UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
CURSO DE CIENCIA DA COMPUTAGAO

CAROLINA PARREIRA LORINI

A Framework for Usage Control Policy
Enfor cement

Trabalho de Graduacéao.

Prof. Dr. Alexander Pretschner, T. U.
Kaiserslautern
Orientador

Ricardo Neisse, Fraunhofer Institut8 =
Co-orientador

Prof. Dra. Taisy Silva Webber
Supervisora

Porto Alegre, julho de 2010

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pré-Reitora de Graduacéo: Profa. Valquiria Link $2ams

Diretor do Instituto de Informatica: Prof. Flavie&h Wagner
Coordenador do CIC: Prof. Jodo César Netto

Bibliotecaria-Chefe do Instituto de Informatica:aBéz Regina Bastos Haro

TABLE OF CONTENTS

LIST OF FIGURES.......cotcieeee ettt st 4
RESUM O ...ttt bbbttt e et bbb e bt ne e enes 5
N S I ¥ AN 3 S 7
1 INTRODUCTION ..ottt st st st 8
2 OBSERVATION MONITOR...cciitiieieeriese et eneens 10
2.1 POliCy SPECITICALION......cccieeiieieceecie ettt re e e e 10
2.2 Obligation Monitor Algorithm ... 11
2.2.1 AsSYNChronous OSL MONITOFcoviiiiccee e 12
2.2.2 Synchronous OSL MONITOF..........ooiviiiieeiee e 13
2.2.3 OSL Formula Evaluation..............oooiiiiiiiiiiiiiiieiiieeeeeee e 13
2.3 POLCY MONITOE APl ...ttt e nne s 14
3 CONTROL MONITOR ..ottt sttt 17
3.1 Mecanism SPECITICALION......cccuiiiiieierieree e e 17
3.1.1 MECaNISM RESPONSES........cvvrrurinieeeireeeeeeeeerrininaaeaaaaeaeeeeereeeeermennes 18
3.1.2 MECANISIM ACHIONS ...ttt 19
3.1.3 RESIICHIONS ...ttt et e e e e e e e e e e e e ee e 20
3.2 CoNtrol MONITOE AP ... et 20
4 GENERIC FRAMEWORK ARCHITECTURE.cccoiiiiiien e, 22
5 OPENBSD SYSTRACE FRAMEWORKccoooiiiiieieeeeee s 24
5.1 SYSIACE. . it r e naneas 24
52 OpenBSD Implementation ArcChiteCture.........ccoooeieeiinieninie e 25
53 OpenBSD Framework Security and Limitations.........cccccevvevevieeneeieeseennens 26
6 WINDOWSDETOURSFRAMEWORKccoooiiiiieieieerese e 28
6.1 MICIOSOft DEIOUIS.....cviiiiesieitirieeeeee ettt 28
6.2 WindowsImplementation ArchiteCture.........coooiieeiiienicie e 29
6.3 Process Hooking Techniques and DetoursLimitations..........ccccceeevcveevveenee. 30
7 PERFORMANCE MEASUREMENTSAND ANALYSIS ..o 31
7.1 Monitoring OVErNEad............ooiiiiee e 31
7.2 Evaluation of the OpenBSD and Windows Frameworks..........cccoceevveeennens 33
8 CONCLUSION ...ttt st st st na et s besresneeseeneenes 34

REFERENCES ... 35

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 4.1:
Figure 5.1:
Figure 5.2:
Figure 6.1:
Figure 6.2:
Figure 6.3:

LIST OF FIGURES

Enforcement by observation. ... 10
Time WINdOWS @apPPrOACH e eeeeeeeeiiiiieeie e e e e e e e e eeeeeeee 12
Individual time steps approach ... 12
Enforcement by CONtrol..........oooorriiiiieeccce e 17
General XML mechanism schema. ..., 18
XML mechanism response SChemMa. eceevvvveiiiiieiiiee e 19
XML mechanism actions schema.ococ.....oooviiiiiiiiiiiiie e 19
Generic usage control framework archut@ccccceeeeeiiiiieeeeeeennnn. 23
System call INtErPOSILION........uceee i 25
OpenBSD framework arChiteCture.c..ovvvvevvvvviiiiiiiiiieee e 26
Normal windows API function call. ... 28
Windows API function call with Detours.............ccooeveeiiiiiiciiiiiiee 29
Windows framework arChiteCture. ... 29

RESUMO

Este trabalho de concluséo foi iniciado sobre antaicdo do professor Alexander
Pretschner da Universidade Técnica de Kaiserslgutem 2009 e também com
orientacdo do Ricardo Neisse, do Instituto Frausha mais tarde com a superviséo da
professora Taisy Weber. Este trabalho trata daagdio de mecanismos de controle de
uso de dados, com énfase na aplicagédo no nivédtéenss operacionais.

No mundo digital atual, a seguranca de dados teseouma grande preocupacao.
Para lidar com esta preocupacdo foram desenvolwdadss métodos, entre eles o
controle de uso dos dados. Controle de uso é uteas®o do controle de acesso que
determina ndo apenas quem pode acessar 0os dadosmiEm o que pode ou deve ser
feito com esses dados e pode ser aplicado nasdmearsas areas, incluindo, mas néo
limitado a, gerenciamento de direitos digitais (DRM

Controle de uso funciona através da aplicacdo diices a dados, as quais
determinam obrigacGes do usuéario em relacdo a dssies. Por exemplo, é possivel
especificar que um usuario que baixa um determirfdoh® s6 podera toca-lo um
namero maximo de vezes e ndo é permitido a copiae-aistribuir o flme através de
meios de armazenamento portateis.

Para que as politicas de controle de uso sejaroadpk corretamente, um tipo de
mecanismo de execucado deve ser implementado. lastzmismos podem ser divididos
em duas categorias: mecanismos de observacaoelgteat violacdes de politicas para
0 proprietario dos dados e que gera acles pen@gan mecanismos de controle, que
impedem que as politicas sejam violadas atravésstiecoes as acdes do usuario.

Os mecanismos de controle de uso sédo compostd€pa@omponentes principais: o
monitor de obrigacdes, responsavel por detectdagdes de politicas, um componente
de sinalizacdo, que gera eventos com base em dgdesuario que envolvem dados
controlados e que alimentam o monitor de obrigggdesna componente de execugao,
que executa acdes que penalizam o usuario ou quexlarviolacbes, de acordo com a
categoria do mecanismo.

Controle de uso pode ser aplicado em diferentesisnde abstragdo, como no kernel
do sistema operacional, no nivel de maquinas vite¢MWare, por exemplo),
sistemas runtime (JavaVM), e na camada de aplisa¢fie niveis de abstracdo mais
altos as acdes observadas sao mais especificas ver® mais baixos sdo mais
genéricos e com poucas distingdes. Para ser migisnéé, uma politica deve ser
implementada no nivel que mais se adapte as cdsticess dos dados e da prorpia
politica. Uma politica que especifica restricdesaelacdo a reproducado de um filme
vai ser melhor aplicada na camada de aplicacdad@q nivel do sistema operacional,
por outro lado, uma politica que afirma que um mmunao deve ser aberto, exceto em
circunstancias especiais, sera mais facil aplioanisel do sistema operacional através

do controle de chamadas do sistema do tipo "opgwritrole do uso também pode ser
aplicada em mais de um nivel ao mesmo tempo.

