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Resumo:

Neste trabalho, generalizamos alguns conceitos de formalismo termodinâmico
já conhecidos em casos mais simples, para dois tipos de processos de Markov
a tempo contínuo: processos de salto e difusões, ambos com espaço de estados
compacto. Para embasar esses estudos, foi necessário reorganizar e desenvolver
alguns pontos da teoria de processos de Markov, o que fizemos no primeiro
capítulo desta tese, com foco nos processos de salto. Para estes dois tipos de
processos de Markov, utilizando um potencial V fixado, definimos o operador de
Ruelle e o normalizamos, de modo a obter o processo de Gibbs e a respectiva
probabilidade de Gibbs associada. Finalmente, fomos capazes de mostrar que o
processo de Gibbs é o estado de equilíbrio que maximiza um problema variacional
para a pressão.

Abstract:

In this work, we generalize some concepts of thermodynamic formalism already
known for simpler cases, for two types of continuous-time Markov processes:
jump processes and diffusions, both with compact state space. To support these
studies, it was necessary to reorganize and develop some points of the Markov
process theory, which we made in the first chapter of this thesis, focusing on
jump processes. For this two types of Markov processes, using a fixed potential
V , we define the Ruelle operator and normalize it, getting the Gibbs process and
its respective Gibbs probability associated. Finally, we were able to show that
the Gibbs process is the equilibrium state that maximizes a variational problem
for the pressure.
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Introduction

In this introduction, we start by providing a part2 of the historical background
on the thermodynamic formalism in order to present the main names in the area
and see how this Ph.D. Thesis fits into this mathematical field. It also contains
an overview of each of the three chapters of this work showing all the choices
made during their constructions and how they are connected. In the end, some
possible directions for future studies are also suggested, following paths that
have already been taken in other contexts.

The origin of thermodynamic formalism goes back to statistical physics, where
Josiah Willard Gibbs (1839 - 1903) may be considered the first one to include
probability theory in his analysis and mint the term “statistical mechanics”. In
his book [19] of 1902, Gibbs treats his results with atypical mathematical rigor
for the time, praised even by Albert Einstein, but which was criticized for not
addressing the physical issues involved. Gibbs’ contributions continue to echo
to this day with many things named after him, as you can see throughout this
work.

In the 1970s, thermodynamic formalism was introduced in the mathematical
field of dynamical systems. David Ruelle (1935 - ) is one of the first ones to
do that, and his work [43] may be considered the field’s first important book.
Among all his contributions to the field, Ruelle has an operator named after him
that you will see here.

From that time to the present day, many things have been developed in
this field: as usual, it started with simpler discrete-time processes (see, for
instance, [5, 29]), moving on to continuous-time processes with countable state
space (see [6, 32]) and arriving at the present work, where the time and the
state space are continuous. More specifically, the main goal of this work is to
describe versions of thermodynamic formalism for semi-flows of two types of
continuous-time Markov processes with continuous state space: jump processes
and diffusions. We consider the semi-flow given by the continuous-time shift
Θt : S → S, t ⩾ 0, acting on the trajectories space S. This continuous-time shift
Θt is defined in such way that (Θtw)s = ws+t.

Using a continuous-time Markov process {Xt, t ⩾ 0} taking values on a state
space E, we introduce a homogeneous Markov semigroup Pt = etL, t ⩾ 0, where
L (the infinitesimal generator) acts on some type of functions f : E → R. This
semigroup plays the role of a transition function for the continuous-time Markov
process. The exact domain D(L) of the infinitesimal generator depends on the

2For a more complete historical context, we refer to [11]
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characteristics of the process: in the case of jump processes we will consider this
domain as the set Cb(E) of all bounded functions, while for diffusions we will
have D(L) = C2(E), the set of all functions of class C2 (see [15] for examples of
generators of other types of Markov process and their respective domains).

Taking a measure ν on E as the initial measure of a continuous-time Markov
process, one can induce a probability P on S. To say that the process is stationary
(the distribution at any time t is equal to ν) is equivalent to saying that the
associated probability P is invariant for the action of the shift Θt, t ⩾ 0. We
say that a probability P on S is invariant for Θt, t ⩾ 0 if, for all measurable set
A ⊂ S and any t ⩾ 0, we have that P(A) = P((Θt)−1(A)).

Chapter 1 addresses the results of [36] and fits into this work as the fun-
damental theory on which the other chapters will be based. Its results have
been specifically designed to be applicable to our settings, but we have tried to
leave these results in the general form as possible including, for example, the
possibility of time dependence. There exists a huge difference in bibliography
between diffusion and jump processes since the Brownian Motion is a well-known
process and so the diffusion theory is a lot more developed. Taking this into con-
sideration, we opted to set the results of Chapter 1 in the form of jump processes
even though they are valid on a more general case. General references for basic
results on diffusions that we use here appear, for example, in [4, 8, 21, 22, 47].
In this chapter, we define multiple martingales from a continuous-time Markov
process. Among them, two classic martingales stand out: the Dynkin martingale
and the exponential martingale. We used stochastic calculus to get the quadratic
variation of the Dynkin martingale, but it is important to notice that this is the
only part of this work we needed such advanced technique.

Furthermore, from a bounded function V : [0,∞) ×E → R, we disturb the
homogeneous semigroup Pt to get a nonhomogeneous semigroup PVs,t from which
we can prove an important result, the Feynman-Kac formula, which gives us a
solution of the partial differential equation ∂u

∂t − Lu− V u = 0.
Another important contribution of this chapter involves a Radon-Nikodym

derivative: using Ls and Ls, any two infinitesimal generators of jump processes
that depend on time s, we were able to define their respective nonhomogeneous
semigroups and get a formula for the Radon-Nikodym between them. This is an
alternative approach to the one presented in Appendix A of [3].

About Chapters 2 and 3, both are strongly related and deal with a standard
procedure in the field of thermodynamic formalism. In fact, we follow the exact
same procedure used in the first part of [32] for continuous-time Markov chains
with values on the Bernoulli space. Similar results to the ones presented in these
chapters are also given by [5, 28, 29] on discrete cases, by [6] for continuos-time
Markov chains with finite state space, and by [10] for quantum semigroups.
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Unlike Chapter 1, where we consider a general state space E, in Chapters 2
and 3 we consider a compact state space. It is not very relevant whether we take
this state space as the unitary circle S1 or the interval [0, 1] since we can refer
to S1 as [0, 1] with the periodicity boundary condition 0 ≡ 1.

The biggest difference between these chapters is the characteristic of the
paths generated by the Markov process we are considering in each case. While we
have continuous paths for the diffusions case and consider the trajectories space
to be C([0, T ], E) with the usual supremum norm, in the case of jump process we
need to consider the Skorohod space D = D([0,+∞), E) of càdlàg paths (right
continuous with left limits) ω : [0,+∞) → E and equip it with a Skorohod metric
(see [15] for more details on this metric). This Skorohod space is a noncompact
Polish space. In both cases, one can take a shift-invariant probability P on the
trajectories space induced by a Markov process with stationary probability π

(see [26]), to play the role of an a priori probability (a continuous time version
of the point of view of [5, 28]). Considering this probability and a continuous
potential V : E → R, we define, for t ⩾ 0, the Ruelle operator LtV in such way
that, for φ : E → R, we get

(LtV φ)(x) = Ex
[
e

∫ t

0
V (Xr)dr

φ(Xt)
]
.

Notice that, by this expression, the Ruelle operator depends on L (because Px is
induced by L and the initial measure δx).

Under the right assumptions, we can normalize the non-Markovian semigroup
(associated with the infinitesimal generator L+V ) defined by this Ruelle operator
in order to get a new Markovian semigroup. This can be done using the main
eigenvalue of L + V , called λV , for which the respective eigenfunctions are
positive. In the discrete-time analogous procedure, we get these via Perron-
Frobenius Theorem (see [37]), but we still can not get a generalization of this
theorem to our setting. The new associated stationary Markov process we get in
this way will be called the Gibbs process associated with the perturbation V

and the shift-invariant probability on the trajectories space obtained from this
process will be called the Gibbs probability associated with the potential V (see
also [6, 25, 32]).

From two different homogeneous Markov processes and a Hölder continuous
potential V , we consider a variational problem in the continuous-time setting
which is analogous to the pressure problem in the discrete-time setting. This
was done via relative entropy, a negative value that represents the relation of
two processes and depends on the Radon-Nikodym derivative between them. In
both our settings, we were able to prove that the pressure is equal to λV as the
supremum happens on the associated Gibbs process.
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In Chapter 2, we also analyze the properties of the time-reversal process
intending to generalize the concept of entropy production, a physical concept
that can be used to quantify the amount of work dissipated by an irreversible
system. The entropy rate is a positive value defined as the additive inverse
of the relative entropy between a process and its time reversal. This entropy
production rate is equal to zero if the process is reversible, which is the case for
the Brownian motion, making this analysis unnecessary in Chapter 3.
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1. General results for continuous-time Markov
processes

In the course of this chapter, we consider a Polish space E as general as
possible, for example, E can be uncountable. By doing this, the results are
presented here in its integral form, but it is important to notice that the same
results are valid for countable space E if we replace the integrals by summations.
Although the space E is very general, the continuous-time Markov process we
will consider are jump process and diffusions, both with bounded infinitesimal
generator.

The results and definitions presented in the first three sections of this chapter
are very similar to the ones presented in Appendix 1 of [24] for a countable
E, but we prefer to restate them here in order to be clear that they can be
extended to more general spaces even though some of the proofs will be exactly
the same. However, on Section 1.4 we are considering a process that is not time
homogeneous and therefore we have even more general results.

Before starting this chapter, we need to say that the main goal of the present
chapter is to be a tool box for Chapters 2 and 3. Fortunatelly, it does not make
this a boring part of the text, since it is a beautiful theory we present here.

1.1. Markov processes
In this section, we will introduce the Markov processes and a set of premilinary

results that will be useful during this text. We start by providing the general
definition of a Markov process and its relation with the semigroup who acts
as transition probability. Then, we state some theory about the Markov jump
process, a specific type of process with discontinuous (càdlàg) trajectories that
are constant by intervals. For the classical construction of this type of process
we refer to Section 2 on Appendix 1 of [24]. In the last subsection, we introduce
diffusions, another classical type of Markov process, with continuous trajectories,
because in Chapter 3 of this thesis we will handle with this process.

1.1.1. Basic definitions

We begin this subsection by introducing the concept of a Markov process in
a general way.

Definition 1.1. A collection of variables {Xt, t ⩾ 0} defined on a probability
space (Ω,A,P) and taking values in a state space E is a continuous time Markov
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process if, for every s, t ⩾ 0 and y ∈ E,

P [Xs+t = y| Ft] = P [Xs+t = y|Xt] ,

where Ft = σ{Xr, r ⩽ t}, which is called the natural filtration. Furthermore, this
Markov process is called homogeneous if

P [Xs+t = y|Xt] = PXt
[Xs = y] ,

where Px denotes the probability on Ω defined by

Px[ · ] := P[ · |X0 = x].

Let (E, E) be a measurable space. We denote Cb(E) by the space of all
bounded measurable functions on (E, E). In this space, we will consider the
supremum norm, denoted by || · ||∞.

Definition 1.2. A family of operators Ps,t, 0 ⩽ s ⩽ t, defined on Cb(E) is called
a Markov semigroup of operators if satisfies

(i) (linearity) Each Ps,t : Cb(E) → Cb(E) is a linear operator.

(ii) (initial condition) For all s ⩾ 0, Ps,s = I, the identity operator.

(iii) (semigroup property). For every 0 ⩽ s ⩽ t ⩽ u, we have

Ps,tPt,u = Ps,u .

(iv) (right continuity property). For every f ∈ Cb(E) and s ⩾ 0, the map
t 7→ Ps,tf is right continuous.

(v) (positivity preserving). If f ⩾ 0, then Ps,tf ⩾ 0, 0 ⩽ s ⩽ t .

(vi) (mass conservation). For all 0 ⩽ s ⩽ t, Ps,t(1) = 1, where 1 is the constant
function equal to 1.

If the family Ps,t satisfies only the items (i) − (iv), it is called just semigroup,
see [16]. Furthermore, if the operators Ps,t depends only on the difference t− s,
we call it a homogeneous semigroup and write Ps,t simply as Pt−s.

Now we are ready to set a relation between the two definitions above. This
same relation is introduced by [39, Chapter III] as the most basic definition on
Markov process theory.

Definition 1.3 (Relation of Markov process and semigroup). Let (Ω,F ,P) be a
probability space and (Ft) a filtration in this space. A process X with state space

10



(E, E) and adapted to (Ft) is called a Markov process with transition function
given by the semigroup Ps,t if, for all f ∈ Cb(E) and all s < t, we have

Ex[f(Xt)|Fs] = Ps,tf(Xs).

The probability X0(P) := PX−1
0 is called starting distribution of X.

In the homogeneous case we have that

Ex[f(Xt)|Fs] = Pt−sf(Xs) . (1.1)

1.1.2. Infinitesimal Generators

In this subsection, we will define the infinitesimal generators of two types of
Markov process and use that to define their respective semigroups. We start by
making a close analysis about the jump process and later we take a look around
the diffusion process, this time without going into details. We choose this two
processes to present here because they will be used in the Chapters 2 and 3.
Although, as we said before, there is a huge bibliography about diffusion process,
then we decided to put more effort in the jump process.

1.1.2.1 Markov jump process

In the space Cb(E), we denote by L the operator

(Lf)(x) = λ(x)
∫
E

[f(y) − f(x)]P (x, dy) , (1.2)

where λ is a nonnegative bounded function on Cb(E) and P is a transition
probability (see Section 1.C for the definition). The following lemma give us a
important property of L in this context.

Lemma 1.4. The operator L, defined on equation (1.2), is a linear and bounded
operator acting on Cb(E).

Proof. By definition, the function λ is bounded. Denote by λ∗ the upper bound
of λ on E, that is, 0 ⩽ λ(x) ⩽ λ∗, for any x ∈ E. Then, we have

||Lf ||∞ = sup
x∈E

|Lf(x)| ⩽ λ∗ sup
x∈E

∫
E

2||f ||∞P (x, dy) = 2λ∗||f ||∞,

where the last equality is a consequence of P be a transition probability on E.
We conclude that ||L|| ⩽ 2λ∗.

Clearly, for this operator L we have that Lf ∈ Cb(E), for all f ∈ Cb(E).
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Then, by induction, for every n ∈ N, we have that Lnf ∈ Cb(E). By this,

||Ljf ||∞ = ||L(Lj−1f)||∞ ⩽ ||L|| ||Lj−1f ||∞ ⩽ · · · ⩽ ||L||j ||f ||∞. (1.3)

As consequence of this, we can set, for all f ∈ Cb(E) and x ∈ E,

Ptf(x) := etLf(x) =
∞∑
k=0

tk

k! (L
kf)(x) = f(x) + tLf(x) + t2

2 L
2f(x) + · · · (1.4)

where this operator is well defined because the bound over Lk given by equa-
tion (1.3) implies the convergence of this series.

Lemma 1.5. This family of operators {Pt}t⩾0 is a semigroup of operators.

Proof. In this proof, we need to show that this family satisfies the first four
conditions of Definition 1.2 in the homogeneous case (we can think of Pt as
P0,t). For (i), we just need to notice that, for every t ⩾ 0, Ptf is a sum of linear
operators. The initial condition is also valid: P0f(x) = e0f(x) = f(x). The
condition (iii) is an immediate consequence of the properties of exponentials.
Finally, notice that, under the semigroup property, the fourth condition is
equivalent to prove that Ptf converges to f , when t goes to zero, and this is true
because making t goes to zero on equation (1.4), every term of the sum vanishes
except the first term f(x).

Lemma 1.6. With L and Pt as defined above, as t goes to zero, we get∣∣∣∣∣∣∣∣Ptf − f

t
− Lf

∣∣∣∣∣∣∣∣
∞

−→ 0.

Proof. Notice that, for every x ∈ E,(
Ptf − f

t
− Lf

)
(x) = 1

t

∞∑
k=1

tk

k! (L
kf)(x) − Lf(x) =

∞∑
k=2

tk−1

k! (Lkf)(x),

whose the supremum norm vanishes when t goes to zero because of equation (1.3).

The Kolmogorov equations, including Kolmogorov forward equation and
Kolmogorov backward equation, characterize stochastic processes. In particular,
they describe how the probability that a stochastic process is in a certain state
changes over time.

Proposition 1.7 (Kolmogorov equations). The operators Pt, defined in equa-
tion (1.4), are continuously differentiable in time and satisfy, for a function
f ∈ Cb(E), the following:

12



(i) Kolmogorov forward equation1:

∂t(Ptf)(x) = Pt(Lf)(x) ;

(ii) Kolmogorov backward equation2:

∂t(Ptf)(x) = L(Ptf)(x) .

Proof. For the forward equation, we compute

Pt+hf(x) − Ptf(x)
h

= Pt(Phf)(x) − Pt(P0f)(x)
h

= Pt

[
Phf − P0f

h

]
(x)

because of the linearity of Pt. Making h goes to zero, the Lemma 1.6 and the
continuity of Pt allow us to conclude that

∂t(Ptf)(x) = Pt(Lf)(x).

The backward equation is a direct consequence of the application of Lemma 1.6
for the function Ptf because we can write

L(Ptf)(x) = lim
h→0

Ph(Ptf)(x) − P0(Ptf)(x)
h

= ∂t(Ptf)(x).

1.1.2.2 One-dimensional Markov diffusion

A time-homogeneous Markov process is a one-dimensional diffusion if its
infinitesimal generator is the operator L who acts on functions f ∈ D(L) as

Lf(x) = 1
2a(x)d

2f

dx2 (x) + b(x) df
dx

(x), (1.5)

where the functions a ̸= 0 and b are measurable, non-negative and bounded. We
call a the diffusion coeficient and b the drift of the process. A classical example
of diffusion is the Brownian Motion, which is the case where a ≡ 1 and b ≡ 0.
For more information, see [40]. A general study on d-dimensional diffusions can
be found on [39, Chapter VII], where the infinitesimal generator is generalized
using partial derivatives.

In the general case of Markov processes, given a homogeneous semigroup Pt,
the domain of L, denoted by D(L), is the set of all functions to whom exists the

1or Fokker-Planck equation, see [9].
2or parabolic equation, see [16], in the context of diffusions.
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limit Ptf−f
t when t decreses to zero, see [16, Chapter 7]. In this text we will

consider that this infinitesimal generator acts on C2
b (E), the subset of Cb(E)

that contains all functions of class C2.
Diffusion processes have a lot of nice properties that are well known. One

of this properties is the fact it has continuous paths. We will not show the
proprieties about this type of process here, because this work will be focused on
Markov jump process, but the reader can find a deeper analysis on diffusions
in [39, 40].

