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Resumo

Utilizamos restrições de eĄciência no nível dos ativos, medidas pela Multifractal-Detrended

Fluctuation Analysis (MF-DFA), em um modelo clássico de index tracking, obtendo um

problema de programação quadrática (PQ). Formamos carteiras que buscam replicar os

índices S&P500, Nikkei 225 e Ibovespa, dos mercados norte-americano, japonês e brasileiro,

respectivamente, de 2012 a 2021. Nossos resultados indicam que as restrições de eĄciência

atuam de forma semelhante a uma restrição de cardinalidade, reduzindo o número de ativos

à medida que a restrição se torna mais severa, e esse movimento resulta em maior tracking

error. Evidenciamos que a utilização de restrição de eĄciência é uma forma adequada

de reduzir o número de ativos sem a necessidade de formular um problema com maior

complexidade computacional, comparando com outros métodos já utilizados na literatura,

principalmente em mercados mais desenvolvidos, onde os níveis gerais de eĄciência são

maiores e, portanto, as restrições geram um custo menor em termos de tracking error.

Também, mostramos brevemente que as restrições de eĄciência e de liquidez podem ter

efeitos diferentes em carteiras de index tracking.

Keywords: Otimização de carteiras, EĄciência de mercado, Programação não-linear.



Abstract

We used asset efficiency constraints, measured by the Multifractal-Detrended Fluctuation

Analysis (MF-DFA), in a classic index tracking model, obtaining a quadratic programming

problem (QP). We form portfolios that seek to replicate the S&P500, Nikkei 225 and

Ibovespa index, from the US, Japanese and Brazilian markets, respectively, from 2012 to

2021. Our results indicate that efficiency constraints act in a similar way to a cardinality

constraint, reducing the number of assets as the constraint becomes more severe, and this

movement results in greater tracking error. We evidenced that using efficiency constraint

is an adequate way to reduce the number of assets without having to formulate a problem

with greater computational complexity, comparing with other methods already used in

the literature, especially in more developed markets, where the general levels of efficiency

are higher and, therefore, constraints generate a lower cost in terms of tracking error. We

also show that efficiency and liquidity constraints could have different effects on tracking

portfolios.

Keywords: Portfolio optimization, Market efficiency, Non-linear programming.
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1 Introduction

Index tracking (IT) is a passive portfolio selection strategy that aims to replicate the

performance of some market index. The main justiĄcation for passive investment strategies

such as IT is in the Efficiency Market Hypothesis (EMH), proposed by Fama (1970). In an

efficient market, assets would be priced correctly, with no arbitrage opportunities. Thus,

active portfolio selection strategies would not make sense, as they would not be able to

outperform market returns in the long run. Empirical evidence of market superiority over

active portfolio selection strategies is demonstrated by Frino and Gallagher (2001) and

Fama and French (2010), for example, as well as several other empirical studies.

In line, Tiwari, Aye and Gupta (2019) demonstrate, using a long range of data from

developed and emerging markets, that the efficiency of equity markets varies over time

and that markets are more efficient in the long term than in the short term. The authors

argue that the lack of efficiency can be justiĄed by the lack of liquidity in the markets,

and that the level of efficiency can be improved with greater transparency of information

to investors, greater activity of arbitrage strategies based on variations in efficiency in the

markets, and better trading technologies, for example. Arshad et al. (2016) demonstrate

that several markets show improvements in their efficiency over time. Such results are also

obtained by several other empirical studies that tested the EMH.

With equity markets becoming increasingly efficient, including emerging markets,

looking for better ways to replicate the performance of a market index becomes increa-

singly relevant. One of the possible ways is the so-called full replication, where the exact

composition of the index and the exact weight of the assets are used to perform the

tracking. The main penalties for this strategy are the high management costs that arise

from monitoring large portfolios, especially for broader indices, such as the S&P500 or the

Russell 1000. Also, this approach might become expensive due to increasing transaction

costs, when it is necessary to trade a high volume of assets. Alternatively, a widely used

formulation is to minimize the variance of the difference of portfolio and index returns (the

tracking error), including a cardinality constraint to control the number of assets in the

portfolio. However, in this case, such constraint includes a binary variable, generating a

mixed-integer quadratic programming problem (MIQP), which signiĄcantly increases the

complexity of the model from a computational point of view. In this sense, several ways to

perform tracking with a good performance have already been proposed. Use of quadratic

programming (quadratic programming - QP) with genetic algorithms (SantŠAnna et al.,

2017), the cointegration approach (Dunis; Ho, 2005; Alexander; Dimitriu, 2005), and use

of heuristics (Beasley; Meade; Chang, 2003; Scozzari et al., 2013) are just some examples

among the various studies that test different methods for solving the IT problem, in the
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search for reducing solution time and maintaining a good tracking performance.

Concerning market efficiency, Maciel (2021) (which we will refer to as LM) makes

use of efficiency considerations in the minimum variance problem, using an exogenous

approach, optimizing portfolios with a set of more efficient assets and another set of

less efficient ones. Their results demonstrate a good performance for the most efficient

set, when compared to the less efficient. Similarly, the present study proposes to employ

efficiency constraints in the index tracking (IT), as an alternative approach to perform

portfolio selection. By including asset-level efficiency constraints, the solution space is

restricted to a certain efficiency level, reducing the number of assets that are part of the

set of feasible solutions to the problem. In this way, the efficiency acts as a cardinality

constraint, reducing the size of the portfolio as the efficiency constraint in the model

becomes more severe. Therefore, tracking portfolios are created with a limited number

of assets without the use of a cardinality constraint in the optimization model. The

optimization model can be deĄned as a regular quadratic programming (QP) model, which

generates solutions instantly. As in LM, the Multifractal-Detrended Fluctuation Analysis

(MF-DFA) Ű proposed by Kantelhardt et al. (2002) Ű was used to compute the Market

DeĄciency Measure (MDM).

To analyze the effects of efficiency constraints on IT models, we go beyond simply

including them in the models. Our tests are carried out in different markets, with different

levels of development (United States, Japan and Brazil), which should show important

results and internationalization for the role of asset efficiency in IT models. We chose

the US and Japan market as these are classiĄed as developed markets, and have one of

the highest trading volumes among their class. Similarly, among markets classiĄed as

advanced emerging, Brazil stands out as one of the main ones, in terms of trading volume.

We use a long range of portfolio projection data, from 2012 to 2021, which includes both

bull and bear markets, allowing us to investigate the performance of these portfolios

under different market conditions. Our results indicate a good performance of tracking

portfolios with efficiency constraints at the asset level. We identiĄed that there is a trade-off

between efficiency and tracking error: as we insert efficiency restrictions into the model,

and, consequently, restrict the average number of assets in the portfolio, the tracking error

increases. This effect is more pronounced for emerging markets, as is the case of Brazil in

our sample. Additionally, the results of tracking portfolios with efficiency constraints are

compared with the results obtained by other approaches studied in the literature, which

are concerned with improving the tracking performance of portfolios, but which are more

complex from a computational point of view. Our results are similar to those obtained

using more complex methods, demonstrating the relevance of using efficiency constraints.

This dissertation contribute to the literature concerning portfolio optimization and

index tracking in different ways. First, the results show that the models based on efficiency
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for index tracking generate portfolios with an acceptable number of assets, obtaining

results instantly, since the problems are formulated in the form of quadratic programming

(QP). As a second contribution, from an empirical point of view, the time window chosen

and the three Ąnancial markets selected for the empirical analysis resulted in distinct

Ąndings for markets with different levels of Ąnancial development, both in periods of strong

stability and high volatility (such as during Covid-19 pandemic). Finally, as a third one,

we believe that this study can, together with that of LM, open the Ąeld for further research

on the consideration of asset efficiency in portfolio optimization.

The dissertation is structured as follows. The 2 section reviews the literature

relevant to the problem of index tracking and market efficiency; the 3 section demonstrates

the efficiency measurement method and formulates the optimization problems used; the 4

section presents the empirical results procedures; and, Ąnally, the 5 section concludes the

dissertation.
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2 Related Literature

2.1 The efficienct market hypothesis

The efficient markets hypothesis (EMH), formally developed by Samuelson (1965)

and Fama (1970), changed the way investors look at their investments, raising doubts

about the effectiveness of active portfolio management. An efficient market is one in which

prices always reĆect all the information available to agents, thus there is no arbitrage

opportunities. The implications of EMH go beyond the performance of portfolios, having

an effect on real decisions in the economy, i.e., inefficient markets, where prices do not

reĆect the fair value of assets, can be responsible for misallocations of resources in the

economy, given that Ąnancial assets also guide capital allocation decisions.

Sharpe (1991) demonstrates what he calls the "arithmetic of active management",

where, using only simple arithmetic, it is possible to see that active investment strategies

do not make sense, and present worst performance than passive strategies after costs

(i.e. , α < 0), considering that the costs of actively managed portfolios are considerably

higher than those of passive portfolios (French, 2008). In line, several empirical studies

demonstrate the inability of active strategies to overcome passive returns (market returns)

in the long term (Fama; French, 2010; Frino; Gallagher, 2001; Malkiel, 1995; Busse; Goyal;

Wahal, 2010).

This is the basis on which passive investment strategies, such as index tracking

(IT) strategies, are supported. In an efficient market, where asset prices reĆect all the

information available to agents, i.e., equilibrium prices reĆect the fair value of assets,

where arbitrage opportunities would not exist. In this sense, the popularity and growth of

index funds (funds that seek to replicate market performance) and ETFs (exchange-traded

funds) is justiĄed (Appel; Gormley; Keim, 2016; Hshieh; Li; Tang, 2021).

2.2 The index tracking problem

A relatively simple way to replicate a market index would be to form a portfolio

with the same assets and their proportions as the objective index. However, holding a

large number of assets in broad indices, such as the Nikkei 225, S&P500 and Russell 1000,

for example, would cause wealth to be allocated in a very dispersed way, generating high

monitoring costs, due to the need to monitor the weights of a large number of assets. With

this, the need arises to seek the yield of an index, but with a smaller number of assets.

This is the essence of the index tracking (IT) approach. In short, the objective is to obtain



Chapter 2. Related Literature 15

a return on the formed portfolio that is as close as possible to the return of the market

index, with an acceptable number of assets. In this sense, several methods were developed,

and trade-offs were observed, aiming to improve the tracking error (TE) of the portfolios

formed, i.e., the difference between the portfolio return and the index return.

In order to try to improve the results of IT portfolios, Beasley, Meade and Chang

(2003) uses genetic algorithms to solve the problem, including transaction costs, limit

on the number of assets and rebalancing controls in the model. The authors observe

interesting trade-offs, as in the case of transaction costs, where the TE reduces with higher

limits of transaction costs, and also for the case of return in excess of the index (enhanced

index tracking problem), where, when this increases, the TE also increases.

Gaivoronski, Krylov and Wijst (2005) investigate the role of the number of assets

in IT portfolios, as well as the impact of adjustments to new information available in the

market (the rebalancing of these portfolios), analyzing static and dynamic IT strategies.

The authors identify a trade-off between tracking error and transaction costs: when

portfolios are rebalanced more frequently, TE decreases, but transaction costs increase,

given the greater volume of transactions. As for the number of assets, it is observed that

larger portfolios have lower TE, and, consequently, less need for rebalancing. The opposite

occurs for portfolios with a low number of assets.

Due to the complexity of solving the IT problem, especially in cases of large

indices, several heuristics were developed, with the objective of obtaining good results in

an acceptable computational time, such as Guastaroba and Speranza (2012), which use

the Kernel Search heuristic to solve the problem, comparing with the performance of a

commercial solver; Scozzari et al. (2013), which use Differential Evolution; SantŠAnna et

al. (2017) (henceforth, SFGB), which use a hybrid solution method, combining a genetic

algorithm and nonlinear mathematical programming, obtaining good results with low

computational time. Also, the authors employ tests in poorly studied markets, such as

the Brazilian market, which is marked by high volatility when compared to developed

markets. In that market, the authors replicate an index composed of 69 stocks, in the

period studied, with only 5 and 10 assets.

Studies also address metaheuristics to solve the problem. Gnägi and Strub (2020),

compare the performance of portfolios formed for the enhanced index tracking problem

(i.e., portfolios that seek to obtain a slightly higher performance than the market), using

different objective functions, and formulating a mixed-integer linear programming problem

(MILP) and mixed-integer quadratic programming (MIQP), aggregating metaheuristics,

applying to large indices, such as indices of up to 9,000 stocks.

Several other methods were used, in search of improvements in the performance

of the portfolios, as in Dunis and Ho (2005) and SantŠAnna, Filomena and Caldeira

(2017), which use the cointegration approach to form the portfolios; Corielli and Marcellino
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(2006) and Jiang and Perez (2021), which use factor models to the IT model; SantŠAnna,

Caldeira and Filomena (2020) uses a method derived from lasso regression, comparing

with cointegration strategies.

