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Resumo

Lagos e lagunas sao ambientes aquaticos com alta produtividade, abrigando biodiversidade
e provendo outros importantes servigos ecossistémicos. Suas caracteristicas os tornaram
importantes sitios de ocupacao humana, podendo ser bastante afetados por atividades
antropogénicos, além de variacao climatica. O sensoriamento remoto é uma excelente
ferramenta para fornecer dados espacializados que melhorem o entendimento dos impactos
destas variacoes climaticas e nao-climaticas nestes ecossistemas. Este trabalho buscou
compreender como mudancas ambientais afetam a variacao espago-temporal de parametros
de qualidade da agua de lagos rasos costeiros brasileiros, para isto validando dados de
sensoriamento remoto. A primeira parte avaliou os padroes de variacao do fitoplancton num
complexo de lagunas tropicais rasas utilizando imagens Sentinel-2 MSI. Primeiramente,
foi validado um conjunto de correcdo atmosférica e algoritmo de clorofila-a (chla) para
todo o complexo, com a combinacdo do ACOLITE com um modelo semi-analitico de razao
de bandas do vermelho e infravermelho préximo se mostrando a mais robusta para as
duas lagunas. A partir disso, foi avaliada a série espaco-temporal de chla junto com o
coeficiente de absor¢do por matéria organica dissolvida colorida (CDOM). Se observou que
a Manguaba é mais eutréfica do que a Mundat e afetada principalmente pela afluéncia de
nutrientes da bacia hidrogréafica, enquanto que a Mundat mostrou um padrao de variacao
mais definido, também afetada pela precipitacao e vazao dos rios. Durante a estacao
chuvosa, a afluéncia dos rios geralmente reduz a chla devido a limitacao da luz por CDOM,
e aumenta em outros pontos devido a lancamentos de esgoto e aguas pluviais. A analise
mostrou a importancia da hidrodindmica no sistema, destacando zonas de recicurlacao na
laguna Manguaba, a influéncia do ciclo da cana, e das marés na renovacao ou retencao da
agua no sistema. A segunda parte avaliou o impacto da variacao climética na temperatura
superficial de um conjunto de lagoas subtropicais costeiras rasas utilizando o sensor
MODIS. Primeiramente, foram validados algoritmos de correcao de efeito de superficie,
verificando-se reducao do viés e melhoria de todas as métricas pelos modelos testados.
Comparando os resultados sem a corregao do efeito, se observou diferenga principalmente
nos calculos das tendéncias de aquecimento das lagoas e de evaporacao da dgua. A anédlise
da série temporal mostrou que os impactos nestas lagoas sao uma alta taxa de aquecimento
regional na primavera e em menor escala de aquecimento no verdao, com concordancia
com as tendéncias de temperatura do ar na regiao. O aquecimento na primavera se deve
principalmente a uma antecipagao do fim do inverno e inicio da primavera, e rapida resposta
das lagoas rasas. Também se observou uma geral homogeneidade espacial nas tendéncias

de aquecimento, porém com diferencas nas areas de afluéncia dos rios tributarios.

Palavras-chaves: sensoriamento remoto; lagos; qualidade da agua; temperatura superficial

da agua; clorofila-a; correcao atmosférica.



Abstract

Lakes and lagoons are highly productive aquatic environments, harbouring biodiversity and
providing other important ecosystem services. Their characteristics make them important
sites of human occupation, and they can be highly affected by anthropogenic activities, in
addition to climatic variability. Remote sensing is an excellent tool to provide spatialized
data to improve the understanding of the impacts of these climatic and non-climatic
variations in these ecosystems. This thesis sought to understand how environmental
changes affect the spatiotemporal variability of water quality parameters of Brazilian
coastal shallow lakes, validating remote sensing data for this purpose. The first part
evaluated the spatiotemporal variation patterns of phytoplankton in a shallow tropical
lagoon complex using Sentinel-2 MSI imagery. First, a set of atmospheric correction and
chlorophyll-a (chla) algorithm was validated for the entire complex, with the combination
of ACOLITE with a semi-analytical model using red and near infrared band ratio showing
more consistency for the two lagoons. With this set validated, we assessed spatiotemporal
series of chla along with the coloured dissolved organic matter (CDOM) absorption
coefficient. Manguaba is more eutrophic than Mundai and is mainly affected by the
inflow of nutrients from the watershed, while Mundat showed a more defined pattern of
variation, which is also affected by precipitation and river flows. During the rainy season
the rivers’ inflow generally causes a reduction in chla due to light limitation by CDOM,
while increasing in other parts due to the effect of sewage and stormwater discharges.
The analysis showed the importance of hydrodynamics and residence times in the system,
highlighting areas of recirculation in Manguaba lagoon, the influence of the sugarcane
cycle, and of the tides in the renewal or retention of water in the system. The second part
assessed the impact of climate variability on the surface temperature of a set of subtropical
shallow coastal lakes using MODIS imagery. First, we validated algorithms to correct
for a surface effect, and we verified reduced bias and improvement of all metrics by the
models. Comparing the results without correction for the effect, we observed differences
mainly in the calculation of the lakes’ warming trends and of water evaporation. The
analysis of the time series showed that the impacts on these lakes are a high regional
warming rate observed in spring and to a lesser extent warming in summer, with agreement
with air temperature trends in the region. The warming in spring is mainly due to the
anticipatation of the end of winter and beginning of spring, and quick response of the
shallow lakes. We also observed a general homogeneity in the warming trends, but with

differences in the tributary rivers’ inflow areas.