1.2. Martingales and Markov processes
In this section we show how to obtain martingales from Markov processes.

The goal here is to use the most general Markov process as possible. The first
result is the well know Dynkin Martingale, presented in the Theorem 1.8. The
second construction of a martingale from a Markov process, presented in the
Theorem 1.10, is also a powerful tool. For example, it is very important in the
proof of Kolmogorov equations for the perturbed process on Section 1.3.

To be more general in our analysis, when necessary, we may consider functions
F : [0,∞) × E → R that depends on time (to simplify the notation, we write
Fs(x) for F (s, x)). In this case, we need to suppose that these functions satisfies
the following assumption:

Assumption 1.1. We assume that a bounded function F : [0,∞) ×E → R is
smooth in the first coordinate uniformly over the second, i.e., for each x ∈ E, the
function F (·, x) is twice continuously differentiable and there is a finite constant
CF such that, for j = 0, 1, 2,

sup
(s,x)

∣∣(∂jsFs)(x)
∣∣ ⩽ CF ,

where ∂0
sFs(x) stands for Fs(x).

Observe that, to apply it in the diffusion case, due to the nature of its infinitesimal
generator (see equation (1.5)), we also need to suppose that the functions are of
class C2 on the spatial variable.

Theorem 1.8 (Dynkin martingale). Let {Xt, t ⩾ 0} be a Markov process adapted
to the filtration {Ft; t ⩾ 0}. For each function F satisfying the Assumption 1.1,
we define

MF (t) = Ft(Xt) − F0(X0) −
∫ t

0
(∂s + L)Fs(Xs) ds . (1.6)

The process MF (t) is Ft-martingale.
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Proof. First, we will prove that MF (t) is a martingale. Fix s ∈ [0, t). We need
to show that

MF (s) = Ex
[
Ft(Xt) − F0(X0) −

∫ t

0
(∂r + L)Fr(Xr) dr

∣∣∣∣Fs] .
Rewriting the equality above, we have

Ex[Ft(Xt)|Fs] = MF (s) + F0(X0) +
∫ t

0
Ex[(∂r + L)Fr(Xr)|Fs] dr

= Fs(Xs) +
∫ t

s

Ex[(∂r + L)Fr(Xr)|Fs] dr .
(1.7)

Making a change of variables r 7→ r + s on the last integral above, we get∫ t−s

0
Ex[(∂r+s + L)Fr+s(Xr+s)|Fs] dr .

By equation (1.1), the last integral becomes∫ t−s

0
{Pr(∂r+sFr+s)(Xs) + Pr(LFr+s)(Xs)} dr .

Thus, we conclude that the expression we need to prove is

(Pt−sFt)(Xs) − Fs(Xs) =
∫ t−s

0
{(Pr∂r+sFr+s)(Xs) + (PrLFr+s)(Xs)} dr .

Observe that, if t = s, this equality is trivial. Then, we just need to check
that the time derivatives are equal on both sides:

∂t(Pt−sFt)(x) = (Pt−s∂tFt)(x) + (Pt−sLFt)(x),

for any x ∈ E and s ∈ [0, t). To prove this, fix h > 0, add and subtract
Ex[Ft(Xt−s+h)] to rewrite 1

h{(Pt−s+hFt+h)(x) − (Pt−sFt)(x)} as

1
h
Ex[Ft+h(Xt−s+h) − Ft(Xt−s+h)] + 1

h
Ex[Ft(Xt−s+h) − Ft(Xt−s)].

Observe that, for any u > 0, we get ∂rEx[Fr(Xu)] = Ex[∂rFr(Xu)] and
∂rEx[Fu(Xr)] = ∂r(PrFu)(x) = (PrLFu)(x), the last equality is a consequence
of Kolmogorov forward equations. Then, we can rewrite the previous expression
as

1
h

∫ t+h

t

Ex[∂rFr(Xt−s+h)] dr + 1
h

∫ t−s+h

t−s
(PrLFt)(x), dr .
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Adding and subtracting appropriate terms, the expression above is equal to

1
h

∫ t+h

t

Ex[∂rFr(Xt−s+h)−∂tFt(Xt−s+h)] dr + Ex[∂tFt(Xt−s+h) − ∂tFt(Xt−s)]

+ Ex[∂tFt(Xt−s)] + 1
h

∫ t−s+h

t−s
(PrLFt)(x) dr .

(1.8)

Now, let us analyse what happens with each part of the expression above when
h goes to zero. We have that (∂F )(·, x) is a Lipschitz function uniformly on x,
then

1
h

∫ t+h

t

Ex[|∂rFr(Xt−s+h) − ∂tFt(Xt−s+h)|] dr ⩽ CEx
[

1
h

∫ h

0
|r| dr

]
.

By the Lebesgue Differentiation Theorem, this upper bound vanishes when
h goes to zero. Thus the first term in equation (1.8) vanishes. The second
term of equation (1.8) also vanishes, as h → 0, because it can be rewritten as
Pt−s+h(∂tFt)(x) − Pt−s(∂tFt)(x) and the semigroup Pt is continuous. Using
again the Lebesgue Differentiation Theorem, the last term in equation (1.8)
converges to (Pt−sLFt)(x). With all that, we get

∂t(Pt−sFt)(x) = (Pt−s∂tFt)(x) + (Pt−sLFt)(x),

and it shows that MF (t) is a martingale.

Now, for each function F satisfying the Assumption 1.1, we define

NF (t) = (MF (t))2 −
∫ t

0

[
(∂s + L)F 2

s (Xs) − 2Fs(Xs)(∂s + L)Fs(Xs)
]
ds .

In the next result, we prove this is a martingale. Thus, we conclude that the
integral part of NF (t) is the quadratic variation of MF (t).

Proposition 1.9. The process NF (t) is Ft-martingale.

Proof. We start by analyse (MF (t))2. For simplicity, we denote It =
∫ t

0 (∂s +
L)Fs(Xs) ds, then we can write

(MF (t))2 = (Ft(Xt))2 + I2
t − 2Ft(Xt)It +M1(t) ,

where

M1(t) := F0(X0)(−2Ft(Xt) + 2It + F0(X0)) = F0(X0)(−2MF (t) − F0(X0)) .
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Since MF (t) is a martingale, M1(t) is a martingale. Now, we consider the Dynkin
martingale for F 2,

MF 2
(t) = F 2

t (Xt) − F 2
0 (X0) −

∫ t

0
(∂s + L)F 2

s (Xs) ds,

and note that MF 2

0 (t) := MF 2(t) +F 2
0 (X0) is also a martingale. Using it, we get

(MF (t))2 = I2
t − 2Ft(Xt)It +M1(t) +MF 2

0 (t) +
∫ t

0
(∂s + L)F 2

s (Xs) ds.

Denote the martingale MF (t)+F0(X0) by MF
0 (t). And use Ft(Xt) = MF

0 (t)+It
to rewrite (MF (t))2 as

−2MF
0 (t) It − I2

t +M1(t) +MF 2

0 (t) +
∫ t

0
(∂s + L)F 2

s (Xs) ds .

To handle with the multiplicative term −2MF
0 (t) It, we note that I is a predictable

process (I is adapted and continuous) and F satisfies the Assumption 1.1 that
implies MF

0 (t) is a martingale, then we evoke Proposition 1.29 from Appendix
1.C , to say that

MF
0 (t) It =

∫ t

0
Is dM

F
0 (s) +

∫ t

0
MF

0 (s) dIs,

where the first integral in the right hand-side above is a martingale. Besides
that, the second term of the sum above can be rewritten as∫ t

0
Fs(Xs)(∂s + L)Fs(Xs) ds−

∫ t

0
Is I

′
s ds .

Using the classical integration by parts formula, the second term in the previous
expression is equal to 1

2I
2
t . Then,

(MF (t))2 = M1(t) +MF 2

0 (t) − 2
∫ t

0
Is dM

F
0 (s)

−2
∫ t

0
Fs(Xs)(∂s + L)Fs(Xs)ds+

∫ t

0
(∂s + L)F 2

s (Xs) ds .

Note that M1(t) +MF 2

0 (t) − 2
∫ t

0 Is dM
F
0 (s) is a martingale. Then the result is

proved if we denote this martingale by NF (t).

Another important result that give us martingales from Markov process is
the following:
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Theorem 1.10. Let {Xt, t ⩾ 0} be a Markov process adapted to the filtration
{Ft; t ⩾ 0}. Let F, V : [0,∞) × E → R two bounded functions such that F
satisfies the Assumption 1.1. Then,

Ft(Xt) e
∫ t

0
Vr(Xr) dr−

∫ t

0
e

∫ s

0
Vr(Xr) dr[Fs(Xs)Vs(Xs)+(∂s+L)Fs(Xs)] ds (1.9)

is a martingale.

Proof. Let us introduce some notation to rewrite the equation (1.9). As usual
we denote by MF

0 (t) = Ft(Xt) −
∫ t

0 (∂s + L)Fs(Xs) ds. Note that MF
0 (t) is a

martingale, due to the fact that MF
0 (t) is the Dynkin Martingale MF (t) plus a

random variable F0(X0). Denote by It =
∫ t

0 (∂s + L)Fs(Xs) ds, thus Ft(Xt) =

MF
0 (t) + It and dIs = (∂s + L)Fs(Xs) ds. Moreover, we write Zt = e

∫ t

0
Vs(Xs) ds,

then dZs = e

∫ s

0
Vr(Xr) dr

Vs(Xs) ds3. Finally, using all the notations above we
can rewrite equation (1.9) as

[MV
0 (t) + It]Zt −

∫ t

0
[MF

0 (s) + Is] dZs −
∫ t

0
Zs dIs

= Nt + It Zt −
∫ t

0
Is dZs −

∫ t

0
Zs dIs ,

where Nt = MF
0 (t)Zt −

∫ t
0 M

F
0 (s) dZs is a martingale by the Theorem 1.31 of

Appendix 1.C. Thus, to conclude the proof we need to observe that

It Zt −
∫ t

0
Is dZs −

∫ t

0
Zs dIs = I0Z0 = 0 ,

because for a fixed trajectory the processes I and Z have bounded variation,
then the result follows from Integration by parts formula, see Proposition 1.28
on Appendix 1.C.

As consequence of the result above, we can produce another classical mar-
tingale, called exponential martingale. This martingale has the nice property
of being positive and it will be used to set a Radon-Nikodym derivative on
Section 1.B.1.

Corollary 1.11 (Exponential martingale). Fix a function F : R+ × E → R
satisfying Assumption 1.1. The expression

MF (t) := exp
{
Ft(Xt) − F0(X0) −

∫ t

0
e−Fs(Xs)(∂s + L) eFs(Xs) ds

}
(1.10)

3Z has trajectories absolutely continuous by the hypothesis over V , see Lemma 1.32.
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is a Ft−martingale.

Proof. First of all, we rewrite the expression in the statement of this corollary as

eF (t,Xt)−F (0,X0) exp
{

−
∫ t

0
e−F (r,Xr)(∂r + L)eF (r,X0)dr

}
.

Define φ(t,Xt) = eF (t,Xt)−F (0,X0) and V (r,Xr) = −e−F (r,Xr)(∂r+L)eF (r,X0).
As F satisfies the Assumption 1.1, we get that φ satisfies this assumption too.
By Theorem 1.10, if we consider the last expression minus∫ t

0
e

∫ s

0
V (r,Xr)dr[φ(s,Xs)V (s,Xs) + (∂s + L)φ(s,Xs)] ds

we obtain a martingale. Then, we just need to prove that the last integral
vanishes. For this, notice that, for any x and s,

φ(s, x)V (s, x) = eF (s,x)e−F (0,x0)[−e−F (s,x)(∂s + L)eF (s,x)]

= −e−F (0,x0)(∂s + L)eF (s,x) = −(∂s + L)φ(s, x),

what proves that φ(s,Xs)V (s,Xs) + (∂s + L)φ(s,Xs) = 0 and concludes the
proof.

1.3. A perturbed process
In this section we will study a perturbation of the process X. It is important

to analyse the consequences of this kind of perturbation as this will be used later
to introduce the Ruelle Operator on Chapters 2 and 3. Fix a bounded function
V : R+ × E → R, then, disturb the homogeneous semigroup Pt of the Markov
process X using the function V in the following way:

PVs,tf(x) = Ex
[
e

∫ t

s
Vr(Xr) dr

f(Xt)
]
,

for x ∈ E, s < t and f ∈ Cb(E). Note that, in general, PVs,t is a nonhomogeneous
semigroup, but it becomes homogeneous if V is constant in time, i.e.,

PVs,tf(x) = EXs

[
e

∫ t−s

0
V (Xu) du

f(Xt−s)
]

=: PVt−sf(Xs) , (1.11)

for x ∈ E, s < t and f ∈ Cb(E).
To be more general in our analysis, we consider the operator PVs,t acting on

functions F : R+ ×E → R satisfying the Assumption 1.1 instead of f ∈ Cb(E),
i.e.,

PVs,tFt(x) = Ex
[
e

∫ t

s
Vr(Xr) dr

Ft(Xt)
]
.
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Taking conditional expectation concerning Fs in the expression above and using
the Markov Propriety, homogeneity and change of variables, we get that PVs,t
acts on functions F : R+ × E → R satisfying the Assumption 1.1, in this way:

PVs,tFt(x) = Ex
[
e

∫ t−s

0
V s

u (Xu) du
Ft(Xt−s)

]
,

where V su (x) := Vu+s(x). From the definition of this family of operators, using
the Markov property on the expression above, we get a semigroup property (or
Chapman-Kolmogorov equation)

PVs,t(PVt,uFu)(x) = PVs,u(Fu)(x) ,

for all s < t < u and F : R+ × E → R satisfying the Assumption 1.1.

1.3.1. Kolmogorov Equations for the perturbed process

To understand the complete evolution of this semigroup we present the
Kolmogorov equations. In order to do it, we need to define the operator LVt =
L+ Vt, which acts in functions f ∈ Cb(E) as

LVt f(x) = Lf(x) + Vt(x)f(x) .

Proposition 1.12 (Kolmogorov equations). For any 0 ⩽ s < t, the operator PVs,t
are continuously differentiable in time and satisfy, for functions F : R+ ×E → R
satisfying the Assumption 1.1, the following:

(i) Kolmogorov forward equation:

∂t
(
PVs,tFt(x)

)
= PVs,t(LVt Ft)(x) + PVs,t(∂tFt)(x) ;

(ii) Kolmogorov backward equation:

∂s
(
PVs,tFt(x)

)
= −LVs (PVs,tFt)(x) .

Proof. We start by introducing the notations

Ast := e

∫ t

0
V s

u (Xu) du
Ft+s(Xt)

and

Bst :=
∫ t

0
{(∂r+s + L)Fr+s(Xr) + V sr (Xr)Fr+s(Xr)} e

∫ r

0
V s

u (Xu) du
dr .

Recall that V su (x) = Vu+s(x). Note that PVs,tFt(x) = Ex[Ast−s]. Moreover, by the
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hypotheses over V and F , and from Theorem 1.10, we get that {Ast − Bst }t⩾s
is a martingale, for s ⩾ 0 fixed. Since Ex[Ast−s −Bst−s] = Ex[As0 −Bs0] = Fs(x),
for all t ⩾ s ⩾ 0, we can rewrite PVs,tFt(x) = Fs(x) + Ex[Bst−s]. Thus

1
h

{
PVs,t+hFt+h(x) − PVs,tFt(x)

}
= 1

h

{
Ex[Bst−s+h] − Ex[Bst−s]

}
= Ex

[
1
h

∫ t−s+h

t−s
{(∂r+s + L)Fr+s(Xr) + V sr (Xr)Fr+s(Xr)} e

∫ r

0
V s

u (Xu) du
dr

]
.

For a fixed s, the Lebesgue Differentiation Theorem shows that

∂t
(
PVs,tFt(x)

)
= lim
h→0

1
h

{
PVs,t+hFt+h(x) − PVs,tFt(x)

}
= Ex

[
e

∫ t−s

0
V s

u (Xu) du
LVt Ft(Xt−s)

]
+ Ex

[
e

∫ t−s

0
V s

u (Xu) du
∂tFt(Xt−s)

]
= PVs,t(LVt Ft)(x) + PVs,t(∂tFt)(x) .

For the backward Kolmogorov equation, we compute the following limit

∂s(PVs,tFt(x)) = − lim
h→0

PVs−h,tFt(x) − PVs,tFt(x)
h

,

for a fixed t. We start observing that

PVs−h,tFt(x) = Ex
[
e

∫ t

s−h
Vr(Xr−(s−h)) dr

Ft(Xt−(s−h))
]

= Ex
[
e

∫ s

s−h
Vr(Xr−(s−h)) dr

e

∫ t

s
Vr(Xr−s+h) dr

Ft(Xt−s+h)
]

and, using the Markov propriety and homogeneity of X, we obtain

Ph(PVs,tFt)(x) = Ex[PVs,tFt(Xh)] = Ex
[
EXh

[
e

∫ t−s

0
Vu+s(Xu) du

Ft(Xt−s)
] ]

= Ex
[
e

∫ t−s

0
Vu+s(Xu+h) du

Ft(Xt−s+h)
]

= Ex
[
e

∫ t

s
Vr(Xr−s+h) dr

Ft(Xt−s+h)
]
.

Thus, 1
h [PVs−h,tFt(x) − PVs,tFt(x)] is equal to

Ex
[(

e

∫ s

s−h
Vr(Xr−(s−h)) dr

−1
h

)
e

∫ t

s
Vr(Xr−(s−h)) dr

Ft(Xt−s+h)
]

+
Ph(PVs,tFt)(x) − PVs,tFt(x)

h
.

(1.12)

By the hypothesis over V and F , the first term in equation (1.12) is bounded.
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Then the Dominated Convergence Theorem implies that it converges to

Ex
[
Vs(X0) e

∫ t

s
Vr(Xr−s) dr

Ft(Xt−s)
]

= Vs(x)PVs,tFt(x) ,

as h → 0. The second term in equation (1.12) converges to L(PVs,tFt)(x), as
h → 0, because the backward Kolmogorov equation for the process X. Finally,

∂s
(
PVs,tFt(x)

)
= −[LPVs,tFt(x) + Vs(x)PVs,tFt(x)] = −LVs (PVs,tFt)(x) .

