
CPT Pharmacometrics Syst Pharmacol. 2021;10:1525–1537.	 ﻿	    |  1525www.psp-journal.com

Received: 16 July 2021  |  Revised: 29 July 2021  |  Accepted: 5 August 2021

DOI: 10.1002/psp4.12720  

A R T I C L E

Assessing the predictive performance of population 
pharmacokinetic models for intravenous polymyxin B in 
critically ill patients

Patrick O. Hanafin1  |   Roger L. Nation2  |   Marc H. Scheetz3  |    
Alexandre P. Zavascki4,5  |   Ana M. Sandri6  |   Andrea L. Kwa7,8  |    
Benjamin P. Z. Cherng9  |   Christine J. Kubin10  |   Michael T. Yin11  |   Jiping Wang12  |   
Jian Li12  |   Keith S. Kaye13  |   Gauri G. Rao1

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution-NonCo​mmercial License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and 
Therapeutics.

1Division of Pharmacotherapy and 
Experimental Therapeutics, Eshelman 
School of Pharmacy, University of 
North Carolina at Chapel Hill, Chapel 
Hill, North Carolina, USA
2Drug Delivery, Disposition and 
Dynamics, Monash Institute of 
Pharmaceutical Sciences, Monash 
University, Parkville, Victoria, Australia
3Department of Pharmacy Practice and 
Pharmacometric Center of Excellence, 
Midwestern University Chicago College of 
Pharmacy, Downers Grove, Illinois, USA
4Department of Internal Medicine, 
Medical School, Universidade Federal 
do Rio Grande do Sul, Porto Alegre, 
Brazil
5Infectious Diseases Service, Hospital 
Moinhos de Vento, Porto Alegre, Brazil
6Infectious Diseases Service, Hospital 
São Lucas da Pontifícia Universidade 
Católica do Rio Grande do Sul, Porto 
Alegre, Brazil
7Department of Pharmacy, Singapore 
General Hospital, Singapore, Singapore
8Emerging Infectious Diseases, Duke-
National University of Singapore 
Medical School, Singapore, Singapore
9Department of Infectious Diseases, 
Singapore General Hospital, Singapore, 
Singapore
10New York-Presbyterian Hospital/
Columbia University Irving Medical 
Center, New York, New York, USA

Abstract
Polymyxin B (PMB) has reemerged as a last-line therapy for infections caused 
by multidrug-resistant gram-negative pathogens, but dosing is challenging be-
cause of its narrow therapeutic window and pharmacokinetic (PK) variability. 
Population PK (POPPK) models based on suitably powered clinical studies with 
appropriate sampling strategies that take variability into consideration can in-
form PMB dosing to maximize efficacy and minimize toxicity and resistance. 
Here we reviewed published PMB POPPK models and evaluated them using an 
external validation data set (EVD) of patients who are critically ill and enrolled 
in an ongoing clinical study to assess their utility. Seven published POPPK 
models were employed using the reported model equations, parameter val-
ues, covariate relationships, interpatient variability, parameter covariance, and 
unexplained residual variability in NONMEM (Version 7.4.3). The predictive 
ability of the models was assessed using prediction-based and simulation-based 
diagnostics. Patient characteristics and treatment information were compara-
ble across studies and with the EVD (n = 40), but the sampling strategy was a 
main source of PK variability across studies. All models visually and statistically 
underpredicted EVD plasma concentrations, but the two-compartment models 
more accurately described the external data set. As current POPPK models were 
inadequately predictive of the EVD, creation of a new POPPK model based on 
an appropriately powered clinical study with an informed PK sampling strategy 
would be expected to improve characterization of PMB PK and identify covar-
iates to explain interpatient variability. Such a model would support model-
informed precision dosing frameworks, which are urgently needed to improve 
PMB treatment efficacy, limit resistance, and reduce toxicity in patients who 
are critically ill.
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INTRODUCTION

The treatment of patients who are critically ill remains 
challenging because of the unabating global increase in an-
timicrobial resistance, regarded as one of the three great-
est threats to human health.1 This threat has been further 
amplified by the increased incidence of infections caused 
by multidrug-resistant (MDR) gram-negative pathogens 
and dwindling therapeutic options for these pathogens.2–4 
Polymyxins, an “old” antibiotic class, reemerged into clin-
ical use in the 1990s as a last-line therapy against MDR 
gram-negative pathogens.5,6 Polymyxin B is a cyclic lipo-
peptide7 with dosing guided by the relationship between 
unbound drug exposure, as indicated by the area under 
the unbound plasma concentration–time curve (fAUC), 
and the minimum inhibitory concentration (MIC) of the 
infecting pathogen, that is, fAUC/MIC.8,9 The risk of ne-
phrotoxicity in patients is also associated with the plasma 
exposure (area under the plasma concentration–time 
curve [AUC]).10,11

