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“Enlightenment leads to benightedness,

science entails nescience.”

— PHILIPPE VERDOUX



ABSTRACT

Ever since their inception lambda calculus and type theory have been such an influence

in the design of modern programming languages so much so that even programming lan-

guages outside of the functional circle have adopted its practices. But even inside the

functional circle, not many programming languages have dared to venture beyond the

higher order polymorphic lambda calculus, towards the calculus of constructions: it can

be troublesome to incorporate dependent types into a more traditional type system without

constraining the calculus in some way, and these constraints usually lead to the calculus

not being a good theoretical foundation for a programming language. However, program-

ming languages like Idris and Agda have proven that there exists benefits in bringing full,

unrestricted dependent types to the type system of functional programming languages.

Despite the advances that these programming languages have achieved in the research

surrounding advanced type systems, they do not target an executable format and, for the

purposes of execution, choose to transpile their programs into other programming lan-

guages. While transpilation has its advantages, it also has its drawbacks: the program-

ming language now depends on the compiler toolchain of a second, separate programming

language. This gives rise to a question: would it be desirable to compile a dependently

typed programming language to an executable format without indirection?

In the present research project we explore the topic of compiling Curios, a dependently

typed functional programming language to WebAssembly, a binary instruction format for

a stack-based virtual machine. We describe Curios through practical examples showcas-

ing its syntax and basic features, and how to represent more complex concepts by using

its basic features as building blocks. The type system of Curios is formally specified

next, and following that we give a detailed explanation on the inner workings of the com-

piler, from source code to executable. We conclude by presenting the bodies of work that

have influenced Curios, what was achieved and what was left as topics for future research.

Keywords: Dependent types. Compilation. WebAssembly.



Curios - Uma Rede de Tipos

RESUMO

Desde o seu princípio o cálculo lambda e a teoria dos tipos têm sido uma influência tão

grande no design de linguagens de programação modernas que mesmo linguagens de

programação fora do círculo funcional adotaram as suas práticas. Mas mesmo dentro

do círculo funcional, não existem muitas linguagens de programação que se atreveram a

se aventurar além do cálculo lambda polimórfico de order maior, em direção ao cálculo

das construções: pode ser problemático incorporar tipos dependentes em um sistema de

tipos mais tradicional sem restringir o cálculo de alguma forma, e estas restrições normal-

mente fazem o cálculo não ser uma fundamentação teórica tão boa para uma linguagem

de programação. No entanto, linguagens de programação como Idris e Agda provaram

que existem benefícios em trazer tipos dependentes completos e irrestritos para o sistema

de tipos de linguagens de programação funcionais.

Apesar dos avanços que estas linguagens de programação conquistaram na pesquisa em

torno de sistemas de tipos avançados, elas não têm como alvo um formato executável e,

com o objetivo de serem executadas, escolhem transpilar os seus programas para outras

linguagens de programação. Embora a transpilação tenha as suas vantagens, ela também

tem suas desvantagens: a linguagem de programação acaba por depender das ferramentas

de compilação de uma segunda, distinta linguagem de programação. Isso levanta uma

pergunta: seria desejável compilar uma linguagem de programação para um formato exe-

cutável sem indireção?

No presente projeto de pesquisa exploramos o tópico de compilar Curios, uma linguagem

de programação dependentemente tipada para WebAssembly, um formato de instruções

binárias para uma máquina virtual baseada em pilhas. Descrevemos Curios atráves de

exemplos práticos demonstrando a sua sintaxe e funcionalidades básicas, e como repre-

sentar conceitos mais complexos usando as suas funcionalidades básicas como ingredi-

entes modulares. O sistema de tipos de Curios é formalmente especificado por próximo,

e em seguida damos uma descrição detalhada das operações internas do compilador, de

código fonte até executável. Concluímos apresentando os trabalhos que influenciaram

Curios, o que foi alcançado e o que foi deixado como tópico para pesquisa futura.

Palavras-chave: Tipos dependentes, Compilação, WebAssembly.
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1 INTRODUCTION

In recent years, functional programming languages have enjoyed a surge in pop-

ularity, with many software programmers discovering the benefits that the paradigm can

offer. Functional idioms such as pattern matching and first-class functions have even be-

gun to not only be adopted by well-established, market staple programming languages but

also influence the design of every programming language to come.

Functional programming is known for its strong roots in lambda calculus and type

theory. Languages such as Haskell and OCaml can have their advanced user facing fea-

tures reduced to a concise core language based on the higher order polymorphic lambda

calculus, also known as System Fω (PIERCE, 2002). To briefly recapitulate, System Fω

is a type system that allows terms to depend on terms (functions), terms to depend on

types (polymorphism), types to depend on types (type constructors), but it does not allow

types to depend on terms (dependent types).

Under the Curry-Howard correspondence (SØRENSEN; URZYCZYN, 2006), the

problem of verifying the correctness of a proof can be reduced to the problem of checking

whether a program inhabits a type: a proposition is equivalent to a type, and the proof of

that proposition is equivalent to a program. Dependent types employ the Curry-Howard

correspondence specially well because, by allowing terms to appear at the type level, de-

pendent types can act as formulas of intuitionistic predicate logic (MARTIN-LÖF; SAM-

BIN, 1984) and, as a consequence, they became a feature most commonly associated with

proof assistants.

Dependent types do not come without their downsides though: full dependent

types (i.e. allowing terms to occur without restriction in types) leads to undecidable type

inference. In short, type inference for full dependent types can be reduced to a problem

called semi-unification where solving the set of type constraints collected from the expres-

sions of the program can lead to non-termination (KFOURY; TIURYN; URZYCZYN,

1990; DOWEK, 1993). The Calculus of Inductive Constructions (PAULIN-MOHRING,

2015) (which is the formalism behind the Coq1 and Lean2 proof assistants) sidesteps this

issue by defining a set of schemes for the formation of types that restrict their recursive

occurrences in such a way that termination is obtained.

In functional programming languages, this restriction is considered to be too heavy-

handed because it rules out a number of popular idioms involving general recursion, which

1<https://coq.inria.fr/>
2<https://leanprover.github.io/>

https://coq.inria.fr/
https://leanprover.github.io/
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led to dependent types being a feature relinquished to proof assistants. Even though de-

pendency of types on terms is not a novel topic when the subject is programming lan-

guages3, in most instances they were accompanied by a whole host of limitations.

Notwithstanding the challenge of incorporating full dependent types into general

purpose programming, Idris (BRADY, 2013) demonstrates the feasibility of dependently

typed idioms as tools for writing better software. For example, session types (MUIJNCK-

HUGHES; BRADY; VANDERBAUWHEDE, 2019) allow communication protocols to

be specified entirely at the type level, potentially allowing web apps to verify that their

communication with a server is statically checked by the type system. Another example

is the Control.ST module (BRADY, 2016) which offers a monad for dependently

typed effects, which has the potential to give more precise types for effectful idioms such

as centralized state containers.

The current landscape regarding execution of programs written in dependently

typed languages has a bias towards transpilation: Idris targets C and Javascript (IDRIS

CONTRIBUTORS, 2020); Agda targets Haskell and JavaScript (AGDA CONTRIBU-

TORS, 2022); Idris2, the next iteration of Idris, targets Chez Scheme (IDRIS2 CONTRIB-

UTORS, 2022). A significant downside of transpilation is that a transpiled programming

language ends up indirectly depending on the entire compiler toolchain of a second lan-

guage before its programs can be executed. With that in mind, we raise a question: would

it be desirable to target an executable format (or at the very least, a low-level intermediate

representation) with a dependently typed language?

WebAssembly (ROSSBERG, 2022), a binary instruction format for web apps that

is fast, safe and portable, has taken the web programming landscape by storm. Java-

Script used to be the only option both as a programming language and as a transpilation

target for other programming languages, but WebAssembly now offers the opportunity

for compiled languages such as C++ and Rust, which are seen as low-level programming

languages, to be executed on the web browser. Just as important as bringing existing

languages to the web programming landscape, WebAssembly has the potential to nurture

new programming languages targeting its instruction set specifically. With that in mind,

we refine our original question: can WebAssembly serve as the medium for executing

dependently typed programs on the web browser?

In the present work, we explore how one might approach the task of compiling

a dependently typed programming language by introducing the dependently typed func-

3As evidenced by Pascal which, in 1970, allowed the type of an array to be indexed by its size.
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tional programming language Curios. The main selling points of Curios are:

• It is general purpose. Curios proposes a method for reconciling general recursion

with dependent types, two notions that can be viewed as contradictory. Its type

system offers an alternative to the Calculus of Inductive Constructions that has the

potential to lend itself well for programming languages;

• It targets WebAssembly. The benefits of WebAssembly as a compilation target are

perceptible. Curios seeks to validate the aptitude of WebAssembly as a compilation

target for a dependently typed programming language.

The report on the research project surrounding Curios begins in Chapter 2 where

the concepts necessary to understand the project as a whole are introduced. The main

contributions are presented in three major chapters: in Chapter 3, the Curios programming

language is introduced through practical examples showcasing its syntax and features; in

Chapter 4 the specification of Curios’ syntax, type system rules and operational semantics

are formally introduced; in Chapter 5 a detailed explanation is given on the internals of

Curios’ compiler. Works related to Curios are given in Chapter 6 along with the extent

of their influence in the research and development of Curios. The report is finished in

Chapter 7 with a discussion on what Curios has and has not achieved along with the plans

for the future.
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2 BACKGROUND

Curios relies on many distinct pieces, each with its intricacies. In this section, we

will introduce the reader to the most important components of the entire system through

a summary of each of them.

Section 2.1 has a summary of what dependent types are, their advantages, dis-

advantages and how they can be used. Section 2.1.1 has an overview of the Coq proof

assistant, and in Section 2.1.2 an overview of the Idris programming language is given.

Both of them feature dependent types as part of their type systems in some way.

Section 2.2 has a brief history on the subject of programming for the web, along

with the expected future trend. What follows, in Section 2.3, is an introduction on Web-

Assembly, its main allure and what it aims to achieve. Section 2.3.1 presents an overview

of the main characteristics of WebAssembly, as well as details about what constitutes

a WebAssembly program. To finish the WebAssembly section, examples of programs

written using WebAssembly’s text format are shown in Section 2.3.2.

2.1 Dependent and inductive types

Dependent types are a feature of the type system of some programming languages

that allows the type of an expression to depend on terms. This allows complex and nu-

anced relationships between terms and types to be expressed directly at the type level that

would otherwise be difficult or impossible to express in traditional, non-dependent type

systems.

The main advantage of dependent types is that they can be used to ensure that

certain properties hold for specific terms. For example, a function that sorts a list can

return, along with the sorted list, a proof that the list is sorted, and functions that require

sorted lists can require a proof that the list is sorted. This allows functions to express

their dependency on the property that the list is sorted directly on their types instead of,

for example, spending precious time sorting the list by themselves or by expecting the

programmer to informally uphold such a constraint1.

1Relying on the programmer to uphold constraints about the data that they are manipulating is a frequent
source of bugs. The most commonly exploited type of memory vulnerability expects the programmer to
uphold the constraint that memory past an allocated region is never accessed irregularly. Another well
known example of such an informally upheld constraint is to expect the programmer to never dereference
null pointers. Tony Hoare calls his inclusion of null pointers in ALGOL W his "billion dollar mistake"
(HOARE, 2009), as this preceded the inclusion of null pointers in many modern and still widely used
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Besides requiring special treatment with regards to non-termination, dependent

types have their own set of challenges: they require a more complex type system when

compared to traditional type systems, which can make them harder to understand and

reason about. Additionally, dependent types can introduce inefficiencies to the imple-

mentation of a programming language that are not as easy to optimize as it would be for

a language that has a more traditional type system, which can make them less suitable for

use in performance critical applications.

A concept that is closely related to dependent types is that of inductive types: data

types that are defined in terms of their constructors, which are rules for building new

elements of the type. They are similar to GADTs (generalized algebraic data types) found

in Haskell but more powerful: whereas GADTs can be indexed only by types, inductive

types are not restricted to being indexed only by types and can be indexed by both types

and terms. Examples of inductive types include data structures (such as lists and trees)

and mathematical objects (such as sets and relations).

Dependent types can be used in tandem with inductive types to reason about the

type’s properties at the type level. For example, in a language with dependent and induc-

tive types, it is possible to express the concept of a matrix with a specific dimension, and

ensure that operations on that matrix can only be performed if the dimension obeys some

restrictions. This can help prevent certain types of errors, such as attempting to multiply

two matrices whose columns from the first matrix do not match the rows from the second

matrix.

In practice, dependent and inductive types are implemented in a variety of ways in

different programming languages and proof assistants. Proof assistants like Coq (PAULIN-

MOHRING, 2015), for example, are built specifically around dependent and inductive

types and are used primarily for formal verification and proof assistance. Programming

languages like Idris (BRADY, 2013), for example, include dependent and inductive types

as an extension to a traditional functional type system. In the next sections, we elaborate

on the usage of dependent and inductive types both in Coq and in Idris.

programming languages, which led to the believed amount of more than a billion dollars in damages to
companies around the world related to errors caused by null pointers.
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2.1.1 In proof assistants: the Coq example

Coq is a proof assistant that allows users to express mathematical definitions,

functions and proofs in a precise and formal way. It is based on the Calculus of In-

ductive Constructions (CIC), a type theory that is expressive enough to encode a wide

range of mathematical concepts, and that provides a powerful framework for reasoning

about them. Coq’s type system makes use of the Curry-Howard correspondence, which

states that logical propositions and types in programming languages are equivalent. This

means that propositions in Coq are represented as types, and proofs of these proposi-

tions are represented as programs. Coq has been used in a wide range of applications,

including the verification of distributed algorithms (LESANI; BELL; CHLIPALA, 2016),

programming languages (DUBOIS, 2000), security protocols (BARTHE; GRÉGOIRE;

BÉGUELIN, 2009), and even the proof of the four color theorem (GONTHIER et al.,

2008).

One of the key features of Coq is its ability to assist in the process of interactive

proof development, which means that users can incrementally build their proofs, receiv-

ing feedback from the system as they go along. Not only this allows for a more natural

and flexible proof development process, but also it provides the ability to verify the cor-

rectness of proofs mechanically. Its interactive proof environment is supported by a rich

set of built-in tactics and automation tools that help users construct and check their proofs.

These tactics can be used to perform basic proof steps, such as simplifying expressions

or applying definitions, as well as more advanced proof techniques, such as induction and

rewriting. The automation tools can help users find missing hypotheses and automatically

generate proof scripts.

Like previously mentioned, Coq is based on the Calculus of Inductive Construc-

tions, a type theory concerned with inductive types and their properties: it combines the

calculus of constructions with an inductive definition mechanism, which allows for the

definition of data types and (possibly recursive) functions that operate on top of said data

types. For example, the natural numbers can be defined as an inductive type nat with

two constructors: zero and succ (successor). zero is used to create the value 0 ,

and succ is used to create the value n + 1 for any natural number n .

An important aspect of the Calculus of Inductive Constructions is the concept of

strict positivity (also known as well-foundedness) which states that the arguments of

a constructor can only refer to types in strictly positive occurrences in the sense that a
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constructor involves only strictly smaller values. A strictly positive occurrence of a type

in a constructor argument is one where the type is only used in the form of a construc-

tor application, with no negative occurrences such as being used in the argument of a

function.

The nat type that we have discussed earlier is an example of a strictly positive

type: the recursive occurrence of nat happens only in a positive position of the succ

constructor, which ensures that the application of the nat argument to the succ con-

structor is strictly smaller than itself, making it so that a chain of succ constructors

must always end with a zero . For example, trying to define a fixed-point operator,

infinite , that evaluates to an infinite sequence of succ constructors results in the

following error stating that the fixed-point operator does not recurse towards a smaller

subterm of nat :

1 Fixpoint infinite (n: nat) : nat := 1 + infinite n.

1 Recursive definition of infinite is ill-formed.

2 In environment

3 infinite : nat -> nat

4 n : nat

5 Recursive call to infinite has principal argument equal to "n"

6 instead of a subterm of "n".

7 Recursive definition is: "fun n : nat => 1 + infinite n".

2.1.2 In programming languages: the Idris example

Idris is a general-purpose, pure, dependently typed functional programming lan-

guage. Whereas Coq focuses on being a proof assistant, Idris shifts its focus completely

to being a programming language. This means that Idris supports not only many func-

tionalities commonly found in programming languages such as FFI (Foreign Function

Interface, for interfacing with external code) and primitive, machine-mapped types, but

also advanced features such as proof-carrying code due to dependent types being one of

its capabilities.

As a general purpose programming language, Idris offers an interactive environ-

ment for type driven software development, but, just like Coq, it also has an interactive
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proof development environment. The interactive mode allows the programmer to write

and test small parts of the program incrementally, which makes it easier to understand

and fix errors.