1.3.2. Feynman-Kac Formula

In this subsection, we present a result that links parabolic partial differential
equations and stochastic processes. Another important fact about the Feynman-
Kac Formula is that it proves rigorously the real case of Feynman’s path integrals
from Quantum Mechanics.

Proposition 1.13. Fix T > 0. For all V : R+ × E → R satisfying the
Assumption 1.1 and f ∈ Cb(E). Fix T > 0 we define the function u : [0, T ]×E →
R as

ut(x) = Ex
[
e

∫ t

0
VT −t+r(Xr) dr

f(Xt)
]
. (1.13)

Then u is a solution of the partial differential equation{
∂tut(x) = (Lut)(x) + VT−t(x)ut(x) , x ∈ E , t ∈ (0, T ] ,
u0(x) = f(x) , x ∈ E .

Proof. We start the proof by computing ∂tut(x)−Lut(x) using Lemma 1.6. This
is equal to

lim
h→0

ut+h(x) − ut(x)
h

− lim
h→0

Phut(x) − ut(x)
h

= lim
h→0

ut+h(x) − Phut(x)
h

. (1.14)

In order to compute the limit above, we start by studding ut+h(x). By
the definition of the function u, in equation (1.13), and taking the conditional
expectation concerning Fh, we get

ut+h(x) = Ex
[
e

∫ t+h

0
VT −t−h+r(Xr) dr

f(Xt+h)
]

= Ex
[
e

∫ h

0
VT −t−h+r(Xr) drEx

[
e

∫ t+h

h
VT −t−h+r(Xr) dr

f(Xt+h)
∣∣∣Fh]] .
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Using the Markov property and homogeneity, the last expectation is equal to

Ex
[
e

∫ h

0
VT −t−h+r(Xr) drEXh

[
e

∫ t

0
VT −t+w(Xw) dw

f(Xt)
]]

= Ex
[
e

∫ h

0
VT −t−h+r(Xr) dr

ut(Xh)
]
.

Thus, the quotient ut+h(x)−Phut(x)
h , presented in the limit equation (1.14), can

be rewrite as

1
h

{
Ex
[
e

∫ h

0
VT −t−h+r(Xr) dr

ut(Xh)
]

− Ex[ut(Xh)]
}
.

By adding and subtracting the appropriate terms, we can rewrite the expression
above as

Ex

e∫ h

0
VT −t−h+r(Xr) dr − e

∫ h

0
VT −t+r(Xr) dr

h

 ut(Xh)


+Ex

e∫ h

0
VT −t+r(Xr) dr − 1

h
− VT−t(X0)

 ut(Xh)


+VT−t(x)Ex[ut(Xh) − ut(X0)] + VT−t(x)ut(x) .

(1.15)

To conclude the result, it is enough proving that the three first terms in the sum
above go to zero when h → 0. For the first term, we write the expression inside
the parenthesis as

e

∫ h

0
VT −t+r(Xr) dr

(
e

∫ h

0
[VT −t−h+r(Xr)−VT −t+r(Xr)] dr − 1

h

)
.

Since the first term of this product is bounded, we just need to show that the
second term goes to zero. Using that V is a Lipschitz function on time (as
consequence of Assumption 1.1), the last term is bounded from above by

e

∫ h

0
CV h dr − 1
h

= eCV h
2 − 1
h

,

which converges to zero, as h → 0. The second term of the sum equation (1.15)
goes to zero, because the fraction part converges to VT−t(X0). For the third term
of the sum equation (1.15) we note that Ex[ut(Xh) − ut(X0)] = Phut(x) − ut(x)
and by the right continuity of the semigroup (see Definition 1.2), we also have
that the third term of equation (1.15) goes to zero, as h → 0.

Remark. An important observation is that when a function V is constant in
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time, we have

ut(x) = Ex
[
e

∫ T

0
V (Xr) dr

f(XT )
]

= PVt f(x),

where PVt f(x) was defined in equation (1.11). Moreover, by Proposition 1.13,
PVt f(x) is a solution of{

∂t(PVt f)(x) = LV (PVt f)(x) , x ∈ E , t > 0 ,
PV0 f(x) = f(x) , x ∈ E ,

where LV = L+ V .

The next Lemma allow us to analyze a particular case when we start the
process from an initial probability ν that may not be invariant. This result is
originally stated on [2], but we prefer to repeat it here.

Lemma 1.14 (Feynman-Kac’s lemma without invariant measure). Let ν be a
probability measure in E and V be a bounded function. Define

Γt = sup
∥f∥2=1

{
⟨Vt, f2⟩ν + ⟨Lf, f⟩ν

}
= sup

∥f∥2=1

{
⟨LVt f, f⟩ν

}
, for all t ⩾ 0, (1.16)

where ⟨·, ·⟩ν denotes the inner product in L 2(ν) and ∥ · ∥2 = ⟨·, ·⟩1/2
ν . Then

Eν
[
e

∫ t

0
Vr(Xr) dr

]
⩽ exp

{∫ t

0
Γs ds

}
.

Proof. For a function V , define the nonhomogeneous semigroup

(PVs,tf)(x) = Ex
[
e

∫ t−s

0
Vs+r(Xr) dr

f(Xt−s)
]
, for all t ⩾ s ⩾ 0.

Then, Eν
[
e

∫ t

0
V (r,Xr) dr

]
= ⟨PV0,t1, 1⟩ν . To bound ⟨PV0,t1, 1⟩ν , we start with the

Cauchy-Schwarz inequality

〈
PV0,t1, 1

〉
ν
⩽
〈
PV0,t1, PV0,t1

〉1/2
ν

.

In the remaining of the proof we will look at
〈
PVs,t1, PVs,t1

〉
ν

as a function of
s and apply Gronwall’s inequality. First of all, notice that

∂s
〈
PVs,t1, PVs,t1

〉
ν

= −2
〈
LVs P

V
s,t1, PVs,t1

〉
ν
. (1.17)
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To show this, we differentiate under the integral sign on

〈
PVs,t1, PVs,t1

〉
ν

=
∫
E

(PVs,t1)2(x) dν(x)

and use that ∂s(PVs,t1)2(x) = 2(PVs,t1)(x)∂s(PVs,t1)(x) to conclude that via back-
ward Kolmogorov equation.

Since g(x) = (PVs,t1)(x)/∥PVs,t1∥2 is such that ∥g∥2 = 1, by equation (1.16),
we have

2Γs ⩾
2
〈
LVs P

V
s,t1, PVs,t1

〉
ν〈

PVs,t1, PVs,t1
〉
ν

.

Plugging into equation (1.17),

∂s
〈
PVs,t1, PVs,t1

〉
ν
⩾ (−2Γs)

〈
PVs,t1, PVs,t1

〉
ν
.

Applying Gronwall’s inequality, we get

〈
PV0,t1, PV0,t1

〉
ν
⩽
〈
PVt,t1, PVt,t1

〉
ν

exp
{∫ t

0
2Γs ds

}
= exp

{∫ t

0
2Γs ds

}
,

where the last equality follows from the fact that PVt,t1(x) = 1 and it finishes the
proof.

1.4. Radon-Nikodyn derivative between two continuous-time
Markov jump process

In this section, we will state the Radon-Nikodym derivative between two
nonhomogeneous jump process X and X with the same state space E. The main
result of this section, Proposition 1.16, can be found on Appendix A of [3], but
here we are making a new analyse from a whole different perspective. We start
by looking at properties of X, but the same is valid for X. Let the infinitesimal
generator of this process be

(Lsf)(x) = λ(s, x)
∫
E

[f(y) − f(x)]Ps(x, dy),

where λ : [0,+∞) ×E → R is assumed to be nonnegative and bounded, as usual.

Remark. In terms of the construction of this generalized jump process from a
skeleton Markov chain ξn (see section 2 on appendix 1 of [24] for the classical
construction), we consider that τn+1 is distributed according to an exponential
law of parameter λ(Tn + t, ξn), where Tn = τ1 + · · · + τn. This means that the
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density function of each τn+1 is

f(t) =
{

λ(Tn + t, ξn)e−
∫ t

0
λ(Tn+s,ξn)ds

, t ⩾ 0
0, t < 0

,

which is a probability density if we assume
∫∞
a
λ(s, x) = ∞, for all a ∈ R and

x ∈ E.

From these time-changing infinitesimal generator, we want to set a nonhomo-
geneous Markov semigroup. The following result brings a natural extension of
the semigroup defined in the case where L does not depend on time, since in
this case we can see the expoent tL as the integral of a constant L on a time
interval of size t.

Proposition 1.15. The nonhomogeneos semigroup associated with the infinites-
imal generator Ls is

Ps,t(f) =
(
e

∫ t

s
Lrdr

)
(f).

Furthermore, this semigroup satisfies the Kolmogorov equations:

(i) Kolmogorov forward equation:

∂tPs,t(f) = Ps,t(Ltf);

(ii) Kolmogorov backward equation:

∂sPs,t(f) = −Ls(Ps,tf).

Proof. First, notice that Ps,t satisfies the semigroup property

(Ps,tPt,u)(f) =
(
e

∫ t

s
Lrdre

∫ u

t
Lrdr

)
(f) = Ps,uf.

Morover, the positivity of the exponential along with the properties of integration
implies that Ps,t is a Markov semigroup (see Definition 1.2).

Now, observe that

lim
h↓0

Pt,t+hf − f

h
= lim

h↓0

e∫ t+h

t
Lrdr − 1
h

 (f) = Ltf,

what allow us to prove the Kolmogorov equations:

∂tPs,t(f) = lim
h↓0

Ps,t+hf − Ps,tf

h
= lim

h↓0

(Ps,tPt,t+h)f − Ps,tf

h
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= lim
h↓0

Ps,t

(
Pt,t+hf − f

h

)
= Ps,t(Ltf)

and

∂sPs,t(f) = lim
h↓0

Ps+h,tf − Ps,tf

h
= lim

h↓0

Ps+h,tf − (Ps,s+hPs+h,t)f
h

= lim
h↓0

(
1 − Ps,s+h

h

)
(Ps+h,tf) = −Ls(Ps,tf).

Now, we consider the infinitesimal generator

(Lsf)(x) = λ(s, x)
∫
E

[f(y) − f(x)]P s(x, dy)

of X satisfying the same properties above. We would like to compute the Radon-
Nikodym derivative of P with respect to P restricted to the σ-field Ft. For this,
on the following result, we consider k instants of time 0 ⩽ t1 < · · · < tk ⩽ t

of the interval [0, t], a function F : Rk → R and we get the Radon-Nikodym
derivative by the equality

Ex[F (Xt1 , . . . , Xtk )] = Ex
[(

dP
dP

∣∣∣∣
Ft

)
F (Xt1 , . . . , Xtk )

]
, (1.18)

because the function F (Xt1 , . . . , Xtk ) is Ft-measurable.

Proposition 1.16. This Radon-Nikodym derivative is given by

dP
dP

∣∣∣∣
Ft

= exp


∫ t

0
[λ(s,Xs) − λ(s,Xs)]ds+

∑
s⩽t

log
(
λ(s,Xs−)
λ(s,Xs−)

dPs

dP s
(Xs−, Xs)

) ,

where, for a fixed x, dPs

dP s
(x, y) is the Radon-Nikodym derivative of Ps(x, dy) with

respect to P s(x, dy).

Remark. Observe that the above sum is well defined, because it is not equal to
zero just on the jumps, which are almost surely finite.

Proof. Let Tn be the time of the jump n of the process. Partitioning with respect
to the number of jumps until the time t, we get

Ex[F (Xt1 , . . . , Xtk )] =
∞∑
n=0

Ex
[
F (Xt1 , . . . , Xtk )1[Tn⩽t<Tn+1]

]
=

∞∑
n=0

Ex
[
Fn(ξ1, T1, . . . , ξn, Tn)1[Tn⩽t<Tn+1]

]
,
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because on [Tn ⩽ t < Tn+1] the function F could be writen as a function of
(ξ1, T1, . . . , ξn, Tn), where {ξk}k∈N is the discrete-time skeleton chain. Remember
that the pair {(ξn, Tn)}n is markovian, then by the proprieties of conditional
expectation,

Ex[F (Xt1 , . . . , Xtk )]

=
∞∑
n=0

Ex
[
E
[
Fn(ξ1, T1, . . . , ξn, Tn)1[Tn⩽T<Tn+1]

∣∣σ(ξ1, T1, . . . , ξn, Tn)
]]

=
∞∑
n=0

Ex
[
1[Tn⩽T ]Fn(ξ1, T1, . . . , ξn, Tn)E

[
1[T<Tn+1]

∣∣σ(ξn, Tn)
]]

Denoting by Gn the function on the expectation above, we can compute

Ex[Gn(ξ1, T1, . . . , ξn, Tn)]

=
∫
E

· · ·
∫
E

∫ ∞

0
· · ·
∫ ∞

0

n−1∏
j=0

(
λ(Tj + tj+1, xj)

e

∫ tj+1
0

λ(Tj+s,xj)ds
PTj+tj+1(xj , dxj+1)dtj+1

)
Gn

=
∫
E

· · ·
∫
E

∫ ∞

0
· · ·
∫ ∞

0

n−1∏
j=0

(
λ(Tj+1, xj)

e

∫ tj+1
0

λ(Tj+s,xj)ds
PTj+1(xj , dxj+1)dtj+1

)

Gn

n−1∏
k=0

(
λ(Tk+1, xk)
λ(Tk+1, xk)

e

∫ Tk+1
Tk

[λ(u,xk)−λ(u,xk)]du dPTk+1

dPTk+1

(xk, dxk+1)
)

= Ex
[
Gn

n−1∏
k=0

(
λ(Tk+1, ξk)
λ(Tk+1, ξk)

e

∫ Tk+1
Tk

[λ(u,ξk)−λ(u,ξk)]du dPTk+1

dPTk+1

(ξk, dξk+1)
)]

.

Now, we can use this expression to do the same computations, in the inverse
order, to come back to F and get, by equation (1.18), the expected expression
for the Radon-Nikodym derivative.

As consequence of this, we get the Proposition 2.6 of Appendix 1 of [24]:

Corollary 1.17. For a function λ that does not depend on time, we get

dP
dP

∣∣∣∣
Ft

= exp


∫ t

0
[λ(Xs) − λ(Xs)]ds+

∑
s⩽t

log
(
λ(Xs−)
λ(Xs−)

dP

dP
(Xs−, Xs)

) .

Appendices
We will finish this chapter with some appendix sections related to it. These

results are presented here in order to obtain a more complete chapter, so we
recommend that the reader skips this part in a first reading. The tools in this
part are properly called in the text if needed.
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1.A. Some results for functions without time dependence

This section is dedicated to explore the case where the functions Fs does not
depend on time s. Thus, we replace the function F : R+ ×E → R satisfying the
Assumption 1.1 by f ∈ Cb(E). The proofs of some results will be omitted as
they are just an adaptation of the results we already proved.

We start by stating the form of the Dynkin martingale in this context. The
following result is a version of Theorem 1.8:

Theorem 1.18. For a function f ∈ Cb(E), the Dynkin martingale

Mf (t) = f(Xt) − f(X0) −
∫ t

0
Lf(Xs) ds (1.19)

is a Ft-martingale.

Conversely, the next result shows that the infinitesimal generator L is the
only operator who turns the equation (1.19) into a martingale.

Proposition 1.19. If f ∈ Cb(E) and exists a function g ∈ Cb(E) such that

f(Xt) − f(X0) −
∫ t

0
g(Xs)ds

is a Ft-martingale, then Lf = g.

Proof. Notice that, for every g, this martingale has expectation equals to zero
at time t = 0. Consequently, by martingales properties, this expectation is equal
to zero at every time t. Then, for every x and t,

Ex
[
f(Xt) − f(X0) −

∫ t

0
g(Xu)du

]
= 0.

Using the linearity of the expetcation along with Fubini’s theorem, we have

Ex[f(Xt)] − Ex[f(X0)] −
∫ t

0
Ex[g(Xs)]ds = 0.

This equality can be rewrited as

Ptf(x) − f(x) −
∫ t

0
Psg(x)ds = 0.

We finish the proof by showing that, as consequence of the expression above,
g is equal to the derivative of Ptf at time t = 0. In fact,∣∣∣∣∣∣∣∣1t (Ptf − f) − g

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣1t
∫ t

0
(Psg − g)ds

∣∣∣∣∣∣∣∣ ⩽ 1
t

∫ t

0
||Psg − g||ds,
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which vanishes when t → 0.

Going on with the adaptations, now we show a version of Proposition 1.9.
To keep it simple, we will enunciate this result in the case of Markov jump
process, where the time derivative term vanishes as time dependence on Xs has
no influence.

Proposition 1.20. In the case of Markov jump process, if f ∈ Cb(E), then

Nf (t) = (Mf (t))2 −
∫ t

0
Γ(f, f)(Xs) ds ,

where Γ is the Carré du champ operator, which is a bilinear map

Γ(f, g)(x) = L(fg)(x) − f(x)Lg(x) − g(x)Lf(x) , x ∈ E ,

defined for every (f, g) ∈ Cb(E) × Cb(E).

As consequence of this, we know that, in this context, the quadratic variation
of Mf is given by integration of the Carré du champ operator on the pair (f, f).
Futhermore, we can also extend this result for the quadratic covariation by

Lemma 1.21. If X is a Markov jump process and f, g ∈ Cb(E), the quadratic
covariation of the Dynkin’s martingales Mf and Mg is given by

⟨Mf ,Mg⟩t =
∫ t

0
Γ(f, g)(Xs)ds.

Proof. The quadratic covariation of two martingales M,N is calculated by

⟨M,N⟩t = 1
4 (⟨M +N⟩t − ⟨M −N⟩t) ,

where ⟨·⟩t denotes the quadratic variation. If we notice that Mf
t ±Mg

t = Mf±g
t ,

then we can write

⟨Mf ,Mg⟩t = 1
4

(
⟨Mf+g

t ⟩t − ⟨Mf−g
t ⟩t

)
.

We know the quadratic variation of both this processes, then

⟨Mf ,Mg⟩t = 1
4

∫ t

0
(Γ(f + g, f + g) − Γ(f − g, f − g)) (Xs)ds.

Using the definition of the Carré du champ operator and the linearity of L, we
can compute the expression above. After some cancelations, we get

⟨Mf ,Mg⟩t = 1
4

∫ t

0
(4L(fg) − 4fLg − 4gLf) (Xs)ds =

∫ t

0
Γ(f, g)(Xs)ds.
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Another result that we can easily adapt to this case is Theorem 1.10. To
prove this version, we just need to follow the same steps, but changing the
Dynkin martingale by the one presented in Theorem 1.18. The result we ended
up with is

Theorem 1.22. Let f be a function on Cb(E). Then,

f(Xt) e
∫ t

0
Vr(Xr) dr −

∫ t

0
e

∫ s

0
Vr(Xr) dr[f(Xs)Vs(Xs) + Lf(Xs)] ds

is a martingale.