Polymyxin B has a narrow therapeutic window 
that necessitates optimization of its exposure to max-
imize its bactericidal effect while minimizing the 
potential for the emergence of resistance8–12 and 
polymyxin-associated adverse effects, notably neph-
rotoxicity.13,14  Pathophysiological changes in patients 
who are critically ill (e.g., immune status, organ failure, 

comorbidity, comedication) can introduce pharmacoki-
netic (PK) variability,13,15 making it difficult to predict 
polymyxin B PK exposure. Population PK (POPPK) ap-
proaches have enabled the development of models de-
scribing both predictable (interpatient variability) and 
random unexplained variability to provide the necessary 
framework for dose individualization.16 Well-developed 
POPPK models characterize responses in a “typical” 
patient as well as the range of likely responses, tak-
ing the influence of patient heterogeneity on PK into 
consideration.17 Such POPPK models are essential for 
model-informed precision dosing (MIPD) dose individu-
alization and optimization. Current polymyxin B dosing 
recommendations, aimed at improving clinical efficacy 
and reducing toxicity, are provided in the published poly-
myxin B dosing guidelines.13

POPPK models based on PK data collected from 
clinical studies with adequate numbers of patients 
combined with well-informed sampling strategies can 
accurately characterize drug PK.18–20  Patient (demo-
graphic and clinical) characteristics assist in defining 
the study population and determining the statistically 
or clinically influential characteristics that can help 
explain PK variability within the studied population.21 
Current knowledge regarding polymyxin B PK is largely 
based on clinical experience and observational POPPK 
data collected from healthy volunteers or during routine 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Polymyxin B is a narrow therapeutic index antibiotic with high interpatient varia-
bility administered to patients who are high risk and critically ill. Accurate dosing 
can be challenging, prompting the development of population pharmacokinetic 
(POPPK) models that account for patient heterogeneity and the remaining unex-
plained variability between patients. However, it is uncertain which models best 
account for interpatient and residual variability and would therefore be most use-
ful for guiding polymyxin B dosing in patients who are critically ill.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can one or more of the published polymyxin B POPPK models be used for model-
informed precision dosing in populations of patients who are critically ill?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study uses an external validation data set of patients who are critically ill to 
assess the predictive ability of existing population PK models to determine their 
utility for model-informed precision dosing of polymyxin B and explores sources 
of bias in the models based on study design.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This study tells us which published models may best guide model-informed pre-
cision dosing of polymyxin B and best practices for designing new clinical studies 
to develop POPPK models for individualized polymyxin B dosing.
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clinical care of patients who are critically ill. These data 
have enabled the development of POPPK models that 
relate observed polymyxin B concentrations to admin-
istered doses and identify significant covariate rela-
tionships that describe sources of variability in these 
populations.11,22–26 Such POPPK models can be used to 
develop an MIPD framework for precision dosing.16,27 
Before this step, it is important to consider the study de-
sign (patient population, dosing regimen, and sampling 
strategy) used to develop each model. Furthermore, as 
performed for other narrow therapeutic antibiotics,28–30 
evaluation of the predictive performance and general-
izability of POPPK models must be performed via vali-
dation assessments using “external” data sets obtained 
from separate groups of patients from those used to de-
velop the model.31

The objective of this study was to review and exter-
nally validate published polymyxin B POPPK models to 
determine whether they can be used for MIPD in patients 
who are critically ill. POPPK data from an ongoing obser-
vational clinical study for polymyxin B in patients who are 
critically ill (NCT02682355) was used as the external vali-
dation data set.32

METHODS

Review of published POPPK studies

The PubMed, MEDLINE, and Embase databases were 
searched to identify published POPPK analyses of poly-
myxin B using the following keywords: “polymyxin B” 
[AND] “pharmacokinetics” [AND] (“population” [OR] 
“model”). The search included studies published in 
English between May 1, 1986, and May 10, 2021. Included 
POPPK models were those developed using the follow-
ing: (1) polymyxin B PK data from adult patients who are 
critically ill; (2) a compartmental, parametric modeling 
approach; and (3) polymyxin B sample quantification per-
formed via a chromatographic method. POPPK models 
were excluded if (1) polymyxin B was administered via a 
nonintravenous route, (2) the model description was in-
sufficient/inadequate to fully reproduce the model, or (3) 
the model was developed based on data from patients with 
cystic fibrosis (CF) or healthy volunteers.

