
Vaccination against Rhipicephalus microplus: an alternative to chemical control?

Ciência Rural, v.54, n.3, 2024.

1

Vaccination against Rhipicephalus microplus: an alternative to chemical control?

Potenciais vacinas contra Rhipicephalus microplus: uma alternativa ao controle químico?

Lucas  Andre  Dedavid  e  Silva1       Abid  Ali2       Carlos  Termignoni3       Itabajara  da  Silva  Vaz Júnior1,4*

ISSNe 1678-4596
Ciência Rural, Santa Maria, v.54:03, e20230161, 2024                                                        

Received 03.16.23      Approved 06.14.23      Returned by the author 07.14.23
CR-2023-0161.R2

Editor:  Rudi Weiblen   

 http://doi.org/10.1590/0103-8478cr20230161

INTRODUCTION

Ticks are responsible for considerable 
morbidity and mortality (unless controlled), and 
economic losses, both directly through blood sucking 
and indirectly as vector of pathogens (JONGEJAN 
& UILENBERG, 2004). Ticks constitute a threat 
to public and animal health, with major effects 
on livestock (DE LA FUENTE et al., 2016). It is 
estimated that approximately 80% of the world’s cattle 

population is exposed to tick infestation (SNELSON, 
1975, cited by MCCOSKER, 1979). The cattle tick 
Rhipicephalus (Boophilus) microplus is responsible 
for economic losses in the livestock industry, due to 
decreased production of milk and meat, as well as 
impairing leather quality. These effects are not only 
caused by the tick infestation itself but also by the 
pathogens transmitted to bovines, mainly protozoa 
(e.g., Babesia bovis and Babesia bigemina) and 
bacteria (Anaplasma marginale). These parasites are 
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ABSTRACT: Rhipicephalus (Boophilus) microplus is a hard tick endemic in livestock-growing regions and causes economic losses in the 
largest beef-producing countries, including Brazil, Mexico, Argentina, Australia and Uruguay. The use of chemical acaricides is still the 
main strategy to control R. microplus infestations. Nevertheless, immunological control of R. microplus with an anti-tick vaccine is a suitable 
alternative and has manifold advantages because it can avoid drug-resistance and the presence of acaricide residues in milk, beef and in the 
environment. Indeed, vaccines based on the Bm86 antigen have had relative commercial and technical success to control R. microplus in some 
regions. Although, the efficacy of such vaccines varies among tick populations and is insufficient to provide an acceptable level of protection. 
Therefore, the need to search for better antigens is impelling. This review focused on the restrictions imposed on the use of acaricides in Brazil 
and in the European Union, as well as on the impacts of Bm86-based vaccines on R. microplus control. The efficacy of experimental anti-tick 
vaccines (based on subolesin, glutathione S-transferase, ferritin 2; voltage-dependent anion channel; aquaporin, 60 S acidic ribosomal protein, 
metalloprotease and trypsin) that can elicit an immune response against the physiological functions of various ticks is discussed. 
Key words: Rhipicephalus microplus, vaccine, acaricides, Brazil, food contamination.

RESUMO: O Rhipicephalus (Boophilus) microplus é um carrapato duro que é endêmico de regiões de pecuária e causa perdas econômicas nos 
maiores países produtores de carne bovina, incluindo Brasil, México, Argentina, Austrália e Uruguai. O uso de acaricidas ainda é a principal 
estratégia para controlar infestações por R. microplus. No entanto, o controle imunológico do R. microplus com uma vacina contra carrapatos é 
uma alternativa adequada e possui diversas vantagens, por evitar a seleção de populações de carrapato resistentes a drogas, evitar a presença de 
resíduos de acaricidas no leite, na carne e no ambiente. As vacinas baseadas no antígeno Bm86 tiveram relativo sucesso comercial e técnico no 
controle do R. microplus em diversas regiões. No entanto, a eficácia dessas vacinas varia entre as populações de carrapatos e é insuficiente para 
fornecer um nível aceitável de proteção. Portanto, há uma necessidade de procurar novos antígenos. Esta revisão foca nas restrições impostas 
ao uso de acaricidas no Brasil e na União Europeia, bem como nos impactos das vacinas baseadas em Bm86 no controle do R. microplus. 
Também é discutida a eficácia de vacinas anti-carrapatos experimentais (baseadas em subolesina, glutationa S-transferase, ferritina 2; canal 
aniônico dependente de voltagem; aquaporina, proteína ribossômica ácida 60S, metaloprotease, tripsina) que podem elicitar uma resposta 
imune contra as funções fisiológicas de vários carrapatos.
Palavras-chave: Rhipicephalus microplus, vacina, acaricida, Brasil, contaminação de alimentos.
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responsible for high bovine mortality (DU PLESSIS 
et al., 1994; MOLOSSI et al., 2021). In addition, 
treatment with chemical acaricides is costly and 
increasingly less effective. In Brazil, it is estimated 
that the annual costs associated with R. microplus 
infestation are around US$ 3.2 billion (GRISI et 
al., 2014). In Brangus cattle breed, the cost of R. 
microplus infestation in Brazil has been estimated to 
be US$ 34.61 per animal in the backgrounding phase 
(from weaning to feedlot placement) and US$ 7.97 
per animal in the finishing phase (when cattle are fed 
until they reach market weight). Even in Nellore 
cattle, a pure Bos indicus breed that is relatively 
resistant to R. microplus, infestation costs in Brazil 
have been estimated at US$ 4.66 and US$ 1.18 per 
animal in the backgrounding and finishing phases, 
respectively (CALVANO et al., 2019). Significant 
annual losses due to R. microplus infestation have 
been reported for other countries, such as US$ 573.61 
million in Mexico (RODRÍGUEZ-VIVAS et al., 
2017) and US$ 128 - 146 million in Australia (MEAT 
& LIVESTOCK AUSTRALIA, 2005). 