Another extremely relevant consideration in IT models is the rebalancing strategy.

New information available to the markets may alter the prices of the assets in the portfolio,

causing a distance from the index. In line, adverse market conditions can make tracking the

index difficult, generating the need to review the composition of the portfolios. Strub and

Baumann (2018) use a MILP formulation, considering rebalancing, and highlight the trade-

off between a static approach (with little or no rebalancing) and portfolio performance

(tracking error).

2.3 EMH and index tracking strategy

A common objective in all the studies cited is the search for improvements in index

tracking models. Improvements are often accompanied by costs, either in the form of

complex numerical methods or empirical trade-offs. This article focuses on another factor

that we consider fundamental to obtain a portfolio that effectively replicates an index: the

quality of the price time series considered in the optimization period (in-sample period,

i.e., the past data of the assets). By quality, we refer to the degree to which asset prices

reĆect all available information, i.e., whether equilibrium prices reĆect the fair value of

the stocks. As discussed in the 3.1 section, different methods were applied to measure

efficiency, in different forms of EMH, and several results and implications were obtained,

justifying the extensive amount of tests in the literature (Cajueiro; Tabak, 2004; Tran;

Leirvik, 2019, among many others).

LM employs efficiency considerations in the classic portfolio optimization problem,

the minimum-variance (MV) model, in the Brazilian market. The author uses an exogenous

approach, selecting the set of assets, based on the efficiency levels, to compose the set

used in the optimization process. The performance of portfolios formed considering a set

of more efficient assets is compared with the portfolios formed by the set of assets with

lower levels of efficiency. The results demonstrate better performance of portfolios formed

by more efficient assets in terms of risk and return.

The main insight that can be extracted from the study of LM is: portfolios with

more efficient assets can generate a better estimated covariance matrix, precisely because

the asset price series more adequately reĆects the risk-return relationship of the assets,

i.e., because prices have a good quality of information efficiency. As assets are, in fact,

more efficient, models based on the CAPM (Sharpe, 1964), for example, will be able to

provide better information for a more efficient set of assets than for less efficient ones.

Moving on to passive management, we can imagine that the set of assets available to us



Chapter 2. Related Literature 17

is made up of more efficient assets that have or do not have a good relationship with

the index, and less efficient assets that have a good relationship with the index or not.

In this way, it would be preferable, in an ex-ante thinking, to select assets with a good

relationship with the index and that are more efficient, as their good relationship would be

more consistent. However, when we restrict the space of feasible solutions to just the most

efficient assets, this subgroup also includes assets that do not have a good relationship

with the index. Thus, when we demand more efficient assets, and consequently reduce the

number of assets that are part of the portfolios, we are faced with the trade-off between

efficiency and tracking error. This trade-off will be discussed in the 4 section.
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3 Method

In this section, we will present the structure of the optimization models that will

be used in the empirical tests described in the section 4. First, in the subsection 3.1,

we discuss the measurement of the inefficiency measure, the Market DeĄciency Measure

(MDM), through the Multifractal-Detrended Fluctuation Analysis (MF-DFA) approach;

later, in the subsection 3.2, we present the formulation of the optimization models used

for the formation of portfolios, whose performance will be analyzed in the section 4.

3.1 Efficiency measurement

Since the structuring of the EMH by Fama (1970), several studies have focused on

testing the three proposed forms: weak, semistrong and strong forms. In particular, tests

related to the last two forms may present several empirical difficulties, as they require

information in addition to stock trading data, such as other Ąnancial information and

internal information. Keown and Pinkerton (1981) analyze the stock price response of

companies targeted by mergers and acquisitions; Patell and Wolfson (1984) analyze, using

intraday data, the response of stock prices to information on earnings and dividends

disclosed; Bardos (2011) analyzes the effect of the quality of ĄrmsŠ Ąnancial statements on

the liquidity of their shares. The Ąndings indicate the existence of a positive relationship

between the quality of Ąnancial statements and liquidity. These are some of the many

examples of testing the incorporation of Ąnancial information, which do not include past

trading data, into asset prices.

Such empirical tests of the semi-strong or strong form are extremely laborious, as

they seek to analyze informational efficiency with higher levels of information, unlike the

weak form (Holderness; Sheehan, 1985; Lin; Howe, 1990; Brio; Miguel; Perote, 2002). The

weak form, in turn, has been extensively tested in the literature, as it focuses only on

the reĆection of past trading data, seeking to answer whether or not stock prices follow a

random walk.

Basically, testing the weak form of EMH is testing whether there is predictability

of asset prices, using only past trading data as inputs. We can say that this test consists

of verifying whether future prices depend on past prices, so that future prices can be

predicted. There are numerous methods for testing the weak form of EMH, such as serial

correlation, variance ratio, unit root and spectral analysis, for example, which have been

extensively employed in the EMH literature (Lim, 2007).

A method that has gained notoriety in the literature is the Multifractal-Detrended
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Fluctuation Analysis (MF-DFA), proposed by Kantelhardt et al. (2002). In summary,

the measure seeks to identify the persistence of asset returns, verifying the dependence

of future asset returns on their past returns, within the scope of the weak form of the

EMH. In summary, the measure seeks to identify the persistence of asset returns, verifying

the dependence of future asset returns on past returns. Al-Yahyaee et al. (2020) use the

aforementioned method to verify efficiency in the cryptocurrency market, as well as search

for the determinants of efficiency. The results indicate that higher liquidity combined with

lower volatility help arbitrageurs to eliminate existing arbitrage opportunities, raising

efficiency levels. In another study, Al-Yahyaee, Mensi and Yoon (2018) compares the

efficiency, measured through the MF-DFA, of Bitcoin with the stock market and the gold

market, indicating that Bitcoin is the most inefficient among the analyzed assets.

Several other studies use the MF-DFA to analyze the efficiency of markets. Choi

(2021) analyzes the efficiency of different sectors of the economy that are part of the

S&P500 during periods of instability. Zhu and Bao (2019) compare the efficiency of the

largest ETFs traded in the US market: SPY, DIA and QQQ, which seek to replicate the

S&P500, Dow Jones Industrial Average and NASDAQ 100, respectively. Their results

indicate that the QQQ is the most efficient ETF in the sample, and that the 2008 Ąnancial

crisis negatively affected ETFs in terms of efficiency. Tiwari, Aye and Gupta (2019) uses

almost a century of data from eight markets, both developed and emerging, seeking answers

about the efficiency of these markets. The results indicate that markets are more efficient

in the long run than in the short run, and that efficiency varies over time.

Unlike the literature that seeks to test the weak form of the EMH by the MF-DFA,

the present study only makes use of this efficiency measure, aiming to verify the impact

of the inclusion of efficiency constraints, measured by the MF-DFA, on index tracking

portfolios. Basically, MF-DFA collects the volatility of the time series in each time interval,

as a statistical point that is used to calculate volatility functions. Then the Hurst exponents

are determined based on the power law of volatility functions. According to Kantelhardt

et al. (2002), the estimate follows the following steps. Let x(i), i = 1, ..., N be a time

series of log asset returns, where N is its length. The Ąrst step is to determine the proĄle

function, y(i), which can be obtained by the difference between x(i) and its mean, x̄(i),

for i = 1, .., N :

Step 1. ProĄle Function:

y(i) =
i
∑

k=1

[x(k) − x̄], (3.1)

where x̄ comprises the mean of the time series.

Step 2: the proĄle function (y(i)) is divided into Ns ≡ int(N/s) non-overlapping

segments, of equal length s. The number of N segments will not necessarily be an integer
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that is a multiple of the segments s. Thus, a small part at the end of the series can be

Şleft overŤ. In order not to disregard this part of the time series, we repeated the same

procedure, this time starting from the opposite end of the series, until its beginning. The

result is two Ns segments, so we have 2Ns.

Step 3: the local trend is calculated for each of the 2Ns segments by a least squares

Ąt of the series. From there, the variance is obtained:

F 2(s, v) =
1

s

s
∑

i=1

¶y[(v − 1)s+ i] − yv(i)♢2, (3.2)

for each segment v, v = 1, ..., Ns, and

F 2(s, v) =
1

s

s
∑

i=1

¶y[N − (v −Ns)s+ i] − yv(i)♢2 (3.3)

for each segment v, v = 1, ..., 2Ns. Here, yv(i) is the polynomial Ątted in the segment v.

Step 4: the q-th order Ćuctuation function Fq(s) is obtained by averaging all

segments (subsets):

Fq(s) =



1

2Ns

2Ns
∑

v=1

[F 2(s, v)]q/2

]

1

q

(3.4)

where q ≠ 0. For q = 0, the value h(0) cannot be determined directly because of the

divergent exponent. Instead, a logarithmic averaging procedure should be employed. For

q = 2, we have a standard DFA procedure (Tiwari; Aye; Gupta, 2019).

Step 5: Determine the scaling behavior of the Ćuctuation functions by analyzing

log-log plots of Fq(s) versus each value of q. If the series x(i) is correlated to the power

law over a long interval, Fq(s) increases to large values of s, like a power law:

Fq(s)s
h(q) (3.5)

In general, the Hurst exponent, h(q), will depend on q. If h(q) does not depend on

q, the time series is monofractal, otherwise it is multifractal, meaning that the behavior

of scaling of small Ćuctuations (q < 0) is different from that of large variations (q > 0).

We adopt a range from -4 to 4 for the q, to capture short-term and long-term properties,

respectively, in the same way as LM, as well as in several other studies in the literature

that test the weak form of EMH using MF-DFA (Tiwari; Albulescu; Yoon, 2017; Zhu;

Bao, 2019; Tiwari; Aye; Gupta, 2019). If 0 < h(q) < 0.5, the series has anti-persistence.

If 0.5 < h(q) < 1, the time series has persistence. If h(q) = 0.5, the stochastic process

corresponds to an uncorrelated geometric Brownian motion - a random walk. To determine

the asset deĄciency level, we used the Market DeĄciency Measure (MDM), according to

Tiwari, Aye and Gupta (2019) and LM:
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MDM =
1

2
(♣h(qmin) − 0.5♣ + ♣h(qmax) − 0.5♣) (3.6)

In this study, qmin = −4 and qmax = 4. Thus, the interpretation of the MDM is as

follows. The higher (lower) the MDM value, the less (more) efficient the asset. If MDM

= 0, the asset or market in question can be considered efficient.

3.2 Index tracking optimization models

In this subsection, we present the mathematical formulation of the optimization

models used in the study. First, in the 3.2.1 subsection, we present the unrestricted model,

which we call the benchmark model, which does not have any cardinality constraint,

which will be used as a basis for comparison for the efficiency constrained model, in turn,

presented in the 3.2.2 section.

3.2.1 Benchmark model

For all models, we will use a classic objective function, which consists of minimizing

the distance between the return on the portfolio formed and the return on the market index.

We formulate a benchmark model, which will be the basis of performance comparison

for the results obtained by the other models formulated in this work. We call this model

M1-B.

Let I be a set of assets i = 1 : N that are part of the composition of the market

index that we are trying to replicate. Let Rt be the return on the market index in period

t, and xi,t be the weight of asset i in the portfolio in period t. Let X∗

t be the portfolio

used to replicate the market index in the period t. The objective is to form a portfolio

X∗

t = ¶xi,t, i ∈ I♢, in each period t, that minimizes the average difference of return between

the index and the portfolio. Let ψ be the set of portfolio projection periods. Then, we

must build portfolios X∗

t , ∀ t ∈ ψ, such that the return distance in relation to the index is

minimized. The frequency by which we restate the weights of assets in X∗

t is determined

by the rebalancing interval.

The objective function used is associated with the formulation made by Gaivoronski,

Krylov and Wijst (2005), and used in several other studies, such as in SFGB, and consists

of minimizing the mean squared difference of the return of the portfolio and the index,

in a given estimation interval (in-sample period), to be projected after this process (out-

of-sample period). Let ri,t be the return on asset i ∈ I in the period t, we formulate the

benchmark model:
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min
x

1

T

T
∑

t=1



N
∑

i=1

xirit −Rt

2

(3.7)

s.t.
N
∑

i=1

xi = 1 (3.8)

xi ≥ 0 ∀ i ∈ ¶1, · · · , N♢

(3.9)

where the constraint 3.8 establishes that the total wealth must be allocated to the portfolio,

and 3.9 comprises the constraint of non-negativity, where short positions are not allowed.

In this problem, we have a quadratic objective function and a set of linear constraints,

thus having a quadratic programming problem (QP).

