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“Our greatest weakness lies in giving up. The most certain way to succeed is

always to try just one more time.”

— THOMAS EDISON
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ABSTRACT

Federated Learning [FL] is a machine learning paradigm where many clients coopera-

tively train a single centralized model while keeping their data private and decentralized.

FL is commonly used in edge computing, which involves placing computer workloads

(both hardware and software) as close as possible to the edge, where the data is being

created and where actions are occurring, enabling faster response times, greater data

privacy, and reduced data transfer costs. However, due to the heterogeneous data dis-

tributions/contents of clients, it is non-trivial to accurately evaluate the contributions of

local models in global centralized model aggregation. This has been a major challenge

in FL, commonly known as data imbalance or class imbalance. Previous work has been

proposed to address this issue such as Deep Reinforcement Learning (DRL) algorithms to

dynamically learn the weight of the contributions of each client at each round. Testing and

assessing this FL algorithms can be a very difficult and complex task due to the distributed

nature of the systems. In this work, a literature review of these concepts is presented in

order to introduce the reader enough context of this challenge and a distributed edge-like

environment framework is proposed to assess FL algorithms in a more easy and scalable

way.

Keywords: Federated Learning. Edge Computing. Kubernetes. Microservices. Frame-

work.



Um framework para testar algoritmos de aprendizadem federada usando um

ambiente de computação de borda

RESUMO

O aprendizado federado é um paradigma de aprendizado de máquina em que muitos cli-

entes treinam cooperativamente um único modelo centralizado, mantendo seus dados pri-

vados e descentralizados. Ele é comumente usado em computação de borda, que consiste

em colocar as cargas de trabalho do computador (hardware e software) o mais próximo

possível da borda, onde os dados estão sendo criados e onde as ações estão ocorrendo,

permitindo tempos de resposta mais rápidos, maior privacidade de dados e custos de

transferência de dados reduzidos. No entanto, devido às distribuições/conteúdos de dados

heterogêneos dos clientes, não é trivial avaliar com precisão as contribuições de modelos

locais na agregação de modelos centralizados globais. Este tem sido um grande desafio

para o paradigma, comumente conhecido como desequilíbrio de dados ou desequilíbrio

de classes. Trabalhos anteriores foram propostos para resolver esse problema, como algo-

ritmos de Deep Reinforcement Learning (DRL) para aprender dinamicamente o peso das

contribuições de cada cliente em cada rodada. Testar e avaliar esses algoritmos FL pode

ser uma tarefa muito difícil e complexa devido à natureza distribuída dos sistemas. Neste

trabalho, uma revisão da literatura desses conceitos é apresentada a fim de apresentar ao

leitor o contexto suficiente desse desafio e uma estrutura de ambiente semelhante a uma

borda distribuída é proposta para avaliar o desempenho de algoritmos FL de uma maneira

mais fácil e escalável .

Palavras-chave: Aprendizagem Federada, Computação de Borda, Kubernetes, Micros-

serviços, Framework.
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1 INTRODUCTION

Federated Learning (FL) is a machine learning solution designed to train machine

learning models while keeping the data private and decentralized (MCMAHAN et al.,

2017). The main idea of FL is for each client to train its own local model using its

own data and, afterwards, upload the generated local model to a single centralized server,

where the local models of the participant clients will be aggregated and weighted to cre-

ate a global model. FL is commonly used in edge computing, which involves placing

computer workloads (both hardware and software) as close as possible to the edge, where

the data is being created and where actions are occurring, enabling faster response times,

greater data privacy, and reduced data transfer costs (DARLING, 2022b). Thus, FL can

be used with a variety of clients such as smartphones, sensors, IoT devices and data si-

los (distributed databases that need to keep their data private with the outside world).

However, as seen in (DUAN et al., 2021), in general, the data distribution of the mobile

systems and other similar settings is imbalanced, which can increase the bias of model

and impacting in a negative way its performance. Different approaches have been pro-

posed, such as Deep Reinforcement Learning (DRL) (PLAAT, 2022), as a solution for

this problem.

Although, regular centralized machine learning may outperform FL in terms of

prediction performance (NILSSON et al., 2018), it requires the entire dataset to be shared.

Its first application was in Google GBoard (HARD et al., 2018), which learns from ev-

ery smartphone using Gboard without sharing user data. Since then, FL applicability has

advanced to a variety of fields such as autonomous vehicles, traffic prediction and mon-

itoring, healthcare, telecom, IoT, pharmaceutics, industrial management, industrial IoT,

and healthcare and medical AI (SHAHEEN et al., 2022). Moreover, the number of pub-

lications in the academy that has FL as the main subject has increased significantly since

its first proposal (MCMAHAN et al., 2017).

FL has been greatly enabled by the vast increase of IoT devices. The total number

of IoT connections will reach 83 billion by 2024, rising from 35 billion connections in

2020; a growth of 130% over the next four years. The industrial sector has been identified

as a key driver of this growth. Expansion will be driven by the increasing use of private

networks that leverage cellular networks standards (RESEARCH, 2020). The evolution

of the IoT devices computational power has also enabled FL, since an edge computer can

process data locally, its sensors (such as cameras) could collect samples (such as images
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or frames) at a higher resolution, and at a higher frequency (such as frame rate) than would

be possible if the data had to be sent to the cloud for processing (DARLING, 2022a).

One of the many challenges that have come up with the advance of FL is how to

deal with data imbalance and heterogeneity, as seen in (SHAHEEN et al., 2022). In FL,

using their local data, each edge node trains a shared model. As a result, the distribution

of data from those edge devices is based on their many uses. Imagine a scenario, for ex-

ample, of the distribution of cameras in a surveillance system. In comparison to cameras

located in the wild, cameras in the park, for example, capture more photographs of hu-

mans. Also, the size of the dataset that each one of those cameras will have to train their

local models might differ by a large magnitude since a park might have much more data

to input than a camera in the wild. Furthermore, an approach that has been proposed in

many studies to dynamically address weight for the local models of clients participating

in the FL global model and, therefore, deal with the heterogeneous data is DRL (GUO;

WU, 2022; HUANG et al., 2022; SUN et al., 2022; ZHENG et al., 2022).

DRL has gathered much attention recently. Recent studies have shown impressive

results in activities as diverse as autonomous driving (LIU et al., 2022), game playing

(WANG et al., 2021), molecular recombination (SRIDHARAN et al., 2022), and robotics

(RUDIN et al., 2022). In all those applications, it has been used in computer programs to

teach them how to solve difficult problems, for example, how to fly model helicopters and

perform aerobatic maneuvers, and, in some applications, it has already outsmarted some

of the most skilled humans, such as in Atari, Go, poker and StarCraft.

This work proposes a framework architecture for FL algorithms testing that en-

ables users to easily create different scenarios of training by simply changing parame-

ters. These include computing and data distributions, datasets, global model aggrega-

tions, client models and server and client training parameters. The framework is also

capable of collecting training results and resource usage metrics. A set of experiments

have been conducted varying these parameters on top of the proposed architecture in or-

der to demonstrate the capabilities of the framework. Collected data has been analyzed in

order to understand how the framework performed in each scenario.

The main goal of this work is to first build a Proof-of-Concept (PoC) of the con-

ceptual framework architecture. Secondly, compare the conceptual framework with the

PoC and run the experiments to demonstrate its capabilities. Finally, analyze how the PoC

can be enhanced in further development continuation.

The remainder of this work is organized as follows. In section 2 a literature review
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is presented for edge computing and FL respectively. In section 3 it is presented the

tools and frameworks used in the proposed PoC. In section 4 the conceptual framework

architecture is proposed. Section 5 presents the PoC developed. Section 6 presents the

experiments and the obtained results. Section 7 concludes the work with improvements

that can be done in the PoC solution provided.
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2 LITERATURE REVIEW

This chapter presents the main topics of this work, providing an overview of the

current state of the art of edge computing, federated learning and deep reinforcement

learning.