Various strategies to control this tick have 
been used, such as acaricides (the main control method), 
pasture management, vaccine, nutritional management, 
and selection of resistant hosts (RODRÍGUEZ-
VIVAS et al., 2018). The major classes of acaricides 
currently in use are amidines, organophosphates, 
organochlorines, synthetic pyrethroids, insect growth 
regulators, phenylpyrazoles, and macrocyclic lactones 
(RODRÍGUEZ-VIVAS et al., 2018). However, all these 
acaricides have major drawbacks due to the increasing 
level of acaricide resistance among tick populations 
(CUTULLE et al., 2013; KLAFKE et al., 2017; LOVIS 
et al., 2013; RECK et al., 2014).

Immunization to control tick populations is 
an interesting alternative because it avoids or reduces 
the use of acaricides. This may lead to decreased 
food and environmental contamination with pesticide 
residues, and to a reduced selection-pressure for acaricide-
resistance. (GUERRERO et al., 2012a). Among the 
advantages of using immunological control are the absence 
of a resting period after the use of chemical acaricides, 
safety in the application of vaccines, and avoiding even 
the possibility of the presence of acaricide residues 
in animal products intended for human consumption 
(CANALES et al., 2010; DE LA FUENTE, 2016; DE 
LA FUENTE & CONTERAS, 2015).

Acaricide control of R. microplus and food 
contamination concerns

According to the United Nations Food and 
Agriculture Organization (FAO, 2012), insecticide 

resistance is defined as “a heritable change in the 
sensitivity of a pest population that is reflected in the 
repeated failure (more than one instance) of a product 
to achieve the expected level of control when used 
according to the label recommendation for that pest 
species”. The difficulties in cattle tick control due to 
drug resistance come from the increasing number of 
tick populations that are unaffected by acaricides in 
subsequent generations (FAO, 2012). Since 1936, it 
has been known that there are acaricide-resistant R. 
microplus populations of (GEORGE et al., 2008). 
Nowadays, there are cattle tick acaricide-resistant 
populations in Africa, Asia, Central America, South 
America, and Oceania (reviewed by DZEMO et al., 
2022). In addition, the need to discard milk and not 
to slaughter the animal during the resting period 
after the application of acaricides increases the 
costs of tick control (DALLEGRAVE et al., 2016; 
DALLEGRAVE et al., 2018; DE MENEGHI et al., 
2016). These practices are essential, given acaricides 
and/or its metabolites accumulate in animal fat and 
could be hazardous to human health.

Due to their highly lipophilic nature, 
residues of ivermectin (a macrocyclic lactone) persist 
in milk and dairy products, the use of ivermectin 
in lactating animals must; therefore, be avoided 
(ESCRIBANO et al., 2012). Although, ivermectin 
residues are less persistent during cheese production 
processes, it has been reported that 65% of the drug 
remains in the raw milk used to produce cheese 
(CERKVENIK et al., 2004). In Brazil, a study 
conducted under the auspices of the Official Program 
for Analysis of Residues of Veterinary Drugs in 
Foods of Animal Origin detected ivermectin residues 
in samples of dairy products - in 42% of ultra-high 
temperature milk samples, in 11% of pasteurized milk 
samples, and in 59% of powdered milk samples; - 
although, the maximum residue limit (MRL) was not 
exceeded in any of the samples it is motive of concern 
(NOVAES et al., 2017). Despite the fact that the use 
of ivermectin during lactation is not recommended, it 
is reported to be common in some regions of Brazil 
(NOVAES et al., 2017).

Cypermethrin, a synthetic pyrethroid, is 
another acaricide that is widely used for control of 
R. microplus in livestock in Brazil (KLAFKE et al., 
2017; PICININ et al., 2017). Pyrethroids are also 
fat-soluble pesticides and contamination of meat 
and milk by these chemicals has also been reported 
(DALLEGRAVE et al., 2016). The resting period 
must be at least 14 days in lactating cows (BASTOS et 
al., 2011; HERNANDES et al., 2009). However, that 
guideline is not always followed in Brazil, where 15% 
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of milk producers are reportedly unaware of a resting 
period for any acaricide (NASCIMENTO et al., 2021). 
Residue levels of pyrethroid and other acaricides 
have been detected in up to 15.1% of milk samples, 
with some samples (until 6.8%) exceeding the legal 
limit (PICININ et al., 2016; PICININ et al., 2017; 
CISCATO et al., 2002; OLIVEIRA et al., 2023).

