
~~G~V'Wl ds ~puLOdB~ 
11~~~-(eLu~ ~(Z O:i .. d_D.)~ 
~.ç2CteS)C{~ekJLO ~~oQeLO 

Improving Performance through 
Speculative Trace Reuse 

C W p 'P ), 03· QB COr-fo 
Maurício L. Pilla 1 

Philippe O. A. Navaux2 

Felipe M. G. França3 

Amarildo T. da Costa4 

Bruce R. Childers5 

Mary Lou Soffa6 

Abstract 

Trace reuse improves the performance of processors by skipping the execution of se­
quences o f redundant instructions. However, many reusable traces do not have ali of their in­
puts ready by the time the reuse test is done. For these cases, we developed a new technique 
called Reuse through Speculation on Traces (RST), where trace inputs may be predicted, 
allowing more traces to be reused than conventional reuse techniques, without increasing 
hardly the hardware needed. Preliminary results show a potential for speedups of 1.43 over a 
non-speculative trace reuse technique (harmonic mean over DTM). 

1 Introduction 

Modem processors devote significant resources to exploit instructio-level parallelism (ILP) 
from programs, but control and data dependencies still remain a barrier to effectively ex­
ploiting Iarge amounts of ILP. Indeed, the additional complexity introduced by very wide 
issue widths may adversely impact the processor clock rate. What is needed are complexity­
effective techniques that can increase performance by overcorning or rnitigating the impact 
of control and data dependencies. 

It is well known that programs execute a large amount of redundant or predictable com­
putations (BODIK; GUPTA ; SOFFA, 1999; GABBAY; MENDELSON, 1996; LIPASTI; SHEN, 

1p illa@ inf. ufrgs . br PhD Scholarship from CNPq 
2nav a ux@ i nf .ufrgs.br 
3telipe @cos.u f r j .br 
4ama rildo @cos. u f rj . br 
5childers@c s . p i tt .edu 
6soffa@cs.pitt . edu 

139 



Improving Performance through Speculative Trace Reuse 

1999; SAZEIDES ; SMlTH, 1997; SODANJ; SOHI, 1998). Many techniques have been devel­
oped to take advantage of redundancy to improve performance by not executing redundant 
computations. Value reuse is one technique that exploits redundant computations by reusing 
previously computed values. In value reuse, once a computation is executed, future execu­
tions can check i f the input values needed by the computation are the same as the previous 
e~ecution. If the inputs match previous inputs, then the result of the computation can simply 
be reused without computing the result. However, the input values needed by the computation 
must be available when checking for reuse. 

It is also well known that many of the values during program execution can be predicted 
correctly (GABBAY; MENDELSON, 1996; LIPASTI; SHEN, 1999; SAZEIDES; SMITH, 1997). 
By predicting values, the impact of true data dependencies can be mitigated by Jetting more 
instructions to execute in parallel. Value prediction may also hide high latencies. When 
value prediction is employed, unlike reuse, the predicted value must be validated by actually 
computing the value and checking it against the predicted value. On a misprediction, any 
computation using the predicted value directly or indirectly has to be recomputed. 

Value reuse is conservative because computations are reused only when the inputs are 
known, which may delay or limit the use of value reuse. Value prediction is aggressive, 
but there may be a high penalty to recover from mispredictions. It is possible for the high 
misprediction penalty to overwhelm any benefit of value prediction, or in some cases, to even 
hurt performance. 

In this paper, we present our technique, called Reuse through Speculation on Traces 
(RST), that combines both value reuse and value prediction for instruction traces . The goal of 
RST isto increase the number of instruction traces that can be reused by predicting the values 
of trace inputs that are not availqble when applying reuse. In the next section, we discuss our 
approach, and in the last session, we provide some final remarks and future works. 

2 Reuse through Speculation on Traces 

The key idea ofRST isto speculate some ofthe input values of a trace ifthey are not ready, 
rather than waiting for their computation to end or not applying reuse. Value prediction is 
done when some of the input trace registers match stored values and other input values are 
not avai lable. It is these latter values that are predicted. RST is an integrated mechanism that 
combines trace reuse and value prediction. It is also designed to be a complexity-effective 
approach using most of the hardware that is already present for trace reuse. 

Traditional value reuse is non-speculative. After the input values of a set of instructions 
are verified against stored values anda match is found, their results can be reused without ex­
ecuting the instructions. Importantly, resources are not wasted dueto reuse andare available 
to other instructions. The results o f the set o f instructions that were previously computed and 
stored can be immediately written to their destinations. The main disadvantage is that reuse 

CI • Volume III • Número 1 • junho 2003 140 



--- -------------------------

lmproving Performance through Speculative Trace Reuse 

must wait until all the input values are ready to be tested for reuse. Therefore, many cycles 
that could be saved by reusing instructions may be spent waiting for input values that were 
not ready at the time of the reuse test. 