2.1 Edge Computing

Data is increasingly produced at the edge of the network, therefore, it would be

more efficient to also process the data at the edge of the network. With the advancement of

telecommunication services and the increase of the necessity for low latency computing,

the edge computing paradigm has been motivated. In edge computing, instead of having

computer workloads (both hardware and software) centralized in a data center (cloud),

we have them as close as possible to the edge, where the data is being created and where

actions are occurring, thus benefiting lower latency, greater data privacy and reduced data

transfer costs. For (SHI et al., 2016), edge computing refers to the enabling technologies

allowing computation to be performed at the edge of the network, on downstream data

on behalf of cloud services and upstream data on behalf of IoT services. Therefore, edge

devices can be any device with Internet access such as smartphones, smart cars, or other

IoT devices.

Multi-access Edge Computing (MEC) (GIUST; COSTA-PEREZ; REZNIK, 2017)

is proposed as a key solution that enables operators to open their networks to new services

and IT ecosystems and leverage edge-cloud benefits in their networks and systems, since

it places storage and computation at the network edge. The close proximity from the end

users and connected devices provides extremely low latency and high bandwidth while

minimizing centralized cloud limitations such as delay, access bottlenecks, and single

points of failure. A MEC infrastructure representation is shown in Figure 2.1, where 5G

IoT devices are connected to a local access network for high throughput and massive data

volume in low-latency applications, while also utilizing a centralized cloud for latency-

tolerant applications.

MEC use cases can be seen in real-time traffic monitoring (WAN; DING; CHEN,

2022) and autonomous vehicles (LIU et al., 2019). In traffic monitoring, real-time and

accurate video analysis are very important and challenging work, especially in situations

with complex street scenes, therefore, edge computing based video pre-processing is pro-
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Figure 2.1: Multi-access Edge Computing Infrastructure

Source: (DARLING, 2022b)

posed to eliminate the redundant frames that edge devices need to process, since a huge

amount of vehicle video data is generated. Also, the decentralized and highly available

nature of multi-access edge computing is taken advantage to collect, store, and analyze

city traffic data in multiple sensors. For autonomous vehicles, large amount of data pro-

cessing from different sensors at high speed in real time is needed in order to guarantee

driver safety.

2.2 Federated Learning

Federated learning (FL) is a distributed form of machine learning proposed by

Google (MCMAHAN et al., 2017) to train models at scale while allowing the user data

to be private. In Federated Averaging (FedAvg), the server aggregates the model updates

using simple averaging and returns the new model parameters to the client devices, which

continue training using the updated model parameters. Google’s proposal provided the

first definition of federated learning, as well as the Federated Optimization (KONEčNý et

al., 2016) approach to further improve these federated algorithms. Advanced Federated

Optimization (REDDI et al., 2021) is a variant of the Stochastic Gradient Descent (SGD)

algorithm, which is commonly used in centralized training. In FedOpt, each local node

applies SGD to its local data to compute the gradients and then sends the gradients to

a central server. The server then aggregates the gradients from all the nodes to update

the global model. Adaptive Federated Optimization with Yogi (FedYogi) incorporates a

momentum-based optimizer called Yogi after the central server aggregates the model up-

dates using the FedAvg algorithm to improve the convergence rate. Federated Averaging

with Momentum (HSU; QI; BROWN, 2019) incorporates a momentum-based optimizer,
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similar to the Yogi optimizer in FedYogi. The key difference is that it uses a combination

of the gradients from the current iteration and the gradients from the previous iteration to

update the model parameters. This allows the optimizer to maintain a direction of move-

ment even when the gradient changes direction, which helps to smooth out noisy gradients

and accelerate convergence. In the "Federated Learning: Collaborative Machine Learning

without Centralized Training Data" blog post (GOOGLE, 2017), Google explains how FL

is enabling mobile phones to collaboratively learn a shared prediction model while keep-

ing all the training data on device, decoupling the ability to do machine learning from the

need to store the data in the cloud. In addition, is cited the current use of FL to predict

keyboard words in Google’s Gboard (HARD et al., 2018) and how it can be also used for

photo ranking and further improving language models. Figure 2.2 illustrates Google’s FL

workflow.

Figure 2.2: Illustration of Google’s FL Workflow

Source: (GOOGLE, 2017)

FL usually deals with data distributed across multiple devices. In such settings,

data is usually non-independently and identically distributed (i.e., non-IID). One of the

main challenge in FL is how to deal with the heterogeneity of the data distribution among

the parties, since the distribution of data from those edge devices is based on their many

uses (SHAHEEN et al., 2022). The difference between an IID dataset and a non-IID

dataset is illustrated in Figure 2.3 where, from left to right, the first two mobile devices

contains data that is equally distributed (both have the numbers 1 to 9) whilst the last

two contains an unequal distribution (one has the numbers 0 and 4 and the other has the

numbers 5 and 7).

Furthermore, a lot of use cases in FL have data samples that are distributed among
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Figure 2.3: Illustration of IID vs. non-IID for MNIST dataset

Source: (HELLSTRöM et al., 2020)

multiple devices which are not always synchronized and may have limited connectivity.

Thus, it cannot simply train these devices in parallel and aggregate them in a direct way, as

it cannot guarantee the device availability or the homogeneity of the data. Understanding

how to properly select clients and correctly weight each of those clients contributions

in the global model remains an open problem in FL. Example of a practical scenario

of data imbalance and heterogeneity in which DRL was used in FL as a solution can

be seen in recent work proposed to deal with blade icing detection in distributed wind

turbines (CHENG et al., 2022). Wind turbines that are closer to the sea experience windy

and snowy weather whilst those more close to the continent deal with windy and rainy

conditions. This heterogeneity introduces a bias in the local models since one might

be more susceptible to icing than another. Therefore, since our objective is to identify

icing, clients that experience more icing should have a different weight assigned to its

contribution in the global model than others that have not. Figure 2.4 illustrates this

scenario of data imbalance and heterogeneity whereas data from local model 1 and 2 is

unbalanced in comparison with data from local model 3 due to the distribution of the

clients.

Figure 2.4: Wind turbines use case with data imbalance

Source: (CHENG et al., 2022)
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3 TOOLS AND FRAMEWORKS

This section provides an overview of the tools and frameworks used to implement

the final solution. In section 3.1, are presented orchestration, deployment and building

tools. In section 3.2, are presented libraries and frameworks for FL. Data storage tools are

presented in section 3.3 . Finally, monitoring and data visualization tools are presented in

section 3.4

3.1 Orchestration, Deployment and Building

This section present tools related to orchestration, deployment and building of

containers.

3.1.1 Docker

Docker1 provides the ability to package and run an application in a loosely iso-

lated environment called a container. The isolation and security allows running many

containers simultaneously on a given host.

Containers provide a robust solution for bundling software and its dependencies

into a transportable unit that can run seamlessly across diverse computing environments.

With a containerized application, all its libraries, settings, and tools are encapsulated

within an isolated environment. Developers can avoid the arduous task of addressing

compatibility issues with varied hardware and software and concentrate solely on the

application’s functionality. This inherent portability of containers eradicates the need to

reconfigure applications for distinct environments, ensuring uniformity and dependability.

Docker Compose is a tool used for defining and running multi-container Docker

applications. It is a way to define and configure multiple containers that work together to

provide a complete application stack. Docker Compose is particularly useful for devel-

opment and testing environments, where you need to quickly spin up a complex stack of

services. By defining all the services in a single YAML file, you can easily reproduce the

same environment on any machine that has Docker installed.

1https://docs.docker.com/get-started/overview/ (accessed September 27th, 2022)
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3.1.2 Kubernetes

Kubernetes2 is a portable, extensible, open source platform for managing con-

tainerized workloads and services, which facilitates both declarative configuration and

automation. It has a large, rapidly growing ecosystem. Kubernetes services, support, and

tools are widely available.

A Kubernetes cluster3 consists of a set of worker machines, called nodes, which

run containerized applications. Every cluster has at least one worker node. The worker

node(s) host the Pods that are the components of the application workload. Heterogeneous

edge-computing devices can easily be integrated and managed in the Kubernetes cluster

as computing nodes in an easy and scalable way. This also facilitates the deployment of

different FL algorithms and the creation of different scenarios of testing in a distributed

infrastructure environment.