Fluazuron is a benzoylphenyl urea 
derivative that impairs chitin synthesis in ticks, 
affecting their ecdysis and oviposition (JUNQUERA 
et al., 2019). Recently, it was reported that nursing 
calves had higher plasma levels than did their 
lactating dams that had been treated with fluazuron, 
indicating that the compound is passed through milk 
and accumulates in calves due to the continuous 
intake (EMA, 2018; SUAREZ et al., 2021). 

The organophosphate diazinon is used to 
control cattle ticks in various regions. Organophosphate 
residues have been detected in raw milk (FAGNANI 
et al., 2011; JARDIM et al., 2018; NERO et al., 2007; 
SILVA et al., 2014). Organophosphate residues detected 
in raw milk are similar to those detected in animal 
feed (FAGNANI et al., 2011; SILVA et al., 2014). It 
has been suggested that the levels of organophosphate 
contamination of milk can be explained by the animal 
feed, in which organophosphates are present, since 
they are widely used in crops used to produce animal 
feed (FAGNANI et al., 2011). 

In October 2017, European Union 
regulations prohibited the use of fipronil in farm 
animals to control tick infestations (EU, 2017). 
However, in Brazil, the use of fipronil is allowed 
for crop protection against some pests (ANVISA, 
2020) and for tick control (KLAFKE et al., 2017; 
NASCIMENTO et al., 2021; RECK et al. 2014). This 
is an issue of major concern because European Union 
(a very important market for Brazilian beef) could 
ban beef and milk from countries when the use of this 
drug is allowed. Pesticide residues are transferred 
from feed to cow milk (FAOUDER et al., 2007), and 
it is possible that milk can be contaminated indirectly 
from feed or directly from the acaricide used in the 
herd. In fact, contamination of raw milk with fipronil 
has been reported in Brazil (OLIVEIRA, 2016).

Legislation regulating the use of acaricides in Brazil 
and in the European Union

In a society increasingly concerned with 
human and animal health issues, the contamination 
of animal products with acaricides presents a 
serious obstacle for cattle farming. Recently, the 
Brazilian Health Regulatory Agency (ANVISA) issued 
Resolution No. 328 and Normative Instruction No. 51 

(ANVISA, 2019a; ANVISA, 2019b). Those documents 
define the maximum residue limits (MRLs) in foods 
of livestock origin and the acceptable daily intakes 
(ADIs) of acaricides (Table 1). Legislation in Brazil 
and the European Union is similar regarding the MRLs 
and ADIs for amitraz, fluazuron, flumethrin, and 
ivermectin (Table 1). However, the legislation is more 
restrictive in the European Union than in Brazil. The 
MRLs and ADIs for cypermethrin and ivermectin are 
lower in the European Union than in Brazil. Besides 
fipronil, the European Union has also banned the use 
of fluazuron and ivermectin in dairy cattle (Table 
1), which effectively blocks the exportation of dairy 
products from Brazil to the European Union.

Immunological control of R. microplus with Bm86- 
and Bm95-based vaccines

In a breakthrough research, ALLEN & 
HUMPHREYS (1979) showed that immunization 
of hosts using tick proteins induces an immune 
response which confers high levels of protection 
against tick infestation (ALMAZÁN, 2022).  This 
historic achievement is the basis of all subsequent 
landscape in anti-tick vaccine development. Indeed, 
first commercial vaccine against any ectoparasite was 
an anti-tick vaccine based on Bm86 protein (Bm86), 
an R. microplus gut glycoprotein. This vaccine 
was pivotal because it established the concept of a 
concealed antigen. A concealed antigen is defined as 
an antigen that is not encountered by the host immune 
system under natural infestation and; consequently, 
the host cannot mount an immune response but when 
a parasite-derived molecule is injected, the host 
produces antibodies against it. Actually, functional 
antibodies present in the blood meal reach the midgut 
and also other tissues of the parasite (VAZ et al, 
1996). Although, this type of vaccine does not avoid 
host infestation, because the effect comes after the 
blood meal, it does reduce the size of the next tick 
generation and the parasite propagation is inhibited 
along the time (WILLADSEN & KEMP, 1988).