3.2.2 Efficiency-constrained model

min
x

1

T

T
∑

t=1



N
∑

i=1

xirit −Rt

2

(3.10)

s.t.
N
∑

i=1

xi = 1 (3.11)

xiγi ≤ xiπ ∀ i ∈ ¶1, · · · , N♢ (3.12)

xi ≥ 0 ∀ i ∈ ¶1, · · · , N♢

(3.13)

where γi is the Market DeĄciency Measure (MDM) of asset i, and π is the applicable

inefficiency threshold at the asset level. We will use three different values for the efficiency

limit, π, for each rebalancing: (i) the median of the MDM distribution; (ii) the 35th

percentile of the MDM distribution; and (iii) the Ąrst quartile of the MDM distribution.

So, the M2-E model can take three different forms, which vary with the efficiency limit

constraint imposed on each asset i ∈ I: model with efficiency constraint that comprises the

median of the MDM distribution (we call this model M2-E-M); (ii) an efficiency-constrained

model that comprises the 35th percentile of the MDM distribution (we call it the M2-E-P35

model); and (iii) an efficiency-constrained model that comprises the Ąrst quartile of the

MDM distribution (we call it the M2-E-1Q model). This constraint is represented by the

expression (3.12).

As mentioned in the 3.1 section, the lower the MDM for a given asset, the more

efficient it is. Thus, selecting assets that have an MDM below the median of the MDM
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distribution, comprises selecting the most efficient half of the distribution. When the

constraint changes to the 35th percentile, in the M2-E-P35 model, we are being more

rigorous in relation to the level of MDM that the assets need to present to be part of the

set of feasible solutions. The M2-E-1Q model is the most demanding, as it only considers

assets that have MDMs that are in the Ąrst quartile of the MDM distribution.

We believe that the effect of π on the optimized portfolios should be the following: as

we make the efficiency constraint more severe in the model, i.e., we move from the median

(M2-E-M model) to the Ąrst quartile (M2-E-1Q model), the number of assets is reduced

considerably, and the tracking error (TE) increases. This cost of maintaining a tracking

portfolio with a low number of assets, the TE, should be more pronounced in emerging

markets, where overall efficiency levels tend to be lower. Tracking portolios in markets

with lower efficiency levels would be more penalized by the efficiency constraint, presenting

a more restricted set of assets, which do not necessarily present a good relationship with

the target index.
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4 Results

This section is concerned with presenting the results of the dissertation. In the

section 4.1.1, the data used are described, and the procedures conducted in the empirical

tests are presented in the section 4.1.2; in 4.1.3, we comment on the results obtained in

measuring the efficiency of assets in the different markets analyzed; the 4.2 section presents

the main results of the optimized portfolios; in the section 4.3, we compare our results

with the results of another methods used in the literature; in the section 4.4, we compare

the results of efficiency-constrained portfolios with liquidity-constrained portfolios; in the

subsection 4.5, we discuss the results as a whole; and Ąnally, in 4.6, we present the results

of a statistical test of difference in means of the projected portfolios.

4.1 Data and empirical strategy

4.1.1 Data

To carry out the empirical research procedures, we selected three markets: the US

market, the Japanese market and the Brazilian market. Thus, we have two developed

markets (USA and Japan) and an emerging one (Brazil), which will help to identify

differences in the behavior of projected portfolios in markets with different patterns of

efficiency, liquidity and volatility. Table 1 presents the FTSEŠs 2022 annual classiĄcation

of equity markets, showing the classes in which the mentioned markets fall.

We chose, among the markets in the range of markets considered developed, the

US and Japanese markets, as they are one of the largest markets in the world, one of the

most explored in the literature, with great availability of historical data, and which have a

total traded value1 in 2019 of USD 23 and USD 5 trillion, respectively. In the emerging

class, we selected the Brazilian market, which is classiĄed as an advanced emerging market,

being one of the most representative in its classiĄcation, with the largest trading volume

in 2019 (about USD 1 trillion).

For the US market, the portfoliosŠ target index is the S&P500, which is one of the

most famous indices in the world. For this market, our dataset comprises the daily returns

of the 505 assets that were part of this index in February 2022, plus the index itself, from

January 2010 to December 2021. For the Japanese market, we selected as a target index

the Nikkei 225, which is one of the most popular in that market, and the sample of its

components in February 2022, comprising 224 assets, in the same data range (Jan/10 to

Dec/21). Finally, for the Brazilian market, the Ibovespa was selected as the target index
1 Information obtained from the World Bank database <https://data.worldbank.org/>
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for the portfolios, which is the most popular index in this market. As a dataset, we selected

the assets that make up the Ibovespa in February 2022, comprising 93 assets, for the same

mentioned interval (Jan/10 to Dec/21). The daily returns of the datasets are adjusted for

splits, mergers and dividend payments. Therefore, our tests are conducted considering a

large range of data, covering periods of bull and bear markets, and in portfolios that seek

to replicate both smaller indices, such as the Ibovespa, and broader indices, such as the

S&P500.

All daily return data was obtained from Yahoo Finance, using the yfR (Perlin,

2022) package. We estimate the Hurst exponents, h(q), using the MFDFA package (Laib;

Telesca; Kanevski, 2019). This stage of data collection and estimation was conducted in R.

For the optimization process, we used the AMPL software, with the Gurobi solver. The

tests were conducted on a computer with an AMD Ryzen 5 3600 processor, 3.60 GHz, and

16GB of RAM. As will be commented in the following sections, the results obtained in the

optimization process are instantaneous.

4.1.2 Empirical strategy

The portfolio projection approach used in this study is the rolling window, where,

for the formation of the initial portfolio, for example, we use a data interval of t = 120

trading days immediately prior to the initial portfolio projection date, as used by Filomena

and Lejeune (2012) and Filomena and Lejeune (2014), to perform the optimization, period

that we call in-sample. After the portfolio is formed, it is projected from t = 121 until the

next rebalancing period, which we call out-of-sample, and so on. We use an out-of-sample

portfolio projection range from January 2012 to December 2021 for all markets covered,

comprising a 10-year projection. In this interval, we use a dynamic approach, where the

portfolios are updated every 120 (semestrally), 240 (annually) and every 480 days (two

years). For each rebalance, we then carry out a new optimization process, using the daily

return data from the 120 days immediately prior to the rebalance date (in-sample period).

With regard to efficiency, we also adopt a dynamic approach, differently from LM,

which performs the estimation of efficiency only before the beginning of the out-of-sample

period (projection period for the portfolios), and considers that the assets have a static

efficiency throughout rebalancing. LM makes use of three years of data before the out-

of-sample period to estimate asset efficiency. In a different way, our study uses one year

of daily returns immediately prior to each rebalancing to estimate efficiency, instead of

three years. This means that, for each rebalancing, we use a new, more up-to-date set

of asset efficiency data, unlike the one used by LM, which measures asset efficiency only

once for portfolio projection. We also dynamically estimate asset efficiency using three

years of data immediately prior to each rebalancing, and the results are not affected when

compared to portfolios formed with efficiency restrictions formed by one year of past data
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(these results are available upon request). Considering all markets and the entire range,

we have a total of 798 portfolios formed in this study, demonstrating the extent of the

empirical procedures that will be dealt with in this section.

To measure the tracking performance of the portfolios in the projection interval,

we use the tracking error (TE), that we deĄne as the variance of the difference between

index and portfolio daily tracking returns, as in Beasley, Meade and Chang (2003):

TE∗ =
1

T ∗



T ∗

∑

i=1

♣rp
t −R∗

t ♣2
]

1
2

(4.1)

where T ∗ represents the total range of out-of-sample periods; r∗

i,t represents the return

on asset i for the out-of-sample period t ∈ T ∗; therefore, rp∗

t =
∑I

i=1 xir
∗

i,t represents the

return of the portfolio formed in the out-of-sample interval; and R∗

t is the index return in

t ∈ T ∗.

The turnover of portfolios cannot be ignored either, being extremely important

when choosing suitable models. Turnover is a proxy for the amount of trades carried out

by the portfolios over time. Thus, the greater the turnover, the greater the amount of

asset trades in the time interval. In this way, we measure the average monthly turnover

of the portfolios based on the following formulation, used by SantŠAnna, Caldeira and

Filomena (2020):




np
∑

p=2



∑N
i=n ♣xp

i − xp−1
i ♣

2





×
1

f
(4.2)

where np is the number of portfolios formed in each model; p and p− 1 are the rebalancing

time instants; and f = 6 for the semiannual rebalancing, 12 for the annual rebalancing,

and 24 for de two years interval of rebalancing.

4.1.3 Efficiency levels

The level of market efficiency could have a signiĄcant inĆuence on the performance

of tracking portfolios. This section is concerned with discussing a little about the difference

between these levels in the markets used in this study. The FTSE Russell classiĄes capital

markets according to their level of development, as can be seen in the 1 table, which

shows the Equity Country ClassiĄcationŠs report of September 2022. The level of efficiency

also varies across markets, where emerging markets tend to be less efficient in terms of

risk-return pricing than developed markets.

The Ągure 1 demonstrates the trajectory of the minimum of the Market DeĄciency

Measure (MDM) of the assets, i.e., the MDM of the most efficient asset, for each market

studied, along the rebalancing intervals. For each market, and for the portfolios that are

rebalanced at an interval of 120 days (semi-annual), efficiency was measured 21 times,

comprising the 21 rebalancing of these portfolios, described in the previous subsection.
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Figure 1 Ű Minimum of the Market Efficiency Measure (MDM), during the rebalancing
intervals (semi-annual, comprising 21 rebalances), for each market. We have a
total of 21 observations for each market.

The MDM is a measure of inefficiency, in this way, the higher, the less efficient the asset

or the market, and the lower, the more efficient the asset or the market.

The Ągure 1 demonstrates the predominance of the US market in terms of efficiency,

followed by Japan and, Ąnally, Brazil. The Japanese market has shown a trajectory of

volatile efficiency over time, in the same way as the Brazilian market, where the latter is

the most affected in periods of high volatility, such as the period of the covid-19 crisis.

In this period, we observed an increase in MDM, demonstrating a loss of efficiency for

all markets, especially for Brazil. We also observe a loss of efficiency for the Brazilian

market during the period 2014-2016, which coincides with a period of national crisis in

the Brazilian economy.

4.2 Optimization results

In this subsection, we will address the main results obtained with the empirical

procedures. After performing the optimization of the portfolios, using the models listed in

the section 3, and the projection of the portfolios, according to the aspects mentioned in

the sections 4.1.1 and 4.1, we calculate the descriptive statistics of the projection of each

model, for each type of rebalancing. Tables 2, 3 and 4 present the results described for the

portfolios projected for the US, Japanese and Brazilian markets, respectively.

For the US market, in the 120-day (semi-annual) rebalancing strategy, we observed

that all models, including the benchmark model (M1-B), have an accumulated return in

the out-of-sample period that is higher than the accumulated return of the S&P500 index.

In terms of correlation, we observe that this is slightly lower for the models with efficiency

constraints (M2 models), when compared to the benchmark model, and the correlation

decreases as the efficiency constraint becomes more severe, i.e., for the M2-E-P35 and

M2-E-1Q models, which have an efficiency constraint at the asset level that comprises
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Table 1 Ű FTSE Equity Country ClassiĄcation - September 2022.

Developed Advanced Emerging Secondary Emerging Frontier

Australia Brazil Chile Bahrain
Austria Czech Republic China Bangladesh

Belgium/Luxemburg Greece Colombia Botswana
Canada Hungary Egypt Bulgaria

Denmark Malaysia Icenland Côte dŠIvoire
Finland Mexico India Croatia
France South Africa Indonesia Cyprus

Germany Taiwan Kuwait Estonia
Hong Kong Thailand Pakistan Ghana

Ireland Turkey Phillipines Jordan
Israel Watar Kazakhstan
Italy Romania Kenya
Japan Saudi Arabia Latvia

Netherlands United Arab Emirates Lithuania
New Zeland Malta

Norway Mauritius
Poland Morocco

Portugal Nigeria
Singapore Oman

South Korea Palestine
Spain Peru

Sweden Republic of North Macedonia
Switzerland Serbia

UK Slovak Republic
USA Slovenia

Sri Lanka
Tanzania
Vietnam

the 35th percentile and Ąrst quartile of the efficiency distribution in each rebalancing,

respectively (remembering that, the lower the MDM, more efficient is the asset).

However, it is worth mentioning that the M2 models also show a considerable

reduction in the number of assets that are part of the portfolio, having, on average, 119

assets in the M2-E-1Q model, with a more severe restriction of efficiency, compared to 474

in the benchmark model (M1-B). As the model requires that most efficient assets be part

of the feasible solutions space, we expect fewer assets to compose the portfolios of these

models. As will be seen below, when we look at the tracking error (TE), we expect it to

increase as we reduce the number of assets that are part of the portfolios.