The syntax of Idris is similar to that of Haskell. It uses a combination of expres-

sions and patterns to define functions and data structures. For example, the following is a

simple function that takes an integer and returns its double:

1 double : Int -> Int

2 double x = x * 2

Idris’ type system is much more powerful than Haskell’s, though, and allows for

more ingenious relationships between types and terms to be expressed directly at the type

level. For example, the length-indexed list, also known as Vect , can be defined in Idris

as the following inductive type:

1 data Vect : Nat -> Type -> Type where

2 Nil : Vect Z a

3 (::) : a -> Vect n a -> Vect (S n) a

The Vect type is a type constructor of arity 2, which means that before it can be

considered a proper type, it needs to be applied to two arguments: a natural number n

representing the length of the vector, and a type a representing the type of the elements

in the vector. For example, the type of the list containing three boolean values can be

written as Vect 3 Bool , and the type of the list containing four integer values can be

written as Vect (2 * 2) Int . The Vect type has two constructors:

• Nil : which represents the empty vector and takes no elements;

• (::) : which takes an element of type a and a vector of length n and returns a

vector of length S n (i.e. one larger than the original vector).

For example, the following is a Vect with three integers:

1 example : Vect 3 Int

2 example = 1 :: 2 :: 3 :: Nil

This is similar to the standard list type in Haskell, but Idris’ Vect type has

the length encoded in its type, which can be used for more powerful type checking and
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reasoning about the code. This can be used, for example, to ensure at compile time that

the index passed to the nth function is within the range of the vector. Another example

of a function that can take advantage of the vector’s length being part of its type is head ,

a function that extracts the first element of a non-empty vector:

1 head : Vect (S n) a -> a

2 head (x :: xs) = x

In this function, head is defined to take a Vect (S n) a as an argument

and to return an a . The type of the input vector is a Vect of length S n , where n

is a natural number. By specifying S n in the type of the vector, we ensure that the

function can only be applied to non-empty vectors (since S n will always be greater

than Z ). Here’s an example of how we can use this function:

1 myList : Vect 3 Int

2 myList = 1 :: 2 :: 3 :: Nil

3

4 firstElement : Int

5 firstElement = head myList

In this case, myList is a vector of 3 integers and firstElement will be

equal to the first element of the vector, which is 1 . If we try to use this function with

an empty vector, the type checker will raise an error, since the type of the vector passed

as argument is not compatible with the type of the function. This way, the function is

type-safe: it will only work with non-empty vectors, and it cannot be misused.

1 myList2 : Vect Z Int

2 myList2 = Nil

3

4 -- This will raise a type error

5 -- during type checking

6 firstElement : Int

7 firstElement = head myList2
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2.2 Programming for the web

The history of programming for the web dates back as far as the early days of the

internet, when the World Wide Web was first proposed. The World Wide Web is a plat-

form for sharing documents, and these documents can be linked to each other, allowing

easy navigation between documents and access to a plethora of information.

The World Wide Web was accompanied by a markup language called HTML,

also known as Hyper Text Markup Language, used to structure and format content on

the web. HTML is used to specify not only the format of a document’s content, such

as lists, headings and paragraphs, but also the document’s style, such as fonts, font sizes

and colors. These HTML documents are downloaded and interpreted by a web browser,

which would display the contents of the HTML document in a human-readable way.

In its inception, the World Wide Web was a tool meant to facilitate the sharing

of knowledge, and thus, was predominantly geared towards scientists and researchers.

As the annals of history attest, the World Wide Web progressively came to be adopted

by a wider audience, and this eventually lead to its almost ubiquitous availability to the

general public. The interconnected nature of the internet revealed its usefulness in not

only disseminating information (which was its original purpose) but also reaching the

population at large.

Such a hike in the popularity of the World Wide Web led to an increase in demand

in interactivity from these documents. To meet these demands, PHP (also known as Hy-

pertext Preprocessor) emerged. PHP is a language that allows a programmer to perform

calculations, access databases and exchange data with the web browser, amongst other

tasks. These capabalities allow PHP to dynamically generate HTML documents.

Another outcome from the demand for interactive HTML documents was Java-

Script. While PHP was capable of dynamically generating HTML documents, interactiv-

ity still suffered due to the need for a server roundtrip before the HTML document could

react to the user’s input. Effectively, this meant that after a HTML document was dy-

namically generated by the server, once it was downloaded by the client, it became static,

since the next request made by the client would replace the entire HTML document by a

new one. To solve this deficiency, JavaScript was created and adopted by web browsers

as a programming language on the client side.

JavaScript is a high-level, prototype-based object oriented programming language

originally made to add scripting capabilities to otherwise static HTML documents. These



19

scripting capabilities include reacting instantaneously to user input when validating user-

submitted data, changing the appearance of the HTML document dynamically and up-

dating isolated fragments of the HTML document. The level of interactivity offered by

JavaScript revolutionized the landscape of web programming, as servers could now of-

fload part of the processing tasks to the client, and the client could receive immediate

feedback on its inputs.

As of today, JavaScript remains one of the most popular programming languages

to ever exist. Not only is it available in all major web browsers, it also made its way to

both the server in the form of Node.js (a backend runtime environment), and the desktop

in the form of Electron (a desktop application container). But being the only program-

ming language available for scripting a HTML document on the web browser also meant

that JavaScript held a chokehold on its niche. If code were to be executed on the web

browser, then it had to be written in JavaScript. Some programming languages, Type-

Script (BIERMAN; ABADI; TORGERSEN, 2014) and Elm (CZAPLICKI, 2012) being

two prominent examples, circumvented this limitation by transpiling their source code

to JavaScript, but it the end, the result was still JavaScript. This approach was adequate

for one portion of programming languages, but paradigms and priorities collided for an-

other portion. Transpiling C (a low-level, systems programming language designed to be

fast and efficient) to JavaScript incurs a hefty penalty on performance, simply due to the

clash between the static and dynamic typing disciplines of the programming languages

respectively.

With the purpose of being a means through which code written in programming

languages other than JavaScript could be executed in the web browser, WebAssembly

(ROSSBERG, 2022) was created and is being actively developed as an open standard by

the W3C WebAssembly Working Group. Its first version was released in 2019 and since

then, WebAssembly quickly became a widely supported standard for executing code on

web browsers with near-native performance. WebAssembly is slated to be the next tech-

nology to revolutionize the web programming landscape, specially due to its versatility:

WebAssembly has already brought many existing programming languages to the web pro-

gramming landscape and it also has the potential to foster an ecosystem of entirely new

programming languages designed specifically to take advantage of its benefits.
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2.3 WebAssembly

WebAssembly (ROSSBERG, 2022) (often abbreviated as Wasm) is a low-level,

portable binary format for executable code that runs primarily in web browsers, but other

environments are also supported. Like previously mentioned, WebAssembly is an open

standard being developed as a team effort by the W3C WebAssembly Community Group.

Its objective is to provide a fast, safe and portable way to run compiled code in

the browser. It is intended to be used as a target for compilers of high-level languages

like C, C++ and Rust, which allows programmers to build complex applications that can

run in the browser without being limited by the performance and capabilities of Java-

Script. This does not mean that WebAssembly replaces JavaScript. Instead, it means that

WebAssembly can work together with JavaScript for tasks in which it can perform better.

One of the main advantages of WebAssembly is its performance. It is compiled

to machine code, which means it can execute much faster than JavaScript, which is in-

terpreted at runtime. This makes it particularly useful for tasks that require a lot of pro-

cessing power, such as video and audio encoding, image manipulation, and 3D graphics

rendering.

In addition to its performance, WebAssembly is also safe. A WebAssembly mod-

ule runs in a memory-safe, sandboxed environment. This means that WebAssembly has

built-in safeguards to prevent common types of vulnerabilities that involve the manipula-

tion of memory. These vulnerabilities can occur when a program tries to access memory

that it is not allowed to access, or when it tries to write to memory in a way that corrupts

other data. This memory safety is ensured through a combination of static type check-

ing, bounds checking and structured control flow: static type checking means that the

types of variables are checked at compile time, bounds checking means that the program

is checked to ensure that it is not trying to access memory outside of the bounds of an

allocated memory region, and structured control flow restricts how the flow of control can

branch.

Last but not least, WebAssembly is portable. Even though WebAssembly is pri-

marily meant to be executed in the web browser, code that has been compiled to Web-

Assembly can be run on a wide range of platforms and environments without requiring

any changes or modifications. This is due to the fact that WebAssembly has been designed

to be a low-level, platform-agnostic format that can be executed by a virtual machine that

is embedded in web browsers, although this virtual machine can also be a standalone en-
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gine, such as Wasmtime. This virtual machine is responsible for abstracting away the

differences between the different environments where WebAssembly code can run.

2.3.1 Overview

WebAssembly is a formally specified virtual instruction set architecture (ROSS-

BERG, 2022). An instruction set architecture, or ISA, is an abstract specification of a

computer’s hardware and software that specifies how a computer should behave. It de-

fines the set of available instructions that a processor can execute, and the format in which

those instructions are encoded. A virtual ISA implements the instruction set at the soft-

ware level instead of at the hardware level through a virtual machine. Not only does this

allow WebAssembly programs to be written in a platform-agnostic manner, but it also is

of paramount importance to the implementation of the safety features that WebAssembly

is based upon.

WebAssembly’s execution model is stack-based in the sense that the virtual ma-

chine maintains a stack of values, and instructions operate on values by pushing them

onto the stack, performing operations on them, and then popping the results off the stack.

In this way, the stack serves as a temporary storage area for values that are being operated

on by the WebAssembly instructions. It allows the instructions to be composed without

the need to explicitly specify the locations of all the operands.

A WebAssembly program is organized into a module which is structured as a

sequence of sections, and the module and its sections as a whole represent a collection

of types, tables, memories, globals and functions. The WebAssembly module can declare

imports and exports as well, and initialize tables and memories with element and data

segments respectively. All sections are optional, and an omitted section is equivalent to

an empty section.

2.3.2 Examples

WebAssembly is, first and foremost, a binary format. The binary format is what

will be consumed by web browsers and by standalone engines. One fortunate conse-

quence of being a binary format is that the sizes of executable bundles that need to be

downloaded by netizens using web browsers are drastically reduced when compared to
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JavaScript bundles. But one unfortunate consequence of being a binary format is that

it is not meant to be readable by humans. Fortunately, the WebAssembly specification

encompasses not only a binary format but also a text format that is meant to be readable

by humans, and the binary and text formats are engineered to be as close as possible,

reaching an almost one-to-one resemblance.

In this section, some examples of WebAssembly programs in their text format will

be shown to demonstrate their mechanics. It is important to remember that the canonical

format of a WebAssembly module is the binary format: the text format allows for more

flexibility in terms of readability and ease of writing which is very useful when handcraft-

ing illustrative examples, but it is not a standard format and it is not intended for use in

production.

The WebAssembly text format is composed of s-expressions. To briefly recapitu-

late, an s-expression (or symbolic expression) is a notation for representing tree-like data

structures in a simple and human-readable format. It is commonly used in programming

languages such as Lisp, Scheme, and Racket, and it is based on the idea of a parenthesized

list. An s-expression is typically composed of atoms (such as numbers or symbols) and

lists, which are enclosed in parentheses and separated by whitespace. For example, the

s-expression (+ 2 (* 3 4)) represents the mathematical expression 2+(3∗4).

To showcase the capabilities of WebAssembly, let us look at how a simple addition

function can be represented. To recapitulate, WebAssembly operates on top of a stack:

instructions push and pop values on a stack to perform operations with the data.

1 (module

2 (func $add (param $a i32) (param $b i32) (result i32)

3 local.get $a

4 local.get $b

5 i32.add

6 )

7 )

The definition begins by naming the function as $add . The function is declared

to receive two 32-bit integers, $a and $b , and return a single 32-bit integer. The body of

the function begins with the local.get instruction that pushes the argument $a into

the stack. The argument $b is pushed to the stack using, once again, the local.get

instruction. The body of the function ends with the i32.add instruction that pops the
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two values that were pushed to the stack, calculates their sum, and pushes the result to the

stack. At this point, a single value is on the stack, which is what will be returned by the

function.

In WebAssembly, all branches must be structured by enclosing block or loop

instructions. To exemplify the restrictions that WebAssembly imposes on its control flow,

let us implement a function, $from , that sums all integers from 1 to n .

1 (module

2 (func $from (param $n i32) (result i32)

3 (local $result i32)

4

5 i32.const 0

6 local.set $result

7

8 block $break

9 loop $loop

10 local.get $n

11 i32.eqz

12 br_if $break

13

14 local.get $result

15 local.get $n

16 i32.add

17 local.set $result

18

19 local.get $n

20 i32.const 1

21 i32.sub

22 local.set $n

23

24 br $loop

25 end

26 end

27

28 local.get $result

29 )

30 )
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The function is declared to receive one 32-bit integer, $n , and return a single

32-bit integer. The body of the function declares one local variable, $result , which

is initialized to the integer 0 in lines 5 and 6. Lines 8 through 26 are the essence of

the function, and correspond to a for loop, where the block instruction delimits a

forward jump, and the loop instruction delimits a backward jump.

Lines 10 through 12 begin the loop by checking if $n is equal to 0. If it is, a

forward jump towards outside of the loop is performed. If it is not, execution contin-

ues past the br_if instruction. Lines 14 through 17 add the current value of $n to

$result , and lines 19 through 22 subtract 1 from $n . The br instruction, in line

24, jumps back to the beginning of the loop, where the process can repeat.

After the loop is finished, the function simply puts the value of $result in the

stack, and since the end of the function has been reached, the value is returned.
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3 THE CURIOS LANGUAGE

In this chapter, a short overview of the Curios language is given to illustrate its

syntax and its basic features, along with some examples of programs written using the

language. Next, examples of advanced features that the language supports through the

combination of its basic features are exemplified. To finalize, a tutorial on the usage of

the Curios compiler toolchain is available.

3.1 Overview

Curios is a statically typed functional programming language that follows a strict

evaluation model, with its primary compilation target being WebAssembly. Curios allows

general recursion both at the term and type level and since general recursion allows the

definition of non-terminating programs, its type system is inconsistent when viewed as

a logic. Curios also supports full dependent types: no restrictions are imposed on how

terms can occur at the type level. Curios’ type system has three main defining constructs:

1. Dependent function types. Curios supports dependent function types where the

output type of the function can depend on the value of its input. In other words,

the type of the output of the function is not fixed but varies depending on the input

value. Dependent function types work as the types of functions but they are also ca-

pable of expressing more advanced concepts such as parametric polymorphism and

universal quantification. Dependent function types can also degrade to their regu-

lar, non-dependent counterparts when the variable bound by the dependent function

type is not free in its output;

2. Dependent ordered pair types. Along with dependent function types, Curios also

supports dependent ordered pair types where the type of the second entry of the

pair can depend on the value of the first entry. Apart from being the type of ordered

pairs, they can also be used for existential quantification, and in Curios, they are

used alongside finite enumerations to express inductive types, which we will be

discussing in depth in Section 3.4. Dependent ordered pair types, like dependent

function types, can also degrade to their regular, non-dependent counterparts when

the variable bound by the dependent ordered pair type standing for the first entry is

not free in the second entry;
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3. Finite enumerations. Last but not least, Curios supports finite enumerations of

labels which are types that represent a set of enumerable labels, and a term inhab-

iting the finite enumeration is equal to one of the labels that the set contains. The

term inhabiting the finite enumeration can be eliminated through a pattern matching

operator that inspects the term to determine which label it is equal to and chooses

the appropriate branch to continue from. Finite enumerations and their types are

used to express simple branching control flow such as conditionals, and alongside

dependent ordered pair types they can be used to represent inductive types, which

we will be discussing in depth in Section 3.4.

3.2 Basic examples

Curios programs are structured as a sequence of global declarations and defini-

tions. Each name being defined must have been previously declared, and previously de-

clared names cannot be declared again. The syntax of a declaration is x : A; , where

x is an identifier and A is a type. The syntax of a definition is x = a; , where x is

an identifier and a is a term. The entry point of a Curios program is the definition named

start , declared to have type Int32 . The start definition fills a role similar to

the main function of a C program: returning 0 means that the program finished suc-

cessfully while other values signify different errors. Taking all of that into consideration,

the smallest possible Curios program looks like the following:

1 start : Int32;

2 start = 0;

Curios functions are mechanically similar to the functions found in other func-

tional programming languages such as Haskell and Idris where functions are curried: no

more and no less than a single argument is bound by each function, and to represent

functions of multiple arguments, single argument functions are chained sequentially. The

process of applying an argument to such a function returns a new function that expects

the next argument to be applied. This process repeats until all available arguments are ap-

plied. Curios follows an extrinsic typing discipline (also known as Curry-style) where the

function’s argument does not accompany a type annotation: the type annotation happens

in the declaration of the function.
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In Curios, the syntax for function types is A -> B where A and B are types,

and the syntax for functions is x => b , where x is an identifier and b is a term.