O foco desta tese é sobre a aplicacdo de poliieasontrole de uso no nivel do
sistema operacional utilizando a Obligation Speatfon Language (OSL).
Politicas de controle de uso em OSL representaesaid usuario por meio de eventos,
e podem ser aplicadas usando tanto mecanismossdevabao quanto mecanismos de
controle. Um mecanismo de observacgéo verifica sa segiéncia de eventos esta em
conformidade com uma formula OSL e gera notificaggeando nao for compativel,
engquanto um mecanismo de controle ndo apenas abs@revento, mas pode impedir,
modificar, substituir ou atrasar o eventos queé@ompativel com a politica.

Nesta tese, serd apresentado um parser OSL e mimitdrigacdes genéricos, além
de um monitor que permita a utilizacdo de mecanssd® controle. Adicionalmente,
serd apresentado um arquitetura genérica paranmpltacdo de controle de uso, e a
instanciacdo desta arquitetura para dois sistenpgsacionais reais: OpenBSD e
Windows. Finalmente, serd avaliado o impacto deagéo de controle de uso sobre 0
desempenho do sistema operacional.

Palavras-Chave: Controle de Uso, Systrace, Detours, OSL.

ABSTRACT

Usage control is an extension of access contraldbtermines not only who may
access data but also what can or must be donethigitdata. Usage control works by
applying OSL policies to data, which state the gselbligations in relation to that data.
In this work, we implemented an OSL parser andgaiblons monitor then extended this
monitor to support enforcement by control usinggesaontrol mechanisms. We also
present the architecture of a generic usage coetrforcement framework with remote
policy deployment. This framework was then instatetl in two real-world systems,
OpenBSD and Windows, using Systrace and Microsadtolrs respectively. The
security and performance of the implementationsevesaluated and analysed.

Keywords. Usage control, Systrace, Detours, OSL.

1. Introduction

In an ever growing digital world, data security heeome a major concern. Many
methods have been developed to deal with this coraoed to ensure control over data;
usage control is one of these methods. Usage ¢astam extension of access control
that determines not only who may access the ddtalba what can or must be done
with this data and has many applications includimgt, not limited to, digital rights
management.

Usage Control works by applying policies to dathjoh state the user’s obligations
in relation to that data. For example, it is pokestb specify that a user that downloads a
certain movie may only play it for a maximum numilértimes and is not allowed to
copy or re-distribute this movie through portalitrage media.

For usage control policies to work as intendedype tof enforcement mechanism
must be applied. These mechanisms can be dividedtwo categories: observation
mechanisms, which report policy violations to tlaadowner and might take penalizing
actions; and control mechanisms, which preventcpsi from being violated by
restricting certain user actions.

Enforcement mechanisms are composed of three mampanents: and obligations
monitor, responsible for detecting policy violatspna signalling component, that
generates events based on user actions that ingoheolled data and which are fed
into the obligations monitor; and an enforcemennponent, which executes actions
that penalize the user or prevents violations, @tng to the mechanism category.

Usage control can be enforced at different levelbstraction such as the operating
system kernel, system virtual machines (e.g. VMWatmtime systems (e.g. JavavVM),
and the application layer. At higher levels of abstion the actions observed are more
specific, and at lower levels they are more geramitt with fewer distinctions. In order
to be most effective, a policy should be enforcédha& level that most suits the
characteristics of the data and of the actual poKkc policy that specifies restrictions
with respect to playing a movie will be better ot at the application layer than at
the operating system level; on the other hand liaypthat states that a file must not be
opened except under special circumstances willdstee to enforce at the operating
system level by controlling ‘open’ system calls.ags control may also be enforced at
more than one level simultaneously. The focus of thesis is on the enforcement of
usage control policies at the operating systeml lesmg the Obligation Specification
Language (OSL).

Usage control policies in OSL represent user astlphmeans of events, and can be
enforced using both observation and control medmasi An observation mechanism
verifies if a sequence of events is in conformawtl an OSL formula and generates
notifications when it is not compliant, whereasaatcol mechanism not only observes
an event, but might block, modify, replace, or gelae events that are not compliant
with a policy.

In this thesis we present, in Section 2, a ger@8¢. parser and obligation monitor
(which can be used for enforcement by observatiamjl, subsequently we extend this
monitor in Section 3 to support enforcement by wanising mechanisms as shown in
(Pretschner, 2008). Section 4 presents the dedigm generic usage control policy
enforcement architecture that allows remote deptnynand management of OSL
policies and data resources, and that focusesewoghrating system level. Sections 5
and 6 deal with the implementation of usage corgrdbrcement frameworks in two
real-world operating systems: OpenBSD and Windaepectively. Finally, Section 7
evaluates the impact of usage control enforcemamttlte operating system’s
performance, as well as comparing the two impleateorts.

10

2. OBLIGATION MONITOR

The observation monitor implements a method of esamtrol enforcement where
a monitor receives events that have already happane checks if these events violate
any usage control policies, in which case the timtais reported, allowing the data
owner to take compensating measures. Figure 2dtridites this method.

The obligation monitor receives events from an egamnaller, which is responsible
for intercepting user actions and generating evente these actions have occurred,
and also receives a set of usage control polimebet monitored. At every event
received, the monitor goes through the list of@es and verifies if they were violated.
The observation monitor, which will be referredftom here on as the policy monitor,
is an instantiation of an obligation monitor whéme reporting of a violation means, for
instance, logging this in a file. The monitor doeg stop the action that generates the
violation from happening.

Policy
Specification

Action request @ —
oa

Subject :
v bolicy

Event action executed
Event Y 'on execy 9‘ Policy
@ Action result Signaller "] Monitor
7}
Execute
L2 action I
A
Resource O Log policy
violation

Figure 2.1: Enforcement by observation.

An important characteristic of a policy monitarplementation is related to when a
policy violation is detected. If a violation is deted as soon as possible or immediately
after a new event is received, the monitor is saide synchronous. Conversely, if the
violation is detected at a later time, the monit®rsaid to be asynchronous. For
enforcement by observation, either option is valdwever, if the policy monitor will
be used by control mechanisms, it must be synclusras these mechanisms require an
immediate response from the monitor.

2.1 Policy Specification

The usage control policies that are inputted torttomitor are specified using the
obligation specification language (OSL). More sfeally, they are expressed using
past OSL, as the policy monitor will be used bytoginmechanisms, which can only
make decisions based on what is already knownt{@rdfore is in the past).

