

Evento	Salão UFRGS 2022: SIC - XXXIV SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2022
Local	Campus Centro - UFRGS
Título	Terapia mitocondrial como estratégia terapêutica na
	excitotoxicidade induzida por glutamato
Autor	JÉSSICA DOS SANTOS SARMENTO
Orientador	MARCOS ROBERTO DE OLIVEIRA

Além da produção de adenosina trifosfato (ATP) através da fosforilação oxidativa, as mitocôndrias são fonte importante de espécies reativas de oxigênio (ERO). A produção de EROs pode ser potencializada por diferentes condições, como neuropatologias, assim como a excitotoxicidade induzida por glutamato (GLU). A excitotoxicidade induzida por GLU causa comprometimento mitocondrial, perturba o ambiente redox e aumenta as taxas de morte celular nas áreas afetadas do cérebro. A Astaxantina (AST), xantofila encontrada em microalgas, no salmão, entre outras fontes, é um potente antioxidante e anti-inflamatório, promove também efeitos benéficos relativos às mitocôndrias nas células cerebrais. Neste trabalho, foi testado se a AST seria capaz de promover a proteção mitocondrial na linhagem de células dopaminérgicas SH-SY5Y expostas ao GLU. Foi administrado AST às células a 1-40 µM por 24h anteriores a exposição ao GLU a 80mM por mais 24h. A AST evitou que o GLU comprometesse a atividade dos Complexos I e V, a perda no potencial de membrana, e a diminuição da síntese de ATP, também induziu efeito antioxidante nas membranas das mitocôndrias. A inibição da enzima citoprotetora heme oxigenase-1 (HO-1) bloqueou os efeitos induzidos por AST nas células expostas ao GLU. Os dados obtidos demonstram que a AST evitou a disfunção mitocondrial por um mecanismo associado a HO-1 em células expostas ao GLU.