Both function types and functions enjoy some amount of syntactic sugar: the syntax for

functions nests at the right-hand side of the term as in a => b => c , which is equiv-

alent to a => (b => c) , and the syntax for function types also nest to the right-hand

side of the term as in A -> B -> C , which is equivalent to A -> (B -> C) . As

a demonstration, a simple function exemplifying the operation of adding an Int32 to

another Int32 looks like the following:

1 add : Int32 -> Int32 -> Int32;

2 add = a => b => +i a b;

Like previously mentioned, functions in Curios are curried, and consequently, so

are applications: the term add 2 3 will first apply 2 to add , and then it will apply

3 to the function that results from the previous application. Another consequence of

functions being curried is that functions can be partially applied: the term add 1 in-

habits the type Int32 -> Int32 , and expects another Int32 to be applied before

a fully formed Int32 can be returned. The syntax for applications can also be consid-

ered to enjoy some syntactic sugar: each individual application nests at the left-hand side

of the term, and a term like add 2 3 is equivalent to (add 2) 3 .

Since Curios is pure, recursion is the main way through which iteration and repe-

tition are expressed. Functions take advantage of the global context to be able to mention

names recursively: declaring a name makes it available when it is being defined, and no

restriction is imposed in how names in recursive positions occur. In the example below, a

function that calculates the factorial of a number is declared and defined.

1 factorial : Int32 -> Int32;

2 factorial = n => if (<=i n 1) (1) (*i n (factorial (-i n 1)));

Curios also supports parametric polymorphism: a dependent function type can

be used to bind a variable standing for some unknown generic type and functions can

manipulate terms inhabiting the generic type abstractly. This can, for example, be used

to define data structures that work as generic containers and functions that manipulate the

generic container without knowing the exact representation of the container’s element.

An example of a generic function is the identity function:
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1 identity : (A: Type) -> A -> A;

2 identity = A => a => a;

1 int32_one : Int32;

2 int32_one = identity Int32 1;

On top of the aforementioned constructs, Curios also supports a handful of primi-

tive types, values and operators that correspond directly to their underlying WebAssembly

equivalents. The previous examples showcased the primitive type Int32 , primitive val-

ues such as 1 and primitive operators such as +i which stand, respectively, for the

type of 32-bit integers, a value that inhabits the type of 32-bit integers and the addition

operation applied to their values.

In the Curios type system, the primitive types Int32 and Flt32 correspond

to the WebAssembly types i32 and f32 respectively. Values inhabiting the primitive

type Int32 are written in decimal notation with no fractional part ( 123 or -123 ,

for example), and values inhabiting the primitive type Flt32 are written in decimal

notation with a mandatory dot before the fractional part ( 123.123 or -123.123 , for

example). Values inhabiting these primitive types can be manipulated by the customarily

expected numeric operators, and a portion of these operators (the comparison and boolean

operators) return a boolean Int32 value (as opposed to a value that inhabits a dedicated

boolean type) per the WebAssembly specification. Boolean Int32 values can be tested

with a short-circuiting if operator that has syntax if a b c , where a is the scru-

tinee of the operator, b is the result of the operator if the scrutinee is true and c is the

result of the operator if the scrutinee is false. Apart from the if operator, the following

numeric operators are available:

• Int32 arithmetic operators, with type Int32 -> Int32 -> Int32 :

+i , -i , *i , /i ;

• Int32 boolean operators, with type Int32 -> Int32 -> Int32 :

&&i , ||i ;

• Int32 comparison operators, with type Int32 -> Int32 -> Int32 :

==i , /=i , <i , <=i , >i , >=i ;

• Flt32 arithmetic operators, with type Flt32 -> Flt32 -> Flt32 :

+f , -f , *f , /f ;

• Flt32 comparison operators, with type Flt32 -> Flt32 -> Int32 :
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==f , =/f , <f , <=f , >f , >=f .

It is worth mentioning that, even though the primitive numeric operators and their

usage may resemble functions and function application, they are not regular functions

and, therefore, are not curried, cannot be applied to other functions and cannot be partially

applied like regular functions can.

Curios also supports ordered pairs whose main purpose is to create structures of

values that are grouped together. The syntax for ordered pair types is A * B , where

A and B are types. The syntax for ordered pairs is (a, b) , where a and b are

terms. For example, the declaration and definition of a pair that holds, as its first entry, an

Int32 and, as its second entry, a Flt32 looks like the following:

1 numbers_pair : Int32 * Flt32;

2 numbers_pair = (1, 1.0);

To be able to access the values contained within an ordered pair, Curios provides

a syntax in the form of let (x, y) = a; b where x and y are variables and

a and b are terms that eliminates the ordered pair by binding each of its entries to a

name called a split expression. The reason the split expression is used in lieu of the more

familiar fst and snd is that when checking the type of b , the context is augmented

with the fact that a is equal to (x, y) . Fret not, as fst and snd can still be

implemented in terms of the split expression. For example, accessing the first entry of

the ordered pair in the numbers_pair with a split expression example looks like the

following:

1 first_number : Int32;

2 first_number = let (a, b) = numbers_pair; a;

Much like the syntax for function types and functions, the syntax for ordered pair

types and ordered pairs also enjoy a minute amount of syntactic sugar. The syntax for

ordered pair types nests at the right-hand side of the term as in A * B * C which is

equivalent to A * (B * C) , and the syntax for ordered pairs also nests at the right-

hand side of the term as in (a, b, c) which is equivalent to (a, (b, c)) . For

example, the declaration and definition of a nested ordered pair that holds three Int32

values looks like the following:
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1 nested_pair : Int32 * Int32 * Int32;

2 nested_pair = (1, 2, 3);

The eliminator for ordered pairs also supports nested ordered pairs, and works

by sequentially destructuring the second entry of the nested ordered pair. For example,

accessing the third number in the nested_pair example looks like the following:

1 third_number : Int32;

2 third_number = let (a, b, c) = nested_pair; c;

It is worth mentioning that nested ordered pairs can also be partially destructured,

and the remainder of the nested ordered pair will be available as the last name bound by

the eliminator. In the example below, the name a binds with 1 , and the name b binds

with the second entry of the ordered pair, which is the pair (2, 3) .

1 partial_destr : Int32 * Int32;

2 partial_destr = let (a, b) = nested_pair; b;

Curios supports finite enumerations which are types that describe a collection of

distinct, countable elements called labels. A term inhabiting the finite enumeration is

equal to one of the labels contained in the finite enumeration. The syntax for finite enu-

merations is {:l0, :l1, ..., :ln} where each li is an identifier and the syn-

tax for labels is :a where a is an identifier. For example, {:one, :two, :three}

is a finite enumeration and :two is a label inhabiting this finite enumeration. Labels are

used in conjunction with the finite enumeration they inhabit to carry out two central tasks:

1. They are scrutinized by a pattern matching operator, also known as match expres-

sion, that chooses the appropriate branch to continue from. Effectively, this is used

to manipulate the program’s flow of control;

2. When employed in conjunction with (dependent) ordered pair types, they are used

to represent inductive types.

In a first moment, let us focus only on how finite enumerations and their labels

can be used alongside the pattern matching operator to represent branching control flow.

In Section 3.4 we show the role they play in the representation of inductive types. As an
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example, the definitions and declarations of a Bool type and a function that scrutinizes

a value inhabiting the Bool type look like the following:

1 Bool : Type;

2 Bool = {:false, :true};

1 from_bool : Bool -> Int32;

2 from_bool = x =>

3 match x {

4 :false = 0;

5 :true = 1;

6 };

1 // The ‘converted_bool‘ definition evaluates to ‘0‘

2 converted_bool : Int32;

3 converted_bool = from_bool :false;

3.3 Dependently typed examples

So far, we have discussed all of Curios’ more basic functionalities but Curios

also boasts an advanced type system that supports full dependent types, where terms are

allowed to occur at the type level without any kind of restriction. In this section, the

dependently typed capabilities of Curios are introduced through examples illustrating how

terms can be used at the type level.

With that in mind, is it possible to define a type constructor that varies according

to whether the argument it receives evaluates to false or true? The answer is yes! A

declaration, definition and utilization of such a type looks like the following:

1 Wow : Bool -> Type;

2 Wow = x =>

3 match x {

4 :true = Int32;

5 :false = Flt32;

6 };
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1 such_dependent : Wow :true;

2 such_dependent = 0;

This example already demonstrates some of the flexibility of Curios’ type system,

but there is still more ground to cover. What if we wanted the Wow type to vary according

to the boolean variable bound by the function, but in its own function type? Let us revisit

our old friend, the function type. We are yet to unlock its full power.

So far, we have seen only one example of a dependent function type, the type

of the identity function. All other examples of function types were represented as their

non-dependent counterparts, but in Curios, non-dependent function types are actually a

special case of dependent function types where the variable bound by the function is not

free in the output type i.e. the output type does not depend on the variable by the function.

Dependent function types enable complex types to be expressed by allowing the type of

the output of the function to depend on the variable bound for the input value. The syntax

for dependent function types is (a: A) -> B , where a is a variable, A is a type and

B is a type where a may occur free. All of the syntactic sugar that is available for non-

dependent function types is also available to dependent function types. As an example, a

declaration and definition of a function that is capable of returning terms inhabiting two

different types based on its argument looks like the following:

1 even_more_dependent : (x: Bool) ->

2 match x {

3 :true = Int32;

4 :false = Flt32;

5 };

6

7 even_more_dependent = x =>

8 match x {

9 :true = 1;

10 :false = 2.3;

11 };

This example showcases computations occurring at the type level to manipulate

types in such a way that terms inhabiting different types can be returned based on the

value of the argument. Trying to return 2.3 from the :true branch would violate
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the constraint expressed in even_more_dependent ’s declaration stating that only

Int32 values may be returned from the :true branch, ultimately resulting in a type

error.

Just like function types, ordered pair types were another type that we have only

seen through the lens of their non-dependent counterparts. And once again, just like

function types, the non-dependent counterpart of ordered pair types is just a special case

of the dependent ordered pair type where the variable bound as the value of the first

entry is not free in the type of the second entry i.e. the type of the second entry does

not depend on the value of the first entry. The syntax for dependent ordered pair types

is (a: A) * B , where a is a variable, A is a type and B is a type where a may

occur free. All of the syntactic sugar that is available for non-dependent ordered pair

types is also available to dependent ordered pair types. As an example, a declaration and

definition of an ordered pair that is capable of storing values inhabiting two different types

as its second entry based on the first entry looks like the following:

1 increasingly_dependent : (x: Bool) *

2 match x {

3 :true = Int32;

4 :false = Flt32;

5 };

6

7 increasingly_dependent = (:false, 2.3);

This example showcases the versatility of dependent ordered pair types in storing

different kinds of data while also obeying a constraint expressed at the type level. It would

not be possible to define increasingly_dependent as an ordered pair storing both

:true and 2.3 because that would violate the constraint expressed in its declaration

stating that only Int32 values may be stored alongside a :true , ultimately resulting

in a type error.

The somewhat artificial code snippets in this section only scratch the surface of all

the possibilities that dependent types bring to the table. We have only seen the tip of the

iceberg, go wild!



34

3.4 Inductive types

Functional programming languages usually offer data types as one of the native

features of their type systems. Languages like Haskell and Idris introduce a new data type

to their type systems by asking the user to describe the data that the type represents in the

form of constructor applications, and this description is what allows the language to con-

struct values of the type while also allowing the type to participate in other mechanisms

of the language such as pattern matching. Curios takes a different approach: instead of

offering native data types, Curios uses a combination of its more elementary components

to introduce new data types to the system as encodings.

The most noticeable difference between encoded data types and native data types

is the syntax: encoded data types tend to be much more verbose than native data types.

This is because the individual components that compose an encoded data type each have

a dedicated syntax (since each component has a specific purpose and can be used sepa-

rately) and require the full syntax to be spelled out to achieve the same effect of the more

concise native data type. The main advantage that encoded data types have over native

data types is simplicity: it is much easier to understand each individual component of the

encoded data type than it is to understand the entirety of a native data type system, and

this situation is similar with regards to the implementation of a type checker for a type

system that offers encoded data types versus one that offers native data types.

In a first moment, it was chosen for Curios to offer only encoded data types given

the fact that they are simpler to understand and easier to implement. This does not mean

that Curios’ type system is any less expressive though, as we will see in this and the

following sections that many high-level functional programming language features can

be expressed through some combination of Curios’ features. One of the more important

plans for Curios’ future is the development of a high-level syntax that desugars into the

encoding, which would allow Curios to have the best of both worlds: a high-level, concise

syntax for introducing new data types to the type system while also retaining the original

orthogonality of the individual components.

3.4.1 Simple inductive types

Inductive types in Curios are represented through a dependent ordered pair type

where the type of the first entry is a finite enumeration and the type of the second entry
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varies according to the value stored in the first entry. With that in mind, let us take a closer

look into how we can use the tools that Curios offers to encode the type standing for the

natural numbers, and a simple addition operation on top of this type.

1 Unit : Type;

2 Unit = {:unit};

3

4 unit : Unit;

5 unit = :unit;

6

7 Nat : Type;

8 Nat =

9 (l: {:zero, :succ}) * match l {

10 :zero = Unit;

11 :succ = Nat;

12 };

13

14 zero : Nat;

15 zero = (:zero, unit);

16

17 succ : Nat -> Nat;

18 succ = a => (:succ, a);

19

20 add : Nat -> Nat -> Nat;

21 add = a => b =>

22 let (al, a_) = a;

23

24 match al {

25 :zero = b;

26 :succ = succ (add a_ b);

27 };

Whoa, that looks complicated. Let us look at the example line by line, starting

with Unit : Type; . This is a declaration stating that Unit is a Type . The very

next line, Unit = {:unit}; , defines Unit to be a finite enumeration containing

a single label, :unit . A helper constructor is also declared ( unit : Unit; ) and
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defined ( unit = :unit; ). So far, so good.

Moving on, we have the declaration of Nat in line 7. Lines 8 through 12 have

the definition of Nat as a dependent ordered pair type. The left side of the depen-

dent ordered pair type introduces the variable l as inhabiting the finite enumeration

{:zero, :succ} . The type in the right side of the dependent ordered pair type de-

pends on the variable l : if l matches with :zero , this type is Unit , and if it

matches with :succ , this type is Nat . Just like our Unit type, we also declare and

define the helper constructors zero and succ for our Nat type in lines 14 through

18.

Before we move on to add , let us first take a closer look at the inner workings

of our zero and succ constructors. If we check zero , which is the ordered pair

(:zero, unit) , against Nat , which is a dependent ordered pair type composed of

the finite enumeration {:zero, :succ} and the match expression, it is possible to

see that the label :zero indeed inhabits the finite enumeration {:zero, :succ} .

But how does unit inhabit the match expression at the right side of the dependent

ordered pair type? Because the first entry of the ordered pair is :zero , the type of the

second entry of the ordered pair (the match expression) is able to reduce further, exposing

the fact that the second entry of the ordered pair should have type Unit . And it does!

Mission accomplished. In our succ constructor, defined in lines 17 and 18 to be the

ordered pair (:succ, n) the same concept applies: since the first entry of the ordered

pair is :succ , the match expression in the type of the second entry of the ordered pair

reduces to Nat .

But how do we work with data encoded this way? Let us look at add . We start

with its declaration in line 20, followed by its definition in lines 21 through 27. Line 22 of

the definition binds a name for each of the ordered pair’s entries, and in lines 24 through

27 the first entry of the pair is matched against its possible values.

Notice how the pattern matching operation is performed on al and a_ is only

mentioned when al matches with :succ . This is because if al matched with

:zero , then a_ would have type Unit , as its (dependent ordered pair) type suggests.

This is the key insight to how Curios encodes its inductive types: when performing pattern

matching, the context is augmented with the constraint that al is equal to :zero and

:succ in each respective branch, and the type rules exploit this information to assign

the correct type to a_ .
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3.4.2 Indexed inductive types

The Nat type is a very simple inductive type that is not indexed by any types or

terms, but Curios’ inductive types can be indexed by both types and terms. For example,

let us consider how to represent the length-indexed list in Curios, which is indexed by

both a term and a type.

1 Vect : Nat -> Type -> Type;

2 Vect = length => T =>

3 let (ll, l_) = length;

4

5 match ll {

6 :zero = Unit;

7 :succ = T * Vect l_ T;

8 };

The Vect type is the poster child of dependently typed languages, and it remains

so in Curios. This type represents a list whose length is part of its type, which means that

it becomes possible to reason about the length of the list directly at the type level. Despite

being a fairly straightforward type, it demonstrates a lot of the power that dependently

typed languages can wield.

