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Simple Summary: Understanding the physiological mechanisms responsible for the reproductive
and productive development of modern sow genotypes will help to create or adapt management
recommendations for the farm. This review describes the main challenges and management in the
productive and reproductive phases of hyperprolific sows and some handling performed with the
offspring. The described principles are critical points in the development of females, and under-
standing these principles better will lead to improved production rates and welfare in commercial
pig production.

Abstract: The rearing of large litters from hyperprolific sows is a characteristic of modern genotypes.
However, these sows have body and reproductive characteristics that differentiate them from the
genotypes of the past decades, making it necessary to adopt different management strategies. This
review describes the main care and challenges associated with the hyperprolificity of sows during
the period in which replacement gilts are selected, along with gestation, parturition, lactation, and
the weaning-estrus interval. It describes the challenges that these sows’ piglets will face during the
lactation period and includes some strategies adopted to develop these surplus piglets. In addition,
it identifies areas where more research is needed to understand the reproductive management of
modern genotypes.

Keywords: gilt development; gestating sow; farrowing traits; preweaning mortality; surplus piglets;
sow longevity; sow health

1. Introduction

The modern sow genotype dramatically differs in terms of the productive and metabolic
profile from genotypes of 20 to 30 years ago. Modern maternal lines have an impres-
sive farrowing performance, with an increase of 4.5 total born piglets during the period
2006–2019 [1] or 6.7 total born during the period 2000–2020 [2]. One of the main drivers be-
hind this continuous increase in litter size is genetic improvement, reaching farms through
replacement gilts. Additionally, over the years, modern gilts have become leaner, more
feed-efficient, and faster-growing than gilts of previous decades. Therefore, correct strate-
gies in the selection, rearing, and puberty induction of replacement animals are important
links for a constant flow of high-quality gilts into the breeding herd.

Despite efforts in genetic selection, hyperprolificity was accompanied by a decrease in
piglet birth weight. As a result, piglets became more vulnerable, increasing pre-weaning
mortality and compromising their potential growth. With larger litters, farrowing duration
increased, resulting in stillbirths and dystocia, and it compromised the puerperal health of
the sow. Furthermore, the amount of colostrum available per piglet has decreased and, in
addition, the number of piglets born alive exceeds the number of functional teats. In this
way, larger litters brought enormous challenges in the puerperal and lactation period. The
lactational catabolism is intense in sows with more suckling piglets. Thus, there are great
challenges in maintaining these females with adequate body conditions at weaning and
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throughout the gestation period. Additionally, piglets may experience more competition
for udder access during the suckling period.

This review focuses on aspects of hyperprolific sows, highlighting the main changes in
the reproductive physiology of these animals and providing an evidence-based approach
for improved management interventions.

2. Birth Traits, Growth, and Body Development of Replacement Gilt

A constant flow of high-quality and well-managed gilts into the breeding herd has
a significant impact on herd efficiency, improving longevity, stabilizing the structure of
breeding herd parity, and allowing the farm to achieve its targets [3]. Successful selection
for high prolificacy became associated with increases in the proportion of low-birth-weight
pigs and preweaning mortality [4,5]. Additionally, the birth weight of the future breeding
female directly affects her productivity and longevity in the herd. Gilts born with a
weight less than 1 kg and selected for entry into the breeding herd show satisfactory
results in terms of puberty onset and farrowing rates. However, the numbers of piglets
produced over three parities and longevity were compromised [6]. More recently, when
“litter of origin” was explored in the context of the increasing number of low-birth-weight
pigs, a large percentage of low-birth-weight offspring came from a minority of sows
with an extreme and repeatable low-litter-birth-weight phenotype (LLBWP) [7]. These
sows probably have reduced placental development and capacity for efficient maternal–
conceptus communication [8]. An LLBWP might carry all the same risks described above
for individual low-birth-weight gilts but as a “litter” trait [9], and gilts born to a sow with
an LLBWP have lower retention in the herd within 4 days of birth, at weaning, and at
preselection into the breeding herd [10]. Considering the most extreme LLBWP population
(bottom 15%), no sow first giving birth to a low-birth-weight litter produced a high-birth-
weight litter at any subsequent farrowing [11]. Hence, the nucleus/multiplication farms can
effectively select against extreme LLBWP sows without risking missing out on high-quality
litters born in later parities [9].

Genetic selection and improvements in health, facilities, management, and nutrition
have led to future breeders with exceptional weight gain and body development, partic-
ularly in the period between weaning and puberty induction [4]. The fast-growing mod-
ern genotype has less adipose tissue than its predecessors, modifying lifetime metabolic
demands [1]. Typically, from weaning to puberty, gilts are fed ad libitum, and under
production conditions, their nutrition is not always different from that of finishing pigs.
Thus, contemporary gilts are fast-growing and have become a real challenge, particularly
considering the proportion of gilts exceeding the target body weight at puberty and the
negative impacts of being overweight on subsequent performance.