For the Japanese market, in a slightly different way from the US market, we observe

a greater proximity of the accumulated return in the period of the models with efficiency

restrictions to the accumulated return of the Nikkei 225 index. For example, in the case of

rebalancing in an interval of 120 days, for the M2-E-P35 model, we have a cumulative

return of 267%, while the NikkeiŠs cumulative return was 241%, and that of the M1-B

model was 335%. It is also worth mentioning the difference between the average number
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Table 2 Ű Descriptive results for the US market.

US (developed)

120d 240d 480d

Descriptive Stats S&P500 M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q

Min -11.98% -11.78% -12.16% -12.11% -13.50% -11.74% -13.05% -12.89% -13.08% -11.75% -13.05% -12.89% -13.08%
Max 9.38% 10.37% 10.99% 11.34% 11.81% 9.98% 12.13% 11.43% 11.27% 9.99% 12.13% 11.43% 11.27%
Annual Volatility 16.35% 16.35% 16.53% 16.72% 17.09% 16.32% 17.01% 17.05% 17.16% 16.36% 16.98% 17.03% 17.34%
Cumulative Return 280% 397% 379% 344% 406% 430% 416% 375% 454% 451% 465% 415% 451%
Correlation 1.000 0.994 0.987 0.981 0.976 0.994 0.981 0.976 0.973 0.990 0.975 0.968 0.964
Avg. Number of Assets 474.19 237.24 166.29 118.90 476.27 237.64 166.64 118.91 478.67 238.33 167.17 119.67
Monthly Avg. Turnover 3.53% 6.80% 6.97% 7.24% 3.45% 6.95% 7.21% 7.59% 1.73% 3.53% 3.61% 3.80%

Annual volatility (σa) is calculated as follows: σa = σd

√

252), where σd comprises the standard deviation
of daily returns. We use the convention of 252 trading days for one year.

Table 3 Ű Descriptive results for Japanese market.

Japan (developed)

120d 240d 480d

Descriptive Stats Nikkei 225 M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q

Min -7.92% -7.99% -7.90% -8.30% -8.07% -8.25% -7.94% -7.93% -7.93% -8.27% -8.19% -7.93% -7.93%
Max 8.04% 7.87% 7.99% 7.49% 7.69% 8.07% 8.06% 7.31% 7.16% 8.28% 8.06% 7.31% 7.16%
Annual Volatility 20.66% 20.68% 20.61% 20.67% 20.73% 20.84% 20.74% 20.81% 21.02% 21.31% 21.29% 21.37% 21.39%
Cumulative Return 241% 335% 279% 267% 231% 330% 338% 316% 245% 348% 262% 212% 212%
Correlation 1.000 0.989 0.977 0.969 0.961 0.987 0.977 0.968 0.955 0.988 0.977 0.966 0.949
Avg. Number of Assets 201.19 107.57 75.43 54.05 204.36 109.18 76.45 55.00 209.17 111.50 78.33 56.00
Monthly Avg. Turnover 8.83% 12.21% 13.08% 13.95% 9.33% 12.81% 13.97% 14.58% 2.22% 3.28% 3.62% 3.76%

Annual volatility (σa) is calculated as follows: σa = σd

√

252), where σd comprises the standard deviation
of daily returns. We use the convention of 252 trading days for one year.

Table 4 Ű Descriptive results for Brazilian market

Brazil (emerging)

120d 240d 480d

Descriptive Stats Ibovespa M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q

Min -14.78% -14.75% -14.72% -16.03% -14.07% -14.75% -14.72% -16.03% -14.07% -15.27% -14.92% -16.32% -14.07%
Max 13.91% 14.40% 14.44% 15.19% 12.93% 14.40% 14.44% 15.19% 12.93% 14.82% 14.55% 15.35% 12.93%
Annual Volatility 25.24% 22.04% 22.48% 23.10% 22.93% 22.49% 23.33% 24.20% 24.40% 23.15% 24.06% 25.23% 24.85%
Cumulative Return 85% 120% 223% 169% 76% 326% 496% 407% 177% 373% 410% 375% 164%
Correlation 1.000 0.887 0.870 0.851 0.829 0.895 0.878 0.857 0.832 0.905 0.885 0.879 0.852
Avg. Number of Assets 70.19 35.52 25.00 17.76 71.55 35.91 25.27 17.82 73.50 36.83 25.67 17.67
Monthly Avg. Turnover 9.02% 12.12% 12.71% 13.29% 4.79% 6.95% 7.64% 7.53% 2.55% 3.56% 3.84% 4.08%

Annual volatility (σa) is calculated as follows: σa = σd

√

252), where σd comprises the standard deviation
of daily returns. We use the convention of 252 trading days for one year.

of assets that make up the portfolios of each model. In the 120-day rebalancing strategy,

while the M2-E-P35 model uses, on average, 75 assets, the M1-B model uses, on average,

201. Correlation of returns with the return of the index presents, in the same way as

the US market, a downward trend as the models demand more efficient assets in their

composition.

For the Brazilian market, we noticed some differences from the other markets

analyzed, precisely because of the difference in efficiency and volatility standards existing

between developed and emerging markets. In Brazil, dealing with an emerging market

and with higher volatility patterns, we have lower correlations between the returns of

the Ibovespa index and the models, including for the benchmark model (M1-B). The

correlation of the model returns with the index return also decreases as the number of

assets decreases, i.e., moving from the M1-B model (unrestricted model) to the M2-E-1Q

model (with severe efficiency restriction).

The tables 5, 6 and 6 show the average annual tracking error (TE), and the overall
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average, for the US, Japanese and Brazilian markets, respectively. To measure the tracking

error, we use the deĄnition of the equation 4.1. For the US market, we observed that the

best average TE is always the M1-B model, which presents, for all rebalancing strategies,

a lower TE than the models with efficiency constraints. The results show that, as the

efficiency constraint becomes more severe in the model, i.e., we require more efficient assets,

the average number of assets that are part of the portfolios decreases, and the TE increases

slightly. For example, considering the semiannual rebalancing strategy in the US market,

the benchmark model (M1-B) has an average number of assets of 474, and an average TE

of 0.10% over the entire period. On the other hand, the model with efficiency constraint

on the median of the Market DeĄciency Measure (MDM) distribution, the M2-E-M, has

an average number of assets in the period of 237, about half the number used by the M1-B

model, with an average TE of 0.16%. Thus, the M2-E-M model demonstrates that the

cost of reducing the average amount of assets by 50% is a 0.06% increment in the average

tracking error.

Also, comparing the same two models, and looking at the year 2020, period of the

covid-19 shock in the markets, we notice that the two models have the same TE. This

means that, in this speciĄc case, portfolios formed by the M2-E-M model showed the same

level of vulnerability to crisis, in terms of TE, as the portfolios formed by the M1-B model.

For the Japanese market, we also see the same movement in terms of the average

number of assets and TE. The efficiency constraint helps to reduce the average number of

assets that are part of the portfolios, making them more manageable than larger portfolios,

however, this reduction comes with a cost, which is the TE. In the 120-day rebalancing

strategy, for example, the average TE for the entire out-of-sample period (projection

period) was 0.18%, 0.26%, 0.31% and 0.35%, for the M1-B, M2-E-M, M2-E-P35 and

M2-E-1Q models, respectively, while the average number of assets was 201, 108, 75 and 54,

respectively. A highlight for the volatility of the models with efficiency restriction, which

does not present a substantial increase in relation to the benchmark model and the Nikkei

225 index.

Regarding the Brazilian market, which is the emerging market in our set of analyzed

markets, we observed a general level of tracking error (TE) higher than the other markets,

precisely because of the difference in terms of volatility and structure in these markets.

Looking at the 120-day (semi-annual) rebalancing strategy, the Brazilian market has an

average TE for all models of 0.74%, compared to 0.17% for the US market and 0.28%

for the Japanese market. As evidenced by several studies, as in SFGB, high volatility

environments make tracking strategies difficult, increasing the tracking error of models

more severely than in more developed markets, where the level of volatility tends to be

lower. In the same way as for the US and Japanese markets, we observed a lower TE for

the unrestricted model in all rebalancing strategies, which is expected, given that it has
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Table 5 Ű Tracking Error results for the US market.

US (developed)

120d 240d 480d

Annual Tracking Error M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q

2012 0.08% 0.13% 0.14% 0.20% 0.08% 0.14% 0.13% 0.20% 0.08% 0.14% 0.13% 0.19%
2013 0.07% 0.13% 0.15% 0.18% 0.07% 0.13% 0.16% 0.19% 0.07% 0.15% 0.16% 0.21%
2014 0.07% 0.14% 0.16% 0.17% 0.07% 0.13% 0.14% 0.15% 0.07% 0.13% 0.14% 0.16%
2015 0.08% 0.15% 0.17% 0.18% 0.09% 0.14% 0.16% 0.17% 0.09% 0.16% 0.18% 0.18%
2016 0.09% 0.16% 0.19% 0.20% 0.11% 0.16% 0.20% 0.21% 0.12% 0.17% 0.20% 0.20%
2017 0.07% 0.14% 0.16% 0.17% 0.07% 0.15% 0.17% 0.18% 0.08% 0.14% 0.18% 0.19%
2018 0.10% 0.17% 0.21% 0.22% 0.12% 0.16% 0.20% 0.22% 0.14% 0.17% 0.23% 0.23%
2019 0.07% 0.17% 0.20% 0.19% 0.07% 0.16% 0.17% 0.19% 0.09% 0.14% 0.17% 0.18%
2020 0.26% 0.26% 0.34% 0.42% 0.25% 0.48% 0.50% 0.53% 0.33% 0.55% 0.60% 0.65%
2021 0.11% 0.19% 0.26% 0.28% 0.13% 0.18% 0.25% 0.25% 0.17% 0.28% 0.34% 0.36%

Average 0.10% 0.16% 0.20% 0.22% 0.11% 0.18% 0.21% 0.23% 0.12% 0.20% 0.23% 0.25%

Table 6 Ű Tracking Error results for the Japanese market.

Japan (developed)

120d 240d 480d

Annual Tracking Error M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q

2012 0.18% 0.28% 0.34% 0.36% 0.17% 0.25% 0.36% 0.39% 0.18% 0.27% 0.39% 0.44%
2013 0.20% 0.38% 0.41% 0.44% 0.21% 0.38% 0.42% 0.47% 0.19% 0.27% 0.41% 0.47%
2014 0.12% 0.17% 0.19% 0.26% 0.12% 0.18% 0.19% 0.28% 0.12% 0.18% 0.22% 0.28%
2015 0.13% 0.18% 0.26% 0.31% 0.14% 0.21% 0.31% 0.37% 0.15% 0.27% 0.31% 0.34%
2016 0.40% 0.44% 0.49% 0.49% 0.44% 0.45% 0.50% 0.49% 0.43% 0.46% 0.50% 0.48%
2017 0.18% 0.24% 0.26% 0.29% 0.24% 0.25% 0.26% 0.28% 0.12% 0.19% 0.22% 0.24%
2018 0.14% 0.20% 0.27% 0.30% 0.14% 0.24% 0.26% 0.31% 0.14% 0.27% 0.26% 0.34%
2019 0.15% 0.18% 0.25% 0.26% 0.14% 0.19% 0.30% 0.32% 0.15% 0.28% 0.31% 0.36%
2020 0.18% 0.32% 0.35% 0.46% 0.21% 0.27% 0.34% 0.58% 0.26% 0.31% 0.39% 0.66%
2021 0.13% 0.24% 0.30% 0.38% 0.15% 0.23% 0.28% 0.37% 0.19% 0.30% 0.36% 0.49%

Average 0.18% 0.26% 0.31% 0.35% 0.20% 0.27% 0.32% 0.38% 0.19% 0.28% 0.34% 0.41%

Table 7 Ű Tracking Error results for the Brazilian market.

Brazil (emerging)

120d 240d 480d

Annual Tracking Error M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q M1-B M2-E-M M2-E-P35 M2-E-1Q

2012 0.96% 0.95% 1.07% 1.20% 0.57% 0.64% 0.70% 0.80% 0.62% 0.64% 0.69% 0.79%
2013 0.97% 0.87% 0.94% 0.89% 0.86% 0.80% 0.89% 0.88% 0.64% 0.72% 0.72% 0.74%
2014 1.00% 1.07% 1.07% 1.08% 1.05% 1.07% 0.99% 0.91% 0.99% 1.04% 0.95% 0.90%
2015 1.07% 1.14% 1.28% 1.34% 1.10% 1.21% 1.46% 1.58% 0.98% 1.07% 1.06% 1.13%
2016 1.04% 1.12% 1.11% 1.15% 1.06% 1.13% 1.12% 1.24% 1.08% 1.17% 1.18% 1.29%
2017 0.44% 0.45% 0.46% 0.53% 0.64% 0.63% 0.63% 0.70% 0.68% 0.73% 0.74% 0.85%
2018 0.15% 0.43% 0.46% 0.61% 0.16% 0.31% 0.46% 0.64% 0.16% 0.29% 0.48% 0.64%
2019 0.11% 0.38% 0.41% 0.50% 0.13% 0.43% 0.44% 0.63% 0.15% 0.28% 0.40% 0.63%
2020 0.22% 0.41% 0.58% 0.57% 0.25% 0.42% 0.61% 0.67% 0.30% 0.47% 0.68% 0.72%
2021 0.19% 0.31% 0.37% 0.56% 0.17% 0.28% 0.39% 0.50% 0.26% 0.40% 0.56% 0.63%

Average 0.62% 0.71% 0.77% 0.84% 0.60% 0.69% 0.77% 0.85% 0.59% 0.68% 0.75% 0.83%

an average number of assets considerably higher than the efficiency-constrained models.