Let’s take a closer look at the Vect type. Its declaration, in line 1, states that

it depends on a Nat , standing for the length of the list, and a Type , standing for the

type of the element that the list holds. Its definition spans lines 2 through 8 and begins

in line 3 by binding a variable for each of the length’s entries. The definition proceeds,

in line 5, to match on the label of the length. Line 6 states that if the label of the length

matches with :zero , then the definition is Unit , representing the fact that the list

holds no elements. If the label of the length matches with :succ , then the definition is

an ordered pair type holding the element at the head of the list and the rest of the list.

1 head : (length: Nat) -> (T: Type) -> Vect (succ length) T -> T;

2 head = length => T => vect =>

3 let (x, xs) = vect;

4 x;
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The head operation gives an idea of how we can use the length of the list at the

type level to extract the element at the head of a non empty list. Most importantly, how is

it possible to determine that the list is not empty exclusively through its type? Consider

the type of the list, Vect (succ length) T . More specifically, consider its length,

succ length . This length statically ensures that the Vect must hold one or more

elements, which means that it is statically safe to extract the element at the head. The

definition of head does exactly that: since the length of the Vect statically ensures

that the Vect holds one or more elements, it is possible to bind one variable for the

element at the head of the list and one variable for the rest of the list. At this point, the

element at the head is simply returned.

The careful reader might have spotted that there seems to be a disconnect between

the way the length-indexed list is represented in Curios and how it is represented in other

dependently typed languages such as Idris. This observation is correct: in this example,

Curios’ length-indexed list is represented through induction over its length.

Vect is an example of a type that can be encoded this way, but this encoding

is not enough in the general case, since many inductive types cannot easily be encoded

this way. For example, if we want to define an inductive type IsEven standing for the

proposition that a natural number is even as the remainder of the division of the natural

number by two being equal to zero, an explicit equality constraint is necessary. To remedy

this shortcoming, we will be looking into how to define a propositional equality type in

Curios, and how an equality type can be used to represent both the IsEven proposition

and the Vect type through equality constraints.

3.5 Equality

Curios also has the ability to perform large eliminations (ROUX, 2023a; ROUX,

2023b) i.e. to construct types by eliminating terms. This ability will be used alongside

a procedure for determining if two values are structurally equal to define a propositional

equality type, which will allow us to equip Curios’ inductive types with equality con-

straints. To more easily illustrate the concept, we will specialize our example to Nat ,

the type standing for natural numbers.

1 eq : Nat -> Nat -> Bool;

2 eq = a => b =>
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3 let (al, a_) = a;

4 let (bl, b_) = b;

5

6 match al {

7 :zero = match bl {

8 :zero = :true;

9 :succ = :false;

10 };

11 :succ = match bl {

12 :zero = :false;

13 :succ = eq a_ b_;

14 };

15 };

1 Empty : Type;

2 Empty = {};

1 Eq : Nat -> Nat -> Type;

2 Eq = a = > b = >

3 match eq a b {

4 :true = Unit;

5 :false = Empty;

6 };

The equality type Eq uses the structural equality function eq to lift the com-

parison to the type level. If the values are structurally equal, then Eq is equivalent to

Unit , expressing the fact that the equality holds and can be instantiated with unit .

But if the values are not structually equal, then Eq is equivalent to Empty , expressing

the fact that the equality does not hold and cannot be instantiated. Assuming that rem is

a function that calculates the remainder of dividing a natural number by another natural

number, we are now able to define IsEven .

1 two : Nat;

2 two = succ (succ zero);

1 IsEven : Nat -> Type;

2 IsEven = a = Eq (rem a two) zero;
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Even though we can represent the Vect type through induction over its length,

the Vect type can be rewritten to use equality constraints instead which allows us to

reason about its structure using equalities as opposed to pattern matching on its length

directly.

1 Vect : Nat -> Type -> Type;

2 Vect = len => T =>

3 (l: {:null, :cons}) * match l {

4 :null = Eq len zero;

5 :cons = (vlen: Nat) * T * Vect vlen T * Eq len (succ vlen);

6 };

The head function also needs to be rewritten accordingly, since it needs to deal

with an absurd case: pattern matching on the structure of the vector reveals a case where

the list is empty even though its type clearly suggests that it should not be, but we can

readily dismiss that case through the usage of absurd in conjunction with the (absurd)

proof that the length of the list is equal to zero in v_ .

If the label of the list matches with :null , then v_ is a proof that the list’s

length is equal to zero, which is false and can be dismissed since the type of the list that

the head function accepts expresses the fact that the list contains at least one element.

The case where the label of the list matches with :cons is what the head function is

interested in, within which v_ is a nested ordered pair that includes the element at the

head which is promptly returned.

1 absurd : Empty -> (A: Type) -> A;

2 absurd = e => A => match e {};

1 head : (len: Nat) -> (T: Type) -> Vect (succ len) T -> T;

2 head = len => T => vect =>

3 let (vl, v_) = vect;

4

5 match vl {

6 :null = absurd v_ T;

7 :cons = let (vlen, x, xs, p) = v_; x;

8 };
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3.5.1 Proofs

We can use the Eq type to represent equalities between terms at the type level,

but we can also reason abstractly about the equality itself. For example, we can show that

equality is reflexive by induction on the natural number.

1 refl : (a: Nat) -> Eq a a;

2 refl = a =>

3 let (al, a_) = a;

4

5 match al {

6 :zero = unit;

7 :succ = refl a_;

8 };

After having shown that equality is reflexive with refl , we can show that equal-

ity is also substitutive with subst . This proof employs absurd : even though we have

an instance of Eq a b proving that the natural numbers a and b are equal, the pro-

cess of pattern matching on the structure of a and b reveals the fact that there may be

some cases where they are not equal, but we can readily dismiss those cases through the

usage of absurd in conjunction with the proof of Eq a b .

1 subst : (a: Nat) -> (b: Nat) -> Eq a b

2 -> (P: Nat -> Type) -> P a -> P b;

3

4 subst = a => b => eq_a_b => P => p_a =>

5 let (al, a_) = a;

6 let (bl, b_) = b;

7

8 match al {

9 :zero = match bl {

10 :zero = match a_ { :unit => match b_ { :unit => p_a; }; };

11 :succ = absurd eq_a_b (P b);

12 };

13 :succ = match bl {

14 :zero = absurd eq_a_b (P b);
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15 :succ = subst a_ b_ eq_a_b (x => P (succ x)) p_a;

16 };

17 };

After having shown that equality is both reflexive and substitutive, we can also

show that equality is both symmetric and transitive through its reflexive and substitutive

properties with sym and trans . These proofs simply use the proof of substitutivity to

rearrange the equalities.

1 sym : (a: Nat) -> (b: Nat) -> Eq a b -> Eq b a;

2 sym = a => b => eq_a_b =>

3 subst a b eq_a_b (x => Eq x a) (refl a);

1 trans : (a: Nat) -> (b: Nat) -> (c: Nat) ->

2 Eq a b -> Eq b c -> Eq a c;

3

4 trans = a => b => c => eq_a_b => eq_b_c =>

5 subst b c eq_b_c (x => Eq a x) eq_a_b;

It is important for the reader to remember that, while Curios can potentially sup-

port theorem proving, Curios is partial: not only is general recursion allowed but also

the type of Type is Type , and both of them lead to inconsistency. In these small ex-

amples, it is easy to see that these proofs are total, but this might not be the case in larger

proofs. Viewer discretion is advised. A separate termination checker with a cumulative

hierarchy of universes for the subset of Curios programs that obey well-founded recursion

is envisioned to be developed in the future.



43

4 THE CURIOS SPECIFICATION

In this chapter, we introduce Curios’ formal abstract syntax, its type rules and its

operational semantics. The focus is given mainly to dependent function types, depen-

dent ordered pair types and finite enumerations: we refer the reader to the WebAssembly

specification (ROSSBERG, 2022) for the type rules and semantics of the WebAssembly

constructs that have counterparts in Curios.

4.1 Abstract syntax

The abstract syntax of Curios terms is given in Figure 4.1. The specification of the

abstract syntax begins with Variables and Labels which are two distinct sets of identifiers

that play specific roles within the abstract syntax: variables stand for unknown terms in

the bodies of function types, functions, pair types and split expressions while labels are

inhabitants of finite enumerations and are scrutinized by match expressions.

Next, we have Terms, which encompass variables, the type of all types, dependent

function types, functions, applications, dependent ordered pair types, ordered pairs, split

expressions, finite enumerations, labels and match expressions. The syntax specified for

some terms differs slightly from what is usually expected (Type instead of ∗, (x : A)→ B

instead of Π x : A. B, x⇒ b instead of λx. b and (x : A)×B instead of Σx : A. B) and the

motivation for this alternative syntax is that it more closely resembles the concrete syntax

that is given in Chapter 3. The overline in finite enumerations and match expressions

stands for zero or more occurrences.

One import detail to note is that a different metavariable is used when a term plays

the role of a type (i.e. a versus A), but there is no distinction between terms and types: they

both belong to the same syntactic category. Additionally, (x : A)→ B can be abbreviated

Figure 4.1 – Abstract syntax of Curios terms.

x, y ∈Variable l ∈ Label

Term a, b, f , A, B ::= x | Type
| (x : A)→ B | x⇒ b | f a
| (x : A)×B | (a, b) | let (x, y) = a; b
| {:l} | :li | match a {:l = b;}
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Figure 4.2 – Abstract syntax of Curios typing contexts.

x ∈Variable a, A ∈ Term

Context Γ ::= ∅
| Γ; x : A
| Γ; x = a

Figure 4.3 – Context declaration lookup – x : A ∈ Γ.

x : A ∈ (Γ; x : A)
x : A ∈ Γ x ̸= y

x : A ∈ (Γ; y : B)

x : A ∈ Γ x ̸= y

x : A ∈ (Γ; y = b)

to A→ B when x is not free in B, and (x : A)×B can be abbreviated to A×B when x is

not free in B.

4.2 Typing rules

In Figure 4.2 we introduce the syntax for Curios’ typing Contexts which can either

be empty, or a context extended with a new declaration of a name associated to a type,

or a context extended with a new definition of a name associated to a term. Contexts are

used as the representation of a Curios program and they are also used in tandem with

Curios’ type rules to keep track of the declarations and definitions of variables introduced

by dependent function types, functions, dependent pair types, split expressions and match

expressions.

Before we can define Curios’ type system, we need to first define x : A ∈ Γ, which

stands for the lookup of a declaration in the context. This derivation works through the

weakening of the context: we can throw out declarations and definitions until we find the

declaration we are looking for. The rules are available in Figure 4.3.

With the definition for context declaration lookup, we can proceed to define Γ ⊢

a : A which stands for a typing judgement stating that the term a inhabits the type A in

the context Γ. The rules for the typing judgements are available in Figure 4.4. Some

rules (namely, the app and pair rules) mention a substitution operation which will be

detailed in Section 4.3. The first rule, named conv, applies to all terms and employs the

β -equality relation (which will be detailed in Section 4.4) to allow evaluation at the type
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Figure 4.4 – Typing rules for typing judgements – Γ ⊢ a : A.

Γ ⊢ a : A
Γ ⊢ A =β B

conv
Γ ⊢ a : B

x : A ∈ Γ var
Γ ⊢ x : A

type
Γ ⊢ Type : Type

Γ ⊢ A : Type
Γ; x : A ⊢ B : Type

pi
Γ ⊢ (x : A)→ B : Type

Γ ⊢ (x : A)→ B : Type
Γ; x : A ⊢ b : B

abs
Γ ⊢ x⇒ b : (x : A)→ B

Γ ⊢ (x : A)→ B : Type
Γ ⊢ f : (x : A)→ B

Γ ⊢ a : A
app

Γ ⊢ f a : B [x := a]

Γ ⊢ A : Type
Γ; x : A ⊢ B : Type

sigma
Γ ⊢ (x : A)×B : Type

Γ ⊢ (x : A)×B : Type Γ ⊢ a : A Γ ⊢ b : B [x := a]
pair

Γ ⊢ (a, b) : (x : A)×B

Γ ⊢ (x : A)×B : Type
Γ ⊢ a : (x : A)×B

Γ ⊢ T : Type

Γ ⊢ a =β z
Γ; x : A; y : B; z = (x, y) ⊢ b : T

split
Γ ⊢ let (x, y) = a; b : T

Γ ⊢ (x : A)×B : Type
Γ ⊢ a : (x : A)×B

Γ ⊢ T : Type
Γ; x : A; y : B ⊢ b : T

splitalt

Γ ⊢ let (x, y) = a; b : T

enum
Γ ⊢ {:l} : Type

Γ ⊢ {:l} : Type :m ∈ :l
label

Γ ⊢ :m : {:l}

Γ ⊢ {:l} : Type
Γ ⊢ a : {:l}

Γ ⊢ T : Type
Γ ⊢ a =β x (Γ; x = :li ⊢ bi : T )i

match
Γ ⊢ match a {:l = b;} : T

Γ ⊢ {:l} : Type Γ ⊢ a : {:l} Γ ⊢ T : Type (Γ ⊢ bi : T )i
matchalt

Γ ⊢ match a {:l = b;} : T
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level. Following the conv rule, there is one rule for each of the syntactic constructs of the

abstract syntax introduced in Figure 4.1:

• The var rule ascribes the type A to a variable x by looking its declaration up in the

context;

• The type rule states that the type of Type is itself;

• The pi rule states that a dependent function type (x : A)→B is a type if its input type

A is a type (first premise) and if its output type B is a type in the context extended

with a variable x declared to inhabit the input type A (second premise);

• The abs states that a function x⇒ b inhabits a dependent function type (x : A)→ B

if the dependent function type is a type (first premise) and if the output b of the

function can be typed by the output type B of the dependent function type in the

context extended with a declaration of the variable x inhabiting the input type A of

the dependent function type (second premise);

• The app rules states that an application f a inhabits the type B with its free vari-

able x substituted for the application’s argument a if the dependent function type

(x : A)→ B is a type (first premise), if the application’s function f inhabits the de-

pendent function type (second premise) and if the application’s argument a inhabits

the input type A of the dependent function type (third premise);

• The sigma rule states that a dependent ordered pair type (x : A)×B is a type if the

first entry type A is a type (first premise) and if the second entry type B is a type in

the context extended with a variable x declared to inhabit the first entry type (second

premise);

• The pair rule states that an ordered pair (a, b) inhabits a dependent ordered pair

type (x : A)×B if the dependent ordered pair type is a type (first premise), if the

first entry a matches the first entry type A (second premise) and if the second entry

b matches the second entry type B with its free variable x substituted for the first

entry (third premise);

• The split rule states that a split expression let (x, y) = a; b inhabits a type T if the

dependent ordered pair type (x : A)×B is a type (first premise), if the scrutinee a

of the split expression inhabits the dependent ordered pair type (second premise), if

the type T is a type (third premise), if the scrutinee of the split expression reduces

to a variable z (fourth premise) and if the output b of the split expression inhabits

the type T in a context extended with the declarations of x and y as inhabiting A
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and B respectively and the definition of z as being equal to the ordered pair (fifth

premise);

• The splitalt rule is a version of the split rule without dependent elimination;

• The enum rule states that a finite enumeration {:l} is a type;

• The label rule states that a label :li inhabits a finite enumeration {:l} if the finite

enumeration is a type (first premise) and if the label is an element of the finite

enumeration (second premise);

• The match rule states that a match expression match a {:l = b;} inhabits a type

T if the finite enumeration {:l} is a type (first premise), if the split expression’s

scrutinee a inhabits the finite enumeration (second premise), if the type T is a type

(third premise), if the split expression’s scrutinee reduces to a variable x (fourth

premise) and if every branch bi of the match expression inhabits the type T in a

context extended with the definition of x as being equal to the label :li of each

branch (fifth premise);

• The matchalt rule is a version of the match rule without dependent elimination.

Except for the unorthodox syntax and for the split and match rules, all of the afore-

mentioned rules are fairly standard in type theory (specially dependent function types and

dependent ordered pair types, which are more commonly known as Π-types and Σ-types

respectively in type theory literature). More specifically, the premise that the scrutinees of

the split and match rules should reduce to a variable can be seen as unusual but they are

very important: by extending the context with a definition equating the relevant scrutinee

to its corresponding pattern in the output of split expressions and in each branch of match

expressions, the system is capable of performing the dependent elimination (GOGUEN;

MCBRIDE; MCKINNA, 2006; COQUAND, 1992; ROUX, 2023b) of ordered pairs and

labels (as opposed to the non-dependent elimination performed by primitive recursors

where the context does not store knowledge regarding the pattern being eliminated). To

better understand why those premises add significant expressiveness to Curios’ type sys-

tem, let us look at two examples that would not type check without those premises.

The first example involves existential quantification: to be able to retrieve the wit-

ness of an existential proposition at the term level, we need to bring into action a split

expression at the type level whose responsibility is to eliminate the existential quantifica-

tion and retrieve the proposition that it contains. At the term level, the split expression

binds a name for the proposition and the witness while also augmenting the context with
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equality information which allows the split expression at the type level to reduce and

substantiate the fact that that the witness inhabits its proposition.