The Kolmogorov equations can also be stated in this case. In the same way
we used Theorem 1.10 in the proof of Proposition 1.12, here we can use the
above theorem to get

Proposition 1.23. If we consider a function f ∈ Cb(E), the Kolmogorov
equations, for all t > s ⩾ 0 and x ∈ E, becomes

(i) Kolmogorov forward equation:

∂t
(
PVs,tf(x)

)
= PVs,tL

V
t f(x) ;

(ii) Kolmogorov backward equation:

∂s
(
PVs,tf(x)

)
= −LVs PVs,tf(x) .

1.B. Extra results for other perturbations

In this section, we will expose some extra theory about other types of pertur-
bations of Markov process that are somehow related to the ones presented before.
For instance, the first subsection allow us to get the exponential martingale,
defined in Section 1.2, as a formula for the Radon-Nikodym derivative between
the probabilities induced on Skorohod space by two different Markov jump
processes. The second subsection give us the perturbation we need to do in order
to get a process whose infinitesimal generator differs from the original by the
Carré du Champ operator. This is a consequence of the results without time
dependence, presented on Section 1.A.

1.B.1 One perturbed process

Define the following perturbation of process Xt by its infinitesimal generator

(LFtf)(x) = λ(x)
∫
E

eFt(y)−Ft(x)[f(y) − f(x)]P (x, dy) , (1.20)
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with f ∈ Cb(E), t ⩾ 0. Denote by PF the probability induced in the Skorohod
space D by the process with generator LFt .

In the present section we present how the Kolmogorov equations for the
perturbed process (presented in Section 1.3.1) can be used to get an explicit
formula for the Radon-Nikodym derivative of PF with respect to P restricted to
the σ-field Ft:

dPF

dP

∣∣∣∣
Ft

= exp
{
Ft(Xt) − F0(X0) −

∫ t

0
e−Fs(Xs)(∂s + L)eFs(Xs) ds

}
, (1.21)

where the expression in the right-hand side above is the exponential martingale
MF (t), defined in equation (1.10).

To prove it we define explicitly the probability PF . For a fix time T > 0 and,
for each x0 ∈ E, we define on FT the probability measure PFx0

by

EFx0
[G] = Ex0 [GMF (T )] ,

for all bounded function G FT -measurable.
Then we prove that the process which induce PF has infinitesimal generator

LFt , defined in equation (1.20). It follows from the next lemma.

Lemma 1.24. For the probability measure defined above we have that, for all
G ∈ FT , the conditional expectation is

EFx0
[G|Fs] = Ex0 [GMF (T )|Fs]

MF (s) .

Proof. We denote Y = EFx0
[G|Fs]. Then, by the definition of conditional expec-

tation, for all Γ ∈ Fs,
EFx0

[Y 1Γ] = EFx0
[G1Γ].

As Y ∈ Fs and 1Γ ∈ Fs, we have Y 1Γ ∈ Fs and the left hand-side of the equality
above is Ex0 [Y 1ΓMF (s)]. On the other hand, G ∈ FT and 1Γ ∈ Fs ⊆ FT implies
that G1Γ ∈ FT which allow us to rewrite the right side as Ex0 [G1ΓMF (T )].
Then, for all Γ ∈ Fs,

Ex0 [YMF (s)1Γ] = Ex0 [GMF (T )1Γ].

This concludes the proof because

YMF (s) = Ex0 [YMF (s)|Fs] = Ex0 [GMF (T )|Fs].
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As consequence of the previous Lemma and Markov property, we have

EFx0
[f(Xt)|Fs] = Ex0

[
f(Xt)

MF
t

MF (s)

∣∣∣∣Fs] = Ex0

[
f(Xt)

MF
t

MF (s)

∣∣∣∣Xs

]
. (1.22)

Lemma 1.25. We get the Markov property for the process associated with the
probability PFx0

, that is,

EFx0
[f(Xt)|Fs] = EFx0

[f(Xt)|Xs] .

Proof. Define Y = EFx0
[f(Xt)|Fs]. Notice that, by equation (1.22), Y ∈ σ(Xs),

then Y = EFx0
[Y |Xs] and we just need to prove that, for all Γ ∈ σ(Xs),

EFx0
[f(Xt)1Γ] = EFx0

[Y 1Γ].

We start by computing the right hand-side above. By definition,

EFx0
[Y 1Γ] = Ex0 [Y 1ΓMF (s)] = Ex0 [EFx0

[f(Xt)|Fs]1ΓMF (s)] .

Using Lemma 1.24 and the fact of 1Γ ∈ Fs, we get

EFx0
[Y 1Γ] = Ex0 [Ex0 [f(Xt)MF (t)|Fs]1Γ]

= Ex0 [f(Xt)1ΓMF (t)]

= EFx0
[f(Xt)1Γ] ,

because f(Xt)1Γ ∈ Ft.

Now, with this Markov property, we can define a family of operators

QFs,tf(Xs) = EFx0
[f(Xt)|Xs].

To characterize this operators, we compute

EFx0
[f(Xt)|Xs] = EFx0

[f(Xt)|Fs] = Ex0

[
f(Xt)

MF
t

MF
s

∣∣∣∣Xs

]
= Ex0

[
f(Xt)eFt(Xt)−Fs(Xs)e

−
∫ t

s
e−Fr(Xr)(∂r+L)eFr(Xr)dr

∣∣∣∣Xs

]
.

If we denote Vr(z) = −e−Fr (z)(∂r + L)eFr(z), the homogeneity of the non-
perturbed Markov process and a change of variables give us that

EFx0
[f(Xt)|Xs] = EXs

[
f(Xt−s)eFt(Xt−s)−Fs(X0)e

∫ t

s
Vr(Xr−s)dr

]
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= e−Fs(Xs)EXs

[
e

∫ t−s

0
Vu+s(Xu)du

eFt(Xt−s)f(Xt−s)
]

= e−Fs(Xs)PVs,t(feFt)(Xs).

Then, for all x ∈ E, we have this characterization:

QFs,tf(x) = e−Fs(x)PVs,t(feFt)(x)

= Ex
[
e

∫ t−s

0
Vu+s(Xu)du

eFt(Xt−s)−Fs(X0)f(Xt−s)
]
.

We will now prove that the operators Qs,t forms a semigroup. Taking
0 < s < t < u, we have

QFs,tQ
F
t,u(x) = e−Fs(x)Ex

[
e

∫ t−s

0
Vv+s(Xv)dv

eFt(Xt−s)QFt,uf(Xt−s)
]
,

which the expectation part can be rewrite, by the Markov property, as

Ex
[
e

∫ t−s

0
Vv+s(Xv)dvEx

[
e

∫ u−t

0
Vv+t(Xv+t−s)dv

eFu(Xu−t+t−s)f(Xu−t+t−s)
∣∣∣∣Ft−s]] .

Using the properties of the conditional expectation and making a change of
variables, we prove that

QFs,tQ
F
t,u(x) = e−Fs(x)Ex

[
e

∫ u−s

0
Vr+s(Xr)dr

eFu(Xu−s)f(Xu−s)
]

= Qs,uf(x).

Finally, we will study the Kolmogorov equation for QFs,t:

∂t(QFs,tf)(x) = ∂t

(
eFs(x)PVs,t(feFt)(x)

)
= e−Fs(x)∂tP

V
s,t(feFt)(x)

= e−Fs(x) {PVs,t(LVt (feFt))(x) + PVs,t(∂t(feFt))
}
.

Notice that, by the definition of V ,

LVt (feFt)(z) = L(feFt)(z) + Vt(z)f(z)eFt(z) = L(feFt)(z) − (L+ ∂t)eFt(z),

then the previous equation is

∂t(QFs,tf)(x) = e−Fs(x) {PVs,t(L(feFt) − fLeFt)
}
.

By the definitions of PVs,t and L, we can compute the bracket part as

Ex
[
e

∫ t

s
Vr(Xr)dr

λ(Xt)
∫
E

eFt(y)(f(y) − f(Xt))P (Xt, dy)
]
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= Ex
[
e

∫ t

s
Vr(Xr)dr

eFt(Xt)λ(Xt)
∫
E

eFt(y)−Ft(Xt)(f(y) − f(Xt))P (Xt, dy)
]

= PVs,t(eFtLFt(f))(x).

Finally, by the definition of QFs,t, we conclude that

∂t(QFs,tf)(x) = QFs,t(LFt(f))(x).

1.B.2 Another pertubated processes

Let Xt be a Markov process on (Ω,Ft,Px), where Ω = C(R+,Rd). Given
a pair of functions (f, F ), suppose that Dt = e

f(Xt)−f(X0)−
∫ t

0
F (Xs)dx is a con-

tinuous martingale for every x. We can define a new probability Pfx on F∞ by
Pfx = Dt · Px on Ft, see [39].

We have a general method to find such pairs (f, F ). For each f , denote by
Xf
t the pertubated process whose law is given by the probability Pfx as defined

in the beginning of the section, with F = Lf + 1
2 Γ(f, f). In this setting, we get

Proposition 1.26. If L is the infinitesimal generator of X, the infinitesimal
generator of Xf is equal to L+ Γ(f, ·).

Proof. Given a function g ∈ Cb(E), we denote Mg
t by the Dynkin martingale.

As consequence of the Girsanov’s theorem, see Theorem 1.7 in [39, Chapter VIII],
Mg
t − ⟨Mf ,Mg⟩t is a Pf -martingale. By Lemma 1.21, we conclude that

g(Xt) − g(X0) −
∫ t

0
(Lg + Γ(f, g)) (Xs)ds

is a Pf -martingale. This ends the proof by Proposition 1.19.

1.C. Basic definitions and results

We start this section with the definition of a kernel. As you can see, this is
the transition probability in this context (similar to the one of the discrete-time
case) and it give us a measure to integrate on E.

Definition 1.27. A kernel N on E is a map from E × E into [0,∞) ∪ {+∞}
such that

(i) for each x ∈ E, the map A → N(x,A) is a measure on E;

(ii) for each A ∈ E, the map x → N(x,A) is E-measurable.

Furthemore, this kernel is called a transition probability if N(x,E) = 1, for all
x ∈ E.
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If f is a positive measurable function and N is a kernel, we define

Nf(x) =
∫
E

N(x, dy)f(y).

Notice that Nf is also a positive measurable function. Besides that, if we have
two kernels M and N , then

MN(x,A) :=
∫
E

M(x, dy)N(y,A)

is also a kernel.
Now, we will expose some versions of the integration by parts formula.

The first one will be the case of two functions of bounded variation, given by
Proposition 4.5 on [39, Chapter 0].

Proposition 1.28. Suppose that A and B are two functions of bounded variation
defined on [0,+∞). For any time t ⩾ 0,

AtBt = A0B0 +
∫ t

0
AsdBs +

∫ t

0
Bs−dAs,

where Bs− denote the limit of a sequence of times increasing to s.

Proof. Let µ and ν denote measures associated with A and B, respectively.
Notice that both sides of this equality are equal to µ⊗ ν on the square [0, t]2. If
we divide this square in two triangles by the diagonal, each integral in the right
side is the measure of one triangle while the first term represents the origin. The
Bs− is used to exclude the diagonal on one half to not be counted twice.

The second version of the integration by parts formula we state here will be
a stochastic version, between two semimartingales, specifically in the case where
one of them have bounded variation. This result is a immediate consequence of
the classical integration by parts formula of stochastic calculus, see Proposition
3.1 of [39, Chapter IV].

Proposition 1.29. Let X and Y be two continuous semimartingales. If one of
this martingales is of bounded variation, then

XtYt = X0Y0 +
∫ t

0
XsdYs +

∫ t

0
YsdXs.

Proof. By Proposition 3.1 of [39, Chapter IV], the classical stochastic version of
the integration by parts formula is given by

XtYt = X0Y0 +
∫ t

0
XsdYs +

∫ t

0
YsdXs + ⟨X,Y ⟩t.
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To finish the proof, we just need to notice that, when one of this processes have
bounded variation, the covariation term above vanishes.

We want to prove another result related to integration by parts on martingales
theory, but first, we need the following lemma:

Lemma 1.30. Let {Mt, t ⩾ 0} be a càdlàg process, which is bounded in the
following sense: for each t > 0 there exists a constant Ct > 0 such that |Mr| ⩽ Ct,
for any r ∈ [0, t]. And, let {Zt, t ⩾ 0} be a bounded variation process, with
dZr = Z ′

rdr and |Z ′
r| ⩽ At, for any r ∈ [0, t], for some At > 0. Then, for all

0 ⩽ s ⩽ t there exists, {t0, . . . , tN}, a partition of the [s, t] such that

N∑
j=1

Mtj (Ztj − Ztj−1) L1−→
∫ t

s

Mr dZr, (1.23)

as N → ∞.

Proof. Since∣∣∣∣∣∣
N∑
j=1

Mtj (Ztj − Ztj−1)

∣∣∣∣∣∣ ⩽ Ct

N∑
j=1

|Ztj − Ztj−1 | ⩽ CtAt (t− s)

and by the Dominated Convergence Theorem, it is enough to prove that conver-
gence in equation (1.23) is almost surely. In order to do this, we note that

Mr1(s,t](r) =
N∑
j=1

(Mr −Mtj )1(tj−1,tj ](r) +
N∑
j=1

Mtj1(tj−1,tj ](r).

Then, integrating by dZr in the interval [s, t], we just need to prove that, when
N → ∞,

N∑
j=1

∫ tj

tj−1

(Mr −Mtj ) dZr
a.s.−→ 0. (1.24)

By the hypothesis {Mt, t ⩾ 0} has càdlàg trajectories, then a trajectory of
{Mt, t ⩾ 0} has a finite number of jumps in a compact interval. Thus, to handle
with the sum above, for a fixed trajectory, we split it in two parts: the first one
with terms where the trajectory of {Mt, t ⩾ 0} is uniformly continuous and the
other one includes the remaining terms. Note that the quantity of terms where
the trajectory of {Mt, t ⩾ 0} has jumps is bounded by the number of jumps of it
in the time interval [s, t]. Then it is possible to control the number of remaining
terms.

In order to write with precision this idea, we need to introduce some notation.
For all below, we work ever with the same fixed trajectory of {Mt, t ⩾ 0}.
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Denote by s1, . . . , sm the times where the trajectory of {Mt, t ⩾ 0} jumps in
the time interval [s, t]. And let us consider the following partition of [s, t]:

tnj = s+ (t− s) j
2n , j ∈ {0, 1, . . . , 2n} . (1.25)

Let ε > 0 and take n1 such that m(t−s)
2n1 < ε. Define the index set

Λ1
n1

=
{
j ∈ Dn1 ; there is some i ∈ {1, . . . ,m} such that si ∈ (tn1

j−1, t
n1
j ]
}
,

where Dn1 = {1, . . . , 2n1}, and the compact subset of [s, t]

K = [s, t]\
⋃

ℓ∈Λ1
n1

(tn1
ℓ−1, t

n1
ℓ+1) .

Since r 7→ Mr is uniformly continuous in K, there exists δ0 > 0 such that for
every r, s ∈ K with |r − s| < δ0, we have |Mr − Ms| < ε. Then, let us choose
n2 ⩾ n1 such that t−s

2n2 < δ0. For all n ⩾ n2, define the index set

Λ2
n =

{
j ∈ Dn; there exists some ℓ ∈ Λ1

n1
such that (tnj−1, t

n
j ] ⊂ (tn1

ℓ−1, t
n1
ℓ ]
}
.

Finally, using Λ2
n we can split the sum

2n∑
j=1

∫ tnj

tn
j−1

(Mr −Mtn
j
) dZr (1.26)

in two parts. The first one is the sum in {1, . . . , 2n}\Λ2
n, and for study it

we observe that for all j ∈ {1, . . . , 2n}\Λ2
n the interval (tnj−1, t

n
j ] ⊂ K, then

|Mr −Mtn
j
| < ε, for all r ∈ (tnj−1, t

n
j ]. Thus, by the hypothesis over Z, we have

∣∣∣ 2n∑
j=1

j /∈Λ2
n

∫ tnj

tn
j−1

(Mr −Mtn
j
) dZr

∣∣∣ ⩽ ε

2n∑
j=1

j /∈Λ2
n

∫ tnj

tn
j−1

|Z ′
r| dr ⩽ εAt (t− s) . (1.27)

By the hypotheses over M and Z, the second part of the sum equation (1.26),
the summation over Λ2

n, satisfies

∣∣∣ ∑
j∈Λ2

n

∫ tnj

tn
j−1

(Mr −Mtn
j
) dZr

∣∣∣ ⩽ 2Ct
∑
j∈Λ2

n

∫ tnj

tn
j−1

|Z ′
r| dr ⩽ 2CtAt

∑
j∈Λ2

n

(tnj − tnj−1) .

(1.28)
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Using the definitions of Λ1
n1

and Λ2
n, we have∑

j∈Λ2
n

(tnj − tnj−1) =
∑
ℓ∈Λ1

n1

(tn1
ℓ − tn1

ℓ−1) .

The last sum is bounded from above by m t−s
2n1 < ε, because of the definition of

the partition, see equation (1.25), the fact that Λ1
n1

has at most m elements and
the choice of n1. Putting it in equation (1.28), we get

∣∣∣ ∑
j∈Λ2

n

∫ tnj

tn
j−1

(Mr −Mtn
j
) dZr

∣∣∣ ⩽ 2CtAt ε . (1.29)

From equations (1.27) and (1.29), we obtain

∣∣∣ 2n∑
j=1

∫ tnj

tn
j−1

(Mr −Mtn
j
) dZr

∣∣∣ ⩽ εAt (t− s+ 2Ct) , for all n ⩾ n2.

Then, we can conclude equation (1.24) and it finishes the proof.

Now, we have what we need to prove the next theorem. This result is an
extension, for cádlág martingales, of the continuous version presented in Theorem
1.2.8 on [46], which should be viewed as the integration by parts formula for
martingale theory.

Theorem 1.31. Let {Mt, t ⩾ 0} be a càdlàg martingale with respect to the
filtration {Ft, t ⩾ 0}, which is bounded in the following sense for each t > 0
there exists a constant Ct > 0 such that |Mr| ⩽ Ct, for any r ∈ [0, t]. And,
let {Zt, t ⩾ 0} be a bounded variation process and adapted to the filtration
{Ft, t ⩾ 0}, with dZr = Z ′

rdr and |Z ′
r| ⩽ At, for any r ∈ [0, t], for some At > 0.