11

OSL is an LTL based language, defined so as tobte ta easily express usage
control policies such as “delete file A after 30/glaand “file B must not be printed”.
The compact OSL syntax is shown below. For morermétion on OSL see (Hilty,
2007)

¢ =true | false | Efst(Event) | Eall(Event)_| n0otyp’) | and (¢ X¢’) | or " (¢ X @)
limplies” (p” X ¢) | always™ (¢) | before” (N x¢") | within™ (N x¢") | during™ (N x¢°)
[repmax (N x¢7) | replim™ (N x L x U xp") | repuntil” (N X¢™ X¢)

For example, the policy “file /etc/passdw shouldvere be opened” would be
expressed in OSL aalways(not Eall(open{(file, “/etc/passwd”)}))

The formal semantics of past OSL are defined ietdehner, 2009). The operators
can be sorted into three categories: propositioparators, which are the same from
propositional logic; cardinality operators, whickate how many times something
should happen; and temporal operators, which d@terrwhen something should
happen. Informally, the meanings of the OSL opesatoe:

* always (X): X must be true at every time step;

* before (N,X): X must have been true N time stegviously;

« within (N,X): X must have been true at least ontéhe previous N time steps;
* during (N,X): X must have always been true durimng last N time steps;

* repmax (N,X): X must be true at most N times;

* repuntil (N,X,Y): X must be true at most N timesfillY is true;

« replim (N,L,U,X): X must have been true at leastihes and at most U times
during the last N time steps.

The policy monitor implements the stated OSL syntath only one restriction:
only propositional formulas are allowed inside tbardinality operators (repmax,
replim, repuntil). Internally, the monitor uses iamplicit mixed OSL formula (past and
future); semantically this means that every poigcgutomatically encapsulated inside a
future always statement, meaning that every forrmilaalways be evaluated at every
time step. Although this limits somewhat the expi@s of policies, this was an
implementation choice as it greatly simplifies thenitor algorithm.

Additionally, each policy has an activation timejieh corresponds to the moment
the policy started being checked for violationshi@ monitor.

2.2 Obligation Monitor Algorithm

An aspect that must be considered when impleme@m@SL monitor is how to
adapt OSL'’s discrete time steps to continuous sydime. This can be done in two
ways: by defining time windows in which all everitgat happen in that period are
considered as being in the same time step (i.e.e#fents are said to have happened
simultaneously), as illustrated by figure 2.2; or &ssuming that every new event
received is in a new time step (i.e., no two evergsur in the same time step), as
illustrated by figure 2.3.

12

. . Timetick events
Policy Monitor

Activation
time

34 3 {.3{ 3 Usagecontrol events

» Time

Time step

Figure 2.2: Time windows approach.

Policy monitor

Activation
time

Usage control events

Py
- N

» Time

Time step
Figure 2.3: Individual time steps approach.
2.2.1 Asynchronous OSL Monitor

The implementation of time windows to emulate OStifee steps results in an
asynchronous monitor, as the detection of a vimtatoes not occur immediately after
receiving an event, but must wait until the endh& ongoing time window since only
then the policies are evaluated; therefore a vmtaimay not be detected as soon as
possible. This method was implemented by creatmgwent queue which stores all the
received events until a timer signals the end ofre window; all policies are then
updated with this set of events and the queue ieth If an event happens more than
once in the same time window, all occurrences af @vent in the window are counted
SO as to accurately update the counters of thenzditgt operators. If no events happen
in a time window, the policies are still updatedhnvihe empty set, as some policies
(more specifically, the one with temporal operatonay be violated if no events occur
(the lack of an event may violate a policy). Foamyple, the policy “delete after 30
days” will be violated if a delete event daest happen.

The advantages of this implementation are the piisgiof having simultaneous
events, meaning that we can have policies thaé stett event A and event B must
happen at the same time. Also, the policies arategpdless frequently and at regular
intervals, improving the monitor performance. Hoeewvthis monitor cannot be used
together with control mechanisms, for reasons presly stated.

13

2.2.2 Synchronous OSL Monitor

Since the control monitor needs to incorporate aS8L Omonitor and the
asynchronous OSL monitor described above is najuaate for this purpose, a second,
synchronous, OSL monitor was implemented. This tooiireats every event as having
happened in a new time step, as previously destridhen an event is received, this
monitor goes through the list of loaded policiesl aqpdates each one with the event,
immediately reporting any policy violations. It gossible that no events are received
for a relatively long period of time and it is nesary to regularly check the policies
because of the temporal operators; to solve tlablpm the monitor has a thread that
periodically generatesraull event with which to update the policies.

There are two problems with this approach: the fshat it no longer makes sense
for temporal operators to use tirseepsas a time unit, for the time steps now have
variable length. To solve this problem, we adaptexloperators to use standard time
units such as seconds, minutes, hours or daysftinerthe expression ‘before(3,A)’
that read “A must have been true 3 time steps béfoow reads “A must have been
true 3 seconds before”. The second problem isalpaticy that states ‘A B’, where A
and B are events, will never be true as there aresimultaneous events in this
implementation (if either A or B is not an event lamother formulae, the expression
can be true), however this is acceptable for ounitoos purpose.

2.2.30SL Formula Evaluation

The evaluation of the OSL policies is the sameloth the synchronous and the
asynchronous monitors and is based on the algorteseribed in (Havelund, 2004).
The monitor receives as an input a list of usag#robpolicies expressed in OSL, each
associated with a unique identifier defined by thelicy administrator. In the
initialization phase of the algorithm, each polisyparsed so as to verify that it is in the
accepted syntax and, simultaneously, to initiadird fill the data structures that will be
later used to evaluate the policy. The data stracia a table containing all the
subformulae of the original OSL formula in poste@rdAdditionally, each entry of this
table is associated with an auxiliary data structinat stores the state information of
that particular subformula. The monitor also stothe activation time (time of
deployment) of each policy.

The actual evaluation of the OSL formula occurggtene a new event is received,
in the case of the synchronous monitor, or whama tvindow ends, in the case of the
asynchronous monitor, and consists of every suhitarheing evaluated according to
its operator. The last subformula to be evaluagdtie original OSL formula, so its state
(true or false) is the policy state, meaning tlathis state is false the formula was
violated and if it is true the policy is correcadh operator is evaluated as follows:

» True/False: obviously evaluated to true and falsspectively;

« Eall (event)/Efst (event): every received event has/pe which determines
whether it is an Eall or Efst event and the rest 8mple matching of the name
and parameters of the received event with the espified in the formula;

* Not/And/Or/Implies: these are the standard propwsal logic operators and are
evaluated as such;

* Always(X): a flag in the state structure indicatdsether X was ever false or if
X'is currently false; if yes the formula is fals¢herwise it is true;

14

» Before(N,X): a buffer in the state structure comsaall the times X was true
since the last N time units, and if at N time urpteviously X was true, the
formula is true, otherwise it is false. The buffemecessary so as to be able to
evaluate the before operator at every moment.drsyimchronous monitor, as it
is very hard for an event to happen exactly 30 s#@€@reviously (unless the
time unit used has the same precision as a syskech tck), we define a
window of time in which this event should be trige, example, between 29 and
31 seconds previously;

* Within(N,X): an auxiliary variable present in th&ate structure holds the last
time X was true, if X was true sometime in the Idstime units, the formula is
true, otherwise it is false;

* During(N,X): an auxiliary variable holds the laghé X was false, if X was
false sometime in the last N time units, the foranalfalse, otherwise it is true;

« Repmax(N,X): the state structure includes a coumntdich is used for
cardinality operators; in this case, the counténdseased every time X is true
and the state of the formula is true if the couméeless than or equal to N,
otherwise it is false;

* Repuntil(N,X,Y): the counter is increased everydiXis true until Y is true, the
state of the formula is true if the counter is l#sm or equal to N, otherwise it is
false;

* Replim(N,L,U,X): also keeps a buffer with all thmes X happened in the last
N time units and counts the number of instances iof the buffer, if the counter
has a value in between or equal to L and U the dtarns true, otherwise it is
false.