3.1.3 Lens Desktop

Lens4 provides a comprehensive set of features that make it easier for developers,

DevOps teams, and Kubernetes administrators to manage Kubernetes clusters. It was

used in this work as a front-end way to interact with Kubernetes and create deployment

in clusters.

3.2 Libraries and Frameworks

This section approaches the utilized libraries and frameworks to run federated

learning (FL).

3.2.1 PyTorch

PyTorch5 is a popular open-source machine learning library that was created by

Meta’s AI research team. It is used to develop and train deep learning models and is

2https://kubernetes.io/docs/concepts/overview/ (accessed September 27th, 2022)
3https://kubernetes.io/docs/concepts/overview/components/ (accessed September 27th, 2022)
4https://k8slens.dev/ (accessed September 27th, 2022)
5https://pytorch.org/get-started/pytorch-2.0/ (accessed March 17th, 2023)
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written in Python, which makes it easy to use and integrate with other Python libraries.

PyTorch was used as the main library for training and testing the FL models used

in this work.

3.2.2 Poetry

Poetry6 is a tool for dependency management and packaging in Python. It allows

you to declare the libraries your project depends on and it will manage (install/update)

them for you. Poetry offers a lockfile to ensure repeatable installs, and can build your

project for distribution. It was used in this work to create the packages of the FL client

and server applications.

3.2.3 Flower

The concept of federated learning emerged in response to the need to leverage

data from multiple devices while ensuring its privacy, as discussed in this work. However,

federated learning introduces two additional challenges that are not present in traditional

machine learning: scaling to multiple clients and dealing with data heterogeneity.

To address these challenges, as proposed in (BEUTEL et al., 2022), Flower8 (flwr)

has been developed as an open-source framework for building federated learning systems.

Flower provides two main interfaces: the client and the server. These interfaces enable

the decentralization of standard centralized machine learning solutions by implementing

the necessary methods, making it easier to build and deploy federated learning systems.

Figure 3.1 shows the Flower Federated framework architecture when running with mul-

tiple edge clients. Each edge device participating in the training process runs a Flower

client that contains a local machine learning model. To ensure connectivity between the

clients and the server, Flower provides a transparent connection via the Edge Client Proxy

using an RPC protocol such as gRPC.

6https://python-poetry.org/docs/ (accessed March 17th, 2023)
7https://flower.dev/docs/architecture.html (accessed March 18th, 2023)
8https://flower.dev (Accessed March 17th, 2023)
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Figure 3.1: Flower Federated framework client-server architecture for edge devices

Source: Flower Documentation7

3.3 Data Storage

This section present the utilized tools for storage.

3.3.1 Rook Ceph

Rook Ceph9 is a storage solution that combines the capabilities of the Rook stor-

age orchestrator with the Ceph distributed storage system. Rook is an open-source tool

for managing storage systems on Kubernetes, while Ceph is a distributed object and file

storage system that provides scalability, reliability, and performance. Rook Ceph was

used as the persistent storage for the client and server application.

3.4 Monitoring and Visualization

Finally, in this section are presented monitoring and data visualization tools.

9https://rook.io/ (accessed March 17th, 2023)
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3.4.1 Prometheus

Prometheus10 is an open-source systems monitoring and alerting toolkit originally

built at SoundCloud. Since its inception in 2012, many companies and organizations have

adopted Prometheus, and the project has a very active developer and user community. It

is now a standalone open source project and maintained independently of any company.

Prometheus was used as the main application for monitoring usage of resources in the

PoC solution of this work.

3.4.2 Grafana

Grafana11 is a data visualization tool commonly used with Prometheus that allows

you to query, visualize, alert on and understand your metrics. It was used as the main tool

to visualize resource usage of Prometheus.

10https://prometheus.io/docs/introduction/overview/ (accessed September 27th, 2022)
11https://grafana.com/oss/grafana/ (accessed September 27th, 2022)
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4 CONCEPTUAL FRAMEWORK

This section presents the conceptual framework proposed for testing FL algo-

rithms. In section 4.1 is presented the architecture overview . The following sections

detail the layers presented in the first section whereas section 4.2 presents the distributed

infrastructure layer, section 4.3 details the resource layer and finally section 4.4 details

the application layer.

4.1 Architecture Overview

The main objective of the proposed architecture is to enable FL testing in a plat-

form where users can easily change parameters to create different types of scenarios in

a distributed computing environment. These include different computing and data distri-

butions, datasets, global model aggregations, client models and server and client training

parameters. The framework should also be capable of collecting training results and re-

source usage metrics. Figure 4.1 presents an overview of the proposed architecture.

Figure 4.1: High-level overview of the conceptual framework proposed

Source: Image provided by the author

The reason that the framework is designed in these layers is to have the highest

level of independence within them. This enables easier development and segregation of

functions, so if developments are done in one layer, it does not affect the other. Further-
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more, sections 4.2 to 4.4 details each one of the components of the layers.

4.2 Distributed Infrastructure Layer

This is the bottom layer which should contain all the infrastructure needed to cre-

ate a distributed computing environment. It is responsible for scaling computing, storage

and networking from a pool of resources in order to meet the user inputted parameters.

The user parameters will reflect on how the resource layer will be laid out to create the

scenario desired for testing. For example, let’s say a user wants to configure a scenario

of FL using ten clients whereas each client has a specific computing requirement of four

CPUs cores and 4GB of RAM per client. The distributed infrastructure manager will then

configure the resource layer from its pool of resources (compute, storage and networking)

with ten clients, each one with the specified specifications to meet user requirements. Hav-

ing independent infrastructure from the resource and application layer enables usage of

different types of computational devices together, since application only sees the resource

layer. This will be fundamental to enable different type of scenarios where different types

of edge computing devices can be used as clients.

4.3 Resource Layer

The resource layer can be found on top of the distributed infrastructure layer and

will match the configuration set by the user to setup the FL training scenario as mentioned

before. We can categorize the distribution of resources in four major categories: server re-

source, client resources, monitoring resource and experiment results resource. The server

resource will contain all the necessary resources to run the FL server matching the user

configuration and the same can be said to the clients resources. The monitoring resource

will contain all the resources needed to run the monitoring server which will monitor the

distributed infrastructure layer and record the usage of the resources. The experiment

results resource will have all the resources necessary to run an application to display the

results of the experiments run in the framework.
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4.4 Application Layer

The application layer will run on top of the resource layer in each correspondent

resource. It contains all the applications necessary to run a FL algorithm in the framework,

such as, the FL server application, FL client application, monitor agent application, mon-

itor server application and the experiment results visualization application. Subsections

4.4.1 to 4.4.4 details each one of the mentioned applications.

4.4.1 FL Server Application

The FL Server application can be divided in five major components that enable

FL testing in a distributed environment.

Server is responsible for communicating with the clients and controlling the entire FL

learning process which includes selecting available clients to start training; control

of the number of FL server rounds and round timeout; global model parameters

aggregation and distribution and retrieval of model parameters.

Model is responsible for server-side initialization of global model parameters since some

global model aggregation strategies need it to start FL learning training and also to

enable the usage of different models to learn weight balancing of client models to

distribute parameters.

Strategies is responsible for selecting and configuring supported global model aggrega-

tion strategies from the user specified configuration.

Dataset is a collection of supported dataset by the framework which is used by the ap-

plication to handle the dataset configuration in memory and also how to properly

obtain the raw data of the dataset to create distributions versions of it via the storage

manager..

Storage Manager is responsible for distributing the raw data of the configured dataset

throughout the distributed infrastructure storage in order to achieve user require-

ments for testing. For example, if a user wants to test a FL algorithm in a dataset

using an unbalanced non-iid data distribution with ten clients, the storage manager

will separate the data in ten unbalanced and biased non-iid data parts. The storage

manager of the server application is also responsible for managing where each ex-

periment will write its data and also where the client will output their results data
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in the system.