An adequate puberty stimulation process is essential to provide a consistent supply of
eligible gilts for service [9]. The occurrence of puberty can be stimulated at younger ages by
several environmental and management factors [12,13], but attempts to associate puberty
with a critical weight [14,15], growth rate (GR) [16], fat [14,17], or lean tissue [17] are still
controversial, being strongly influenced by the genotype.

The boar effect is a critical factor influencing puberty attainment in gilts, and daily
exposure to a rotation of mature and high-libido boars maximizes the response [9,18].
Earlier data from Beltranena et al. [19] suggest that when lifetime GR is below 0.55 kg/day,
puberty is delayed. More recent data support that with unrestricted feeding during the
growing/finishing phase, GR is unlikely to limit the age of the first estrus [20,21]. Besides
that, higher-lifetime-GR gilts (723 g/day) showed puberty earlier than lower-GR gilts
(577 g/day), with more of them attaining puberty by 190 days of age (95% vs. 76%),
showing the importance of lifetime GR as a factor anticipating puberty, mainly when gilts
are exposed to boars at an early age [22]. A lifetime GR close to 800 g/d seems to have no
detrimental effects on puberty onset. Even when the GR is higher than 620 g/d, puberty is
not limited by GR [23].
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Despite differences among the genetic lines, it is generally accepted that the target
weight to breed gilts is 135 to 150 kg [3,9,24] or 140–160 kg and 13–15 mm backfat thickness
at the age of 220–240 days [25]. With less attention paid to backfat thickness and age, gilts
that reach this target weight with at least one previous recorded estrus and adapted to herd
health status can be inseminated irrespective of age and backfat level [3,26]. Assuming a
maternal weight gain of 35 to 40 kg during the first gestation, gilts would reach >180 kg
after farrowing, which is protective against the detrimental effects of lean tissue loss during
the first lactation [27].

There are no advantages in breeding overly heavy gilts since they will be overweight
at farrowing, with more nutritional demands during lactation and over their produc-
tive life [3], compromising farrowing rate at the second parity [21]. Heavy gilts are also
associated with locomotion problems over three parities and a higher occurrence of still-
births [21,28], probably associated with greater difficulties in delivery. Therefore, from a
practical standpoint, these animals should be bred earlier, respecting the target weight [26],
or nutritional strategies could be used during the growing phase to reduce the GR of these
gilts. These strategies may be associated with a reduction in the dietary Lys-to-energy
ratio [29] or a 25% restriction in energy intake [30].

It is well accepted that maintaining a positive metabolic state in the pre-breeding
period seems to be another critical step in optimizing herd reproductive performance [9].
However, the requirements of modern genotypes for a nutritional flushing strategy (increas-
ing feed intake during the pre-breeding period) to increase ovulation rate are uncertain.
More recently, it was observed that flush feeding after pubertal estrus is still important in
improving the ovulation rate of modern replacement gilts [28]. The authors observed that
flush feeding gilts during cycles 1 and 2 before breeding (2.1 vs. 3.6 kg/d) increased the
BW and BF, whereas the ovulation rate at the third estrus was increased by increasing the
feeding level in cycles 1 or 2. However, embryo survival was reduced when gilts were fed
3.6 kg/d during the cycle before breeding. In addition, it was observed that gilt weight
influences litter size, and gilts with low backfat tended to respond more positively to a
longer period with high pre-breeding feed allowance than fatter gilts [31]. Although more
research is needed, the results available so far demonstrate that performing flush feeding
during the first cycle after pubertal estrus brings an increase in the number of ovulations
and the potential litter size, but it is probably not critical to those that are expected to reach
or exceed the breeding target weight.

3. Controlling the Gestation Phase to Avoid Reproductive Failures

Conception failure and gestational loss are reported as the main culling reasons for
sows [32–34]. Over the years, the advances in semen technologies and knowledge available
in the literature on insemination techniques and female physiology for the definition of
insemination protocols have minimized the impact of these procedures as the main reasons
for reproductive failures [35]. However, housing type, environmental conditions, feeding
system, and health status during the gestation phase are the most significant challenges
nowadays.

Housing sows in collective pens was the main change adopted worldwide during ges-
tation in the last 10 years. Optimum group size, moment of mixing, and feeding system are
not precisely determined for collective pens. There is a consensus that the mixing of sows
should not occur during the stress-sensitive stage of embryo implantation [36], which starts
11–12 days after insemination [37]. Differences in reproductive performance when mixing
sows 4 weeks post-service were not observed compared to stall-housed sows [38,39]. How-
ever, conflicting responses were observed comparing sows mixed soon after insemination
with those grouped 4 weeks post-insemination [36,38–41]. This difference among studies
could partially relate to a variation in time in which the females were mixed. Reproductive
performance was not affected in some studies mixing sows 4 days compared to 30 days
post-insemination [36,40]. Nevertheless, when the mixing occurred between days 3 and
10 post-insemination compared with later mixing (≥30 d) or keeping in individual crates,
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decreases in conception and farrowing rates were observed [38,39]. The last-cited studies
considered a large range between insemination and the day of mixing, which could impair
reproductive performance. Thus, mixing close to the days of insemination does not seem to
be detrimental in terms of gestational loss [42] when group housing soon after insemination
is performed by farms.