When the synchronous monitor is used together withtrol mechanisms, it is
necessary to be able to tell if an event A showndhe to happen, whether it would
violate a policy or not. In this case, as the evexd not actually happened, the internal
state of the policy (such as the counters) shoatdoe updated. Therefore, the monitor
maintains two copies of the state structures, abtthis verification can be done without
affecting subsequent events.

2.3 Monitor API

All interaction with the policy monitor is done thugh the monitor API. The API
for the synchronous and the asynchronous moniteralanost identical, therefore only
the synchronous monitor API is listed below.

The monitor represents events using an event_t¢tate) which contains the event
name, type, number and list of parameters; thenpetexrs are represented using a
param_t structure, which is a pair that consists parameter name and the actual value
of the parameter. This representation was choses o be easy to use and understand,
and to be as faithful as possible to the OSL ef@mat.

15

[* Structure used to describe an event */
typedef struct event_s{
char *event_name;
int type;
int num_params;
param_t *params;
} event t;

[* Structure used to describe an event parameter */
typedef struct param_s{

char *param_name;

char *param_value;
} param_t;

Listing 2.1: Event structures.

The most important functions in the API are updalle past_monitors() and
update_past_monitor(). The first function is comntonboth implementations of the
policy monitor and is responsible for updatingaadtive policies loaded in the monitor
with the event that it receives as a parameter.SBoend function is only available in
the synchronous monitor as it involves an immediatern value; this function updates
only one monitor at a time (whose identificationpassed as a parameter) with the
specified event (also passed as a parameter) anmtisehe updated state of the policy.
Additionally, this function can receive as a partan@ No Update Flag, which means
that the new policy state will not save the neverinal policy state; this can be used to
test if an event would violate a policy shouldgatar.

Besides the functions for policy creation and uesdatthe monitor API also
implements functions for policy deployment managemdhese functions can set a
policy as active or inactive, where inactive metrespolicy is loaded into the monitor
and its state is maintained but this state will dofnge until the policy is activated.
Another function resets the internal policy staiets initial configuration. Functions
such as these are especially useful for the pe@ltbyinistrator as a policy can be reset
after a violation without having to be reloadedsétting a policy is, computationally,
less cost-worthy) and are also useful to contratmaisms.

16

/* Initializes the monitor manager

*@RETURN O sucess
* @RETURN -1 error: unable to initia
*/

int init_past_monitor();

/* Creates a new past monitor

* @PARAM id unigue monitor identifier

* @PARAM policy osl policy to be monitored

* @RETURN O sucess

* @RETURN -1 error: unable to create monitor
*@RETURN 1 error: identifier already in use
*/

int add_past_monitor(char *id, char *policy);

/* Deletes the specified monitor, if it exists

* @PARAM id unique monitor identifier
*/
void delete_past_monitor(char *id);

/* Resets the state of the monitor policy and the p

* @PARAM id unigue monitor identifi
*/
void reset_past_monitor(char *id);

/* Changes monitor state to active.

* @PARAM id unigue monitor identifi
*/
void activate_past_monitor(char *id);

/* Changes monitor state to inactive

* @PARAM id unigue monitor identifi
*/
void disactivate_past_monitor(char *id);

/* Checks if a monitor exists for the data containe

* @PARAM id unigue monitor identifi

* @RETURN ACTIVE monitor exists and moni
* @RETURN INACTIVE monitor exists and moni
* @RETURN -1 monitor does not exist

*/

int lookup_past_monitor(char *id);

/* Updates the chosen monitor with a new event. The
* the policy state will be updated or not; if the

* function checks if the new event turns the polic

* not change policy state; if the flag is UPDATE,

* @PARAM id unigue monitor identifi

* @PARAM new_event structure that contains the

* @PARAM update_flag UPDATE or DO_NOT_UPDATE
* @RETURN 1 if the updated policy i

* @RETURN 0 if the updated policy i

* @RETURN -1 error: monitor does not

*/

int update_past_monitor(char *id, event_t* new_event,

/* Updates all monitors with the new event

* @PARAM new_event structure that contains
*

void update_all_past_monitors(event_t* new_event);

lize library

olicy activation time
er

er

er

r
er

tor's state is active
tor's state is inactive

update flag determines if
flag is DO_NOT_UPDATE, the
y true or false but does
the policy state will change.
er
event information

s true
s false
exist

int update_flag);

the event information

Listing 2.2: Policy Monitor API.

17

3. CONTROL MONITOR

The control monitor is an implementation of prewantenforcement, as it prevents
actions that would violate usage control policiesrf actually happening. This is done
by sending an action execution request to the rmobgfore every action occurs in the
system; the monitor then evaluates the impact isfabtion on all the relevant policies
and determines if the action should be allowed atrr and if any additional actions
should be executed before generating an actioruéreaesponse.

There are four categories of control mechanismibithwhich simply cancels a
requested action; modifier, which changes the patars of the requested action so that
it no longer causes a violation; executer, whicbcetes a number of actions before the
requested action takes place; and delayer, whitdysiéhe occurrence of an action. A
single mechanism can implement more than one dfetlaharacteristics. For more
information on control mechanisms see [REF NUM].

The behaviour of the control monitor is determin®d a set of loaded control
mechanisms which consider actions as events anchwiglong to at least one of the
categories mentioned above. Each mechanism cons$iatsondition and trigger event,
which defines when the mechanism should be appdigdyell as a list of actions to be
executed should the mechanism be triggered andftbet that the mechanism has on
the requested event, whether it should be inhipiédldwed, modified or delayed. A
mechanism is triggered every time the requestedtagehe same as the trigger event
and the mechanism condition (updated with the retggeevent) evaluates to false. One
or more mechanisms should be sufficient to enfaraeage control policy.

Policy
Specification

Action request @
Subject —l Load
olic

Event action requested @ v PAOY

Event » Policy

O Action result Signaller [« Monitor
x © Control response
Execute
e action f I\
A
Resource © Action

requests

Figure 3.1: Enforcement by control.

3.1 Mechanism Specification

Every mechanism must have a unique name, which beillused to identify the
mechanism in the monitor, a condition expresseguast OSL, which is evaluated using

18

the synchronous past OSL monitor (described in@e& 2.2) and determines when the
mechanism is triggered, and must choose to allownbibit the requested event.

Additionally, a mechanism can have a trigger e\erd., the event ‘play’ is the trigger

for the condition “repmax(3,play)”), which informthe monitor when to check the

mechanism condition (in other words, every timergguested event is the same as the
trigger event), however a trigger is not alwaysessary (such as in the policy “delete
after 30 days”) and therefore can be omitted ocifipd asnull. The mechanism may

also contain a list of actions to be executed, twiaiee shown in more detail below. All

these characteristics can be specified using thé. Xthema shown in figure 3.2 and
detailed below. The use of the XML parser is recanded for interfacing with the

monitor, but direct interfacing is also possiblengghe control monitor API.

