

Evento	Salão UFRGS 2022: SIC - XXXIV SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2022
Local	Campus Centro - UFRGS
Título	Desenvolvimento de funcionalidade de ferramenta para
	determinação automática de teste de sistemas analógicos e
	mistos
Autor	ÁLLAN FABRÍCIO GARCIA FERREIRA
Orientador	TIAGO ROBERTO BALEN

RESUMO

Em circuitos integrados analógicos, uma parte significativa do preço final do produto está concentrado na etapa de teste, principalmente quando o teste funcional (baseado em especificações) é utilizado. A alta qualidade relacionada a esse tipo de teste é decorrente do fato que todas especificações do circuito precisam ser verificadas. Para tanto, são usados equipamentos de testes automatizados que possuem instrumentos de alta resolução e demandam longos tempos de teste. Uma alternativa para diminuir o custo gerado pelo teste funcional é o teste indireto. Nesse método, os parâmetros funcionais de um circuito são estimados a partir de um conjunto de medidas de baixo custo. Para encontrar essa dependência, são usadas estratégias de aprendizado de máquina. Este trabalho objetiva adicionar a uma ferramenta de geração automática de testes para circuitos analógicos um módulo capaz de determinar, por simulação, as melhores configurações de teste para a execução do teste indireto. O objetivo é auxiliar o engenheiro de teste a reconhecer quais configurações de teste permitem estimar com maior nível de confiança as especificações do circuito. Visando o desenvolvimento do módulo, são gerados conjuntos de dados contendo testes de baixo custo e funcionais extraídos de simulações de Monte Carlo. A partir destes dados, são aplicadas técnicas de seleção de características para identificação das medidas indiretas mais relevantes, e diferentes modelos de aprendizado são treinados para estimar os parâmetros funcionais. O primeiro estudo de caso é um filtro passabaixa de primeira ordem na topologia de realimentação múltipla, enquanto o segundo é um amplificador totalmente diferencial de um estágio em malha aberta. Em ensaios preliminares com o segundo estudo de caso, o menor erro de generalização encontrado para o ganho DC do circuito foi igual a 2,32 dB utilizando o método wrapper para seleção de 10 medidas indiretas e o algoritmo de aprendizado SVM para predição.

Palavras-chave: circuitos integrados analógicos; geração de testes; teste indireto; aprendizado de máquina.