The feeding system is probably the main challenge in defining the recommendation
for group housing and mitigating the negative impacts on reproductive performance.
Providing optimal conditions for individual feed access in collective pens is essential
during the gestation phase since this is a period for adjustments in the body condition score
(BCS), and different feeding programs are performed. The control of the BCS in collective
pens is more difficult compared to individual crates, especially if adopting the mixing of
females soon after insemination. The social ranking or feed space in group housing systems
can result in females with restriction or overfeeding. In parity 1 and 2 sows housed in
collective pens and mixed soon after insemination, a linear reduction in total piglets born
was observed when an increase in daily feed intake (1.8, 2.5, or 3.2 kg/d) was provided from
day 6 to 30 of gestation [28]. However, in a systematic review, Leal et al. [43] concluded
that providing energy in excess of the maintenance requirement during early gestation
did not impair reproductive performance, as suggested elsewhere [44]. Regardless of the
conflicting responses, it is important to consider that most of the studies on this topic were
performed in gilts [43] using no hyperprolific genotypes, recovering embryos, and using
a reduced number of animals and levels of feed. In contrast, as reviewed elsewhere [44]
feed restriction during the first 30 days of gestation resulted in a higher risk of losing the
pregnancy. Thus, feed restriction in early gestation should be avoided. In young weaned
sows, the recommended feeding strategy is to provide 1.5× the energy requirement for
maintenance to prevent reproductive impairment [28]. Additional studies, including more
feed levels in early gestation, should be considered for hyperprolific sows with evaluations
up to and including farrowing performance.

Reproductive problems related to increased feed intake between days 30 to 90 of
gestation are not a concern. However, the stress caused by disputes or feed restrictions is
expected to compromise reproductive performance [45]. Some negative effects attributed
to social stress on pregnancy maintenance can be related to nutritional issues [44]. Thus,
increased feed consumption should be promoted between days 30 to 90 of gestation to avoid
feed restriction and recover BCS. From day 90 of gestation, an increase in feed levels (bump-
feeding) was extensively adopted for improving piglet birth weight, considering the higher
growth of fetuses in this phase and the higher number of piglets in hyperprolific sows.
However, studies using hyperprolific gilts and sows showed that the bump-feeding strategy
was not effective in promoting an increase in piglet birth weight [46,47] and, in some cases,
reduced voluntary feed intake during lactation [46,48]. The lack of improvements in
piglet birth weight using bump-feeding could be attributed to the placental efficiency in
transferring the additional nutrients for fetuses from day 90 of gestation. This hypothesis
was evaluated by Mallmann et al. [28] by comparing the use of 1.8 vs. 3.5 kg/d between
days 22 and 42 of gestation, followed by the use of 1.8 vs. 3.5 kg/d of feeding from day 90
until 110 of gestation in a factorial arrangement. The increase in feed intake at the beginning
of gestation provided more nutrients for better placental development. However, total
placental weight, placental efficiency, and birth weight of piglets were not affected by the
different feeding levels or gestation phases. Other strategies for increasing piglet birth
weight, including amino acids used in the third trimester of gestation, were reviewed by
Moreira et al. [49] who indicated no beneficial effects regardless of the amino acid type.
Based on the evidence in the literature, the inclusion of piglet birth weight in the genetic
programs is the main strategy currently available to prevent low-birth-weight piglets in
hyperprolific sows.

In the near future, more sows will be housed in collective pens worldwide. Compar-
isons among feed systems associated with other factors, such as density or group size in
collective pens, and their impact on reproductive performance are complex, and respective
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studies are scarce. Thus, models for facilities for group housing are being developed by
companies based on practical observations of welfare and reproductive performance. In
our experience, the model that has been well adopted in Brazilian conditions considers
the open short stalls for individual feeder access, a partially slated floor, a group size
of 15–20 females with a minimum of 1.5 and 2 m2/animal for gestating gilts and sows,
respectively.

