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“The visions we offer our children shape the future. It matters what those visions

are. Often they become self-fulfilling prophecies. Dreams are maps.”

— CARL SAGAN



ABSTRACT

Art, and specifically poetry, has always been a very valuable resource to understand a

society’s identity and view of life. Recently, with the rise of the big data revolution, large

datasets of the most varied subjects are starting to appear. Also, we are seeing a new wave

of very powerful Artificial Intelligence systems based on deep learning, especially in the

area of Natural Language Processing (NLP). It is reasonable, then, to explore how well

suited these systems are to process data within the realm of poetry, since we stand to gain

so much insight about human cultures from it. In this work we apply the BERT pre-trained

language model to a real-world dataset of poems, in order to create classifiers to recognize

the topics the poems deal with. We list some of the issues that appeared during this process

and experiment with possible strategies to mitigate one of them, namely imbalance of

classes. We found that it was possible to improve the baseline results by applying two

of the strategies explored, those being undersampling of the majority class and the use of

different weights for each class to scale the loss function.

Keywords: Artificial Intelligence. Machine Learning. Deep Learning. NLP. Large Lan-

guage Models. BERT. Poetry.



Aplicando o modelo de linguagem BERT à classificação de poemas: um estudo

sobre problemas de desbalancamento de dados

RESUMO

Arte, e em específico poesia, sempre foi um recurso muito valioso para a compreensão

da identidade e visão de mundo de uma sociedade. Recentemente, com o crescimento

da revolução de big data, grandes conjuntos de dados dos mais variados assuntos estão

começando a aparecer. Também estamos presenciando uma nova onda de sistemas de In-

teligência Artificial muito poderosos baseados em aprendizado profundo, em especial na

área de Processamento de Linguagem Natural. É razoável, então, explorar o quão adequa-

dos são esses sistemas para processar dados dentro do campo da poesia, já que podemos

ganhar tanto entendimento sobre as culturas humanas através deles. Nesse trabalho apli-

camos o modelo pré-treinado de linguagem BERT a um dataset de poemas do mundo

real, de modo a criar classificadores para reconhecer com quais tópicos os poemas lidam.

Listamos alguns dos problemas que apareceram durante esse processo e experimentamos

com estratégias possíveis para mitigar um deles, a saber o desbalanceamento de classes.

Descobrimos que é possível melhorar os resultados iniciais ao aplicar duas das estratégias

propostas, sendo estas undersampling da classe majoritária e o uso de diferentes pesos

para cada classe escalando a função de perda.

Palavras-chave: Inteligência Artificial. Aprendizado de Máquina. Aprendizado Pro-

fundo. PLN. Modelos Linguísticos de Grandes Dimensões. BERT. Poesia.
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1 INTRODUCTION

Pre-trained language models have been making great advances in the Natural Lan-

guage Processing (NLP) field in recent years, frequently achieving state-of-the-art results

(QIU et al., 2020). The fact that they are built to use a two-step framework, with the first

one allowing them to build a powerful representation of language that they can then lever-

age when specialized to a downstream task in the second step, makes them very suited

to handle problems that involve processing texts containing the type of language that is

commonly used in day-to-day communication.

Poetry, being an art form, differs from standard language. A poem is at the same

time a linguistic object and an aesthetic object. Both in the usage of a more strict for-

mal structure and in the weaving of more complex meanings to particular words through

metaphor and other literary techniques, the logic behind the construction of a poem is not

the same as the one behind most daily interactions through language, where communica-

tion is more important than aesthetics.

We propose then that using pre-trained language models to work directly with

poetry is an interesting venue to explore, as this type of text can present a challenge

to these systems due to their differences from standard language. We use the BERT

(DEVLIN et al., 2019) large language model as a suitable representative for this work,

as it has been a reference since its publication, leading to many variants and successors.

We fine-tune BERT to create models to classify poems into the topics that they talk about.

Although the use of topics represent a multi-class problem, we follow the methodology of

Lou, Inkpen and Tanasescu (2015) and frame the process as multiple binary classification

problems. As a data source, we use the poems from the Poetry Foundation website. Since

there was no dataset available that grouped together all we wanted to analyse and use for

our task, one of the steps in this work was to scrape the organization’s website in order to

build the dataset to be used.

By choosing this approach of using a data source focused on serving its data to a

human audience, instead of curated for the purposes of automated processing, we ran into

some of the problems that usually appear when dealing with real-world data. We discuss

these problems and our decisions on how to handle them as they appeared.

One of the problems we ran into was that of the imbalance of classes. This is

a common problem for classification tasks in real world scenarios, and can cause bad

performance if no explicit action is taken to mitigate it (LAKSHMI; PRASAD, 2014). We
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explored further this issue and ran experiments with three possible strategies to deal with

it. We experiment with one resampling technique (undersampling) and two techniques

related to the loss function (different weights for each class and the use of Focal Loss as

a loss function).

The questions of how pre-trained language models handle poetic texts and what

are the impacts of the chosen strategies can be interesting from a purely technical per-

spective. However, an automated poem classification system can also have a practical

significance, helping the daily work of professionals that manage poetry submission con-

tests such as editors of poetry magazine or curators of cultural events, who would be able

to optimize their time by not having to manually process all submissions. Another case

in which automated classification of poems in topics can have a practical utility is by

allowing the quick recovery of poems in big repositories.

The remainder of this work is organized as follows. Chapter 2 presents the neces-

sary background information to follow the rest of the work. Chapter 3 consists of a short

review of works related to ours that can be found in the technical literature. Chapter 4 de-

scribes our methodology to develop this work, detailing how we obtained the dataset we

used, what was the setup for the training and the experiments. In Chapter 5, we present

the results of our experiments, as well as a brief analysis of each one individually and a

comparison between all of them. Finally, in Chapter 6, we share our conclusions and the

possibilities we identified for future works in this topic.
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2 BACKGROUND

Here we give the necessary background to understand the present work. Section

2.1 gives a brief overview of the field of machine learning. Section 2.2 describes the

language model we are using, namely BERT. Section 2.3 describes some known strate-

gies to mitigate imbalance issues. Section 2.4 details commonly used metrics to evaluate

the performance of classifiers that were adopted in this work. Section 2.5 presents the

strategy of threshold moving, which involves finding the best threshold for classification

problems. Finally, in section 2.6 we describe our main data source, the Poetry Foundation

organization and its website.

2.1 Machine Learning

Machine Learning is a sub-field of Artificial Intelligence which deals with the

study of computational systems that are able to learn. In Russell and Norvig (2020), the

authors define that an agent is learning if it improves its performance after making ob-

servations about the world. Also according to Russell and Norvig (2020), approaches

developed in this field can be classified broadly into three main classes: supervised learn-

ing, unsupervised learning and reinforcement learning.

Supervised learning is a form of learning in which a system receives pairs consist-

ing of an input and a desired output, and attempts to learn a function that maps inputs to

outputs based on the patterns that it finds in the pairs it saw while training. For this type

of learning, it is essential to have labeled data that can be used to train the system. In this

work, we consider the task of poem classification as a supervised learning task.

Unsupervised learning happens when there are no labels for the inputs, and the

system is expected to identify patterns and structures that it finds represented in the inputs.

Reinforcement learning is an approach where the system guides its learning through

the feedback it receives from the world with which it interacts, both in the form of rewards

and punishments.

The field of Machine Learning has proposed several different approaches. In the

last years, Artificial Neural Networks have being gaining a growing attention in the field.

Artificial neural networks are inspired by the architecture of biological brains. They con-

sist of nodes, or neurons, and connections between these nodes. Each connection can

carry signals from its starting neuron to its ending neuron. Neurons can then process
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these signals and generate an output that is sent to other neurons through the connections

that start on it. Connections between nodes have weights that can modulate the strength of

the signal passing through it. Training a neural network involves automatically adjusting

these weights. At the end of the training process, a neural network represents a complex

mathematical function that maps inputs to desired outputs. In these systems, neurons are

usually organized in layers. When a neural network is composed of several layers, it is an

example of deep learning.

Due to the highly complex architecture of sophisticated neural networks that have

several layers and a large number of trainable parameters, they often need a lot of suit-

able data to achieve good performance (QIU et al., 2020). Due to this, applying these

approaches to problems were there is not a great amount of data curated to their needs

can be challenging. For scenarios like these, one concept that can help, and that will

be important for the purposes of this work, is that of Transfer Learning. This strategy

involves applying knowledge that was previously learned about one problem to solve an-

other problem. The association between transfer learning and neural networks goes back

at least to the 1970s, as mentioned by Bozinovski (2020).

2.2 The BERT language model

BERT is a language model developed by Google and described on Devlin et al.

(2019). Since its first publication, it has become a major reference in the field and inspired

a vast number of variants and successors that built upon it. Its name is an acronym for

Bidirectional Encoder Representations from Transformers, which already suggests the

technology it is built on. Namely, the Transformer architecture, which has at its core the

attention mechanism. We briefly describe these concepts before getting into more detail

about BERT.

Russell and Norvig (2020) describe language model as a probability distribution

describing the likelihood of any string. In other words, it is a model whose intent is to

represent enough knowledge about a language so as to make meaningful predictions about

the probabilities of textual content in it. They can be useful in several applications, such

as generating text, identifying wrong usages of words, classifying documents, and so on.

Language models can be of varying degrees of complexity, and can be implemented with

many technologies. Recently, there has been an explosion of language models based on

artificial neural networks with a large amount of parameters. These are commonly called
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large language models.

BERT is such a large language model. It is an artificial neural network model

based on the Transformer architecture. The Transformer architecture was introduced in

Vaswani et al. (2017) and quickly replaced RNNs and LSTMs as the state-of-the-art ar-

chitecture for NLP. It provided several advantages in comparison to those, as it eliminated

their sequential nature and instead processes the entire input at the same time. This miti-

gates the problem of vanishing gradient that arises from sequentially processing long sen-

tences, and also allows for a much larger level of parallelism that increases the speed of

training. So, the Transformer architecture allowed for models to be trained with datasets

at a scale larger than previously possible. The Transformer is able to do that because of

its particular use of the attention mechanism, through self-attention. The attention mech-

anism is a technique used in neural networks to allow more focus to be put in certain parts

of the input data than in others, contextually.

BERT has a few different versions that vary mostly in size and complexity. For in-

stance, BERTBASE contains 110 million parameters, while BERTLARGE contains 340

million parameters. The dataset used to train BERT was comprised of a dataset of un-

published books that had around 800 million words and a significant part of the English

version of the Wikipedia, with 2500 million words. It was trained with two unsupervised

tasks, the first of them being to predict a masked token given its original context. The sec-

ond task was to, given two sentences, predict if they appeared sequentially in the training

corpus.

