UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
CURSO DE CIENCIA DA COMPUTACAO

NICOLAU PEREIRA ALFF

Learned Indexes with Updates

Monografia apresentada como requisito parcial
para a obtenc@o do grau de Bacharel em Ciéncia
da Computacio

Orientador: Prof*. Dr?. Renata Galante

Porto Alegre
2023

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos André Bulhdes Mendes

Vice-Reitora: Prof*. Patricia Helena Lucas Pranke

Pré-Reitor de Graduagdo: Prof*. Cintia Inés Boll

Diretora do Instituto de Informatica: Prof*. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciéncia de Computagdo: Prof. Marcelo Walter
Bibliotecdrio-chefe do Instituto de Informética: Alexsander Borges Ribeiro

AGRADECIMENTOS

Inicialmente, gostaria de expressar meu imenso agradecimento a minha familia:
meus pais - Marco e Maira - minha irma - Hannah - e minha avé - Rosa - que sempre
estiveram ao meu lado, me apoiando e motivando a alcancar vdos mais altos. Sem eles,
com certeza, nada disso seria possivel.

Um agradecimento a SAP Walldorf, em especial meu gerente Arne Schwartz, meu
tutor Daniel Ritter, e também Norman May e Thomas Legler que contribuiram imensa-
mente com suas opinides acerca do projeto desenvolvido. Estendo ainda este agrade-
cimento a todos os estagidrios, alunos de PhD e demais funciondrios com quem pude
conviver tdo bem durante o desenvolvimento deste projeto. Meu muito obrigado SAP por
ter me permitido crescer tanto profissionalmente durante os meses que pude estagiar.

N3ao posso deixar de agradecer ao governo francés por toda a ajuda que puderam
dar a um estrangeiro em seu pais durante uma pandemia para que tornasse ndo s6 este
projeto possivel, mas também a dupla diplomacgdo. Assim, agradeco também a ENSI-
MAG, em especial a secretdria de relagdes internacionais da escola Elena Leibowitch que
incansavelmente atende a todos os alunos internacionais com simpatia e receptividade
notaveis.

A professora Renata de Matos Galante, meu imenso muito obrigado pela dedica-
cdo ao longo deste dltimo semestre, orientando-me com um acompanhamento fundamen-
tal a permitir o bom desenvolvimento desta monografia.

Nao posso deixar de agradecer nominalmente a mais alguns professores desta
grande jornada académica. Aos meus orientadores de Iniciagao Cientifica: Renato Pe-
rez Ribas e Antonio Carlos Beck Filho, obrigado por todo o conhecimento que puderam
me passar ao longo de suas orientacdes. Com certeza esta monografia foi escrita também
utilizando muito do aprendizado e conhecimento agregado com os senhores. Ao profes-
sor Claudio Fernando Resin Geyer meu muito obrigado por todo o esfor¢co desempenhado
na coordenacdo do BRAFITEC. E também ao professor Raul Fernando Weber (in memo-
riam), que por meio de suas palavras e aulas sensibilizava a todos os seus alunos com
a empolgacdo pela computacdo. Em nome deles estendo esse agradecimento a todos os
professores que participaram da minha formacao, cada um a seu modo me levou a che-
gar onde estou hoje e estabeleceu um alicerce para alcancar muitos feitos pela frente. “A
teacher affects eternity; [they] can never tell where [their] influence stops.” (ADAMS,
1907).

RESUMO

A presente pesquisa pretende analisar o comportamento de Learned Indexes, tendo como
ponto de partida o estdgio realizado na SAP SE em Walldorf, Alemanha, no periodo de
abril de 2022 a setembro de 2022. Pesquisas recentes sobre Learned Indexes em Sistema
de Gerenciamento de Banco de Dados tem demonstrado melhorias significativas de de-
sempenho em relagcdo a indices tradicionais, como B-trees, porém ainda h4 muito a ser
explorado nessa drea. Atualmente, hd uma caréncia de estudos sobre dados dindmicos,
principalmente aqueles envolvendo conjuntos de dados reais. Dado o potencial de ganhos
significativos de desempenho quando implementados em Sistema de Gerenciamento de
Banco de Dados em comparagdo com os indices tradicionais, hd um grande interesse
em conduzir um estudo mais aprofundado de Learned Indexes. Assim, o objetivo deste
projeto é fazer benchmark de trés casos, inicialmente criados artificialmente para que pos-
samos explorar algumas dificuldades do modelo de aprendizado profundo e analisar como
o banco de dados se comporta. Na fase inicial deste projeto, estabelecemos uma linha de
base reproduzindo resultados de pesquisas anteriores. Observamos que nossos resultados
se assemelham bastante ao comportamento relatado nesses artigos. No entanto, ao tra-
balhar com conjuntos de dados criados artificialmente, notamos overfitting nos modelos
utilizados e seu impacto na criacdo e inser¢do do modelo.

Palavras-chave: Learned index. arquitetura de banco de dados. .

Learned Indexes with Updates

ABSTRACT

The present research intends to analyze the performance of Learned Indexes, having as
starting point the internship held at SAP SE in Walldorf, Germany, between April,2022
and September,2022. While recent research on Learned Indexes within Database Manage-
ment Systems has demonstrated significant performance improvements over traditional
indexes such as B-trees, there is still much to be explored in this area. Currently, there is
a lack of studies on dynamic data, particularly those involving real-world datasets. Given
the potential for significant gains in performance when implemented in Database Man-
agement Systems as compared to traditional indexes, there is a great deal of interest in
conducting a comprehensive study of Learned Indexes. So the objective of this project is
to benchmark several cases, initially artificially created one so we can explore some deep-
learning model difficulties and analyse how the database behaves. In the initial phase of
this project, we established a baseline by reproducing results from previous research. We
observed that our results closely resembled the behavior reported in those papers. How-
ever, when working with artificially created datasets, we noticed some overfitting in the

model and its impact on the model’s creation and insertion.

Keywords: Learned Index, Database Architecture, .

LISTA DE FIGURAS

Figura 3.1 B-Trees as Models adapted from (KRASKA et al., 2018)ccceevveiveeennnnenn. 14
Figura 3.2 Staged models adapted from (KRASKA et al., 2018)....cccceevieiniiiniieenncene 15
Figura 3.3 Staged Model adapted from PGM-index(FERRAGINA; VINCI-
GUERRA, 2020) with ¢ = 1. The fixed interval is shown by the red brackets........ 16
Figura 3.4 ALEX Staged models adapted from (DING et al., 2020a)..........cccccevuenunenne 16
Figura 3.5 LIPP Staged models adapted from (WU et al., 2021)ccceevveerieeeireennennne 18
Figura4.1 Execution phases methodologycccceeiiieriiiiiniiiniieeieeeee e 21
Figura4.2 Batch algorithm extended and adapted from (DING et al., 2020a)............... 22
Figura 5.1 PGM replication data compared with LIPP reproductioncccccccceeueeee. 24
Figura 5.2 ALEX 1€PliCAtION ...cccueiriiiiiiiiiniieiieiteeteee ettt 24
Figura 5.3 ALEX replication data compared with LIPP reproductioncc...c........ 25
Figura 5.4 LIPP repliCatiONcc.uvtiiiiiiiieiiiiieeeeiiee ettt ettt et te e st eessaaeeeenaaeeees 25
Figura 5.5 0% insertion on PGM repliCationccocueeriiiiiiiiniieenieeeiieeriee e 25
Figura 5.6 Datasets €Xamples........coceeouiirieriiiiiiiienieeieeceeeee e e 27
Figura 5.7 ALEX running minMax datasetccoceeevuiinieniinieniieenienieneeieeneee e 28
Figura 5.8 Cumulative Operations Throughput results...........cccceriiiniiniiniinnienienee 29

Figura 5.9

PGM running density datasetcc.ceeouerieeniienieniieeiienienieeee e 29

LISTA DE TABELAS

Tabela 2.1 Learned indexes on dynamic data overview (select: OSS, Relational)......... 12
Tabela 2.2 Experiments on dynamic datacoecueeeiieeniiieniiiniieeieeeiieesiee e 13
Tabela 2.3 Datasets on dynamic data.........coceeeueerierieeiiiinienienieeeeeesee e 13
Tabela4.1 Formulas to calculate the different Throughputs...........cccccooiiiiiiinninnniin. 21
Tabela 5.1 DatasetS ACTONYIMSceeruvierireerieeeriieenieeerreesteeenereessseeessseesssneesseessseeessseesns 23
Tabela 5.2 New Datasets used in €XPErimentscecveerveeerveerieeeriveeeseeesiseesseeensneeens 26

Tabela 6.1 Summary of complexity comparisons adapted from LIPP(WU et al., 2021)31

LISTA DE ABREVIATURAS

ALEX Updatable Adaptive Learned Index.