Independent external validation data set

Polymyxin B PK and demographic data were collected 
from adult patients who are critically ill and enrolled in 
an ongoing, observational, multisite polymyxin B clini-
cal study (https://clini​caltr​ials.gov/ct2/show/study/​

NCT02​682355) conducted at Singapore General Hospital 
(Outram Road, Singapore), Hospital Moinhos de Vento 
(Porte Alegre, Brazil), and Pontifical Catholic University 
of Rio Grande do Sul (Porte Alegre, Brazil) from June 
2017 to December 2019. The study was approved by the 
ethical committees at all participating centers. Inclusion 
criteria were anticipated use of intravenous polymyxin B 
for 48 h or more following enrollment for the treatment of 
bacteremia, urinary tract infection, respiratory infections, 
or sepsis. Patients were excluded if they were diagnosed 
with CF, were not anticipated to survive beyond 48 h fol-
lowing enrollment, or received concomitant polymyxin 
B delivered directly into the respiratory tract. No patient 
in this study was analyzed in previously published poly-
myxin B POPPK studies. The polymyxin B dose, infusion 
duration, and dosing interval were at the discretion of 
the physician caring for each patient and were recorded. 
Between days 1 and 5, PK plasma samples were collected 
predose and at nominal times of 0.5, 1, 2, 6, and 12 h after 
cessation of infusion. Total polymyxin B plasma concen-
trations were assessed by measuring polymyxin B1 and 
B2 components in each plasma sample. Individual com-
ponents were measured using a liquid chromatography–
tandem mass spectrometry assay with a lower limit of 
quantification of 0.05 mg/L and coefficient of variation of 
8.42%.24 Patient age, weight, creatinine clearance (CrCL), 
Acute Physiologic Assessment and Chronic Health 
Evaluation II (APACHE II) score, sex, race, and renal 	
replacement therapy status were recorded.

External predictive performance 
evaluation of polymyxin B POPPK models

NONMEM (Version 7.4.3; ICON Development Solutions) 
was used for external evaluation. R software (Version 
4.0.2; R Foundation for Statistical Computing) was used 
to postprocess NONMEM output and generate graphics. 
The published POPPK models were employed using re-
ported model equations, parameter values, covariate rela-
tionships, interpatient variability, parameter covariance, 
and unexplained residual variability; the latter, when not 
reported, was set to values corresponding to the published 
assay sensitivity and lower limit of quantification. For 
each model, polymyxin B concentrations were simulated 
using dosing regimens, sampling times, and covariate in-
formation from the EVD.

Prediction-based diagnostics

Based on the observed concentration (Cobs) and popula-
tion prediction (Cpred), the prediction error percentage 
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(PE%) and absolute prediction error percentage (APE%) 
were calculated using Equations (1) and (2), respectively:

The median prediction error (MDPE) and the median 
absolute prediction error (MDAE) were used to evaluate 
the accuracy and precision of the predictive performance, 
respectively. The PE% within ±20% (F20) and the PE% 
within ±30% (F30) were calculated as joint predictors of 
accuracy and precision.33 Predictive performance of can-
didate models was considered satisfactory if |MDPE| ≤ 
20%, MDAE ≤ 20%, F20 ≥ 30%, and F30 ≥ 45%.33 Further 
prediction-based diagnostics using Bayesian forecasting 
are described in the Supplementary Methods.

Simulation-based diagnostics

The predictive performance of each POPPK model was 
evaluated by performing Monte Carlo simulations (MCS; 
n = 1000) in NONMEM using patient characteristics, 
dosing, and the sampling scheme from the EVD. The 
prediction-corrected visual predictive check (pcVPC)34 
profiles were used to visually assess if prediction-
corrected simulations generated by a candidate model 
deviated from prediction-corrected observed data. This 
helped determine if intrapatient and interpatient vari-
ability were sufficiently specified in each model to re-
produce the central trend and variability in the EVD 
while accounting for differences in dosing and patient 
covariates.

Normalized prediction distribution errors (NPDE) 
based on MCS were used to assess if the model-simulated 
concentrations followed a normal distribution.35,36  The 
mean and variance of the NPDE calculated using the 
Wilcoxon signed-rank test and Fisher test for variance, re-
spectively, were used to ascertain if the models correctly 
described the observed PK data. Skew and kurtosis of the 
NPDE were used to assess normality using the Shapiro–
Wilk test. In addition, the NPDE versus time from most 
recent dose and versus predicted concentration plots for 
each model were visually inspected.