Key-words: remote sensing; lakes; water quality; water surface temperature; chlorophyll-a;

atmospheric correction.



Lista de ilustracoes

Figura 2.1 — Principais mudancas exercendo pressao sobre grandes lagos em cada
continente, ressaltando a pressao por aumento de poluicao pontual e
difusa e aquecimento nos grandes corpos d’dgua brasileiros. (Fonte:
Jenny et al. 2020) . . . ... 29

Figura 2.2 — Fluxograma ilustrando os impactos fisicos das mudangas climaticas em
lagos, como mudancgas nos fluxos de energia, balanco hidrico, e mistura
por vento. (Fonte: Woolway et al. 2020) . . . . ... ... ... .... 30

Figura 2.3 — Figura ilustrando a interacao da radiacao solar com a matéria apos a
entrada na atmosfera e seu caminho até atingir os sensores, e as propri-
edades de aguas interiores que podem ser estimadas por sensoriamento
remoto. (Fonte: Dérnhofer e Oppelt 2016) . . . . . .. .. ... .. .. 33

Figura 2.4 — Espectro da radiacao eletromagnética. (Fonte: Purkis e Klemas 2011) . 34

Figura 2.5 — Exemplo de coeficiente de absorcao, a()), dos COAs ao longo do espec-
tro medidos em um conjunto de 15 tanques de aquacultura no Delta
Research Extension Center. (Fonte: Mishra e Mishra 2014) . . . . . . . 35

Figura 2.6 — Imagem mostrando como a luz interage com a atmosfera e a dgua até
chegar ao sensor orbital. Os p’s indicam os componentes que interagem
com a luz e influenciam no sinal medido pelo sensor. (Fonte: Barbosa
etal. 2019) . ..o 37

Figura 2.7 — Imagem do Sentinel-2 MSI sem correcao atmosférica mostrando a ocor-
réncia de sunglint sobre a parte sul da lagoa Mangueira, e em algumas
area da lagoa Mirim, mais a oeste. . . . . . . . . . ... ... ... .. 38

Figura 2.8 — Grafico das diferengas entre a temperatura da camada d’dgua (bulk)

e na camada mais superficial (skin) da dgua medidas por boias com

termometro e sensor radiométrico. (Fonte: Alappattu et al., 2017) . . . 48



Figura 3.1 — Location map showing the MMELS, the sampling stations in Mundat

and Manguaba lagoons, and land cover surrounding the system, high-

lighting the extensive urban area of Macei6 city (capital of Alagoas

state). . .. 56
Figura 3.2 — Mean (black dots) and standard deviation (grey ranges) of the remote

sensing reflectance measured in (a) Mundat and (b) Manguaba lagoons

in the 10 field campaigns. . . . . . . .. ... oL 62
Figura 3.3 — Comparison of the in situ with satellite-derived water reflectance cor-

rected by each algorithm for bands 2 to 8 A. The black lines represent

the 1:1 line, and the colour dashed lines represent the regression lines

for each AC processor for each band. . . . . . ... ... ... ..... 66
Figura 3.4 — Mean reflectance curves measured at Mundai and Manguaba lagoons

(thicker lines), and the reflectances retrieved by Sentinel-2 MSI images

after atmospheric correction. The curves of the measured data are

plotted only for the central wavelength of Sentinel-2 MSI bands 1 to 8A. 69
Figura 3.5 — Taylor diagrams for the chlorophyll-a retrieved from algorithms using

in situ measured reflectance. . . . . . ... o000 70
Figura 3.6 — Taylor diagrams for the chlorophyll-a retrieved from algorithms using

Sentinel-2 MSI images corrected using ACOLITE with sunglint correction. 71
Figura 3.7 — Taylor diagrams for the chlorophyll-a retrieved from algorithms using

Sentinel-2 MSI images corrected using C2X. . . . . . . .. .. ... .. 71
Figura 3.8 — Taylor diagrams for the chlorophyll-a retrieved from algorithms using

Sentinel-2 MSI images corrected using GRS with sunglint correction. . 72
Figura 3.9 — Plots of measured vs. estimated chlorophyll-a using Sentinel-2 MSI

images for (a) MMELS, using the NDCI algorithm with Aco-SG, (b)

Manguaba, using the 2SAR algorithm with Aco-SG, (c) using the

NDCI algorithm with C2X, and (d) Mundau, using the OC2 algorithm

with C2X. The models were generated using the mean values of each

coefficient obtained in the calibration procedure. . . . . . . . . . .. .. 73
Figura 3.10-Plots of measured vs. estimated chlorophyll-a in MMELS using the 2SAR

algorithm with the coefficients calibrated using Field andSatellite (Aco-

SG corrected MSI) reflectance, and provided by the Cluster calibration

(OWT 8 in Neil et al., 2019) (the first name refers to the coefficients

used, and the second to the water reflectance data used in the model). 74
Figura 3.11-Map of concentration of chlorophyll-a in MMELS, created with the

locally calibrated 2SAR algorithm using reflectance derived from the

Sentinel-2 MSI image on 05/23/2018 and corrected with Aco-SG. . . . 75
Figura 3.12-Sun zenith, sensor viewing and incident angles for Sentinel-2 overpass

times in MMELS for 2019. . . . . . . .. . .. ... L. 76



Figura 4.1 — Location map showing the MMELS watershed, land cover, and main
hydrography. Source: Agéncia Nacional de Aguas, MapBiomas (Souza
Jretal,2020). . .. ..