1 exists : (x: (P: Type) * P) -> let (P, p) = x; P;

2 exists = x => let (P, p) = x; p;

The exists function would not type check if it was not for the premise that

the scrutinee of the split expression x is equated to its corresponding pattern (P, p)

in the output of the split expression because it would not be possible to reduce the split

expression at the type level and see that the witness inhabits its proposition.

The second example involves disjoint unions: we illustrate the problem with the

type Foo which is defined as a dependent ordered pair type where the type of the first

entry is Bool and the type of the second entry varies according to the Bool stored in

the first entry.

1 Foo : Type;

2 Foo =

3 (x: Bool) * match x {

4 :true = Int32;

5 :false = Flt32;

6 };

What happens if we try to eliminate an ordered pair inhabiting Foo and use its

second entry in some way? Let us write a function that eliminates terms inhabiting Foo

and checks whether their second entries are greater than zero.

1 greater_than_zero : Foo -> Bool;

2 greater_than_zero = a =>

3 let (al, a_) = a;

4

5 match al {

6 :true = if (>i 0 a_) :true :false;

7 :false = if (>f 0.0 a_) :true :false;

8 };

The greater_than_zero function would not type check if it was not for the

premise that the scrutinee of the match expression al is equated to the patterns :true
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Figure 4.5 – Context formation – Γ ok.

∅ ok
x /∈ dom(Γ) Γ ⊢ A : Type

Γ; x : A ok

Γ ⊢ x : A Γ ⊢ a : A
Γ; x = a ok

Figure 4.6 – Substitution operation – m [z := n].

(x) [z := n] = i f z == x then n else x
(Type) [z := n] = Type

((x : A)→ B) [z := n] = (x : A [z := n])→ B [z := n]
(x⇒ b) [z := n] = x⇒ (b [z := n])

( f a) [z := n] = ( f [z := n]) (a [z := n])
((x : A)×B) [z := n] = (x : A [z := n])×B [z := n]

(a, b) [z := n] = (a [z := n], b [z := n])
(let (x, y) = a; b) [z := n] = let (x, y) = a [z := n]; b [z := n]

({:l}) [z := n] = {:l}
(:li) [z := n] = :li

(match a {:l = b;}) [z := n] = match a {:l = b [z := n];}

and :false in each corresponding branch of the match expression because it would not

be possible to reduce the match expression in the type of a_ and see that, in the :true

branch, the type of a_ reduces to Int32 and that, in the :false branch, the type of

a_ reduces to Flt32 .

To finalize, we introduce, in Figure 4.5, the rules for context formation: Γ ok

means that the context Γ is valid. In summary, the rules state that extending a context

with a declaration requires the type to be well-formed, and extending the context with a

definition additionally requires the name to be previously declared.

4.3 Substitution

This section defines, in Figure 4.6, the substitution operation. It is written m [z :=

n] and stands for replacing all free occurrences of the variable z within the term m with

the term n. Substitution is an essential operation for type systems that include dependent

types in view of the fact that types may mention variables standing for arbitrary terms.

Substitution is also at the heart of the β -equality relation (which will be detailed in Section

4.4) that specifies when two possibly distinct terms can be considered equivalent. The
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Figure 4.7 – Context definition lookup – x = a ∈ Γ.

x = a ∈ (Γ; x = a)
x = a ∈ Γ x ̸= y

x = a ∈ (Γ; y : B)

x = a ∈ Γ x ̸= y

x = a ∈ (Γ; y = b)

substitution operation is assumed to be capture-avoiding.

4.4 β -equality

This section defines the notion of β -equality, which is an essential component of

the conv rule introduced in Figure 4.4. β -equality (also known as β -conversion) is the

mechanism through which a simplified term can be obtained from a term that contains

redexes. We begin by defining x = a ∈ Γ which stands for the lookup of a definition

in the context. It is derivable if the definition x = a is visible in the context Γ. This rule

works very similarly to how x : A ∈ Γ works: the context is weakened until we have

found the relevant definition. The rules are available in Figure 4.7.

Concluding the specification of Curios’ type system, we define the notion of β -

equality as a congruence relation equating variables to their definitions and equating the

redexes formed by the constructors and eliminators of functions, ordered pairs and labels

to their contractum. The rules are available in Figure 4.8 and can be summarized as

follows:

• Rules (1) through (3) represent the reflexivity, symmetry and transitivity properties

of the relation;

• Rules (4) through (10) propagate the β -equality relation towards subterms of the

relevant terms;

• Rule (11) states that any two α-equal terms are also β -equal;

• Rule (12) states that a variable x is β -equal to a term a if the definition of x as being

equal to a is visible in the context;

• Rule (13) states that the application of a term x⇒ b to a term a is β -equal to the

term b with its free variable x substituted for the term a;

• Rule (14) states that a match expression scrutinizing a label :li and containing the

branches :l = b; is β -equal to the branch bi of the match expression;

• Rule (15) states that a split expression binding the variables x and y for the ordered
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Figure 4.8 – β -equality – Γ ⊢ a =β b.

(1)
Γ ⊢ a =β a

Γ ⊢ a =β b
(2)

Γ ⊢ b =β a

Γ ⊢ a =β b Γ ⊢ b =β c
(3)

Γ ⊢ a =β c

Γ ⊢ a =β a′
(4)

Γ ⊢ x⇒ a =β x⇒ a′
Γ ⊢ f =β f ′

(5)
Γ ⊢ f a =β f ′ a

Γ ⊢ a =β a′
(6)

Γ ⊢ f a =β f a′

Γ ⊢ a =β a′
(7)

Γ ⊢ match a {:l = b;}=β match a′ {:l = b;}

Γ ⊢ b =β b′
(8)

Γ ⊢ match a {:l = b;}=β match a {:l = b′;}

Γ ⊢ a =β a′
(9)

Γ ⊢ let (x, y) = a; b =β let (x, y) = a′; b

Γ ⊢ b =β b′
(10)

Γ ⊢ let (x, y) = a; b =β let (x, y) = a; b′

a =α b
(11)

Γ ⊢ a =β b
x = a ∈ Γ

(12)
Γ ⊢ x =β a

(13)
Γ ⊢ (x⇒ b) a =β b [x := a]

(14)
Γ ⊢ match :li {:l = b;}=β bi

(15)
Γ ⊢ let (x, y) = (a1, a2); b =β b [x := a1, y := a2]
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pair (a1, a2) and outputting a term b is β -equal to the term b with its free variables

x and y substituted for the terms a1 and a2 respectively.



53

5 THE CURIOS COMPILER

In this chapter, the compilation pipeline of Curios is introduced through detailed

explanations on the two representations that a Curios program assumes and an explanation

of each of the four components of the compilation pipeline. An overview of Curios’

compilation pipeline is available in Figure 5.1.

Figure 5.1 – Overview of Curios’ compilation pipeline.

As a Curios program progresses through the compilation pipeline, its represen-

tation varies as different compiler pipeline components are employed. Curios programs

begin their lifetimes as source code, where they are nothing more than text. At this point,

the parser component is employed, and the Curios program goes from source code to ab-

stract syntax tree. As an abstract syntax tree, the Curios program has its types checked by

the type checker component. When the Curios program is guaranteed to be type correct,

the Curios program goes from an abstract syntax tree to an intermediate representation,

which serves as a bridge between the abstract syntax tree and the WebAssembly binary

instructions. In its intermediate representation, important low-level characteristics such as

control flow branches, allocations and evaluation order are explicit. To conclude, the in-

termediate representation is compiled to a WebAssembly object file through the backend

component and linked to the runtime.
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The Curios compiler toolchain depends on a number of programming languages

and tools to emit an executable WebAssembly module:

• Three of the four of Curios compiler components, the parser, the type checker and

the backend, are implemented in the Haskell programming language whose code

and dependencies are managed by the Stack dependency manager;

• The fourth and last component of Curios’ compiler pipeline, the runtime, is imple-

mented in the C programming language and is compiled to an object file through

LLVM’s C compiler, clang ;

• Linking the object file resulting from Curios’ backend with the object file resulting

from compiling the runtime is performed by wasm-ld , LLVM’s WebAssembly

linker.

Executing the resulting WebAssembly module involves a number of small but

nonetheless important components:

• A standalone server, implemented in the Haskell programming language, responsi-

ble for handling the HTTP protocol;

• A HTML document, served through a HTTP server, responsible for bootstrapping

the execution;

• A JavaScript program, contained within an inline script in the HTML document’s

header, responsible for downloading, instantiating and invoking the WebAssembly

module’s start function.

Throughout this chapter, a passing familiarity with the Haskell programming lan-

guage is assumed from the reader, but the concepts introduced should be not be diffi-

cult to understand with a basic background on functional programming languages. The

reader might wish to read this chapter alongside Curios’ compiler toolchain source code

(PRETTO, 2023), in which case a stronger familiarity with the Haskell programming

language is expected.

5.1 Parser

The parser takes input in the form source code, checks whether the source code

conforms to the rules of Curios’ grammar and outputs an abstract syntax tree. It was

developed using Haskell’s megaparsec library (KARPOV, 2023), which is a parsing
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library based on the concept of combinatory parsing. At the heart of combinatory parsing

are parser combinators, which are composable higher order functions that perform the

parsing task when applied to a textual input. Parser combinators offer an immediate

advantage over tools like lex and yacc for C, or alex for Haskell, because instead

of writing a parser through a separate specification, the specification of the parser is the

code that performs the parsing itself.

The implementation of megaparsec is based on monads and monad transform-

ers from the mtl library, which gives them another big advantage: parser combinators

compose with each other through monad transformer stacks, which consequently means

that augmenting the parser with complex extensions is done by simply adding another

monad transformer or monad to the parser’s monad transformer stack.

5.2 Abstract syntax tree

The abstract syntax tree is the first of two representations that a Curios program

assumes during its progress through the compiler pipeline, and it is the output of the parser

component and the input of the type checker component. The essence of abstract syntax

tree is the Term data structure. It represents only the information that is essential both

for type checking and for generating the intermediate representation. The nodes of the tree

correspond to the different elements of Curios: the types, constructors and eliminators of

functions, ordered pairs, finite enumerations and WebAssembly primitives.

The noteworthy characteristic of the Term data structure is how it chooses to

deal with variables: the Scope data structure indicates subtrees of Term where an

additional variable is bound. The variables themselves use a mix of names for free vari-

ables and De Bruijn indices for bound variables, which avoids the pitfalls of using either

of them exclusively while still reaping the benefits of both of them (MCBRIDE; MCK-

INNA, 2004). An expanded view on the details of the implementation of variables in the

abstract syntax tree is given in Appendix B.

5.3 Type checker

The type checker is the second of four components of the Curios compiler pipeline.

It analyses the abstract syntax tree and verifies that the types of variables and terms are



56

used correctly throughout the program. The type checker will flag errors such as using

a variable of one type where a different type is expected or calling a function with ar-

guments of the wrong type. After the analysis is complete, the abstract syntax tree is

translated into the intermediate representation.

Checking the types of terms is performed with the help of a monad called Check

that is responsible for general bookkeeping: generating fresh names while also managing

the global and local contexts. The generation of fresh names is necessary due to Curios’

implementation of variables, which is explained in greater detail in Appendix B. During

the type checking process, the global context is only ever read from, while the local con-

text is mutated according to the term that is being checked. For example, if the term being

checked is a function, it becomes necessary to first modify the local context with a decla-

ration standing for the variable that the function binds before the body of the function can

be checked.

A reduction algorithm is employed by the type checker when two terms need to

be compared for β -equality, or when it becomes necessary to match against a specific

constructor of Term . This reduction only goes as far as the weak head-normal form of

the term. Due to the fact that Curios allows general recursion, if the reduction algorithm is

invoked against a term that does not have a weak head-normal form, it will loop infinitely.

The following is an example of such a program: even though 0 does not inhabit Bad ,

the reduction algorithm will diverge trying to reduce Bad to its (non-existent) weak

head-normal form as part of type checking.

1 Bad : Type;

2 Bad = Bad;

3

4 example : Bad;

5 example = 0;

Every programming language including dependent types in its type system needs

to be mindful of programs existing at the type level, which instigates the necessity of

a β -equality algorithm. For strongly normalizing languages, determining whether two

terms are β -equal is decidable, but since Curios supports general recursion, β -equality

is undecidable. To avoid most cases of divergence, Curios’ β -equality algorithm keeps

track of pairs of terms standing for equations it has already tried to compare. If the

algorithm winds up trying to compare a pair of terms inside an equation that it has already
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seen, then it assumes that that pair of terms is equirecursive, and returns that the two

terms in the equation are β -equal up to equirecursion. It is worth reiterating that there

are still cases where the algorithm will diverge (such as in the previous example), since

general recursion makes ascertaining β -equality undecidable and only an approximation

is possible.

The implementation of the type checker follows a bidirectional discipline (PIERCE;

TURNER, 2000), but the rules given in Figure 4.4 follow a type-assignment discipline and

are not meant for the direct implementation of a type checker for a programming language.

The authors intend on publishing the bidirectional type rules used in the implementation

of the Curios type checker at a later date.

After the program has had its types checked and it does not contain type errors,

it resumes its progress through the compilation pipeline. At this point, the program is

translated into an intermediate representation.

5.4 Intermediate representation

A program can be thought of as a sequence of instructions that operate on data.

These instructions are typically written in a high-level language that is designed to be

easy for humans to read and write. However, machines cannot directly execute high-level

instructions, so they must first be translated into a low-level language that the machine

can understand. The intermediate representation is the final of two representations that

the Curios program assumes and it is essential in the process of converting the high-level

program into the low-level program: whereas the abstract syntax tree focuses on the logi-

cal aspects of the program, the intermediate representation focuses on the computational

aspects of the program.

After a program is verified to be type correct, the Curios program in its core repre-

sentation is translated into its intermediate representation. The translation procedure has

three major responsibilities:

1. Throw away unnecessary type annotations;

2. Convert functions into data structures representing closures (ADAMS et al., 1986);

3. Flatten terms into sequences of expressions.

Even though most type annotations are discarded, the small amount of type infor-

mation that remains in the intermediate representation serves a practical purpose for the
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Figure 5.2 – Intermediate representation blocks and closures.

x, y ∈ Name bx ∈ BlockName cx ∈ClosureName s ∈ Sequence

Block b ::= block bx [x0, x1 , ..., xn] do
s

end

Closure c ::= closure cx {x0, x1, ..., xn} [y0, y1, ..., yn] do
s

end

Program p ::= ∅
| p b
| p c

Figure 5.3 – Intermediate representation sequences of expressions.

x ∈ Name e ∈ Expression

Sequence s ::= x← e; s
| e

compilation process: in broad strokes, it describes the layout of Curios objects in memory.

Apart from such type information, the intermediate representation also exposes many im-

portant low level details such as lifetimes, memory allocation and control flow branches,

which are important for the process of emitting WebAssembly instructions.

A program in its intermediate representation is a collection of blocks and closures,

as defined in Figure 5.2. Blocks are parameterized by a list of arguments while closures

are parameterized by both an environment and by a list of arguments. Both blocks and

closures contain, as their bodies, a sequence of expressions to be executed from top to

bottom. The environment of closures is represented by a list of variables that the closure

has closed over. While blocks can be jumped to directly, closures must first be allocated

and subsequently entered.

Sequences of expressions, defined in Figure 5.3, exist in the body of a block and

can be thought of as an expression and an optional continuation, which is itself a sequence

of expressions. The result of executing the expression is bound to a name and if a con-

tinuation exists, the expression is a named expression: the name is substituted in the
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Figure 5.4 – Intermediate representation expressions.

x ∈ Name bx ∈ BlockName cx ∈ClosureName
i ∈ Index n ∈ Integer m ∈ Floating

Atom a ::= x
| null

Expression e ::= Pure a
| Jump bx [a0, a1, ..., an]
| closure.Alloc cx {a0, a1, ..., an}
| closure.Enter a [a0, a1, ..., an]
| struct.Alloc [a0, a1, ..., an]
| struct.Select a i
| int32.Alloc n
| int32.Add a1 a2
| int32....
| f lt32.Alloc m
| f lt32.Add a1 a2
| f lt32....

body of the continuation and the compilation process recurses onto the continuation. If

a continuation does not exist, the expression is a tail expression, denoting the end of the

sequence (JONES; BAILEY; COOPER, 2018).

Expressions, specified in Figure 5.41, represent a computation to be performed at

runtime and they are used to describe the allocation and consumption of data. One note-

worthy detail is that expressions do not mention other expressions and, instead, mention

atoms: the operands to the operations that expressions perform must be trivial i.e. they

must either be a name bound by a previous step of the sequence or they must be null.