CIT Cumulative Insertion Throughput.
CLT Cumulative Lookup Throughput.
COT Cumulative Operation Throughput.

Database Management Systems (DBMS) are softwares systems used to store, retrieve

and run queries on data..

LI Learned Indexes.
LIPP Updatable Learned Index with Precise Positions.

Lognormal Dataset composed by values generated according to a lognormal distribution

with = 0 and ¢ = 2 multiplied by 10° and rounded down to the nearest integer.

Longitudes and Latitudes (Longlat) Dataset composed by compound keys that com-
bine longitudes and latitudes from Open Street Maps (OpenStreetMap contributors,
).

Longitudes (Long) Dataset composed by longitudes of locations around the world from

Open Street Map (OpenStreetMap contributors,).
OSS Open-source software.

PGM-index Piecewise Geometric Model index.

PLA Piecewise Linear Approximation.
RMI Recursive Model Index.
SGBD Sistema de Gerenciamento de Banco de Dados.

YCSB Dataset composed by values representing user IDs generated according to the

YCSB Benchmark(COOPER et al., 2010).

SUMARIO

1 INTRODUCTION.....

1.1 Work Structure
2 PROJECT OVERVIEW......

2.1 Project goals

3 STATE OF ART - LEARNED INDEX
3.1 Piecewise Geometric Model index (PGM-index)

3.2 Updatable Adaptive Learned Index (ALEX)

3.3 Updatable Learned Index with Precise Positions (LIPP)..

3.4 GRE...

4 METHODOLOGY ...

4.1 Execution Methodology...
4.2 Experiment’s Setup

5 EXPERIMENTS

5.1 Learned Index Replications
5.2 New Experiments ..

5.2 1 RESUIES -t e e e anaas

6 RELATED WORK ...

7 CONCLUSION

REFERENCIAS

APENDICE A — RESUMO EXPANDIDO

A.1 Introducio..

A.2 Trabalhos relacionados...

A.3 Metodologia
A.4 Resultados..

A.5 Conclusao...

10

.11
w12
..13
14

15

.16
.17
..18
.20

20
21

.23
.23
.26

27
30

32
.33
..34
.34
35

36

37
..38

10

1 INTRODUCTION

The use of several algorithms implementing index structures for applications
where the need for data access is critical already demonstrate the better efficiency of this
type of algorithm over others. Recent experiments and results have shown that Learned
Indexes (LI) are a great option to implement Database Management Systems (DBMS)
mainly as an evolution from B-trees. In (KRASKA et al., 2018), in which the concept
of Learned Indexes (LI) is presented, the authors interpret traditional index structures as
models and because of that they assume that these index approaches can then be replaced
by other types of models, as is the case with LI that Tim Kraska proposes a deep-learning
model.

In the first implementations of such indexes one of the challenges was to imple-
ment it with updates, but good results were obtained in recent LI systems. The three
systems that we are going to explore more in this project are Piecewise Geometric Model
index (PGM-index)(FERRAGINA; VINCIGUERRA, 2020), Updatable Adaptive Lear-
ned Index (ALEX)(DING et al., 2020a) and Updatable Learned Index with Precise Posi-
tions (LIPP)(WU et al., 2021). However, even with these good results presented, which
generates high expectations, there are still challenges to be overcome so we can imple-
ment in DBMSs to be sure about the performance gain. Some of these challenges are a
lack of real world datasets experiments, usage of different data types, concurrent imple-
mentations and a good study over how it behaves under overfitting, as also found in a
recent work (WONGKHAM et al., 2022), and caching.

In this project we want to study and analyse some of the behaviors we can expect
from a LI system by benchmarking it using first chosen datasets used by other related
works, later we use the artificially created datasets with the objective to understand the
behaviors over well known data and for the last lasts experiments some real world data-
sets.

So it can be achieved I started this project making a tracking over the different
systems already implemented, that’s when it was decided to use the 3 LI systems, the next
step was to reproduce the different experiments from these systems. And then finally run
our own experiments always focusing on systems that support dynamic data, that’s Open-
source software (OSS) and that supports relational data model. These characteristics are
important for SAP so it’s possible to analyse how it works and develops so it’s possible to

compare to actual products from the company and also decide if it’s better to implement

11

these tools using Learned Indexes as the base for the DBMS.

1.1 Work Structure

The structure of this work is organized as follows. First we introduce the project
with a brief overview and main goals in chapter 2 . Then we present the state of the art
in chapter 3 where we also present the LIs we use in this project. The methodology and
the setup we used for all experiments we present in this document is in chapter 4. Then in
chapter 5 we present and discuss the reproductions and the new experiments we did. We
discuss related work in chapter 6, conclude and present the future works in chapter 7. In

Appendix A an extended abstract from this monograph is presented in Portuguese.

12

2 PROJECT OVERVIEW

The first part of the project was to track different DBMS that already implemented
Learned Indexes. However, some prerequisites were placed as mandatory within this
search. The systems I was looking for were LlIs that should be Open-source software
(OSS) and that supported relational data model. In Table 2.1 the most promising systems
were summarized. At this point of the project different data types and concurrency is not
so important, but as it should be important in the future we already get this information
from the different approaches. So by now all the systems used were single threaded and

only accepted number formats — i.e. signed and unsigned integers, double.

Tabela 2.1 — Learned indexes on dynamic data overview (select: OSS, Relational)

System ‘ OSS Data Concurrency
Data Model Data Types
PGM (FERRAGINA; VINCIGUERRA, 2020) | f Relational (! i
ALEX (DING et al., 2020a) b Relational Q) p
LIPP (WU et al., 2021) ol Relational Q Q
XIndex(TANG et al., 2020) ol Relational Q) ol
SIndex(WANG et al., 2020)] Relational &) @]
Tsunami(DING et al., 2020b) i@ Multi-Dimensional (&) ip

s Fully meets the requirement

OPartially meets the requirement

Doesn’t meet the requirements but list it as possible future work
i®Doesn’t meet any of the requirement

The decision to utilize PGM-index, ALEX, and LIPP was based on their dynamic
nature, which allows for updates; their relational structure, which is better suited for the
company to adapt to their products; and their open-source status, which ensures legal use.
Additionally, they were chosen based on their availability at the time of data collection.
The remaining data collected and summarized in Table table 2.1 should be considered for
future works.

The list of the settings used for the experiments were also summarized and pre-
sented in Table 2.2, and the different datasets used for these experiments in Table 2.3,
where the 4 first datasets -Long, Longlat, Lognormal and YCSB- are benchmarks used
by ALEX(DING et al., 2020a) and LIPP(WU et al., 2021), and the last three — Web logs,
Longitudes and IoT — were used by PGM.