Figura 4.2 — Sentinel-2 MSI image from 05/23/2018 showing the MMELS, the main
tributary rivers, and point sources of sanitary and industrial efluents
(Luz et al., 2022). . . . . . . .

102

Figura 4.3 — Climatology of precipitation and river inflow to MMELS during 2016-2021.105

Figura 4.4 — Mean values of chlorophyll-a concentration in the a) wet and b) dry
periods, and c¢) for all images. . . . . . ... ... oL
Figura 4.5 — Difference between the mean values of chlorophyll-a concentration in
the wet and dry periods. . . . . . . . ... ... L
Figura 4.6 — Mean values of aCDOM(400) for the studied period. . . . . ... ...
Figura 4.7 — Spearman correlation coefficient between chla and aCDOM(400) in the
a) wet and b) dry periods, and ¢) for all images. . . . . . . . ... ...
Figura 4.8 — Map of clusters in Manguaba and Mundat lagoons, considering the
time series of chla and aCDOM. . . . . . . . ... ... ... .. ....
Figura 4.9 — Monthly means of chla in each cluster in a) Mundai and b) Manguaba
lagoons. . . . ...
Figura 4.10-Plot of the first two axes of the Canonical Correspondence Analysis for
a) Mundai and b) Manguaba lagoons. . . . . . ... ... ... ....
Figura 5.1 — Map of the study area, showing the Patos Lagoon, lake Mirim and lake
Mangueira, the sampling stations in lake Mangueira, and the location
of the meteorological stations. . . . . . . . ... . ... ... ......
Figura 5.2 —a) Absolute and b) percentage difference in the seasonally heat budget
terms calculated with the bulk and skin 7;,. The values were calculated
as the mean of the terms for the three lakes. In b) the differences in H
were divided by 10, and the differences in Jj, were multiplied by 10 to
improve visualisation. One H data point was omitted for resulting in a
difference of over 1000%. . . . . . . . . . ..
Figura 6.1 — Map of the study area, showing the Patos lagoon, lake Mirim and lake
Mangueira, their watersheds, and the location of the meteorological
stations. . . . . oL
Figura 6.2 — Mean start, end, and length of the cold season in the region from 2000
to 2021. Blue bars denote the La Nina years, and red bars denote the
occurrence of El Nifio. . . . . . . . . . ... ... ... ... ... ...
Figura 6.3 — Monthly mean air and water temperature ((T,,)) trends in the region. .
Figura 6.4 — LSWT trends for the three lakes in a) Spring, and b) Summer. Trends
were calculated for the period between March 2002 and February 2022.

107

113



Figura 6.5 — Mean LSWT differences between the five hottest and coldest years in a)
Spring (September, October, and November) and b) Summer (December,
January, and February). For spring, the hottest years were 2012, 2014,
2017, 2019, and 2021, and the coldest years were 2003, 2010, 2011, 2015,
and 2016, and for summer, the hottest years were 2006, 2009, 2013,
2015, and 2016, and the coldest years were 2003, 2004, 2008, 2011, and



Lista de tabelas

Tabela 2.1 — Lista das propriedades de lagos, as suas variaveis-resposta, e os indica-

dores estiméaveis por sensoriamento remoto (adaptado de Adrian et al.,

2009 e Dornhofer e Oppelt, 2016). . . . . . . . . . . . ... .. 32
Tabela 3.1 — Date of each field campaign and the number of collected optical measure-

ments and water samples in MMELS, and information about match-up

with Sentinel-2 MSI images . . . . . . . . .. .. .. ... ... ... 57
Tabela 3.2 — Nomenclature of the algorithms applied for atmospheric and sunglint

correction of the Sentinel-2 MSI images . . . . . . .. . ... ... ... 59
Tabela 3.3 — Nomenclature of the chlorophyll-a algorithms tested in this study . . . 63
Tabela 3.4 — Metrics calculated for each atmospheric correction algorithm between

in situ and satellite-derived water reflectance for MMELS and Mundat

and Manguaba lagoons (values in bold represent the best result in each

CASE) « v v v v e 68
Tabela 3.5 — Mean (Standard Deviation) chlorophyll-a (mg/m?®) measured on each

field campaign . . . ... oL 69
Tabela 3.6 — Metrics for the 2SAR algorithm with the coefficients (a and b) calibrated

using Field and Satellite (Aco-SG corrected MSI) reflectance, and

provided by the Cluster calibration (OWT 8 in Neil et al., 2019) (the

first name refers to the coefficients used, and the second to the water

reflectance data used in the model) . . . . . .. .. ... 72
Tabela 4.1 — Mean values (and standard deviation), in mg m =3, of the mean chlorophyll-