Curios’ intermediate representation has a text representation that is used mainly

for debugging purposes, but it can also be used to demonstrate what Curios programs

in their intermediate representation look like. For example, a program that allocates a

closure for adding two Int32 values looks like the following:

1 closure add {one} [other] do

2 int32.Add [one, other]

3 end

4

1The ellipsis represents the remaining numeric operators from Section 3.2 that were omitted due to space
reasons.
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5 block start [] do

6 one <- int32.Alloc 2;

7 other <- int32.Alloc 3;

8 add_closure <- closure.Alloc add {one};

9 closure.Enter [add_closure] [other]

10 end

In this example, lines 1 through 3 denote the closure that performs the addition

operation. In line 1, the closure is defined to have the name add , to contain one closed-

over variable ( one ) and to require one argument to be supplied when the closure is

entered ( other ). The closure contains a single expression, in line 2, that performs the

addition.

Lines 5 through 10 denote a block that uses the closure defined in lines 1 through

3. In line 5, the block is defined to have the name start , and because it is a block with

specifically the name start , it is the block that will be executed after the WebAssembly

module is loaded and instantiated and is considered the entrypoint of the program. Line 6

allocates the 32-bit integer 2 and line 7 allocates the 32-bit integer 3 . Line 8 allocates

the add closure with the integer allocated in line 6 as part of its environment. Line 9 is a

tail expression that performs the addition by entering the closure allocated in line 8 which

provides the argument that the closure requires. The block is concluded in line 10.

Before the compilation process is concluded, Curios’ WebAssembly backend is

applied to the intermediate representation to emit a WebAssembly object file which will

contain a number of unresolved symbols. The compilation process is concluded by em-

ploying LLVM’s WebAssembly linker, wasm-ld , which will resolve the unresolved

symbols with its own symbols and with the symbols coming from Curios’ runtime.

5.5 Backend

Curios’ WebAssembly backend is the third of four components and is, by far,

the biggest component of all of Curios’ compiler pipeline components and it imple-

ments, as faithfully as possible, a large portion of the WebAssembly specification (ROSS-

BERG, 2022). It also implements the LLVM convention for WebAssembly static libraries,

which means that binaries emitted by Curios’ WebAssembly backend are compatible with

LLVM’s WebAssembly linker, wasm-ld . Its functionalities are spread across three
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main modules: the Syntax module, the Serialize module and the Construct

module.

The Syntax module houses all of the types necessary for representing the

WebAssembly specification, plus some types used to emit linking information. The

Serialize module takes care of converting the types defined in the Syntax mod-

ule into their binary format. The Construct module is where the meat of the backend

component is, and it offers a DSL (domain specific language) that allows the construction

of WebAssembly modules without having to worry about indices.

The only way to refer to WebAssembly’s functions, tables, memories, globals,

locals and branch labels is through indices, and manually managing the indices of a Web-

Assembly module is prone to errors. This is specially true for branch labels, since much

like De Bruijn indices, the most recently bound branch label is 0, and increasing in-

dices refer to branch labels outwards. Because of that, the DSL is implemented through

a monad whose API (application programming interface) allows the programmer to use

strings instead of indices wherever an index would be required, such as in the target of a

branch instruction or when getting a local variable.

To understand how the DSL offered by the Construct module works, the ex-

amples in section 2.3.2 will be reimplemented using the DSL. Let us begin with the mod-

ule that declares a function that adds two i32 values.

1 addExample :: Module

2 addExample = runConstruct $ do

3 declareFunc "add" [("a", i32), ("b", i32)] [i32]

4 startCode

5 pushLocalGet "a"

6 pushLocalGet "b"

7 pushI32Add

8 endCode

Easy enough, right? The DSL mimics WebAssembly’s stack discipline on purpose

so that WebAssembly modules in their text representation are not so different from the

syntax that the DSL offers. To conclude, let us reimplement the module that declares a

function that sums all numbers from 0 to n .

1 fromExample :: Module
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2 fromExample = runConstruct $ do

3 declareFunc "from" [("n", i32)] [i32]

4 startCode

5 pushLocal "result" i32

6

7 pushI32Const 0

8 pushLocalSet "result"

9

10 pushBlock "break"

11 pushLoop "loop"

12

13 pushLocalGet "n"

14 pushI32Eqz

15 pushBrIf "break"

16

17 pushLocalGet "result"

18 pushLocalGet "n"

19 pushI32Add

20 pushLocalSet "result"

21

22 pushLocalGet "n"

23 pushI32Const 1

24 pushI32Sub

25 pushLocalSet "n"

26

27 pushBr "loop"

28

29 popLoop

30 popBlock

31

32 pushLocalGet "result"

33 endCode
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5.6 Runtime

Applying Curios’ WebAssembly backend to a program in its intermediate repre-

sentation does not generate a WebAssembly executable just yet. Instead, it generates a

WebAssembly object file that still needs to be linked against the runtime, since the object

file will contain unresolved symbols.

The runtime is the final of four components of Curios’ compilation pipeline. It is

written in the C programming language and it provides a set of operations that allows the

program to manage its memory and collect its garbage. Curios objects follow an uniform

representation, are reference counted and contain two segments: one segment is a list

of nested objects known as children which contain objects whose lifetime is tied to the

parent object, and the other segment is an unmanaged chunk of bytes where non garbage

collected data can be stored known as the trunk. Curios’ objects are laid out in memory

as follows:

• 4 bytes for the reference count;

• 4 bytes for the capacity of the children list;

• 4 bytes * Capacity for the children list;

• N bytes for the trunk of the object, determined by what’s being stored.

Curios’ objects, their lifetimes and the lifetimes of nested objects are determined

by calls to the runtime which will manage the allocation and deallocation of objects

(REINKING et al., 2021). The runtime provides the following operations for managing

the lifetime of an object:

• new(capacity, trunk_size) , which allocates a new object with capacity

for capacity children and a trunk of size trunk_size ;

• enter(object) , which increments the reference count of object if it is not

0 i.e. it is not static;

• leave(object) , which decrements the reference count of object if it is

not 0 i.e. it is not static. If the reference count of object becomes 0 after

being decremented, all of object ’s children leave its scope and object gets

deallocated;

• set(object, index, child) , which sets the child at index of object

to child ;
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• get(object, index) , which returns the child at index of object ;

• trunk(object) , which calculates a pointer to the trunk of object .

To exemplify how different types of data can be stored using this object repre-

sentation, we will look at how three different data types are allocated: 32 bit integers,

structures and closures.

• 32 bit integers hold no nested objects, and the actual value is stored in the trunk

since the value does not need to be garbage collected. Thus, 32 bit integers stored

in memory have a capacity of 0 children and a trunk size of 4 bytes;

• Structures’ capacities are based on the number of fields that they store, and they do

not store any data that is not garbage collected. Thus, structures stored in memory

have a capacity of n children and a trunk size of 0 bytes, where n is the amount

of fields that the structure has;

• Closures store their closed over variables as children, and the function pointer to

be invoked in the trunk. Thus, closures stored in memory have a capacity of n

children, and a trunk of 4 bytes, where n is the amount of closed over variables.

5.7 Execution

Web browsers employ security policies that restrict how external resources can

be requested and downloaded. Because of that, the WebAssembly executable that results

from Curios’ compilation pipeline needs to be served through a HTTP server. The Curios

compiler toolchain includes a barebones HTTP server for the purpose of conforming to

the web browser’s security policies, so that it agrees to download the resources necessary

to execute the Curios WebAssembly executable.

The first resource that the web browser downloads from the HTTP server is a

HTML document containing the customarily expected HTML document skeleton: a set

of <html></html> tags to delimit where the HTML document begins and ends, a set

of <head></head> tags to delimit the header of the HTML document and a set of

<body></body> tags to delimit the contents of HTML document (which, at first, is

empty). The header of the HTML document contains a set of <script></script>

tags that contain an inline JavaScript program that invokes the Fetch API (MDN WEB

DOCS CONTRIBUTORS, 2023) to make a request to the HTTP server asking it to pro-

vide the WebAssembly module, which gets asynchronously downloaded and instantiated.
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Once the WebAssembly module is downloaded and instantiated, it is ready to be

executed. The JavaScript program expects a _start symbol to be exported, and ex-

pects this symbol to be a function requiring zero arguments and returning one value. The

JavaScript program retrieves the _start symbol, invokes it, implicitly converts the re-

turned value to a string and appends that string to the contents of the HTML document.

Lastly, the web browser takes care of rendering the updated contents of the HTML doc-

ument, which will effectively print the result of invoking the _start symbol to the

screen.
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6 RELATED WORK

In this chapter, works related to Curios are introduced, along with the extent of

their influence in the research and development of its compiler pipeline. In Section 6.1

the Cedille proof assistant and dependently typed programming language is introduced.

In Section 6.2 the Formality programming language and its offspring are introduced. In

Section 6.3 the ΠΣ type system is introduced.

6.1 Cedille and the Calculus of Dependent Lambda Eliminations

Proof assistants such as Coq and Lean and programming languages such as Idris

adopt inductive types following the Calculus of Inductive Constructions approach that ex-

tends the Calculus of Constructions with new primitives for constructing and eliminating

inductive types (and consequently, adds new typing and evaluation rules for these new

primitives).

The Calculus of Dependent Lambda Eliminations (STUMP, 2017) proposes an

alternative way to introduce inductive types to the Calculus of Constructions. Instead

of adding new primitives, the Calculus of Dependent Lambda Eliminations introduces

inductive types to the type system through lambda encodings (empowered by Miquel’s

implicit function type (BARRAS; BERNARDO, 2008), Kopylov’s dependent intersection

type (KOPYLOV, 2003) and an equality type representing the standard Leibniz equality).

The Calculus of Dependent Lambda Eliminations is the theory behind the typechecker

of the Cedille1 proof assistant and dependently typed programming language (STUMP,

2023).

To briefly recapitulate, lambda encodings are a technique for encoding data using

nothing but function abstraction and application. Church numerals are the most well-

known form of lambda encoding, where the natural numbers are encoded through higher-

order functions that represent the iterator of the encoded number. Two functions represent

each of the encoding’s constructors: zero is represented by λ z. λ s. z while succ (succes-

sor) is represented by λn. λ z. λ s. s n. For example, the number 1 is represented by

succ zero, the number 2 is represented by succ (succ zero) and so on.

1Cedille is a word formed by adding three vowels and one consonant to the acronym CDLE standing
for Calculus of Dependent Lambda Eliminations. It is the name of the ç character found in the alphabet of
languages such as portuguese and french.
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Eliminating the encoding is equivalent to applying two terms to the encoding,

one for the case where the encoding represents zero and another for the case where the

encoding represents succ, at which point the encoding chooses one of the terms with

which to continue based on which constructor the encoding represents. For example, a

function that tests whether its argument is zero can be defined as λn. n true (λx. f alse).

Curios’ inductive types are very different from Cedille’s inductive types in the

sense that Curios offers basic data types with which other data types can be derived

whereas Cedille provides lambda encodings with enough gunpower so that they are ca-

pable of representing data types. But even if Curios and Cedille have their differences,

Curios shares Cedille’s (and the Calculus of Dependent Lambda Eliminations) philoso-

phy of offering inductive types through constructs that are more fundamental and simpler

to understand when compared to the approach that the Calculus of Inductive Construc-

tions takes where types must obey formation schemes and behave as extensions to the

type system. But, unfortunately, even though the type rules for Cedille’s type system are

comparatively simpler, the difference in complexity is transferred from the type checker

to the user: the syntax for types and terms using the raw, low-level encoding is often very

verbose (STUMP, 2018).

Cedille promptly solves this problem by adding a high-level syntax for induc-

tive types that desugars into the encoding, but the encoding seldom resembles the high-

level syntax, and this disconnect between the high-level syntax and the encoding can be

detrimental to the implementation of a programming language: debugging the different

components of a compiler pipeline might require inspecting the not-so-readable encoding

manually. Another drawback of the encoding, this time regarding the generation of ma-

chine instructions, is that whenever a memory layout needs to be chosen for an encoded

object, the compiler needs to either perform an extra analysis step that decodes the encod-

ing into a representation that describes the memory layout of the object as a structure or

it must resort to compiling the encoded object as a closure. The drawback of resorting to

compiling encoded objects as closures has to do with the fact that unoptimized closures

have associated runtime performance overheads, such as heap allocations and indirect

jumps.
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6.2 Formality, Kind and Yatima

Formality (MAIA, 2021a) was a dependently typed functional programming lan-

guage that had the objective of showcasing the benefits that proof-carrying code could

bring to day-to-day programming. Formality was heavily inspired by a previous revi-

sion of the Calculus of Dependent Lambda Eliminations called System S (FU; STUMP,

2014) and employed the concept of self type as a tool to represent inductive types through

lambda encodings. After the authors of the language went their separate ways, Formal-

ity was split into two projects, Kind (MAIA, 2021b) and Yatima (BURNHAM, 2021),

which continued to use self types in their type systems. For the remainder of this sec-

tion, the term Formality will be used to refer to any of the three programming languages

(Formality, Kind or Yatima).

Like previously mentioned, Formality adopted the self type, which originated

from the research that led to Cedille, as the tool used to introduced new inductive types

to its type system. The main differences between Formality and Cedille have to do with

recursion and termination. While Cedille restricts recursion to its well-founded subset

with the intent of guaranteeing termination, Formality embraces general recursion and

does not guarantee termination. It is also worth mentioning that Cedille treats recursion

in its types through an isorecursive approach (i.e. the type is isomorphic but not equal to

its recursive unfolding) while Formality treats recursion in its types through an equirecur-

sive approach (i.e. the type and and its recursive unfolding are equal). Each approach has

its strengths and drawbacks: equirecursive types are more straightforward but they can

present implementation challenges while isorecursive types are easier to implement but

have additional syntax and typing rules.

The first prototype of Curios was, in essence, very similar to Formality: while

Curios and Formality had different syntaxes and offered different sets of primitive capa-

bilities, Curios also employed the self type as the tool through which new inductive types

were introduced to its type system. Curios was also inspired by Formality’s implementa-

tion of its β -equality check algorithm, since it was capable of handling general recursion

at both term and type levels without modification. Curios eventually abandoned the self

type for two reasons:

1. The self type as proposed by Formality had not yet been given a formal speci-

fication, and while there were attempts by the Curios authors to derive a formal

specification from the implementation of Curios’ type checker, the attempts were



69

not successful;

2. The overarching concept of self type exhibited potential through the perspective of

an expressive and flexible type operator, but after a full year and a half struggling

to understand its intricacies, it was eventually considered by the Curios authors to

be too general without justification.

6.3 ΠΣ: Dependent types without the sugar

In the same vein of alternatives to the Calculus of Inductive Constructions, ΠΣ

(ALTENKIRCH et al., 2010) is a type system for a dependently typed programming lan-

guage that encodes inductive types through a combination of dependent functions (i.e.

Π-types), dependent products (i.e. Σ-types), enumerations and lifting.

Unlike Cedille and Formality that propose comparatively novel and exotic con-

structs for the task at hand, ΠΣ breaks the components of an inductive type into already

well-studied constituents. By focusing on a core language instead of a full featured lan-

guage, ΠΣ demonstrates how complex constructs can be represented through combina-

tions of more elementary capabilities. Like Formality, ΠΣ is partial: the tools for carrying

out mathematical proofs are provided but its focus is to support general purpose functional

programming, which leads to general recursion being an integral part of its system.

After abandoning self types, Curios’ dependent function types, dependent ordered

pair types and finite enumerations were directly inspired by ΠΣ’s dependent functions,

dependent products and enumerations. The main difference between Curios and ΠΣ lies

in how recursion is handled:

• In ΠΣ, there exist operators used specifically for controlling how recursion is un-

folded called lifting and boxing: boxed terms are typed by lifted types2, and inside

boxed terms, only α-equality (as opposed to full β -equality) is employed. When

compared to Curios, these operators add a slight syntactical overhead but ΠΣ’s type

system rules, operational semantics and type checker implementation are simpli-

fied;

• In Curios, no syntax is required to control recursion other than the names of top-

level declarations, but the implementation of its β -equality algorithm requires an

ad-hoc heuristic: the β -equality algorithm keeps track of equations of terms that it

2As explained in the ΠΣ paper, "lifted" here is used as a synonym of "suspended", akin to "lazy".
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has already tried to compare so that when it encounters an equation it has already

seen, the terms in the equation are considered to be β -equal up to equirecursion.

When compared to ΠΣ, Curios’ recursion syntax overhead is almost nonexistent

but the metatheoretical study of its type system becomes more complicated while

also requiring its β -equality algorithm to employ ad-hoc heuristics (such as the

approach that was just described) so that in most cases it does not diverge3.

The hawk-eyed reader might have noticed that Curios’ method (and consequently,

ΠΣ’s method) of encoding inductive types in Section 3.4 is eerily similar to C-style tagged

unions where a structure composed of two fields (a tag and a union) is capable of storing

values of different types. Similarities can also be drawn to Elixir algebraic data types,

where a tuple stores its variant as an atom in its first entry, and the entries in the rest of

the tuple vary according to the atom in the first entry. These similarities, along with the

simplicity of ΠΣ’s concepts, were an encouragement for the adoption of ΠΣ’s ideas by

Curios due to their focus on representing ideas fundamentally based on idioms coming

from programming languages instead of proof assistants.