On tbe other hand, value prediction can overcome the limits imposed by true data de­
pendencies (LIPASTI; SHEN, 1999; SAZEJDES; SMJTH, 1997). Instructions with true data 
dependencies may be executed in parallel when value prediction is employed. This technique 
may also h ide latencies of instructions accessing memory or witb high complexity. The main 
disadvantage is that mispredictions can incur a high recovery penalty. In fact, the mispredic­
tion penalty can be very high when there is significant instruction levei parallelism. Another 
disadvantage is that, since v alue prediction increases concurrency and demands for resources, 
instructions executing with mispredicted values may prevent the execution o f useful instruc­
tions. 

Trace reuse has been proposed to improve performance by not computing redundant se­
quences of instructions (COSTA; FRANÇA; CHAVES FILHO, 2000). The three stages of trace 
reuse are shown in Figure 1. The reuse domain is defined as the set o f instructions that can be 
reused and do not present side effects. First, in Figure 1(a) instructions in the reuse domain 
are identified (gray circles) and stored. In the next execution shown in Figure 1(b), these 
instructions are marked as redundant and a trace is formed, until an instruction that does not 
belong to the reuse domain or is not redundant is found (black circle). This trace is memo­
ized and stored in a memoization table. Figure 1(c) shows the next time execution reaches 
the beginning of tbis trace with the same inputs, when the mernoized trace is reused; i.e., 
the previous values are written in tbe output registers. In this example, the input registers 
compared are r 1, r2, r 3 and r9 using stored values for these registers. If the inputs match, the 
values stored for r5, r6, r7 and r9 are loaded into these registers as the outputs of the trace. 
Thus, all instructions inside the trace are essentially collapsed in to the checking o f the inputs 
and storing of the outputs. The instruction fetch is redirected to the next address after the 
trace. RST combines the advantages of both value prediction and reuse. Unavailable inputs 

outputs 
I r5 J r6l r7 Jr9 J 

(a) (b) (c) 

Figure 1: Trace: (a) identification and construction, (b) memoization, (c) reuse 

for memoized traces (input and output values stored) are predicted by RST. When traces are 

CI • Volume III • Número 1 • junho 2003 141 



Improving Performance through Speculative Trace Reuse 

reused speculatively in RST, the output values are sent directly to the commit stage, as well 
as to the instructions waiting for these values and to the register file. Dispatch, issue, and 
execution are bypassed for the entire trace in a single cycle. Therefore, speculative reuse 
does not increase but reduces the pressure on valuable resources such as functional units. 

Applying reuse and value prediction separately but at the same time could require a pro­
hibitive amount of storage in tables. Because we integrate the techniques, RST does not need 
extra 'tables to store values to be predicted. The input context of each trace (the input val­
ues of ali instructions in the trace) already stores the values for the reuse test, which may 
also be used for prediction . Thus, our proposed technique minimally increases the hardware 
needed to implement speculative trace reuse, when compared to the hardware needed for 
non-speculative trace reuse. 

RST may reuse both instructions and traces, but only traces are speculatively reused be­
cause they encapsulate many instructions and possibly criticai paths, thus allowing more 
performance improvement than single instructions. 

Compared with instruction reuse techniques (ROTH; SOHI, 2000; SODANI; SOHI, 1998), 
RST h as ali the benefits o f trace reuse, such as the potential for collapsing criticai paths in to 
a single cycle, improving branch predictions, and reducing the fetch bandwidth needed. It 
is also simple to irnplement as it does not need to involve the compiler or ISA modifica­
tions such as needed in block and sub-block reuse (HUANG; LILJA, 2000; WU; CHEN; FANG, 

2001), allowing the execution of legacy code without modifications. Unlike other trace reuse 
mechanisms (COSTA; FRANÇA; CHAVES FILHO, 2000; GONZALEZ; TUBELLA; MOLINA, 
1999), RST can speculatively reuse traces when inputs are not ready. Previous value predic­
tion techniques (GABBAY; MENDELSON, 1996; LIPASTI; SHEN, 1999; WANG; FRANKLIN, 

1997; SAZEIDES ; SMlTH, 1997; WU; CHEN; FANG, 2001) use more resources when rnis­
peculations occur, while RST is more conservative: predicted traces are not executed, but 
speculatively reused. 

Figure 2 shows the preliminary speedups obtained with virtually unlirnited reuse tables 
over a non-speculative trace reuse technique (DTM), using a 4-instructions wide pipeline 
with 20 stages. The average speedup was 1.43 (harmonic mean). Most benchmarks had 
better speedups than the average (m88ksim, for instance, presented a speedup of 2.19 over 
DTM), while only art did not show a relevant improvement in performance, with a speedup 
of only 1.09. This is dueto the high cache m.iss rate for this benchmark, which hides the 
performance gains o f RST. 