The locomotor problems in group housing may increase, reducing reproductive per-
formance and increasing culling for lameness [50]. A routine of daily individual care of
animals is crucial for early treatment, avoiding gestation losses, welfare problems, and
death of sows. Mortality of sows has been a concern in the last few years for multiple
reasons [51]. Pelvic organ prolapse (POP) is one of the main reasons for death, with clinical
signs occurring at the final gestation phase and structures prolapsed at farrowing and
post-farrowing [52]. The total number of piglets born (indicating a high prolificacy) was
evaluated as a risk factor for prolapses and was not associated with the problem [53]. The
etiology of POP is not fully determined, but a low BCS was reported as an important risk
factor [54]. Additionally, farms that use an increased feed intake during late gestation for
sows having a low condition score had lower POP rates compared to farms not using a
bump-feeding strategy. Thus, correct adjustment of the BCS during the gestation phase is
necessary to avoid POP and reduce mortality, since farms with reduced farrowing rates are
associated with high sow mortality [55].

4. Farrowing Traits of Hyperprolific Sows and Their Consequences

One of the benchmarks used worldwide is the weaned pig output, and it is noticeable
that the improvements made by the genetic companies in prolificity are observed in com-
mercial herds. However, piglet loss rates before weaning are still high (Figure 1), despite
all efforts accomplished in facilities, management, and new traits for the selection program.
Generally, approximately 15.0% of piglets do not survive from birth to weaning [56]. High
piglet mortality can be associated with farrowing events, such as prolonged farrowings,
dystocia, and hypoxia [57].
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The duration of farrowing has been increasing over the years, presumably due to the
increase in litter size. For example, in 2005, the average farrowing duration was 166 min [58],
which has now increased to 268 min [59]. Several factors can affect the duration of farrowing,
such as obesity, constipation, housing system [60], litter size, number of stillbirths [58,60],
the use of oxytocin [61], and genetics [58]. The consequences of prolonged farrowing and
dystocia are, in most cases, negative to the sow [62]. The uterine environment is exposed
to contamination, and pathogenic agents are easily carried into its interior when there are
obstetric manipulations. Hyperthermia in the first 3 days postpartum is common, as well
as a decrease in appetite and water consumption [63], compromising the general health of
the sows [64] and predisposing them to a reduction in milk production and subsequent
performance [65,66].

5. Neonatal Losses: Incidence of Stillbirths and Low Viability Piglets

Prolonged farrowing is strongly correlated with litter size and stillbirths. Indeed,
sows with farrowing >3 h had 2.0 times higher odds of stillbirth occurrence than sows
with shorter farrowing [67]. Oliviero et al. [60] reported that a long farrowing duration
(>300 min) resulted in an average of 1.5 stillborn piglets per litter, whereas farrowing of
normal duration (<300 min) resulted in 0.4 stillborn piglets. Similarly, females with 0 and
2 stillbirths had farrowing lengths of 307 and 487 min, respectively [59]. However, it is
unclear whether the presence of stillbirths is the cause or the consequence of prolonged
parturition.

The consequences of fetal distress, whether caused by prolonged farrowing or dystocia,
imply lower piglet viability after birth [68], with reports of 7.9 times more chances of death
until the third day of life in piglets born cyanotic [69]. The last piglets born are more prone
to stillbirth, with reports of stillbirth rates of 3.6%, 10.1%, and 21.7% in piglets from the 1st
to 9th, 10th to 13th, and 14th order, respectively [67]. It has also been reported that from the
11th piglet born, the chance of being stillborn is approximately 15 times greater than that
for piglets with a birth order below 7 [70]. Piglets that take longer to be born tend to have
the umbilical cord broken at birth [71], and consequently, their chances of death by the third
day may increase 3-fold when compared to piglets with an intact cord [69]. Thus, it is clear
that the factors influencing stillbirth also impact the occurrence of low-viability piglets.

6. Colostrum Yield

Hyperprolific herds may have to deal with reduced individual colostrum intake
by newborn piglets because it is expected that as litter size increases, piglet colostrum
intake decreases [72]. Indeed, Theil et al. [25] noticed an increase in colostrum yield over
13 years (5.3 to 6.9 kg per sow), but with a concomitant reduction in colostrum intake of
individual piglets (438 to 322 g/piglet), and as previous reports have shown no association
between litter size and colostrum yield [73,74], the reduction in individual colostrum intake
in large litters may depend on the presence of low-birth-weight piglets and increased
teat disputes. Additionally, piglets with low vitality may delay consuming colostrum,
increasing the risk of death. Thus, it is paramount that some practices must be adapted
in farrowing supervision and day-1 piglet care protocols to increase udder access and
colostrum consumption.

Although farrowing duration does not affect colostrum production [75,76], females
with low colostrum production (<3 kg) had more stillbirths and longer intervals between
piglet births in the early parturition phase [75]. This effect can be attributed, at least in part,
to the maternal endocrine status, since many hormones have important role in lactogenesis
and parturition [73], indicating that these events are linked.