One of the most interesting aspects about BERT is that it is designed to work in

the context of transfer learning, by following a two-step process: pre-training followed by

fine-tuning. The pre-trained step was done by the original team as described above, and

allowed the model to generate a powerful representation of the language it was trained in.

After the end of this step, the learned weights can be loaded again and be used as a starting

point in a second training phase for a more specialized downstream task, a process which

is called fine-tuning. Because the loaded model can tap into the representation it learned

during its pre-training phase, the second step can achieve great results using much less

resources than during the pre-training phase. While this was already a known practice

by the time that BERT was published, combined with the innovation of the bidirectional

approach and the size of the model, this allowed BERT to become widely adopted.
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2.3 Imbalance Mitigation

As mentioned by Ali et al. (2019), the issue of imbalance of classes presents a

challenge for classification problems in machine learning. In this section we describe

some of the strategies found in the literature to deal with this issue.

2.3.1 Undersampling

Lakshmi and Prasad (2014) present undersampling as a data-level sampling tech-

nique to deal with imbalance. Sampling techniques attempt to solve this by manipulating

the usage of the existing data to fix the natural bias towards the majority class. That

can be done by either artificially increasing the number of samples from the minority

class (known as oversampling) or by artificially reducing the number of samples from

the majority class (known as undersampling). As Lakshmi and Prasad (2014) mentions,

undersampling has as some of its advantages the fact that it can be used to reduce the time

and memory used by training.

2.3.2 Cost-Sensitive Learning

Another possibility to deal with imbalance issues is to manage the perceived costs

of mistakes for different classes in the training process. As Ali et al. (2019) describes, the

idea is to attempt to minimize the error cost of the process as a whole and to assume a

higher cost for errors related to the minority class, both at the same time. Two techniques

relevant to the present work are described here.

2.3.2.1 Weighted Loss Function

The first technique is to ascribe different weights to each class and to incorporate

those weights when computing the value of the loss function. There are several ways to

do this mathematically. One such way is described by Madabushi, Kochkina and Castelle

(2020), and it consists of scaling the chosen loss function with the weight attached to the

class of the sample. The formula is as follows:

loss(x, class) = weight[class] ∗Θ
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where weight is an array with the weights for each class, class indexing that array

in order to get the weight for that particular class, and Θ representing the loss function

used. For this technique, any loss function can be plugged in the place of Θ.

2.3.2.2 Focal Loss

Focal Loss function (LIN et al., 2018) is a variation of cross-entropy developed

in the context of computer vision. The authors were trying to deal with the issue of high

imbalance of foreground-background classes when attempting to detect objects.

It works by adding a new factor to the cross-entropy loss, (1 − pt)
γ . This factor

will reduce the contribution to the loss from easily and correctly classified examples,

increasing the importance of hard and misclassified ones. In this factor, the term pt is

a notational convenience to mean p, that is, the model’s estimated probability for the

positive class, when the sample is of the positive class, and 1 − p when the sample is of

the negative class. The term γ is a new hyperparameter they introduced that adjusts the

rate at which easy examples have their contribution to the result of the loss scaled down.

The authors also incorporate the balancing factor α from Balanced Cross-Entropy,

which is responsible for balancing the importance of positive and negative examples.

Together, γ and α are the relevant hyperparameters for Focal Loss. Below is the definition

of the formula to compute it, as presented in (LIN et al., 2018):

FL(pt) = −αt(1− pt)
γlog(pt)

2.4 Model Evaluation

There are several metrics that can be used to evaluate binary classifiers, some

of the most common ones being accuracy, recall, precision and F-measure (KADHIM,

2019). All of these are computed from elements that can be identified in a confusion

matrix, shown in Figure 2.1.

The relevant elements are True Positives (TP), False Positives (FP), False Nega-

tives (FN) and True Negatives (TN), which can be seen in the cells of the matrix. True

positives are those samples that belong to the positive class and are correctly identified,

while true negatives are samples of the negative class that are correctly identified. False

positives are samples of the negative class incorrectly identified as belonging to the posi-
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Figure 2.1 – A confusion matrix

Source: The Author

tive class, while false negatives are samples of the positive class incorrectly identified as

belonging to the negative class.

From the previously mentioned metrics, Accuracy, in special, is very commonly

used. It is an intuitive way to think about evaluating how correct a set of predictions is.

In high level terms, it just answers the question "what proportion of the total did I get

right?", so it makes sense that it would be the first way of evaluating performance that

comes to mind. Its formula is:

Accuracy =
True Positives + True Negatives

True Positives + False Positives + False Negatives + True Negatives

For problems that deal with imbalanced datasets, however, accuracy can be mis-

leading. This happens because if one class is significantly less common than others, then

a high accuracy can be achieved by just never predicting that class, which is not helpful.

The other commonly used metrics for classification, Precision, Recall and F-measure can

be more robust and informative in such a setting.

Precision can be thought of as a way to measure what ratio of the samples a

classifier predicted as belonging to a particular class was actually correct. It is calculated

as follows:

Precision =
True Positives

True Positives + False Positives

Note that this can be calculated accordingly for either the positive or the negative

class when we are dealing with binary classification. The same is true for recall.
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We can think of Recall as a way to measure what ratio of samples from a particular

class in a set was correctly predicted. It is calculated as follows:

Recall =
True Positives

True Positives + False Negatives

F-measure is a family of measures, with F1 being its most common variant. The

F1 score gives us a way to consider both precision and recall at the same time with a

single value by taking the harmonic mean of them. It is calculated using both metrics,

with the following formula:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

For binary classification problems such as ours, we can compute the Macro-F1

score by calculating F1 scores for both classes (positives and negatives) and then tak-

ing the average between them. This metric provides an overall evaluation of the model,

considering both classes with the same level of importance.

Macro F1 =
F1pos + F1neg

2

2.5 Threshold Moving

As mentioned in Lakshmi and Prasad (2014), threshold moving is an algorithmic

level solution to deal with classification problems on imbalanced datasets. It arises from

the fact that the classifier outputs a continuous value as its prediction, lending a degree of

freedom for a choice on which threshold should be considered as the frontier between the

negative class and the positive class.

The standard value used as the threshold for such classifiers is 0.5, which can be

appropriate when dealing with a balanced problem in which there is roughly fifty percent

chance of a sample being of either class. When this is not the case, however, this value

might not be the most suitable.

With threshold moving, then, we define a range of thresholds we want to consider

together with a step we will use to travel this range, and evaluate the classifier by setting

the threshold for the interpretation of its output at each step in the range, and keeping the

value that results in the best performance.
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2.6 Poetry Foundation

The Poetry Foundation1 is a literary society focused on the propagation of poetry

to the widest possible audience. It was established in 2003, as a successor to the Modern

Poetry Association which had existed since 1941. It is responsible for several programs

revolving around poetry, such as the publication of the Poetry Magazine, the organiza-

tion of events and exhibitions, the distribution of awards and an open library, as well as

maintaining a digital presence through social media, mobile applications and a website.

In its website, the Poetry Foundation makes available thousands of poems for

free, both from famous poets and from newer or more obscure ones. These poems are

sometimes associated with certain metadata, such as the literary school of the poem, its

epoch, the topics that it touches, amongst others. This makes it a useful source of data for

anyone wanting to work with poetry through automated means. In specific, the metadata

it has associated with poems can be harnessed for supervised learning works, such as ours.

Although it can be a good source, it must be mentioned that because its main pur-

pose is the propagation of poetry to human readers, and not to serve as a digital platform

for data processing, it also presents some challenges when being used as such. For in-

stance, the fact that it does not offer an API, and that the presence of metadata for its

poems can be somewhat erratic, with some information being present only for a few of

them. Nevertheless, it is amongst the best options currently available in this context, and

we will use it as our data source for this work.

1https://www.poetryfoundation.org/

https://www.poetryfoundation.org/
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3 RELATED WORKS

There are a few works in the literature that deal with classifying poems through

machine learning methods. However, most of the ones we could find used more traditional

algorithms, instead of LLMs. In this section we give a brief overview of the most relevant

works we found while developing the current one. A frequent theme we noticed was that

the size of the datasets used are usually small when compared with works outside of the

context of poetry. Our dataset, with a little under 13 thousand samples was actually one

of the largest we could find. This points to a lack of well-structured, carefully developed

and easily available datasets in this field that should be addressed by an interdisciplinary

effort between experts from the Literature and Computer Science fields.

In Lou, Inkpen and Tanasescu (2015), the authors present a research that has sev-

eral points of intersection with ours. They used a dataset built from the same data source

we use, the Poetry Foundation website, which they also scraped to gather the information

they would need. Their choice of targets for the classification also mostly overlaps with

ours, that is, both of the works create classifiers to recognize the topics that the poems

deal with, based on the textual content of the poems. The exception to this is that they

also performed an experiment with some of the sub-topics of the main topics, while we

constrain ourselves to work only with the main topics. We applied the same methodology

of creating binary classifiers for each topic as they did. Our work differs from theirs, how-

ever, firstly because the database of the Poetry Foundation has enlarged since then, and

while they built a dataset consisting of 7214 total poems, we have almost twice as many

as that, with 12970 total poems after cutting off samples that were either too small or too

large for our purposes. Secondly, because we are using a pre-trained language model,

while they used traditional machine learning algorithms. In specific, they worked with tf-

idf, LDA and SVMs. Finally, the main issue that our work attacks is that of the imbalance

of the classes in the dataset, which in their work they acknowledge as a problem but do

not perform any experiment in order to mitigate.

In Barbado, González and Carrera (2021), the authors applied models based on

Transformers to work with poetry classification. They applied a semi-supervised ap-

proach in which they used transformers mostly to extract word embeddings. They also

work with datasets comprised of poems in Spanish, and so they use multi-lingual version

of models, while we use only the English variant as our dataset is in this language. Actu-

ally, they have two datasets, one smaller, with 270 labeled samples, and one larger with
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4572 unlabeled samples. They also applied a larger number of models, such as Distil-

BERT, XMLRoberta and others. We focus only on BERT Base, due to the resource and

time constraints that define the scope of this work. They worked with two distinct set of

categories, framing one of them as a series of binary classification problems, similarly to

what we do in the current work; and the other as multi-label problem. In the category

they framed as binary classification, their F1 scores varied greatly depending on the class.