a concentration of the pixels in each site during different periods of the

VEAT © o v o e e e e e e e e e e e e e 109
Tabela 4.2 — Statistics (in mg m™2) of estimated chla considering the different HSG

for each lagoon . . . . . . . ..o oo 109



Tabela 5.1 — Metrics (in °C) for the validation of MODIS data without correction
(raw) and correction with models developed by Minnett et al. (2011)
(M11) and Alappattu et al. (2017) (A17). 118 match-ups were used,
with a window of time of up to 3h between in situ measurements and
satellite overpass . . . . . . . . ..
Tabela 5.2 — Absolute (percentage) difference in the trends, in °C dec™! (%) calcu-
lated for the bulk (corrected with model M11) and skin 7),. Values in
bold indicate the significant trends . . . . . . ... ... ... .. ...
Tabela 5.3 — Long-term mean of the terms of lake heat budget (in W m~?2) calculated
with the bulk and skin T, . . . . . . . . . . ... ... ... ... ...
Tabela 5.4 — Seasonal trends of each heat budget term (in W m~2 dec™!) calculated
with the bulk and skin T, . . . . . . . . . . . .. ... ... ... ...
Tabela 6.1 — Lake characteristics and long-term monthly means (standard deviation)
of the meteorological and LSWT data for each lake/station for the
study period (2000-2022) . . . . . ..
Tabela 6.2 — Seasonal trends (unit per decade) for the meteorological and LSWT
data for each lake/station. Significant trends are in bold . . . . . . ..
Tabela 6.3 — Climate indices calculated for each meteorological station. Significant
trendsarein bold. . . . .. ..o oo

Tabela 6.4 — Seasonal mean warming efficiency and trend . . . . . . . ... .. ...



Lista de abreviaturas e siglas

AC Atmospheric correction — correcao atmosférica

AOP Apparent optical property — propriedade 6ptica aparente

CAPES Coordenacgao de Aperfeicoamento de Pessoal de Nivel Superior
CDOM Chromophoric (Colored) dissolved organic matter — matéria organica

dissolvida cromoférica (colorida)

CELMM Complexo Estuarino-Lagunar Mundau-Manguaba

Chla Clorofila-a

COA Constituinte opticamente ativo

CNPq Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico

DOC Dissolved organic carbon — carbono organico dissolvido

10P Inherent optical property — propriedade 6ptica inerente

LSWT Lake surface water temperature — temperatura superficial da dgua do
lago

LST Land surface temperature — temperatura superficial continental

MAE Mean Absolute Error — erro médio absoluto

MERIS MEdium Resolution Imaging Spectrometer

MODIS MODerate-Resolution Imaging Spectroradiometer

MSI MultiSpectral Imager



NAP Non-algal particles — particulas nao-algais

NIR Near infrared — infravermelho proximo

nRMSE normalized Root mean-square error — Raiz do erro quadratico médio
normalizado

OLCI Ocean and Land Colour Instrument

OWT Optical water type — tipo 6ptico de dgua

PC Ficocianina

POC Particulate organic carbon — carbono organico particulado

RMSE Root mean-square error — Raiz do erro quadratico médio

SAM Spectral angle mapper — mapeador do angulo espectral

S2 Sentinel-2 MSI

S3 Sentinel-3 OLCI e SLSTR

SST Sea surface temperature — temperatura superficial ocednica

ST Surface temperature — temperatura da superficie

SWT Surface water temperature — temperatura superficial da agua

TIR Thermal infrared — infravermelho termal

TOA Top of atmosphere — topo da atmosfera

TSA Temperatura superficial da dgua

TSS Total suspended solids — solidos suspensos totais

VIS Visivel



Lista de simbolos

Ldown

L

LSGHSOI'

LCOI‘I"

Coeficiente de absor¢ao do pardmetro ¢ no comprimento de onda A

Coeficiente de absor¢ao especifica do parametro ¢ no comprimento de
onda A

Coeficiente de retroespalhamento
Emissividade

Coeficiente de atenuacgao difusa
Comprimento de onda

Radiancia

Radidncia emitida/refletida para baixo pela atmosfera (downwelling

radiance)

Radidncia emitida/refletida para cima pela atmosfera (upwelling radi-

ance)

Radidncia medida pelo sensor (top of atmosphere radiance)
Radiancia medida pelo sensor e corrigida dos efeitos atmosféricos
Eficiéncia de aquecimento

Vazao

Reflectancia

Reflectancia da agua

Reflectancia de sensoriamento remoto (acima da superficie da dgua)



~

sensor

g

ZSD

Desvio-padrao

Aerosol optical thickness — carga Optica do aerossol
Transmissividade atmosférica

Temperatura do ar

Temperatura da agua

Temperatura de brilho medida pelo sensor
Contetdo de vapor d’agua colunar na atmosfera