Indeed, further in silico analysis suggested 
that Bm86 has characteristics of both exposed 
and concealed antigens, since its localization and 
presence of a signal peptide do not fit perfectly 
as a truly concealed antigen (TRIMNELL et al., 
2002; NUTTALL et al., 2006; TABOR, 2018). In 
the case of rBm86-based vaccines, bovine antibodies 
are ingested by ticks in the blood meal, encounter 
Bm86 on the apical surface of R. microplus gut 
cells, and disturbs gut function, thus impairing the 
parasite fitness (RAND et al., 1989; WILLADSEN & 
KEMP, 1988). 
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The antithesis of the concept of concealed 
antigens is that of exposed antigens. Exposed 
antigens are secreted in tick saliva during attachment 
and feeding. Vaccines based on exposed antigens 
induce an immune response which can be enhanced 

by subsequent natural infestations (NUTTALL et 
al., 2006). The host immune response against tick-
derived exposed antigens is subject to host immune-
evasion strategies develop along the co-evolution 
of the parasite and the host (reviewed by ALI et al., 

Table 1 - Acaricides approved for use in Brazil and in the European Union, together with their acceptable daily intakes, marker residues 
in tissues, and maximum residue limits. 

 

 ---------------ADI--------------   -----------MRL----------- 

Acaricide Brazil EU Marker residue Tissue Brazila,b EU 

 (µg/kg BW) (µg/kg 
BW)   (µg/kg 

BW) 
(µg/kg 
BW) 

Amitraz (amidine) 0–0a 0–3c 

Sum of amitraz and all 
of its metabolites 

containing the 2,4-
DMA fraction 

Muscle NN NNc 
Liver 200 200c 

Kidney 200 200c 
Fat 200 200c 

Milk 10 10c 

Cypermethrin (synthetic pyrethroid) 0–20a 0–15d Total cypermethrin 
residues 

Muscle 50 20d 
Liver 50 20d 

Kidney 50 20d 
Fat 1000 200d 

Milk 100 20d 

Flumethrin (synthetic pyrethroid) 0–1.8a 0–1.8e Flumethrin (sum of 
trans-Z isomers) 

Muscle 20 10e 
Liver 20 20e 

Kidney 10 10e 
Fat 150 150e 

Milk 30 30e 

Diazinon (organophosphate) 0–2a 0–0.2f Diazinon 

Muscle 20 20f 
Liver 20 30f 

Kidney 20 30f 
Fat 700 70f 

Milk 20 20f 

Fluazuron (insect growth regulator) 0–40a 0–43g Fluazuron 

Muscle 200 200g 
Liver 500 500g 

Kidney 500 500g 
Fat 7000 7000g 

Milk 200 N/Ag,* 

Ivermectin (macrocyclic lactone) 0–10a 0–10h 22,23-Dihydro-
avermectin B1a 

Muscle 30 30h 
Liver 800 100h 

Kidney 100 30h 
Fat 400 100h 

Milk 10 N/Ah,* 

Fipronil (phenylpyrazole) 0.2j N/Ai,† 
Fipronil (sum of 

fipronil and sulfone 
metabolites) 

Muscle ND 

5i,‡ 
Liver ND 

Kidney ND 
Fat ND 

Milk ND 
 
ADI = acceptable daily intake; MRL = maximum residue limit; EU = European Union; BW = body weight; NN = not necessary; DMA 
= dimethylamine; N/A = not applicable; ND = not determined. 
Sources: aAnvisa (2019ª); bAnvisa (2019b); cEFSA (2016); fEMA (1995); eEMA (1998); bEMA (2004); hEMA (2014); gEMA (2018), 
iEU (2017); jAnvisa (2002). 
*Not approved for use in animals from which milk is produced for human consumption. 
†Not approved for use in food-producing animals. 
‡Limit of analytical determination. 
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2022; WILLADSEN & KEMP, 1988). So, antibodies 
induced by salivary proteins could be less effective 
in impairing tick physiology. In addition, variations 
in the composition and expression of proteins during 
tick feeding have been observed and are thought to be 
a strategy to evade host immunity (KIM et al., 2020; 
TIRLONI et al., 2014; TIRLONI et al., 2015). However, 
various anti-tick vaccination experiments have shown 
that exposed and concealed antigens can induce 
some degree of protective immune response against 
ticks (PEREIRA et al., 2022; SEIXAS et al., 2012; 
TRENTELMAN et al., 2019). The first rBm86-based 
vaccine became available in 1994 and was marketed in 
Australia as TickGARD (WILLADSEN et al., 1995). 
That vaccine was taken off the market for several reasons, 
including its low efficacy in some R. microplus populations 
and the fact that it did not exert the knockdown effects 
exhibited by chemical acaricides (TRENTELMAN et 
al., 2019). Additionally, 3–4 vaccinations per year are 
necessary and this is impractical and even incompatible 
within extensive beef cattle production farms (TABOR, 
2021). Another rBm86-based vaccine, marketed under 
the name Gavac, has been shown to have a positive 
economic impact on the cattle industry in several 
countries (CANALES et al., 1997; DE LA FUENTE 
et al., 1998). More recently, a rBm86-based vaccine 
Bovimune Ixovac was launched in Mexico (LAPISA, 
2018). The effectiveness of rBm86-based vaccines 
is highly variable among tick populations, it ranges 
from 51% to 91% (DE LA FUENTE et al., 2000; 
DE LA FUENTE et al., 1999; HUE et al., 2017; 
PATARROYO et al., 2002; RODRIGUEZ et al., 
1995; WILLADSEN & KEMP, 1988). 