Their best results achieving 0.87, in this context. For the majority of the classes, how-

ever, they reached scores below 0.75. On the multi-label problem, their best weighted F1

scores were 0.68 and their worst ones were 0.32.

In Ruma et al. (2022), the authors also adopted two different datasets. However,

in this case, the datasets represented annotated collections of the poet Hafez done by two

scholars of the poet. Both datasets were very small, however, one of them containing 249

poems and the other 233. They framed their problem as trying to classify at which stage

of the life of the poet the poems were written, based on the knowledge that Hafez explored

different themes and styles across his life. An interesting aspect of their work is that they

were able to use both the poems in the original language as well as English translations.

Their best results were when using the original Persian language. They compared a few

traditional machine learning algorithms, namely Random Forest, Logistic Regression and

SVMs with the LSTM deep learning algorithm and its Bidirectional version, BiLSTM.

LSTM outperformed the traditional algorithms. At the end of their work, after several

improvements, they were able to reach F1 scores around 0.85.

A larger dataset was used by Ahmad et al. (2020), with 9142 poems in English.

However, their samples are usually much smaller, with the size of only a few sentences.

Their goal was the classification of these poetry posts into emotional states such as "anger",

"alone", "hate", and so on. There were 13 classes in total. They compared a few deep

learning techniques, with the one that achieved the best performance being an Attention-

based Convolutional Bi-Directional LSTM. They report 0.88 as the F1 score they were

able to achieve.

With regards to works that focused on the problem of imbalance, Jayaraman et

al. (2023) performed a comparison of different sampling techniques, including undersam-

pling, with the BERT language model and found good results for all techniques explored.

They were working with sentiment analyses on two diverse datasets composed of news

articles and SMS messages, respectively. Also working with BERT, Zhu, Wu and Yaseen

(2022) experimented with different levels of undersampling and found that a moderate
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amount of it gave the best cost-benefit. While working with more traditional machine

learning algorithms, namely logistic regression and XGBoost, Nguyen and Duong (2021)

compared data sampling techniques with cost sensitive learning techniques within the

context of the customer churn prediction problem. While they used only oversampling

techniques instead of the undersampling that we use, for the cost sensitive learning they

employed both focal loss and a weighted loss function. They found that the cost sensitive

techniques performed better than the sampling ones.
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4 METHODOLOGY

Here we describe the methodology we adopted to conduct this work. In Section

4.1 we describe how we built and consolidated our dataset. In Section 4.2 we describe how

we chose to model our problem. In Section 4.3 we described the technical details of how

we implemented the work, including environments and libraries used, the configuration

of parameters, the adopted metrics and how we handled threshold selection. Section 4.4

contains the definitions of the experiments we conducted, including also how we split the

dataset to allow both training and evaluation of models, as well as a description of our

baseline implementation.

4.1 Dataset

As mentioned in Section 2.6, we use the Poetry Foundation website as the data

source for this work. In this section, we describe how we consumed this source and

modeled the data into a representation that allowed us to apply a supervised learning

classification approach on it. All poems used are in English, either written natively in this

language or in translation from other languages.

4.1.1 Data acquisition

Since the Poetry Foundation website does not offer an API, we need an alternative

and scalable way to fetch the poems and their metadata in order to work with them. We

found some datasets already available at the Kaggle platform that were created from the

Poetry Foundation source. However none of them contained all the information we were

interested in. The most promising one turned out to be the one entitled "Complete po-

etryfoundation.org dataset"1, as it was amongst the most complete ones, with more than

15000 unique entries, provided the text content of the poem and also its Poetry Foundation

id. With that id, we would be able to scrape the website and fetch any missing metadata

we might desire. So we used that dataset as our starting point.

We proceeded to scrape the website, using the Python2 programming language and

1https://www.kaggle.com/datasets/johnhallman/complete-poetryfoundationorg-dataset
2https://www.python.org/

https://www.kaggle.com/datasets/johnhallman/complete-poetryfoundationorg-dataset
https://www.python.org/
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the Beautiful Soup3 library. Since we did not want to overburden the website’s servers,

we used a few seconds of delay after each request, varying the amount each time. We

stretched this process across five days, to ensure that the amount of load we would put on

the servers would not be harmful.

The most relevant information we gathered were the topics associated with each

poem and the literary school they belonged to. Analysing both of these allowed us to pick

a target for the classification.

At the end of this process, the full dataset we built contained the following fields

for each poem:

• ID: The id of the poem in the Poetry Foundation’s website. This is a unique infor-

mation for each poem, and it exists for every poem.

• Author: The author of the poem. This information is present for every poem.

• Title: The title of the poem. This information is present for every poem.

• Content: The textual content of the poem, in other words, the poem itself. This

information is present for every poem.

• School: The literary school to which the poem belong. Examples of these are

"Modern", "Imagist", "Victorian", "Renaissance", among others. This information

is not present for all poems.

• Topics: The topics that the poem has been labeled as dealing with. Examples

of these are "Love", "Religion", "Relationships", and so on. Since poems can be

labeled with multiple topics, this is a list containing every topic that the poem was

associated with. We provide a deeper explanation about topics in Section 4.2.1.

This information is not present for all poems in this initial dataset.

We do not use all of these fields to build our classifier pipeline, as explained in

Section 4.2.1. However, other workflows can be constructed by starting from our method-

ology and branching at this point, by making a different selection of fields to be used. For

instance, by proposing to identify a poem’s author based on its textual content, or by try-

ing to infer the literary school of a poem based on a combination of its textual content and

the topics it deals with. We leave this ideas as suggestions for future works.

3https://beautiful-soup-4.readthedocs.io/en/latest/

https://beautiful-soup-4.readthedocs.io/en/latest/
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4.1.2 Data preparation

The choice of the language model we would use, which we describe in Section

4.3.3, led us to make initial adjustments with regards to the data we would use.

The only transformation we apply to the poems themselves is to convert their

textual content entirely to lower-case, since we adopted the uncased version of BERT. We

do not perform any other data cleaning techniques on them, such as stop word removal or

similar methods before passing the content to the preprocessing layer that is provided as

a companion to the BERT model by the Google team.

With regards to the size of the samples, however, we have a technical limitation

that we must take into consideration. The BERT model we are using can only handle

inputs of size up to 512 tokens. Any content larger than that would be truncated automat-

ically by the model. So we must at least consider curating the dataset to a certain size

range.

Firstly we removed all poems with less than 10 tokens. There were only a few of

them and they were mostly incomplete works or erroneous entries, so they would generate

more noise than gain in the training process.

Then we turned to the fact that the model we use has a maximum size limit. In

the end we decided to work only with poems of size 510 or less and discard those larger

than that. We did this to simplify the training process and focus on other issues, but we

encourage future works to explore the possible strategies to deal with these cases so as

to achieve better performances. More details about the considerations we did to come up

with this decision and its impact on the amount of data we have to discard are given in

section 4.2.3.

4.2 Problem Modeling

Here we describe how we chose to model our problem. In Section 4.2.1 we de-

scribe what information we chose to train our classifiers to recognize, based on the content

of the poems. In Section 4.2.2 we describe our choice for binary classification instead of

using a multi-label approach. In Section 4.2.3 we describe how we decided to filter our

dataset so as to use only information that would be useful and helpful during the training

process.
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4.2.1 Target for classification

Initially we considered two possible ideas to configure our workflow for the clas-

sification. Both of them were based on using only the textual content of the poem (that is,

discarding any information about author or other such metadata) as the source for predic-

tions. The two ideas then diverged on what would be the target of the classification, that

is, what information would we try to predict, given the poem’s content. One of the ideas

was to predict the literary school of the poem, while the other was to predict the topics

the poem deals with.

By analysing the dataset, we found out that, of the 15652 poems we had, 14310

of them had information about which topics they referred to, while only 2514 had the

information about their literary school. Given this scenario, we chose topics as the most

viable target for classification, as working with school would mean we had far less data

available.

Some explanation about how topics are used in the Poetry Foundation website

can help to understand better the rest of our work, so we discuss them in the following

paragraph.

Topics are a human-annotated information that describe the general themes that

the poems talk about. They are called "Topics" on the website’s main interface for brows-

ing4, and appear as "Quick Tags" on individual poem pages5 - we will call them only

as "topics" in this work to simplify the terminology. They range from very general ones

such as "Love" to very specific ones such as "Labor Day". As far as we were able to

identify, there were 123 topics in total, at the time when we started our work. Most of

these appear on a very small number of poems and can be safely ignored for our purposes.

Nine of them, however, play a central role and are further identified as "Subjects" in the

previously mentioned main website interface. These also act as top of hierarchies. For

instance the topic "Nature" can be further refined into the topics "Winter", "Trees & Flow-

ers" and "Animals", among others. We chose to work only with these nine main topics,

as they cover the vast majority of the poems and are the most general ones. They are:

"Activities", "Arts & Sciences", "Living", "Love", "Mythology & Folklore", "Nature",

"Relationships", "Religion" and "Social Commentaries".

In this aspect we follow the methodology adopted by Lou, Inkpen and Tanasescu

4https://www.poetryfoundation.org/poems/browse
5https://www.poetryfoundation.org/poems/42891/stopping-by-woods-on-a-snowy-evening has "Activi-

ties", "Travels & Journeys", "Nature", etc., for instance.

https://www.poetryfoundation.org/poems/browse
https://www.poetryfoundation.org/poems/42891/stopping-by-woods-on-a-snowy-evening


27

(2015), as they focused their work mostly to this same set of topics. They also provided

as an extra section an experiment on some of the sub-topics of a couple of these, but we

will not follow that particular approach.

A poem can be associated with any number of topics. Even the main ones, which

we are working with, are not mutually exclusive. In other words, a poem can be associated

with the topics "Activities" and "Nature" at the same time, for instance. This has direct

implications for us, since it means it would not make sense to train only one classifier that

would output a single topic among our chosen set when classifying a poem. We describe

better our approach with regards to this in section 4.2.2.

While we consider topics to be a good choice as the target for classification, we

also acknowledge that we might face a slightly larger degree of arbitrary labeling than

in more simple scenarios, such as when identifying if a content is positive or negative.

For instance, a human expert labeler, when faced with a poem about a person going out

for a daily ritual worship of the goddess of trees, might decide to label it with the topics

Activities, Mythology & Folklore, Nature or Religion - in fact, any combination of those

- given their particular background. This might make it harder for a machine learning

model to learn how to correctly classify samples, but it is also something to be expected

in a real-world application, and thus a very interesting problem to deal with.