Profundidade da zona eufética

Profundidade do disco de Secchi



Sumario

1.1
1.2
1.3
1.4

2.1
2.2
221
2.2.2
2.2.3
2.2.4
2.25
2.3

INTRODUCAO . . . . .t ittt e et et e e e e e e 21
Justificativa . . . . . . ... 23
Questoes cientificas . . . . . . .. ... 24
Objetivo . . . . . . . . . .. 24
Organizacdaodatese . . . . . . . . . ... ... ... ... 25
REFERENCIAL TEORICO . . .. . .. . i ittt it i ie e 27
Forcantes externas e impactos antropogénicos e climaticos em lagos 27
Sensoriamento remoto de variaveis limnolégicas . . . . . . . . .. .. 31
Correcdo atmosférica . . . . . . . . .. 35
Clorofila-a . . . . . . . . . . e 39
CDOM . . 42
Temperatura . . . . . .. 44
Sensores utilizados neste trabalho . . . . .. ..o 49
Lagos rasos brasileiros . . . . .. ... o000 51

CORRECAO ATMOSFERICA E DE SUNGLINT PARA ESTIMA-
TIVA DE CLOROFILA-A NUM SISTEMA ESTUARINO-LAGUNAR
PRODUTIVO TROPICAL USANDO IMAGENS SENTINEL-2 MSI 53

AVALIACAO DA DINAMICA A CURTO-PRAZO DO FITOPLANC-
TON EM UM ANTROPISADO SISTEMA ESTUARINO-LAGUNAR
EUTROFICO TROPICAL UTILIZANDO SERIE TEMPORAL DO
SENTINEL-2 MSI . . . . . . . . e e e e e 98

IMPACTO DA CORRECAO DO EFEITO DE COOL-SKIN SOBRE
AS TENDENCIAS DA TEMPERATURA SUPERFICIAL DA AGUA
E O BALANCO DE CALOR DE TRES GRANDES LAGOAS RASAS
SUBTROPICAIS . . . . . . e e e e e e e e e 121

ALTAS TAXAS DE AQUECIMENTO NA PRIMAVERA EM TRES
GRANDES LAGOAS RASAS SUBTROPICAIS NO SUL DO BRASIL
DETECTADAS COM IMAGENS MODIS . . ... ... ... .... 142

CONCLUSAO . . . . .t e e e e e e s e s s 164



Referéncias

ANEXOS

ANEXO A

ANEXO B

- AMBIENTE DE PROCESSAMENTO ... ........

- MATERIAL SUPLEMENTAR DOS CAPITULOS . . ...



21

Capitulo 1

Introducao

Lagos e lagunas sao ambientes aquaticos continentais com alta produtividade,
abrigando biodiversidade e provendo outros importantes servigos ecossistémicos, como
ciclagem de nutrientes, abastecimento de dgua, pesca e recreagao (Janssen et al., 2021).
Recentes estudos também mostram a importancia destes sistemas no balango global de
carbono (Dean e Gorham, 1998; Cole et al., 2007), processando carbono organico aléctone,
podendo ser fontes ou sumidouros de carbono (Tranvik et al., 2009), além de importantes
fontes de metano (Giinthel et al., 2019).

As caracteristicas destes corpos hidricos tornaram eles importantes sitios de ocu-
pagdo humana, sendo conectados a cidades como Porto Alegre (lago Guaiba), Macei6
(lagoa Mundai) e Rio de Janeiro (lagoa Rodrigo de Freitas), por exemplo. Devido a esta
proximidade e interacao antropica, estes corpos d’agua podem ser bastante afetados por
impactos antropogénicos como descarga de nutrientes e poluentes, sobrepesca e excesso de
retirada d’agua, podendo ter impactos significativos em sua estrutura e funcionamento
(Jenny et al., 2020). Impactos antropogénicos indiretos, como mudangas na bacia hidrogra-
fica também pode afetar estes ambientes; por exemplo, mudangas no aporte de carbono
organico dissolvido (dissolved organic carbon — DOC) podem mudar a composicao da
biota de um lago, causando uma mudanca de dominancia de produtores primarios e
produtividade (Jansson et al., 2000; Kelly et al., 2018; Zhang et al., 2020), que por sua
vez podem impactar os servigos ecossistémicos providos por estes corpos d’agua (Janssen
et al., 2021).

Lagos e lagunas sdo ecossistemas sensiveis a mudancgas ao seu redor, e por serem
sistemas lénticos muitas vezes localizados no final de sua bacia hidrografica, e terem ampla

distribuicao geogréfica e distintas caracteristicas geomorfologicas, quimicas e biologicas,
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foram cunhados como “sentinelas” de mudangas no ambiente (Williamson et al., 2008;
Adrian et al., 2009). As mudangas climaticas vém causando e irdo causar mudancas nestes
ambientes (Woolway et al., 2020); O'Reilly et al. (2003), por exemplo, em um trabalho
seminal, mostrou que ha variacdo na produtividade priméaria do Lago Tanganyika em
funcado de variagoes no clima local. Diversos estudos ja mostraram que houve aumento
na temperatura superficial de lagos (LSWT, do inglés lake surface water temperature)
(Livingstone, 2003; Schneider e Hook, 2010; O'Reilly et al., 2015). Em muitos casos, a
LSWT tém aumentado, inclusive, mais rapidamente do que a temperatura do ar local
(O'Reilly et al., 2015; Woolway et al., 2019), causando impactos como redugao do oxigénio
dissolvido e de habitat relacionados a temperatura da dgua (Halverson et al., 2021; Hansen,
2021). O estudo destes impactos, contudo, esta limitado a lagos no Hemisfério Norte,
e pouco é conhecido dos efeitos das mudancas climaticas em lagos no Hemisfério Sul,
principalmente lagos rasos, que possuem resposta mais rapida devido a menor inércia

termal.