PK profile comparison

To directly compare the different model-predicted PK 
profiles, a dosing regimen based on median dosing 

information across studies was simulated for a standard-
ized patient. Dosing was simulated for 3 days to simulate 
steady-state PK. Simulated PK from each model was plot-
ted and visually inspected. Sampling times reported in 
each study were included in the plots to visually assess the 
impact of PK sampling schemes on PK characterization. 
AUC of the simulated concentration profile over the dose 
interval (AUCτ) was calculated for each model using the 
linear trapezoidal rule in R using the “pmxTools” package 
(Version 1.2.1).

RESULTS

Literature search and review of published 
POPPK analyses

Seven polymyxin B POPPK models based on POPPK data 
from six studies in patients who were critically ill were 
included for external evaluation (referred to as M1 to 
M7).11,22–26 Two studies were conducted at multiple sites 
(M2 and M3). Dosing information, PK sampling strategy, 
and patient characteristics for each study are described in 
Table 1, whereas patient demographics, that is, mean/me-
dian age (46–63 years), weight (58–78 kg), and CrCL range 
(33–123 ml/min) are visualized in Figure S1. Of note, one 
study separately modeled then compared two patient sub-
sets based on renal function: patients with normal renal 
function, M5, and those with renal insufficiency, M6. In 
addition, M4  studied a subset of patients from M5 and 
M6. All studies excluded patients on renal replacement 
therapy with the exception of M3, which included 2/24 
(8.3%) patients on renal replacement therapy. Liquid 
chromatography–mass spectrometry assays were used in 
all studies to determine polymyxin B concentrations.

The median daily doses ranged from 119 to 160  mg/
day. M4, M5, M6, and M7 reported fixed polymyxin B 
dosing. All models were based on intravenous adminis-
tration of polymyxin B with linear first-order elimination. 
Infusion durations, when reported, ranged from 0.5 to 4 h. 
Across all studies, polymyxin B was most commonly ad-
ministered twice daily; however, four studies included pa-
tients dosed daily or once every 2 days. M3 had the largest 
polymyxin B daily dose range resulting from the high dose 
administered to a 250 kg patient. The number of patients, 
PK samples per patient, and total PK samples used to de-
velop each model are compared in Figure  S2. M3, M4, 
M5, and M6 used intensive sampling (six or more samples 
per patient), collected 150 or more PK samples, and de-
scribed polymyxin B PK using a two-compartment model. 
Conversely, M1, M2, and M7 collected fewer than 150 PK 
samples with four or fewer  samples per patient and de-
scribed polymyxin B PK with a one-compartment model.

(1)PE (%) =
Cpred − Cobs

Cobs
× 100%

(2)APE (%) =
|
|
|
|
|

Cpred − Cobs

Cobs

|
|
|
|
|

× 100%
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1530  |      HANAFIN et al.

Table 2 details the models. Patient characteristics that 
were significant predictors of polymyxin B PK variability 
were included in three models. Total body weight was in-
cluded in M3 as a predictor of variability for both the vol-
ume of distribution and clearance. Renal function (CrCL) 
was a predictor of variability for clearance in M4 and M7. 
Typical clearance values across studies ranged from 1.58 
(M6) to 2.5 (M2) L/h. The typical volume of distribution 
ranged from 17.6 L (sum of compartment volumes for 
central and peripheral in M6) to 34.4 L (volume of central 
compartment in M1). Across studies, the mean (percent-
age coefficient of variation [%CV]) population estimate for 
volume of distribution for the one-compartment and two-
compartment models was 29.7 L (27%) and 20.8 L (25%), 
respectively, indicating moderate interstudy variability, 
whereas the mean population estimate for clearance for 
the one-compartment and two-compartment models was 
2.15 L/h (23%) and 1.86 L/h (14%), respectively, indicating 
a relatively small interstudy variability. Interpatient vari-
ability (%CV) was generally higher for volume parameters 
than clearance across models, ranging from 16% (M1) to 
88% (M5) and 13% (M7) to 51% (M6), respectively (M7 did 
not estimate interpatient variability for volume).

External validation data set cohort

The EVD included 230 PK samples from 40 patients who 
were critically ill: 22 male patients; 27 White, four Black, 
and nine Asian patients; and eight patients on renal re-
placement therapy. The median (range) of the age, weight, 
CrCL, and APACHE II score was 60 years (18–90), 72 kg 
(32.5–122), 62.0 ml/min (19.3–322), and 17 (0–41), respec-
tively. Patients received polymyxin B doses from 100 to 
300 mg/day twice daily as intravenous infusions for 1 to 
5 h. All patients were sampled between days 1 and 5, ex-
cept for two patients sampled on days 6 and 11.

Assessment of the predictive 
performance of published polymyxin 
POPPK models

Prediction-based diagnostics

The residual unexplained variability was not reported for 
M2 and was assumed to have a combined error model 
based on the reported assay description: 0.05 mg/L addi-
tive error and 5.11% proportional error.