4.2.2 Classification approach

Since poems can be associated with any number of the target topics at the same

time, we could frame the process as either a multi-label classification problem or as mul-

tiple binary classification problems. In this work, we chose to use binary classifiers for

each individual topic. This is another point in which we are using a similar methodology

to Lou, Inkpen and Tanasescu (2015).

We will then have a total of 9 classifiers, each one trained to give a binary response

to the question "Is this poem about topic X?". With this setup, if it was desired to know

all main topics relevant to a poem, it would be necessary to run it through all 9 classifiers.

This approach has the benefit of making it very easy for us to find out and explore

the specific characteristics of each topic. For instance, by specializing models so that they

have the best configuration for the topic they are expected to recognize, instead of being

restricted to a global configuration.
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4.2.3 Data selection

One issue that becomes very clear when we choose to model the problem as mul-

tiple binary classification problems, however, is the fact that the topics do not have the

same distribution across the dataset. In fact, some of them are very rare.

As we mentioned before, of the 15652 poems available, 14310 were associated

with one of the main topics. We discard those that are not associated with any of the nine

we are working with and keep only the 14310 as the initial unfiltered dataset.

Figure 4.1 – Poems by size in unfiltered dataset

Source: The Author

Then we pick up again the discussion started in Section 4.1.2, where we mentioned

that we need to make a decision about the maximum size limit that our chosen language

model imposes. It forces us to make a decision between using strategies to incorporate

poems larger than this limit or discarding them. Although our variant of BERT is prepared

to handle 512 tokens, we consider the cutoff point at 510, in order to preserve space for

the special tokens that BERT uses to mark the start and end of input sequences. Figure 4.1

shows the distribution of poems by their size in the initial dataset. We can see that despite

having a long tail above the 500s, the significant majority of the poems are smaller than

that. The figure uses 2000 as a cutoff point in order to keep the x axis at a reasonable scale,

so all poems with more than 2000 tokens end up clumped in the rightmost position. When

investigating why there were outliers with so many tokens, we found out that some of the
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entries are either entire chapters of books or longer epic poems that could be considered

entire books by themselves, especially ancient ones.

Figure 4.2 – Poem distribution by size ranges for all topics

Source: The Author

Figure 4.2 shows an alternative view of the distribution by using a more permissive

upper bound of 5000. It also shows the distribution when considering all topics on the top

left, as well as for each individual topic. The area in blue corresponds to the amount of

poems that would fall within the size limit of the model, while the areas in other colors

represent the poems that would need to be treated differently. We again notice that the

amount of poems that would fall within our cutoff size limit is a reasonable proportion.

Table 4.1 – Poems by topic in the filtered dataset
Topic Number of Poems Percentage of Total
Activities 2022 15.59%
Arts & Sciences 2840 21.90%
Living 6206 47.84%
Love 2156 16.62%
Mythology & Folklore 566 4.36%
Nature 3617 27.89%
Relationships 3825 29.49%
Religion 1356 10.45%
Social Commentaries 3912 30.16%

Source: The Author
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Table 4.1 shows the distribution of topics after we apply the adjustments men-

tioned here, by cutting off all poems with less than 10 tokens or more than 510. Since

topics are not mutually exclusive, the percentages do not add up to one hundred. We are

left with 12970 total poems in our filtered dataset.

We can immediately see that no topic is present in more than 50% of the dataset.

So, since we are working with binary classifiers, the negative class will always be the

majority class during our work.

Table 4.1 also show that two topics can be seen as outliers: Living has the highest

percentage, being present in almost half of the poems in that dataset, at 47.84%. Mythol-

ogy & Folklore, on the contrary, is a very rare occurrence, appearing only in 4.36% of

the dataset, with a total amount of 566 poems. Since we mentioned before that one of

the possibilities arising from our approach was to have classifiers configured for specific

characteristics, this looks like a good point in which one would choose to do that.

Mythology & Folklore, in special, should be a particularly hard case, since it

combines the fact that the majority class will completely overwhelm the minority one

during training if we use all the available data, and that it inherently does not have many

positive samples to teach the models.

The insights presented by Table 4.1 were the main inspiration that led us to focus

this work on the issue of imbalance, as we will describe in section 4.4.

4.3 Implementation Setup

Here we give technical details of the setup we used to implement the training.

Section 4.3.1 describes the cloud environment we used to have access to GPUs with the

necessary power to handle the task of fine-tuning a BERT language model. Section 4.3.2

describe the libraries we used. Section 4.3.3 describes the BERT variant we used, includ-

ing the architecture of the model, as well as the values we use for the main parameters

of the training. Section 4.3.4 describe which metrics we chose to use, among the avail-

able ones for classification problems. Section 4.3.5 shows our approach toward threshold

moving and which thresholds we chose to consider.
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4.3.1 Environment

We used the Python6 programming language to develop this work. Data prepara-

tion was done with Python scripts, while the training and validation of the models were

done with Jupyter7 notebook environments.

We use the Kaggle notebooks environment to train the models, as it provides free

access to GPUs that can handle the requirements of the library used. The more common

platform used for such work is Google Colaboratory (Colab), which also provides a note-

book environment with access to GPUs. We performed early experiments that showed

that both provided the features we would need for our purposes, meaning that either one

could be used. We chose Kaggle as, at the time of the implementation of this work, it pro-

vided a better visibility of the usage of GPU resources and how much was still available,

allowing for a more precise planning of the work.

4.3.2 Libraries

We use Tensorflow8 and Keras9 libraries for training models, as they are industry-

standards with a simple API that offers the methods we needed. With them, we load a

pre-trained BERT model straight from Tensorflow Hub by initializing an instance of the

KerasLayer class passing as an argument the link of the pre-trained model.

We also use Pandas10 and Scikit-Learn11 libraries as helpers to solve tangential

needs related to data manipulation. The scraping of the data from the Poetry Foundation

site was done with Beautiful Soup12.

4.3.3 Experimental settings

For all reported experiments we use the BERT Base Uncased variant for English,

with 12 hidden layers, hidden size of 768 and 12 attention heads.

The architecture for our model is as follows: first, there is a text input layer, to
6https://www.python.org/
7https://jupyter.org/
8https://www.tensorflow.org/
9https://keras.io/

10https://pandas.pydata.org/
11https://scikit-learn.org/
12https://beautiful-soup-4.readthedocs.io/en/latest/

https://www.python.org/
https://jupyter.org/
https://www.tensorflow.org/
https://keras.io/
https://pandas.pydata.org/
https://scikit-learn.org/
https://beautiful-soup-4.readthedocs.io/en/latest/
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Figure 4.3 – Model architecture

Source: The Author

which the textual content of the poems are fed. The outputs of this layer then go into

the preprocessing layer, which generates the input in the format expected by BERT from

the text. The resulting embeddings then are fed into the next layer, which contains the

pre-trained BERT model itself. Next in line is a droupout layer with 0.1 dropout proba-

bility during training. Finally, our output layer is a dense layer with a sigmoid activation

function, from which we extract the prediction of the model, which is a decimal number

ranging from 0.0 to 1.0. Figure 4.3 shows a diagram representing the architecture we

used.

Our standard configuration for the experiments is as follows: we use a batch size

of 32, the AdamW optimizer and a learning rate of 5e-5. These are in accordance with

the original paper that introduced BERT (DEVLIN et al., 2019), except that instead of the

default Adam optimizer used there we use the variant proposed in Loshchilov and Hutter

(2019).

We use Binary Cross-Entropy as a loss function for all experiments except for the

one in which we use the Focal Loss function. The value of the binary cross-entropy loss

for any given sample is calculated as:
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Loss(y, ŷ) = −(y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ))

where y is the true class for that sample and is either 0 or 1, and ŷ is the model’s

prediction for that sample.

We let the training run for 10 epochs. This is a far larger time than what was

suggested in the original paper, which would be around 3 to 5 epochs. However, we have

configured the process to evaluate the model against the validation dataset at the end of

each epoch, and whenever it sees an improvement, it saves the current state of the model.

We defined improvement as the value of the loss function on the validation data being

reduced from the previously seen lowest value. Then, at the end of the 10 epochs, we pick

the last version of the model that was saved given this criteria as the result of the training.

Empirically, we found that models tended to reach their best version at around epochs 3

or 4, with some extreme cases achieving it only at epoch 6. But no model we trained ever

improved after epoch 7. Given this, we are confident that letting the training run for 10

epochs is enough to catch all the improvement it could get, while not running the risk of

overfitting since we discard any model that does not improve from the best seen.

Figure 4.4 shows the training history of the baseline models for each topic, with

loss on the y axis and epoch on the x axis. The training loss is displayed in red, while the

validation loss is blue. From it we can confirm that at epoch 10 all models were already

heavily overfitting, so it would be pointless to continue the process. We take as the final

model the one saved when the blue line was at its lowest. This figure shows the histories

only for the baseline models, but all later experiments showed the same characteristics.

4.3.4 Selection of evaluation metrics

Given the imbalanced nature of our dataset, accuracy is not a good metric. For

instance, considering the entire dataset that we acquired our worst imbalance case is a

class which has only 714 samples out of a total of 14243. If a classifier was trained

specifically to identify if a sample belonged to it or not, and that classifier chose to always

answer negatively, regardless of what was fed to it, when evaluated over the entire dataset

the classifier would be correct 14310−718 = 13592 times out of the 14310, which would

give it an accuracy of around 94.98%. In other words, it would at the same time be highly



34

(a) Activities (b) Arts & Sciences

(c) Living (d) Love

(e) Mythology & Folklore (f) Nature

(g) Relationships (h) Religion

(i) Social Commentaries
Figure 4.4 – Training histories of baseline models
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accurate, and totally useless.

For problems that deal with imbalanced datasets such as ours we need other met-

rics. The metrics we chose to consider are Precision, Recall and F1 score, with the macro-

F1 score being our main standard to evaluate the global performance of the models.

We still report precision and recall for both the positive and negative classes when

we show the results of individual experiments, but when we make comparisons between

experiments it is always based on the macro-F1 score achieved, considering both classes.

When we refer just to F1 score in the text, without specifying if it is for the positive or

negative classes, we are referring to the macro-F1.

4.3.5 Thresholds considered

We used threshold moving alongside every experiment we ran in this work. The

threshold range used was from 0.05 to 0.95, and the step size was 0.05. We evaluate the

results by using each of these thresholds with our main metric, macro-F1.