Looking speciĄcally at the 120-day rebalancing strategy, the average TE of the benchmark

model (M1-B) is 0.62% in the period, with an average number of assets of 70. Meanwhile,

the model with the most severe efficiency constraint (M2-E-1Q), has an average TE of

0.84%, with an average of 18 assets. The Ągure 2 illustrates the trajectory of nominal $ 1

USD invested in the S&P500, M1-B and M2-E-M portfolios formed for the US market,

with the semiannual update strategy, at the beginning of the projection period.

4.3 Method comparison

In this section, we compare the results of models with efficiency restriction with

results obtained by other methods considered in the literature. We begin, in the 4.3.1



Chapter 4. Results 32

section, comparing the results of our model with the hybrid SFGB approach. In the 4.3.2

section, we make a comparison with the cointegration approach performed in SantŠAnna,

Filomena and Caldeira (2017).

4.3.1 Heuristic method

As we mentioned in the 2.3 section, the nature of the index tracking problem is to

replicate a market index with a limited number of assets. The mathematical formulation of

this problem is often treated as an mixed-integer quadratic programming problem (MIQP),

making it an NP-hard problem (Coleman; Li; Henniger, 2004). Thus, in order to Ąnd

a solution to the problem in a reasonable time, several methods have been formulated,

however, many end up with high computational complexity. SFGB uses a hybrid approach

with a genetic algorithm and nonlinear mathematical programming, obtaining good

tracking results for the Brazilian market with a very small number of assets Ű 5 and 10

assets, out of a set of 67 assets, and also for developed markets (USA, UK and Germany).

These results are achieved in less than 10 minutes of computational processing.

In order to compare the performance of models with efficiency constraint with some

method already used in the literature, we selected the study by SFGB for this purpose. To

obtain an adequate basis for comparison, we need to use the same number of assets in the

portfolios obtained by SFGB. Then, we raise the modelŠs efficiency constraint until the

number of assets in that study is reached, i.e., 5 and 10 assets. The portfolio projection

range (out-of-sample) starts in January 2010 and runs until July 2012, using daily returns

from the 67 assets that make up the Ibovespa index (target index), during the same period.

This study made use of rebalancing strategies of 20, 60, 120 and 240 trading days (monthly,

quarterly, semiannually and annually, respectively). We use the same database used in

SFGB.

Thus, in order to make the comparison with the aforementioned study, Ąrst, we

performed the efficiency estimations of each of the 67 assets that are part of the assets set,

using a year to estimate the Market DeĄciency Measure (MDM) immediately prior to the

initial date of portfolio projection. As for the portfolios designed and analyzed in the 4.2

section, we use a dynamic efficiency approach, measuring the MDM at each rebalancing,

in order to have an updated measure to be used in the optimization process.

To obtain the same number of assets as the portfolios obtained by SFGB, we

analyze, at each rebalancing, the distribution of the MDM of the assets, in order to place

an efficiency constraint that limits the space of feasible solutions to just the number of

assets from the compared portfolios, i.e., 5 and 10 assets. Thus, we have extremely severe

efficiency constraints in this approach, limiting the solution space to the 5 and 10 most

efficient assets in each rebalancing interval.
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We list the comparison of the results obtained by the hybrid approach of SFGB,

which makes use of a genetic algorithm and nonlinear mathematical programming, with

the results of the efficiency-constrained models addressed in the present study, which,

in turn, only make use of nonlinear mathematical programming, being characterized as

quadratic programming problem (QP), obtaining an instant solution to the problem.

Thus, obtaining similar or better results than those generated by the approach of SFGB,

we would be achieving similar or better results using a method of low computational

complexity, as opposed to the one used by SFGB. The 8 table shows the results obtained

by the study of SFGB, the results obtained by the models with efficiency restrictions, and

the difference between the average TE obtained between the aforementioned study and

the model formulated in the present research.

The results demonstrate a slight superiority of the hybrid approach between genetic

algorithm and nonlinear mathematical programming, in terms of average tracking error

(TE), where the hybrid solution approach has a slightly lower average TE than the model

with efficiency constraints. However, as mentioned, this approach has high computational

complexity, and its results, despite taking a low computational processing time (less than

10 minutes), are not instantaneous. Although the efficiency constrained model presents a

slightly worse result in terms of average TE, this problem is simply formulated through

quadratic programming (QP), where efficiency constraints play the role of a cardinality

constraint, limiting the number of assets that are part of the set of feasible solutions as

the efficiency requirement becomes more severe. Since this is a QP problem, the efficiency

constrained approach presents an instantaneous result and relatively low computational

complexity. Thus, we obtained similar results, in terms of average TE, using a relatively

simpler approach, through a QP formulation, when comparing the results of a more

worked method, which involves high computational complexity and does not provide an

instantaneous solution (solution with less than 10 minutes of processing time).

It is worth noting that when we limit the space of feasible solutions to only

extremely efficient assets, as in the case of 5 assets, for example, we are not necessarily

choosing the assets with the best relation to the index over time, but rather limiting our

set of solutions to the most efficient assets in the period. Thus, the beneĄt of considering

efficiency constraints (reduction in the number of assets) for cases of severe constraints,

may end up being the main disadvantage in terms of TE, thus showing the trade-off

between efficiency and tracking error.

4.3.2 Cointegration

Another alternative for the formation of tracking portfolios is through the coin-

tegration approach. This approach aims to Ąnd long-term relationships between the set

of assets that will compose the tracking portfolios and the index that will be replicated
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Table 8 Ű Comparison of the hybrid approach used in SFGB and the efficiency-constrained
models.

SantŠAnna et al (2017) results

10 Assets 5 Assets

Tracking Error 20 60 120 240 20 60 120 240

Average 0.055% 0.032% 0.024% 0.017% 0.078% 0.049% 0.034% 0.023%
Minimum 0.037% 0.025% 0.014% 0.015% 0.046% 0.036% 0.025% 0.022%
Maximum 0.088% 0.045% 0.037% 0.021% 0.131% 0.071% 0.052% 0.027%
SD 0.014% 0.006% 0.007% 0.003% 0.023% 0.010% 0.009% 0.003%

Efficiency-constrained

10 Assets 5 Assets

Tracking Error 20 60 120 240 20 60 120 240

Average 0.111% 0.065% 0.040% 0.028% 0.149% 0.079% 0.049% 0.033%
Minimum 0.003% 0.042% 0.029% 0.025% 0.001% 0.060% 0.031% 0.030%
Maximum 0.189% 0.093% 0.055% 0.030% 0.294% 0.122% 0.064% 0.039%
SD 0.042% 0.016% 0.011% 0.002% 0.059% 0.018% 0.010% 0.004%

Difference in Average TE (Performance Gain/Loss) 0.056% 0.033% 0.016% 0.011% 0.071% 0.030% 0.015% 0.010%

Difference in Average tracking error (TE) comprises the difference between the average TE of the
portfolios generated by the model with efficiency constraints and the average TE of the portfolios formed
by the hybrid approach of SFGB.

(Alexander; Dimitriu, 2005; Dunis; Ho, 2005). This method has been shown to be an

alternative to the classic approach to solving the index tracking problem, especially when

the objective is to form portfolios with a very small number of assets, where, by inserting

binary variables in the problem, we signiĄcantly increase its computational complexity.

In order to compare the results of optimization models with efficiency constraints, we

selected the study by SantŠAnna, Filomena and Caldeira (2017) (henceforth SFC), which

compares the performance of tracking portfolios formed by the cointegration approach and

the optimization approach (correlation) in two markets with different levels of development:

Brazilian market and the US market.

For the formation of portfolios using the cointegration method for the US market,

the index to be replicated is the S&P100, with a sample of 97 assets. SFC performs 35,000

random regressions, where each one uses a combination of only 10 assets, which is the

number of assets that will compose the tracking portfolios. Within the 35,000 regressions,

the combination of assets that satisfy the cointegration requirements are pre-selected as

candidates. Among the pre-selected portfolios, the portfolio that presents the lowest value

in the sum of squares of the residuals is chosen. Then, SFC builds portfolios to replicate

the S&P100 index with just 10 assets.

For comparison purposes, we selected the portfolios of the aforementioned study

formed by the cointegration method to track the S&P100 index, and we use the same

database as SFC. SpeciĄcally, we select portfolios denoted C1y.6m, C1y.1y, C2y.6m and

C2y.1y, which represent portfolios formed with an in-sample interval of one and two years

(terms "1y"and "2y"at the beginning of the portfolio name), and with semi-annual and

annual rebalancing ("6m"and "1y"at the end of the portfolio nomenclature). As mentioned,
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Table 9 Ű Descriptive results for portfolios formed by the cointegration method and com-
parable portfolios formed by the efficiency-constrained optimization method.

Efficiency-constrained Cointegration

Descriptive Stats S&P100 EC.6m EC.1y C1y.6m C1y.1y C2y.6m C2y.1y

Annual Volatility 20.79% 21.15% 21.54% 22.72% 22.65% 24.20% 24.17%
Cumulative Return 53.63% 136.65% 127.84% 61.44% 70.19% 90.53% 115.89%
Correlation 1.000 0.936 0.927 0.958 0.966 0.951 0.948
Avg. Number of Assets 10 10 10 10 10 10
Monthly Avg. Turnover 13.10% 7.82% 15.03% 7.78% 13.86% 7.45%
The descriptive results presented for the portfolios formed by the cointegration method were obtained
from the SFC paper.

these portfolios are made up of 10 assets. So, in order to form comparable portfolios

through the efficiency-constrained model, we perform the same approach applied to the

comparison with the hybrid approach of SFGB: we identiĄed the level of Market DeĄciency

Measure (MDM) that makes the space of feasible solutions composed of only 10 assets, in

each rebalancing. In this way, we set up a portfolio with efficiency restriction composed of

the 10 most efficient assets from the set of 97 assets used by SFGB, in each rebalancing,

adopting comparable rebalancing approaches, i.e., semi-annual and annual. As for the

in-sample range of daily returns for the optimization process, we remain using the 120

trading days immediately preceding the optimization (rebalancing) date.

The out-of-sample period selected for comparison (portfolio projection period)

starts in January 2006, running until August 2014. The 9 table presents the descriptive

statistics of the projected portfolios. We denote EC.6m and EC.1y for the portfolios formed

by the efficiency-constrained optimization model, with semi-annual and annual rebalancing

intervals, respectively. Initially, we noticed a higher correlation with the reference index (in

this case the S&P100) for the portfolios formed by the cointegration approach, presenting

an average of the 4 models (C1y.6m, C1y.1y, C2y.6m and C2y.1y ) of 0.956, while the

average of the two models with efficiency restriction (EC.6m and EC.1y) was 0.932. In

terms of volatility and cumulative annual return, efficiency-restricted portfolios performed

better, with 21.34% and 132.24% of annual volatility and cumulative annual return,

respectively, compared to an average of 23.44% and 84.51% for portfolios formed by the

cointegration model. In terms of average monthly turnover, efficiency-constrained portfolios

also performed slightly better, averaging 10.46%, compared to 11.03% for cointegration

portfolios.

The 10 table presents the tracking error accumulated in each portfolio projection

year, this time represented by the equation 4.3:
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Table 10 Ű Comparison of the results obtained by the cointegration approach with efficiency-
constrained models.

Efficiency-constrained Cointegration

Year EC6M EC12M C1y.6m C1y.12m C2y.6m C2y.12m

2006 11.37% 5.51% 9.18% 1.87% 2.41% 0.25%
2007 -5.91% 9.36% -8.41% -1.43% 3.03% 9.24%
2008 20.13% 5.27% -6.56% 6.24% 2.57% 14.97%
2009 14.43% 8.91% 7.79% 7.10% 11.21% 19.98%
2010 -2.55% 4.31% -0.74% -4.57% 8.65% 3.98%
2011 -1.75% -7.03% 5.32% 2.83% 4.87% 8.34%
2012 1.78% -0.57% 3.30% 2.80% 0.39% 1.91%
2013 5.24% 11.89% 4.76% 5.56% 4.92% 4.88%
2014 1.99% 3.11% 0.20% 3.20% 5.87% 5.75%

Average 4.97% 4.53% 1.65% 2.62% 4.88% 7.70%

TEb =
T
∑

i=1

xiri,t −Rt (4.3)

where xiri,t represents the portfolio return in time t, for t = 1, ..., T , and Rt represents the

return of the market index at time t. We observed that, in general, portfolios formed by

the cointegration method have a lower average annual tracking error (measured by the

4.3 equation) than portfolios formed by the efficiency-constrained optimization method.