Diante desses impactos climaticos e nao-climaticos, a uniao de monitoramento e
modelagem se torna essencial para o entendimento de como estas alteracoes tém afetado e
irao afetar os sistemas lénticos. Nesse sentido, o uso de sensoriamento remoto tém tido
grande desenvolvimento e aplicagoes na limnologia nos tultimos anos, relacionando a cor
da dgua (reflectdncia da dgua, p,,, em diferentes comprimentos de onda do visivel — VIS —
ou infravermelho préximo — NIR) a varidveis limnolégicas, podendo servir como fonte de
dados para ambientes sem monitoramento de campo, ou em sinergia com dados in situ,
provendo espacializagao de dados limnologicos e, muitas vezes, aumento da frequéncia
destes dados (Dornhofer e Oppelt, 2016).

O uso do sensoriamento remoto permite gerar apenas uma quantidade limitada
de dados, que sao os que tém comportamento opticamente ativo, como matéria organica
dissolvida cromoférica (chromophoric dissolved organic matter — CDOM) e pigmentos algais,
além de pardmetros fisicos como temperatura superficial e nivel. Estas séries temporais e
espacializadas de dados auxiliam no entendimento da estrutura e funcionamento de sistemas
l6ticos e lénticos, avaliando os impactos de longo prazo fisicos, quimicos e biologicos de
mudancas no clima e no uso e cobertura do solo, assim como observar a dindmica de
eventos curtos, como blooms de algas ou eventos extremos, como realizado em diversos
estudos na literatura (Woolway et al., 2016; Kraemer et al., 2017; Woolway e Merchant,
2018).

Contudo, apesar do desenvolvimento da teoria e de ferramentas de sensoriamento
remoto com foco na limnologia, como modelos bio-Opticos, a extragao destes parametros
a partir da reflectancia da dgua é complexa devido aos constituintes opticamente ativos
(optically active constituents — OACs) na dgua e suas interagoes, o que dificulta o desen-

volvimento de modelos bio-Opticos e ocasiona uma precisao consideravelmente inferior
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as medigoes de campo (Gege, 2017). Além disso, este processo é ainda mais dificultado
para sensores a bordo de satélites, em que além da limitacdo da quantidade de bandas
(resolucao espectral) e de outras resolugdes inerentes aos sensores (resolugdes espacial,
temporal e radiométrica),hd interferéncia no sinal refletido pela superficie da 4gua pela
atmosfera e seus componentes, além de reflexdo especular pela superficie da dgua e efeitos
de adjacéncia, necessitando de correcao para estes efeitos (que podem chegar a repre-
sentar 90% do sinal medido pelo sensor) no processo chamado na literatura de corre¢ao
atmosférica (atmospheric correction — AC), para se extrair a reflectdncia da superficie
corretamente (Moses et al., 2017; Pahlevan et al., 2021).

Existem recentes esfor¢os para a construcao de bases de dados, para uso publico,
de produtos padronizados de sensoriamento remoto, como o Cyanobacteria Assessment
Network (CyAN) (Schaeffer et al., 2015), um esforgo conjunto de diversas agéncias estadu-
nidenses para prover dados de blooms de cianobactérias em lagos e reservatérios. O objetivo
destas bases é prover produtos padronizados para lagos em todo o mundo, permitindo,
assim, andalises consistentes, entre diferentes lagos, de dinamica e tendéncias. Estas bases,
porém, ainda estao limitadas a estimativa dos parametros devido a complexidade dos
OACs em sistemas lénticos, aos processos de corre¢ao atmosférica e aos modelos bio-6pticos
(Pahlevan et al., 2021). No caso do sensoriamento remoto da temperatura da agua, a
etapa de correcao atmosférica é simplificada, e produtos prontos sao disponibilizados.
Entretanto, esses produtos sao designados como temperatura superficial da terra (land
surface temperature — LST), e nesta generalizagdo os produtos perdem precisdo devido
a questoes como variabilidade da emissividade (Masuda et al., 1988), coeficientes de
calibracao (Hulley et al., 2011) e principalmente aos efeitos de superficie, os efeitos de
cool-skin (pele fria) e o warm layer (camada quente), que afetam a medi¢ao de radiacao
termal medida pelos sensores orbitais. Estes efeitos nao sao corrigidos nestes produtos,
causando diferenca nas estimativas de temperatura que pode afetar, por exemplo, calculos
de tendéncia de temperatura epilimnética, comumente utilizadas para aferir o impactos
das mudancas climaticas na temperatura de lagos (O'Reilly et al., 2015). Porém, embora
haja diversos estudos na area para dguas oceanicas (Donlon et al., 2002; Minnett et al.,
2011, 2019), onde a correcao deste efeito é essencial para modelos climéticos, por exemplo,

poucos sao os esforgos em dguas continentais (Prats et al., 2018).