Figure 1 displays the observed EVD versus population-
predicted concentrations when each model was imple-
mented in NONMEM. The PE% for each model is shown 
in Figure  2. Accuracy and precision measures generated 

for each model from the prediction errors are provided in 
Table 3. All models had an MDPE < 0, indicating median 
underprediction of the observed plasma concentrations in 
the EVD. M7 had an MDPE closest to 0 (−16.3%) and the 
lowest MDAE (32.0%), indicating that this model had better 
accuracy and precision of population estimates, respectively, 
than the other models. In addition, M7 had the best relative 
accuracy and precision as characterized by an F20 of 31.1% 
and an F30 of 46.5%. M4 and M6 were the second and third 
most predictive models based on these values, respectively.

Simulation-based diagnostics

pcVPC plots of prediction-corrected plasma polymyxin B 
concentrations versus time since last polymyxin B dose 
(Figure 3) indicated systematic underprediction of the EVD 
by all models. The deviation of the prediction-corrected con-
fidence intervals of the observed data from the simulated data 
across all percentiles demonstrated that the PK parameters of 
all candidate POPPK models were unable to describe EVD 
PK. Although simulated data for M4 and M6 were within the 
90% prediction interval of observed data at the 5th and 95th 
percentiles, these models underpredicted the EVD at the 
50th percentile, indicating slight misspecification of param-
eter estimates. Large deviations between observed and simu-
lated data at specific confidence intervals demonstrated that 
intrapatient and interpatient variability were inadequately 
described, as in the case of the 5th percentile in M7.

NPDE distributions were not normally distributed for 
any model (Figure S3, Table S1), indicating that these mod-
els poorly described the EVD when accounting for intra-
patient and interpatient variability. However, M4, M5, and 
M6  had NPDE distributions within expected confidence 
intervals at early timepoints, indicating that these models 
adequately characterized the EVD immediately following 
polymyxin B administration (Figure  S4). Only M4 pre-
dicted the EVD well across the dosing interval based on 
NPDE plots. However, when assessing NPDE relative to 
predicted concentration (Figure S5), M4 poorly character-
ized the EVD at low concentrations, and no model char-
acterized the EVD well across the predicted concentration 
range.

PK profile comparison

The dosing regimen used to explore differences in pre-
dicted PK profiles across studies was a 75 mg polymyxin 
B dose infused for 2 h every 12 h. A 71 kg patient with 
a CrCL of 71.9 ml/min was used to standardize the PK 
profile based on patient characteristics across the evalu-
ated models. Figure  4  shows PK curves simulated for 
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each model with nominal sampling times of each study 
marked with a circle. Four of the five models that pre-
dicted high maximum (peak) plasma drug concentra-
tion (Cmax) were two-compartment models with robust 
sampling early in the distribution phase, whereas the 
two models that predicted low Cmax values were one-
compartment models with sparse sampling during the 
same period. M3, M4, M5, and M6, studies with inten-
sive sampling during the distribution phase, described 
the PK using a two-compartment model. The AUCτ for 
the two-compartment models (%CV, 15%) varied less 
compared with the one-compartment models (%CV%, 
79%).

DISCUSSION

This is the first study to systematically evaluate the pre-
dictive performance of published POPPK models for 
polymyxin B by external validation. A previous analy-
sis examined bias in five polymyxin B POPPK models 
by calculating the predicted AUC based on the popula-
tion clearance estimates.37 However, the analysis did not 
account for the random variability predicted by these 
models nor for the potential sources of bias. Our work 
helps assess the rigor of existing population analyses 
to determine (i) if the study designs were appropriate 
to identify a covariate relationship, (ii) if an identified 

T A B L E  2   Model summary of published POPPK Polymyxin B models

Model 
reference Modeling software

Structural 
model

Parameter values and 
covariate relationships

Interpatient 
variability (%) RUV

M1 Monolix 2016R1
(SAEM)

1 CMT CL (L/h) = 2.37
V (L) = 34.4

CL = 37.7
V = 15.7

Add = 0.00693 mg/L
Prop = 23.3%

M2 ADAPT 5
(MLEM)

1 CMT CL (L/h) = 2.5
V (L) = 34.3

CL = 43.8
V = 47.8
Cov = 12.8

M3 S-ADAPT (1.57)
(MCPEM)