Clearly, when we measure the performance by this variable, the C1y.6m portfolio shows

the best performance, which is formed by the cointegration method, with one year of

data for its estimation and with semi-annual rebalancing. However, when we analyze the

portfolios formed by the cointegration method using two years of data for estimation (i.e.,

portfolios C2y.6m and C2y.1y), we observe that they present a higher average annual

tracking error. The average tracking error of these two portfolios comprises 6.29%, while

the average annual tracking error of the portfolios formed by the efficiency-constrained

optimization method comprises 4.75%.

As a result of the results obtained in this comparison, we argue for the relevance

of the method addressed in this research, which is capable of presenting satisfactory

performance, when compared with the cointegration method, obtaining an instantaneous

solution to the problem, and with low computational complexity. According to SFC, the

portfolios formed by the cointegration method showed a limit on the size of random

simulations, where, for the S&P100 index, the number of simulations used was 35,000.

This can clearly be a limiting aspect when we seek to form portfolios to replicate larger

indices, such as the S&P500 or Russell 1000, for example. In addition, the authors mention

that the model does not instantly generate a solution, despite having a low computational

processing time, which is up to 5 minutes.
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4.4 Efficiency and liquidity

A question that naturally arises when observing our results is whether there is an

equivalence in considering efficiency and liquidity constraints in the index tracking (IT)

models. Vieira et al. (2021) incorporates liquidity restrictions in index tracking models for

the Brazilian market, however, at the portfolio level, demonstrating the existing trade-off

between portfolio liquidity and tracking error, when using AmihudŠs illiquidity. Studies,

such as Chordia, Roll and Subrahmanyam (2008), demonstrate that liquidity is essential

to eliminate arbitrage opportunities. The authors verify, observing intraday returns, that

the predictability of returns reduces considerably during periods of greater liquidity in

the markets, where prices behave more similarly to a random walk. It is argued that the

evidence obtained is consistent with the hypothesis that an increase in arbitrage activity

during periods of high liquidity improves market efficiency. So, the authors suggest that

an increase in liquidity can help improve market efficiency.

To try to verify if there is some kind of equivalence of results between portfolios with

efficiency constraints and portfolios with liquidity constraints, we make a brief comparison

between the results obtained with these two types of constraints. A problem immediately

arises when formulating a liquidity-constrained index tracking (IT) model to make a

comparison with efficiency-constrained models: the measure of liquidity to be used. The

liquidity literature emphasizes this difficulty, given that liquidity is a multidimensional

concept, involving quantity, costs and time (Goyenko; Holden; Trzcinka, 2009). As a

measure of liquidity, we will use the illiquidity of Amihud (2002), ξi, represented by the

equation 4.4, which is one of the most used in the literature, and already used in IT models

by Vieira et al. (2021):

ξi =
1

Di

Di
∑

t=1

♣ri,t♣

V OLi,t

(4.4)

where Di comprises the number of observations of asset i; ri,t comprises the return on

the asset i in the period t; and V OLi,t comprises the traded volume of the asset i in the

period t.

Then, we will structure a new model, with the same form as the M2-E model, but

which, this time, incorporates liquidity constraint at the asset level, instead of an efficiency

constraint. We call this model M2-L. The results obtained with this model may suggest an

answer about the existence or not of an equivalence in considering efficiency and liquidity

constraints in index tracking (IT) models. To obtain the M2 model, we only modify the

efficiency constraint (expression (3.12)), replacing it with the liquidity constraint shown

below. This simple constraint replacement is possible, since the Market DeĄciency Measure

(MDM) and the Amihud Illiquidity (ξi) grow with inefficiency and illiquidity, respectively.

So, instead of using the constraint (3.12), we use the following constraint, to create IT
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models with liquidity constraints. Thus, to form the M2-L model, we have:

xiξi ≤ xiλ, ∀i ∈ I (4.5)

where xi represents the weight allocated to asset i in the portfolio; ξi represents the

illiquidity of asset i; and λ represents, in this case, the illiquidity threshold at the asset

level. Thus, assets i ∈ I with liquidity levels 0 < ξi ≤ λ are part of the set of feasible

solutions. Then, the constraint (4.5) replaces the constraint (3.12) in the M2-E model.

To try to show whether considering liquidity constraints (represented by the measure

(4.4)) and efficiency constraints have some equivalence, we compared the results already

obtained for the M1-B and M2-E models with the results obtained by the model M2-L. We

obtained portfolios with liquidity restrictions for the same time interval and in the same

way as the tests performed for the models with efficiency restrictions, where our projection

interval (out-of-sample) was from Jan/2012 to Dec/2021. To measure liquidity, we also

use a dynamic approach, where, at each rebalancing, we measure ξi of the set of assets,

with a data range of one year of daily returns immediately prior to the projection date

of the aforementioned rebalancing portfolio. In this way, we have models with liquidity

constraints that are updated over time. We designed the liquidity-constrained portfolios

considering only a semi-annual rebalancing strategy, i.e., 120 trading days. And, regarding

restrictions, we use the same level of restrictions as in the M2-E models, i.e., we consider the

distribution of ξi of assets at each rebalancing interval, using the median, 35th percentile

and Ąrst quartile as liquidity constraint, forming the M2-L-M, M2-L-P35 and M2-L-1Q

models, respectively. So, we have models with a slightly more relaxed liquidity constraint

(M2-L-M), going up to more severe liquidity constraints (M2-L-1Q), where only extremely

liquid assets, according to the measure of Amihud (2002), are part of the set of feasible

solutions.

Tables 11, 12 and 13 show the results obtained for the US, Japanese and Brazilian

markets, respectively, both descriptive and tracking error (TE). For the US market, we did

not observe large differences in volatility and cumulative return between the efficiency and

liquidity constrained models. As expected, liquidity constraints also decrease the average

number of assets that are part of the portfolios as the constraint becomes more severe,

i.e., requiring only more liquid assets. For example, for the M2-L-M model (with a more

relaxed liquidity constraint Ű distribution median), we have an average number of assets of

237, while for the M2-L-1Q model (with a more severe liquidity constraint Ű Ąrst quartile

of the distribution), we have an average number of assets of 120. This reduction in the

number of assets is similar to the reduction caused by efficiency constraints, where we

went from 237 assets, in the M2-E-M model, to 119 assets, in the M2-E-1Q model. In

terms of TE, we observe that both models show a tendency for TE to increase as the

efficiency and liquidity constraints become more severe, which was expected, given that
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Table 11 Ű Results of optimization models with efficiency and liquidity constraints for the
US market, with semiannual rebalancing (120 trading days).

US

120d

Descriptive Stats S&P500 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

Min -11.98% -11.78% -12.16% -12.11% -13.50% -11.67% -12.00% -12.81%
Max 9.38% 10.37% 10.99% 11.34% 11.81% 10.88% 10.55% 10.72%
Annual Volatility 16.35% 16.35% 16.53% 16.72% 17.09% 16.42% 16.33% 16.63%
Cumulative Return 280% 397% 379% 344% 406% 364% 363% 358%
Correlation 1.000 0.994 0.987 0.981 0.976 0.992 0.991 0.988
Avg. Number of Assets 474.19 237.24 166.29 118.90 237.48 167.57 120.33
Monthly Avg. Turnover 3.53% 6.80% 6.97% 7.24% 4.38% 4.78% 4.15%

Tracking Error M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

2012 0.08% 0.13% 0.14% 0.20% 0.10% 0.09% 0.10%
2013 0.07% 0.13% 0.15% 0.18% 0.09% 0.11% 0.10%
2014 0.07% 0.14% 0.16% 0.17% 0.07% 0.08% 0.10%
2015 0.08% 0.15% 0.17% 0.18% 0.09% 0.11% 0.13%
2016 0.09% 0.16% 0.19% 0.20% 0.09% 0.12% 0.13%
2017 0.07% 0.14% 0.16% 0.17% 0.08% 0.13% 0.12%
2018 0.10% 0.17% 0.21% 0.22% 0.12% 0.13% 0.14%
2019 0.07% 0.17% 0.20% 0.19% 0.10% 0.11% 0.13%
2020 0.26% 0.26% 0.34% 0.42% 0.30% 0.27% 0.36%
2021 0.11% 0.19% 0.26% 0.28% 0.13% 0.15% 0.17%

Average 0.10% 0.16% 0.20% 0.22% 0.12% 0.13% 0.15%

Table 12 Ű Results of optimization models with efficiency and liquidity constraints for the
Japanese market, with semiannual rebalancing (120 trading days).

Japan

120d

Descriptive Stats Nikkei 225 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

Min -7.92% -7.99% -7.90% -8.30% -8.07% -7.71% -7.52% -7.50%
Max 8.04% 7.87% 7.99% 7.49% 7.69% 7.96% 8.06% 9.56%
Annual Volatility 20.66% 20.68% 20.61% 20.67% 20.73% 20.49% 20.37% 20.51%
Cumulative Return 241% 335% 279% 267% 231% 271% 318% 305%
Correlation 1.000 0.989 0.977 0.969 0.961 0.968 0.965 0.953
Avg. Number of Assets 201.19 107.57 75.43 54.05 108.33 76.14 54.52
Monthly Avg. Turnover 8.83% 12.21% 13.08% 13.95% 9.77% 9.15% 8.98%

Tracking Error M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

2012 0.18% 0.28% 0.34% 0.36% 0.29% 0.31% 0.32%
2013 0.20% 0.38% 0.41% 0.44% 0.34% 0.39% 0.43%
2014 0.12% 0.17% 0.19% 0.26% 0.24% 0.26% 0.34%
2015 0.13% 0.18% 0.26% 0.31% 0.27% 0.29% 0.37%
2016 0.40% 0.44% 0.49% 0.49% 0.46% 0.46% 0.49%
2017 0.18% 0.24% 0.26% 0.29% 0.24% 0.25% 0.28%
2018 0.14% 0.20% 0.27% 0.30% 0.30% 0.30% 0.37%
2019 0.15% 0.18% 0.25% 0.26% 0.30% 0.30% 0.36%
2020 0.18% 0.32% 0.35% 0.46% 0.44% 0.43% 0.50%
2021 0.13% 0.24% 0.30% 0.38% 0.31% 0.35% 0.45%

Average 0.18% 0.26% 0.31% 0.35% 0.32% 0.33% 0.39%
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Table 13 Ű Results of optimization models with efficiency and liquidity constraints for the
Brazilian market, with semiannual rebalancing (120 trading days).

Brazil

120d

Descriptive Stats Ibovespa M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

Min -14.78% -14.75% -14.72% -16.03% -14.07% -14.79% -14.78% -14.73%
Max 13.91% 14.40% 14.44% 15.19% 12.93% 14.29% 14.92% 15.19%
Annual Volatility 25.24% 22.04% 22.48% 23.10% 22.93% 22.65% 23.35% 23.79%
Cumulative Return 85% 120% 223% 169% 76% 314% 360% 314%
Correlation 1.000 0.887 0.870 0.851 0.829 0.899 0.886 0.883
Avg. Number of Assets 70.19 35.52 25.00 17.76 37.00 26.10 18.67
Monthly Avg. Turnover 9.02% 12.12% 12.71% 13.29% 8.48% 7.78% 7.81%

Tracking Error M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

2012 0.96% 0.95% 1.07% 1.20% 0.96% 0.90% 0.88%
2013 0.97% 0.87% 0.94% 0.89% 0.81% 0.86% 0.89%
2014 1.00% 1.07% 1.07% 1.08% 0.99% 1.10% 1.01%
2015 1.07% 1.14% 1.28% 1.34% 0.95% 1.07% 1.06%
2016 1.04% 1.12% 1.11% 1.15% 1.04% 1.06% 1.12%
2017 0.44% 0.45% 0.46% 0.53% 0.44% 0.52% 0.57%
2018 0.15% 0.43% 0.46% 0.61% 0.16% 0.20% 0.26%
2019 0.11% 0.38% 0.41% 0.50% 0.14% 0.17% 0.23%
2020 0.22% 0.41% 0.58% 0.57% 0.25% 0.29% 0.37%
2021 0.19% 0.31% 0.37% 0.56% 0.22% 0.27% 0.38%

Average 0.62% 0.71% 0.77% 0.84% 0.60% 0.64% 0.68%

we are limiting the space for solutions to the most efficient and more liquid assets, and

these do not necessarily have a better relationship with the S&P500 index. In this market,

the average TE for models with liquidity constraint is slightly lower than the average TE

for models with efficiency constraint.

