P. (Ed.). The Quadratic Unconstrained Binary Optimization
Problem. 1. ed. Switzerland: Springer International Publishing, 2022. ISBN 978-
3-031-04519-6.

RESENDE, M. G. C.; RIBEIRO, C. C. Greedy Randomized Adaptive Search Pro-
cedures. In: GLOVER, F.; KOCHENBERGER, G. A. (Ed.). Handbook of Meta-
heuristics. Boston, MA: Springer US, 2003. p. 219-249. ISBN 978-0-306-48056-0.

ROSENBERG, G. White paper, Finding optimal arbitrage opportunities us-
ing a quantum annealer. 2016.

SOUZA, M. de; RITT, M. Automatic Grammar-Based Design of Heuristic Algo-
rithms for Unconstrained Binary Quadratic Programming. In: LIEFOOGHE, A.;
LOPEZ-IBANEZ, M. (Ed.). Evolutionary Computation in Combinatorial
Optimization. Cham: Springer International Publishing, 2018. p. 67-84. ISBN
978-3-319-77449-7.

WANG, H. New results on closed-form formulas for evaluating r-flip moves in
quadratic unconstrained binary optimization. SSRN Electronic Journal, 2022.

WANG, Y. et al. Backbone guided tabu search for solving the UBQP problem.
Journal of Heuristics, v. 19, n. 4, p. 679-695, March 2011.

WANG, Y. et al. Path relinking for unconstrained binary quadratic programming.
European Journal of Operational Research, v. 223, n. 3, p. 595-604, December
2012.



APPENDIX A — COMPONENTS

Data: Initial solution x
Result: Best found solution x*
¥
while Termination criteria do
T < pert(z);
x < intensification(z);
if f(z) < f(z*) then

‘ ¥

end

end
Algorithm 1: ILS

Data: Initial solution x
Result: Best found solution z*
¥ x;
E + 0
while |E| # e do
x < intensification(z);
E=EU{z};
x = generate random solution;
end
while Termination criteria do
x < select random element from F’;
x < pert(z);
x < intensification(x);
x" < worst solution in F;
if f(z) < f(z) andx ¢ E then
| E=BU{z}\ o)
end
if f(x) < f(z*) then
‘ ¥ x;

end

end
Algorithm 2: ILSE
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Data: Initial solution z
Result: Best found solution x*
¥ x;

while Termination Criteria do

T < pert(z);
' x;
k <+ 1;
while k£ < k,,,,. do
A <+ randomly select k distinct integers between 1 and N;
o 1—alie
x’ < intensification(2’);
if f(2') < f(z) then
T <+ al;
k <+ 1,
if f(2') < f(z) then
AR
if f(x) < f(z*) then
‘ T* 4 1]
end
end
else
' w;
k+—k+1;
end
end
end

Algorithm 3: VNS



Data: Initial solution z
Result: Best found solution z*
¥ <+

E « 0;

while Termination Criteria do

z  pert(z);

T’ a3
k<+1;
while k < k0. do
A + randomly select k distinct integers between 1 and N;
zh —1—ali el
z' < intensification(z’);
if f(2') < f(z) then
T+ x';
k<« 1;
if f(z') < f(x) then
T+ x';
if f(z) < f(z*) then
‘ ¥
end
end
else
/< x;
k<+—k+1;
end
end
if |E| =0 then
‘ E +— EU{z};
else

2’ < select random element from E;
x + PathRelinking(z, z');
¥ <+ worst solution in E;
if f(z) < f(z¥)andz ¢ E then
| E=EU{z}\ {=");
end
if f(z) < f(z*) then

‘ ¥+

end

end

end

Algorithm 4: VNSPR
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Data: Initial solution x
Result: Best found solution z*
¥ x;
while Termination criteria do
x <+ constructor(z);
r < intensification(z);
if f(x) < f(z*) then

‘ ¥ x;

end

end
Algorithm 5: GRASP



Data: Initial solution x
Result: Best found solution z*
¥ x;
E < 0;
while Termination criteria do
T < constructor(z);
x < intensification(x);
if f(z) < f(z*) then

‘ ¥

end

end

if |E| =0 then

E +— FEuU{z};

else

2’ < select random element from F;

x < PathRelinking(z, 2');

x" < worst solution in F;

if f(z) < f(z") andz ¢ E then
| E=FEU{a}\ {a"};

end

if f(z) < f(z*) then
‘ ¥

end

end
Algorithm 6: GRASPPR
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Data: Initial solution z

Result: Best found solution z*

¥ <+

while Termination criteria do

E < empty array;

while E.size # b do
x = generate random solution;
x < intensification(z);

if  not in E then
| Append z to E

end
end
tag(i) + TRUE,i € [N];
novel < TRUE;
while novel do
novel < FALSE;
C «+ E;
I+ 0;
for i,j € [N], i < j and (tag(i) ortag(i)) do
z « PathRelinking(C(3),C(5));
x < intensification(x);
w < index of worst solution in E;
if f(z) < f(E(w)) and = not in E then
E(w) + x;
novel < TRUE;
I+ I1U{w}
end
if f(z) < f(z*) then
‘ T* +— x;
end
z « PathRelinking(C(j),C(i));
x « intensification(x);
w < index of worst solution in E;
if f(z) < f(E(w)) and = not in E then
E(w) = x;
novel < TRUE;
I+ I1U{w}
end
if f(z) < f(z*) then

‘ T* +— x;

end

end

tag(i) < FALSE,i € [N]\ I;
tag(i) < TRUE,i € I;

end

end

Algorithm 7: RER



Data: Initial solution x
Result: Best found solution x*
¥ x;
change <~ TRUE;
while change do
i < improvement(z);
T, — 1 —x;
if f(z) < f(z*) then
‘ ¥
else

‘ change < FALSE;

end

end
Algorithm 8: LS
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Data: Initial solution x

Result: Best found solution x*

¥ x;

change <~ TRUE;

while stagnation < smax and change do
rand < FALSE;

if rand_real(0,1) < p then

i < rand_int(1, N);

rand <— TRUF;

else

i <— improvement(z);

end
T — 1 —x;;
if f(z) < f(z*) then
¥+ o
else
st < st + 1;
if rand then
change < FALSFE;

end

end

end
Algorithm 9: NMLS
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