Then,

MtZt −
∫ t

0
Mr dZr

is a martingale with respect to the filtration {Ft, t ⩾ 0}.

Proof. It is enough to prove that

E[MtZt|Fs] −MsZs = E
[ ∫ t

s

Mr dZr

∣∣∣Fs] .
In order to get the equality above, we start by study the integral

∫ t
s
Mr dZr.

Now, use Lemma 1.30, which says that there exists, {t0, . . . , tN}, a partition of
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the [s, t] such that

N∑
j=1

Mtj (Ztj − Ztj−1) L1−→
∫ t

s

Mr dZr,

as N → ∞. Then, we can write

E
[ ∫ t

s

Mr dZr

∣∣∣Fs] = lim
N→∞

N∑
j=1

E
[
Mtj (Ztj − Ztj−1)

∣∣Fs] ,
where the {t0, . . . , tN} is a partition of [s, t]. Taking the conditional expectation
concerning to the filtration Ftj−1 , we can write

E
[
Mtj (Ztj − Ztj−1)

∣∣Fs] = E
[
MtjZtj

∣∣Fs]− E
[
Ztj−1E

[
Mtj

∣∣Ftj−1

] ∣∣∣Fs ] .
Using that {Mt, t ⩾ 0} is a martingale, we obtain the last limit is equal to

lim
N→∞

N∑
j=1

(
E[MtjZtj |Fs] − E[Mtj−1Ztj−1 |Fs]

)
= E[MtZt |Fs] −MsZs .

Finally, we end this appendix with a last result that we need for Theorem 1.10.

Lemma 1.32. Let ψ : [0,∞) → R be a bounded measurable function. Then

d

dt

(
e

∫ t

0
ψ(r) dr

)
= ψ(t) e

∫ t

0
ψ(r) dr

.

Proof. By Taylor expansion and the fact that ψ is bounded, we get

1
h

(
e

∫ t+h

0
ψ(r) dr − e

∫ t

0
ψ(r) dr

)
= e

∫ t

0
ψ(r) dr

(
1
h

∫ t+h

t

ψ(r) dr +Oψ(h)
)
,

for all h > 0 . The result follows from Lebesgue Differentiation Theorem.
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2. Thermodynamic formalism for jump processes

This chapter is a joint work with Josué Knorst, Artur Lopes and Adriana
Neumann. In [25], we deal with thermodynamic formalism for processes whose
infinitesimal generator L is in the form of equation (1.2). We consider the state
space a compact set that can be the unitary circle S1 or the interval [0, 1]. Notice
that we can consider S1 as the interval [0, 1] with 0 ≡ 1, then to fix ideas our
state space will be the interval [0, 1] and when we want to refer to S1 we will
consider periodic boundary conditions, that is, identifying 0 and 1 (0 ≡ 1). The
integrals presented in this chapter are assumed to be on the whole state space
unless we say otherwise.

We introduce a Ruelle operator from a continuous potential V : [0, 1] → R
and an a priori probability P (induced by the infinitesimal generator L and a
initial measure) on the Skorohod space D = D([0,+∞), [0, 1]) of càdlàg paths
ω : [0,+∞) → [0, 1]. Assuming a Hölder regularity of the potential V , we can
prove the existence of an eigenvalue and a positive eigenfunction for the Ruelle
operator. After a kind of normalization procedure, we obtain another process,
called the Gibbs Markov process, that induces a probability on D, called Gibbs
(or equilibrium) probability. From this, we were able to introduce the concepts of
relative entropy and pressure. Lately, we define entropy production by discussing
some properties related to time-reversal and symmetry of infinitesimal generators.

2.1. The Model
Consider an infinitesimal generator L of a Markov jump process, on the form

of equation (1.2), with jump rate function λ ≡ 1 and a kernel P (x, dy) that
can be decomposed as P (x, y)dy, where the function P : [0, 1]2 → [0, 1] later
will be asked to satisfy equation (2.3). This operator acts on periodic functions
f : [0, 1] → R by

(Lf)(x) =
∫ [

f(y) − f(x)
]
P (x, y)dy. (2.1)

Notice that L(1) = 0. We call L the a priori infinitesimal generator.
We will denote by L∗ the dual of L in L 2(dx), which acts on functions

g : [0, 1] → R by
(L∗g)(x) =

∫
P (y, x)g(y)dy − g(x). (2.2)

Let θ be the invariant vector for P on the left. In the subsection entitled
“Markov Chains with values on S1” of [28, Section 3] it is shown that, under Hölder
assumption, there exists a unique θ. Define µ(dx) = θ(x)dx the probability

41



measure with density θ. This means that it satisfies∫
θ(y)P (y, x)dy = θ(x). (2.3)

By this, we get L∗(θ) = 0, what means that µ is invariant for the action of L∗.
Notice that L and L∗ are bounded operators. Then, by equation (1.4), we

can define the semigroup etL. For fixed t ⩾ 0, this semigroup is an integral
operator, that is, there exists a kernel function Kt : [0, 1] × [0, 1] → R+ such that

(etLf)(x) =
∫
Kt(x, y)f(y)dy + e−tf(x). (2.4)

The existence of this function Kt is presented in Section 2.A along with some
properties that it satisfies.

For a continuous-time Markov process {Xt, t ⩾ 0}, the kernel Kt plays the
same role that the transition function has on the discrete-time case. Given an
initial density function φ0 and the probability P induced on D by this process,
we can measure a cylinder set C = {X0 ∈ (a0, b0), Xt1 ∈ (a1, b1), Xt2 ∈ (a2, b2)}
by

P(C) =
∫ b0

a0

∫ b1

a1

∫ b2

a2

φ0(x0)Kt1(x0, x1)Kt2−t1(x1, x2) dx2dx1dx0.

Now, let us see how we can compute this Kt with an example:

Example 2.1. Take P (x, y) = cos[(x− y)2π]/2 + 1. This P is symmetric and
continuous on [0, 1]. Since

∫
cos[(x− y)2π]dy = 0, for any x ∈ [0, 1], we get that∫

P (x, y)dy = 1. In this case, the kernel function Kt(x, y), t ⩾ 0 can be explicitly
expressed by

Kt(x, y) = 2 cos[2π(x− y)](e−3t/4 − e−t) + (1 − e−t)

and the Lebesgue probability dx is the unique invariant probability.
First, we will calculate the Kt expression. Note that∫

cos(2π(x− z)) · cos(2π(z − y)) dz = 1
2 cos(2π(x− y)).

Using induction, we show that Pn(x, y) = cos(2π(x−y))
22n−1 + 1 :

Pn+1(x, y) =
∫
Pn(x, z)P (z, y)dz

=
∫ (cos[2π(x− z)]

22n−1 + 1
)(

cos[2π(z − y)]
2 + 1

)
dz

= 1
22n

∫
cos[2π(x− z)] · cos[2π(z − y)] dz + 1
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= cos[2π(x− y)]
22n+1 + 1.

By the general case, see Section 2.A, we know that

Kt(x, y) =
∞∑
k=1

tk

k!Qk(x, y),

where

Qk(x, y) :=
k∑
j=1

(−1)k−j
(
k

j

)
P j(x, y)

=
k∑
j=1

(−1)k−j
(
k

j

)(
cos[2π(x− y)]

22j−1 + 1
)

= 2 cos[2π(x− y)]
k∑
j=1

(−1)k−j
(
k

j

)
1

22j +
k∑
j=1

(−1)k−j
(
k

j

)

= 2 cos[2π(x− y)]
[

(−1)k+1 +
(

−3
4

)k]
+ (−1)k+1.

This gives us exactly the formula we want for Kt(x, y).
Now, we turn ourselves to the second claim. The fact that dx is invariant is an

immediate consequence of symmetry: the function 1 satisfies L∗(1) = L(1) = 0.
We need to go further to get unicity.

A continuous function f : [0, 1] → R can be seen as a periodic function
f : R → R with period 1 so that we can employ Fourier Series. Write

f(x) = a0

2 +
∞∑
n=1

an cos(2πnx) +
∞∑
n=1

bn sin(2πnx),

with a0
2 =

∫
f(x)dx, an = 2

∫
f(x) cos(2πnx)dx and bn = 2

∫
f(x) sin(2πnx)dx.

Notice that cos(2π(x− y)) = cos(2πx) cos(2πy) + sin(2πx) sin(2πy). Then

(Lf)(x) =
∫
f(y)dy + 1

2

∫
f(y) cos[2π(x− y)]dy − f(x)

= a0

2 + 1
2 cos(2πx)a1

2 + 1
2 sin(2πx)b1

2 − f(x).

Therefore, Lf = 0 if, and only if,

f(y) = a0

2 + cos(2πy)a1

4 + sin(2πy)b1

4

and consequently a1 = a1/4, b1 = b1/4 and an = bn = 0, ∀n ≥ 2. We conclude
that L∗f = Lf = 0 ⇔ f ≡ a0

2 , constant. This means that the only eigendensity
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of the operator etL is that of Lebesgue measure dx. ♢

Consider L as defined on equation (2.1), let us assume that there exists a
positive continuous density function θ : [0, 1] → R, such that, for any continuous
function f : [0, 1] → R, we get∫

(Lf)(x)θ(x)dx = 0. (2.5)

Moreover, as a consequence of the relation above, valid for any f , it is easy to
see that θ is also a solution of equation (2.3), which is unique under the Hölder
assumption. Thereat, we can assume that L is such that the above defined θ is
unique.

Definition 2.2. Given L defined on equation (2.1) and an initial density θ

satisfying equation (2.5), we get a continuous-time stationary Markov process
{Xt, t ⩾ 0}, with values on [0, 1] (see [4, 8, 26]). This process defines a probability
P on the Skorohod space D. This probability P is invariant for the shift {Θt,
t ⩾ 0}, which acts on ω ∈ D as (Θtw)s = ws+t

For this infinitesimal generator, the associated semigroup satisfies et L(1) = 1.
Moreover, et L∗(θ) = θ, where L∗ was given by equation (2.2) and θ satisfies
equation (2.5).

Now we take the continuous potential V : [0, 1] → R and introduce the
operator L+ V as a particular case, with a function V that does not depend on
time, of the one presented in Section 1.3. In the same way, we define L∗ + V . If
P (x, y) is symmetric, the spectral properties of both are the same. Section 1.3
also give us a formula for the homogeneous semigroup

(
et (L+V )f

)
(x) = Ex

[
e

∫ t

0
V (Xr)dr

f(Xt)
]
, (2.6)

where {Xt, t ⩾ 0}, is the Markov process with infinitesimal generator L. Notice
that this semigroup is not Markovian.

Similarly to etL, this semigroup is also an integral operator, that is, there
exists a kernel function KV

t : [0, 1] × [0, 1] → R+ such that(
et (L+V )f

)
(x) =

∫
KV
t (x, y)f(y)dy + e−tetV (x)f(x). (2.7)

The properties of KV
t are the ones presented in Section 2.B if we consider λ ≡ 1.

2.2. Ruelle Operator and the Gibbs Markov process
In this section, we will introduce the Ruelle operator (which was considered

in similar cases in [6, 32]) and use a kind of normalization procedure to get the
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Gibbs Markov process and its induced Gibbs probability on D.

Definition 2.3 (Ruelle Operator). Consider, for a fixed t ⩾ 0, the continuous-
time Ruelle operator LtV , associated with V , that acts on continuous functions
φ : [0, 1] → R as

(LtV φ)(x) = Ex
[
e

∫ t

0
V (Xr)dr

φ(Xt)
]

=
(
et(L+V )φ

)
(x).

For a symmetrical L, as the Feynman-Kac formulas for natural and reverse
time processes coincide, this Ruelle operator can be seen as the continuous-time
version of the classical Ruelle operator (discrete case). Figure 2.1 depicts this
statement. The left approach is more suitable for the Feymann-Kac formula
while the right one can be easily related to the classical discrete-time Ruelle
operator for the n-coordinate shift σn : [0, 1]N → [0, 1]N, with y being the initial
value of the shifted path.

Figure 2.1: If L is symmetric, we can use the Ruelle
Operator at natural or reversal time.

According to our notation, this continuous-time Ruelle operators LtV , t ⩾ 0,
are a family of linear operators indexed by t.

Definition 2.4. Fix V : [0, 1] → R. We say that the family of Ruelle operators
LtV , t ⩾ 0, is normalized if LtV 1 = 1, for all t ⩾ 0.

If the potential V ≡ 0, for any t ⩾ 0, the Ruelle operator is Lt0 = etL. In
this case, the family of Ruelle operators is normalized. From now to the end of
this section, we will study non-normalized Ruelle operators in order to associate
them with a normalized Gibbs operator.

45



Definition 2.5. We say that f : [0, 1] → R is an eigenfunction on the right of
the Ruelle operator LtV , t ⩾ 0, associated with the eigenvalue λ ∈ R, if for all
t ⩾ 0,

LtV f = eλ tf.

Similarly, we say that h is an eigenfunction on the left if

hLtV = eλ th.

In order to find these eigenfunctions, we have to analyze the properties of
the operator L+ V and L∗ + V.

Assume that positive functions f, h are such that

(L+ V )(f) = λf and (L∗ + V )(h) = λh, (2.8)

that is, f, h : [0, 1] → R+ are eigenfunctions of L + V and L∗ + V associated
with the same eigenvalue λ ∈ R. Then, et(L+V )f = eλtf, what makes f an
eigenfunction for the Ruelle operator associated. In addition, et(L∗+V )h = eλth.
We say that such λ (which can be positive or negative) is the main eigenvalue.

Notice that, by linearity, we have a whole class of functions that satisfies equa-
tion (2.8). It is natural to assume the normalization condition

∫
h(x)dx = 1, so we

can see h as a density. Let us take the specific f that satisfies
∫
f(x)h(x)dx = 1.

In this case, π(x) = f(x)h(x) is a density on [0, 1].
In the following, we will assume that exists a solution for equation (2.8).

Comparing with [45, pages 106 and 111], we can see that, in the discrete case,
we simply get that via Perron-Frobenius theory.

Assumption 2.1. Assume that there exists an eigenvalue λ ∈ R and two
functions ℓ : [0, 1] → R+ and r : [0, 1] → R+ of Hölder class, such that,

(L+ V )r = λr and ℓ (L+ V ) = λℓ.

There are plenty of examples of pairs L and V for such ones the above
condition is satisfied. To exemplify that, we will use a continuous function
g : [0, 1] → R+, satisfying

∫
g(x)dx = 1, to define P (x, y), for x, y ∈ [0, 1], by

P (x, y) =
{

g(x+ y), if (x+ y) < 1,
g(x+ y − 1), if (x+ y) ⩾ 1.

This P is a symmetric kernel and the corresponding invariant density θ, satisfying
equation (2.3), is equal to 1. Therefore, the g we choose defines L via P . Notice
that L∗ = L, then we just need to find f such that (L+ V )(f) = λf , because,
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in this case, we have (L∗ + V )h = λh for h = f .

Example 2.6. Consider g as a restriction of a polynomial of degree 2 to
[0, 1], with g(0) = g(1) ⩾ 0. Assume L is defined via P using this polynomial
g, as we mentioned above. Defining, for any b ∈ R, a polynomial V (x) =
b+ [1 − g(0)]x(1 − x), there exists λ ∈ R and f a polynomial of degree 2, with
f(0) = f(1), satisfying

(L+ V )(f)(x) =
∫

[f(y) − f(x)]P (x, y)dy + V (x)f(x) = λf(x). (2.9)

Moreover, there is a solution f that is positive on [0, 1].
Write g(x) = a0 +a1x+a2x

2, for some a0, a1, a2 ∈ R with a0 > 0 and a2 ̸= 0.
The restriction g(0) = g(1) imply that a2 = −a1, while the integral condition give
us that a1 = 6(1 − a0). Considering both, we have g(x) = a0 + 6(1 − a0)x(1 − x)
with a0 > 0 and a0 ̸= 1.

In the same way, the polynomial f is of the form f(x) = c0 + c1x(1 − x), for
some c0, c1 ∈ R. Using the definition of P , we can compute the integral term of
equation (2.9) as

p(x) :=
∫ 1−x

0
[f(y) − f(x)]g(x+ y)dy +

∫ 1

1−x
[f(y) − f(x)]g(x+ y − 1)dy

= 1
30(6 − a0)c1 − c1x+ a0c1x

2 + 2(1 − a0)c1x
3 − (1 − a0)c1x

4.

Considering g(0) = a0 on the definition of V , the expression p(x) + V (x)f(x)
of the left side of equation (2.9) turns to be[
bc0 + c1

5 − a0c1

30

]
+ [(1 − a0)c0 − (1 − b)c1]x+ [(−1 + a0)c0 + (1 − b)c1]x2.

This expression needs to be equal to λf(x), also a polynomial of degree 2, for
some λ ∈ R. This means that both polynomials should have the same coefficients,
which gives us three equations:

bc0 + c1
5 − a0c1

30 = λc0,

(1 − a0)c0 − (1 − b)c1 = λc1,

(−1 + a0)c0 + (1 − b)c1 = −λc1.

First of all, notice that the last two equations give us the same condition. As
a0 ≠ 1, they give us that c0 =

(
b−1−λ
a0−1

)
c1. Substituting on the first one, we get

c1

([
30b2 − 30b− 6 + 7a0 − a2

0
30(a0 − 1)

]
−
[

2b− 1
a0 − 1

]
λ+

[
1

a0 − 1

]
λ2
)

= 0.
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The general solution of this is λ = 1
30

(
−15 ±

√
405 − 210a0 + 30a2

0 + 30b
)
,

what means
f(x) = c1

(
b− 1 − λ

a0 − 1 + x(1 − x)
)
. (2.10)

The general eigenfunction f presented above can, sometimes, assume negative
values on the interval [0, 1]. The Assumption 2.1 asks positivity, since we need
that in our reasoning (see Equation (2.14)), but this is not a problem in this
case because we have positivity for 0 < a0 < 1 if we take c1 > 0 and for a0 ⩾ 1
if c1 < 0. ♢

Remark. The same may not be true in other cases. For instance, considering
g and V as polynomials of degree 3, we were able to get a positive polynomial
f : [0, 1] → R+ of degree 3, but the next example shows that its impossible to get
a polynomial solution on S1, considering the periodic boundary condition 0 ≡ 1.
In the search for suitables V and f , we are not able to get solutions satisfying
the property that g is strictly positive. This is not very intuitive, since for larger
degrees we have more free variables to work. In fact, in the degree n case, we
have 3n+ 4 coefficients (n+ 1 from each polynomial and one from λ) to cancel
2n+ 1 coefficients of p(x) + (V (x) − λ)f(x), the constraints, which means there
are left three coefficients for periodicity, one for

∫
g(x)dx = 1 and at least n− 1

to adjust positivity.