3Like mentioned in Section 5.3, there are still cases where Curios’ β -equality algorithm diverges, such
as when one of the terms of the comparison does not have a weak head-normal form.
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7 CONCLUSION AND FUTURE WORK

In the present research project we have described Curios, a dependently typed

functional programming language whose primary compilation target is WebAssembly. In

its type system, Curios employs a combination of dependent function types, dependent

ordered pair types and finite enumerations in order to represent inductive data types in-

stead of using a more fully fledged but also more complex theory such as the Calculus

of Inductive Constructions. An integral part of Curios is general recursion: while general

recursion is at the heart of many programming languages, general recursion leads to par-

tiality, and because of that, Curios’ type system is inconsistent when viewed as a logic.

To illustrate Curios’ syntax and semantics, examples describing its basic and dependently

typed capabilities and how these capabilities can potentially interact for the sake of rep-

resenting more complex constructs were introduced. Curios syntax, type rules and opera-

tional semantics were described next and, subsequently, an explanation was given on each

of the two representations that a Curios program assumes during its progress through the

four components of its compiler pipeline. To conclude, related work in the field of type

theory was presented along with a discussion on how Curios was influenced by them.

The following proposed objectives were achieved: a dependently typed functional

programming language encompassing both a type checking algorithm for a type sys-

tem based on the Calculus of Constructions; a code generation algorithm that outputs

executable WebAssembly modules was implemented. The code demonstrating these ca-

pabilities is available in a public Github repository (PRETTO, 2023) as part of Curios’

compiler toolchain.

There were some objectives that were initially set but were left as topics for future

work: a convenient high level syntax for the concepts that its type system can represent;

demonstrating whether there exists dependently typed idioms that can be of service for the

development of web apps; the development of its metatheory such as proving important

properties including progress of well-typed terms and type preservation.

As for the future of the Curios compiler toolchain, its development is still in a

pre-alpha state and a lot remains to be done before it can be considered to meet even basic

quality standards. Besides the investments necessary in Curios’ compiler toolchain, there

is also interest in the development of a termination checker which would allow a subset

of Curios to be used as a proof assistant. Some areas where the frontend of the Curios

compiler toolchain could improve are:
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• Syntax. Before a programming language can be considered production-grade, its

syntax must support a set of basic features where the programmer is capable of ex-

pressing their ideas as conveniently as possible. Curios offers dependent function

types, dependent ordered pair types, finite enumerations and expects the program-

mer to use these constructs to encode data types, but while these constructs are

capable of encoding inductive types, the syntax is verbose and inconvenient;

• Type inference. The ability to deduce the type of a variable of a term without re-

quiring explicit type annotations from the programmer is crucial for a programming

language: it helps the programmer to write code more quickly and with fewer er-

rors since it allows the programmer to omit part of the type information. Currently,

Curios has a very primitive mechanism for inferring the types of terms and can

basically only infer a type for a term if it is obvious;

• Ad-hoc polymorphism. Allowing a single function to have multiple implementa-

tions based on the type of the input arguments a la Haskell’s type classes and Rust’s

traits is advantageous because it allows programmers to write generic functions or

operators that can be applied to a variety of types without having to write separate

implementations for each type, effectively reducing code duplication and making

code more modular and reusable;

• Effect system. An effect system opens the door for idioms such as modeling state-

ful computations in pure languages and it becomes a necessity if a programming

language intends on providing input and output facilities: whereas a proof assistant

is useful just by virtue of its type checker, a programming language that does not

provide the tools necessary to interact with the external world is not a very useful

programming language. Two options of effect systems for programming languages

are monads (WADLER, 1995) and algebraic effects (LEIJEN, 2016);

• Linear types. Curios already supports dependent types and that allows its type

system to track the properties of its resources, while the addition of linear types

(WADLER, 1990) would allow its type system to track the usage of its resources.

For example, linear types can guarantee during compile time that only a single

reference to some object exists, and that enables optimizations such as destructive

updates since data races can only occur when at least two observers exist.

With regards to its compiler backend, Curios lacks any form of optimization.

Functional programs are susceptible to many well-known optimizations and there are
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many optimizations that could be implemented at Curios’ intermediate representation

level but, unfortunately, Curios’ compiler does not yet implement and perform any of

them. A set of basic optimizations that need to be implemented and performed have

been identified before the Curios compiler toolchain can output executables that can be

considered to perform at the most basic level of expectations:

• Multi-argument functions. Curios functions each bind a single argument and are

eliminated one argument at a time. Representing functions in such a manner is

awfully inefficient with regards to execution in bare-metal environments such as

machine code, or in a low level virtual machine such as WebAssembly. An opti-

mization pass can eliminate the overhead of allocating closures by gathering all of

the arguments in an application and applying them at the same time to the function

being eliminated;

• Type erasure. Curios is a dependently typed language and that means the bound-

ary between types and terms is blurry. That also means that a separate analysis

step is necessary for differentiating terms from types, which currently Curios does

not perform: all types are emitted to executables as instances of the null pointer,

which creates a runtime overhead that, even if small, is still unnecessary, since their

only influence in the result of the program is the overhead itself. An optimiza-

tion pass should prevent null pointers representing types from being emitted to the

executable;

• Tail-call recursion. Pure, functional languages such as Curios do not provide mu-

table data structures, and recursion is employed when iteration and repetition are

required. Unfortunately, unoptimized recursion has the heavy drawback of allo-

cating a stack frame each time it recommences, which can easily lead to a stack

overflow, even for small and trivial programs. An optimization pass should identify

opportunities for tail call optimizations (CLINGER, 1998) where the stack frame

for each iteration is unwound before the next iteration begins, leading to the pro-

gram using a constant (instead of an increasing) amount of stack memory when

evaluating recursion;

• Memory, through the lens of dynamic typing. Even though Curios is a stati-

cally typed language, the flexibility that dependent types permit can persuade a

programmer to look at its type system from a dynamic perspective. Nonetheless,

programs written in Curios currently use, even for the standards of dynamically

typed languages, a large and inefficient amount of memory unnecessarily: every
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single object is allocated in the heap, and consume at the very least 12 bytes. There

are optimizations such as pointer tagging (GUDEMAN, 1995) and NaN-boxing

(FATEMAN, 1982) that can identify small objects1 and represent them without a

heap allocations;

• Memory, through the lens of static typing. In the same train of thought, Curios’

intermediate representation could be expanded to include a modest, first-order type

system that describes the memory layout of its objects more accurately. Apart from

the size and layout gains, this could also be the entrypoint for optimizations such as

allocating objects in the stack instead of in the heap, where the allocation overhead

is much smaller.

1Simple scalars (such integers and floating point numbers) and labels (which are represented as integers)
are examples of small objects that would benefit greatly from such optimization. These objects comprise
the vast majority of objects that a Curios program manipulates as it executes.



75

REFERENCES

ADAMS, N. et al. Orbit: An optimizing compiler for Scheme. ACM SIGPLAN Notices,
ACM New York, NY, USA, v. 21, n. 7, p. 219–233, 1986.

AGDA CONTRIBUTORS. Compilers – Agda 2.6.2.2.20221128 documentation. 2022.
<https://agda.readthedocs.io/en/v2.6.2.2.20221128/tools/compilers.html>.

ALTENKIRCH, T. et al. ΠΣ: Dependent types without the sugar. In: SPRINGER. Inter-
national Symposium on Functional and Logic Programming. [S.l.], 2010. p. 40–55.

BARRAS, B.; BERNARDO, B. The implicit calculus of constructions as a programming
language with dependent types. In: SPRINGER. Foundations of Software Science and
Computational Structures: 11th International Conference, FOSSACS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings 11. [S.l.], 2008. p.
365–379.

BARTHE, G.; GRÉGOIRE, B.; BÉGUELIN, S. Z. Formal certification of code-based
cryptographic proofs. In: Proceedings of the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. [S.l.: s.n.], 2009. p. 90–101.

BIERMAN, G.; ABADI, M.; TORGERSEN, M. Understanding TypeScript. In:
SPRINGER. ECOOP 2014–Object-Oriented Programming: 28th European Confer-
ence, Uppsala, Sweden, July 28–August 1, 2014. Proceedings 28. [S.l.], 2014. p. 257–
281.

BRADY, E. Idris, a general-purpose dependently typed programming language: Design
and implementation. Journal of functional programming, Cambridge University Press,
v. 23, n. 5, p. 552–593, 2013.

BRADY, E. State machines all the way down: an architecture for dependently typed ap-
plications. Unpublished Draft, 2016.

BRUIJN, N. G. D. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the church-rosser theorem. In: ELSEVIER.
Indagationes Mathematicae (Proceedings). [S.l.], 1972. v. 75, n. 5, p. 381–392.

BURNHAM, J. C. Yatima on Github. [S.l.]: GitHub, 2021. <https://github.com/
yatima-inc/yatima-lang-alpha/tree/4a2073554184a6527d10f1ec6d7669e5f7cc5ea9>.

CLINGER, W. D. Proper tail recursion and space efficiency. In: Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and implementation.
[S.l.: s.n.], 1998. p. 174–185.

COQUAND, T. Pattern matching with dependent types. In: CITESEER. Informal pro-
ceedings of Logical Frameworks. [S.l.], 1992. v. 92, p. 66–79.

CZAPLICKI, E. Elm: Concurrent FRP for functional GUIs. Senior thesis, Harvard Uni-
versity, v. 30, 2012.

https://agda.readthedocs.io/en/v2.6.2.2.20221128/tools/compilers.html
https://github.com/yatima-inc/yatima-lang-alpha/tree/4a2073554184a6527d10f1ec6d7669e5f7cc5ea9
https://github.com/yatima-inc/yatima-lang-alpha/tree/4a2073554184a6527d10f1ec6d7669e5f7cc5ea9


76

DOWEK, G. The undecidability of typability in the lambda-pi-calculus. In: SPRINGER.
International Conference on Typed Lambda Calculi and Applications. [S.l.], 1993.
p. 139–145.

DUBOIS, C. Proving ml type soundness within coq. In: SPRINGER. Theorem Proving
in Higher Order Logics: 13th International Conference, TPHOLs 2000 Portland,
OR, USA, August 14–18, 2000 Proceedings 13. [S.l.], 2000. p. 126–144.

FATEMAN, R. J. High-level language implications of the proposed IEEE floating-point
standard. ACM Transactions on Programming Languages and Systems (TOPLAS),
ACM New York, NY, USA, v. 4, n. 2, p. 239–257, 1982.

FU, P.; STUMP, A. Self types for dependently typed lambda encodings. In: SPRINGER.
Rewriting and Typed Lambda Calculi: Joint International Conference, RTA-TLCA
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
14-17, 2014. Proceedings 25. [S.l.], 2014. p. 224–239.

GOGUEN, H.; MCBRIDE, C.; MCKINNA, J. Eliminating dependent pattern matching.
Algebra, Meaning, and Computation: Essays dedicated to Joseph A. Goguen on the
Occasion of His 65th Birthday, Springer, p. 521–540, 2006.

GONTHIER, G. et al. Formal proof–the four-color theorem. Notices of the AMS, v. 55,
n. 11, p. 1382–1393, 2008.

GUDEMAN, D. Representing type information in dynamically typed languages.
[S.l.]: Citeseer, 1995.

HOARE, T. Null References: The Billion Dollar Mistake. 2009. <https://www.infoq.
com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/>.

IDRIS CONTRIBUTORS. Code generation targets – Idris 1.33 documentation. 2020.
<https://docs.idris-lang.org/en/v1.3.4/reference/codegen.html>.

IDRIS2 CONTRIBUTORS. Idris2 Github repository. 2022. <https://github.com/
idris-lang/Idris2/tree/59aadd650f9f46f3d7ebd3ede50182a0bea3e280>.

JONES, M. P.; BAILEY, J.; COOPER, T. R. MIL, a monadic intermediate language for
implementing functional languages. In: Proceedings of the 30th Symposium on Imple-
mentation and Application of Functional Languages. [S.l.: s.n.], 2018. p. 71–82.

KARPOV, M. Megaparsec on Github. 2023. <https://github.com/mrkkrp/megaparsec>.

KFOURY, A. J.; TIURYN, J.; URZYCZYN, P. The undecidability of the semi-unification
problem. In: Proceedings of the twenty-second annual ACM symposium on Theory
of computing. [S.l.: s.n.], 1990. p. 468–476.

KOPYLOV, A. Dependent intersection: A new way of defining records in type theory. In:
IEEE. 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceed-
ings. [S.l.], 2003. p. 86–95.

LEIJEN, D. Algebraic effects for functional programming. [S.l.], 2016.

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://docs.idris-lang.org/en/v1.3.4/reference/codegen.html
https://github.com/idris-lang/Idris2/tree/59aadd650f9f46f3d7ebd3ede50182a0bea3e280
https://github.com/idris-lang/Idris2/tree/59aadd650f9f46f3d7ebd3ede50182a0bea3e280
https://github.com/mrkkrp/megaparsec


77

LESANI, M.; BELL, C. J.; CHLIPALA, A. Chapar: certified causally consistent dis-
tributed key-value stores. ACM SIGPLAN Notices, ACM New York, NY, USA, v. 51,
n. 1, p. 357–370, 2016.

MAIA, V. Formality on Github. [S.l.]: GitHub, 2021. <https://github.com/VictorTaelin/
Formality/tree/040b40308720fab8281e41e1c30c8ee4da4d9a3e>.

MAIA, V. Kind on Github. [S.l.]: GitHub, 2021. <https://github.com/HigherOrderCO/
Kind1/tree/77fee3a21c9d722a225b3023c2aea6d2251a687c>.

MARTIN-LÖF, P.; SAMBIN, G. Intuitionistic type theory. [S.l.]: Bibliopolis Naples,
1984.

MCBRIDE, C.; MCKINNA, J. Functional pearl: I am not a number – I am a free variable.
In: Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell. [S.l.: s.n.], 2004.
p. 1–9.

MDN WEB DOCS CONTRIBUTORS. Fetch API – Web APIs | MDN. 2023. <https:
//developer.mozilla.org/en-US/docs/Web/API/Fetch_API>.

MUIJNCK-HUGHES, J. de; BRADY, E.; VANDERBAUWHEDE, W. Value-dependent
session design in a dependently typed language. arXiv preprint arXiv:1904.01288,
2019.

PAULIN-MOHRING, C. Introduction to the calculus of inductive constructions. [S.l.]:
College Publications, 2015.

PIERCE, B. C. Higher-order polymorphism. In: Types and programming languages.
[S.l.]: MIT press, 2002. chp. 30.

PIERCE, B. C.; TURNER, D. N. Local type inference. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), ACM New York, NY, USA, v. 22, n. 1, p.
1–44, 2000.

PRETTO, V. Curios on Github. 2023. <https://github.com/valmirjunior0088/curios/tree/
7c107652489967a0ad0577b4b684979d79ef0ab4>.

REINKING, A. et al. Perceus: Garbage free reference counting with reuse. In: Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. [S.l.: s.n.], 2021. p. 96–111.

ROSSBERG, A. (Ed.). WebAssembly Core Specification. 2022. Available from Internet:
<https://www.w3.org/TR/wasm-core-1/>.

ROUX, C. What exactly is "large elimination"? 2023. <https://cstheory.stackexchange.
com/q/40342>.

ROUX, C. Where can I find more information about "dependent elimination"? 2023.
<https://cstheory.stackexchange.com/q/52722>.

SØRENSEN, M. H.; URZYCZYN, P. Lectures on the Curry-Howard isomorphism.
[S.l.]: Elsevier, 2006.

https://github.com/VictorTaelin/Formality/tree/040b40308720fab8281e41e1c30c8ee4da4d9a3e
https://github.com/VictorTaelin/Formality/tree/040b40308720fab8281e41e1c30c8ee4da4d9a3e
https://github.com/HigherOrderCO/Kind1/tree/77fee3a21c9d722a225b3023c2aea6d2251a687c
https://github.com/HigherOrderCO/Kind1/tree/77fee3a21c9d722a225b3023c2aea6d2251a687c
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://github.com/valmirjunior0088/curios/tree/7c107652489967a0ad0577b4b684979d79ef0ab4
https://github.com/valmirjunior0088/curios/tree/7c107652489967a0ad0577b4b684979d79ef0ab4
https://www.w3.org/TR/wasm-core-1/
https://cstheory.stackexchange.com/q/40342
https://cstheory.stackexchange.com/q/40342
https://cstheory.stackexchange.com/q/52722


78

STUMP, A. The calculus of dependent lambda eliminations. Journal of Functional Pro-
gramming, Cambridge University Press, v. 27, 2017.