·3 Conclusion 

This paper presented a new approach to reuse traces in processors, Reuse through Specu­
lation on Traces (RST). Our technique can effectively reuse more traces than non-speculative 
approaches, increasing performance with speedups of about 1.43 o ver DTM (harmonic mean). 

CI • Volume III • Número 1 • junho 2003 142 



References 

SPEEDUPS OVER DTM 

2~--------------

Figure 2: Speedups o f RST o ver DTM 

A more detailed study about the limits of our proposal can be found in (PILLA, 2003). 
Our technique does not require changes in the instruction set, allowing direct execution 

of legacy codes. RST does not increase significantly the hardware needed to implement 
non-speculative trace reuse, therefore it is simpler and more easily implementable than just 
combining two unrelated reuse and prediction mechanisms. RST is also more conservative 
than previous value prediction techniques, as traces are not executed but reused. Therefore, 
more resources are kept free to execute other instructions. 

Future works include the definition of effective policies for confidence estirnation to limit 
mispeculatiori penalties and the study of how different reuse domains affect performance, for 
example, by allowing loads and stores in traces. 

Acknowledgments 

We thank Dr. Mossé (Univ. of Pittsburgh) for allowing us to use his cluster to sirnulate 
part of the experiments. We also thank the Labtec Project and FINEP for the same reason. 
This work was partially developed with CNPq and CAPES scholarships. 

References 

BODIK, R.; GUPTA, R.; SOFFA, M. L. Load-reuse analysis: Design and evaluation. 
In: SIGPLAN Conference on Programming Language Design and lmplementation. [S.l.]: 
New York, ACM, 1999. p. 64-76. 

CI • Volume III • Número 1 • junho 2003 143 



Improving Performance through Speculative Trace Reuse 

COSTA, A. T. da; FRANÇA, F. M. G.; CHAVES FILHO, E. M. The dynarnic trace memoiza­
tion reuse technique. In: Proc. ofthe 9th lntemational Conference on Parallel Architectures 
and Compilation Techniques. Philadelphia: Los Alamitos, IEEE Computer Society, 2000. p. 
92-99. 

GABBAY, F.; MENDELSON, A. Speculative Execution based on Value Prediction. Israel, 
1996. 

GONZALEZ, A.; TUBELLA, J.; MOLINA, C. Trace-leve! reuse. In: Proc. ofthe 28th In­
ternational Conference on Parallel Processing. Aizu-Wakamatsu: Los Alarnitos, IEEE Com­
puter Society, 1999. p. 30-37. 

HUANG, J.; LILJA, D. J. Exploring sub-block value reuse for superscalar processors. In: 
Proc. of the 9th lnternational Conference on Parallel Architectures and Compilation Tech­
niques. Philadelphia: Los Alamitos, IEEE Computer Society, 2000. p. 100-110. 

LIPASTI, M. H.; SHEN, J. P. Exceeding the dataftow limit via value prediction. In: Proc. of 
the 29th Annuallnternational Symposium on Microarchitecture. Paris: Los Alarnitos, IEEE 
Computer Society, 1999. p. 226-237. 

PILLA, M. L. et ai. The Limits of Speculative Trace Reuse. Porto Alegre, abr. 2003. 

ROTH, A.; SOHI, G. S. Register integration: A simple and efficient implementation of squash 
re-use. In: Proc. of the 33rd Annuallntemational Symposium on Microarchitecture. Mon­
terey: Los Alamitos, IEEE Computer Society, 2000. p. 223-234. 

SAZEIDES, Y.; SMITH, J. E. Tl;le predictability o f data values. In: Proc. of the 30th An­
nual International Symposium on Microarchitecture. [S.!.]: Los Alamitos, IEEE Computer 
Society, 1997. p. 248-258. 

SODANI, A.; SOHI, G. S. Understanding the differences bétween value prediction and in­
struction reuse. In: Proc. ofthe 31st Annual International Symposium on Microarchitecture. 
[S.!.]: Los Alarnitos, IEEE Computer Society, 1998. p. 205-215. 

WANG, K.; FRANKLIN, M. Highly accurate data value prediction using hybrid predic­
tors. In: Proc. of the 30th Annual International Symposium on Microarchitecture. [S.!.]: 
Los Alamitos, IEEE Computer Society, 1997. p. 281-290. 

WU, Y.; CHEN, D.-Y.; FANG, J. Better exploration of region-level value locality with inte­
grated computation reuse and v alue prediction. In: Proc. o f the 28th Annual lnternational 
Symposium on Computer Architecture. Goteborg, Sweden: New York, ACM, 2001. p. 98-
108. 

CI • Volume III • Número 1 • junho 2003 144 