For every experiment we show tables of the metrics extracted for both a standard

threshold of 0.5 and the threshold that gave the best performance for that particular model.

Then, when we compare the results of different experiments, we always use only the score

achieved with the best performing threshold.

We deviate briefly from the proposed range in the case of Focal Loss to investigate

some peculiarities we found with it, but we do not bring the results from this deviation into

comparison with the other experiments that followed rigorously our proposed methodol-

ogy. We give more details about this in the specific section detailing the results for the

Focal Loss experiment, section 5.4.

4.4 Experiment definitions

Here we present the rationale and configuration of each experiment we performed,

then in Section 5 we present their results.

Given the scenario we found after doing this initial probing of the proposed work,

we decided to focus on the problem of the imbalance of the classes in the dataset. We

expect this to be one of the major issues that classifiers trained with this dataset will

encounter, since they will be disproportionately rewarded for classifying a poem as not
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belonging to the class they were trained to recognize.

There are several other challenges with this dataset that would be worthwhile pur-

suing. One of them is the fact that the amount of data is not that big (although within

the confines of labeled poetry datasets it is one of the biggest we could find). Another is

how to best incorporate the outliers in size so as to make them work with methods that

require a limited maximum size, as BERT does. There’s also the question of the choice

and labeling of the topics, to what degree is it arbitrary or universal, and so on. We leave

all of these as suggestions for future works.

In order to explore our chosen problem in more depth, we ran experiments with a

few selected strategies found in the literature to mitigate this particular issue, and compare

them with a baseline training in which no action was performed to address the imbalance.

Section 4.4.2 describes our baseline of comparison for the experiments. Section 4.4.3

describes our experiment with the undersampling of the majority class, while 4.4.4 de-

scribes the experiment where we used weights for each class to scale the loss function,

and 4.4.5 describes the experiment in which we used Focal Loss as a loss function.

4.4.1 Dataset split

In every experiment described here, we used a simple train/test/validation split and

ran only one training for each relevant case we wanted to test. We chose this approach

due to the computational cost of the process and the limitations we had for the scope of

this work. For reference, each individual classifier takes about one to a few hours to be

trained, even using the cloud environment described before. Since we are working with

binary classifiers for each topic, and we have 9 topics, each experiment requires at least

9 training rounds, or 9 hours in the very best scenario. We understand that this approach

leaves the training more susceptible to random circumstances that might impact the final

performance of the model, however it was the compromise we had to make, given the

constraints around the scope of this work.

We make the dataset split early on in the process, and then use the same withheld

test set to evaluate every experiment. We expect this to help in making the results more

comparable.

We split 10% of the data to take as a withheld test set, and leave the remaining

90% available for train and validation sets when training the models. While we tried not

to deviate too much from the distribution of the full dataset, keeping it perfectly equal is a



37

challenging task due to the fact that topics are not mutually exclusive. That is, by picking

a poem to fill a topic’s quota, we might inadvertently change the distribution of another

topic in the test set. Due to this, we do not attempt to keep an exact match in distribu-

tions between training and test data, but we tried to ensure that every topic is represented

enough to provide a fair evaluation to its model while not distorting excessively the rela-

tive distributions between topics. So, we still wanted Living to have a disproportionately

high representation, Mythology & Folklore to be rare, and so on. The only criteria we

used to guide the split is the distribution of the resulting sets, other than that we choose

randomly between any poems that could be picked.

Table 4.2 shows how the set available for train/validation split during training is

distributed, while table 4.3 shows the same for the test set.

Table 4.2 – Poems by topic in the train+validation set
Topic Number of Poems Percentage of Total
Activities 1762 15.08%
Arts & Sciences 2505 21.45%
Living 5462 46.77%
Love 1876 16.06%
Mythology & Folklore 499 4.27%
Nature 3197 27.38%
Relationships 3323 28.45%
Religion 1211 10.37%
Social Commentaries 3447 29.52%
Train+Validation dataset 11678 100.00%

Source: The Author

Table 4.3 – Poems by topic in the test set
Topic Number of Poems Percentage of Total
Activities 260 20.12%
Arts & Sciences 335 25.93%
Living 744 57.58%
Love 280 21.67%
Mythology & Folklore 67 5.19%
Nature 420 32.51%
Relationships 502 38.85%
Religion 145 11.22%
Social Commentaries 465 35.99%
Test dataset 1292 100.00%

Source: The Author
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4.4.2 Baseline

As a baseline, we train classifiers for each topic using the default configurations

described on Section 4.3.3, without doing anything to address the imbalance between

classes. We use the results achieved to evaluate the results of the other experiments, in

which we try different strategies to mitigate that problem, so we can have an idea of their

impact.

4.4.3 Experiment 1 - Undersampling

The first strategy we implemented was the undersampling of the majority class.

Given our choice of binary classifiers for each topic, and the fact that there is no topic

which is associated with half of the dataset or more, in our case the majority class is

always the negative one. So for this experiment we always keep all of the positive sam-

ples available for training, but we discard from training a given amount of the negative

samples.

We framed this as the question of how much imbalance we want to train the clas-

sifier with. We experimented with five levels of imbalance, which can be thought of as

no imbalance, a small amount of imbalance, a medium amount, a large amount and full

imbalance. Mathematically, we represent these levels as the values 0.0, 0.25, 0.5, 0.75

and 1.0, respectively. For each topic, we train a classifier for each of these levels, and at

the end evaluate which level gave the best performance for each topic.

The way we applied this factor to define the specific number of negative samples

to use during training is as follows: we always pick the full amount of positive samples

available in the training set. We also always pick as many negative samples as positive

samples. This leaves an excess of negative samples we could pick. We then use the ratio

of imbalance desired to modulate how much of the excess we pick. The formula we apply

is the following:

N = ⌊P + (T ∗R ∗ F )⌋

Where N is the total number of negative samples to pick, P is the number of

positive samples available in the training set, T is the total number of samples in the

training set, R is the ratio of the excess of negatives in the training set and F is the
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factor we are using, for which we tested the values mentioned before. This is a heuristic

formulation we came up while developing the work, amongst several possible ones.

We do not apply any specific consideration of which negative samples to pick and

which to discard, other than the amount to pick.

4.4.4 Experiment 2 - Weighted Loss Function

For this experiment we use a weighted loss function. Following the description on

section 2.3.2.1, we scaled our default loss function (binary cross-entropy) with different

weights for the positive and the negative classes.

In order to compute the weights for each class, we use the heuristic provided by the

scikit-learn helper function compute_class_weight13. In practice, the heuristic generates

the weight for each class as follows:

Weight For Class C =
Total Samples

Samples Of Class C ∗ Number Of Classes

From the formula, we can see that the weight of a class C is inversely proportional

to the proportion of the samples of C in the dataset. Thus, we can see that a class which

is overabundant in the dataset will receive a smaller weight, since the Samples Of Class C

factor in the denominator will be large. Conversely, a class that is underrepresented will

receive a larger weight due to the same factor. The Number Of Classes factor is used only

to stabilize the magnitude of the values that the loss function will generate.

4.4.5 Experiment 3 - Focal Loss Function

For our final experiment, we replace our loss function with the Focal Loss func-

tion, described in section 2.3.2.2.

For this work we use the values mentioned as a good pair in the paper, setting γ to

2 and α to 0.25.

13https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html

https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
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5 RESULTS

In this section, we present the results for each experiment we ran. We compare

each result against the baseline individually, discussing its performance and more inter-

esting characteristics. At the end, we present a full comparison between all of the results.

For all comparisons, we select the results achieved by selecting the best possible

threshold for that particular case.

Tables detailing the results of each individual experiment contain the scores for

precision, recall and F1 considering both the positive and negative classes. Tables that

show a comparison between different experiments show only the F1 score.

Whenever relevant, we highlight the better result in comparison by printing it in

bold.

5.1 Baseline

Table 5.1 shows the results of the baseline experiment considering 0.5 as the

threshold to classify a sample as a positive. Table 5.2 shows the result of the same exper-

iment, but when we consider the threshold that gives the best F1 score. Comparing both

tables we can see that we can improve the results just by adjusting our interpretation of

the classifier’s response without retraining. With this, we can compensate the pessimism,

so to speak, of the classifier.

Table 5.1 – Baseline results with threshold set to 0.5
Topic Precision(P) Recall(P) Precision(N) Recall(N) F1(P) F1(N) F1
Activities 63.04% 22.31% 83.17% 96.71% 32.95% 89.43% 61.19%
Arts & Sciences 73.91% 25.37% 78.76% 96.87% 37.78% 86.88% 62.33%
Living 74.66% 51.88% 53.81% 76.09% 61.22% 63.04% 62.13%
Love 77.61% 37.14% 84.8% 97.04% 50.24% 90.51% 70.37%
Mythology & Folklore 25.0% 0.43% 63.94% 99.27% 0.85% 77.78% 39.31%
Nature 66.67% 62.38% 82.42% 84.98% 64.45% 83.68% 74.07%
Relationships 66.27% 33.27% 67.79% 89.24% 44.3% 77.05% 60.67%
Religion 71.15% 25.52% 91.29% 98.69% 37.56% 94.85% 66.21%
Social Commentaries 79.09% 44.73% 75.02% 93.35% 57.14% 83.19% 70.17%
Average 66.38% 33.67% 75.67% 92.47% 42.94% 82.93% 62.94%

Source: The Author

One thing that becomes immediately clear, and that will be a constant theme across

all experiments, is the outlier nature of the topic Mythology & Folklore. We already saw

that this is rarest topic in the dataset, appearing in less than 600 of the poems. So we

expect classifiers to have a much harder time when dealing with it than with the other



41

Table 5.2 – Baseline results with best thresholds
Topic Threshold Precision(P) Recall(P) Precision(N) Recall(N) F1(P) F1(N) F1
Activities 0.3 52.34% 47.31% 87.04% 89.15% 49.7% 88.08% 68.89%
Arts & Sciences 0.25 56.71% 50.45% 83.3% 86.52% 53.4% 84.88% 69.14%
Living 0.4 70.51% 68.15% 58.64% 61.31% 69.31% 59.95% 64.63%
Love 0.3 67.58% 52.86% 87.7% 92.98% 59.32% 90.26% 74.79%
Mythology & Folklore 0.05 33.54% 11.83% 63.65% 86.82% 17.49% 73.45% 45.47%
Nature 0.45 65.33% 65.95% 83.53% 83.14% 65.64% 83.33% 74.49%
Relationships 0.25 57.35% 70.72% 78.16% 66.58% 63.34% 71.91% 67.62%
Religion 0.2 43.66% 42.76% 92.78% 93.03% 43.21% 92.9% 68.05%
Social Commentaries 0.25 66.74% 65.59% 80.84% 81.62% 66.16% 81.23% 73.69%
Average - 57.09% 52.85% 79.51% 82.35% 54.17% 80.67% 67.42%

Source: The Author

topics. In the context of the baseline setting, looking at the Table 5.2 with the best thresh-

olds, we see that its F1 score is much worse than the rest, being almost 20% lower than

the next lowest score. Also, the best threshold for it was the lowest in the range we check,

indicating that the classifier is extremely pessimist when trying to identify if a poem deals

with this topic.