4.4.2 FL Client Application

The FL client application can be divided in three major components.

Client is responsible for the training and testing algorithms run in the client side and the

connection with the server.

Model is responsible for selecting the desired model configured by the user to be used

by the client component to train it.

Storage Manager is responsible for loading the distributed data for training in the client

component and handling the experiments test results of the client in the storage.

4.4.3 Monitoring Application

The monitoring application should be responsible for gathering data from resource

usage of the distributed infrastructure and storing it for further visualization and analy-

sis. The monitoring agent is responsible for gathering the resource usage data from the

resources and sending the metrics to the monitoring server, which will then be able to

storage the data in a database and enable easy to understand visualization for users of the

framework.

4.4.4 Experiment Visualization Application

This application is responsible for accessing data from already run experiments

and enable user to visualize the data for each steps of the FL training experiment.
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5 SOLUTION

The previous chapter detailed the conceptual framework proposed, which can be

implemented in several ways. This chapter presents the current PoC solution implemented

of the conceptual framework in order to run fully functional federated learning scenarios

in a distributed infrastructure with multiple clients and with different data distributions .

Figure 5.1: Implemented solution diagram

Source: Image provided by the author

The PoC consists in an end-to-end edge-like environment solution using edge

computing devices orchestrated by Kubernetes to run the FL applications, the server and

the clients, and also the applications for monitoring the resources usage. Figure 5.1 shows

the full diagram of the PoC solution implemented. The distributed infrastructure layer is

composed by the Kubernetes cluster of the Institute of Informatics which serves as foun-

dation for each one of the resources. The application layer can be visualized on top of

the resources as containerized Docker images of each application running in pods of the

cluster. Further sections will go through more details about the layers, including how they

were assembled with the tools and frameworks presented in Chapter 3, the underlying in-
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frastructure of the Kubernetes cluster and how each one of the applications of the solution

works.

5.1 Distributed Infrastructure Layer

The Kubernetes cluster at the Institute of Informatics boasts impressive computing

resources, with 352 CPUs, 544 GiB of RAM, and 6.3 TiB of disk space spread across 43

distinct nodes, as indicated in Table 5.1. These nodes are conveniently categorized into

three classifications: "computer," "edge," and "server," enabling experimentation with

pods that are constrained to specific machines with hardware that closely matches the real-

life devices being simulated. For instance, the "edge" label encompasses a total of twenty-

three Raspberry Pi devices (three Raspberry Pi 4s and twenty Raspberry Pi 3s) with less

powerful hardware specifications relative to the "computer" and "server" machines.

Table 5.1: Institute of Informatics Kubernetes Cluster Capacity
Type Nodes Total RAM Total CPUs cores Total storage space
Computer 14 110.9GiB 56 5.2TiB
Edge 23 40.6GiB 92 559.2GiB
Server 6 392.4GiB 204 587.2GiB

Source: Table provided by the author

The cluster nodes are interconnected by a network switch and has distributed stor-

age configured using Rook Ceph Filesystem (subsection 3.3.1) to build a layer on top of

the storage resources. This enables the mounting of Persistent Volumes (PV) from the

storage pool via a Persistent Storage Claim (PVC) into the container images that can be

shared between applications to enable data distribution by the server and saving exper-

iments results from each client. When a pod requests storage resources, it does so by

creating a PVC that specifies the amount of storage required and any other requirements,

such as access mode and storage class. The Kubernetes scheduler then looks for an avail-

able PV that matches the requirements specified in the PVC. If a matching PV is found, it

is bound to the PVC, and the pod can use the storage resource provided by the PV. Figure

5.2 illustrates the interaction between a PVC and a PV. The advantage of using PVs and

PVCs is that they provide a level of abstraction between the pod and the underlying stor-

age infrastructure. This allows pods to request storage resources without having to know

the details of the underlying storage infrastructure.

As seen in subsection 3.1.3, Lens is a Kubernetes platform manager and is used
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Figure 5.2: PVC and PV illustration

Source: Image provided by the author

to managed the Kubernetes cluster, providing an easy to use interface, enabling easy

deployment of containers in the platform and visibility of ongoing experiments. Figure

5.3 shows the cluster page of Lens user interface of the Institute of Informatics cluster.

Users can configure a scenario in a Kubernetes deployment file in Lens stating the needed

resources and the application parameters via environment variables of the containers.

Figure 5.3: Lens cluster page of the user interface

Source: Image provided by the author

Knowing the context and making a parallel with the conceptual framework, in the

PoC, the infrastructure of the Kubernetes cluster of the Institute of Informatics serves as

the distributed infrastructure and Kubernetes plays the role of the infrastructure manager.
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5.2 Resource Layer

Kubernetes utilizes labels to organize objects. They are key-value pairs that can

be attached to Kubernetes objects such as pods, services, nodes, and deployments and can

be used to identify and group related objects together. This is a powerful mechanism for

selecting and manipulating subsets of objects based on specific criteria and can also be

used to manage nodes in a Kubernetes cluster. Nodes are the worker machines that run

containerized applications and services in a Kubernetes cluster. By attaching labels to

nodes, we can assign specific roles or attributes to them and use those labels to manage

and schedule workloads on those nodes.

For example, you can label nodes based on their hardware characteristics, such as

CPU or memory capacity, and then use those labels to schedule workloads that require

specific hardware requirements. The Kubernetes Cluster of the Institute of Informatics

uses the "node-type" label to identify if a node is a "computer", "server" or "edge" type of

computational device.

Finally, in the PoC solution, the resource layer used is a total reflex of the con-

figuration set in the Kubernetes deployment file. Labels were used to assign where each

containerized application will run and also how much resource of the node will be avail-

able for them to use.

5.3 Application Layer

The application layer of the PoC solution is composed by all the docker images

built by the author, such as the FL server, client and experiment results images, which con-

tains all the implemented logic for FL algorithms testing. For monitoring purposes, were

used the Prometheus monitoring installed in the Kubernetes Cluster to capture resource

usage by the applications and also Grafana to visualize the data in charts.

Figure 5.4 shows how an experiment starts from the beginning to the end in the

PoC solution from a high-level overview. In the blue boxes we can see the actions of

the Kubernetes cluster, in the yellow ones from the FL Server application and in orange

from the FL clients. From a high-level perspective, the user configures a scenario in Lens

for deployment, Kubernetes scales the necessary resources and deploys the applications.

Afterwards, the FL server handles the data distribution of the dataset and starts the FL

training algorithm. The client that was waiting for the server connects with it, runs local
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training rounds and return the model parameters back to the server. The server receives

those parameters, aggregates them using the configured aggregation method by the user

in the experiment layout and distributes them back to the clients, which will start local

training rounds again with the new parameters. After all server rounds are done, the

FL server will save the results in the correct output folder of the experiment and the

experiment will be over.

Figure 5.4: High-level flowchart of experiment execution in the PoC solution

Source: Image provided by the author

The repository used in the development of the solution was organized into isolated

packages containing all necessary code, data or declarations of each component in order

to maintain independence and enable better re-usability. The applications of the FL server

and client were also developed in order to run in bare-metal environments. In addition, to

enable easy testing of the application during development, you can option to run docker

compose environment to deploy the application locally using the docker images built.