7. Female Health, Reproductive Performance, and Longevity

Farrowing is physically demanding and sows become prone to exhaustion, heart
failure, physical injury, and reduced immunity [77]. The duration of parturition can
influence general and uterine health. Long parturitions may increase the percentage
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of females with hyperthermia (≥39.0 ◦C) in the first 24 h postpartum and reduce their
appetite [63]. One of the clinical conditions frequently observed is post-partum dysgalactia
syndrome (PPDS), characterized by insufficient colostrum and milk production in the
first days postpartum [78]. Additionally, constipation on the day of parturition reduces
the female appetite, increases the occurrence of PPDS, and enhances the percentage of
females with hyperthermia [79]. In addition, the accumulation of fluid in the uterus in
the postpartum period may predispose to puerperal metritis [59]. Although the disease
is, in most cases, temporary and reversible, the piglets will be affected, especially those
litters that had a low birth weight, due to the compromised milk production in the first
days of life [80]. Ultrasound images are interesting tools to evaluate female reproductive
soundness, detecting the retention of placenta or endometritis [64]. Postpartum ultrasound
can be used to identify uterus enlargement and fluid in females having manual obstetric
intervention and prolonged farrowing [59]. Additionally, the visualization of piglets might
indicate obstruction or uterine inertia [64].

Prolonged farrowings and dystocia negatively influence uterine health and increase
the risk of reproductive failure. Uterine involution can be delayed by high BCS values and
hyperthermia [81], prolonged parturition, and delayed placenta expulsion [59]. Regarding
the course of parturition, females with a parturition duration ≥300 min were 1.5 time more
likely to have weaning-to-estrus intervals prolonged by 1 day and have an odds ratio of
3.4 to return to estrus after the first mating compared to sows that had a farrowing interval
<300 min [65]. Sow longevity can be compromised by dystocia or lack of correct assistance.
A prolonged weaning-to-estrus interval, a reduced farrowing rate, a small litter size in
the subsequent reproductive cycle, and a greater culling rate were reported in different
parity sows with manual obstetric intervention [82]. Manual obstetric intervention should
be performed prudently to avoid the risk of postpartum metritis and delayed uterine
involution, compromising the subsequent reproductive performance and longevity of
the sow.

The peripartum period is critical for sow death due to heart failure, urogenital disor-
ders, and prolapses [52,83–85]. Sows in confinement systems are particularly prone to heat
stress [77]. In an individual crate system, Vearick et al. [85] observed a tendency for higher
mortality when the ambient temperature was above 33 ◦C. Similarly, in hot and humid
seasons, a higher occurrence of death was observed, especially for young females [83].
Thus, management to reduce heat stress is essential, mainly in sows with a high body
condition score. Heat stress may play an important role in physical fatigue of hyperprolific
sows, and appropriate care during the peripartum period, by ensuring sow comfort and
water intake, may alleviate distress and reduce sow mortality.

In recent years, an important increase in the incidence of POP (including uterus,
vagina and/or rectum) has been documented worldwide, with increased sow mortality
and culling rates. Genetic involvement was not well established and since there is a low
heritability [86], prolapse incidence is probably related to environmental and management
effects. Although high litter size may exert more pressure on the uterus and abdomen,
a survey representing almost 400,000 sows found no evidence of an effect of litter size
on POP occurrence [87]. Contrarily, Iida et al. [53] reported that prolapse incidence was
higher in sows with a small litter size, the presence of two or more stillborn piglets, and
parity greater than 3. Usually, a small litter size is related to heavier piglets, which can
also compromise the birth canal. Farrowing assistance and farrowing induction were not
associated with POP occurrence in that study. Other factors contributing to POP may
include zearalenone, high-density diets, vitamin deficiency, lack of adequate water, and
excessive slope of the floor [88]. Currently, although the etiology is not fully understood,
it is possible to identify low- and high-risk females according to perineal scores based
on swelling, redness, and protrusion, varying from 1 to 3 [89]. Score 3 sows represent a
low proportion, reaching 3–5% of the population, but more than 20% of them experienced
POP [90]. Additionally, some blood markers were identified as putative for score 3 sows,
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such as higher serum androsterone, estradiol, and lipopolysaccharide-binding protein
levels and decreased numbers of circulating lymphocytes and monocytes.

8. Strategies and Tools to Optimize Performance at Farrowing

Reducing farrowing duration involves several approaches. Although uterotonics (e.g.,
oxytocin or its analogs) can reduce farrowing duration, administration in the early process
increases the stillbirth rate [61,91,92]. Recently, it has been shown that carbetocin is also
associated with reduced colostrum yield [91,93]. In general, however, the studies conducted
with uterotonics did not consider individual necessity and used different dosages and
timing. It is established that uterotonics should be administered if there is no obstruction,
in the presence of weak contractions and after other obstetric assistance measures. Manual
obstetric intervention is another practice to assist when the birth interval of piglets is
increased, aiming to increase piglet survival and reduce farrowing duration. This procedure
is more frequently observed in older parity sows and during summer [82], probably due to
the lower muscle tone and physical exhaustion.