Tabela 2.2 — Experiments on dynamic data

13

Experiment ‘ Operations Initial index size ~ Description | System
Read-only 100% lookup 100M random keys LIPP
Read-heavy 33% insert, 67% lookup empty LIPP
Write-heavy 67% insert, 33% lookup empty LIPP
Write-only 100% insert empty LIPP
Read-Only 100% read 100M ALEX
Read-heavy 95% read, 5% inserts 100M ALEX
Write-heavy 50% read, 50% inserts 100M * ALEX
Short range query | 95% reads, 5% inserts 100M ok ALEX
Write-only 100% inserts 100M ALEX
* A read consists in a lookup operation for a single key
** A read consists of a key lookup followed by a scan of the subsequent keys
Tabela 2.3 — Datasets on dynamic data
Data | Numkeys Keydatatype Payload size Total size | Characteristics
longitudes 1B double 8B 16GB -
longlat 200M double 8B 3.2GB -
lognormal 190M 64-bit int 8B 3.04GB -
YCSB 200M unsigned 64-bit int 80B 17.6GB -
Web logs 715M timestamp - - web server requests
IoT 26M timestamp - - IoT sensors™

- Unknown / no entry

2.1 Project goals

The main goals in this project is to make a study and an analysis over Learned In-

dexes and its impacts over a DBMS so we can determine if it would be good to implement

in SAP products because of the performance gain.

To achieve this goal, different steps and smaller goals must be achieved. The first

one was to find LI systems that’s already implemented that fulfilled our prerequisites.

After that we need to reproduce it to have a basis for comparison with new experiments.

From these reproductions and studies over the other projects it’s possible then to make

an analysis over weak spots and then in which parts we can make improvements. In this

moment we already notice some needs to make artificial datasets to test the behaviors over

the LI approaches we are testing.

14
3 STATE OF ART - LEARNED INDEX

Learned Indexes (LI) concept came up in (KRASKA et al., 2018) and the main
principle is to understand indices as models. The Figure 3.1 illustrates the main thinking
why it’s possible to make this replacement. A B-Tree maps from a given lookup key to
a range of positions inside an array and the same mapping can be done with a machine
learning model that can guarantee a range - between min_error and max_error - in the
array since it’s sorted and fixed size types.

Figura 3.1 — B-Trees as Models adapted from (KRASKA et al., 2018)

Key Key

! !

AL - - A T
f f

pos -min_err| [pos +max_err
(a) B-Tree Index (b) Learned Index

This first paper on the subject didn’t have the purpose to completely replace the
traditional index structures for learned index. But it argue that continuous functions can
be used to make data structures and algorithms more efficient and from this they conclude
that LI has a potential power to be better.

Kraska et al. (KRASKA et al., 2018) also proposed the Recursive Model Index
(RMI) that is a recursive regression model built as a hierarchy of models shown in Figure
3.2. The main principle is that in the current stage model the key serves as an input that
will then be used to define which model of the next stage will be chosen until the final
stage position is predicted. The way it works is as each model would be competent for a
certain range over the array - for example the Model 1.1 in the first stage in Figure 3.2 is
responsible for all the key space - so the deeper we are in the hierarchy lower is this range
and as a consequence we have a better prediction and a lower error.

This staged model is used not only by Kraska, but it’s replicated for many of the
different systems as all the 3 approaches we chose to replicate: PGM-index, ALEX and
LIPP. But they implemented new ways to make this last decision. It will be explained
better later on this report, but to give one example ALEX chose not to have a key space
and implemented data nodes with gapped arrays.

However, (KRASKA et al., 2018) has its limitations. The implementation focus

15

only on read-only workloads and designed the RMI statically as a consequence it doesn’t

support updates and dynamic data.

Figura 3.2 — Staged models adapted from (KRASKA et al., 2018)

Key
b
//
&//
[Modei21 | [Model2.2 | [Model2.3 |
[Model31 | [Model3.2 | | Model33 | | Modei 3.4 | | Model3s | -
Position
XK
L
pos - min_err pos + max_err

With this information from (KRASKA et al., 2018) as the basis for other systems
that will be shortly presented. On each of the systems throughout the next sections, the
main characteristics and the differences presented in the works will be highlighted in
order to show the evolution of the indexes and also to present what will bring the main

differences in performance between each of them.

3.1 Piecewise Geometric Model index (PGM-index)

PGM-index was presented in (FERRAGINA; VINCIGUERRA, 2020) where they
designed a fully dynamic LI system. They claim to be better than original RMI (KRASKA
et al., 2018) in query time and space occupancy and also up to 71% better in query and
update time than B+ Trees for dynamic workloads while it can also reduce by up to 4
orders of magnitude the space occupancy.

One of the changes PGM implements is a fixed integer parameter that will control
the size of the region that the system will access, as Figure 3.3 shows. These impro-
vements are possible because PGM-index supports distribution-awareness, multi-criteria
adaptability, auto-tuned to any given space or latency requirements and compression. This
last one is very important for the memory efficiency.

For that we have a Piecewise Linear Approximation (PLA) model that is a map-
ping between the keys and their approximate position in the data array. The correct posi-

tion can be at most € away from the predicted one.

16

Figura 3.3 — Staged Model adapted from PGM-index(FERRAGINA; VINCIGUERRA,
2020) with € = 1. The fixed interval is shown by the red brackets

level O

level 1 ‘2 ‘34|119‘ ‘
level 2 ‘2‘23‘34‘ ‘71‘119‘153‘ ‘
._—_[_ .I
Data aray ... ‘ ‘ 55 ‘ 59 ‘ 80 ‘ 71 ‘ 73 ‘ 76 ‘ 80 ‘ 88 ‘ 95 ‘119‘123‘...

3.2 Updatable Adaptive Learned Index (ALEX)

Different from PGM, that makes improvements but maintained most of how staged
models were presented in (KRASKA et al., 2018), ALEX(DING et al., 2020a) introduced
a new design for it.

Instead of having a big array at the end, ALEX presents different types of nodes as
we can see in the staged model shown in Figure 3.4. The internal nodes, despite appearing
similar to those of other systems, will be slightly different as they aim to find a flexible
way to partition the key space. And the data nodes will be where the data will be stored
in gapped arrays. This way, instead of the last node pointing to a region in a large array

that holds all the data, the data will already be dispersed through the different data nodes.

Figura 3.4 — ALEX Staged models adapted from (DING et al., 2020a)
|:| Internal Node

| CY

| Adaptive
RMI

[M]

‘position

Gapped Array

Exponential
search

17

The authors argue for the benefits of using gapped arrays, because in case of a
position collision for a given key, instead of already having to divide the nodes - so that
more memory is available for the new data - the system will use the gaps, i.e. empty po-
sitions, available near the collision for data storage. This generates gain because splitting
the nodes generates a drop in performance. ALEX tries again to avoid this by implemen-
ting a node expansion mechanism that will create new gaps and with that will decrease
the node density again. But inevitably from time to time division will take place. When
this division happens, the model is also retrained for the new nodes with the data they will
receive.

With all these advances ALEX claims to be up to 2.2 time better on performance
with up to 15 times smaller index size than (KRASKA et al., 2018). But thanks to gapped
arrays ALEX presents one of the points that has to improve, because inside the data node
it performs an exponential search until it finds the correct position. This is one of the main

changes presented by LIPP.

3.3 Updatable Learned Index with Precise Positions (LIPP)

LIPP is introduced in (WU et al., 2021). And it presents considerable new modifi-
cations in how it implements the staged model. And in place of ALEX’s worst case where
you would have to do the exponential search all node-wide, LIPP bounds the lookup cost
to the tree height. LIPP implements a system such that it precisely maps the key to a
position. If too many conflicts start to happen with many keys being taken to the same
position, then a new node is created to store these keys.

The design presented by LIPP, as shown in Figure 3.5, therefore has an even grea-
ter distribution of data than ALEX already did. Each node as well as the rest will have its

model, but what changes will be the array of entries, as it can contain 3 types of entries:

e NULL: empty position, similar to gaps implemented by ALEX
e DATA: position that stores the pair <key,payload>

e NODE: A pointer to a child node at the next level.

This is how conflicts are resolved. If the system tries to insert a tuple
<key,payload> pair in a data position, a new node is created to store both data and the
position that previously stored data starts to point to the newly created child node.