Figure 6.2 illustrates the code repository root path organization with the description of

each folder and file. Further subsections will detail each one of the applications and their

role in the PoC solution.
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Figure 5.5: PoC repository structure at the time

Source: Image provided by the author

5.3.1 Server Application

The server is a containerized Python application with the FlowerML server frame-

work as dependency. The server storage manager is responsible for initializing the experi-

ment root path in the distributed storage, where the results and logs of the current deployed

run of each client will be saved. It will also be responsible for receiving the models being

trained by the clients, averaging the received parameters using the selected strategy, then

updating the clients’ models with the averaged parameters. The connection is done to the

clients through a gRPC connection with SSL encryption. The algorithm is outlined in
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Algorithm 1.
Algorithm 1: Server application

1 load environment variables with user parameters;

2 if eperment_pth don’t exists then

3 initialize eperment_pth in storage;

4 create temporary folder for current experiment run;

5 initialize experiment configuration file ;

6 load experiment configuration file;

7 if dataset configuration changed or is empty then

8 load raw data of the dataset;

9 create new data distribution using user parameters;

10 save the data batches in the experiment path ;

11 save the new dataset configuration in configuration file;

12 else

13 use current dataset configuration;

14 configure server strategy with the selected ƒ _strtegy;

15 initialize server global model parameters;

16 open connection in serer_ddress;

17 while mnmm_cents have not yet connected do

18 wait;

19 for ← ronds to 0 do

20 receive parameters from clients;

21 aggregate client parameters;

22 send updated parameters back to clients;

23 evaluate current accuracy from clients;

24 save temporary experiment folder with results to current experiment run path;

25 update experiment configuration file;

The server address, number of server rounds, dataset, data distribution, global

model aggregation strategy, client local rounds, model and minimum number of con-

nected clients are parameterized for the server application and can be changed in each

deployment. Figure 5.6 illustrates how the source code of the application was broken

down. It is easy to correlate each part of the application with the conceptual framework

since each file of the source code encapsulate its correspondent component.
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Figure 5.6: Server code structure at the time

Source: Image provided by the author

dataset.py contains all the implemented classes of the supported datasets by the frame-

work which are used by the application to handle the dataset configuration in mem-

ory and also how to properly obtain the raw data of the dataset. At the time of

this work, the CIFAR-10, CIFAR-100 and FMNIST dataset where implemented.

Further development of this class can enable any dataset to be compatible with the

framework. Subsection 6.2 will detail each one of the current supported datasets.

main.py contains the main program loop and the server component of the application

which is responsible for communicating with the clients and controlling the en-

tire FL learning process which includes selecting available clients to start training;

control of the number of FL server rounds and round timeout; global model param-

eters aggregation and distribution and retrieval of model parameters. Here is where

all the implemented packages are included and the main server program runs as

demonstrated in Algorithm 1.

model.py contains the supported models and is responsible for server-side initialization

of global model parameters since some global model aggregation strategies need it.

At the time of this work, the current supported models are CNN, a DNN, googlenet

(SZEGEDY et al., 2014) and resnet (HE et al., 2015). Further development of this

class can enable any models to be compatible with the framework.

storage.py contains the storage manager class which is responsible for distributing the

raw data of the configured dataset throughout the distributed infrastructure storage
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in order to achieve user requirements for testing. The storage manager of the server

application is also responsible for managing where each experiment will write its

data and also where the client will output their results data in the system. At the

time of this work, the storage manager can create data distributions by changing the

following parameters:

Balance boolean parameter that specifies if the data should be balanced or not be-

tween clients. If tre, the dataset is balanced, meaning that the data batches

have the same number of samples. Otherwise, if ƒse, the number of data

samples is different between them.

Non-IID boolean parameter that specifies if the data should be Non-IID or IID

between clients. If tre, the dataset is Non-IID, meaning that their is class

imbalance between the clients. Otherwise, if ƒse, the dataset has a balanced

class distribution.

Distribution this parameter specifies how data should be distributed regarding the

classes of the dataset if Non − D = tre. If set to pat it will generate a

pathological scenario of class imbalance whereas each client will have only a

subset of classes. If set to dir, it will use a heterogeneous unbalanced Dirichlet

distribution of the classes, similar as seen in (YUROCHKIN et al., 2019), that

can be modified by an α parameter to change the distribution aspects. Further

development of this class can enable more data distributions to be compatible

with the framework.

Further development of this class can enable more types of data distributions to be

compatible with the framework.

strategies.py contains the strategies for supported global model aggregation strategies

from the user specified configuration. At the time of this work, the supported strate-

gies implemented are FedAvg, FedAvgM,FedYogi and FedOpt. Further develop-

ment of this class can enable more strategies to be compatible with the framework.

The full code for the server can be found in the server module in the Github

repository1.

1https://github.com/fschwanck/tcc/tree/main/server/src
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5.3.2 Client Application

The client waits for the server storage manager to initialize the experiment path in

the distributed storage, connects to the server through a gRPC connection encrypted with

SSL and performs the pre-defined number of epochs received from the server, which is

the number of times that the data set passes through the neural network. When multiple

clients are running, an individual client is oblivious to the existence of the other clients –

it can only communicate with the server. The algorithm for the client application can be

seen in Algorithm 2.
Algorithm 2: Service service loop

1 load environment variables with user parameters while

eperment_pth not initialized by the Server do

2 wait;

3 start connection with server in ddress;

4 while server connection is open do

5 for ← epochs to 0 do

6 iterates through the dataset batch training the local model;

7 saves current results of round in experiment path temporary folder;

8 upload model to server;

9 receive updated parameters;

10 update local parameters;

The client will only upload the model when the server requests the models, and

the loop will end when the server finishes its rounds. Figure 5.7 illustrates how the source

code of the application was broken down. It is easy to correlate each part of the appli-

cation with the conceptual framework since each file of the source code encapsulate its

correspondent component. The client’s models and the address which they will connect

are parameterized for the client application and can be changed in each deployment.

client.py contains the client classes with the utilized training and testing algorithms. At

the time of this work it would only supported one PyTorch training algorithm.

main.py contains the client application main loop described in Algorithm 2 and is re-

sponsible for initializing the environment variables used to set parameters, such as

the local model utilized for training and also common variables such as the experi-

ment path to save results.
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Figure 5.7: Client code structure at the time

Source: Image provided by the author

model.py contains all the supported models already described in the server application

section.

storage.py contains the storage manager class of the client which is responsible for load-

ing the distributed data batch for training and testing of the distributed storage and

saving the experiments test results of the client in the storage.

The code for the client can be found in the client module in the Github repository2.

5.3.3 Monitoring Application

Prometheus uses the Kubernetes API to discover the various resources that it needs

to monitor in the cluster, such as pods, services, deployments, nodes, and more. It does

this by querying the Kubernetes API server to get information about the desired resources

and then collecting metrics data from these resources.

For example, to monitor a Kubernetes pod, Prometheus will query the Kubernetes

API server to get information about the pod’s name, namespace, labels, and other meta-

data. Prometheus will then use this information to collect metrics data from the pod, such

as CPU and memory usage, network traffic, and other metrics. Grafana queries the data

from Prometheus database in order to enable real-time visualization of resource usage in

dashboards. Figure 5.8 is a screenshot of the Kubernetes cluster Grafana interface.

2https://github.com/fschwanck/tcc/tree/main/client/src
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Figure 5.8: Kubernetes cluster Grafana interface

Source: Image provided by the author

5.3.4 Experiments Results Application

To retrieve the experiments results from the Kubernetes cluster, a container run-

ning an Ubuntu base image from Docker was used to mount the used PVs and access the

results. Since the results are stored in files, we can copy the results to the local machine

to read and interpret them. Figure 5.9 illustrates how the experiments that run in the PoC

are saved in the distributed storage.

.temp contains the partial results whilst the applications is running. This directory is

deleted after the server application storage manager has moved the finalized run

into its correct directory.

data contains the training and testing data batches of each client used in the experiment.

runs contains the results for each run of the experiment. The logs subfolder of a run

holds all the logs from the server and client applications and the results subfolder

contains the evaluation matrix for each local epoch ran in the clients. Figure 5.10

illustrates how results for each round are saved in the results folder. A copy of the

configuration used in the experiment run is saved to enable visualization of how the

data was distributed in each client, how the classes were distributed inside each data

batch and which model and global aggregation strategy was used.
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config.json contains the last configuration used in the experiment. This enables testing of

a same data distribution using several different parameters, strategies and models.

Figure 5.9: Experiments output folder structure

Source: Image provided by the author
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Figure 5.10: Experiment result evaluation matrix

Source: Image provided by the author
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6 EXPERIMENTS

This chapter covers the experiments run in the PoC solution in order to demon-

strate its capabilities. The first and second section will describe the experiments layout

used and the third section will show the results obtained from them. Demonstration of the

visualization of resource usage in the PoC solution will be presented in the last section.