In many farms, sows are fed once a day until farrowing, resulting in a prolonged
period of low energy availability. As parturition is an energy-demanding event for the sow,
expelling a large litter size is challenging. Additionally, constipation a few days before
parturition is expected because of the low feed consumption by the female [94], which may
result in prolonged farrowing [60]. Prepartum feed restriction leads to hypoglycemia and
less energy available for the intense contraction that the uterus and abdominal muscles will
require [95]. Appropriate feeding of sows in the transition phase from the end of gestation
to early lactation is essential to assure suitable fetal and mammary growth, farrowing, and
colostrum production [25]. Increasing sow fiber intake prior to parturition can alleviate
constipation degree [96]. The effect on the farrowing process and newborn piglet survival
is still inconsistent. Whilst some studies have reported no effect of fiber on farrowing
length [97,98], others have shown promising findings on the reduction of the expulsion
phase and/or stillbirth rate [99,100]. Some possible reasons could be related to the fiber
substrates and levels since fiber supplementation higher than 20% seemed to lead to better
results [99].

Feyera et al. [99] demonstrated a negative correlation between blood glucose levels
and farrowing length. In that study, the interval from the last meal until the onset of
farrowing affected the farrowing duration, suggesting that sows in late gestation should
receive at least three meals daily to avoid low glucose concentrations at farrowing. Glu-
cocorticoids can increase glucose production by stimulating proteolysis, lipolysis, and
hepatic gluconeogenesis [101]. Recently, it has been reported that dexamethasone treatment
(20 mg) before farrowing onset (at the time of copious colostrum secretion) can increase the
glucose concentration throughout the farrowing process, reduce farrowing duration, and
decrease the necessity for obstetric interventions for primiparous sows [102]. Although
dexamethasone treatment resulted in a lower occurrence of piglets born with meconium
staining, no effects on stillbirth rates, piglet survival, or performance until 5 d of age were
found [102]. Contrarily, treatment with 20 mg dexamethasone 24 h after farrowing induc-
tion (at 113 days of gestation) did not influence the duration of farrowing, the incidence
of dystocia, or preweaning survival [103]. Further investigations may help to establish a
strategic protocol for treating sows more prone to dystocia and stillbirths and to determine
the optimal moment for dexamethasone treatment.

At the herd level, controlling sow weight and body condition is essential to obtain
better performance, herd longevity, and optimal feed use. Females with high backfat
(>17 mm) have shown 155 min-longer farrowings [60] compared to low backfat thickness.
Delayed progesterone decline at peripartum and more fat around the birth canal are
believed to be involved in this phenomenon [94]. It is important to keep in mind that
overweight sows may have reduced colostrum production [104] and limited feed intake
during lactation, compromising milk production [105,106]. Maternal undernutrition also
compromises sow and offspring performance, with increases observed in the stillbirth rate
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and colostrum/milk production [106]. Decaluwé et al. [107] showed a negative association
between colostrum yield and backfat loss during the last week of gestation, indicating that
body mobilization cannot fully compensate for undernutrition during mammogenesis.

9. Managing Lactating and Weaned Sows

Milk production for large litters requires a significant body reserve mobilization as
nutrient intake is prioritized for colostrum and milk production. Feed intake, however, is
usually insufficient to meet all nutritional requirements and sows mobilize body reserves,
resulting in a catabolic state [105]. In addition to milk production, primiparous sows
have not reached adult body weight, which deserves greater attention during the lactation
period [108].

In the past, catabolic sows were expected to have longer weaning-to-estrus intervals
(WEI), lower ovulation rates, low embryo survival, and smaller litter size [109]. In the past
two decades, there has been evidence that modern genotypes are more resilient on return
to estrus after weaning, but the negative effects on conception rate and subsequent litter
size persist [110–114]. Follicle development may be compromised under a catabolic sow
state, impairing the ovulation rate and embryo survival.

The modern genotypes manifest estrus in an average of 4.8 days after weaning [115]
and have a lower anestrus rate [116]. By 1 week after weaning, 90–95% of the multiparous
sows are expected to exhibit estrus [115]. Thus, recovering body reserves before breeding is
difficult for sows. Whilst in the past, ad libitum access to feed was a common strategy for
sows with excessive loss of body reserves, recent findings suggest that increased feed intake
during WEI reduces body reserve loss during WEI, but with no improvement in follicular
growth and subsequent reproductive performance [116]. Thus, minimizing maternal body
loss is still critical for modern hyperprolific genotypes. Strategies to reduce excessive weight
loss include nutritional gilt and gestating female management, as previously discussed,
controlling temperatures in farrowing units, and ad libitum access to feed and water and
health care for lactating sows.