LIPP also presents some strategies to fit the models in order to keep the tree height

18

Figura 3.5 — LIPP Staged models adapted from (WU et al., 2021)
Il noo: Koy > @
[:] pama
B nuLL / \

s o
e

B EE

bounded. As the worst case of LIPP is given by the depth of the tree, this is a very impor-
tant mechanism to maintain performance. According to the authors, then the criteria for
the adjustment decision are that the number of elements inserted in the subtree is at least
S times the number of elements that this subtree contained in the previous adjustment.
The second criteria is that the rate of conflicts and insertions in a subtree exceeds a «
threshold. Both o and [are implementation-defined and can be changed. By default the
paper displays o = 0.1 and [= 2. If the systems meet any of these criteria, the system

will run the adjustment algorithm so that the tree gets a lower height.

3.4 GRE

GRE is a framework suite for traditional indexes and Learned Indexes , which is
presented in (WONGKHAM et al., 2022), to measure throughput and latency. The project
aims to evaluate the practicality of using learned indexes in real DBMS and makes two
major contributions to the community.

The first contribution, which I consider the most significant in the paper, is a quan-
titative measurement that uses the Piecewise Linear Approximation (PLA) to estimate the
hardness of a dataset for a specific LI. This approach enables a better understanding of
the usage of different indexes under varying scenarios.

The second contribution is the open-source benchmarking suite available at (WU
et al., 2022). This tool helps new studies over LIs making easier to evaluate learned over
traditional indexes. It also makes available scripts to visualize the experiments done.

Although the framework was available, it was not utilized in this monograph. This

19

was due to the fact that at the time of the conducted experiments, GRE had not yet been
made available. The publication of this framework occurred long after the start of the

experiments that are to be presented in this paper.

20

4 METHODOLOGY

This section will present our methodology and setup to run all the experiments.

4.1 Execution Methodology

As a methodology for the experiments we followed the methodology presented in
(RITTER et al., 2016) in which the experiment is divided in forks and each of the forks
will run warmups and a determined number of iterations from the required program as
it’s shown in Figure 4.1(a) how it’s supposed to work. For that the environment should be
completely cleaned for each fork in that way we can minimize problems as caching and
also that can make us have a more confident result, because we run several forks for each
experiment as many as needed so we have high confident interval - 95 or 99%.

All the experiments that has been done and presented in this document passed
through the same method. We run 3 forks / runs for each experiment - that’s the combina-
tion between the different settings and the different datasets - each of these forks consisted
of 4 warmup cycles and then 5 iterations of the program, one fork cycle can be seen in
Figure 4.1(b) starting from building the docker container. Each iteration had as output a
csv file that contains the performance data that we used to get the results we will present
in the next sections, after each fork we copy all output csv files from the container to the
server.

For the results that are going to be presented in the next sections are the mean of
the cumulative throughput from 3 forks. For each fork we completely clean the containers
rebuilding from scratch each time this gives me a better way to calculate the confidence
interval and also prevents any caching that can happen from execution to execution.

Thus, the main metric used in this work was the Cumulative Operation Throughput
(COT) However, to better analyze the results, Cumulative Lookup Throughput (CLT) and
Cumulative Insertion Throughput (CIT) were also utilized. These metrics allowed for a
better understanding of the accumulated behavior in the and to determine which metric
had a greater weight within that specific experiment. These metrics can be calculated by

the formulas in Table table 4.1

21

Tabela 4.1 — Formulas to calculate the different Throughputs

Metric Formula
COT Lookup Operations + Insertion Operations
Lookup Time + Insertion Time
CLT Lookup Opefatlons
Lookup Time
CIT Insertlon‘ Oper‘atlons
Insertion Time

Figura 4.1 — Execution phases methodology

Phase pre Phase work Phase post

[Next benchmark |

[Next fork of benchmark |

Select Pre- Configure,
Compiled Create New Cleanup
Benchmark Fork
»| Build Docker Dgle‘tg\lge
container coﬂta\ier
Conf Select, Load W -
R i e e
Thork * Tstart Tioad Cco:?r?ﬂfg‘lsi)aﬂd 4 Warmups 5 Iterations
to settings Iterations
(a) EIPBench execution phases Adapted from (RITTER et al., (b) One fork execution
2016)

t Twarmup Titerations 1y verifty™ Telean {4,

4.2 Experiment’s Setup

All the experiments were executed in docker containers in a dedicated server that
has an Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz. All codes were implemented
using C++ and to run all the experiments following the methodology presented before all
the commands were run using shell scripts.

For all DBMS each iteration, that’s execution of the program, consists of a bul-
kload of a given number of keys and after that the program enters in a loop up to a time
limit or the total number of keys - also given to the program - is reached. Each of the loop
iterations it’s called a batch as we can see in Figure 4.2 . We also define the number of
operations each batch will run and the percentage of these operations that’s going to be
insertions and by consequence the rest of it is going to be lookup operations.

The base numbers we used in the experiments we are going to present the results
are a starting bulkload of 10 million keys, a total number of 20 million keys - that is
the limit defined so the loop stops if met - and 1 million operations per batch. As it’s
possible to see in Table 2.2 the main parameter that changes the different workloads are
the percentage of insertion and lookup operations. So for example when we define 5%
insertion operations each batch will consist of 50 thousand insertion operation and 950
thousand lookup operations. Any experiment that does not follow these base numbers

will be explicitly explained in the specific experiment in what the changes were made.

22

Figura 4.2 — Batch algorithm extended and adapted from (DING et al., 2020a)

No

Batch |

Lookup
Operations

Insert
Operations

Time limit reached

End
O
r of
Total number of .
Iteration

keys reached

23

5 EXPERIMENTS

This chapter will detail the experiments conducted and also provide a brief analy-

sis of the results obtained from those experiments.

5.1 Learned Index Replications

We start replicating the 3 Learned Indexes (LI) that we chose. We used ALEX
benchmark code as a platform to reproduce the others implementing PGM and LIPP li-
braries in it. All of them in separated codes. So we have the same measurement pattern
for all the three of them. The objective here is to compare our execution with the the tests
made and presented by the original papers.

For better visualization reasons in the diagrams presented below as results of the
reproductions made, we changed the names of the datasets by acronyms presented in

Table 5.1

Tabela 5.1 — Datasets acronyms
Longitudes | LT
Longlat LL
Lognormal | LN

So for the replication we followed exactly the way presented in Section 4. As
output we got csv files that contained the Cumulative Operation Throughput (COT) —i.e.
the throughput that we got from lookup and insertion operations — for each one of the
batches. So we make the mean of these throughput data and that’s the value used to make
the diagrams. We also analysed the standard variation of the data we are using so we can
be sure that the mean was a reliable value to represent the experiment result. In all cases
of experiments, the standard deviation found in the data is orders of magnitude lower than
the mean value. In addition, no large outliers were found within the data collected for
calculating the average Cumulative Operations Throughput.

As it is shown in Figure 5.1 and Figure 5.3 the compared values came from LIPP’s
paper reproduction data for those 2 replications. PGM-index originally used other datasets
and also other metrics for its evaluation. So for consistency and to have a baseline to
compare we take the results that LIPP presented (WU et al., 2021) and used that as data
in Figure 5.1.

Thus, with result diagrams we can finally analyse the data we got. ALEX replica-

24

Figura 5.1 — PGM replication data compared with LIPP reproduction

14
12
10

N
=}
IN

w

illion Ops/sec)

-
n

£08

Throughput (million Ops/sec)
Throughput (million Ops/sec)
Throughput (million Ops/sec)

6 = 1.0 2
50,

4 £04 05 1

2 30.