6.1 Layout

The results where collected directly from the PoC solution results output folder of

the last experiment run of each experiment and where aggregated into better to visualize

charts since the number of output files can be exponentially big. Every experiment uti-

lizes ten heterogeneous client configurations from the "computer" type of computational

devices of the Kubernetes cluster, which means that every client involved in a given ex-

periment might change from one run to another. This is a clear demonstration on how the

framework can be useful to reproduce real-life scenarios.

It also should be noted that, while prediction performance is an extremely impor-

tant metric for any machine learning algorithm, it isn’t the focus of this work. The main

objective of the experiments is to demonstrate the capabilities of the framework and how

easy is to completely change a FL testing scenario by only changing input parameters in

the deployment file. Higher prediction performance would require a much higher amount

of training time, which would make having this many experiments not viable due to the

time constraints of writing this article. It would also require further tweaks on each model

ran, which is out of scope as far as we are concerned.

There are different parameters that can be modified in order to test the power of

the framework. These are the data distribution, the dataset, the global model aggregation,

the local client model, the client epochs, and the server rounds. Each experiment will run

with 10 different clients. They will be named client-0, client-1, up to 9. The fraction fit

will be set to 1 and the minimum available clients parameter will be set to 10. This will

force the experiment to run each server round with all the clients participating.

Besides the output of the results being saved in performance score matrices, they

where also written in the log files. F1 score is a useful metric for evaluating classifica-

tion models that takes into account both precision and recall, and is particularly useful

in situations with imbalanced data. For binary classification problems is calculated as
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followed:

ƒ1score = 2∗ (precson∗ rec)/(precson + rec)

Precision is the proportion of true positives (TP) out of all predicted positives

(TP + false positives, FP). It measures how often the model correctly predicts a positive

class. Recall is the proportion of true positives (TP) out of all actual positives (TP + false

negatives, FN). It measures how well the model is able to detect positive classes.

The macro and weighted F1 measure are commonly used as performance metrics

for evaluating the performance of a multiclass classification model. The first one is cal-

culated by first computing the F1 score for each class in the dataset, and then taking the

average of these scores across all classes. The weighted F1 measure takes into account

the class distribution by computing the F1 measure for each class separately and then

weighting the average F1 score by the number of instances in each class.

In total, 143 containers of a client or a server application were ran in the cluster

nodes. For each one of these, a log file was generated containing stats information through

each server round. Each run of the experiments generated 11 files, which sums to a total

of 143 files. Since only were analyzed the last run of each experiment, 33 files were

utilized to generate the results .

To manipulate all the log files containing the results, Power BI Desktop1 was used

to manipulate the data and display it into easy to visualize charts. Future development of

the framework could include automatic chart generation from the performance measures

generated from the experiments. The resource usage metrics where retrieved directly from

the Grafana application running in the cluster. Here are the metrics analyzed:

Accuracy: it measures the accuracy of the model using a ratio of the predicted samples

by the number of samples of the test dataset. The client log files contains the Micro

average F1 measures.

Macro average F1: useful when the classes in the dataset are balanced or when we want

to evaluate the overall performance of the model across all classes equally. The

client log files contains the Macro average F1 measures.

Weighted F1 score: useful when the dataset is imbalanced and we want to give more

importance to the classes with more samples. The client log files contains the

Weighted F1 measures.

1https://powerbi.microsoft.com/pt-br/desktop/ (accessed March 28th, 2023)
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Losses distributed: the aggregated loss of the clients. The server file contains the aver-

age loss of the clients.

Accuracy distributed: the average weighted accuracy of the clients. The clients accu-

racy are weighted by the number of samples of their dataset and then averaged to

evaluate the FL accuracy overall. The server file contains the average accuracy of

the clients. .

CPU percentage: current CPU percentage usage. Retrieved from the Grafana applica-

tion.

Bytes received: current amount of received bytes. Retrieved from the Grafana applica-

tion.

Bytes transmitted: current amount of transmitted bytes. Retrieved from the Grafana

application.

6.2 Datasets

In the following we present the datasets used in the experiments.

6.2.1 CIFAR-10

The CIFAR-10 (KRIZHEVSKY; HINTON et al., 2009) dataset consists of 60000

32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training

images and 10000 test images. A dataset sample with the classes can be seen in figure

6.1, with 10 rows of images, one row for each class as stated in the first column.

6.2.2 CIFAR-100

The CIFAR-100 (KRIZHEVSKY; HINTON et al., 2009) is just like the CIFAR-

10, except it has 100 classes containing 600 images each. There are 500 training images

and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20

superclasses. Each image comes with a "fine" label (the class to which it belongs) and a

"coarse" label (the superclass to which it belongs).

2https://www.cs.toronto.edu/ kriz/cifar.html (accessed March 27th, 2023)
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Figure 6.1: CIFAR-10 Dataset Sample

Source: University of Toronto Department of Computer Science2

6.2.3 FMNIST

Fashion-MNIST is a dataset of Zalando’s3article images—consisting of a training

set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28

grayscale image, associated with a label from 10 classes. We intend Fashion-MNIST

to serve as a direct drop-in replacement for the original MNIST dataset (LECUN et al.,

1998) for benchmarking machine learning algorithms. It shares the same image size and

structure of training and testing splits.

Figure 6.2: FMNIST dataset sample

Source: Fashion-MNIST GitHub repository4

3https://jobs.zalando.com/ (acessed March 27th, 2023)
4https://github.com/zalandoresearch/fashion-mnist (accessed March 27th, 2023)
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6.3 Results

6.3.1 Experiment 1

The first experiment run using the FMNIST dataset with a non-IID and unbalanced

data distribution. Also, a Dirichlet distribution of the classes with α = 0.1 was used. The

global model aggregation used was FedOpt and the experiment run with ten local epochs

and ten server rounds. Table 6.5 shows the parameters used in this experiment and Table

6.2 shows the unbalanced data distribution in the clients.

Table 6.1: Parameters selected for experiment 1
Parameter Value
Dataset FMNIST
Experiment Name kubernetes-test-1
FL Strategy FedOpt
Model DNN
Data Balance False
Non-IID True
Class Distribution Dirchlet
α 0.1
Server Rounds 10
Local Rounds 10

Source provided by the author

Table 6.2: Data distribution for experiment 1
Client Train batch size Test batch size
client-0 6345 2116
client-1 135 46
client-2 4137 1380
client-3 600 200
client-4 6109 2037
client-5 7389 2464
client-6 8968 2990
client-7 5734 1912
client-8 6665 2222
client-9 6413 2138

Source provided by the author

Accuracy assumes the same importance for all instances and basically calculates

the percentage of correctly classified instances regardless of their classes. Figure 6.3

shows the accuracy for each client through the server rounds. The X axis indicates the
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server round number, while the Y axis indicates the accuracy. The data showed suggests

that clients with large amounts of data have a relatively high initial accuracy, already in

the first rounds, while the accuracy of clients with little data is initially low. Over the

rounds, the chart suggests that the aggregate model has subtly negative impacts on the

accuracy of clients with more data available, but that aggregation benefits the accuracy of

clients with less data available.

Figure 6.3: Accuracy from each client in experiment 1
Power BI Desktopmicro f1-measure x server rounds
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Source: Image provided by the author

The f1-measure macro assigns the same importance to all classes and has better

results when the performance of all classes in the dataset is better. Figure 6.4 shows the

macro F1 measure for each client through the server rounds. The chart suggests that,

despite the accuracy being reasonable for each client, as seen in the previous graph, when

we seek to understand the average performance focusing on classes and assigning the

same importance, the performance is not so good in this case. Even so, the chart shows

that over the server rounds, there are performance increases, with some exceptions.
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Figure 6.4: Macro f1-measure from each client in experiment 1
Power BI Desktopmacro f1-measure x server rounds
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The weighted f1-measure weights the mean by the proportion of instances in each

class. Figure 6.5 shows the weighted F1 measure for each client through the server rounds.