W

id

T ¥
ype | xastring

a&vent:trig_uerEu&m

lvpe ;rEventT':.-'pe

—Lpastl'.!SL:comlition

controlMechanism EI—(—"-—:EI—

= f----\
aactions [} - =[]

o
0=

1
:_execute

---------------- R |
'

0.

Figure 3.2: General XML mechanism schema.
3.1.1 Mechanism Responses

A control mechanism must always emit an answehecetvent signaller, this answer
will determine if the requested event will beconre actual event. The mechanism
response must be one of the two possible valulesv ar inhibit. If the chosen response
is inhibit, the event will not occur, but the menlsan may still execute a list of actions.
If, however, the answer is allow, a few other pagters must be specified. In most
cases, it does not make sense to allow an evehoutialso delaying or modifying it;
therefore, in the parser, it is mandatory to eitdelay or modify or do both to an
allowed event. To delay an event, the durationtand unit of the required delay must
be specified. Delaying an event is useful for pescsuch as “if the user did not pay a
fee, the user must wait 1 minute for movie to @égr loading”. It is important to point
out that the enforcement of the delay does notrooside the monitor, as it is a single-
threaded application and the executing of a delaylavtemporarily block all other
evaluations.

To modify the requested event, the name of thenpater to be modified and its
new value must be specified. It is usually advieatd modify an event so that it
becomes harmless instead of inhibiting it, thidbéxause many programmers do not
check the return value of functions or system cafld blocking an action may result in
a program crash. For example, instead of inhibitiregsystem call “open file A” we can
modify it to “open file /dev/null”. The responsehsna is detailed below.

19

] attributes

duration

Lo | eme e v
type | xeisting |
Lze | reguired

:
| umnit '
N 1

vhvpe [wsstring
' B e

=8

13 5 modify [%]—(—H-—:EI—Lparameter

1.0

inhibit [

Figure 3.3: XML mechanism response schema.
3.1.2 Mechanism Actions

The mechanism actions are user-defined actiong texbcuted and in this scenario
these are function calls, which are defined byrection name, a type, the component
where they should be executed (the action doeshawé to take place inside the
monitor, therefore a number is used to identify thrget component; the number ‘0’ is
reserved for the monitor) and optional function goaeters for the execution. The
decision to allow actions to be executed outside rtionitor was taken so as to add
flexibility to the monitor and to decrease the tispent executing each monitor. Figure
3.4 represents the XML schema for specifying astion

B attributes

duration

bype | xs:string |
Jze |reguired

. wsstring !
| seconds |

3 g
actions [} - —===— :]—
- ; "1‘_\';‘.

0, e

Figure 3.4: XML mechanism actions schema.

20

3.1.3 Restrictions

There are a few restrictions that are necessarythfercontrol monitor to work
correctly. Firstly, an event request can only telggne mechanism, therefore if more
than one mechanism would be triggered by an evaht thhe first mechanism will
actually be triggered; this restriction is necegdagcause otherwise we might trigger
mechanisms that return conflicting responses (k@nle, one says modify and the
other says delay, which response should be enf@jcegdne option would be to
implement precedence rules for this kind of situatibut for this implementation it is
sufficient to assume that these situations will megapen.

Secondly, the actions to be executed that mustghce inside the mechanism must
be known beforehand, as they must be hard-codethanmonitor. This is only a
technical restriction as mapping between functiames and addresses at runtime does
not exist in our choice of implementation langud@y, it is possible to create a
dynamic mapping, however function names still hawde known beforehand (hard
coded). This problem is not a real limitation asdtipons can also be executed outside
the monitor. The functions that can currently beased inside a monitor are to print a
string, delete a file and reset a monitor; othercfions can be easily added to the
monitor, these were chosen for demonstration p@gos

Thirdly, the effects of one mechanism should netiidate the condition of another
mechanism, as this can cause inconsistencies wiki@nsystem. However, this last
restriction is not verified by the monitor, but sitthbe avoided by the user.

3.2 Control Monitor API

The control monitor API is very similar to the pmlimonitor API, the same set of
functions for creating, inactivating and resettingonitors are available for the
mechanisms and they use the same structures &segprevents and parameters and to
receive input.

The most important function in the API is new_eveeguest(), where the received
event is compared to all the mechanism triggersitadmatch is found, the monitor
checks if the mechanism condition would still beetif it was updated with the new
event (this is done by calling the function updatest monitor() with the
DO_NOT_UPDATE flag); if yes the event request ensformed into an actual usage
and all mechanism conditions are updated, othenil®e mechanism actions are
executed.

A control monitor must be able to differentiate vibeén an event request and an
actual event; in this implementation, both kindsewknts are represented using the
exact same structure and the differentiation isedwnplicitly by the context of the
monitor, i.e. some code sections deal only withuests while others deal only with
actual events, so it is not necessary to distimgtniem.

Additionally, the API uses a mechanism_actionsrucstire to represent the body of
the mechanism and it follows the same pattern @s{ML schema, it is recommended
to use the parser to fill these structures, bigtpiossible to do so manually as well.

21

/* Initializes the mechanism manager

* @RETURN 0 sucess

* @RETURN -1 error: could not initial
*/

int init_control_monitor();

/* Creates a new mechanism

* @PARAM id unique mechanism identif

* @PARAM trigger mechanism trigger event

* @PARAM condition mechanism condition in o

* @PARAM actions array of mechanism actio
* @PARAM num_actions number of mechanism acti
* @RETURN 0 sucess

error: monitor not be cr
error: id is already bei

* @RETURN -1
* @RETURN -2
*/

int add_mechanism(char *id, event_t* trigger,
mechanism_actions_t actions);

/* Deletes the mechanism, if it exists

* @PARAM id unique mechanism identif
*/

void delete_mechanism(char *id);

/* Resets the state of the mechanism condition and
* @PARAM id unique mechanism identif
*/

void reset_mechanism(char *id);

/* Changes mechanism state to active.

* @PARAM id unique mechanism identif
*/
void activate_mechanism(char *id);

/* Changes mechanism state to inactive

* @PARAM id unique mechanism identif
*/
void disactivate_mechaninsm(char *id);

/* Checks if a mechanism exists

* @PARAM id unique mechanism identif

* @RETURN ACTIVE if mechanism exists and
* @RETURN INACTIVE if mechanism exists and
* @RETURN -1 if mechanism does not ex

*/

int lookup_mechanism(char *id);

/* Checks if a desired event can become an actual e
control mechanisms

* @PARAM desired_event requested event

* @RETURN NULL desired_event is allowed

* @RETURN INULL event triggered

*/

mechanism_actions_t* new_event_request(event_t* des

ize library

ier

sl
ns
ons in actions array

eated for mechanism condition
ng used

char *condition,

ier

the mechanism activation time
ier

ier

ier

ier

monitor's state is active
monitor's state is inactive
ist

vent and if it triggers any

ired_event);

Listing 3.1: Control monitor API.