0 T LL LN YCSB F 00 LT LL LN YCSB 00 LT LL LN YCSB 0 LT LL LN YCSB

Datasets Datasets Datasets Datasets
mEN PGM mEE PGM on LIPPI EEN PGM =N PGMon LIPPJ BN PGM EEE PGMon LIPPJ EEE PGM mEm PGMon LIPPJ
0% insertion 33% insertion 66% insertion 100% insertion
Figura 5.2 — ALEX replication
T 2 3 3
212 2 2° g4
& & Os °
510 5 5, &3
= 8 = = =
£ £ £s £
é 4 ‘é_ §2 é-
S ,) 2, o1
g] 2 g
= =
[L IN YCSB F T L IN YCSB O L LN YCSB O LL IN YCSB
Datasets Datasets Datasets Datasets
BN ALEX B Original ALEX | BN ALEX B Original ALEX | WM ALEX W Original ALEX | W ALEX B Original ALEX |
0% insertion 5% insertion 50% insertion 100% insertion

tion, Figure 5.2, did not reach the same numerical value in the throughput measurements,
but we noticed that the execution for the Longitudes (Long) and Longlat datasets show
the same tendency on both configurations in Figure 5.2 and Figure 5.3. However, the
findings revealed that the Lognormal and YCSB datasets had different behaviors than in
the ALEX paper, but it’s close to the behavior LIPP presented in it’s paper as we can
see on Figure 5.3. Perhaps this is due to some execution difference on the part of the
ALEX development team. Although among all 3 systems, this is the one that contains the
best documentation and description of how to perform benchmarks on the system. Which
made it the easiest to reproduce.

For LIPP replication we can make a similar analysis that as we can see in Figure
5.4 we have similar behavior. For the PGM-index reproduction that the results found
for 0% insertion is the most outlier one and need further investigation with more experi-
ments, because as we can see in the Figure 5.1 it got very different throughput than LIPP
reproduced.

As we can see from Figure 5.5, the data collected from 0% insertion shows an
anomalous behavior compared to the rest of the results collected. This indicates a very
high lookup throughput, which makes the COT result so far from the LIPP reproduction,
as shown in Figure 5.1. Therefore, further investigation is needed to understand why this

behavior occurs.

Throughput (million Ops/sec)

Throughput (million Ops/sec)

25

Figura 5.3 — ALEX replication data compared with LIPP reproduction

o o
Q 8 Q
14 @Q Q2 5
87 8
12 (e} o
c6 cé
10 S5 S
8 Ea £’
6 53 52
o o
4 <2 <
] o1
2 ° 1 °
0 £o (=Y
T LL LN YCSB LT LL LN YCSB (kg LL LN YCSB
Datasets Datasets Datasets
W ALEX W ALEX_ON_LIPP | W ALEX F ALEX_ON_LIPP | W ALEX F ALEX_ON_LIPP |
0% insertion 33% insertion 66% insertion
Figura 5.4 — LIPP replication
40 g g16
35 gf" g 14
30 c 15 212
25 2 210
20 Eo E 8
15 5 5
o o
10 -g, 5 -g,
> =3
5 g 2
0 LT LL LN YCSB Fo LT LL LN YCSB = [hp LL LN YCSB
Datasets Datasets Datasets
. LIPP - Original LIPPJ . LIPP B Original LIPP] . LIPP B Original LIPP]
0% insertion 33% insertion 66% insertion
Figura 5.5 — 0% insertion on PGM replication
o 7
14 $14 s
12 3 S,
10 5 10 &
8 i E
6 Z 6 52
4 24 2
=) 21
2 E 2 2
= =0
70 5 33 50 66 100 F O 5 33 50 66 100 F970 5 33 50 66 100
Insertion percentage Insertion percentage Insertion percentage
I CoT L el . CT I CoT L ehp s CT B COoT L ey | CITJ
Long Longlat Lognormal

N W AU

o

Throughput (million Ops/sec)

[y LL LN
Datasets
- ALEX_ON_LIPPJ

YCSB

Emm ALEX

100% insertion

IS

N
o N

Throughput (million Ops/sec)

T LL LN
Datasets
msm Original LIPP J

YCSB

. LIPP

100% insertion

912
<2
210
o
58
E 6
ER
<
g2
<
=
0 5 33 50 66 100
Insertion percentage
BN COT W CIT mmm CIT

YCSB

26

5.2 New Experiments

After we ran all the replications and got all that data as a baseline for the next
steps. Differently then (WONGKHAM et al., 2022) we started our experiments with arti-
ficially created datasets. They preferred to start directly with real world datasets including
SOSD’s (KIPF et al., 2019) datasets, but we would like to have the results of this data cre-
ated by us. The objective in this part was to see the behavior of the different LIs on data
that we knew exactly what it was and how it was getting inserted in the database. One
of the tests we wanted to see is how the DBMS behaves when we force a overfitting in
the models used by it. After that we started real world datasets tests. All these tests have
as objective to simulate different characteristics that may occur in customer data. The

datasets used by the time this report was done is summarized in Table 5.2.

Tabela 5.2 — New Datasets used in experiments

Data \ Number of keys Key data type Payload size Total size \ Characteristics

minMax 200M int 4B 1.99GB | Artificially created by us
density 200M int 4B 1.84GB | Artificially created by us
random 200M int 4B 2.13GB | Artificially created by us

All artificially created datasets were generated using Python scripts that employed
integers as data types and saved the resulting integers in a text file. Each line of the file
corresponds to a single number to be used as key in the experiments.. So we created the

following datasets:

e minMax: Made only with odd numbers. The first part is low odds starting at 1, the
number for this low odd integers is enough so we populate the database with them
in the bulkload. The second part is made of high odds starting in INT_MAX from
C++ that’s 2147483647 and going down. This is supposed to provide us data so
we can analyse the behavior of the DBMS when the model is started with only low
integers, overfitting the models on that way, then started to face high integers in the
insertion process

e density: The bulkload part is made with compact and low odds as the minMax. And
the second part to evaluate the model created we start insertion the even numbers
in-between the odd ones. Here the objective is to analyse how the model behaviors

when so near and compact data is inserted.

e random: a dataset composed by 200 million integer keys. A uniform random

algorithm was used to generate it.

27

With these datasets the objective is to force an overfitting in the models with min-
Max and then see how the different systems behavior with that. With density, there’s
going to be some overfitting also, but the main test is to see how effective the systems will
become with so dense data and by consequence with the need to deal with key conflicts
and node splits. Random is actually a good baseline dataset, because we can discard that
the behave we are getting is not the same as if we got just random keys, and even being
random as soon as it’s uniformly random integers we can also check how the different
systems behave with this uniform distribution.

In Figure 5.6 we can see an extract from minMax and Density datasets. This is to
show visually the created data so it can be easier to understand what’s being used. These
2 datasets were created with 20 keys long file, the real datasets used in the experiments

are 200 million keys long files.

Figura 5.6 — Datasets examples

1
! :
5 5
7 7
9 9
11 11
13 13
15 15
17 17
19 19
2147483647 0
2147483645 2
2147483643 4
2147483641 6
2147483639 8
2147483637 10
2147483635 12
2147483633 14
2147483631 16
2147483629 18

minMax dataset density dataset

5.2.1 Results

First, other experiments have been done one of them was an experiment starting
the batches without the bulkload. The measured performance varied so much in the initial
batches that the standard deviation of this data was very high and clearly the mean was

not a reliable data. Therefore, we can conclude that the impact in the initial performance

28

Figura 5.7 — ALEX running minMax dataset

2 30

@

825

o

520

€15

5

310

=

2 s

o

=

= 0 5 33 50 66 100

Insertion percentage
mm CoT ClT mm QT

of filling the database after a few insertions is lessened and from what we could see in the
results it ends up stabilizing after some batches. With that we can say that it’s important
that the database is initialized with data through the initial bulkload. This makes the
system better prepared to receive new data.

For these new experiments we also notice a very high throughput for 0% insertion
when we compare to the others results in the same dataset and just changing the insertion
rate, for example running the minMax dataset from 0% to 5% insertion the system that
got the least performance decrease was ALEX and already got 51.53% lower throughput.
The conclusion we got from this is that the usage of these artificial datasets that try to
exploit overfitting, but at the same time simple as they use of a standard interval between
2 consecutive keys, allowed the model to adapt very well to the search input keys.