For the Japanese market, we observed a slight superiority of the efficiency-constrained

models in relation to the liquidity-constrained models. The average tracking error of the

three M2-E models is 0.31%, while the average TE of the three M2-L models is 0.35%.

The average number of assets in the three efficiency and liquidity models is around 79

assets. In terms of correlation of daily returns with the Nikkei 225, we also observed a

slight superiority for the efficiency constrained models, where the mean of these models

was 0.969, while the mean of the liquidity constrained models was 0.962. In short, the

results for this market point to a similar performance between the two approaches, with

an slight advantage for the models with efficiency constraint.

For the Brazilian market, which is the emerging market in our sample, we observed

slightly different results between the two approaches. Regarding correlation, the mean of

the models with efficiency constraint was 0.85, while the mean of the models with liquidity

constraint was 0.889. The average number of assets remains close, being 26 for M2-E

models and 28 for M2-L models. Analyzing the TE, we see a superiority of the models

with liquidity restriction, which presented an average of TE of 0.64%, compared to the

models with restriction of efficiency, which presented an average of TE of 0.78%. This
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Table 14 Ű Cost of reducing the number of assets.

Efficiency-constrained Liquidity-constained

US Japan Brazil US Japan Brazil

Asset reduction 355 147 52 354 147 52
TE Gap 0.1213% 0.1733% 0.2281% 0.0485% 0.2087% 0.0600%
TE Cost 0.0003% 0.0012% 0.0044% 0.0001% 0.0014% 0.0012%

Asset reduction represents the reduction in the average number of assets generated by the more restricted
models (1Q models), compared to the M1-B model. TE Gap comprises the difference between the average
tracking error of the more restricted models and the average tracking error of the M1-B model. TE Cost
comprises the ratio between TE Gap and Asset reduction.

effect may occur considering that the Ibovespa index is based on liquidity, so that more

liquid assets are more likely to compose the index.

Efficiency and liquidity are different concepts and measured in different ways. Our

results of the brief empirical procedures applied to this comparison indicate that the

efficiency and liquidity constraints, measured by the Market DeĄciency Measure (MDM)

and AmihudŠs Illiquidity, respectively, present different similarities when placed in the

index tracking (IT) portfolio optimization problem, reducing the average number of assets

in portfolios.

4.5 Discussion

A different way of analyzing the impact of restrictions in different markets, with

different structures, is to analyze the reduction in the average number of assets from

the unrestricted model (M1-B) to the more restricted models (M2-E-1Q and M2-L-1Q),

and the cost of this reduction, i.e., the increase in tracking error (TE). This comparison

highlights the cost of maintaining a portfolio with a manageable number of assets in

terms of TE. The 14 table shows the cost, in terms of TE, caused by the reduction in the

number of assets for the models with efficiency and liquidity restrictions, dealing with the

120-day (semi-annual) rebalancing strategy. Asset reduction comprises the reduction in

the average number of assets from the unrestricted model (M1-B) to the more restricted

models (with restriction in the Ąrst quartile Ű 1Q). The TE Gap comprises the difference

between the average TE of the more restricted models (1Q models) and the average TE of

the unrestricted model (M1-B). And, Ąnally, the TE Cost comprises the ratio between the

TE Gap and the Asset reduction, thus demonstrating what the cost is, in terms of TE, for

each asset reduction in the average number of assets.

Addressing efficiency constraints, in the US market, we have a reduction in the

average number of assets of 355 (from 474 to 119), and an TE Gap of 0.12%. For the

Japanese market, we have a reduction in the average number of assets of 147 (from 201
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to 54), with an TE Gap of 0.17%. Finally, in the Brazilian market, we have a reduction

in the average number of assets of 52 (from 70 to 18), resulting in a TE GAP of 0.23%.

So, for the efficiency constrained approach, we have a TE Cost of 0.0003%, 0.0012% and

0.0044%, for the US, Japanese and Brazilian markets, respectively. We observe that the

TE Cost increases for emerging markets, such as the Brazilian market, making efficiency

constraints more costly in terms of TE.

On the other hand, when we look at the results of the liquidity constrained approach

(measured by the illiquidity of Amihud (2002)), we do not see the same movement observed

in the efficiency constrained approach. We have a relatively low TE Cost for the US

and Brazilian market, and a higher one for the Japanese market. These results also

corroborate the idea presented in the 4.4 section, where we argue that, with our results,

there is apparently no equivalence of effects on tracking portfolios when we use efficiency

and liquidity constraints, measured by the Market DeĄciency Measure (MDM) and the

illiquidity of Amihud (2002), respectively.

Thus, the results from the table 14 show us that efficiency constraints appear to be

less costly (in terms of tracking error) in more efficient markets. As markets become less

efficient, it is expected that we will have a limited set of assets that are able to meet the

constraints, harming portfolios formed in terms of tracking error, resulting in a higher TE

Cost. On the other hand, in markets with higher overall efficiency levels, we expect the TE

Cost to be lower when compared to emerging markets, as we would have a less restrictive

set of assets that satisfy the efficiency conditions of the models. It is worth remembering

that more efficient assets do not necessarily have a better relationship with the target

index. So, the results seem to suggest that efficiency constraints, despite being able to

make the average number of assets of the formed portfolios more manageable with low

computational cost, would be even more effective in more developed markets, where the

general level of efficiency tends to be higher. In these markets, the cost of incorporating

efficiency constraints (TE Cost), in terms of TE, is lower than in emerging markets.

4.6 Statistical difference in means

As a way of validating our results, we tested the difference in the average of daily

returns and the tracking error (represented by the equation 4.1) of the projected portfolios.

For the case of daily returns, we performed the test for the difference in the average of

the portfolioŠs returns with the returns of the index of the respective market. For the

case of tracking error, we tested the difference in the average of the daily TE between

the portfolios with restrictions (for efficiency and liquidity) and the unrestricted model

(benchmark model).

We performed the mean difference test using the bootstrap method, both for daily
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Figure 2 Ű Accumulated values of the portfolios invested in the S&P500 index and in the
portfolios formed by the M1-B and M2-E-M models, with a 120-day rebalancing
(the value of the portfolios starts at $1 in January 2012).

returns and for daily tracking error, in the same way as performed in SantŠAnna et al.

(2019) and Vieira et al. (2021). Given two time series, y1,t and y2,t, t = 1, 2, ..., T , we

perform the t-test to test the null hypothesis H0 : µy1
= µy2

. From the two time series, we

select V values, where V ∈ T , forming two new subsets, ys
1,t and ys

2,t, where v = 1, 2, ..., V .

For these subsets, then, we test the null hypothesis H0 : µys
2,t

= µys
2,t

. This random selection

procedure is performed S times for each year of the portfolio projection interval, and, for

each test, we perform the calculation of the statistic zs = µys
1,t

− µys
2,t

, thus obtaining a

set zs, s = 1, 2, ..., S; with this set, and considering a conĄdence interval 1 − α, (where

we consider α = 5%), we compute the lower and upper limits, CI- and CI+. If 0 (zero) is

between the limits, i.e., CI- ≤ 0 ≤ CI+, we do not reject H0; otherwise, H0 is rejected.

For the tests, we used V = 50 and S = 1000.

Tables 15, 16 and 17 present the results for the average difference tests of daily

returns for the US, Japanese and Brazilian markets, respectively. The results indicate the

failure to reject H0, demonstrating the lack of statistically signiĄcant difference between

the daily returns of the optimized portfolios (both unrestricted and restricted) and the

daily returns of the reference index, being a favorable aspect in relation to the similarity of

the returns daily portfolios to their benchmark. Other favorable results for the restricted

models are the tests of the mean difference between the daily tracking error (TE) of the

unrestricted model (benchmark model) and the restricted models (models with efficiency

and liquidity constraints). The tables 18, 19 and 20 present the results for the daily TE

mean difference test between the unrestricted model and the restricted models, for the US

market, Japanese and Brazilian, respectively. Not rejecting the null hypothesis for this test

means saying that the daily tracking error of the constrained portfolios and the portfolios

formed by the unrestricted model is similar, i.e., the tracking quality between the portfolios
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is similar. It is exactly these results that we can verify in the mentioned tables: the failure

to reject H0 for all cases. So, we argue in favor of the tracking quality of the constrained

models, especially the efficiency-constrained models, in relation to the unconstrained model.

This means that, while the unrestricted model does not present restrictions on the number

of component assets, always presenting portfolios with a high number of assets, the models

with efficiency and liquidity restrictions, which present smaller portfolios, especially when

such restrictions are more severe, even so these constrained models present tracking quality

similar to the unrestricted model, maintaining a smaller number of assets. This becomes

even more relevant when dealing with larger indices, as is the case of the S&P500, where

the unrestricted model makes use of a large number of assets to track the index, while

models with efficiency constraints perform tracking of similar quality, but with a reduced

number of assets.



Chapter 4. Results 45

Table 15 Ű Test results for difference in means of daily returns in the portfolio projection
period (out-of-sample period) for the US market.

2012 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0000568 -0.0001344 -0.0001653 -0.0002294 -0.0001753 -0.0001328 -0.0001086
CI+ 0.0003220 0.0004758 0.0005344 0.0007397 0.0003164 0.0003139 0.0003535

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2013 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0000406 -0.0001856 -0.0002633 -0.0002024 -0.0001112 -0.0001327 -0.0000776
CI+ 0.0002911 0.0004943 0.0004745 0.0006373 0.0003132 0.0004097 0.0004183

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2014 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0000388 -0.0003110 -0.0003749 -0.0003178 -0.0001386 -0.0001474 -0.0002089
CI+ 0.0002830 0.0003490 0.0004056 0.0005511 0.0002415 0.0002684 0.0002977

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2015 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0000678 -0.0004289 -0.0004230 -0.0004912 -0.0001241 -0.0001242 -0.0001997
CI+ 0.0003367 0.0003135 0.0004041 0.0003867 0.0003382 0.0004192 0.0004237

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2016 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0000855 -0.0002145 -0.0003032 -0.0002962 -0.0000674 -0.0000206 -0.0000806
CI+ 0.0003770 0.0005642 0.0006550 0.0006631 0.0003799 0.0005337 0.0005650

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2017 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0001007 -0.0002428 -0.0003188 -0.0002680 -0.0001551 -0.0002980 -0.0002924
CI+ 0.0002316 0.0004531 0.0004853 0.0005528 0.0002324 0.0003475 0.0002992

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2018 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0001684 -0.0003057 -0.0006588 -0.0005675 -0.0002400 -0.0002541 -0.0003557
CI+ 0.0003337 0.0004751 0.0003402 0.0005506 0.0003262 0.0003384 0.0003531

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2019 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0000419 -0.0004392 -0.0005964 -0.0005412 -0.0001175 -0.0002757 -0.0001987
CI+ 0.0003085 0.0003626 0.0003450 0.0004399 0.0003804 0.0002791 0.0004322

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2020 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0005446 -0.0003637 -0.0006772 -0.0010859 -0.0006868 -0.0006760 -0.0008377
CI+ 0.0007122 0.0008598 0.0009474 0.0010202 0.0007886 0.0006496 0.0008841

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2021 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0002278 -0.0004173 -0.0004556 -0.0003844 -0.0002654 -0.0003689 -0.0004668
CI+ 0.0002893 0.0004725 0.0008283 0.0009349 0.0003444 0.0003914 0.0003767

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject
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Table 16 Ű Test results for difference in means of daily returns in the portfolio projection
period (out-of-sample period) for the Japanese market.

2012 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0005074 -0.0005875 -0.0008447 -0.0007639 -0.0010171 -0.0010374
CI+ 0.0006800 0.0009005 0.0007834 0.0005830 0.0005203 0.0006301

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2013 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0008528 -0.0011152 -0.0012968 -0.0007283 -0.0007498 -0.0009538
CI+ 0.0007133 0.0006256 0.0005549 0.0006536 0.0008954 0.0010298

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2014 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0004122 -0.0004157 -0.0005129 -0.0006332 -0.0005606 -0.0008572
CI+ 0.0004980 0.0005850 0.0008560 0.0006188 0.0008088 0.0009221

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2015 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0003536 -0.0006275 -0.0007771 -0.0007117 -0.0005856 -0.0008003
CI+ 0.0004679 0.0005221 0.0007751 0.0005775 0.0007971 0.0009856

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2016 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0006660 -0.0008143 -0.0008259 -0.0010175 -0.0010010 -0.0010483
CI+ 0.0006335 0.0006711 0.0008101 0.0003777 0.0006424 0.0006134

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2017 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0008867 -0.0008015 -0.0008208 -0.0005193 -0.0006287 -0.0007485
CI+ 0.0002961 0.0005144 0.0006197 0.0004885 0.0004365 0.0004987

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2018 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0005690 -0.0009067 -0.0010069 -0.0008436 -0.0007685 -0.0008483
CI+ 0.0003273 0.0004861 0.0005419 0.0005445 0.0006939 0.0009117

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2019 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0005802 -0.0007350 -0.0008165 -0.0005943 -0.0005282 -0.0006882
CI+ 0.0002731 0.0004046 0.0004694 0.0006624 0.0007239 0.0007822

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2020 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0009065 -0.0010467 -0.0015864 -0.0011348 -0.0013475 -0.0016300
CI+ 0.0004686 0.0005553 0.0006123 0.0007977 0.0006001 0.0004357

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2021 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0003989 -0.0005824 -0.0008260 -0.0005509 -0.0004574 -0.0005132
CI+ 0.0007628 0.0008470 0.0010177 0.0008512 0.0011810 0.0015247

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject
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Table 17 Ű Test results for difference in means of daily returns in the portfolio projection
period (out-of-sample period) for the Brazilian market.