Example 2.7. Consider periodic polynomials f, g, V : [0, 1] → R of degree 3 as

g(x) = a0 + a1x− 3(−4 + 4a0 + a1)x2 + (−a1 + 3(−4 + 4a0 + a1))x3,

V (x) = b0 + b1x+ b2x
2 + (−b1 − b2)x3,

f(x) = c0 + c1x+ c2x
2 + (−c1 − c2)x3

and define a polynomial of degree 6 by

K(x) :=
∫ 1

0
P (x, y)f(y)dy + V (x)f(x) − (1 − λ)f(x).

Suppose that c1, c2 ∈ R are such that:

1) c1 ̸= 0;

2) c1 + c2 ̸= 0;

3) 2c1 + c2 ̸= 0;

4) 3c1 + c2 ̸= 0;

5) 54c2
1 + 39c1c2 + 8c2

2 ̸= 0;
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6) 91368c6
1+186948c5

1c2+159318c4
1c

2
2+71367c3

1c
3
2+17228c2

1c
4
2+1984c1c

5
2+64c6

2 ̸=
0.

In this case, solving K(x) = 0, we find expressions1 for b2, b1, a1, c0, λ, a0 as
functions of b0, c1, c2. Thus, we get a whole class of polynomials f, g, V that
solves K(x) = 0, for all x, but none of these solutions satisfies that g is strictly
positive on [0, 1]. In order to see that, let us analyze the properties of a generic
polynomial G : R → R of degree 3 satisfying G(0) = G(1) and

∫ 1
0 G(x)dx = 1.

If we write G as

G(x) = 1
12(12 + 2g2 + 3g3) + (−g2 − g3)x+ g2x

2 + g3x
3,

the expressions for the two critical points of G are

X1 = g2 −
√
g2

2 + 3g2g3 + 3g2
3

3g3
and X2 = g2 +

√
g2

2 + 3g2g3 + 3g2
3

3g3
.

Looking closely at these critical points, we see that X1 is a local maximum and
X2 is a local minimum for G. Furthermore, since G(0) = G(1), there is at least
one critical point of G on [0, 1]. Then, we can divide the analysis into three
cases:

(i) X1 ∈ [0, 1] and X2 ̸∈ [0, 1];

(ii) X2 ∈ [0, 1] and X1 ̸∈ [0, 1];

(iii) X1, X2 ∈ [0, 1].

Visually, we can see these cases as

Notice that these conditions are unically defined by the sign of the derivatives
of G on x = 0 and x = 1. Moreover, the positivity is given by the absolute
minimum on [0, 1], which is G(0) = G(1) on (i) and G(X2) on (ii) and (iii).

Finally, we consider g2 and g3 as a2 and a3, the respective coefficients of g
that solves K(0) = 0. Using the free variables c1, c2 ∈ R, in all three cases, we

1We are not showing the exact expressions here due to its complexity, but it is possible to
get them using the Mathematica software by nullifying each coefficient of K from the highest
exponent to the smallest one.
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can reduce g(x) ⩾ 0, for all x ∈ [0, 1], into{
c2 ̸= 0, if c1 = 0,
c2 = −2c1, if c1 ̸= 0.

In both cases, there is no solution, since we have a clash with conditions 1 and 3
that we initially set for c1, c2. ♢

Observe that a function f obtained from Assumption 2.1 defines a whole set
of functions {αf, α ∈ R+} that also satisfies the same condition. In Example 2.6,
this is very clear when we look to equation (2.10). One can use this subspace to
get specific functions satisfying some conditions. For instance, for a fixed V , we
take ℓV , rV and λV the ones from Assumption 2.1 that satisfies the normalization
conditions ∫

ℓV (x)dx = 1 and
∫
rV (x)ℓV (x)dx = 1. (2.11)

An equation for the right eigenfunction rV is∫
P (x, z)rV (z)dz − (1 + λV − V (x))rV (x) = 0, (2.12)

for any x. On the other hand, the left eigenfunction ℓV satisfies∫
ℓV (z)P (z, x)dz − (1 + λV − V (x))ℓV (x) = 0. (2.13)

For all x, y ∈ [0, 1], t ⩾ 0 and f ∈ Cb([0, 1]), define

γV (x) = 1 + λV − V (x), QV (x, y) = P (x, y)rV (y)
rV (x)γV (x) , (2.14)

(LV f)(x) = γV (x)
∫

[f(y) − f(x)]QV (x, y) dy

and
(PV

t f)(x) = et(L+V )(rV f)(x)
eλV trV (x) .

Remark. One can also write

(PV
t f)(x) = 1

eλV trV (x)Ex
[
e

∫ t

0
V (Xs) ds

rV (Xt)f(Xt)
]
.

Lemma 2.8. The operator PV
t is the semigroup associated with the infinitesimal

generator LV , that is,

lim
t→0

(PV
t f)(x) − f(x)

t
= (LV f)(x).
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Proof. We can rewrite

(PV
t f)(x) − f(x)

t
= 1

eλV trV (x)

(
et(L+V )(rV f)(x) − rV (x)f(x)

t

)
+f(x)

(
e−λV t − 1

t

)
.

Taking limit as t → 0, we get

1
rV (x) (L+ V )(rV f)(x) − λV f(x)

= 1
rV (x)

[∫
P (x, y)rV (y)f(y)dy + (V (x) − 1)rV (x)f(x)

]
− λV f(x)

= 1
rV (x)

∫
P (x, y)rV (y)f(y)dy − γV (x)f(x)

= γV (x)
∫ (

P (x, y)rV (y)
rV (x)γV (x)

)
f(y)dy − γV (x)f(x).

Using equation (2.12), we have∫
QV (x, y)dy =

∫
P (x, y)rV (y)
rV (x)γV (x) dy = 1. (2.15)

Then,

lim
t→0

(PV
t f)(x) − f(x)

t
= γV (x)

∫
[f(y) − f(x)]QV (x, y)dy = (LV f)(x).

Notice that the semigroup PV
t , t ⩾ 0, is normalized. Furthermore, from

equation (2.15), it defines a jump process (with the generator in the form of
equation (1.2), where we replace P by QV and consider the jump rate function
γV ).

Definition 2.9 (Gibbs Markov process). We call Gibbs Markov process as-
sociated with the potential V (and the a priori infinitesimal generator L) the
continuous-time Markov jump process generated by LV .

Now, we want to prove that the invariant density for the Gibbs process is
πV = ℓV rV , where the normalization conditions given by equation (2.11) are
assumed to be satisfied. To do this, we need to use the dual operator L∗

V .

Lemma 2.10. The dual of the operator LV is the operator

(L∗
V g)(x) =

∫
γV (y)g(y)QV (y, x)dy − γV (x)g(x). (2.16)
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Proof. Given the functions f, g we get∫
(LV f)(x)g(x)dx

=
∫
γV (x)g(x)

∫
[f(y) − f(x)]QV (x, y)dydx

=
∫ ∫

γV (x)g(x)QV (x, y)f(y)dydx−
∫
γV (x)f(x)g(x)

[∫
QV (x, y)dy

]
dx

=
∫
f(y)

∫
γV (x)g(x)QV (x, y)dxdy −

∫
γV (x)f(x)g(x)dx

=
∫
f(z)

[∫
γV (x)g(x)QV (x, z)dx− γV (z)g(z)

]
dz =

∫
f(z)(L∗

V g)(z)dz.

Next, we show that πV is the stationary density.

Proposition 2.11. The density πV satisfies L∗
V (πV ) = 0.

Proof. From equations (2.13) and (2.14) we get that, for any point x,

(L∗
V πV )(x) =

∫
γV (y)ℓV (y)rV (y)QV (y, x)dy − γV (x)ℓV (x)rV (x)

=
∫
γV (y)ℓV (y)rV (y)

(
P (y, x)rV (x)
rV (y)γV (y)

)
dy − γV (x)ℓV (x)rV (x)

= rV (x)
∫
ℓV (y)P (y, x)dy − γV (x)ℓV (x)rV (x)

= rV (x)
[∫

ℓV (y)P (y, x)dy − γV (x)ℓV (x)
]

= 0.

From the above, we get that, for any x,∫
γV (y)π(y)QV (y, x)dy = γV (x)πV (x).

Remark. We have
(PV

t 1) = etLV (1) = 1

and
(PV

t )∗(πV ) = (etL∗
V πV ) = πV .

Definition 2.12 (Gibbs probability). The probability PV induced on D by the
Gibbs Markov process (with infinitesimal generator LV and stationary probability
πV ) will be called the Gibbs probability for the potential V (and the a priori
infinitesimal generator L). This PV is invariant for the shift {Θs, s ⩾ 0}.

In the case V ≡ 0, PV is the a priori probability P of Definition 2.2.
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2.3. Relative Entropy, Pressure and the equilibrium state
for V

In this section, we will consider a variational problem in the continuous-time
setting which is analogous to the pressure problem in the discrete-time setting.
This requires a meaning for entropy, so we will define the relative entropy.
A continuous-time stationary Markov process that maximizes our variational
problem is called continuous-time equilibrium state for V . The results of this
section in some sense are similar to the ones in [32].

Consider the infinitesimal generator L̃, which acts on bounded measurable
functions f : [0, 1] → R as

(L̃f)(x) =
∫ [

f(y) − f(x)
]φ(y)
φ(x)P (x, y)dy,

where φ ∈ Cb([0, 1]). To rewrite the operator above on the form of equation (1.2)
we consider

γ̃(x) := 1
φ(x)

∫
φ(y)P (x, y)dy and Q̃(x, y) := φ(y)

φ(x)γ̃(x)P (x, y).

Then
(L̃f)(x) = γ̃(x)

∫ [
f(y) − f(x)

]
Q̃(x, y) dy .

Proposition 2.13. The invariant probability for L̃ is

µ̃(dx) = φ(x)ℓ̃φ(x)
∥φ∥∥ℓ̃φ∥

dy,

where ℓ̃φ satisfies
1

ℓ̃φ(x)

∫
ℓ̃φ(y)P (y, x)dy = γ̃(x).

Proof. Repeating the computation we did on the proof of Lemma 2.10, we can
show that, for any density g,

(L̃∗g)(x) =
∫
γ̃(y)g(y)Q̃(y, x)dy − γ̃(x)g(x)

=
∫
g(y)φ(x)

φ(y)P (y, x)dy − γ̃(x)g(x).

In particular, for g = φℓ̃φ

∥φ∥∥ℓ̃φ∥ , we have

(L̃∗g)(x) = φ(x)
∥φ∥∥ℓ̃φ∥

(∫
ℓ̃φ(y)P (y, x)dy − γ̃(x)ℓ̃φ(x)

)
= 0.
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Definition 2.14. The probability P̃µ̃ on D is called admissible if it is induced
by the continuous-time Markov chain with infinitesimal generator L̃ and initial
measure µ̃.

For P̃µ̃ admissible and Pµ̃ the probability induced by the original continuous-
time Markov chain with infinitesimal generator L, defined in equation (2.1), and
initial probability µ̃, define for T > 0,

HT (P̃µ̃|Pµ̃) = −
∫
D

log
(
dP̃µ̃
dPµ̃

∣∣∣∣
FT

)
(ω)dP̃µ̃(ω).

Notice that we are using the same initial measure µ̃ for both processes, so the
probabilities are absolutely continuous with respect to each other.

Using this HT above defined, we introduce a meaning for the relative entropy
similar to the one presented on [32].

Definition 2.15 (Relative entropy). For a fixed initial probability µ̃, the limit

H(P̃µ̃|Pµ̃) = lim
T→∞

1
T
HT (P̃µ̃|Pµ̃)

is called the relative entropy of P̃µ̃ concerning Pµ̃.

Since L and L̃ are both in the form of equation (1.2), they generate two
Markov jump process and Corollary 1.17 implies that

log
(
dP̃µ̃
dPµ̃

∣∣∣∣
FT

)
(ω) =

∫ T

0
[1 − γ̃(ωs)]ds+

∑
s⩽T

log
(
γ̃(ωs−) φ(ωs)

φ(ωs−)γ̃(ωs−)

)

=
∫ T

0
[1 − γ̃(ωs)]ds+

∑
s⩽T

{log(φ(ωs)) − log(φ(ωs−))}

=
∫ T

0
[1 − γ̃(ωs)]ds+ log (φ(ωT )) − log (φ(ω0)) .

Then,
H(P̃µ̃|Pµ̃) =

∫
[γ̃(x) − 1]dµ̃(x). (2.17)

For a Hölder class potential V , the probability PVπV
is admissible. Then,

H(PVπV
|PπV

) =
∫

[γV (x) − 1]dπV (x) = λV −
∫
V (x)dµV (x). (2.18)

Definition 2.16 (Pressure). We denote the Pressure (or Free Energy) of V as
the value

P(V ) := sup
P̃µ̃

admissible

{
H(P̃µ̃|Pµ̃) +

∫
V (x)dµ̃(x)

}
.

54



Using equation (2.17), the pressure can be written as

P(V ) = sup
P̃µ̃

admissible

∫
[γ̃(x) − 1 + V (x)] dµ̃(x).

Recalling the expressions of γ̃ and µ̃, we have

P(V ) = sup
φ>0

∫ (
ℓ̃φ

∥ℓ̃φ∥

)
(x)(L+ V )

(
φ

∥φ∥

)
(x)dx = λV .

By equation (2.18), this means that the Gibbs probability is the one that
maximizes the pressure. In some sense, similar results are true for other settings,
see [5, 13, 23, 29, 32].

2.4. Time-reversal process and entropy production
In this section, we consider that the time parameter is bounded, t ∈ [0, T ] for

a fixed T > 0, in order to explore the time-reversal process. We will show that
this time-reversal process is the jump process generated by the dual operator
of L in L 2(µ), where µ is the invariant measure for L∗ defined on Section 2.1.
Later, we study the properties of the entropy production rate, that can be used
to describe the amount of work dissipated by a irreversible system. Related
results can be found in [20, 27, 34, 35, 38].

Remember that the invariant measure satisfies µ(dx) = θ(x)dx and that
L∗(θ) = 0, where L∗ acts on L 2(dx). The substantial change from L 2(dx) to
L 2(µ) is that our reference measure, which was simply Lebesgue measure dx,
becomes now θ(x)dx. Taking that into account, the inner product in this new
space is given by

< f, g >µ=
∫
f(x)g(x)µ(dx) =

∫
f(x)g(x)θ(x)dx.

Proposition 2.17. The dual operator of L over L 2(µ) is

(L∗g)(x) =
∫

[g(y) − g(x)] θ(y)
θ(x)P (y, x)dy.

Proof. To verify this, just compute

⟨Lf, g⟩µ =
∫

(Lf)(x)g(x)θ(x)dx

=
∫ ∫

g(x)θ(x)P (x, y)f(y)dydx−
∫
f(x)g(x)θ(x)dx

=
∫
f(y)

∫
g(x)θ(x)P (x, y)dxdy −

∫
f(x)g(x)θ(x)dx
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=
∫
f(z)

(∫
g(x)θ(x)

θ(z)P (x, z)dx
)
θ(z)dz −

∫
f(z)g(z)θ(z)dz

=
∫
f(z)

(∫
[g(x) − g(z)]θ(x)

θ(z)P (x, z)dx
)
θ(z)dz

=
∫
f(z)(L∗g)(z)θ(z)dz = ⟨f,L∗g⟩µ.

In this computation, we use that
∫ θ(x)
θ(z)P (x, z)dy = 1, what follows directly

from equation (2.3).

Having discussed that, we turn now to defining the time-reversal process,
associated with the stationary Markov process (Xt, µ) and an interval of time
[0, T ]. The new process, denoted by (X̂t), satisfies

Eµ[ g(X̂0)f(X̂t)] := Eµ[ g(XT )f(XT−t)].

Proposition 2.18. The time-reversal process X̂t has transition family equal to
P ∗
t = etL

∗ , the dual operator of Pt over L 2(µ).

Proof. Let P̂t denote the transition family of X̂t. Using the Markov property
and stationarity of the chain Xt, notice that this transition family satisfies, for
all f, g ∈ L 2(µ),

⟨P̂tf, g⟩µ =
∫

(P̂tf)(x)g(x) dµ(x) = Eµ[f(X̂t)g(X̂0)]

= Eµ[f(XT−t)g(XT )] = Eµ
[
f(XT−t)Eµ[g(XT )|FT−t]

]
= Eµ[f(X0)EX0 [g(Xt)]] =

∫
f(x)(Ptg)(x)dµ(x)

= ⟨f, Ptg⟩µ.

Since this is true for all f, g ∈ L2(µ), we get that P̂t = P ∗
t . This also means

that L̂ = L∗, where L̂ is the infinitesimal generator of the semigroup P̂t.

For a fixed T > 0, we are interested in the relative entropy of P̂µ concerning
Pµ, where P̂µ is the probability induced on D by the time-reversal process with
initial measure µ. Notice that, by definition,

HT (Pµ|P̂µ) = −
∫
D

log
(
dPµ
dP̂µ

∣∣∣∣∣
FT

)
(ω)dPµ(ω).

Since, for the processes we are considering, we have λ(x) = λ̂(x) = 1 and
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P̂ (x, dy) = θ(y)
θ(x)P (y, x)dy, Corollary 1.17 implies that

log
(
dPµ
dP̂µ

∣∣∣∣∣
FT

)
=
∑
s⩽T

log
(
P (Xs−, Xs)θ(Xs−)
P (Xs, Xs−)θ(Xs)

)

and, consequently,

−HT (Pµ|P̂µ) = Eµ

∑
s⩽T

{
log
(
P (Xs−, Xs)
P (Xs, Xs−)

)
+ log(θ(Xs−)) − log(θ(Xs))

}
= Eµ

∑
s⩽T

log
(
P (Xs−, Xs)
P (Xs, Xs−)

) ,
because, for µ invariant, the telescopic summation

Eµ

∑
s⩽T

{log(θ(Xs−)) − log(θ(Xs))}

 = Eµ [log(θ(X0)) − log(θ(XT ))] = 0.