In the next diagrams the measurement shown is the Cumulative Operation Th-
roughput (COT) as the ones in reproductions. The COT is calculated by the division from
the sum of lookup operations with insertion operations by the sum of the time to run each
one of them. This is important to fully comprehend Figures 5.7 and 5.9. In those two figu-
res, in addition to the COT, the Cumulative Insertion Throughput (CIT) and Cumulative
Lookup Throughput (CLT) are also presented.

In Figure 5.7 it is possible to see that the lookup operations are very fast in the
opposite side we have that insertion operations is too slow. Not to be misunderstand here,
in this point when we say fast and slow, we are comparing the throughput data we are
showing, so by fast we mean high throughput and by slow lower throughput. Part of this
is because of overfitting the models and also because having to split the nodes for the new
entries makes the LI to lose performance.

With this last conclusion in mind, in Figure 5.8 we can see a behavior not so
positive for most of the results, especially for systems that need regular updates, as the

percentage of insertion increases the performance drops considerably. The random data-

29

Figura 5.8 — Cumulative Operations Throughput results

g L4 T4 g
£ g @
g12 212 2
o o o
g 10 <10 <
S S S
= 8 = =
£ E® £
=6 = =
£ 2° H
o 4 o 4 =)
=3 3 3
< [IS
g2 £ 2 £
0 0
0 5 33 50 66 100 5 33 50 66 100
Insertion percentage Insertion percentage
BN PGM-Index | ALEXJ EEE PGM-Index . ALEX I LIPP
(a) Random (b) minMax

Figura 5.9 — PGM running density dataset

o]
o

(o)}
o

N
o

N
o

Throughput (million Ops/sec)

o

0 5 33 50 66 100

Insertion percentage
B COT mmm CIT mmm CITJ

o]
o

S (=]
o o

N
o

o

5 33 50 66 100
Insertion percentage

Bm PGM-Index mm ALEX mmm LIPP

(c) Density

set, despite having losses, still shows a different behavior, probably due to the distribution

of the bulkload values that allowed better models. However, the experiment that stands

out is PGM-index running the density dataset. As we can see in Figure 5.9, it is the ex-

periment in which, unlike the previous examples, it increases its throughput of operations

thanks to the throughput of insertions. What is probably helping this performance is the

way PGM-index works using a fixed size — as shown in Figure 3.3 — for the range in which

the system accesses and the nature of the dataset for containing such approximate data.

30

6 RELATED WORK

Learned Indexes work across a wide spectrum of computing areas. There are
research works related to LIs in the area of machine learning, database architecture and
indexing techniques. However, in this chapter I will highlight the main related works.

B-tree and its variations are the algorithms that have made great strides in recent
years. And the base on which (KRASKA et al., 2018) started as a point to be evolved to
present Learned Indexes. The systems themselves presented during this report (KRASKA
et al., 2018), PGM-index(FERRAGINA; VINCIGUERRA, 2020), ALEX(DING et al.,
2020a) and LIPP(WU et al., 2021) are also some of the related works. In Table 6.1,
adapted from LIPP(WU et al., 2021), we have a summary of the complexities of the
indices presented in comparison with a B+ tree.

As already listed in Table 2.1, XIndex implements a LI that supports multicore
data storage. And they claim to handle concurrent writes without dropping the query per-
formance. The authors have implemented two OSS indexes: XIndex-R which implements
a concurrent learned range index and XIndex-H that is a concurrent learned hash index
(XINDEX,).

SIndex and Tsunami are also important examples of the fast evolution of Learned
Indexes (LI), as they have ready implementations for different data models and data types.
While they may not meet the data model requirements for our project, they serve as good
examples of LI’s versatility. SIndex, for instance, supports string data types. Another
notable example is LIFOSS (YU et al., 2022), which implements Learned Indexes that
support data streaming.

A great highlight is (WONGKHAM et al., 2022), a recent work that was published
at the end of this project. They had a similar objective to my project to present a better
study on LI with updates and check how the current implementations are doing. And
they implemented and made available an OSS tool that serves as a benchmarking suite.
The authors also presented a quantitative metric to evaluate the difficulty that a Learned
Indexes has to deal with a given dataset. The algorithm proposed to approximate to cal-
culate this metric in (WONGKHAM et al., 2022) is the PLA. The workloads from them
are slightly different from the ones used in this project, but they still use the same idea
about changing the rate between lookup and insertion operations. One huge difference is
that they focus only on real world datasets some of them presented in SOSD(KIPF et al.,
2019).

31

SOSD (KIPF et al., 2019) is a benchmark framework to learned index consists
of different number type datasets — 32-bit or 64-bit unsigned integers sorted data — that
propose this data with baseline implementations so different LIs can be tested with it. But

they are still in progress with data with updates that’s important for this project.

Tabela 6.1 — Summary of complexity comparisons adapted from LIPP(WU et al., 2021)

PGM-index ALEX LIPP B+ Tree
Lookup operations | Complexity O(log” N) O(log N +1logm) ' O(logN) O(log N)
Insert operations Complexity O(log? N +log N)? O(log®? N +1logm) O(log? N) O(log N)
2*Search range Leaf O(g)3 O(m) O(1) O(m)
Non-leaf O(g)3 0o(1) o(1) O(m)

1 - m is the max number of slots in nodes
2 - Insertion include checking for key existence

3 - ¢ is the prediction error threshold

32

7 CONCLUSION

This exploratory project was extremely gratifying and brought great insights into
the use of LI as part of a DBMS.

Learned Indexes since they were introduced by (KRASKA et al., 2018) have
shown themselves as a new DBMS with a high potential. With the results obtained so
far, I believe that they can really have a gain over traditional Index structures. However,
they still need more features implemented so that they are really capable of replacing
current systems.

Some works are already following the research to support other data types and
also to make LI concurrent. And this is a fast evolving area with new proposals in multi-
dimensional data(DING et al., 2020b) and different data types as strings (TANG et al.,
2020). With the potential that these systems have shown together with the knowledge
of performance gain from neural networks running on GPUs or specific hardware, if an
implementation succeeds it is very likely that it will far exceed traditional rates and most
likely there will be no more doubts about the exchange.

Some of our negative results brought a good knowledge about problems that Le-
arned Indexes can face and also a spectrum of characteristics to be avoided in datasets for
this type of system. With the behaviors found in the new datasets we have also noticed a
high degree of impact with overfitting and that, therefore, the machine learning difficulties
will also be challenges for systems that implement Learned Indexes as an algorithm.

In order to pursue further research in Learned Indexes, it is crucial to test Lear-
ned Indexes (LI) using more robust real-world datasets. A more in-depth study is also
needed to understand how caching, locality, and data size can influence the behavior of
a Database Management System (DBMS) with LI. Currently, various approaches utilize
Monotonically Increasing Models and sorting prior to bulkloading. However, an essential
next step is to implement a system that does not require data to be sorted.

In addition, future work on Learned Indexes (LI) should focus on implementing
concurrency, possibly with a speculative locking protocol. As presented in the report,
the current systems perform their implementations and tests using only one core, limiting
their scalability. Moreover, it is important to extend LI’s capability to handle other data

types such as strings.

33

REFERENCIAS

ADAMS, H. The Education of Henry Adams. [S.1.]: Houghton Mifflin, 1907.

COOPER, B. F. et al. Benchmarking cloud serving systems with ycsb. In: Proceedings
of the 1st ACM symposium on Cloud computing. [S.1.: s.n.], 2010. p. 143—-154.

DING, J. et al. Alex: an updatable adaptive learned index. In: Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. [S.I.: s.n.], 2020.
p.- 969-984.

DING, J. et al. Tsunami: A learned multi-dimensional index for correlated data and
skewed workloads. arXiv preprint arXiv:2006.13282, 2020.