22

4. GENERIC FRAMEWORK ARCHITECTURE

To successfully enforce usage control policies my asystem, three main
components must be correctly implemented in a freonle the obligations monitor,
the event signaller, and the enforcement mechanishssdde from these major
components, it is also necessary to have a meargembying policies remotely,
offering feedback to the policy administrator aridrisg the policy states as well as
storing a log of events. In this section, eacthekt elements will be explained in detail,
together with their interactions.

To begin with, one of the most important parts leé framework, the obligations
monitor, is responsible for constantly checking $eries of events causes one or more
policies from a loaded set to be violated. This ponent should be implemented
similarly to the policy monitor from section 2.

The event signaller encapsulates a layer of théewaod stack with the aim of
intercepting all user actions in that layer. Thasgons are translated into events, using
the format defined in OSL, and are then sent tootilgations monitor to be evaluated.
A system may have more than one event signallekingrsimultaneously and at
different abstraction levels. At the operating eystlevel, examples of frameworks that
can be used for system call interception includgtr@ge in OpenBSD, Ptrace in Linux
and Detours in Windows.

The enforcement component is responsible for takintjons after it has been
detected that an event would violate a policy. Ehagions range between only logging
the violating event to actually preventing the @vigam happening. This component
interacts directly with the obligations monitor,daan example of an implementation of
this component is the control monitor from sectdon

A few other, auxiliary, components are importanaiiframework, such as the event
log. The purpose of the event log is to registergsingle event sent to the monitor,
allowing policy violations to be analysed and jfistl should the need arise. Another
auxiliary component is the policy and state remogitvhich should store all the policies
that have been loaded into the obligations mondsrwell as their internal state; this
enables the usage control framework to recover afterash (otherwise a user could
force a crash of the system to avoid the deteatfosmolations).

It is also advisable to implement a mechanism engbiemote deployment of
policies and automatically informing the creatoraopolicy of necessary information
such as a policy violation or the current statehaf policy. This will allow the policy
administrator more control over the data beingqutad and will provide an easy way
to load policies and control mechanisms into tregascontrol framework.

23

Event (policy violation)
Notification Manager [«

Policy and State

Repository

A Update State

Policy Monitor
(obligation monitor)

A

A 4

m event Policy state
Notify A 4

violation

. ——
Policy Editor Control Monitor
Event log
Event Event
request Event request Event
response response
\ 4 2
Event Signaller Event Signaller
Kernel Application

Figure 4.1: Generic usage control framework archite.

Figure 4.1 shows a generic architecture for a usagéol enforcement framework,
and, although some minor components may be chamgecged or, sometimes even
omitted to accommodate specific system needs, #s&c lstructure must remain the
same. Here, the control monitor represents theresfioent component and is also
responsible for forwarding the events from thetlal event signaller components and
for receiving new policies and control mechanismsnf a policy administrator. The
obligation monitor maintains a backup of the ingdrstates of all policies and is
responsible for alerting the creator of the polmiy violations via the notification
manager.

24

5. OPENBSD SYSTRACE FRAMEWORK

This section describes the implementation of a rgethamework on OpenBSD to
enforce usage control policies in the operatingesydevel. This is done by intercepting
system calls in the kernel using the Systrace fraone (described in detail below),
transforming these calls into events, inputtingséhevents into the control monitor
described in section 3, and then applying the obntechanisms. The reason OpenBSD
was chosen for our real system implementation Wwasavailability and ease-of-use of
the Systrace framework present in this platform.

5.1 Systrace

Systrace is a security utility tool that limits application’s access to the system by
enforcing system call polices. This is done by ncgpting system calls and their
parameters before and after execution, a proceswrkras system call interposition.
With Systrace it is possible to sandbox an appboaand observe, or even limit, its
behaviour.

It is possible to specify many constraints in a tfy® policy; however the
monitoring framework is only interested in one ad$pef these policies: the policy
determines whether a program may always execuystars call, never execute it or if
additional information is needed for this decistonbe taken. If a system call is to
always be allowed or always denied, the Systracegssing and decision is made
directly in kernel space, so as to introduce &g litverhead as possible. However, if the
decision requires other information, the systenl tagether with its arguments is
redirected to a user space process which is redgperfer the decision. This process
may alter the system calls arguments before replyrSystrace.

The user space process used by the OpenBSD framewocalled the ‘call
interceptor’ and is responsible for attaching psses to Systrace (Systrace will then
intercept those processes calls), instantiatindr&gyes policies for every process (note
that these policies have nothing to do with ourgesaontrol policies), and making
decisions on the execution of any calls forwardemmf the kernel space. In this
implementation, the Systrace policies are the stomevery process; all system calls
are allowed except the calls: open, close, reaide \and unlink; the execution of these
calls must be decided by the call interceptorhase are the calls that relate to data that
is in the system and that will be used to enfoheeusage control policies at the system
call level.

The sequence of events, from the request of a mystl execution until the
reception of the execution response by a user pspée shown in detail in figure 7.
First the user process requests a system call hwhithen intercepted by the Systrace
module and, if it is not allowed or denied by défalorwards it to the call interceptor.
The call interceptor sends an answer to Systraaaying or allowing the call, and the

25

call is executed. Systrace then intercepts thepaathmeters (including the system call
return value) and once more forwards it to the o#krceptor, as it might desire to
change the parameter values before returning tasbeprocess.

Call
User Process Interceptor

0 Systal ¥ 4 Syscall g :
Tequast IE5ponse User space.
- b k.
el rasponse a
™ Bysirace Kameal
> Module
Svscall et D
Kerne! spaca

Figure 5.1: System call interposition.

5.2 OpenBSD Implementation Architecture

The overall framework architecture consists of foomponents: the Systrace kernel
module, the call interceptor, the control monitadahe shell wrapper, which all work
together to enforce usage control policies. The pmments and their interactions are
shown in figure 8. The Systrace module forwardsrétevant system calls to the call
interceptor, as previously described. The Callrbgptor, as well as communicating
with Systrace, instantiates and interfaces withatetrol monitor. The call interceptor
assumes the role of event signaller, since everg & system call request is received, it
generates an event request to the control monibe control monitor, as described in
section 3, has a list of loaded mechanisms and/ertyeevent request, checks if any
mechanism is triggered, and then generates an egsponse to the call interceptor.
Upon receiving the event response, the call inpgoremust execute the actions
determined by this response, which can be to dbkexecution of the system call, to
modify the parameters of the system call, or tocateesome arbitrary action, and then
finally answering Systrace, allowing or denying tbell. This framework is not
interested in the results of the system call, floeecthey are ignored.

The shell wrapper is the component responsiblenforming the PID of the process
that should be attached to Systrace, so as to Ipgored. Since we want to monitor all
user processes, this is done by creating a wragipénat when a user logs in the shell
wrapper is called instead of the initial user sheflis shell wrapper calls a soap service
(attach process), that sends the PID of the shalpper to the call interceptor (which is
loaded at boot time) and only then starts a usel.shhis ensures that all processes
created by that user will be monitored, as all psses are child processes of the shell
wrapper and Systrace automatically monitors alldcprocesses. If the shell wrapper is
not able to communicate with the call interceptioe, user’s login request is denied.

26

Control Monitor

Ilechanism
Specification

Event response

Ewent request

Shell Wrapper G:L\

A Call Interceptor
process

ANSWER RESPONSE

ASK RESULT

Systrace Kernal Module

Figure 5.2: OpenBSD framework architecture.