In order to analyze the remaining term of this expression, we use the structure
of the Markov process. Denoting by 0 = T0 < T1 < · · · the jump times of this
process and by ξn the value of the process on the interval [Tn−1, Tn), we have

−HT (Pµ|P̂µ) =
∞∑
n=1

Eµ

∑
s⩽T

log
(
P (Xs−, Xs)
P (Xs, Xs−)

)
1[Tn⩽T<Tn+1]


=

∞∑
n=1

Eµ
[
n−1∑
k=0

log
(
P (ξk, ξk+1)
P (ξk+1, ξk)

)
1[Tn⩽T<Tn+1]

]

For simplicity, denote ψ(x, y) := log
(
P (x,y)
P (y,x)

)
. Then,

−HT (Pµ|P̂µ) =
∞∑
n=1

n−1∑
k=0

Eµ
[
ψ(ξk, ξk+1)1[Tn⩽T<Tn+1]

]
=

∞∑
n=1

(
Eµ[1[Tn⩽T<Tn+1]]

n−1∑
k=0

Eµ[ψ(ξk, ξk+1)]
)
.

In this computation, we use that the time variables Tn (defined as the sum of
n independent exponential variables τk with parameter 1) are independent of
the spatial variables ξk. It is important to notice that this is not always true.
Actually, in the general case, see [24], each τk is distributed according to an
exponential law of parameter λ(ξk).

Now, we will analyze separately each expected value on the last expression.
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The first one is

Eµ[1[Tn⩽T<Tn+1]] =
∫ ∞

0
ds0e

−s0 · · ·
∫ ∞

0
dsne

−sn

(
1[0⩽T−

∑n−1
i=0

si<sn]

)
= e−T

∫ ∞

0
· · ·
∫ ∞

0
ds0 . . . dsn−1

(
1[
∑n−1

i=0
si⩽T ]

)
= e−T T

n

n! ,

since the integrals can be recognized as a fraction (exactly 1
2n ) of the volume of

the ball in the Rn with 1-norm and radius T . For the second expected value, we
use that µ is invariant for the chain to rewrite

Eµ[ψ(ξk, ξk+1)] = Eµ[ψ(ξ0, ξ1)] =
∫
µ(dx0)

∫
P (x0, x1)ψ(x0, x1)dx1,

which makes every term of the second sum equal. Then,

−HT (Pµ|P̂µ) =
∞∑
n=1

e−T T
n

n!

(
n

∫
µ(dx0)

∫
P (x0, x1)ψ(x0, x1)dx1

)

= Te−T
∞∑
n=1

Tn−1

(n− 1)!

∫
µ(dx0)

∫
P (x0, x1)ψ(x0, x1)dx1

= T

∫
µ(dx0)

∫
P (x0, x1)ψ(x0, x1)dx1

Using the tools explored above, we can now give meaning to the entropy
production rate. This formulation, however, is not universal and depends on
the physical system and its dynamical laws. Different formulations for entropy
production are explored on [33], where the authors made a review of the progress
of these formulations. The point of view presented here relates to the one
presented on [7].

Definition 2.19. The entropy production rate is defined as

ep := −H(Pµ|P̂µ) = − lim
T→∞

1
T
HT (Pµ|P̂µ).

Using the computations we made before, is possible to write the entropy
production rate as

ep =
∫ ∫

log
(
P (x, y)
P (y, x)

)
P (x, y)dydµ(x).

Notice that, if we try to apply the concept of entropy production to a
reversible process, satisfying P (x, y) = P (y, x), we ended up with ep = 0.

Proposition 2.20. For all transition functions P (x, y) > 0, we have ep ⩾ 0.
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Proof. Since L∗(1) = 0, we have that
∫

(Lf)(x) dµ(x) = 0 for every continuous
function f . For f = − log ◦ θ, we have that∫ ∫

[log(θ(x)) − log(θ(y))]P (x, y)dydµ(x) = 0.

Therefore, we can add this term to the entropy production rate without changing
its value:

ep =
∫ ∫

log
(
θ(x)P (x, y)
θ(y)P (y, x)

)
P (x, y)dydµ(x)

=
∫ ∫ [

θ(x)P (x, y)
θ(y)P (y, x)

]
log
(
θ(x)P (x, y)
θ(y)P (y, x)

)
θ(y)
θ(x)P (y, x)dydµ(x).

Since
∫ ∫ θ(y)

θ(x)P (y, x)dydµ(x) = 1, we can use this as a probability measure
in order to apply the Jensen inequality for the convex function ψ(z) = z log z.
In this way,

ep =
∫ ∫

ψ

(
θ(x)P (x, y)
θ(y)P (y, x)

)
θ(y)
θ(x)P (y, x)dydµ(x)

⩾ ψ

(∫ ∫ [
θ(x)P (x, y)
θ(y)P (y, x)

]
θ(y)
θ(x)P (y, x)dydµ(x)

)
= ψ

(∫ ∫
P (x, y)dydµ(x)

)
= ψ(1) = 0.

The idea of this proof was similar to the one in Lemma 3.3 in [37].

Proposition 2.21. The entropy production rate of the time reversal process is
the same as the original process:

ep∗ := −H(P̂µ|Pµ) = ep.

Proof. Since L(1) = 0, we have that
∫

(L∗g)(x) dµ(x) = 0 for every continuous
function g, For g = log ◦ θ2, we have that∫ ∫

[log(θ2(y)) − log(θ2(x))]P ∗(x, y)dydµ(x) = 0,

where P ∗(x, y) = θ(y)
θ(x)P (y, x). One can show that

ep∗ =
∫ ∫

log
(
P ∗(x, y)
P ∗(y, x)

)
P ∗(x, y)dydµ(x)

=
∫ ∫

log
(
θ2(y)P (y, x)
θ2(x)P (x, y)

)
P ∗(x, y)dydµ(x)
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=
∫ ∫

log
(
P (y, x)
P (x, y)

)
P ∗(x, y)dydµ(x)

=
∫ ∫

log
(
P (y, x)
P (x, y)

)
θ(y)
θ(x)P (y, x)dy[θ(x)dx]

=
∫ ∫

log
(
P (y, x)
P (x, y)

)
P (y, x)dµ(y)dx

=
∫ ∫

log
(
P (x, y)
P (y, x)

)
P (x, y)dydµ(x) = ep.

2.5. Expansiveness of the semi-flow Θt on D

In this section, we consider an extended Skorohod space D̂ of the càdlàg
paths w : R → [0, 1] and Θ̂t, t ∈ R, the bidirectional flow on D̂, acting on w by
translation to the left: (Θ̂tw)(s) = w(s+ t). One can show that two paths on D
that coincide up to time t have a distance between them, using the Skorohod
metric defined below, limited by e−t. This means that, given two paths of such
type, is possible to increase the distance by applying Θt.

Let Λ be the set of continuous functions f such that

γ(λ) := ess sup
t≥0

| log λ′(t)| < ∞

and recall the definition of the Skorohod distance (see [15]):

d(x, y) = inf
λ∈Λ

[
γ(λ) ∨

∫ ∞

0
e−ud(x, y, λ, u)du

]
.

Let D∗ be the set of paths w : [0,+∞) → [0, 1] continuous at left and with a
limit at right. We can denote a typical path w in D̂ as

w(s) = ⟨w1|w2⟩(s) =
{

w1(−s), for s < 0,
w2(s), for s ⩾ 0,

where ω1 ∈ D∗ and w2 ∈ D. In this way, we can identify D̂ 7→ D∗ × D and
define the projections Π1(w) = w1 and Π2(w) = w2. By convention, we will
always use the time t = 0 to set this.

From two paths w1 ∈ D∗ and w2 ∈ D, we can go to D̂ by ⟨w1|w2⟩, then
apply Θ̂−t and go back to D using Π2. By doing this, we ended up with

Π2(Θ̂−t⟨w1|w2⟩)(s) = (w1|t w2)(s) =
{

w1(t− s), for s < t,

w2(s− t), for s ⩾ t,

defined for s ⩾ 0, as Figure 2.2 shows.
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Figure 2.2: The bilateral shift and the projection Π2

Proposition 2.22. The continuous-time shift Θt, acting on the Skorohod space
D, is expanding: given paths w1 ∈ D∗ and w2, w

′
2 ∈ D, for all t ⩾ 0,

d ((w1|t w2), (w1|t w′
2)) ⩽

∫ ∞

t

e−udu = e−t. (2.19)

Proof. Fix I as the identity function. Then, γ(I) = 0 and

d((w1|t w2), (w1|t w′
2)) ≤

∫ ∞

0
e−ud((w1|t w2), (w1|t w′

2), I, u)du

=
∫ ∞

0
e−u sup

s⩾0
q ((w1|t w2)(s ∧ u), (w1|t w′

2)(s ∧ u)) du,

where q = r ∧ 1 with r denoting the (Lebesgue) metric on the state space [0, 1].
For u < t, the distance q above is q(w1(t−s∧u), w1(t−s∧u)) = 0. Otherwise,

the distance q is upper bounded by 1. Then,

d ((w1|t w2), (w1|t w′
2)) ⩽

∫ ∞

t

e−udu = e−t.

Appendices
We will finish this chapter with some appendix sections related to it. These

results are presented here in order to obtain a more complete chapter, so we
recommend that the reader skips this part in a first reading. The tools in this
part are properly called in the text if needed.
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2.A. Existence of Kt(x, y)

In this section, we will show explicitly the existence of a function Kt(x, y)
which has a relation with the semigroup etL given by equation (2.4). We can
write L = L − I, where L is acting on functions as (Lf)(x) =

∫
f(y)P (x, y)dy.

One can write down the action of the powers Lk which appear in etL in a simple
way using the Newton binomial, since L and −I commute:

Lk = (L − I)k =
k∑
j=0

(
k

j

)
Lj(−I)k−j =

k∑
j=0

(−1)k−j
(
k

j

)
Lj ,

where L0(f) = I(f) = f . To go further, we need to consider the following
transition functions: for all k ≥ 2,

P k(x, y) :=
∫

· · ·
∫
P (x, z1)P (z1, z2) · · ·P (zk−1, y)dz1dz2...dzk−1.

Of course, P 1(x, y) = P (x, y) and P k+1(x, y) =
∫
P k(x, z)P (z, y)dz. Now,

we state that
(Lkf)(x) =

∫
f(y)P k(x, y)dy,

for every k ≥ 1. To verify this, one can use induction:

(Lk+1f)(x) = Lk(Lf)(x)

=
∫

(Lf)(y)P k(x, y)dy

=
∫ ∫

f(z)P (y, z)dz P k(x, y)dy

=
∫
f(z)

∫
P k(x, y)P (y, z)dy dz

=
∫
f(z)P k+1(x, z)dz.

Above, to change the order of integration, we use the continuity of P and f over
the compact state space or the continuity of P and the boundedness of f to
assure that the integral is finite.

Now, we can compute Lk:

(Lkf)(x) =
k∑
j=0

(−1)k−j
(
k

j

)
(Ljf)(x)

= (−1)kf(x) +
k∑
j=1

(−1)k−j
(
k

j

)∫
f(y)P j(x, y)dy.
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Changing the order of terms, we get

(Lkf)(x) = (−1)kf(x) +
∫
f(y)

 k∑
j=1

(−1)k−j
(
k

j

)
P j(x, y)

 dy
= (−1)kf(x) +

∫
f(y) Qk(x, y)dy,

where Qk(x, y) is the expression inside the bracket. Notice that

Kt(x, y) =
∞∑
k=1

tk

k! Qk(x, y)

is our desired function, because

(etLf)(x) = f(x) +
∞∑
k=1

tk

k! (L
kf)(x)

= f(x) +
∞∑
k=1

tk

k!

[
(−1)kf(x) +

∫
f(y)Qk(x, y)dy

]

= f(x)
∞∑
k=0

(−t)k

k! +
∫
f(y)

∞∑
k=1

tk

k! Qk(x, y) dy

= f(x)e−t +
∫
f(y)Kt(x, y) dy.

Considering the dynamics involved, the first term, which cannot be merged
into Kt(x, y), corresponds to the probability of not observing any jump in the
interval [0, t].

2.A.1 Properties of Kt(x, y)

We denote by Pt = etL. Then, we calculate

∂t(Ptf)(x) = −e−tf(x) +
∫
f(y)(∂tKt)(x, y)dy

and

L(Ptf)(x) =
∫

(Ptf)(y)P (x, y)dy − (Ptf)(x)

=
∫
e−tf(y)P (x, y)dy +

∫ ∫
f(z)Kt(y, z)dzP (x, y)dy − (Ptf)(x)

=
∫
e−tf(y)P (x, y)dy +

∫
f(z)

(∫
P (x, y)Kt(y, z)dy

)
dz

−e−tf(x) −
∫
f(y)Kt(x, y)dy.
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Reordering the terms, we conclude that L(Ptf)(x) is equal to

−e−tf(x) +
∫
f(y)

(
−Kt(x, y) + e−tP (x, y) +

∫
P (x, z)Kt(z, y)dz

)
dy.

As Pt is the homogeneous semigroup generated by the infinitesimal generator
L, the Kolmogorov equations imply that L(Ptf) = ∂tPt(f) = Pt(Lf). From this,
we conclude the equality of these two expressions, for every f . Then,

∂tKt(x, y) = −Kt(x, y) + e−tP (x, y) +
∫
P (x, z)Kt(z, y)dz.

The above is equal to

∂tKt(x, y) = L(Kt(·, y))(x) + e−tP (x, y)

and, if we write down the other equation ∂tPtf = Pt(Lf), the only change is
the last integral for

∫
P (z, y)Kt(x, z)dz, which results in

∂tKt(x, y) = L∗(Kt(x, ·))(y) + e−tP (x, y).

Another way to explore Kt(x, y) is looking to the property of semigroup:
Ps ◦ Pt = Ps+t. This leads us to

(Ps+tf)(x) = (e(s+t)Lf)(x) = e−(s+t)f(x) +
∫
f(y)Ks+t(x, y)dy,

while Pt(Psf)(x) is equal to

etL(esLf)(x)

= e−t(esLf)(x) +
∫

(esLf)(y)Kt(x, y)dy

= e−t
[
e−sf(x) +

∫
f(y)Ks(x, y)dy

]
+
∫ [

e−sf(y) +
∫
f(z)Ks(y, z)dz

]
Kt(x, y)dy

= e−(t+s)f(x) +
∫
f(y)

(
e−tKs(x, y) + e−sKt(x, y)

)
dy

+
∫ ∫

f(z)Ks(y, z)Kt(x, y)dzdy

=
∫
f(y)

(
e−tKs(x, y) + e−sKt(x, y) +

∫
Kt(x, z)Ks(z, y)dz

)
dy

+e−(t+s)f(x).
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This means

Ks+t(x, y) = e−tKs(x, y) + e−sKt(x, y) +
∫
Kt(x, z)Ks(z, y)dz.

Notice that the last equation is the expression (1.3.1) in [4] for our transition
function pt(y, dx) = Kt(x, y)dx+ e−tδy(dx).

2.B. Existence of KV
t

In this section, we will show explicitly the existence of a function KV
t (x, y)

which has a relation with the semigroup et(L+V ) given by equation (2.7). Here we
are considering a general L acting on functions according to equation (1.2). We
will analyze the equation (2.6) in terms of the graphic construction of the jump
process (Xt). This means that we will use that the trajectories are piece-wise
constants:

Ex
[
e

∫ t

0
V (Xr)dr

f(Xt)
]

=
∞∑
n=0

Ex
[
e

∫ t

0
V (Xr)dr

f(XTn)1[Tn⩽t<Tn+1]

]
,

where 0 = T0 < T1 < T2 < · · · are the times that Xt jumps.
The n = 0 term of this sum represents the time before the first jump. In this

case, we have s < T1 and the process Xs ≡ x. Then, this first term is equal to

etV (x)f(x)Px[τ0 > t] = etV (x)f(x)e−tλ(x),

where τ0 is a random variable with exponential distribution of parameter λ(x).
For the terms n ⩾ 1, we need further analysis. For each k, set xk = XTk

and
let τk be a exponential random variable with parameter λ(xk). By this, under
1[Tn⩽t<Tn+1], we have

∫ t

0
V (Xr)dr =

n−1∑
i=0

τiV (xi) +
(
t−

n−1∑
i=0

τi

)
V (xn).

Now, define

φn,Vt (x0, ..., xn) = exp
[
n−1∑
i=0

τiV (xi) +
(
t−

n−1∑
i=0

τi

)
V (xn)1[Tn≤t<Tn+1]

]
.

Notice that, for a fixed t, all functions φn,Vt are null except for the one whose
n is equal to the number of jumps until time t. In this way, using the kernel
P (x, dy) = P (x, y)dy, the nth term of the summation becomes∫

· · ·
∫
φn,Vt (x0, ..., xn)f(xn)P (x0, x1)dx1 · · ·P (xn−1, xn)dxn.
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This expression is equal to
∫
Qn,Vt (x, xn)f(xn)dxn if we define

Qn,Vt (x, xn) =
∫

· · ·
∫
φn,Vt (x0, ..., xn)P (x0, x1) · · ·P (xn−1, xn)dx1 · · · dxn−1.

Finally,

(
et(L+V )f

)
(x) = etV (x)f(x)e−tλ(x) +

∞∑
n=1

∫
Qn,Vt (x, xn)f(xn)dxn

= et(V (x)−λ(x))f(x) +
∫ ∞∑

n=1
Qn,Vt (x, y)f(y)dy

= et(V (x)−λ(x))f(x) +
∫

KV
t (x, y)f(y)dy,

where KV
t (x, y) =

∞∑
n=1

Qn,Vt (x, y). Notice that Qn,Vt (x, y) ⩾ 0 for all t. Further-

more, it is strictly positive when n is equal to the number of jumps until time t.
Then, KV

t (x, y) > 0, for every x, y ∈ [0, 1].

2.B.1 Properties of KV
t

Now, we proceed in the same way that we have done with Kt, looking for a
differential equation that KV

t satisfies, in the case of λ ≡ 1. For the semigroup
PVt = et(L+V ), we have (L+V )(PVt f) = ∂tP

V
t (f) = PVt ((L+V )f). The middle

term opens as

∂tP
V
t (f)(x) = (V (x) − 1)etV (x)−tf(x) +

∫
∂tK

V
t (x, y)f(y)dy

while the last term is

PVt ((L+ V )f)(x)

= etV (x)−t(L+ V )(f)(x) +
∫
KV
t (x, y)(L+ V )(f)(y)dy

= etV (x)−t
[∫

P (x, y)f(y)dy + (V (x) − 1)f(x)
]

+
∫
KV
t (x, y)(L+ V )(f)(y)dy.

We get that, for every f ,∫
∂tK

V
t (x, y)f(y)dy = etV (x)−t

∫
P (x, y)f(y)dy+

∫
KV
t (x, y)(L+V )(f)(y)dy.