1.1 Justificativa

Dado o limitado conhecimento de como sao impactados os lagos brasileiros por
forcantes como mudancas na bacia hidrografica e no clima, o sensoriamento remoto
serve como ferramenta para estudar estes impactos de maneira espacializada, com séries
temporais a depender da disponibilidade de dados dos sensores orbitais. Ainda hé limitagoes

no conhecimento de corre¢ao atmosférica e algoritmos de estimativas dos COAs, no caso do
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SR da cor da agua, e da correcao dos efeitos de superficie, no caso do SR da LSWT, e de
como estes afetam a qualidade dos dados providos por SR. Assim, a motivagdo desta tese
¢é contribuir com o conhecimento nestas areas do sensoriamento remoto e, com os dados
validados dos sensores utilizados, avaliar a variacdo espago-temporal de clorofila-a num
complexo de lagunas tropicais rasas impactado por atividades antropogénicas na bacia
hidrogréfica, e de temperatura superficial em um conjunto de lagoas subtropicais costeiras
rasas impactas pelas mudancgas climaticas. Além disso, esta tese também é motivada por
estudar e gerar conhecimento e caracterizaciao destes sistemas, para auxiliar em seu manejo

€ conservacao.

1.2 Questdes cientificas

Esta tese pretende responder a seguinte questao cientifica:

e quais sao os padroes de variagao espaco-temporal de parametros da qualidade da
agua em dois conjuntos de lagoas costeiras rasas? Quais sdo as forgcantes que mais

influenciam estes padroes?

1.3 Objetivo

Esta tese possui dois objetivos principais:

« avaliar os padroes de variacao espago-temporal de parametros da qualidade da dgua
e suas forcantes em dois conjuntos de lagoas costeiras rasas a partir de bases de

dados de sensoriamento remoto validadas com dados de campo
Como objetivos especificos, tem-se:

o gerar um produto padronizado de concentragao de clorofila-a derivado do sensor
Sentinel-2 MSI para o Complexo Estuarino-Lagunar Mundat-Manguaba (CELMM)
a partir de validacao de uma combinacao de algoritmos de correcao atmosférica e

estimativa de concentracao de clorofila-a

o melhorar a compreensao de como o tipo 6ptico da agua influencia na correcao
atmosférica e na estimativa de concentragao de clorofila-a por sensores a bordo de

satélites

« avaliar a variagao espago-temporal do fitoplancton neste complexo, quais sao suas

forgantes, e possiveis fatores limitantes na produtividade
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o gerar um produto padronizado de temperatura superficial da agua para um conjunto
de grandes lagoas subtropicais costeiras rasas derivado do sensor MODIS a partir da
validacao de algoritmos de correcao do efeito de cool-skin desenvolvidos para dguas

oceanicas

« avaliar o impacto desta correcao no calculo de tendéncias da temperatura superficial

e no balanco de calor deste conjunto de lagoas

 analisar o efeito de duas décadas de variabilidade climética na temperatura superficial

e no balanco de calor destas lagoas

1.4 Organizacdo da tese

Esta tese tem uma divisao clara em duas partes, referentes as duas areas de estudo
deste trabalho. Os dois primeiros capitulos foram desenvolvidos no CELMM, e os dois
ultimos nas grandes lagoas do Rio Grande do Sul, e em cada area de estudo, este trabalho
se propos a avaliar diferentes pardmetros com diferentes ferramentas. Em ambos os casos, o
primeiro capitulo refere-se a melhorias metodolégicas (sensoriamento remoto), e o segundo
capitulo refere-se a aplicacao da ferramenta para entendimento de processos (limnologia).
Apds o Capitulo 2, que contém curto um referencial tedérico para o trabalho que foi
desenvolvido aqui, os estudos foram desenvolvidos e apresentados nos Capitulos 3 a 6 para

responder a questoes cientificas, escritos na forma de artigos em inglés:

o Capitulo 3:

Correcao atmosférica e de sunglint para estimativa de clorofila-a num sistema

estuarino-lagunar produtivo tropical usando imagens Sentinel-2 MSI
Validacao de correcao atmosférica e sunglint e de algoritmos para estimativa de
clorofila-a utilizando o Sentinel-2 no CELMM.

o Capitulo 4:

Avaliacao da dindmica a curto-prazo do fitoplancton em um antropisado sistema

estuarino-lagunar eutréfico tropical utilizando série temporal do Sentinel-2 MSI
Avaliagdo da dinamica do sistema através da andlise da série temporal validada no
CELMM durante o periodo de funcionamento do sensor.

o Capitulo 5:

Impacto da correcao do efeito de cool-skin sobre as tendéncias da temperatura

superficial da dgua e o balanco de calor de trés grandes lagoas rasas subtropicais

Estudo de melhoria de dados de temperatura superficial da agua derivados do MODIS

e seu efeito.
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o Capitulo 6:

Altas taxas de aquecimento na primavera em trés grandes lagoas rasas subtropicais

no sul do Brasil detectadas com imagens MODIS

Analise de tendéncias de aquecimento e suas forgantes nestas trés lagoas durante o

periodo de funcionamento do sensor a partir do produto validado.

A primeira parte, composta pelos Capitulos 3 e 4, refere-se a melhorias na questao
metodolégica do sensoriamento remoto da clorofila-a, avaliando o impacto da correcao
atmosférica e da sele¢do/calibracao de algoritmos na estimativa de chla, tendo como estudo
de caso o Complexo Estuarino Lagunar Mundatu-Manguaba e os sensores Sentinel-2 MSI,
e analise, com estes dados, da dindmica a curto-prazo da comunidade de fitoplancton

durante a duragao da série deste sensor.