In recent years, the swine industry has focused on increasing pig weaning age. Al-
though many advantages are reported for piglets, as further discussed, increasing lactation
length may be associated with different management strategies for sows. A longer lactation
period facilitates better uterine involution before insemination. For each day that the
farrowing–weaning interval increased, the sows produced 0.19 more piglets per year or
0.32 more piglets until the fourth farrowing [117]. In some countries where lactation may
take longer than 5 weeks, an improvement in the subsequent litter size is reported due to
the restored body condition during lactation [114].

10. Management of Hyperprolific Litters in the Lactational Period

With the increasing number of large litters, the sow needs to produce more milk, but
the amount of milk available for each piglet decreases due to increased competition for
teats. Insufficient colostrum and milk intake might cause problems during the pre- and
post-weaning phases. Pre-weaning mortality is a multifactorial process resulting from
interactions among the sow, the piglet, and the environment [118]. Although this is a
challenge for large litters, decreasing pre-weaning mortality is an excellent opportunity to
enhance animal welfare and to make pig production more sustainable.

10.1. Number of Piglets and Functional Teats

A functional teat must provide enough milk to develop a piglet [119]. Surplus piglets
result in delayed colostrum intake, higher mortality rates, more suckling failures, reduced
litter growth, or more face lesions due to increased competition for teats [120]. In fact, sows
with more functional teats have larger litters and piglets at weaning compared to sows
with fewer functional teats [121]. In one study, an increase of one available teat improved
survival by 3.25%, the weight of litters at weaning tended to increase by 3.6 kg, the number
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of weaned piglets increased by 0.34 piglets [122], and pre-weaning mortality was reduced
by 3.04% [123].

Sows do not have a mammary cistern, and milk is available to the piglets only in short
intervals of time, reflecting the need for a functional teat for each piglet. With a moderate
heritability for a functional teat (h2 = 0.31) [124], the importance of including functional
teats in genetic improvement programs to increase the survival of piglets and contribute to
the development of litters is evident. Thus, strategies must be addressed to develop the
piglets exceeding the number of functional teats and will be discussed in this review.

10.2. Cross-Fostering Protocols

Cross-fostering is a strategy used to reduce weight variation within the litter or to keep
a number of piglets that can consume colostrum and milk adequately, removing the piglets
surplus to the number of functional teats. It is usually performed during the first 2 days
of life before teat order is established and colostrum consumption is ensured. However,
there is no standard protocol among the farms. The litter can be composed of biological,
adoptive, or mixed piglets, with a survival rate until weaning of approximately 97.2% [125].

Nevertheless, care must be taken in how the cross-fostering of the piglets is carried
out. Souza et al. [126] observed that light piglets should not be cross-fostered with heavy
piglets to avoid losing suckling episodes and compromised survival rate. Similarly, Vande
Pol et al. [127] highlighted the recommendation of cross-fostering light piglets in litters
with uniform weight. However, no difference was observed when light piglets were
cross-fostered with intermediate-weight piglets [128].

The number of functional teats in the modern female is, on average, 13.9 [129], and the
number of piglets born alive is above 15. Thus, the number of teats is a limiting factor for the
development of modern large litters and should be addressed in cross-fostering protocols.
Recently, Vande Pol et al. [130] used the number of functional teats to develop cross-
fostering protocols and observed that the group with two piglets exceeding the number
of functional teats had higher pre-weaning mortality, even though these sows weaned
numerically more piglets (+0.7 piglets) and had a similar weaning weight compared to the
group cross-fostering with the same number of piglets and teats. As pre-weaning mortality
is concentrated during the first days of life, females are prone to have more non-stimulated
teats during lactation. In practice, some companies have performed cross-fostering with
more piglets than functional teats, with few scientific findings. Thus, further studies are
needed to evaluate how many piglets per teat can be fostered, how different categories
of piglets (light/heavy) will respond to this management, and how long after farrowing
fostering can be successfully performed. Establishing a standardized protocol will assist
producers in forming litters with a better ability to grow and survive.

10.3. Pre-Weaning Litter Socialization

An alternative to improve pre-and post-weaning performance is the socialization of
the litter. Research that removed the barrier between two adjacent pens, allowing piglets to
interact before weaning, showed a reduction in aggressive behavior and the occurrence
of injuries [131–133]. In addition, a better growth rate was reported in the post-weaning
phase [131,132]. In traditional farrowing crate systems, performance failures in piglets are
common due to disputes for teats or low milk production by a mammary gland, which
may inhibit adequate piglet growth. By allowing access to more than one sow, piglets have
the opportunity to access other teats (cross-suckling) that could otherwise be available
and unused.