In this chart, we notice that some clients (5, 6 and 8) had a relatively high initial perfor-

mance in terms of weighted f-measure and this performance decreased over time.

Figure 6.5: Weighted f1-measure from each client in experiment 1
Power BI Desktopweighted f1-measure x server rounds
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Source: Image provided by the author

Contrasting with Figure 6.4, it is noted that in these clients, the performance in

the majority classes (with more instances) is high, in the initial stages, and that over the
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server runs, the aggregated model worsened the performance in these majority classes, but

improved overall performance considering all classes. Observing client 6, for example,

in Figure 6.4, it is noted that between rounds 4-5 there is a performance jump in terms of

f1-macro, which suggests that the aggregated model improved the overall performance of

the model, considering all classes, despite reducing performance for the majority class.

Figure 6.6 shows the aggregated accuracy over all the clients and the aggregated

loss of the strategy in each server round. The X axis indicates the server round number,

while the left Y axis indicates the accuracy and the second Y axis indicates the losses. It

can be noted that the overall performance of the FL algorithm converged between 60-70%

accuracy and less 100 loss.

Figure 6.6: accuracy and losses distributed from experiment 1
Power BI Desktopaccuracy and losses distributed x server round
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Further analysis could be done using the class distribution of the dataset to better

understand how it also impacted in the results. It is important to note that the framework

saves this information in the configuration file of each experiment run.
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6.3.2 Experiment 2

The second experiment run using the CIFAR-10 dataset with also non-IID and un-

balanced data distribution. However, differently from the first experiment, a pathological

distribution of the classes of two classes per client was used. The global model aggre-

gation used was FedAvg and the experiment run with fifteen local epochs and ten server

rounds. Table 6.3 shows the parameters used in the experiment and table 6.4 shows the

unbalanced data distribution in the clients.

Table 6.3: Parameters selected for experiment 2
Parameter Value
Dataset CIFAR-10
Experiment Name kubernetes-test-2
FL Strategy FedAvg
Model CNN
Data Balance False
Non-IID True
Class Distribution Pathological
Class per Client 2
Server Rounds 10
Local Rounds 15

Source provided by the author

Table 6.4: Data distribution for experiment 2
Client Train batch size Test batch size
client-0 1422 474
client-1 7578 2526
client-2 1950 651
client-3 7049 2350
client-4 1278 426
client-5 7722 2574
client-6 2463 822
client-7 6536 2179
client-8 2326 776
client-9 6673 2225

Source provided by the author

The analysis of the results follow the same method used in subsection 6.3.1. First

is done an analysis over the accuracy of the clients followed by an analysis over the f1-

macro and f1-weighted measures.
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Figure 6.7 represents the accuracy of all clients across server rounds. It shows

that initially some clients are able to classify a good part of the test instances, while other

clients are not able to classify any instances. Over time, the performance of the clients

with high accuracy decreases, while the performance of the clients with low accuracy

increases, so that the overall accuracy of the clients stabilizes in a medium range, between

30-60%. That is, the aggregation is capable of distributing performance to clients with

low initial performance, at the expense of reducing the performance of clients with high

performance, in terms of accuracy.

Figure 6.7: Accuracy from each client in experiment 2
Power BI Desktopmicro f1-measure x server rounds
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Figure 6.8 represents the f1-macro measure of all clients across server rounds. It

demonstrates that initially, client 8 managed to obtain a very good performance in the two

classes from which it had data and that the aggregation had a very negative impact on

its performance, drastically reducing it. A similar behavior occurred with client 0. On

the other hand, aggregation had a positive effect on clients that initially performed quite

poorly. Note that the general performance of all clients, considering all their classes as

important, ends up being very low.

Figure 6.9 represents the f1-weighted measure across server rounds. It suggests

more erratic behavior over time. It is noted that clients 0 and 8, which had an initial neg-

ative impact on performance considering all classes (Figure 6.7), had a different behavior

when we consider the importance of the class proportional to its number of instances. It is

noted that the performance of these clients for their majority classes dropped after round
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Figure 6.8: Macro f1-measure from each client in experiment 2
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0 to less than 40%, but increased again after round 1 to 60-70% and then dropped again

throughout the rounds. Deeper analyzes must be carried out to investigate this behavior.

It is also noted that, on the other hand, the performance of customers who had poor per-

formance at the beginning had performance increases over the rounds. In general, the

average performance of all clients has stabilized in the 30-40% range.

Figure 6.9: Weighted f1-measure from each client in experiment 2
Power BI Desktopweighted f1-measure x server rounds

0,0

0,2

0,4

0,6

0,8

1,0

server round

w
ei

gh
te

d 
f1

-m
ea

su
re

0 1 2 3 4 5 6 7 8 9

client 0 1 2 3 4 5 6 7 8 9
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Figure 6.10 shows the weighted accuracy over all the clients and the aggregated

loss of the strategy in each server round. The X axis indicates the server round number,
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while the left Y axis indicates the accuracy and the second Y axis indicates the losses. It

can be noted that the overall performance of the FL algorithm converged between 40-50%

accuracy and closer to 800 of loss.

Figure 6.10: Server accuracy and losses from experiment 2
Power BI Desktopaccuracy and losses distributed x server round
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6.3.3 Experiment 3

The last experiment run using the CIFAR-100 dataset with also non-IID but a

balanced data distribution. Similar to the second experiment, a pathological distribution

of the classes of twenty classes per client was used. The global model aggregation used

was FedYogi and the experiment run with ten local epochs and fifteen server rounds.

Table 6.3 shows the parameters used in the experiment and table 6.4 shows the balanced

data distribution in the clients.

Table 6.5: Parameters selected for experiment 3
Parameter Value
Dataset CIFAR-100
Experiment Name kubernetes-test-3
FL Strategy FedYogi
Model resnet
Data Balance True
Non-IID True
Class Distribution Pathological
Class per Client 20
Server Rounds 15
Local Rounds 10

Source provided by the author

Table 6.6: Data distribution for experiment 3
Client Train batch size Test batch size
client-0 4500 1500
client-1 4500 1500
client-2 4500 1500
client-3 4500 1500
client-4 4500 1500
client-5 4500 1500
client-6 4500 1500
client-7 4500 1500
client-8 4500 1500
client-9 4500 1500

Source provided by the author

The experiment deals with a classification problem that is fairly difficult in itself

because there are more classes to predict and originally, there are relatively few instances

per class available. Furthermore, in the distributed context, each client has access to only
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20% of the classes and less than half of the original dataset samples per class. Due to this,

we expect a poor performance in this scenario.

The chart in Figure 6.11 shows that the proportion of predicted instances gener-

ally increases for all clients, with some exceptions (evident between rounds 9 and 13),

demonstrating that, in general, aggregation has beneficial effects for clients over time.

rounds.

Figure 6.11: Accuracy from each client in experiment 3
Power BI Desktopmicro f1-measure x server rounds
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Figure 6.12 shows the f1-macro measure. Thus, considering the performance for

all classes and those with equal importance, the general performance of all clients is poor,

not even reaching 10% of macro f-measure. Although it is possible to verify the general

beneficial effects of aggregation throughout the rounds, with some exceptions.

Figure 6.13, with the f1-weighted measure, shows a scenario similar to that seen

in charts 6.9 and 6.10. That is, in general, the performance of most clients improves

with aggregation, over the rounds, with some exceptions. However, in this scenario, the

classes that are represented in each client gain more importance, which is responsible for

increasing the performance in this metric, in comparison with the macro average.
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Figure 6.12: Macro f1-measure from each client in experiment 3
Power BI Desktopmacro f1-measure x server rounds
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Figure 6.13: Weighted f1-measure from each client in experiment 3
Power BI Desktopweighted f1-measure x server rounds
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Figure 6.14 shows the aggregated accuracy over all the clients and the aggregated

loss of the strategy in each server round. The X axis indicates the server round number,

while the left Y axis indicates the accuracy and the second Y axis indicates the losses.