Although no other of the best thresholds is as low as the one for Mythology &

Folklore, we notice that they are all located below the standard 0.5 one. That is, if we

do nothing to address the imbalance of the dataset, all classifiers will tend toward giving

lower scores.

We also note that with the best thresholds a general pattern appears of the precision

of the positive class being lower than with the standard threshold, while the positive recall

gets higher. The situation is the opposite for the negative class, with precision increasing

and recall decreasing. This is actually a natural consequence of the fact that all of the best

thresholds for the baseline classifiers were lower than the standard 0.5. By lowering the

threshold, we are increasing the range of outputs that make us interpret the prediction of

a sample as putting it in the positive class. This is guaranteed to not decrease the number

of samples being predicted as belonging to the positive class, while making it likely that

the number of such predictions increases. By predicting more samples as belonging to

the positive class, we will naturally tend to incorrectly classify more of the members of

the negative class that were previously near the borderline and were previously correctly

classified as negative, which decreases precision. Also, by increasing the number of sam-

ples we classify as belonging to the positive class, we tend to correctly identify positive

samples that were previously just below the line of the threshold, which increases the re-

call. The exact same logic can be analogously applied to the negative class, by inverting

the impact on precision and recall for that class. Hence, the pattern is exactly what we

would expect to find, given that the best threshold is always lower than the standard one.
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This is still something worth noticing, however, since it can have implications

depending on the use case we want for the classifier. In our case, we were just interested

in making a general exploration of the performance and behavior of such classifiers in

the proposed context, so we use the macro-F1 score as a metric that strives to balance the

performance of both precision and recall, for both the positive and negative classes. But

if we were working under a more specific scenario in which we would want to prioritize

either the amount of samples we classify as positive, or the strictness of our predictions,

then it would make more sense to look at the other metrics. For instance, if our goal was

to perform information retrieval and we were willing to tolerate some false positives as

long as we could retrieve as many correct instances of a class as possible, we might prefer

increasing the recall, and thus either make that metric the target for maximization when

applying threshold moving, or just generally favoring lower thresholds. Conversely, if we

had an use case where we would want to be as strict as possible in cutting off poems that

do not belong to the desired class, such as for instance if we needed to filter out as many

poem submissions to a contest as possible, so that our human judges would be handled

a smaller set of poems to examine manually, we might opt for the opposite approach, by

either making precision our target metric or generally preferring higher thresholds.

Table 5.3 shows a cleaner view of the results, displaying only the F1 score that the

baseline implementation achieved for each topic. It is against those values that we will

compare the results achieved by all other experiments.

Table 5.3 – Baseline F1 scores
Topic Baseline
Activities 68.89%
Arts & Sciences 69.14%
Living 64.63%
Love 74.79%
Mythology & Folklore 45.47%
Nature 74.49%
Relationships 67.62%
Religion 68.05%
Social Commentaries 73.69%
Average 67.42%

Source: The Author
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5.2 Experiment 1 - Undersampling

Table 5.4 shows a summary of the results achieved with undersampling and fixing

the threshold at 0.5, while Table 5.5 shows the analogous results when picking the best

threshold. The most interesting point here is in the column "Imbalance", which shows the

imbalance ratio that produced the best results. A ratio of 0.0 would mean that the positive

and the negative classes had the same amount of samples in the training set, meaning the

most severe undersampling of that class and consequently the least amount of data used in

training. Conversely, a ratio of 1.0 of imbalance would mean that we do not undersample

the negative class in order to balance the training set, and use the highest amount of data

in training.

Table 5.4 – Summary of undersampling results for threshold 0.5
Topic Imbalance Threshold Precision(P) Recall(P) Precision(N) Recall(N) F1(P) F1(N) F1
Activities 0.5 0.5 71.08% 42.14% 85.61% 95.26% 52.91% 90.18% 71.55%
Arts & Sciences 0.25 0.5 60.67% 51.79% 87.18% 90.71% 55.88% 88.91% 72.39%
Living 0.75 0.5 73.18% 63.44% 57.96% 68.43% 67.96% 62.76% 65.36%
Love 0.25 0.5 59.01% 59.64% 88.80% 88.54% 59.32% 88.67% 74.00%
Mythology & Folklore 0.25 0.5 34.48% 14.92% 95.49% 98.45% 20.83% 96.94% 58.89%
Nature 0.5 0.5 72.48% 56.43% 81.04% 89.68% 63.45% 85.14% 74.30%
Relationships 0.5 0.5 62.96% 60.96% 75.68% 77.21% 61.49% 76.44% 69.19%
Religion 0.5 0.5 61.04% 32.41% 91.93% 97.38% 42.34% 94.58% 68.46%
Social Commentaries 0.0 0.5 69.60% 59.57% 78.97% 85.37% 64.19% 82.04% 73.12%
Average - - 62.72% 49.03% 82.52% 87.89% 54.26% 85.07% 69.70%

Source: The Author

Table 5.5 – Summary of undersampling results for best threshold
Topic Imbalance Threshold Precision(P) Recall(P) Precision(N) Recall(N) F1(P) F1(N) F1
Activities 0.5 0.25 62.29% 54.29% 87.79% 90.91% 58.01% 89.32% 73.67%
Arts & Sciences 0.5 0.25 57.75% 58.57% 88.49% 88.14% 58.16% 88.32% 73.24%
Living 0.75 0.4 69.29% 77.96% 63.96% 53.10% 73.37% 58.03% 65.70%
Love 0.75 0.35 62.12% 58.57% 88.71% 90.12% 60.29% 89.41% 74.85%
Mythology & Folklore 1.0 0.1 27.62% 43.28% 96.80% 93.80% 33.72% 95.27% 64.50%
Nature 1.0 0.3 64.74% 69.52% 84.78% 81.77% 67.05% 83.25% 75.15%
Relationships 0.5 0.45 60.73% 66.53% 77.36% 72.66% 63.50% 74.93% 69.22%
Religion 0.5 0.6 72.58% 31.03% 91.87% 98.52% 43.48% 95.08% 69.28%
Social Commentaries 1.0 0.25 69.19% 62.80% 80.11% 84.28% 65.84% 82.14% 73.99%
Average - - 60.70% 58.06% 84.43% 73.7% 58.16% 83.97% 71.07%

Source: The Author

An interesting fact about Table 5.4 is that, when fixing the threshold at 0.5, no

topic achieved the best performance by using the most of the available data. We will see

in the next paragraph that this is not the case when we allow the threshold to move and

pick the best one. In fact, for the standard threshold there was even one topic, Social

Commentaries, that had its best performance by being perfectly balanced, and dismissing

all of the exceeding samples of the negative class. It is interesting that it was not Mythol-

ogy & Folklore, the most imbalanced one, but likely the fact that Mythology & Folklore

only has 566 poems in total in the whole dataset, while Social Commentaries has 3912, is
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playing a role in here, as Mythology & Folklore has just too little data to be able to afford

the luxury of discarding all of the excess.

Examining the Table 5.5, in turn, we can see almost the opposite, that no topic

performed the best by using 0.0 or 0.25 imbalance, which would mean a more balanced set

but with less data to be trained on. It makes sense that using too little data would incur in

performance problems, so that is an expected finding when we give the threshold freedom

to search for the best result. However, we also notice that only 3 topics, Mythology &

Folklore, Nature and Social Commentaries performed the best by using all the available

data (highest imbalance, smallest undersampling). Two other topics, Living and Love, had

their best performances when using a large imbalance (0.75). But the ratio that performed

the best in most cases was a moderate amount of imbalance, giving the best result for 4

topics: Activities, Arts & Sciences, Relationships and Religion. This seems to indicate

that finding a middle point between using the most available data and not letting one class

overwhelm the other is a good strategy for this dataset.

Looking at both Tables 5.4 and 5.5 together, we can notice that picking the best

threshold possible made the best level of imbalance for all topics either stay the same

or increase, but never decrease. In other words, giving the threshold freedom to move

allowed more data to be used to generate the best performance in some cases, while never

requiring less data to be used to optimize the result.

For future comparisons in which we include the undersampling method, we al-

ways consider the level of imbalance that performed the best for the best thresholds in

this experiment, in other words, those in Table 5.5, as the canonical result.

We can notice in here that, similarly as what happened with the baseline, with

undersampling most of the best thresholds tend to still be below the standard 0.5. The

only exception being the Religion topic, with has a slightly higher best threshold, at 0.6.

This means that the impacts on precision and recall are roughly the same as mentioned

in Section 5.1, with the exception of the previously mentioned topic. The impacts for

thresholds above 0.5 are explained in more depth in section 5.3, where we will see that

several topics have this characteristic. It makes sense that the threshold would still tend

towards being lower than 0.5, since by undersampling we are still presenting the classifiers

with a universe in which there is a larger amount of negative cases than positive ones

during training, which pushes the prediction output values down, and not compensating

this by any other means.

Table 5.6 shows the comparison between the F1 scores obtained by the models
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trained with the baseline configuration and those trained using an undersampling of the

negative class.

We can see that the undersampling method outperforms the baseline in every topic.

While this is an interesting fact, the more interesting result was the one shown previously,

that it is not always the highest level of imbalance (which means more data gets used for

training) that yields the better results for this experiment.

Table 5.6 – Comparison Baseline vs Undersampling F1 scores
Topic Baseline Undersampling
Activities 68.89% 73.67%
Arts & Sciences 69.14% 73.24%
Living 64.63% 65.70%
Love 74.79% 74.85%
Mythology & Folklore 45.47% 64.50%
Nature 74.49% 75.15%
Relationships 67.62% 69.22%
Religion 68.05% 69.28%
Social Commentaries 73.69% 73.99%
Average 67.42% 71.07%

Source: The Author

5.3 Experiment 2 - Weighted Loss Function

Table 5.7 shows the class weights we used for each topic. These were computed

automatically based on the distribution present in the training set of this experiment, using

the helper function described in section 4.4.4. As expected, the most imbalanced topic,

Mythology & Folklore, showed the largest difference between the weights, while the least

imbalanced one, Living, ended up with a very small difference.