In some R. microplus populations, the low 
efficacy of rBm86-based vaccines was overcome by 
using the Bm95 protein as the vaccinal antigen. In a 
study conducted in Argentina, Bm95 was identified in 
a population of R. microplus and was shown to have 
91.4% amino acid similarity with Bm86 (GARCIA-
GARCIA et al., 1999). Recombinant Bm95 was found 
to protect cattle from tick infestation in Argentina and 
Cuba, demonstrating its efficacy against some tick 
populations refractory to immunization with rBm86 
(GARCIA-GARCIA et al., 1999). An inverse correlation 
was observed between vaccine efficacy and variation 
in the Bm86/Bm95 locus, suggesting that an amino 
acid sequence variation greater than 2.8% is enough to 
diminish the efficacy (GARCIA-GARCIA et al., 1999).

Integrated control of R. microplus with Gavac and 
acaricides

Integrated pest control management is 
defined as using a combination of common-sense 

practices to take advantage of environmental factors 
and the population dynamics of a pest species in order 
to control that species. Information about the life cycles 
of ticks and their interaction with the environment, as 
well as climatologic data and vector control methods 
(including the use of pesticides), are critical to 
designing effective strategies to reduce tick infestations 
(RODRÍGUEZ-VIVAS et al., 2018). 

Effectively, vaccines are an additional 
tool in the tick-control arsenal. In a study conducted 
in Cuba (RODRIGUEZ-VALLE et al., 2004), this 
approach was taken with the Gavac vaccine, and 
the use of such vaccine resulted in an increase in the 
interval between acaricide treatments in Bos taurus 
and an 87% decrease in the total number of acaricide 
treatments required. Similar results were obtained 
in B. indicus, in which there was also an increase in 
the interval between acaricide treatments, together 
with a 68% decrease in the total number of acaricide 
treatments required (RODRIGUEZ-VALLE et al., 
2004). In another study, conducted in Mexico, Gavac 
vaccine was used in combination with an amidine 
for the control of R. microplus, resulting in a lower 
number of acaricide treatments in cattle that had 
received the anti-tick vaccine (REDONDO et al., 
1999). Over a 9-year period, cattle on a ranch in 
Mexico were immunized with Gavac, and the annual 
number of acaricide treatments decreased from 24 in 
1997 to 7–8 in 2006, the number of ticks per animal 
decreased from 100 to < 20 over the same period (DE 
LA FUENTE et al., 2007). 

In Venezuela, 1.9 million cattle on nearly 
40,000 ranches were vaccinated with Gavac via the 
national integrated program for bovine tick control, as 
reported by SUAREZ et al. (2016). The authors found 
that, by the end of the second year, the use of chemical 
acaricides had been reduced by 83.7%, corresponding 
to a reduction of more than 260 tons, and that there had 
been an 81.5% reduction in the economic costs (i.e., 
savings in acaricide purchases). These data indicate 
that the success of an anti-tick vaccine relies on its 
integration into a tick control management strategy 
that includes acaricide treatments and other measures. 
Undoubtedly, vaccines constitute a useful tool to 
prolong the useful lifespan of a given acaricide, given 
that they delay the selection of acaricide-resistant tick 
populations. The use of vaccines can decrease the 
amount of chemicals applied, thus reducing the risk 
of food and environmental contamination.

Although, Bm86-based vaccines were 
developed some time ago, they are still in use in less 
extensively grazed herds in some regions such as Cuba 
(WILLADSEN, 2006; VARGAS-HERNÁNDEZ 
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et al., 2018). In addition, because the global market 
for acaricides and tick repellents is huge and more 
profitable than anti-tick vaccines, there has been 
limited investment and interest to developed novel 
ectoparasite vaccines, even those that have proven 
effective (DE LA FUENTE & ESTRADA-PENA, 
2019). Antiparasitic treatment is the usual method 
to control ticks and other parasites in cattle, so 
alternative control strategies, including vaccination, 
remain largely unknown and many livestock farmers 
do not have a good understanding of the efficacy of 
vaccines to control parasites. Furthermore, vaccines 
do not control ticks as effectively as acaricides, and 
it is essential to educate livestock producers on the 
fundamentals of correct use of antiparasitic vaccines. 
Despite the technical and marketing problems 
related to the Bm86-based anti-tick vaccine against 
R. microplus, vaccines still remain as a promising 
alternative because the widespread use of acaricides 
leads to the selection of acaricide-resistant tick 
populations and because consumer concerns impel 
legislation to be more and more restrictive in relation 
to the presence chemical residues in food. In fact, 
anti-tick vaccines could make possible not just to 
reduce hazardous residues in meat and dairy products 
but also to produce those products by processes that 
eliminate even the risk of contamination by acaricides 
and their residues. Therefore, it is imperative to 
identify and validate better antigens. In addition to 
looking for antigens with greater efficacy against 
different populations of R. microplus, it is also useful 
to identify those able to cross react and be able to 
induce protection against more than one tick species 
(ALMAZAN et al., 2018; GUERRERO et al., 2012b).