2 CMT CL (L/h) = 1.87 × (BW/70)
V1 (L) = 6.35 × (BW/70)
V2 (L) = 22.3 × (BW/70)
Q (L/h) = 9.86 × (BW/70)

CL = 32.4
V1 = 73.3
V2 = 70.1
Q = 50.4

Add = 0.05 mg/L
Prop = 8.39%

M4a Phoenix NLME (7.0) 2 CMT CL (L/h) = 1.79 × 
(CRCL/105.9)0.362

V1 (L) = 6.22
V2 (L) = 11.92
Q (L/h) = 13.52

CL = 0.208
V = 0.318
V2 = 0.690
Q = 1.508
Corr V–CL = 0.713
Corr V–V2 = 0.667
Corr CL–V2 = 0.571

Prop = 11%

M5a Phoenix NLME (7.0) 2 CMT CL (L/h) = 2.19
V1 (L) = 6.87
V2 (L) = 11.97
Q (L/h) = 13.83

CL = 0.22
V = 0.78
V2 = 0.32
Q = 0.68
Corr V–CL = 0.57
Corr V–V2 = 0.83
Corr CL–V2 = 0.76

Prop = 13%

M6a Phoenix NLME (7.0) 2 CMT CL (L/h) = 1.58
V1 (L) = 6.98
V2 (L) = 10.57
Q (L/h) = 10.28

CL = 0.26
V = 0.38
V2 = 0.74
Q = Fixed
Corr V–CL = 0.75
Corr V–V2 = 0.46

Prop = 10%

M7 NONMEM (7.4) 1 CMT CL (L/h) = 1.59 × 
(CRCL/80)0.408

V (L) = 20.5

CL = 13
V = Fixed

Prop = 40.5%

Abbreviations: Add, additive residual unexplained error; BW, body weight; CL, total body clearance; CMT, compartment; Corr, parameter correlation; 
Cov, parameter covariance; CRCL, creatinine clearance; MCPEM, Monte Carlo parametric expectation maximization; MLEM, maximum likelihood 
expectation maximization; Prop, proportional unexplained error; Q, intercompartmental clearance; RUV, residual unexplained variability; SAEM, 
stochastic approximation expectation maximization; V, volume of distribution; V1, typical volume of central compartment; V2, typical volume of peripheral 
compartment.
aInterpatient variability is represented by the log-normal variance of population means.
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1532  |      HANAFIN et al.

covariate relationship was appropriate, and (iii) the bias 
in interindividual and residual variability. This analysis 
assists in identifying models that are useful for exploring 
“what if” scenarios for informing polymyxin B dosing.17 
Based on our analysis, all seven published polymyxin B 
POPPK models evaluated did not adequately describe the 
observed polymyxin B PK in the EVD. We explored dif-
ferences in study design, number of patients, sampling 
strategy, and patient characteristics between studies as 

potential factors that could influence model develop-
ment and performance.

POPPK models based on studies with relatively large 
patient populations and an informed sampling strategy 
(six or more plasma samples per patient) characterized 
polymyxin B PK of the EVD better overall. Optimal sam-
pling over the distribution phase improved the assessment 
of the number of compartments needed to effectively 
characterize polymyxin B PK and the interindividual vari-
ability.18,19,38  Two-compartment models characterized 
polymyxin B PK best: M4 and M6 were based on data from 
studies that used robust and intensive sampling, resulted 
in better characterization of interpatient variability, and 
identified covariance relationships. However, M4 reported 

F I G U R E  1   Observed versus predicted PK. The observed polymyxin B concentration (mg/L) is plotted against the population-predicted 
polymyxin B concentration (mg/L) for each of the seven models (denoted M1 through M7). Data points are depicted as blue circles and the 
line of unity as a black line. A locally estimated scatterplot smoothing–transformed line (red) depicts the local trends of the data.

F I G U R E  2   Prediction errors. Boxplots of the prediction error 
(x-axis) for each model (y-axis). Solid vertical line represents 0% 
prediction error. Dashed vertical lines represent ±30% prediction 
error. Notches on the boxplots represent the 95% confidence 
intervals of the median prediction error for each model (denoted 
M1 through M7). Black dots represent prediction errors that are 
beyond 1.5-fold of the interquartile range.

T A B L E  3   Precision and accuracy assessment of published 
POPPK models of polymyxin B

Model 
reference

MDPE 
(%) MDAE (%)

F20 
(%)

F30 
(%)

M1 −51.8 54.3 7.46 13.6

M2 −54.0 56.2 8.77 13.6

M3 −40.1 44.4 26.2 27.6

M4 −20.1 32.8 29.4 43.9

M5 −48.5 50.6 12.3 19.3

M6 −27.8 37.8 24.1 35.5

M7 −16.3 32.0 31.1 46.5

Note: F20 fraction of values within ±20% prediction error, and F30 fraction of 
values within ±30% prediction error.
Abbreviations: MDPE, median prediction error; MDAE, median absolute 
prediction error; POPPK, population pharmacokinetic.
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extremely high variability for the intercompartment clear-
ance parameter Q (122%), with no explanation (such as 
patient characteristics) provided that might explain this 
high variability. Despite intensive sampling, M6 could not 
identify covariates explaining interpatient variability given 
the small patient sample size (N = 33). M2 had the highest 
bias among the seven models, probably attributable to the 
study design and sampling strategy. Of the three samples 
collected per patient, the first sample was obtained up to 
2  h following the end of infusion and likely resulted in 
an overall lower observed Cmax and concentration-time 
profile.