Table 5.8 shows the results achieved by using pondered class weights when setting

the threshold to 0.5. Table 5.9 shows the results achieved by choosing the best possible

threshold. The interesting point to note here is that the best thresholds increased by adopt-

ing the proposed weights in the weighted loss function, being now closer to 0.5. However,

even with this adjustment the Mythology & Folklore topic still has a very low ideal thresh-

old, at 0.25.

Here we see a few differences in the pattern of precision and recall of positive and

negative classes than what we saw in the baseline results, but the pattern still follows the

same logic. The differences are due to the fact that now, for some of the topics, the best
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Table 5.7 – Weights used for each class
Topic Negative Positive
Activities 0.59 3.32
Arts & Sciences 0.64 2.33
Living 0.94 1.07
Love 0.60 3.11
Mythology & Folklore 0.52 11.70
Nature 0.69 1.83
Relationships 0.70 1.76
Religion 0.56 4.83
Social Commentaries 0.71 1.69

Source: The Author

Table 5.8 – Weighted loss function results with threshold set to 0.5
Topic Precision(P) Recall(P) Precision(N) Recall(N) F1(P) F1(N) F1
Activities 44.34% 54.23% 87.78% 82.85% 48.79% 85.24% 67.02%
Arts & Sciences 58.7% 48.36% 82.97% 88.09% 53.03% 85.45% 69.24%
Living 69.84% 69.09% 58.63% 59.49% 69.46% 59.06% 64.26%
Love 61.4% 59.64% 88.92% 89.62% 60.51% 89.27% 74.89%
Mythology & Folklore 44.44% 23.88% 95.94% 98.37% 31.07% 97.14% 64.1%
Nature 63.08% 64.29% 82.64% 81.88% 63.68% 82.26% 72.97%
Relationships 60.35% 61.55% 75.26% 74.3% 60.95% 74.78% 67.86%
Religion 50.0% 37.93% 92.39% 95.2% 43.14% 93.77% 68.46%
Social Commentaries 64.81% 72.47% 83.42% 77.87% 68.43% 80.55% 74.49%
Average 57.44% 54.6% 83.11% 83.08% 55.45% 83.06% 69.25%

Source: The Author

threshold is higher than the standard 0.5, which inverts the impact on precision and recall

due to the same argument. The higher the threshold, the fewer the samples are predicted as

positive. So, there is a tendency for fewer false positives, which leads to higher precision

and lower recall, and conversely the opposite for the negative class. An interesting side

effect of the best thresholds being in general closer to 0.5 that is noteworthy is the fact that,

while by just tuning the threshold without addressing the issue in any other form we can

improve the macro-F1 score (as we saw with the baseline results), by addressing it with

the strategy of using class weights we can also later apply threshold moving and improve

the macro-F1 score, but with a smaller impact on precision and recall. For specific use

cases, such as the ones we mentioned in section 5.1, this might be useful as it would allow

us to improve the overall performance of the classifier without sacrificing too much on our

desired priorities. The present strategy might have an advantage over the undersampling

strategy with regards to this, since we saw that with that strategy we are still bound to end

up with lower best thresholds overall.

Table 5.10 shows the comparison between the F1 scores obtained by the models

trained with the baseline configuration and those trained using class weights. The perfor-
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Table 5.9 – Weighted loss function results with best thresholds
Topic Threshold Precision(P) Recall(P) Precision(N) Recall(N) F1(P) F1(N) F1
Activities 0.6 51.08% 45.38% 86.62% 89.05% 48.07% 87.82% 67.94%
Arts & Sciences 0.55 60.47% 46.57% 82.69% 89.34% 52.61% 85.89% 69.25%
Living 0.45 68.55% 76.75% 62.31% 52.19% 72.42% 56.8% 64.61%
Love 0.55 64.29% 57.86% 88.65% 91.11% 60.9% 89.86% 75.38%
Mythology & Folklore 0.25 38.46% 29.85% 96.21% 97.39% 33.61% 96.8% 65.2%
Nature 0.55 66.41% 61.19% 81.99% 85.09% 63.69% 83.51% 73.6%
Relationships 0.45 58.55% 67.53% 77.14% 69.62% 62.72% 73.19% 67.95%
Religion 0.7 70.31% 31.03% 91.86% 98.34% 43.06% 94.99% 69.03%
Social Commentaries 0.5 64.81% 72.47% 83.42% 77.87% 68.43% 80.55% 74.49%
Average 60.32% 54.29% 83.43% 83.33% 56.17% 83.27% 69.72%

Source: The Author

mance on 6 of the topics improved by applying the weights, while the baseline was still

better for 3 of them. Despite some of the differences between the scores being small, a

combination of having the majority of the better results plus massively outperforming on

Mythology & Folklore pushes the average score for this experiment more than 2 points

above the baseline. The considerable advantage in that particular topic makes sense, as it

is our biggest outlier in terms of imbalance.

Table 5.10 – Comparison Baseline vs Weighted loss function F1 scores
Topic Baseline Weighted Loss
Activities 68.89% 67.94%
Arts & Sciences 69.14% 69.25%
Living 64.63% 64.61%
Love 74.79% 75.38%
Mythology & Folklore 45.47% 65.20%
Nature 74.49% 73.60%
Relationships 67.62% 67.95%
Religion 68.05% 69.03%
Social Commentaries 73.69% 74.49%
Average 67.42% 69.72%

Source: The Author

5.4 Experiment 3 - Focal Loss Function

Table 5.11 shows the results of using Focal Loss as a loss function when setting

the threshold to 0.5, while table 5.12 shows the results when we choose the best possible

threshold within the range we defined in our methodology. Three things draw our atten-

tion in here: a) that the scores for the standard 0.5 threshold are outstandingly bad; b)

that the ideal threshold is the same (0.6) for every single topic - this is not the case for

any of the other experiments we ran, in all of them there is always some diversity; c) that
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the small difference of 0.1 in threshold, from 0.5 to 0.6, can result in much better scores

overall.

Table 5.11 – Focal Loss results with threshold set to 0.5
Topic Precision(P) Recall(P) Precision(N) Recall(N) F1(P) F1(N) F1
Activities 20.12% 100.0% 0% 0.0% 33.51% 0% 16.75%
Arts & Sciences 25.95% 100.0% 100.0% 0.1% 41.21% 0.21% 20.71%
Living 57.59% 100.0% 0% 0.0% 73.08% 0% 36.54%
Love 21.95% 99.64% 95.24% 1.98% 35.98% 3.87% 19.92%
Mythology & Folklore 5.59% 98.51% 99.1% 8.98% 10.58% 16.47% 13.52%
Nature 32.51% 100.0% 0% 0.0% 49.07% 0% 24.53%
Relationships 38.85% 100.0% 0% 0.0% 55.96% 0% 27.98%
Religion 11.28% 100.0% 100.0% 0.61% 20.28% 1.21% 10.75%
Social Commentaries 35.99% 100.0% 0% 0.0% 52.93% 0% 26.47%
Average 27.76% 99.79% 43.82% 1.3% 41.4% 2.42% 21.91%

Source: The Author

Table 5.12 – Focal Loss results with best thresholds
Topic Threshold Precision(P) Recall(P) Precision(N) Recall(N) F1(P) F1(N) F1
Activities 0.6 60.87% 26.92% 83.86% 95.64% 37.33% 89.36% 63.35%
Arts & Sciences 0.6 54.24% 47.76% 82.45% 85.89% 50.79% 84.14% 67.46%
Living 0.6 59.93% 95.3% 67.89% 13.5% 73.59% 22.53% 48.06%
Love 0.6 63.21% 47.86% 86.48% 92.29% 54.47% 89.29% 71.88%
Mythology & Folklore 0.6 44.83% 19.4% 95.72% 98.69% 27.08% 97.19% 62.13%
Nature 0.6 57.64% 78.1% 87.28% 72.36% 66.33% 79.12% 72.73%
Relationships 0.6 57.7% 73.11% 79.42% 65.95% 64.5% 72.06% 68.28%
Religion 0.6 38.92% 49.66% 93.41% 90.15% 43.64% 91.75% 67.69%
Social Commentaries 0.6 62.59% 71.61% 82.63% 75.94% 66.8% 79.14% 72.97%
Average 55.55% 56.63% 84.35% 76.71% 53.84% 78.29% 66.06%

Source: The Author

After seeing these questions, we evaluated the classifiers of this experiment with

much more granularity, out of curiosity to see if the improvements that could be found in

smaller slices were even more impressive. So we scanned every threshold from 0.001 to

0.999 with increments of 0.001. Table 5.13 shows the results we found. We do not take

these results to a serious comparison with the other experiments, as it would be unfair

with the other experiments that were evaluated only in the standard range we proposed,

however we still find a couple of noteworthy things. Firstly, that there is indeed some

improvement from the normal scan although it is nothing groundbreaking. A great im-

provement can be seen for Living, though, which increased in more than 15% its F1 score.

It is worthy remembering that Living is the most balanced topic we have in the dataset.

And secondly, that the average F1 score achieved with this approach (69.10%) would

actually surpass the average F1 score of the baseline models (67.42%).

Looking back at the table for the results with the standard threshold, we can further

notice that almost all of the topics have 100% recall for the positive class, with 0% for the

negative one. This indicates that we are interpreting all of the responses of the classifier
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Table 5.13 – Focal Loss results with more granular scan
Topic Threshold Precision(P) Recall(P) Precision(N) Recall(N) F1(P) F1(N) F1
Activities 0.59 45.49% 42.69% 85.78% 87.11% 44.05% 86.44% 65.24%
Arts & Sciences 0.595 51.2% 57.31% 84.41% 80.88% 54.08% 82.6% 68.34%
Living 0.619 68.46% 70.03% 58.0% 56.2% 69.24% 57.09% 63.16%
Love 0.591 57.04% 57.86% 88.29% 87.94% 57.45% 88.12% 72.78%
Mythology & Folklore 0.594 44.44% 23.88% 95.94% 98.37% 31.07% 97.14% 64.1%
Nature 0.607 61.9% 73.1% 85.8% 78.33% 67.03% 81.89% 74.46%
Relationships 0.604 61.34% 67.33% 77.87% 73.04% 64.2% 75.38% 69.79%
Religion 0.625 55.56% 37.93% 92.46% 96.16% 45.08% 94.27% 69.68%
Social Commentaries 0.613 72.16% 60.22% 79.54% 86.94% 65.65% 83.07% 74.36%
Average 57.51% 54.48% 83.12% 82.77% 55.32% 82.89% 69.1%

Source: The Author

as predicting the positive class. By picking one of them, namely the classifier for the

Activities topic, and examining the values it outputs for all instances of our test set when

running predictions over them, we noticed that the lowest value output was 0.5082, with

the highest value output being 0.6494, and the average across all outputs falling at 0.5716,

all rounded to 4 decimal digits. This confirms that, by setting the threshold at 0.5, for this

particular classifier all samples in the test dataset would be considered positive, simply

because the range that the classifier considered fell completely within 0.50 and 0.65.