In a previous study, however, a greater score of teat lesions was also found in sows,
along with skin lesions in piglets from socialized litters (performed on day 14 of lactation).
Interestingly, socialized pigs had 19% fewer skin lesions than the control group after
weaning [134]. Irrespective of the time of socialization (7 or 14 days of life), piglets showed
more aggressive and play behaviors than control piglets; however, the number of skin
lesions indicated that co-mingled piglets fought less [133].
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Other studies propose a system with more physical space and social enrichment
for multi-suckling sows and piglets [135]. Post-weaning benefits associated with multi-
suckling systems include higher feed intake and weight gain and a lower occurrence of
tail biting [135]. Thus, litter socialization, by removing the barrier between pens or by
multi-suckling, is an area that requires further research to assess the benefits and challenges
for sow and litter welfare.

10.4. Nurse Sows and Supplementary Feeding

In many hyperprolific herds, nurse sows may represent 10–15% of lactating females,
with some herds showing a prevalence as high as 50% [57]. Two strategies are currently
used. In the one-step strategy, a recently weaned sow raises surplus newborn piglets.
In the two-step strategy, the weaned sow raises a litter from an intermediate sow after
5–10 days of lactation. The intermediate sow is moved to foster the newborn surplus
piglets. In both strategies, the lactation length is prolonged, with the aim to increase the
pre-weaning survival of piglets in a given farrowing group. Although a common practice
among farms, there is a great variation in the methodology, making difficult to stablish a
standard protocol [57].

Further, some sows may not accept the foster litter or may experience reduced milk
production due to latency to first nursing. Foster piglets present more disputes for teats,
missed nursing, and lower growth rates [136]. Prolonged lactation may result in teat
injuries, poor body condition at weaning, and locomotor problems. Another implication
is the dissemination of pathogenic agents. According to Garrido-Mantilla et al. [137], this
management strategy can facilitate the transmission of the Influenza A and PRRS viruses
between nursing sows and piglets.

Nutritional supplementation may be an alternative to increasing the vitality of the
piglet and its ability to ingest colostrum/milk, helping to compensate for low body reserves.
Piglets consuming low amounts of colostrum had increased survival rates when receiving
an energy supplement (from 66.7% to 93.3%) [138]. Additionally, providing oral supple-
ments may improve preweaning survival [139] and the weaning weight of low-birth-weight
piglets [140].

Artificial rearing involves keeping piglets in specialized enclosures equipped with
lamps, water and milk replacer cups, and solid creep feed. This system can substitute
nurse sows or may be used to raise sick and starving piglets. As piglets have free access to
milk replacer, weaning weight is higher, but welfare and post-weaning performance are
occasionally negatively influenced [57].

Alternatively, milk replacers can be offered in cups, installed in the farrowing pens,
and activated by the piglet snout. This management offers interesting results in large
litters, minimizing piglet mortality, improving weaning weight, and decreasing within-
litter variation [141]. The major limitations of supplementation for piglets, as the sole
or complementary nutritional source, are the high investment and maintenance of these
systems, in addition to problems related to animal welfare when piglets are deprived of
maternal contact.

10.5. Increased Weaning Age

The weaning period represents an abrupt transition from liquid to solid feed and
the formation of a new social hierarchy (housing with “unknown” piglets). Despite the
provision of highly digestible diets after weaning, this practice is associated with an abrupt
reduction in feed consumption in the first days, combined with hierarchical stress generated
in the new facility [142].

Later weaning can benefit the development of the intestinal barrier and reduce im-
munological parameters linked to stress [143]. Increasing the weaning age from 19 to
28 days positively affected pig performance in the nursery and increased body weight sold
per pig weaned, indicating 25 days as the optimal age [144]. Furthermore, increasing the
weaning age from 18.5 to 24.5 days positively affected pig performance by reducing the
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number of pigs treated, increasing the average daily gain and feed intake, and marginally
reducing total pig losses [145]. Thus, increasing weaning age is particularly important in
systems where antibiotic use is more restricted.

11. Conclusions

Hyperprolific herds are a challenge for pig farming since females present distinct
requirements, and piglets may struggle to develop and survive. As increasing the number
of functional teats may take several years, some of the issues discussed in this review will
persist. Alongside this, the growing concern for animal welfare, such as group-housing
gestation and increased weaning age, requires more efforts to ensure that higher prolificity
results in a better quantity and quality of weaned piglets, along with improving sow
longevity. Consequently, the management of hyperprolific herds includes well-managed
replacement gilts, enhanced management during pregnancy, attention to prolonged farrow-
ing, practices aiming to increase the consumption of colostrum and milk, and strategies
to raise piglets exceeding the number of functional teats available in the farrowing group.
It is evident, thus, that overall pig management must be improved to meet sow, piglet,
and industry demands. Although we highlighted important sow and litter handling to
maximize pig production, the magnitude of each influencing factor may differ among the
farms. Thus, it is paramount that each system identifies all the aspects previously discussed
to implement the recommended management.
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