STUMP, A. From realizability to induction via dependent intersection. Annals of Pure
and Applied Logic, Elsevier, v. 169, n. 7, p. 637–655, 2018.

STUMP, A. Cedille on Github. 2023. <https://cedille.github.io/>.

WADLER, P. Linear types can change the world! In: CITESEER. Programming con-
cepts and methods. [S.l.], 1990. v. 3, n. 4, p. 5.

WADLER, P. Monads for functional programming. In: SPRINGER. Advanced Func-
tional Programming: First International Spring School on Advanced Functional
Programming Techniques Båstad, Sweden, May 24–30, 1995 Tutorial Text 1. [S.l.],
1995. p. 24–52.

https://cedille.github.io/


79

APPENDIX A — INSTALLATION AND USAGE OF CURIOS

In this chapter, a short tutorial on what is necessary to experiment with Curios’

compiler toolchain is given. The following dependencies are required to be installed:

• git , for cloning the repository;

• stack , for managing Curios’ compiler toolchain source code and its dependen-

cies;

• clang , for compiling Curios’ runtime libraries;

• lld , for linking Curios’ runtime with its compiler output.

The first step is to download Curios’ compiler toolchain source code. It is available

in a public Github repository, and the git tool will take care of this task. To download

Curios’ compiler toolchain source code, run the following terminal command:

1 git clone https://github.com/valmirjunior0088/curios

The next step is to build Curios’ compiler toolchain. The stack tool is respon-

sible for this task, and it will automatically download all Haskell libraries that the Curios

compiler toolchain depends upon. After stack is finished downloading the necessary

dependencies, it will generate three binaries: one for Curios’ interpreter, one for Curios’

compiler, and one that spawns a HTTP server. Navigate to the folder where the git

tool downloaded Curios’ compiler toolchain source code, and run the following terminal

command:

1 stack build

After these two steps are done, the Curios compiler toolchain is available for us-

age. To facilitate interaction with the compiler toolchain, a Makefile is available

inside the runtime folder that runs the correct commands for interpreting, compil-

ing and serving the resulting WebAssembly executable over a local HTTP server. The

Makefile will use the program.crs file available in the same folder as the Curios

program to interpret or compile. The following commands are available:

• make interpret will interpret the program.crs file and print the result

of executing the start definition;
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• make serve will compile the program.crs file and spawn a HTTP server

on http://localhost:8080 which will serve the resulting WebAssembly

executable and print the result of executing the start definition.
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APPENDIX B — VARIABLES IN THE ABSTRACT SYNTAX TREE

Like previously mentioned, the noteworthy characteristic of the Term data struc-

ture is how it chooses to deal with variables: the Scope data structure indicates subtrees

of Term where an additional variable is bound. For example, Term is assumed to have

no bound variables (such as in the branch of a match expression), Scope Term is as-

sumed to have one bound variable (such as in a function) and Scope (Scope Term)

is assumed to have two bound variables (such as in a split expression)1.

There are two different ways of representing variables within Term s: they are

either globals or locals. Global variables, also known as top-level variables, refer to dec-

larations in the global context, while local variables refer to variables bound locally by

function types, functions, pair types and split expressions. Local variables are slightly

more involved: they are distinguished between free or bound and are used together with

Scope to represent subtrees of Term s where an additional local bound variable is

available.

For the time being, let us ignore the concrete implementation of Scope s and

variables and let us focus on how to manipulate Term s through a set of primitive pro-

cedures. There are two main procedures used to manipulate Term s, Scope s and their

variables:

1. abstract , which creates a Scope a by recursing over a and binding some

local free variable as a local bound variable i.e. it substitutes all occurrences of

some local free variable by the local bound variable representing the Scope ;

2. instantiate , which returns the a that is underneath a Scope a by recurs-

ing over the a and substituting all occurrences of the local bound variable that the

Scope represents with some Term .

When parsing a Term , identifiers that do not match with a specific grammatical

rule (such as the Int32 , which results in the type of 32-bit integers) will be parsed

as local free variables, which means that Term s will initially contain only local free

variables. The abstract procedure is used to correctly parse scope formers such as

functions where it reconstructs a Term as a Scope Term by substituting all occur-

rences of some local free variable with an appropriate local bound variable.

1These and related data structures along with all of the associated operations are available in the
src/Core/Syntax.hs source code file of the Curios Github repository (PRETTO, 2023).
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Apart from that, abstract is also responsible for constructing synthetic2 terms:

when the parser comes across syntax containing syntactic sugar, the parser constructs

Term s containing manually injected local free variables and employs the abstract

procedure to construct Scope Term s, desugaring the syntactic sugar that it has en-

countered. Currently, for this purpose, abstract is being used to desugar nested split

expressions while also avoiding unlawful capture of global variables.

The instantiate procedure is the polar opposite of the abstract proce-

dure: the abstract procedure constructs Scope s while the instantiate proce-

dure eliminates Scope s. It does so by substituting all occurrences of some local bound

variable represented by the Scope with some Term . The instantiate procedure

has two responsibilities: to eliminate redexes and to inspect Term s contained within

Scope s.

The first case where instantiate is employed is to eliminate redexes that

may arise, such as applications of functions to arguments. In the case of a redex, there

exists a readily available Term that can be used to instantiate the Scope , but this

may not always be the case. For example, we can easily check whether the domain of

a function type inhabits Type . But the range of a function type is a Scope Type ,

representing the fact that the range of a function type can depend on the term the domain.

How do we get underneath the Scope Type to inspect the Type and check whether

it actually inhabits Type ? This is the second case where instantiate is employed:

the context is extended with the declaration of a (fresh) local free variable that inhabits the

function type’s domain, and that local free variable can be used to instantiate the Scope

in the function type’s range, at which point it can be checked through the usual means.

It is noteworthy that three additional helper procedures exist with regards to the

manipulation of Scope s and their variables:

1. unbound , whose responsibility is to construct a Scope within which the vari-

able that the Scope represents does not occur i.e. the variable that the Scope

represents is not free within itself;

2. open , whose responsibility is to instantiate a Scope with the name of a local

free variable;

3. commit , whose responsibility is to substitute all local free variables of a Term

by global variables of the same name.

2"Synthetic" in this case is used in the sense of a term that was constructed artificially by the parser and
does not originate in the source code.
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While the unbound procedure is very simple in its nature, the open proce-

dure requires a little more thought but it functions almost exactly like instantiate :

open instantiates a Scope a with a local free variable while instantiate in-

stantiates a Scope a with a Term . The difference between the two is subtle and

in theory, open could be implemented in terms of instantiate , but in practice,

Term s and their variables contain source position information that can only be pre-

served by the variable-for-variable substitution that the open procedure performs. Last

but not least, the commit procedure is used at the end of the process of parsing a Term

to convert the variables that were not bound locally into global variables.

Let us resume our discussion with regards to the implementation of Scope s and

variables in Term . There is a number of different techniques that can be employed which

allow nodes of the Term tree down the road to mention variables bound by earlier nodes.

The simplest and easiest technique to implement is to use names, but names offer ample

opportunity for issues such as capturing, where substitution can cause a variable bound by

a node to start referring to a node which it was not originally meant to refer. Using names

also presents a challenge with regards to α-equality: x => x and y => y are the

same function even though the name of the variable being bound differs since α-equality

is not concerned with names but rather with structure. A very popular alternative is to use

De Bruijn indices (BRUIJN, 1972), where variables are represented not by names but by

natural numbers: the most recently bound variable (or, the innermost variable) is 0, and

increasing indices refer to variables outwards.

One big drawback to using De Bruijn indices to represent variables is that expres-

sions end up requiring procedures for strengthening and weakening their subtrees when

performing substitution: all local free variables in the expression being inserted would

need to be strengthened (i.e. incremented) for each scope that it crosses (for example,

when substituting a variable for an expression inside the body of a function), and all local

free variables need to be weakened (i.e. decremented) when a scope gets eliminated (for

example, when eliminating an application of a function to an argument). On top of that,

the strengthening and weakening procedures must be invoked against specific subtrees

of expressions, and invoking these procedures against the wrong subtree can lead to a a

number of issues including wrongful capturing of variables and variables becoming no

longer bound in the context.

There is one more drawback to using De Bruijn indices that is not as egregious,

but it is still discouraging nonetheless: expressions become hostile to visual inspection.
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If de Brujin indices are used exclusively, expressions mention numbers all the way down

instead of human readable names, and human readable names can be extremely valuable

when inspecting an expression during a code-run-debug cycle of the implementation of

the compiler.

In Curios, variables are represented through a mix of names and De Bruijn indices,

where global variables and local free variables are represented using a name, while local

bound variables are represented by a De Bruijn index (MCBRIDE; MCKINNA, 2004).

This approach offers a number of significant advantages over using De Bruijn indices

exclusively: substitution is capture-avoiding, strenghtening and weakening procedures

become unnecessary, α-equality is a simple equality comparison (i.e. a == b , where

a and b are Term s) and local variables can be manipulated using a name instead of a

number which also leads to Term s having the capacity of being rearranged (i.e. through

substitution) without the need for dedicated machinery (that is often complex and error

prone) responsible for tracking De Bruijn indices in both the context and the Term being

checked and/or manipulated. Even though this approach requires the generation of fresh

local free variables, this requirement is substantially less complex than the alternative.

This approach of using unique, fresh names to represent local free variables has

simplified the implementation of the parser and the type checker by a great measure, and

has eliminated a source of subtle, hard to chase bugs. It has also simplified the imple-

mentation of the procedure that translates Term s into their intermediate representations

because names can be chosen and reused as the translation procedure recurses over the

Term .
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APPENDIX C — RESUMO ESTENDIDO

Em anos recentes, linguagens de programação funcionais tem aproveitado de um

pico em popularidade, com muitos desenvolvedores de software descobrindo os bene-

fícios que o paradigma pode oferecer. Idiomas funcionais como casamento de padrões

e funções de primeira classe começaram a não só ser adotados por linguagens de pro-

gramação clássicas e bem estabelecidas como também influenciam o design de todas as

linguagens de programação que estão por vir.

Programação funcional é conhecida por suas raízes profundas em cálculo lambda

e teoria de tipos. Linguagens como Haskell e OCaml podem ter as suas funcionalidades

que voltadas ao usuário reduzidas para uma linguagem central concisa baseada no cálculo

lambda polimórfico de ordem maior, também conhecido como Sistema Fω (PIERCE,

2002). Para brevemente recapitular, o Sistema Fω (PIERCE, 2002) é um sistema de

tipos que permite termos dependerem de terms (funções), termos dependerem de tipos

(polimorfismo), tipos dependerem de tipos (construtores de tipo), mas não é permitido

que tipos dependam de termos (tipos dependentes).

Sob o isomorfismo de Curry-Howard (SØRENSEN; URZYCZYN, 2006), o prob-

lema de verificar a corretude de uma prova pode ser reduzida ao problema de checar se

um dado programa habita um certo tipo: uma proposição é considerada equivalente a

um tipo, e a prova desta proposição é equivalente a um programa. Tipos dependentes

empregam o isomorfismo de Curry-Howard especialmente bem porque, por permitir que

termos apareçam ao nível de tipo, tipos dependentes podem atuar como fórmulas da lógica

de predicados intuicionista (MARTIN-LÖF; SAMBIN, 1984) e, por consequência, eles

se tornaram uma funcionalidade mais comumente associada com assistentes de prova.

Tipos dependentes não vêm sem suas desvantagens: tipos dependentes completos

(ou seja, permitir que os termos ocorram sem restrição de tipos) leva à indecidibilidade da

inferência de tipos. Resumindo, a inferência de tipos para tipos totalmente dependentes

pode ser reduzida a um problema chamado semi-unificação onde resolver o conjunto de

restrições de tipo coletadas das expressões do programa pode levar à não terminação

(KFOURY; TIURYN; URZYCZYN, 1990; DOWEK, 1993). O Cálculo das Construções

Indutivas (PAULIN-MOHRING, 2015) (que é o formalismo por trás de Coq1 e Lean2,

dois assistentes de prova) evita esse problema definindo um conjunto de esquemas para a

formação de tipos que restringem suas ocorrências recursivas de forma que a terminação

1<https://coq.inria.fr/>
2<https://leanprover.github.io/>

https://coq.inria.fr/
https://leanprover. github.io/
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seja obtida.

Em linguagens de programação funcional, essa restrição é considerada muito pe-

sada porque exclui uma série de expressões populares envolvendo recursão geral, o que

levou tipos dependentes a serem um recurso abandonado aos assistentes de prova. Embora

a dependência de tipos em termos não seja um tópico novo quando o assunto são lingua-

gens de programação3, na maioria dos casos eles eram acompanhados por uma série de

limitações.

Apesar do desafio de incorporar tipos totalmente dependentes na programação

de uso geral, Idris (BRADY, 2013) demonstra a viabilidade de expressões idiomáticas

de tipo dependente como ferramentas para escrever software de forma melhor. Por ex-

emplo, tipos de sessão (MUIJNCK-HUGHES; BRADY; VANDERBAUWHEDE, 2019)

permitem que protocolos de comunicação sejam especificados inteiramente no nível do

tipo, potencialmente permitindo que aplicativos da web assegurem que sua comunicação

com um servidor é verificada estaticamente pelo sistema de tipos. Outro exemplo é o mó-

dulo Control.ST (BRADY, 2016) que oferece uma mônada para efeitos dependentes,

que tem o potencial de fornecer tipos mais precisos para expressões idiomáticas contendo

efeitos colaterais, como contêineres de estado centralizados.

O cenário atual em relação à execução de programas escritos em linguagens de

tipagem dependente tem uma tendência para a transpilação: Idris tem como alvo C e Java-

script (IDRIS CONTRIBUTORS, 2020); Agda visa Haskell e JavaScript (AGDA CON-

TRIBUTORS, 2022); Idris2, a próxima iteração do Idris, tem como alvo Chez Scheme

(IDRIS2 CONTRIBUTORS, 2022). Uma desvantagem significativa da transpilação é

que uma linguagem de programação transpilada acaba dependendo indiretamente de toda

a cadeia de ferramentas do compilador de uma segunda linguagem antes que seus pro-

gramas possam ser executados. Com isso em mente, levantamos uma questão: seria

desejável compilar uma linguagem com tipos dependentes para um formato executável

(ou pelo menos uma representação intermediária de baixo nível)?

WebAssembly (ROSSBERG, 2022), um formato de instrução binária para aplica-

tivos da web que é rápido, seguro e portátil, conquistou o cenário da programação da

web. O JavaScript costumava ser a única opção como linguagem de programação e como

alvo de transpilação para outras linguagens de programação, mas o WebAssembly agora

oferece a oportunidade para linguagens compiladas como C++ e Rust, que são vistas

como linguagens de programação de baixo nível, para serem executadas no navegador.

3Como evidenciado por Pascal que, em 1970, permitiu que o tipo de um array fosse indexado por seu
tamanho.
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Tão importante quanto trazer as linguagens existentes para o cenário de programação

da Web, o WebAssembly tem o potencial de nutrir novas linguagens de programação

voltadas especificamente para seu conjunto de instruções. Com isso em mente, refinamos

nossa pergunta original: o WebAssembly pode servir como meio para executar programas

de tipagem dependente no navegador da Web?

No presente trabalho, exploramos como alguém pode abordar a tarefa de compi-

lar uma linguagem de programação com tipos dependentes introduzindo a linguagem de

programação funcional com tipos dependentes Curios. Os principais pontos de venda da

Curios são:

• De propósito geral. Curios propõe um método para reconciliar recursão geral com

tipos dependentes, duas noções que podem ser vistas como contraditórias. Seu

sistema de tipos oferece uma alternativa ao Cálculo de Construções Indutivas que

tem o potencial de se prestar bem a linguagens de programação;

• Compila para WebAssembly. Os benefícios do WebAssembly como destino de

compilação são perceptíveis. O Curios procura validar a aptidão do WebAssembly

como um destino de compilação para uma linguagem de programação de tipagem

dependente.

Os seguintes objetivos propostos foram alcançados: uma linguagem de progra-

mação funcional de tipagem dependente englobando tanto um algoritmo de verificação

de tipos quanto um sistema de tipos baseado no Cálculo de Construções; um algoritmo

de geração de código que gera módulos WebAssembly executáveis foi implementado. O

código que demonstra esses recursos está disponível em um repositório Github público

(PRETTO, 2023) como parte da cadeia de ferramentas do compilador Curios.

Quanto ao futuro da cadeia de ferramentas do compilador Curios, seu desenvolvi-

mento ainda está em um estado pré-alfa e muito ainda precisa ser feito antes que possa ser

considerado para atender até mesmo aos padrões básicos de qualidade. Não apenas exis-

tem muitas otimizações que podem ser aplicadas ao compilador e ao código gerado, mas

também há interesse no desenvolvimento de um verificador de terminação que permitirá

que um subconjunto de Curios seja usado como um assistente de prova.
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