The two-compartment models had more consistent 
measurements of AUCτ (based on %CV), however, dis-
crepancies in sampling strategies between the two groups 
of model structures resulted in differences in simulated 
Cmax, AUCτ, and volume estimates. Robust sampling 
during the distribution phase, as seen in M3, M4, M5, 
and M6, resulted in lower volume estimates and a more 
descriptive, consistent characterization of PK between 
peak and trough concentrations. M3  had lower simu-
lated PK concentrations over the distribution phase 3 h 
after dosing compared with M4 and M6. This is because 
M3  had larger intercompartmental clearance and a tis-
sue compartment volume, V2, nearly double that of M4, 
M5, and M6. Differences in the volume estimates may 

be attributed to differences in protein binding between 
studies. However, protein binding was only reported in 
M3 (median, 58%). Comparatively, the one-compartment 
models, M1 and M2 with sampling later in the distribu-
tion phase combined with sparse sampling, estimated a 
higher volume of distribution and therefore predicted a 
lower drug exposure with greater AUCτ. However, M7, 
another one-compartment model with reduced sampling 
in the distribution phase, had a lower volume estimate 
and had higher simulated Cmax and AUCτ inconsistent 
with M1 and M2. A sparse and ill-informed sampling 
strategy combined with small sample size makes charac-
terization of polymyxin B PK and interpatient variability 
challenging.18–20

Based on our assessment of the prediction-based di-
agnostics, M7 best predicted population PK of the EVD 
before taking PK variability into account. The next best 
predictors of population PK were the two-compartment 
models M4 and M6. Bayesian forecasting, which assesses 
the influence of observed concentrations on model pre-
dictability, found M4 and M6 best predicted observed 
PK of the EVD. Based on the simulation-based diagnos-
tics (pcVPC plots and NPDE analysis), which take in-
terpatient and unexplained variability into account, all 
of the reviewed models underpredicted the EVD and 
deviated from the observed PK. M4 and M6 extensively 

F I G U R E  3   Prediction-corrected visual predictive checks of the simulations. A total of 1000 Monte Carlo simulations of the 
pharmacokinetics of polymyxin B for each model (denoted M1 through M7) were run using the external validation data set. The 5th, 50th, 
and 95th percentiles of prediction-corrected simulated data and prediction-corrected observed data over time are plotted relative to the 
most recent polymyxin B dose. The prediction-corrected observed data are represented by gray dots. Confidence intervals of the 5th, 50th, 
and 95th percentiles of the prediction-corrected observed data are represented by red lines. Confidence intervals of the 5th, 50th, and 95th 
percentiles of the prediction-corrected simulated data are represented by blue lines. The 90% prediction interval around each prediction-
corrected simulated confidence interval are represented by the blue-shaded regions
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1534  |      HANAFIN et al.

characterized the interpatient variability and PK param-
eter covariance, allowing them to predict the PK of the 
EVD better when random variability was included. Most 
published polymyxin B models reviewed here did not 
identify any covariates that could adequately describe the 
interpatient variability. Although M4 and M6 character-
ized random interpatient variability for each PK param-
eter, random variability for some parameters was greater 
than 85%. Inclusion of additional patient covariates for 
these PK parameters would help explain the random vari-
ability and increase POPPK model utility. This highlights 
the importance of effectively characterizing PK variability 
for models intended for clinical use: models with poor ac-
counting of variability are ineffective for describing PK in 
patients that diverge from “typical.”17

In addition to using patient information to describe PK 
differences within a study, the differences in drug charac-
teristics within a study should be explored and reported as 
potential sources of variability. For example, polymyxin B 
has two main components (B1 and B2), which account for 
>80% of the total composition.7 A previous analysis of the 
composition of polymyxin B at 1 mg/L from four differ-
ent manufacturers found significant differences between 
B1 and B2 forms despite total polymyxin B concentrations 
not being significantly different.39 PK characteristics of 
the two main polymyxin B components, when adminis-
tered individually to Sprague-Dawley rats, were differ-
ent. Plasma protein binding for B1 was higher compared 
with B2; however, there were no significant (p > 0.05) 

differences with regard to total clearance, volume of dis-
tribution, and the elimination half-life.40 Most studies re-
viewed here employed assays that measured polymyxin B 
composition as the sum of B1 and B2. The assay used in 
M2 measured polymyxin B1 isoleucine and polymyxin B3 
in addition to B1 and B2. This interstudy assay disparity 
may have an impact on the interpretability of the PK pa-
rameters described in these models. Future studies should 
consider polymyxin B composition as well as the major 
components measured by the assay.