Using the definition of L + V we can make a computation to rewrite the
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right-hand side of the above equation as∫ [
etV (x)−tP (x, y) +

∫
KV
t (x, z)P (z, y)dz +KV

t (x, y)(V (y) − 1)
]
f(y)dy,

which means that

∂tK
V
t (x, y) = etV (x)−tP (x, y) +

∫
KV
t (x, z)P (z, y)dz +KV

t (x, y)(V (y) − 1)

= etV (x)−tP (x, y) + (L∗ + V )(KV
t (x, ·))(y).

Similarly, if we open the other equation (L + V )(PVt f) = ∂tP
V
t (f), we

conclude

∂tK
V
t (x, y) = etV (x)−tP (x, y) + (L+ V )(KV

t (·, y))(x).

2.C. Another look of Feynman-Kac formula for symmetrical L

Consider Xt a continuous-time process with state space [0, 1] and infinitesimal
generator L. Let f and V be two functions on [0, 1] taking values on R. For
any fixed T > 0, we denote by X̂s = XT−s the time-reversal process and
by L̂ its generator. For this process X̂, we have that, by Feynman-Kac (see
Proposition 1.13), the function

ut(x) = Êx
[
e

∫ t

0
V (X̂s)ds

f(X̂t)
]

is the solution of the partial differential equation{
∂tut(x) = L̂ut(x) + V (x)ut(x) , t ∈ (0, T ]
u0(x) = f(x)

.

If L is symmetric, i.e., L̂ = L, this partial differential equation is the same
for the original process X, whose known solution, by Feynman-Kac, is

vt(x) = Ex
[
e

∫ t

0
V (Xs)ds

f(Xt)
]
.

Then, for any t ∈ (0, T ], we have that vt = ut. Looking at the paths, we get∫
w(0)=x

e

∫ t

0
V (w(s))ds

f(w(t))dP(w) =
∫
w(T )=x

e

∫ t

0
V (w(T−s))ds

f(w(T − t))dP(w).
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Making a change of variables, we can rewrite this expression as∫
w(0)=x

e

∫ t

0
V (w(s))ds

f(w(t))dP(w) =
∫
w(T )=x

e

∫ T

T −t
V (w(s))ds

f(w(T − t))dP(w).

(2.20)
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3. Thermodynamic formalism for diffusions

In this chapter, we consider Xt the Brownian Motion whose state space is
a Riemannian compact manifold M . In order to simplify the notation we will
assume that M = S1, the same state space we considered on Chapter 2. For
the general case, similar results can be obtained, but then we would get more
cumbersome expressions. The results presented here are based on [30], a joint
work with Artur Lopes and Adriana Neumann.

In the same way we did in the previous chapter, we use a Hölder potential
V and an a priori probability on the trajectories space, in this case the space
C = C([0, T ],M) of continuous functions, to introduce a Ruelle operator and
get, due to a normalization procedure, a Gibbs Markov process and a Gibbs
probability on C. From this, again we were able to introduce the concepts of
relative entropy and pressure.

3.1. The Model
The Brownian Motion is a Markov process whose infinitesimal generator

L = 1
2 ∆ is on the form of equation (1.5), where ∆ = ∂2

∂x2 denotes the Laplacian
on the Riemannian manifold M = S1. This operator L is self-adjoint (see [44])
and acts on functions f ∈ C2(M). The trajectories of the process are on C, the
space of continuous functions, and induce, in this set, a probability Pµ, where µ
denotes the initial probability.

Let µ be the invariant probability. The associated Markov process is station-
ary for the flow Θs, s ⩾ 0, and the probability P = Pµ obtained in this way will
play the role of the a priori probability (in a similar way as in [6, 25, 32]).

Let V : M → R a Hölder continuous function and consider the operator
L+ V , which acts on functions f ∈ C2(M) by the expression

(L+ V )(f)(x) = 1
2
∂2f

∂x2 (x) + V (x)f(x),

for all x ∈ M . There exists a positive differentiable eigenfunction F : M → R
associated with an eigenvalue λV for the above operator (see [?, 47]).

For t ⩾ 0, we consider the Ruelle operator

(PVt f)(x) := Ex
[
e

∫ t

0
V (Xr) dr

f(Xt)
]
,

for all continuous function f : M → R and x ∈ M . By Feynman-Kac, PVt defines
a non markovian semigroup associated with the infinitesimal operator L+V (see
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Section 1.3.2). Using self-adjointness, we get the same relation from the jump
process case for a symmetric L. The Figure 3.1 visually supports this statement.
Again, the left-hand side is more suitable for the Feymann-Kac formula while
the right one is the natural generalization of the classical Ruelle operator from
the discrete-time setting.

Figure 3.1: The Ruelle operator at natural and reversal
time. Created using simulations of [12].

3.2. On the continuous time Gibbs state for the potential V

Let λV be the main eigenvalue of L+ V and FV the strictly positive differen-
tiable eigenfunction associated with λV (for the existence theorems see [4, 14, 47]).
To make simply the notation we will denote FV by F .

Using these λV and F , define

(PV
t f)(x) = Ex

[
e

∫ t

0
V (Xr)dr F (Xt)

eλV tF (x)f(Xt)
]

= (PVt Ff)(x)
eλV tF (x) .

Then (PV
t 1)(x) = 1, ∀x ∈ M . This defines a Markov semigroup, which is what

we were looking for.
We define the operator LV acting on f ∈ C2(M) as

(LV f)(x) = 1
F (x) (L+ V )(Ff)(x) − f(x)λV

= 1
F (x)

[
1
2∆(Ff)(x) + V (x)F (x)f(x)

]
− f(x)λV

= 1
2∆f(x) + 1

F (x)
∂F

∂x
(x)∂f

∂x
(x) + (L+ V )(F )(x)f(x)

F (x) − λV f(x)

= 1
2
∂2f

∂x2 (x) + ∂

∂x
log(F (x))∂f

∂x
(x).
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Proposition 3.1. The operator LV is the infinitesimal generator associated
with the semigroup PV

t .

Notice that a process induced by this kind of infinitesimal generator corre-
sponds to a Brownian Motion with nonhomogeneous drift ∂

∂x log(F (x)).

Proof. To prove this association, we need to observe that

(PV
t f)(x) − f(x)

t
= 1
eλV tF (x)

(
(PVt Ff)(x) − (Ff)(x)

t

)
+ f(x)

(
e−λV t − 1

t

)
.

Taking the limit as t goes to zero the expression turns into

∂t(PV
t f)(x) = 1

F (x)∂t(P
V
t Ff)(x) − f(x)λV = (LV f)(x).

From now on, we will elaborate on the properties of initial invariant probability
µV for the operator LV . In other words, µV is a probability in M such that, for
any f ∈ C2(M) and t ⩾ 0, we have∫

(PV
t f)dµV =

∫
fdµV or equivalently

∫
(LV f)dµV = 0.

The following lemma will give us this invariant measure.

Lemma 3.2. Let G ∈ C1(M) and define an operator A : C2(M) → R as

Af = 1
2
∂2f

∂x2 + ∂G

∂x

∂f

∂x
,

for all f ∈ C2(M). Then, a measure µ such that dµ
dx = e2G satisfies∫

Af dµ = 0.

Proof. This proof follows from the Radon-Nikodym theorem and integration by
parts.

Thus, taking G = logF , we get that µ̃V satisfies dµ̃V

dx = F 2 is the invariant
measure for LV . This measure maybe is not a probability, then we will consider
the normalized measure

dµV (x) = F 2(x)
γV

dx,

where γV =
∫
M
F 2(x) dx.

71



Remark. There is another way to find an invariant measure for LV . Following
the reasoning of Section 2.2 one can find an eigenprobability νV of L + V

associated with eigenvalue λV . Then, consider

µV (dx) = F (x)νV (dx),

where F is the eigenfunction associated with eigenvalue λV . We have∫
(LV f)dµV =

∫
((L+ V )(Ff) − FfλV ) dνV = 0.

Definition 3.3. Given a Hölder function V : M → R, we define a continuous-
time Markov process {Y Vt , t ⩾ 0} with state-space M whose infinitesimal genera-
tor is LV and the initial stationary probability is µV . We call this process the
continuous time Gibbs state for the potential V . This process induced a probability
PVµV

on the space C, which we call the Gibbs probability for the potential V .

Remark. Suppose V is of class C∞ and has a finite number of points with
derivative zero. Let λ be the main eigenvalue of L+V and F be the eigenfunction
associated with λ. One can show an interesting property relating oscillations
of V and the oscillations of the main eigenfunction F : If V : [0, 1] → R has
only two points with derivative zero (V has a unique point of maximum and a
unique point of minimum), then the eigenfunction F has less than four points
with derivative zero. Given a value c there exist at most three values x such
that V (x) = c. Suppose F has many values with derivative zero. Then, between
each two of these points, there exists another one x1 with F ′′(x1) = 0. From
1
2F

′′(x1) + V (x1)F (x1) = λF (x1) we get that V (x1) = λ. By hypothesis, we can
get at most three of these intervals, that means, four points of F with derivative
zero. One can generalize this for V with more oscillations in a similar way. The
analogous property for potentials and eigenfunctions in the setting where the
state space has no differentiable structure is not so clear how to get it.

3.3. Relative Entropy, Pressure and the equilibrium state
for V

In this section, we will repeat for this process the same we did on Section 2.3
for the jump process. First of all, in order to define the relative entropy, we will
analyze the Radon-Nikodym derivative of PVx with respect to the measure Px,
induced by the Brownian Motion, with initial probability δx. Remember that
the Radon-Nikodym derivative must satisfy

EVx [G(wT1 , wT2 , . . . , , wTk
)] = Ex

[
G(wT1 , wT2 , . . . , , wTk

) dP
V
x

dPx

∣∣∣∣
Ft

]
,
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for all k ∈ N, 0 = T0 < T1 < · · · < Tk = t < T and G : Mk → R. For this, it is
enough to consider, for any k ∈ N, functions fi : M → R, i ∈ {1, . . . , k}, a time
partition as above and study the following:

EVx [f1(XT1)f2(XT2) . . . fk(XTk
)]

=
∫
M

PVT1
(x, dx1)f1(x1) · · ·

∫
M

PVTk−Tk−1
(xk−1, dxk)fk(xk)

=
∫
M

PVT1
(x, dx1)f1(x1) · · ·

∫
M

PVDk−1
(xk−2, dxk−1)(fk−1PV

Dk
fk)(xk−1)

= · · ·

= PV
T1

(f1 . . .PV
Tk−Tk−1

(fk))(x),

where PVt (x, dy) is the kernel of PV
t and Dk denotes the k-th difference Tk−Tk−1.

To fix ideas consider k = 2 and analyze

EVx [f1(XT1)f2(XT2)]

= PV
T1

(f1PV
T2−T1

(f2))(x)

= Ex
[
e

∫ T1
0

V (Xr)drF (XT1)f1(XT1)
eλV T1F (x) (PV

T2−T1
f2)(XT1)

]
= Ex

[
e

∫ T1
0

V (Xr)dr f1(XT1)
eλV T2F (x)EXT1

[
e

∫ T2−T1
0

V (Xr)dr
F (XT2−T1)f2(XT2−T1)

]]
= Ex

[
e

∫ T1
0

V (Xr)dr f1(XT1)
eλV T2F (x)e

∫ T2
T1

V (Xr)dr
F (XT2)f2(XT2)

]

= Ex

f1(XT1)f2(XT2)

e∫ T2
0

V (Xr)dr

eλV T2

F (XT2)
F (x)

 .
We can do an analogous computation for any k. Remembering that Tk = t,

we have

dPVx
dPx

∣∣∣∣
Ft

= exp
{

logF (Xt) − logF (X0) −
∫ t

0
(λV − V (Xr))dr

}
.

Notice that, if we denote logF = g, this function satisfies

1
2

[
∂2g

∂x2 +
(
∂g

∂x

)2
]

= 1
2

 ∂

∂x

(
∂F
∂x

F

)
+
(
∂F
∂x

F

)2
 =

1
2
∂2F
∂x2

F
= LF

F
= λV − V.

(3.1)
The last equality is due to (L + V )F = λV F . Then, we have the following
definition, according to that the probability PVx , induced by the Gibbs Markov
process with the initial probability δx, is admissible.

Definition 3.4. The probability P̃µ on C is called admissible if exists a function
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g ∈ C2(M) such that, for all t ⩾ 0,

dP̃x
dPx

∣∣∣∣
Ft

= exp
{
g(XT ) − g(X0) − 1

2

∫ t

0

[
∂2g

∂x2 (Xr) +
(
∂g

∂x

)2
(Xr)

]
dr

}
.

Remark. Denote by X̃t the process which the law in C is the probability P̃x.
Notice that

Γ(g, g) = 1
2
∂2

∂x2 (g2) − 2g
(

1
2
∂2g

∂x2

)
=
(
∂g

∂x

)2
,

where Γ denotes the Carré du Champ operator. If we define G = Lg + 1
2 Γ(g, g),

the pair (g,G) allow us to write the process X̃ as Xg, using the notation of
Section 1.B.2. By Proposition 1.26, we conclude L̃ = L + Γ(g, ·). Then, the
admissible process X̃t is a Brownian Motion with drift ∂g

∂x .

Following in the same way as in Section 2.3, we take the invariant probability
for L̃, which we will denote by µ̃. By Lemma 3.2, this probability is such that
dµ̃(x) = e2g(x)

γ̃ dx, where γ̃ =
∫
M
e2g(x) dx. Then, to define the relative entropy

of the P̃µ̃ with respect to Pµ̃ we set

HT (P̃µ̃|Pµ̃) = −
∫
M

∫
C

log
(
dP̃x
dPx

∣∣∣∣
FT

)
(ω)dP̃x(ω)dµ̃(x).

Remark. Using Jensen’s inequality, one can show that HT (P̃µ̃|Pµ̃) ⩽ 0. Negative
entropy appears naturally when one analyzes a dynamical system with the property
that each point has an uncountable number of preimages (see [28, 29]).

Using the expression of the Radon-Nikodym derivative, we get

HT (P̃µ̃|Pµ̃)

= Eµ̃
[
g(X0) − g(XT ) + 1

2

∫ T

0

[
∂2g

∂x2 (Xr) +
(
∂g

∂x

)2
(Xr)

]
dr

]

=
∫
M

{
(P̃0g)(x) − (P̃T g)(x) + 1

2

∫ T

0
P̃r

[
∂2g

∂x2 +
(
∂g

∂x

)2
]

(x)dr
}
dµ̃(x),

where P̃t is the semigroup associated with L̃. By the Definition 2.15 and the
Ergodic Theorem, the relative entropy is

H(P̃µ̃|Pµ̃) = 1
2

∫
M

[
∂2g

∂x2 +
(
∂g

∂x

)2
]
dµ̃.

Finally, we can state the main result of this section:
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Proposition 3.5. The pressure of the potential V is given by

P(V ) = H(PVµV
|PµV

) +
∫
M

V dµV = λV .

Proof. The second equality in the statement of the theorem comes from

H(PVµV
|PµV

) +
∫
M

V dµV =
∫
M

1
2

[
∂2

∂x2 logF +
(
∂

∂x
logF

)2
] + V

]
dµV

=
∫
M

LF

F
+ V dµV = λV ,

by equation (3.1) and (L+ V )F = λV F .
In order to finish the proof, we need to analyze the variational formula for

the pressure (see Definition 2.16) to show that P(V ) ⩽ λV . Notice that

H(P̃µ̃|Pµ̃) +
∫
M

V dµ̃ = 1
γ̃

1
2

∫
M

[
∂2g

∂x2 +
(
∂g

∂x

)2
]
e2gdx+ 1

γ̃

∫
M

V e2gdx

= 1
γ̃

∫
M

[(
1
2
∂2g

∂x2 +
(
∂g

∂x

)2
)

− 1
2

(
∂g

∂x

)2
+ V

]
e2gdx

= 1
γ̃

∫
M

[
V − 1

2

(
∂g

∂x

)2
]
e2gdx.

The last equality follows from Lemma 3.2 for f = g and G = g. Using that
V = λV − LF

F , we can rewrite

H(P̃µ̃|Pµ̃) +
∫
M

V dµ̃ = λV + 1
γ̃

1
2

∫
M

[
−
∂2F
∂x2

F
−
(
∂g

∂x

)2
]
e2gdx.

Applying integration by parts, the above expression becomes

λV + 1
γ̃

1
2

{∫
M

[
∂F

∂x

∂

∂x

(
e2g

F

)]
dx−

∫
M

(
∂g

∂x

)2
e2gdx

}

= λV − 1
γ̃

1
2

∫
M

(
∂

∂x
logF − ∂g

∂x

)2
e2gdx,

what is less or equal than λV .

The immediate consequence of this result is the fact that just like in Chapter 2,
the Gibbs probability is the one that maximizes the pressure.
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Final Considerations

At the end of this thesis, we want to summarize that we contributed to
the theory of continuous-time thermodynamic formalism with compact state
space. Although, it is important to point out some of the questions that are
still open for future studies in these settings. Although we were able to get, for
continuous-time Markov processes with non-countable state space, most of the
results that we would like to extend from the simplest cases, it will still take
some work to obtain a generalization of the Perron-Frobenius Theorem that
works in our setting, in order to replace Assumption 1.1.

Furthermore, one natural question to ask is about some type of large deviation
principle (for the unperturbated process), following a similar way to what was
done in [31] or [32]. Another thing we can try to extend from the discrete-time
setting is to consider an extra parameter β, which is a multiple of the inverse of
the temperature, on potential V and study what happens when the temperature
goes to zero by making β increase (see [5]). One can also try to extend the
potential V to a more general case whose domain is the set of trajectories, then
the V presented here can be seen as a particular case that depends only on the
value at time zero.

Another possibility for future studies is to try to replicate, in our setting,
what was done in [1, 17, 18, 41, 42], where the authors use an idea of the Ruelle
operator as a guiding principle to describe nonequilibrium stationary states in
general. The purpose of this study is a better understanding of a model for the
chaotic hypothesis for a single (moving) particle system held in a nonequilibrium
stationary state. This model is described by properties of SBR (Sinai-Bowen-
Ruelle) probabilities for Axiom A (or Anosov) systems and entropy production
rate. In this case, the potential is fixed as the Lyapunov exponent. The reason
for such interest is that the real physical problem behaves, in many respects, as
if they were Anosov systems as far as their properties of physical interest are
concerned. We wonder if our setting, where V is general, also provides a sketch
(as an alternative for the Anosov one) for the chaotic hypothesis.
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