5.3 Implementation Security and Limitations

The aim of the OpenBSD framework implementation wagrovide a usage control
enforcement mechanism that could not be tamper#d aovifooled by a user without
super user rights. The framework manages to suctigssionitor all user processes
from the moment the user logs on, as there is noanarmal user can create a process
without it being monitored by Systrace. Additioyalthe monitoring process is started
during the system boot and cannot be killed by anab user. If by any chance the
monitor crashes, all user processes that were browgtored are automatically killed
and if the monitor is not running when a user tt@sogin, the user shell will not be
created and the login will fail. These measuresuenshat all user actions are being
monitored at all times. There is also some relaterk being done in trusted computing
that aims to guarantee that all the framework memoents are satisfied and that all the
necessary components are loaded correctly by @sifiBM chip to perform hardware
and software configuration integrity measurememis # ensure that the appropriate
mechanisms are loaded.

There is one important limitation to the framewdhnkt relates to the implementation
of the delay mechanism. If a mechanism determihas & system call should be
delayed, this delay ends up impacting all monitgestesses and not just the process
that invoked the system call. This happens becthigss8ystrace module must receive an
answer from the call interceptor relating to a sgstcall request, before a new request
can be generated; as the delay has to be enfoncdaeicall interceptor (once the
Systrace module receives an ‘ALLOW’ for a systenll, cthe call is executed
immediately), all processes end up suffering tHaydperiod. The only way this can be
avoided is if there is an instantiation of the dallerceptor process for every user
process to be monitored and an interprocess conuation method is used to send
events to the control monitor that also runs inoite1 process (there must only be one

27

control monitor as the usage control policies anwersal for all processes). Of course,
as the monitor does not support parallel evaluafitime control monitor would become
a bottleneck for the system.

28

6. WINDOWS DETOURS FRAM EWORK

While the OpenBSD framework provides a valid impéstation of usage control
enforcement on the operating system level, it ipartant to be able to enforce usage
control on a more widely used operating systemh siscWindows.

In the Windows framework, instead of interceptihg system calls from the kernel,
we use the Microsoft Detours library to intercegevant Windows API function calls,
which are present in kernel32.dll. The actual naimt part of the framework remains
the same as in the OpenBSD implementation, onlygd@eration and signalling of
events is changed.

6.1 Detours

Detours is a library for detouring function calikis is done by replacing the call to
the target function by a call to a user definedbdefunction, which can still call the
original function through a trampoline function,réquired, as detours preserved the
target function code so it can be called as a suio® The detouring of functions
occurs at execution time by altering the code iy, which creates the possibility
of having an instance of a program that uses tteudsd functions and another instance
of the same program without the detours, execuirtbe same time.

The actual detouring is done by creating a probesk, which is a DLL that will be
injected into the detoured process’ code and thiaredirect the chosen functions. For
every function that will be detoured, the procesekhmust declare a trampoline and a
detoured function with the exact same signatur¢hastarget function. The detoured
function contains whatever we want to execute arduse the trampoline function to
execute the original target function, which thetumes to the detoured function. This
allows function pre-processing and post-processing.

The process hook must also contain a DLLMain fuamctivhere, for every process
that attaches the DLL, the detoured functions drached to their target functions.
When a process detaches the DLL, the detouredidumsctmust also be detached from
their target functions.

The injection of the process hook DLL into the @eg that is to be monitored can
be done by using the withdll utility that comesiwibhe detours package.

Function call
User » Windows

Process |¢ DLL
Function call return

Figure 6.1: Normal windows API function call.

29

User » Detoured
Process |¢—— Function

Y

Trampoline Original
Function |¢ Function

Figure 6.2: Windows API function call with Detours.

6.2 Windows implementation ar chitecture

The Windows framework detours the functions Creda€f- ReadFile(), WriteFile()
and DeleteFile() from the windows API. Each onetleg detoured functions created
generates an event request that is sent to theotonbnitor and receives a response.
Like in the OpenBSD framework, the process hooktnemdecute the actions stated by
the response, besides delaying or modifying thetian call, and then executes the
target function by calling the trampoline functi@xcept if the response was to inhibit
the function call). In other words, the processkassumes the event signaller role.

The overall architecture of the Windows framewooksists of the control monitor,
the user processes that are being monitored angrtduess hook, that intercepts the
calls to the windows API functions and also inteemwith the control monitor.

In the OpenBSD implementation, the event signaftll interceptor) and the
control monitor run in the same process. Howevethé Windows implementation this
is not possible because the event signaller (psdoesk) is not a process but a DLL and
the control monitor cannot be initialized in a DLThis is because DLLs share code but
not data segments between all the processes thaseng the DLL, which means that if
the monitor was initialized inside the DLL, eachoggss would have its own
independent copy of the monitor structures, ineigdhe policy states; in other words,
each process would have an individual and indepgna®nitor. This is clearly not
acceptable as usage control policies are univémstde system, therefore the control
monitor must run separately from the process houk the interaction between these
two components should be done using an inter-psoc@smunication protocol such as
SOAP or RPC.

Control Monitor

A
Event Event
Request Response
\ 4
Function call Real Function call

Y

Y

User Process Hook Windows
Process |« < API

<

Function call return Function call return

Figure 6.3: Windows framework architecture.

30

6.3 Process Hooking Techniques and Detours Limitations

There are two ways to hook a process with Detarsndividual hook and a system
wide hook. The individual hook is the simplest aggwh and can be done using the
withdll utility from the Detours package. In thip@oach, each process has to be
manually hooked to the detoured API when the poatarts and is a fairly efficient
process. However, this approach is not suitable thes implementation, as the
framework’s aim is to monitor every user proceskeithe user’'s logon and it is
extremely difficult to monitor the creation of uggocesses, and even more so to inject
the process hook as soon as the process is starting

The second alternative covers much better our fnari€s requirements but is also
much more costly. To implement a system wide haole must create a kernel driver
with a process creation notify mechanism (usingRe8etCreateProcessNotifyRoutine
function) which notifies userspace about every meacess being created and which
can then be used to automatically inject a detodikohto the newly created process;
but, as previously mentioned, this process sigaifily slows down the operating
system and even a small bug can cause a crashwihoch a user might possibly have
to restart the whole operating system to recovanfr

Lastly, it is important to point out that some ftioos used in creating the
framework are not compatible with all versions ofndbws that are currently in use
and even that the behaviour of Detours might kgh#ili changed in different versions
of Windows. The current Windows framework implenaiun is only compatible with
Windows Vista and later releases.

31

/. PERFORMANCE MEASUREMENTSAND ANALYSIS

7.1 Monitoring over head

So as to evaluate the impact of our monitoringtendverall system performance, a
series of tests were performed to measure the @QR& the system call interception
framework adds to a monitored process.

With this in mind, a test program was created #wcutes a certain number of
system calls to open, read, write and close fN@kich system calls are executed does
not matter, as there is no difference in the ovaihgenerated by, for example, an open
and a write system call.