Potential antigens for the control of R. microplus
More than two dozen tick proteins have 

been tested as antigens for anti-tick vaccines. However, 
only a few have shown potential as promising 
viable candidates (Table 2). Several comprehensive 
reviews focusing on different aspects of tick 
vaccine development have recently been published 
(RODRIGUEZ-VIVAS et al., 2018, LEAL et al., 
2021; PEREIRA et al., 2022; ABBAS et al., 2023). 
Here, the intent is to present a brief overview of the 
processes of antigen discovery and characterization 
and development of anti-tick vaccines considering 
the discovery and characterization of new antigens 
which can elicit an immune response that impairs tick 
physiological functions.

In general, such antigens should encounter 
immunoglobulins entering the hemolymph (or gut) 
and are associated with some crucial function for 

the tick survival or fitness (NUTTALL et al., 2006). 
Their efficacy must be evaluated in anti-tick vaccine 
trials. In such trials, it is necessary to calculate the 
overall efficacy, that is, considering the overall effect 
on the size of the next tick generation. It is important 
to standardize the results and compare the efficacy 
showed by different research groups with different 
antigens. In general, the efficacy is calculated as a 
percentage considering the difference between an 
immunized group and an unvaccinated control group 
in terms of the number of fully engorged ticks, their 
egg laying capacity, and egg fertility, in other words, 
an indication of the overall impact in the next tick 
generation. (CUNHA et al., 2013). 

Subolesin (SUB) is an intracellular 
regulatory protein involved in signal transduction that 
affects multiple cellular processes in ticks, such as the 
innate immune response, feeding, reproduction, and 
development (NARANJO et al., 2013). Knockdown 
of SUB by RNA interference (RNAi) has been shown 
to lead to a more than 90% reduction in oviposition 
and progeny in five tick species (DE LA FUENTE et 
al., 2006), evidence of physiological importance of 
this protein and its usefulness for the development 
of an anti-tick vaccine. Also, cattle immunized with 
the recombinant protein and challenged with R. 
microplus showed a 47% decrease in the number 
of engorged females, and the overall efficacy of 
the vaccine was 60% (ALMAZAN et al., 2010; 
MERINO et al., 2013). In another study, quantitative 
PCR was used in order to measure the presence of B. 
bigemina and A. marginale DNA in ticks feeding on 
SUB-vaccinated and control cattle (MERINO et al., 
2013). The authors found that SUB was capable of 
controlling tick infestation and tick-borne pathogens 
in cattle. In crossbred B. taurus–B. indicus cattle, 
the efficacy of the SUB vaccine was reported to be 
44 % and 37% after the first and second challenges, 
respectively (SHAKYA et al., 2014). 

Ferritin 2 (FER2) has been confirmed as 
the primary transporter of nonheme iron between 
the tick gut and the peripheral tissues in Ixodes 
ricinus, a vector of tick-borne encephalitis and Lyme 
borreliosis. In RNAi experiments, HAJDUSEK et 
al. (2009) demonstrated the relevance of FER2 in 
iron metabolism, showing that it is involved tick 
development and reproduction. In that study, the 
authors immunized cattle with the recombinant R. 
microplus FER2 homologue (RmFER2), expressed in 
E. coli. Results indicated that RmFER2 is a protective 
antigen with an efficacy of 64% (Table 2). Artificial 
feeding with cattle blood containing antibodies 
against recombinant I. persulcatus FER2 has been 



Vaccination against Rhipicephalus microplus: an alternative to chemical control?

Ciência Rural, v.54, n.3, 2024.

7

shown to decrease the weight and engorgement of R. 
microplus females (XAVIER et al., 2021). 

Glutathione S-transferase (GST) is widely 
distributed among organisms and plays a role in 
the detoxification of endogenous substances and 
xenobiotics (PAVLIDI et al., 2018). In arthropods, 
GST plays a pivotal role in one of the mechanisms 
of pesticide detoxification. It has been demonstrated 
that GST metabolizes insecticides by facilitating a 
reductive dehydrochlorination or by conjugating them 
with reduced glutathione, as well as contributing to the 
removal of toxic free radical oxygen species produced 
through the action of pesticides (ENAYATI et al., 2005). 
Reports on GST over expression in pesticide-resistant 
strains have shown that elevated pesticide metabolism 
is not the only effect of such over expression. Increased 
GST expression can attenuate oxidative stress or 
sequester the pesticide rather than metabolizing it 
(FEYEREISEN et al., 2015). 