It can be noted that the overall performance of the FL algorithm converged between 40-

45% accuracy and closer to 800 of loss. It it curious how the loss of the strategy decreased

in the beginning and afterwards increased to a higher level than it began. It reflects the

overall poor performance of the clients.
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Figure 6.14: Server accuracy and losses from experiment 3
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6.4 Resource Usage

To monitor the resource usage of the experiments, the PoC solution uses the

Grafana application of the cluster to easily visualize the data collected by the Prometheus

monitoring.

To demonstrate some of the capabilities of the PoC solution on monitoring, an

analysis of CPU usage and network traffic was made in Experiment 3 (subsection 6.3.3).

It is important, once again, to emphasize the focus on the demonstration of the capabilities

and not on the performance. Similar analysis can be done to all the experiments ran in the

PoC solution since all the metrics are saved in the Prometheus server database.

6.4.1 CPU

Figure 6.15 shows the CPU resource usage of each client and the server of the

third experiment. The X axis indicates the timestamp of the metric and the Y axis the

CPU usage in percentage and each data sample has a 10 second interval between one

another.

Figure 6.15: CPU Usage from server and clients in experiment 3

Source: Grafana dashboard of the Kubernetes cluster

We can notice that the figure is quite chaotic, since all the ten clients and the

server are plotted in it. However, we can definitely see the execution of each one of the
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fifteen server round ran in the experiment and also that some of the clients had a CPU

usage of 20-30% while others stayed between 1-5%. This can easily be explained by

the heterogeneity of the clients CPU processing power, since some clients run in better

hardware than others. We can notice also that workload was distributed evenly across the

clients, since the data distribution used was balanced in this case.

In Grafana, we can select which application we want to plot in the chart. So, to

better analyze the assumption about the first chart, we can select some clients of a specific

hardware and other of another specification to compare them. Figure 6.16 demonstrates

the same chart with only client-5, client-4 and the server CPU usage being plotted. It

becomes evident that client-4 (an Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz) had

more resource usage and needed more time to process the same number of samples then

client-5 (an Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz).

Figure 6.16: CPU Usage from two clients with different hardware in experiment 3

Source: Grafana dashboard of the Kubernetes cluster

We can also select only the server in the chart to understand how was it behavior

throughout the experiment. Figure 6.17 demonstrates the same chart with only the server.

It noticeable the higher usage of CPU in the beginning of the experiment.
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Figure 6.17: CPU Usage from server in experiment 3

Source: Grafana dashboard of the Kubernetes cluster

This can be explained by the fact that the data distribution created by the server

is done at the beginning. We can also see that the usage of CPU resource of the server

is minimal if compared with any client. The server only uses CPU in the middle of

training to aggregate the parameters received from the clients which is a quite simple task

if compared with the training done by the clients, thus, explaining this phenomenon.

Figure 6.18: CPU Usage from server and clients in experiment 1

Source: Grafana dashboard of the Kubernetes cluster
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To demonstrate that all of the analysis done in experiment 3 could be done to

other experiments, we can demonstrate a sample from experiment 1. Figure 6.18 shows

the same chart of figure 6.15 plotted with data of the first experiment.

It is curious how the data distribution affects the CPU usage of the clients. We

can see that in between all of the them we have gaps due to the size of the samples being

different for each one of them, even with some of them running in similar hardware.

Further analysis can be done in the Grafana dashboard to understand the behavior of each

one of the clients individually and in any time frame specified.

6.4.2 Network traffic

Similar to the charts shown in the previous subsection, the same can be done to

visualize the network traffic between the clients and the server. Grafana can enable global

filtering across charts in a dashboard. The same time frame used in Figure 6.15, 6.17 and

6.16 was used to demonstrate this capability.

Figure 6.19 shows the received traffic and figure 6.20 the transmitted traffic for

each one of the clients and the server stacked. The X axis indicates the timestamp of the

metric and the Y axis the network traffic in Megabytes per seconds (MB

s). Each data sample also has a 10 second interval between one another. The first aspect

to notice is that we have peaks of traffic in the beginning and end of each round which

is expected, since is where communication between client and server should occur. The

aggregated traffic peak was of around 50 MB

s. To better understand the behavior of client and server, we can filter one client and the

server in the same charts.

Figure 6.19: Receive bandwidth from server and clients in experiment 3

Source: Grafana dashboard of the Kubernetes cluster
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Figure 6.20: Transmit bandwidth from server and clients in experiment 3

Source: Grafana dashboard of the Kubernetes cluster

Figure 6.21 shows the traffic received and 6.22 the transmitted in the server and

in client-9. We can see that the pattern of communication is always firstly the server re-

ceiving data and afterwards the client. This is expected, since initially the clients connect

to the server and the server accepts the connection. During training, the pattern is main-

tained since the server receive the parameters from the clients and afterwards the client

receives the aggregated parameters from the server.

Figure 6.21: Receive bandwidth from server and client-9 in experiment 3

Source: Grafana dashboard of the Kubernetes cluster
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Figure 6.22: Transmit bandwidth from server and client-9 in experiment 3

Source: Grafana dashboard of the Kubernetes cluster

Many other metrics are collected by the Prometheus monitoring application such

as, network packets, memory usage, or any other custom metric from applications that are

configured in the system. For the purposes of demonstration, in this work we considered

only the CPU and the network due to their relevance in FL.
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7 CONCLUSION

FL is a ML paradigm that is constantly being adopted due to its distributed ap-

proach, the necessity of data privacy and the vast increase of IoT devices. Heterogeneous

data distributions/contents of clients showed to be a real challenge and gained great no-

toriety over the last years. Proposals, such as DRL algorithms to dynamically learn the

weight of the contributions of each client at each round, continue to be developed and

will be fundamental to increase accuracy and usability of FL in more applications. Test-

ing and assessing this FL algorithms can be a very difficult and complex task due to the

distributed nature of the systems and the several types of scenarios of imbalance possible.

To address the testing of these algorithms, this worked proposed a conceptual

framework to facilitate testing federated learning scenarios in distributed computing en-

vironments with different types of data distributions. This work achieves the intended

proposal by proposing a conceptual framework for testing federated learning scenarios

and demonstrating an implementation of those concepts in the PoC solution. The solution

developed shows that creating an edge-like FL testing framework that can scale to several

different types of real-life scenarios using distributed heterogeneous computing and dif-

ferent data distributions easily is possible, inspiring further development of the concepts

and also improvement of the PoC solution itself.

To prove the capabilities of the PoC solution, three experiments with three differ-

ent scenarios of FL where conducted. The results showed how is possible to analyze the

impacts of class and data imbalance in a real-life distributed system of FL through the

framework via the f1-measures outputted in the experiments results. It was also possible

to see the resource usage of the applications via the monitoring solution and to demon-

strate the impact of the underlying heterogeneous infrastructure used.

The key point taken from this work is that designing a solution from the beginning

that has independence between infrastructure and applications showed to be very efficient

and effective during the development phase. Containers enabled re-usability, isolation and

easy testing of the applications despite the environment that they were deployed, either

locally or in the distributed cluster. Also, this allowed the system for horizontal scaling

by adding more nodes to the cluster from a infrastructure perspective or by creating more

application replicas from an application point-of-view.

Further improvement could be done to generate automated visualizations of the

aggregated results (section 6.3) of each client and the server. For instance, it should be
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possible to output the results of the FL algorithms performance to the Prometheus server

to be further visualized by Grafana or another visualization tool that has access to its

database.

This work also opens new opportunities to develop new experiments with fed-

erated learning scenarios. Fault tolerance experiments could also be done in the PoC

solution to enable further improvement in the reliability of the framework. From an appli-

cation point-of-view, one way would be to test limited connectivity scenarios by discon-

necting clients between training. Stress testing from a infrastructure point-of-view would

also be interesting to understand the limitations of the platform.

All of the code is publicly available and has been developed with extensibility in

mind. Future works could also extend the datasets, models, FL strategies supported and

better improve the applications as a whole.
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