FERRAGINA, P.; VINCIGUERRA, G. The PGM-index: a fully-dynamic compressed
learned index with provable worst-case bounds. PVLDB, v. 13, n. 8, p. 1162-1175,
2020. ISSN 2150-8097. Disponivel em: <https://pgm.di.unipi.it>.

KIPF, A. et al. Sosd: A benchmark for learned indexes. arXiv preprint ar-
Xiv:1911.13014, 2019.

KRASKA, T. et al. The case for learned index structures. In: Proceedings of the 2018
international conference on management of data. [S.1.: s.n.], 2018. p. 489-504.

OpenStreetMap contributors. OpenStreetMap on AWS. <https://registry.opendata.aws/
osm/>. Last access at March, 24th 2023.

RITTER, D. et al. Benchmarking integration pattern implementations. 2016.

TANG, C. et al. Xindex: a scalable learned index for multicore data storage.
In: Proceedings of the 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. [s.n.], 2020. p. 308-320. Disponivel em:
<https://ipads.se.sjtu.edu.cn:1312/opensource/xindex>.

WANG, Y. et al. Sindex: a scalable learned index for string keys. In: Proceedings of
the 11th ACM SIGOPS Asia-Pacific Workshop on Systems. [s.n.], 2020. p. 17-24.
Disponivel em: <https://ipads.se.sjtu.edu.cn:1312/opensource/xindex/-/tree/sindex>.

WONGKHAM, C. et al. Are updatable learned indexes ready? arXiv preprint
arXiv:2207.02900, 2022.

WU, J. et al. Updatable learned index with precise positions. Proc. VLDB Endow., v. 14,
n. 8, p. 1276-1288, 2021. Disponivel em: <http://www.vldb.org/pvldb/vol14/p1276-wu.
pdf>.

WU, J. et al. GRE. 2022. <https://github.com/gre4index/GRE>. Last access at March,
24th 2023.

XINDEX. <https://ipads.se.sjtu.edu.cn:1312/opensource/xindex>. Last access at March,
24th 2023.

YU, T. et al. Lifoss: a learned index scheme for streaming scenarios. World Wide Web,
v. 26, p. 1-18, 02 2022.

https://pgm.di.unipi.it
 https://registry.opendata.aws/osm/
 https://registry.opendata.aws/osm/
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex/-/tree/sindex
http://www.vldb.org/pvldb/vol14/p1276-wu.pdf
http://www.vldb.org/pvldb/vol14/p1276-wu.pdf
https://github.com/gre4index/GRE
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex

34

APENDICE A — RESUMO EXPANDIDO

Este capitulo tem por objetivo apresentar o resumo expandido desta monografia,

uma vez que o texto completo esta escrito em inglés.

A.1 Introducao

A apresentacdo dos conceitos de Learned Indexes por Tim Kraska em 2018
(KRASKA et al., 2018) ja apresentava um potencial de melhoria na performance em
relac@o ao indices tradicionais. Desde entdo, foram apresentados diversos outros artigos
e implementacdes cada um trazendo uma melhoria ou uma implementa¢do de um novo
recurso. Apesar da evolugdo nos dltimos anos, ainda € uma drea com muito espago de ex-
ploragdo e que pelo potencial envolvido traz muito interesse a comunidade de arquitetura
de banco de dados.

Diversos algoritmos e programas implementam estruturas de indices quando a
aplicagdo requer uma alta eficiéncia de acesso aos dados. Tradicionalmente, em Sistemas
de Gerenciamento de Banco de Dados ja temos implementados o uso de B frees ou B+
trees, com isso recentes estudos apontaram uma forma de tornar esse uso de indice ainda
mais eficiente, tornando encontrar o valor desse indice mais performético com a utilizagao
de Learned Indexes (L1).

A apresentacdo desses conceitos por Tim Kraska em (KRASKA et al., 2018) fo-
mentou o crescimento de pesquisa nessa drea. No artigo, € apresentado a uma interpreta-
cdo sobre as estruturas tradicionais de indices como uma forma mais genérica pensando
em modelos. Pode-se utilizar qualquer modelo, evidentemente buscando melhorias em
algum quesito computacional como por exemplo performance, seguranga, confiabilidade
entre outros. No artigo de Kraska e nos outros Sistema de Gerenciamento de Banco de
Dados (SGBD) apresentados neste trabalho todos focaram no quesito de ganho de efici-
éncia com a utilizacdo de modelos de aprendizado profundo.

O contexto de desenvolvimento desse Trabalho de Conclusao se deu no time de ar-
quitetura de base de dados da SAP em Walldorf, aspecto esse importante para algumas das
decisoes tomadas durante a execugdo do projeto. Com as primeiras implementagdes de LI
tendo dificuldades de implementar atualizag¢des - sendo que alguns recentes resultados ob-
tiveram sucesso em implementar isso como visto em (FERRAGINA; VINCIGUERRA,
2020), em (DING et al., 2020a) e em (WU et al., 2021) - sendo outros aspectos ainda

35

pouco explorados ou com poucas implementagdes efetivas como a concorréncia € um
conjunto de testes com melhor proximidade a dados de mundo real.

As caracteristicas procuradas em Learned Indexes ja implementadas foram que
fossem Open-source para que, dessa forma, fosse permitido o uso da implementacio; que
modelassem dados relacionais, pois isto € o que atenderia aos bancos de dados da em-
presa e de clientes; e que permitissem atulizagdo em seus dados como o proprio titulo
desta monografia ja delimita. Ainda com o objetivo de ja pensarmos em projetos futu-
ros a esta monografia, também exploramos outras caracteristicas como o suporte a outros
tpos de dados, além de numéricos, e sobre o suporte a concorréncia. Os principais traba-
lhos encontrados estdo sumarizados na Tabela 2.1 no Capitulo 2. Com isso determinado,
escolhemos 3 destes indices para reproduzir e testar com conjuntos de dados criados arti-
ficialmente para a andlise da possibilidade de Learned Indexes serem mais eficientes que

indices tradicionais.

A.2 Trabalhos relacionados

Learned Indexes pode ser relacionado a trabalhos de diferentes drea da compu-
tacdo a ele associadas. Como aprendizado de méquina, arquitetura de banco de dados e
técnicas de indexacdo. Mantendo o escopo um pouco mais contido, focarei nos trabalhos
desenvolvidos como Learned Indexes.

B-trees e suas variagdes, Unica excecdo de trabalho relacionado que ndo é um
Learned Index, sdo a base no qual (KRASKA et al., 2018) se utilizou ndao s6 como linha
de base de resultados, mas também de onde partiu a substituicao deste algoritmo por um
modelo de aprendizado profundo. Este indice, assim como PGM-index, ALEX e LIPP
sdo todos relacionados a esta monografia e sao melhor explorados no capitulo 3 que versa
sobre o estado da arte.

Temos também um grupo consideravel de LIs que ficaram fora do escopo desta
monografia por conta de ndo estarem dentro das caracteristicas desejadas. Alguns exem-
plos sdo o XIndex através de sua concorréncia, Tsunami com um modelo de dados dife-
rente do que procurdvamos e um mais recente o LIFOSS (YU et al., 2022) que apresenta
uma implementacio de Learned Index para um streaming de dados.

Ha ainda o framework GRE (WONGKHAM et al., 2022) que é um trabalho com
um estudo semelhante ao apresentado nesta monografia. Neste projeto, além de apresen-

tarem o framework para a execucdo de testes em diferentes indices, eles também trazem

36

uma forma de calcular uma métrica para medir a dificuldade que um dado conjunto de
dados tem para ser usado com um LI. Este tltimo aspecto é uma contribui¢io muito po-
sitiva para a comunidade, uma vez que um dos pontos ainda a serem evoluidos € o uso de
conjuntos de dados reais. Com este cdlculo pode-se ter uma primeira métrica na andlise
da escolha de implementar ou ndo um LI como parte do SGBD a ser desenvolvido.
Ainda a adicionar o SOSD (KIPF et al., 2019) que ¢ um benchmark para Learned
Indexes composto por diversos conjuntos de dados. Os conjuntos de dados disponibiliza-
dos sdo compostos por dados numéricos - inteiros sem sinal de 21 ou 64 bits - ordenados.
Porém, € um framework em desenvolvimento, ainda ndo tendo uma preparacdo muito
grande para testes com dados dindmicos além de ainda estarem buscando em seus con-

juntos de dados uma forma de simular conjuntos de dados reais.