2012 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0025687 -0.0024039 -0.0026467 -0.0037450 -0.0024462 -0.0020384 -0.0023762
CI+ 0.0020939 0.0022673 0.0026175 0.0023192 0.0025914 0.0024280 0.0020327

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2013 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0022750 -0.0016638 -0.0016617 -0.0015447 -0.0006574 -0.0008582 -0.0007470
CI+ 0.0023247 0.0025827 0.0030224 0.0028308 0.0031564 0.0033057 0.0034895

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2014 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0022564 -0.0025633 -0.0022613 -0.0024775 -0.0016618 -0.0017450 -0.0013066
CI+ 0.0029401 0.0030032 0.0033268 0.0029151 0.0034981 0.0040821 0.0037518

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2015 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0019391 -0.0017997 -0.0024748 -0.0024539 -0.0012742 -0.0014835 -0.0018880
CI+ 0.0030253 0.0035215 0.0036125 0.0040240 0.0031327 0.0033128 0.0030567

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2016 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0033167 -0.0033191 -0.0038101 -0.0041881 -0.0032671 -0.0033554 -0.0032575
CI+ 0.0018335 0.0021968 0.0017834 0.0014083 0.0016978 0.0020152 0.0022916

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2017 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0009464 -0.0009412 -0.0009924 -0.0011963 -0.0009060 -0.0008723 -0.0010003
CI+ 0.0013188 0.0012439 0.0013207 0.0015214 0.0013509 0.0017196 0.0019588

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2018 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0004797 -0.0011405 -0.0011889 -0.0017202 -0.0003754 -0.0004625 -0.0004739
CI+ 0.0002582 0.0010594 0.0010543 0.0012987 0.0004221 0.0005712 0.0008792

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2019 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0001896 -0.0005966 -0.0006028 -0.0009389 -0.0003033 -0.0001963 -0.0003860
CI+ 0.0003290 0.0011941 0.0014119 0.0015072 0.0003848 0.0006556 0.0007103

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2020 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0004130 -0.0007389 -0.0016802 -0.0016088 -0.0004262 -0.0004635 -0.0006641
CI+ 0.0007128 0.0012796 0.0011385 0.0013115 0.0007400 0.0009146 0.0011020

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2021 M1-B M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0002929 -0.0004983 -0.0006994 -0.0017285 -0.0003274 -0.0005291 -0.0008840
CI+ 0.0006287 0.0010157 0.0011637 0.0011130 0.0007259 0.0007574 0.0008802

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject
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Table 18 Ű Test results for difference in means of daily Beasley TE in the portfolio projection
period (out-of-sample period) for the US market.

2012 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0002839 -0.0003000 -0.0003481 -0.0002786 -0.0002771 -0.0003106
CI+ 0.0003372 0.0004224 0.0005471 0.0001253 0.0001727 0.0002512

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2013 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0003023 -0.0003982 -0.0003239 -0.0002035 -0.0002176 -0.0002358
CI+ 0.0003679 0.0003741 0.0005537 0.0001908 0.0002778 0.0003123

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2014 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0003909 -0.0004502 -0.0003746 -0.0002343 -0.0003035 -0.0003614
CI+ 0.0002385 0.0002800 0.0004084 0.0000888 0.0001593 0.0001841

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2015 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0005038 -0.0005353 -0.0006014 -0.0002346 -0.0002410 -0.0003306
CI+ 0.0001404 0.0002781 0.0002492 0.0001544 0.0002703 0.0002494

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2016 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0003303 -0.0004078 -0.0004008 -0.0001824 -0.0002290 -0.0002355
CI+ 0.0003703 0.0004202 0.0004805 0.0001977 0.0004198 0.0004748

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2017 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0002795 -0.0003989 -0.0003549 -0.0001807 -0.0002783 -0.0003249
CI+ 0.0003493 0.0003846 0.0004623 0.0001376 0.0002079 0.0001988

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2018 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0003701 -0.0006795 -0.0005278 -0.0002594 -0.0003131 -0.0004227
CI+ 0.0003548 0.0002207 0.0004263 0.0001993 0.0002304 0.0002259

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2019 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0005272 -0.0006625 -0.0006232 -0.0002279 -0.0003817 -0.0003046
CI+ 0.0002197 0.0002136 0.0003344 0.0002146 0.0001384 0.0003276

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2020 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0001887 -0.0004433 -0.0007252 -0.0004080 -0.0005091 -0.0005664
CI+ 0.0005467 0.0005473 0.0005986 0.0002802 0.0003150 0.0003942

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2021 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q
CI- -0.0003909 -0.0004480 -0.0003617 -0.0002027 -0.0002589 -0.0004231
CI+ 0.0003826 0.0007784 0.0009600 0.0001977 0.0002193 0.0002262

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject
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Table 19 Ű Test results for difference in means of daily Beasley TE in the portfolio projection
period (out-of-sample period) for the Japanese market.

2012 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0005074 -0.0005875 -0.0008447 -0.0007639 -0.0010171 -0.0010374
CI+ 0.0006800 0.0009005 0.0007834 0.0005830 0.0005203 0.0006301

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2013 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0008528 -0.0011152 -0.0012968 -0.0007283 -0.0007498 -0.0009538
CI+ 0.0007133 0.0006256 0.0005549 0.0006536 0.0008954 0.0010298

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2014 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0004122 -0.0004157 -0.0005129 -0.0006332 -0.0005606 -0.0008572
CI+ 0.0004980 0.0005850 0.0008560 0.0006188 0.0008088 0.0009221

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2015 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0003536 -0.0006275 -0.0007771 -0.0007117 -0.0005856 -0.0008003
CI+ 0.0004679 0.0005221 0.0007751 0.0005775 0.0007971 0.0009856

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2016 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0006660 -0.0008143 -0.0008259 -0.0010175 -0.0010010 -0.0010483
CI+ 0.0006335 0.0006711 0.0008101 0.0003777 0.0006424 0.0006134

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2017 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0008867 -0.0008015 -0.0008208 -0.0005193 -0.0006287 -0.0007485
CI+ 0.0002961 0.0005144 0.0006197 0.0004885 0.0004365 0.0004987

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2018 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0005690 -0.0009067 -0.0010069 -0.0008436 -0.0007685 -0.0008483
CI+ 0.0003273 0.0004861 0.0005419 0.0005445 0.0006939 0.0009117

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2019 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0005802 -0.0007350 -0.0008165 -0.0005943 -0.0005282 -0.0006882
CI+ 0.0002731 0.0004046 0.0004694 0.0006624 0.0007239 0.0007822

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2020 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0009065 -0.0010467 -0.0015864 -0.0011348 -0.0013475 -0.0016300
CI+ 0.0004686 0.0005553 0.0006123 0.0007977 0.0006001 0.0004357

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2021 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0003989 -0.0005824 -0.0008260 -0.0005509 -0.0004574 -0.0005132
CI+ 0.0007628 0.0008470 0.0010177 0.0008512 0.0011810 0.0015247

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject
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Table 20 Ű Test results for difference in means of daily Beasley TE in the portfolio projection
period (out-of-sample period) for the Brazilian market.

2012 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0009167 -0.0013108 -0.0020549 -0.0009045 -0.0012025 -0.0017436
CI+ 0.0013392 0.0016979 0.0013995 0.0013406 0.0019104 0.0016505

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2013 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0006842 -0.0007533 -0.0012761 -0.0005421 -0.0006518 -0.0007082
CI+ 0.0016367 0.0019727 0.0025646 0.0030676 0.0032012 0.0033334

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2014 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0012774 -0.0014151 -0.0022530 -0.0008501 -0.0011352 -0.0012404
CI+ 0.0012533 0.0017697 0.0020090 0.0019811 0.0026353 0.0030864

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2015 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0007626 -0.0011640 -0.0014146 -0.0012123 -0.0018467 -0.0024762
CI+ 0.0013731 0.0015200 0.0023281 0.0021017 0.0023903 0.0021879

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2016 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0007941 -0.0013777 -0.0022989 -0.0014940 -0.0016315 -0.0016009
CI+ 0.0011559 0.0010953 0.0008745 0.0012998 0.0013532 0.0018560

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2017 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0005871 -0.0006330 -0.0008606 -0.0002688 -0.0006083 -0.0006690
CI+ 0.0005230 0.0006056 0.0008773 0.0003025 0.0009845 0.0011133

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2018 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0010694 -0.0011682 -0.0016297 -0.0001431 -0.0002400 -0.0002831
CI+ 0.0011068 0.0012554 0.0013517 0.0003793 0.0005580 0.0008410

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2019 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0006450 -0.0006358 -0.0009354 -0.0002281 -0.0001801 -0.0003588
CI+ 0.0011226 0.0012721 0.0013111 0.0001812 0.0004935 0.0006157

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2020 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0008875 -0.0017086 -0.0016035 -0.0003898 -0.0004763 -0.0007015
CI+ 0.0009580 0.0007980 0.0010368 0.0004069 0.0006796 0.0009132

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject

2021 M2-E-M M2-E-P35 M2-E-1Q M2-L-M M2-L-P35 M2-L-1Q

CI- -0.0005117 -0.0007128 -0.0017894 -0.0003632 -0.0006105 -0.0009765
CI+ 0.0008716 0.0009684 0.0007744 0.0004179 0.0004676 0.0005995

Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject Fail to Reject
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5 Final remarks

In general, given the results presented in the previous subsections, we argue for

the relevance of considering efficiency constraints in the formation of tracking portfolios.

As mentioned, the index tracking (IT) problem consists of replicating the returns of

a market index with a limited amount of assets. Normally, it is formulated through a

problem of minimizing the quadratic difference between the return of the portfolio and the

index in a given time interval. And, to limit the amount of assets, integer constraints are

normally used, having, Ąnally, a mixed-integer quadratic programming problem (MIQP),

which has high computational complexity, and normally requires considerable processing

time, also being characterized as an NP-hard problem. We developed a formulation to

solve the index tracking (IT) problem, reducing the level of computational complexity

and obtaining an instant solution to the problem. In particular, we have included an

asset-level efficiency constraint, the Market DeĄciency Measure (MDM), measured by

the Multifractal-Detrended Fluctuation Analysis (MF-DFA). We project portfolios with

efficiency constraints comparing the results with an unrestricted model (benchmark) in

three markets with different structures: US (developed), Japanese (developed) and Brazilian

(emerging), from January 2012 to December 2021, comprising 10 years of projection.

The results demonstrate the existence of a trade-off between tracking error (TE)

and the efficiency of the portfolios: insofar as we demand more efficient assets to compose

the portfolios, and, consequently, we generate portfolios with a smaller number of assets,

the TE increases. We also demonstrate the results obtained by some concepts that are

related in the literature: efficiency and liquidity. Our results indicate that these restrictions

have similar effects on index tracking portfolios, reducing the average number of assets

when we require portfolios with more efficient assets or with more liquid assets.

We compare our results with methods already used in the literature, one that uses

a hybrid approach with genetic algorithm and nonlinear mathematical programming, and

another that uses the cointegration approach. We demonstrate that, although our results

are not absolutely better, they are very close to those obtained by the methods mentioned

above, which are more complex from a computational point of view, and, despite having a

very low processing time, do not generate an instantaneous solution. Thus, with efficiency

constraints, we achieved good results and instantaneous solution, with a problem of low

computational complexity.

We also note that efficiency constraints have a greater impact on the tracking error

(TE) of portfolios in emerging markets, which tend to have lower levels of efficiency than

developed markets, where the inclusion of restrictions penalizes the TE more severely than
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in developed markets with high levels of efficiency. Thus, the use of efficiency constraints

appears to be an interesting alternative to reduce the size of tracking portfolios with a

lower cost in terms of tracking error (TE cost), specially in developed markets.
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