Table 5.14 shows the minimum, average and maximum values that were output by

the classifier when running predictions on the test set. While it shows that it is not always

the case that values are restricted to 0.5 to 0.65, they do tend to be clumped together

around this range, only leaving it by small margins. The smallest value output overall was

0.4289, and the highest was 0.7560, which is a significant departure from the range of 0.0

to 1.0 that classifiers are expected to use.

Table 5.14 – Focal Loss min, average and max output values on test set
Topic Min Average Max
Activities 0.5082 0.5716 0.6494
Arts & Sciences 0.4607 0.5831 0.6817
Living 0.5651 0.6230 0.6715
Love 0.4289 0.5651 0.6932
Mythology & Folklore 0.4622 0.5322 0.6572
Nature 0.5173 0.6006 0.7106
Relationships 0.5106 0.5994 0.6790
Religion 0.4712 0.5682 0.7560
Social Commentaries 0.5130 0.5974 0.7175

Source: The Author

Overall, we can see that for the setup we used in this work, while performing

threshold moving was helpful yet not essential for all the other classifiers, for those using

focal loss it was an absolute necessity to get meaningful results. Without it, by just assum-

ing the naive 0.5 threshold as the only option, this strategy would appear to be innocuous
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for this problem.

Table 5.15 shows the comparison between the F1 scores obtained by the models

trained with the baseline configuration and those trained using the Focal Loss as the loss

function. Here we are using the values presented in table 5.12 for the Focal Loss results,

as they were obtained following the same methodology for threshold moving as we used

for the other experiments. We can see that the baseline outperforms the results achieved

with Focal Loss in almost all cases, except for Mythology & Folklore and Relationships.

Its average performance is also better.

Our best interpretation of this underperformance and unstable behavior by the

Focal Loss is that it would require a deeper search for values to its hyper-parameters.

For this work, as described in the methodology section, we used the values proposed by

the original paper, but several things might make these sub-optimal for our case. For

instance, the fact that the original paper was developed in the context of computer vision,

while we are working with NLP, and the fact that the value proposed for its most impactful

hyperparameter, γ, is absolute, instead of being data-dependent.

A comprehensive search for good values to the hyperparameters is beyond the

scope of this work. We still leave it as a suggestion in the section describing possibilities

of future work, however, as we expect that a carefully-chosen set of values could greatly

improve the results achieved in this work.

Table 5.15 – Comparison Baseline vs Focal Loss F1 scores
Topic Baseline Focal Loss
Activities 68.89% 63.35%
Arts & Sciences 69.14% 67.46%
Living 64.63% 48.06%
Love 74.79% 71.88%
Mythology & Folklore 45.47% 62.13%
Nature 74.49% 72.73%
Relationships 67.62% 68.27%
Religion 68.05% 67.69%
Social Commentaries 73.69% 72.97%
Average 67.42% 66.06%

Source: The Author
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5.5 Comparing all experiments

Table 5.16 shows the comparison between the F1 scores obtained by the mod-

els for each experiment we performed. From it, we can see that undersampling and the

weighted loss function show the best results overall, with the former having a slight ad-

vantage. From the 9 topics we used, undersampling performed better for 6, with weighted

loss performing better on 3 - also, when we average the scores over all topics, the un-

dersampling method is the only one that reaches a score above 70%, standing at 71.07%,

1.35% higher than when we use class weights. The baseline and the Focal Loss methods

were not the best method for any topic.

It is also noteworthy that the topic with the biggest imbalance in the dataset,

Mythology & Folklore, shows improvement under all of the tested methods in compar-

ison with the baseline. The Living topic, which has the lowest imbalance, has a stable

performance across all methods (including the baseline), except for the Focal Loss. This

highlights our perception that the adoption of the Focal Loss requires a more cautious

fine-tuning of the value used for its hyperparameters, as it seems to struggle with scenar-

ios that stray even a little from its specific use case.

It is somewhat surprising that undersampling can achieve the best result overall,

since in trying to solve one of the issues of this dataset (imbalance), it takes another (small

amount of data) and worsen it. We believe that this points not to the fact that undersam-

pling is a superior method, but instead that there is space to improve the performance by

tinkering further with the loss function. Not only with the hyperparameters for the Fo-

cal Loss function, which we already mentioned, but also for the class weights method.

The strategy we used to compute weights has as positive points the fact that a) it is the

default solution implemented to this problem on a library that is an industry-standard for

machine learning; and b) that it makes intuitive sense. However, these by themselves

do not guarantee it is the optimal solution for this particular dataset. Another thing that

might have given undersampling an unfair advantage over the other methods is that in

our methodology we experimented with 5 different levels of undersampling, while for the

other ones we tried only one set of parameters. This gives one extra degree of freedom to

this method, although it must be mentioned that it is not a completely free advantage, as

taking any level other than the highest imbalance would impact negatively on the amount

of data available to learn with, which should reduce the performance. Both these possi-

bilities can be mitigated at the same time by running new experiments exploring further
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the adjustments to the loss functions, and we again suggest this as a possibility for future

works.

Table 5.16 – Comparison of F1 scores between all experiments
Topic Baseline Undersampling Weighted Loss Focal Loss
Activities 68.89% 73.67% 67.94% 63.35%
Arts & Sciences 69.14% 73.24% 69.25% 67.46%
Living 64.63% 65.70% 64.61% 48.06%
Love 74.79% 74.85% 75.38% 71.88%
Mythology & Folklore 45.47% 64.50% 65.20% 62.13%
Nature 74.49% 75.15% 73.60% 72.73%
Relationships 67.62% 69.22% 67.95% 68.27%
Religion 68.05% 69.28% 69.03% 67.69%
Social Commentaries 73.69% 73.99% 74.49% 72.97%
Average 67.42% 71.07% 69.72% 66.06%

Source: The Author
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6 FINAL REMARKS

In this work, we applied the BERT pre-trained language model to create text clas-

sifiers for a dataset of poems from the Poetry Foundation. We built this dataset by starting

from a previously available dataset with poems and their ids, and then proceeding to

scrape the organization’s website and fetching from it all the metadata that could be in-

teresting for such a work. We then proceeded to analyse the available metadata in order

to define what were the most useful lines of approach and, based on the one we found the

best, namely to identify the topics based on the textual content of the poems, we selected

the samples that would be used.

We identified some of the main issues that the dataset could create to the language

model and focused on the issue of imbalance of the dataset. We experimented with three

possible strategies to mitigate it: undersampling of the majority class, the use of different

weights for each class on the loss function, and the use of the Focal Loss function. We

presented the results and compared each of the strategies with a baseline implementation,

as well as presenting a general comparison considering all of the strategies implemented.

We found that Focal Loss function was not able to consistently outperform the

baseline results within the constraints of our methodology, while at the same time pre-

senting some peculiar behaviors that suggest it might perform better with a more careful

choice for the values of its hyperparameters.

We found that both undersampling of the majority class and the use of different

weights for each class when computing the loss function were able to outperform the

baseline results, strengthening the idea that the class imbalance was a significant source

of problems for the classifiers. Counter-intuitively, undersampling was able to perform

even better than the weighted loss function. Given the fact that it uses less data, and

therefore has less content for the model to learn with and exploring patterns, we would

not expect that to be the case. We believe that the reason is the fact that the strategy used

to generate the weights for each class, although being a standard for this purpose, was not

optimal, suggesting that there is a latent potential for this approach to yield even better

results, through deeper experimentation with different ways to generate the weights.

Along the way, we identified some possibilities that fell outside the scope of the

current work, but that we can suggest for future ones. The first of them being what was

just mentioned, tinkering further with the parameters of the loss functions used. And

although we restricted our scope to work with only a couple of them, there are also other



54

loss functions proposed to deal with imbalance issues that could be explored in future

works, one example of which being Dice Loss (LI et al., 2020).

One simple extension of the current work would be to mix the two approaches that

outperformed the baseline, by using the best level of undersampling and on top of that

scaling the loss function by using class-dependent weights. Another natural extension of

this work would be to attempt using ROC and PR curves to find the best thresholds, since

we only performed threshold moving, as well as employing other metrics to study the

performances of the classifiers.

A decision we made early on for this work was to use binary classifiers for each

topic. However, it is also possible to treat this same context with a multi-label approach.

A future work could also be performed by comparing the results obtained with

language models and those obtained with more traditional machine learning algorithms.

Lou, Inkpen and Tanasescu (2015), for instance, found that SVMs performed well for a

similar task, so putting them side by side with a language model might yield interesting

insights.

While we explored undersampling of the majority class, it is also possible to at-

tempt the oversampling of the minority class as an alternative which has the benefit to

allow for more data to be used. Both approaches were tested together with BERT by Ja-

yaraman et al. (2023) on a dataset composed of websites news articles, as we mentioned

in section 3. It remains to be seen if the most common techniques to achieve oversam-

pling, such as simply repeating samples or reproducing samples of the minority class with

small changes will work as well for poetry, given the fact that it has a more rigid formal

structure than daily language and that the texts are created for aesthetic purposes more

than just to communicate. An interesting technique that might fit well with this nature of

poetry is LAMBADA, proposed by Anaby-Tavor et al. (2020), in which a generative lan-

guage model is first trained on the samples of the minority class and then used to generate

more samples that are similar to those in order to augment the data available.

Finally, more sophisticated language models can be tested with this dataset. We

restricted our scope to BERT Base Uncased as a standard, however BERT itself has more

powerful variants, such as BERT Large. The use of the Cased variants also might bring

about different results and is an interesting comparison to be made. Moving away from

the BERT family, there are bigger models such as RoBERTa (LIU et al., 2019) that have

the potential to better handle complex texts such as poems. Another interesting idea is to

work with ensembles of these models.
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