Several acaricides are substrates for R. 
microplus GST, suggesting that this enzyme plays a 
role in pesticide detoxification (DA SILVA VAZ et al., 
2004a). In addition, serum from rabbits immunized 
with recombinant GST from Haemaphysalis 
longicornis (rGST-Hl) has been shown to recognize 
recombinant R. microplus GST, confirming cross 
immunization (DA SILVA VAZ et al., 2004b). In 
fact, rGST-Hl has been shown to induce a protective 

response against R. microplus in cattle, with an 
efficacy of 57% (PARIZI et al., 2011). In one of the 
few field trials for tick vaccines, rGST-Hl was used in 
combination with other antigens and that the number 
of semi-engorged female ticks was significantly 
lower among the vaccinated cattle. Surprisingly, 
cattle weight gain in the vaccinated group was 56% 
bigger in comparison with the unvaccinated cattle 
(body weight gain was 39% and 25% in 127 days, 
respectively) ). Among the various antigens tested 
in that trial, rGST-Hl elicited the most persistent 
humoral response (PARIZI et al., 2012a; PARIZI et 
al., 2012b). Immunization with rGST-Hl has also been 
shown to provide cross protection against other hard 
tick species (NDAWULA et al., 2019; SABADIN 
et al., 2017). A cocktail of recombinant GST from 
Rhipicephalus decoloratus and A. variegatum has 
been shown to induce a protective response in rabbits 
and to reduce the number of Rhipicephalus sanguineus 
adult females by 35.3% (NDAWULA et al., 2019). 
Since R. decoloratus and A. variegatum are also cattle 
parasites a broad-spectrum universal anti-tick vaccine 
could be prepared based on GST as the major antigen. 

Previous studies on Drosophila 
melanogaster (FROLOV & BIRCHLER, 1998) and 
Aedes albopictus (JAYACHANDRAN & FALLON, 
2003) have demonstrated the crucial role of a 60S 
ribosomal proteins (P0) in regulating gene expression 

 

Table 2 - Efficacy of antigens used in immunizing cattle against Rhipicephalus microplus. 
 

Antigen Efficacy (%) Formula to calculate vaccine 
efficacy(%) Reference 

Subolesin 
60 =100 [l - (CRT * CR0 * CRF)] (ALMAZAN et al., 2010) 

44.0 and 37.2* =100 [l - (CRT * CR0 * CRF)] (SHAKYA et al., 2014) 
54 = 100 [l - (CRT * CR0)] (KUMAR et al., 2017) 

Glutathione S-transferase 57 =100 [1 - (NFE * WE * WL)] (PARIZI et al., 2011) 
Voltage-dependent anion channel 82 =100 [l - (CRT * CR0 * CRF)] (ORTEGA-SANCHEZ et al., 2020) 
Metalloprotease  60 =100 [1 - (NFE * WE * WL)] (ALI et al., 2015a) 
Trypsin inhibitors 72.8 =100 [l - (NET * EW * EF)] (ANDREOTTI et al., 2002) 
Low trypsin inhibitor 32 =100 [l - (CRT * CR0 * CRF)] (ANDREOTTI et al., 2012) 
Aquaporin 1 68 and 75† =100 [1- (NET * EWPF * H)]. (GUERRERO et al., 2014) 
60 S acidic ribosomal protein (P0) 96 =100 [1- (RA * PA *VA * OA * FE)] (RODRIGUEZ-MALLON et al., 2015) 
Ferritin 2 64 =100[l − (CRT * CR0 * CRF)] (HAJDUSEK et al., 2010) 
Flagelliform silk protein 62 = 100 [l - (CRT * CR0)] (MERINO et al., 2013) 

 
CRT, NFE, NET = reduction in the number of adult female ticks as compared to the control group; CRO, WE, EW or EWPF = reduction 
in oviposition as compared to the control group; CRF, WL, EF or H = reduction egg fertility as as compared to the control group.  
RA = reduction in the number of adult female ticks as compared to the control group; PA = reduction in the number of adult female ticks 
as compared to the control group; VA= reduction in the number of female viability (able to lay eggs) as compared to the control group; 
OA = reduction in oviposition as compared to the control group; FE = reduction egg fertility as as compared to the control group. 
*In the first and second challenges, respectively. 
†In two independent cattle pen trials. 
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in arthropods, as evidenced by gene disruption 
experiments. In a subsequent study, an immunogenic 
region in Rhipicephalus sp. P0 was identified and 
a 20 amino acid synthetic peptide corresponding 
to host-non homologous region was inoculated in 
rabbits (RODRIGUEZ-MALLON et al., 2012). 
After a challenge with R. sanguineus, the protective 
efficacy of this peptide was found to be 90%. A 
subsequent vaccine trial demonstrated that the same 
peptide is protective against R. microplus in cattle, 
with an efficacy of 96% (RODRIGUEZ-MALLON 
et al., 2015). Another successful approach with P0 
was obtained by chemically conjugating the peptide 
to Bm86. The use of such a pP0–Bm86 construct 
in cattle resulted in 84% reduction of R. microplus 
(RODRÍGUEZ MALLÓN et al., 2020).