A.3 Metodologia

Iniciamos o projeto definindo o escopo de pesquisa e selecionando dentre os di-
versos indices encontrados quais os Learned Indexes (LI) que irfamos replicar. Com isto
definido, comecamos os experimentos com a metodologia que serd a seguir apresentada.

A metodologia de experimentos utilizada neste projeto foi a apresentada em (RIT-
TER et al., 2016). Esta metodologia consiste em realizar os experimentos repetidas
vezes em ciclos de execugcdo compostos pelas fases: pré-experimento, trabalho e pds-
experimento. Para cada um destes ciclos o ambiente de experimentacdo deve estar com-
pletamente limpo com o objetivo de minimizar efeitos de caching e qualquer aproveita-
mento de cdlculos de experimentos passados. O objetivo de realizar repetidas vezes € o
de aumentar o intervalo de confianca das métricas e dados obtidos.

Durante a fase de pré-experimento € realizada a configuragdo do ambiente. No
caso desse projeto, a fase de pré-experimento consiste em criar o container Docker, copiar
e compilar o LI a ser testado e copiar os arquivos de conjunto de dados.

Em seguida, durante a fase de trabalho sdo realizadas 4 iteracdes de warmup se-
guidas de 5 iteragdes em que os dados serdo capturados. O objetivo de se realizar warmup
antes da coleta de dados € para que se evite as variacdoes de um ambiente completamente
novo. No caso deste projeto, os experimentos passaram por ciclos compostos por 4 itera-
coes de warmups e 5 iteracOes para coleta de dados.

Para encerrar o ciclo ocorrerd, entdo, a fase de pds-experimento que é 0 momento

em que as verificacdes sdo feitas e em que a limpeza do ambiente ocorre. Esta fase

37

se resumiu a copiar 0os arquivos com as métricas obtidas durante as iteracdes e entdo
a remocdo do container. Com isso, a cada ciclo de experimentos, temos um container
completamente novo, e portanto garantimos o inicio com o ambiente limpo.

A coleta de dados se deu em 3 destes ciclos de execugdo para cada combinagdo de

experimento que se da através de LI, configuracio e conjunto de dados.

A.4 Resultados

Os resultados obtidos se deram em 2 fases. Uma primeira de replicacdo, momento
em que testamos os resultados obtidos dentro do ambiente configurado para este projeto
e comparamos com os resultados obtidos e apresentados pelos trabalhos originais. Num
segundo momento, foram realizados testes utilizando conjuntos de dados criados para tes-
tarmos alguns comportamentos da modelagem dos indices. Vale ressaltar que a principal
métrica utilizada para avaliacdo destes experimentos foi a vazdo do indice medida em
milhdes de operagdes por segundo.

Os LIs utilizados como base para a replicacdo e experimentos foram PGM-index
(FERRAGINA; VINCIGUERRA, 2020), ALEX (DING et al., 2020a) e LIPP (WU et al.,
2021) . Durante a fase de replicacdo, apresentada no capitulo 5, foram executados os
mesmos conjuntos de dados dos projetos originais: Long, Longlat, Lognomal e YCSB.
Com a configura¢do de um carregamento inicial de 10 milhdes de chaves, definindo um
nimero total de 20 milhdes para os experimentos e um total de 1 milhdo de operagdes
por batch de operacdes. A configuracdo que variou dentro da combinagdo apresentada
no item anterior é da proporcao entre inser¢des e operagdes de busca. As configuragdes
utilizadas pelos trabalhos originais estdo sumarizadas na tabela 2.2 e estdo explicitadas
nos diferentes graficos do capitulo 5.1.

Depreende-se dos resultados obtidos nessa fase que nosso ambiente em diversos
casos nao alcangou os nimeros absolutos dos trabalhos originais. Porém, em diversos
casos o que podemos perceber € uma tendéncia de comportamento similar.

Um dos grandes pontos fora da curva que se destacou durante a comparagdo de
resultados foram os resultados obtidos na reprodu¢do de ALEX. Quando comparado ao
trabalho original, dois dos conjuntos de dados pareciam invertidos entre si em comporta-
mento, mas que ao serem comparados com a reproducao feita por LIPP do LI apresentado
por ALEX estes tinham um comportamento muito similar ao obtido por nos.

A segunda fase de experimentos se deu com testes utilizando alguns conjuntos de

38

dados artificiais. O objetivo foi explorar algumas fragilidades esperadas de modelos de
aprendizado profundo, como overfitting, e também analisar métricas do comportamento
dos LIs quando submetidos a estes tipos de conjunto de dados. Nesta fase, alguns outros
experimentos também foram realisados com o objetivo de uma melhor compreensdo das
etapas da execugdo dos algoritmos. Porém, o destaque se d4d nos conjuntos de dados
criados para a execucao dessa fase com seus resultados e novas percepcdes que tivemos
apos a realizagdo dos testes.

Os conjuntos de dados criados foram minMax, density e random apresentados na
secdo 5.2. Pudemos perceber um resultado diferente por conta do overfitting dos modelos
que quando submetidos a dados a0 mesmo tempo que o diferente comportamento entre 0s
indices também demonstram na pratica as caracteristicas que diferenciam um indice dos

outros.

A.5 Conclusao

Desde a apresentacdo de Learned Indexes por (KRASKA et al., 2018) tem-se tido
resultados positivos em relacdo a modelos cldssicos de indice - como B trees - numa im-
plementacdo de um SGBD. As evolucdes que diferentes LIs nos tltimos anos vem no
direcionamento de também pensarem que hd um grande potencial de melhora na perfor-
mance de SGBDs e buscarem essa comprovagao.

Como este foi um projeto bastante exploratério sobre a drea, destaca-se uma co-
munidade bastante ativa e com diversos projetos sendo apresentados com evolucdes em
diferentes aspectos de LlIs.

Ao término de nossos experimentos, concluimos que Learned Indexes tem sim
um grande potencial. Porém, as implementacdes atuais ainda tornam de dificil utilizagao
num SGBD como um produto final. Alguns de nossos resultados negativos e dificulda-
des durante a execugdo deste projeto mostram muito bem alguns dos desafios atuais que
LIs ainda precisam superar. A complexidade dessas solu¢des vem da necessidade de im-
plementacdo de recursos em diferentes dreas, por exemplo aprendizado profundo para os
modelos a serem usados, controle de concorréncia quando esta for implementada e o uso
de indices. Também é um sistema que herda as dificuldades e desafios dessas diferentes
areas, seja com buscar algoritmos melhores para os modelos de aprendizado profundo ou

conseguir uma forma mais eficiente de lidar com dados em grande escala.

	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Lista de Tabelas
	Lista de Abreviaturas
	Sumário
	1 Introduction
	1.1 Work Structure

	2 Project Overview
	2.1 Project goals

	3 State of Art - Learned Index
	3.1 pgm
	3.2 alex
	3.3 lipp
	3.4 GRE

	4 Methodology
	4.1 Execution Methodology
	4.2 Experiment's Setup

	5 Experiments
	5.1 Learned Index Replications
	5.2 New Experiments
	5.2.1 Results

	6 Related Work
	7 Conclusion
	Referências
	Apêndice A — Resumo Expandido
	A.1 Introdução
	A.2 Trabalhos relacionados
	A.3 Metodologia
	A.4 Resultados
	A.5 Conclusão