Appropriateness of the external data set to assess each 
model needs consideration in light of the high degree of 
bias and imprecision found across the published models. 
Dosing in the clinical study used to generate the EVD 
was comparable with dosing described in the published 
models and is, therefore, an unlikely source of bias or 
imprecision. M3 incorporated body weight as a covariate, 
with a body weight range similar to the EVD (excluding 
the 250  kg patient in M3), enabling comparison of im-
pact of weight on dosing. M4 and M7 reported CrCL as a 
clearance covariate, and the CrCL ranges in these studies 
were comparable with the CrCL range in the EVD. This 
indicates that EVD patient demographic and clinical fac-
tors were reflective of patient covariates identified while 
building these models. However, the clinical relevance of 
CrCL as a covariate needs to be taken into consideration 
given that polymyxin B has low renal excretory clearance 
and it is unclear if renal function impacts polymyxin 
B exposure.11,24,41,42 As mentioned previously, disease 

F I G U R E  4   Pharmacokinetic (PK) profile comparison. A median dose regimen of 75 mg 2-h infusions of polymyxin B every 12 h for 
3 days was simulated in each model (denoted M1 through M7) in a standardized patient. PK was simulated to steady state after the sixth 
dose on day 3. PK curves represent the population-predicted value without variability for each model. The number of PK samples collected 
per patient are parenthesized for each model. Points represent the sampling scheme from each study design as described in the literature. 
The predicted maximum (peak) plasma drug concentration range for one-compartment (left) and two-compartment (right) models 
with the given dose regimen and sampling scheme are 3.11–5.53 mg/L and 4.28–5.60 mg/L, respectively. The predicted area under the 
plasma concentration–time curve of the simulated concentration profile over the dose interval range for one-compartment (left) and two-
compartment (right) models were 17.7–74.0 mg/L∙h and 19.7–28.6 mg/L∙h, respectively
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severity measurements such as APACHE II scores may 
explain some patient variability between studies, but M3 
was the only study to report them. Descriptive patient de-
mographics were recorded in each study, but additional 
information, such as measures of disease severity, was 
not reported in five of six  studies, nor was it reportedly 
explored as a covariate. Therefore, disease severity was 
not used in this analysis. Disease severity, especially in 
patients who are critically ill, can impact PK in several 
ways as a result of altered fluid balance, clearance, and/or 
protein binding, leading to changes in volume compart-
ment distribution.15

An additional limitation of this study is the ability to 
interpret the published models: not all publications pro-
vided methods and clear model descriptions. Despite 
using assay sensitivity information to describe residual 
unexplained variability for M2, the overall analysis was 
marginally impacted because several model assessment 
criteria used population-predicted concentrations and 
typical patient values (MDPE and MDAE), which are not 
affected by residual unexplained variability. In addition, 
infusion duration was not reported in M7. This may have 
limited our ability to assess potential sources of bias or 
imprecision; however, missing information did not impact 
the predictive analyses performed here.

Current polymyxin B POPPK models for patients 
who are critically ill described in the literature char-
acterize the external data set inadequately, hence 
these models may be not suitable for a priori dose 
determination. Bayesian forecasting can improve in-
dividual patient PK characterization to optimize the 
dosing regimen based on the concentrations measured 
(observed) in the patients a posteriori.43,44 However, 
no model was able to predict polymyxin B concen-
trations at high (>10 mg/L) concentrations, which is 
vital to prevent polymyxin-associated nephrotoxicity. 
The lack of alignment of these published population 
analyses with the aim of dosing polymyxin B appro-
priately in patients who are critically ill combined 
with their poor predictive performance emphasizes 
the need to develop such a POPPK model. The de-
velopment of this POPPK model should be based on 
well-powered studies in the patient population of in-
terest with an informed optimal PK sampling strategy 
to identify clinically as well as statistically relevant 
covariates that can adequately characterize poly-
myxin B PK and help explain interindividual variabil-
ity within the studied population to dose polymyxin 
B appropriately. A large, ongoing, observational clin-
ical study to assess the PK of polymyxin B in patients 
who are critically ill (NCT02682355) will provide the 
PK data necessary to develop a robust POPPK model 
for MIPD.
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