The measurements were taken using the OpenBSD virarkebecause it better
represents a real-world system, as the Windowsedwark was implemented without a
system wide hook. The scenarios that were measuzesl

« firstly, we ran the test program without the franoekvto generate values
with which to compare all other measurements;

e the second measurement was to run the test progtemhed to the
framework but without any mechanisms being loadsd,as to measure the
overhead caused by the signalling component (s1dhase, Systrace);

* lastly, the second measurement was repeatedhimutitne a set of
mechanisms were loaded, so as to calculate therataework overhead.

Also the behaviour of the system with a variablenbar of mechanisms (between
10 and 100) and a variable number of executed mystdls (between 1 and 1000) was
assessed.

Normal execution

0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0,
1 59 117 175 233 291 349 407 465 523 581 639 697 755 813 871 929 987

—— Normal execution

Graph 7.1: Normal system call execution times ooses.

32

Graph 7.1 shows the execution times of the teggraro without the framework, and
the execution time grows linearly with the numbesystem calls called.

Systrace

0.3

0.25 A

0.2 1

015 | WMM. b “Mw

0.1 1

i \‘.I‘.‘l nlﬂlkm”} }

0.05 +

o bl L

1 52 103 154 205 256 307 358 409 460 511 562 613 664 715 766 817 868 919 970

Graph 7.2: Test program execution times with Sgstra

The second graph shows the results of the testrgmogxecution times when the
program is being monitored by Systrace. Systraterdapts the system call from the
kernel, forwards it to the monitoring process ieruspace and immediately allows and
returns the call to the test process, therefors,ishithe overhead of using only Systrace,
as no policy evaluation or modification of the caticurs. Comparing graphs 7.1 and
7.2, we can see that Systrace adds an overhegaaha@mately 40%.

Systrace + Monitor

0.35

0.3

0.25 A
0.2 1

Systrace + Monitor
0.15

0.1
0.05 +

0

1 57 113 169 225 281 337 393 449 505 561 617 673 729 785 841 897 953

Graph 7.3: Monitoring framework execution times.

Analysing graph 7.3, which shows the test prograewiscution times when attached
to the monitoring framework loaded with mechaniswe can state that the total
monitoring framework overhead is not much more ttienoverhead already caused by
Systrace. Additionally, this last measurement sgenaas run many times, with an
increasing number of mechanisms and this did noeigee perceptible differences in
execution time.

Finally, graph 7.4 shows a comparison between thexigion time of the test
program with and without the monitoring framewoAdthough there is a significant
overhead from monitoring the program, it does nakenthe monitoring unviable.

33

0.35

0.3 1

0.25 A

0.2 1 —— Normal execution

+ .
e Systrace + Monitor

0.15 A

‘ mnlmmr

0.1 lm-‘ —
awmnrn !

'mm._u un

0.05 4 iy
ey~ 01T
LW
i

0 it
1 57 113 169 225 281 337 393 449 505 561 617 673 729 785 841 897 953

Graph 7.4: Comparison between execution times.

7.2 Evaluation of the OpenBSD and Windows implementations

It is important to point out that there is a sliglifference in the level of abstraction
in which the OpenBSD and the Windows frameworksimagemented. While Systrace
allows the OpenBSD framework to intercept systeits @irectly in the kernel, this is
not possible in Windows because kernel accesstiswvalable; therefore we have no
choice but to intercept the calls at a slightlyhag level: the Windows API. The
practical consequences of this difference is thatWindows framework has access to
more data pertaining to the system call and thiesg is much easier than in the
OpenBSD implementation. For example, when execuwtingad or write call, the calling
process passes a file pointer as a parameter iwatedvhich file should be accessed,
however, usage control policies deal with file nama the Detours framework this is
not a problem, as the Windows API maintains a nrappf file pointers to file names;
no such mapping is available in the OpenBSD keffoeting the framework to create a
table with these values (which is less efficierd @a potential security threat). This is
further complicated by the fact that a same fileythave many file pointers, and a file
pointer may represent more than one file name (Isecaf soft and hard links).

Aside from the difference in the signalling componenentioned above, both
implementations are quite similar, mostly becaulmegolicy evaluation component is
the same. Also, both frameworks aim to monitoruakr processes; monitoring system
processes is unfeasible, partly because Systrat®eitours do not have this capability
(Systrace can't attach to system processes, andnsysrocesses in Windows use a
different dll for system calls than the kernel3Rwihose documentation is not publicly
available) , but mostly because enforcing mecharastions might turn the operating
system unstable; for example, an inhibited systathncay cause the whole operating
system to crash.

Finally, although the frameworks presented in thissis are capable of enforcing
many aspects of usage control, to make the frameveally complete, an information
flow component must be added. This component wdngldresponsible for tracking
sensitive data throughout the system, making itossfble for a policy violation to not
be detected. Currently, simply renaming a file\aica user to sidestep a usage control
policy, as it remains attached only to the previdilss name. Another method of
ensuring the correct running of the framework isatld trusted computing modules,
which can be used to guarantee the correct moadmechanism configurations.

34

8. CONCLUSION

In conclusion, we successfully implemented an @bians monitor that can be used
in usage control enforcement by observation andrdral monitor that can be used in
enforcement by control. A generic framework to ecéousage control in a system was
also shown, along with two applications of thisniework in real-world systems:
OpenBSD and Windows.

Our test results show that, although process mangadds a significant overhead
to the CPU time of said process, most of this ozadhis not caused by the control and
obligations monitors but by the signalling mechamigmore specifically, by the
Systrace framework used to capture events). Andenmoportantly, the generated
overhead is not too large as to make process mogtanviable.

Finally, the proposed framework is able to enfaraest aspects of usage control but
in order for it to be really complete, an inforneatiflow component must be added. It is
also necessary to guarantee that the monitors wamaing and with the correct
configurations, trusted computing being the mosigahte method for this.

35

REFERENCES

K. Havelund , Grigore R, Efficient monitoring of safety properties, Intational
Journal on Software Tools for Technology Trans&¥FTT), v.6 n.2, p.158-173, August
2004.

M. Hilty, A. Pretschner, D. Basin, C. Schaefer, &ndVNalter. A Policy Language for
Distributed Usage Control. In Proc. ESORICS, pdifis546, 2007.

M. Hilty, A. Pretschner, D. Basin, C. Schaefer\Walter, Monitors for Usage Control,
Proc. Joint iTrust and PST Conferences on Privacyst Management and Security
(IFIPTM), Moncton, August 2007

G. Hunt, D. Brubacher, Detours: binary interceptwd®Vin32 functions, Proceedings of
the 3rd conference on USENIX Windows NT Symposiuml4-14, Seattle,
Washington, July 1999.

A. Pretschner, M. Hilty, C. Schaefer, T. Walterddd. Basin. Mechanisms for Usage
Control. In Proc. ASIACCS, pages 240-245, 2008.

A. Pretschner, J. Ruesch, C. Schaefer, and T. W&ibemal Analysis of Usage Control
Policies. Proc. 4th Intl. Conf. on Availability, Raility, and Security (AReS),
Fukuoka, March 2009.

N. Provos. Improving host security with system gallicies. In SSYM’03: Proceedings
of the 12th conference on USENIX Security Symposipages 18-18, Berkeley, CA,
USA, 2003.