Immunization with a R. microplus 
metalloprotease has been shown to be 60% 
efficacious against that same tick (ALI et al., 2015a). 
Metalloproteases have been shown to be essential for 
diverse biological functions in organisms, including 
modulation of host innate immune responses, as well 
as inhibiting host angiogenesis and blood coagulation 
(ALI et al., 2015b; SIMO et al., 2017).

Peptidase inhibitors play a pivotal role in 
tick parasitism because they interfere with several 
systems and also in defense-related host peptidases, 
thus facilitating blood feeding (PARIZI et al., 2018). 
Some peptidase inhibitors, such as several serpins 
and cystatins, have been identified in cattle tick 
saliva (FENG et al., 2019; TIRLONI et al., 2014). 
The immunogenic properties of these inhibitors and 
their potential as multispecies anti-tick vaccines 
have been described (PARIZI et al., 2020; TIRLONI 
et al., 2016). In one study, trypsin inhibitors were 
used as vaccines against R. microplus. Effectively, 
they confer partial protection in the immunized 
cattle (ANDREOTTI et al., 2002). In a subsequent 
study (ANDREOTTI et al., 2012), a tick-derived 
recombinant trypsin inhibitor was found to have an 
efficacy of 32% against R. microplus infestation in 
cattle (Table 2). 

A flagelliform silk protein has been 
identified in R. microplus, Dermacentor andersoni 
(ALARCON-CHAIDEZ et al., 2007; SANTOS et 
al., 2004), and R. appendiculatus (MULENGA et al., 
2007). Also, the recombinant silk protein induced a 
partial protection against R. microplus (MERINO et 
al., 2013) and a reduction in A. marginale DNA levels, 
suggesting that immunization with the silk protein 
confers some protection against this bacterium.

Aquaporins are channel pore-forming 
membrane proteins that are able to transport 

water across the cell membrane. Hereafter, in one 
transcriptomics study (GUERRERO et al., 2014), a 
sequence encoding an aquaporin from R. microplus 
was identified and cloned in an expression vector. In 
that study, the recombinant protein was expressed 
in P. pastoris and it was found to have an efficacy 
of 75% and 68% in two independent cattle pen 
trials (GUERRERO et al., 2014), as shown in 
table 2. Recently, synthetic peptides corresponding 
to predicted extracellular domains from another 
aquaporin of R. microplus led to an overall reduction 
of tick‐numbers on cattle by 25% (SCOLES et al., 
2022). Another channel protein identified in R. 
microplus is a mitochondrial voltage-dependent anion 
channel, designated BmVDAC (RODRIGUEZ-
HERNANDEZ, 2012). Among cattle immunized 
with recombinant BmVDAC, the efficacy against R. 
microplus was found to be 82%. Interestingly, when 
ticks were infected with B. bigemina, the reported 
efficacy of recombinant BmVDAC decreased to 34% 
(ORTEGA-SANCHEZ et al., 2020). 

CONCLUSION AND PERSPECTIVES

As an anti-tick vaccine, Bm86 is far from 
being a complete technical and economic success. 
However, it has proven that an anti-tick vaccine is 
feasible and can be a valuable tool for the control 
of R. microplus, which constitutes a huge problem 
for livestock production. A number of antigens 
conferring a considerable degree of protection against 
R. microplus have been identified. Also, some of 
these antigens confer cross protection against other 
tick species besides the species from which they were 
obtained. Thus, the identification of new proteins with 
potential use in vaccines, a deeper characterization 
of proteins already identified, as well as the study of 
the multi-antigen vaccines, are necessary to increase 
the protection already reached. This approach also 
requests to discover and characterize analogous proteins 
in different tick species in order to develop a vaccine 
efficient against various tick species simultaneously.

Studies to develop a commercially 
acceptable vaccine against ticks is still in progress. 
Traditional vaccine design processes, which involve 
identifying putative antigens through costly and time-
consuming in vivo tests, have limitations. In contrast, 
the development of reverse vaccinology methodologies 
that utilize bioinformatics approaches has led to the 
discovery of new vaccine candidates and can short the 
time to achieve a vaccine that fulfil all the requirements 
to have a spread use. Indeed, several recent studies 
have successfully identified new tick antigens using 
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this strategy (DE LA FUENTE & MERINO, 2013; 
MARUYAMA et al., 2017; PÉREZ-SÁNCHEZ et 
al., 2019; NDAWULA et al., 2020; TIRLONI et al., 
2020; TRENTELMAN et al., 2020; ALI et al., 2021; 
COUTO et al., 2021; PÉREZ-SÁNCHEZ et al., 2022). 
In addition, a multi-antigen tick vaccine will be useful to 
control multiple tick species, particularly in areas where 
animals are parasitized by more than one tick species. 
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