A segunda parte, composta pelos Capitulos 5 e 6, estudou a temperatura das
grandes lagoas rasas do Rio Grande do Sul, primeiro analisando a melhoria da precisao de
dados de temperatura superficial da dgua derivados do sensor MODIS, e sua aplicacao
para estudar o impacto das mudancas climéticas recentes na temperatura superficial da

agua das lagoas Mangueira, Mirim e dos Patos.
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Capitulo 2

Referencial tedrico

2.1 Forcantes externas e impactos antropogénicos e climaticos em
lagos

Lagos sao considerados sentinelas das mudancas climaticas, pois variagoes climaticas
afetando a bacia hidrografica ou a atmosfera vao se refletir em alteragoes nestes ecossiste-
mas (Adrian et al., 2009; Williamson et al., 2008). Além disso, o aporte de substancias
carreadas pelos rios tributarios de lagos afetam diretamente a estrutura e funcionamento
dos ecossistemas. Estes aportes influenciam as taxas de aporte de nutrientes, matéria
organica e sedimentos, que por sua vezes afetam diretamente a producgao primaéria e os
produtores (Wetzel, 2001).

Pesquisas recentes mostram, por exemplo, que a variabilidade das origens e quan-
tidade de matéria orgéanica dissolvida (DOM) vinda da bacia tém uma ligacdo direta
e nao-linear com a produgao primaria destes corpos hidricos, pois a variabilidade na
estequiometria de nutrientes:carbono (disponibilidade de nutrientes) na DOM e a cromo-
foricidade (redugao da quantidade de luz) do DOC (carbono organico dissolvido) criam
diferentes relagdes entre produtividade e DOM (Kelly et al., 2018; Olson et al., 2020).
Outros trabalhos mostram que mudancas no aporte de DOC também podem mudar a
composicao da biota de um lago, causando uma mudanca de dominancia de produtores
primarios (Jansson et al., 2000; Zhang et al., 2020), e a variagdo na disponibilidade de
nutrientes, pode impactar os servigos ecossistémicos providos por estes corpos d’agua
(Janssen et al., 2021).

O clima local afeta diretamente os ecossistemas aquaticos. As trocas de energia que
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ocorrem nestes ecossistemas sdo, em sua maioria, dependentes de reagoes quimicas cuja
velocidade depende da temperatura (lei de Arrhenius), e esta é, por isso, uma variavel chave
nestes ambientes, controlando, por exemplo, a solubilidade de gases, taxas de predagao e
distribuigao de espécies (Wetzel, 2001). A temperatura da dgua (73,) depende sobretudo do
balanco de calor na superficie, que é determinado pelas condigoes atmosféricas: radiacao
incidente na superficie da dgua, velocidade do vento, e, principalmente, da temperatura do
ar (Piccolroaz et al., 2013). Outras caracteristicas do corpo hidrico também moldam como
o clima afeta a variagao fisica do lago, como a sua morfologia, que molda a superficie de
troca de calor entre a dgua e a atmosfera (Ptak et al., 2018; Gonzélez-Avila et al., 2021),
e turbidez, que influencia o albedo (razao entre a radiacao refletida e a radiagao incidente
sobre a superficie) da dgua e, portanto, mudancas na turbidez podem influenciar o balango
de calor e a estratificagdo térmica (Heiskanen et al., 2015; Rose et al., 2016; Richardson
et al., 2017).

Além destas, outras variaveis ambientais também alteram diretamente o regime
de lagos, influenciando diretamente a sua hidrodindmica, que tém relacao direta com a
disponibilidade de nutrientes, a temperatura e a produtividade (Cavalcanti et al., 2016).
Em lagos rasos, por exemplo, a velocidade do vento pode ser determinante na hidrodina-
mica, promovendo mistura e prevenindo estratificacdo térmica, que tem grande influéncia
na comunidade fitoplanctonica, além de poderem ser mais afetados por ressuspensao de
sedimentos, reduzindo a transparéncia da agua (Crossetti et al., 2014). Padroes de precipi-
tacao e vazao afluente também tem papel importante na hidrodindmica de certos lagos,
pois além do aporte de substancias vinda da bacia, aumentam o nivel da dgua e podem
causar diluigdo de nutrientes. Oleksy et al. (2021) mostrou que pardmetros como tempo
de residéncia, razao area da bacia:area do lago e conectividade hidrolégica influenciam a
variacao do metabolismo de lagos em razao de variabilidade de chuvas. Eventos extremos
de precipitagao também podem alterar significativamente o estado destes ecossistemas,

podendo ser causadores de floragdo de algas pelo aporte subito de nutrientes (Yang et al.,
2016).

Dada a grande influéncia das forcantes externas sobre as condig¢oes destes ecossiste-
mas aquaticos, se evidencia a necessidade de quantificar ou estabelecer relacoes entre estas
forcantes e a qualidade da agua destes sistemas, e estudar os impactos de mudancas nestas
forcantes. Numa revisao bibliografica sobre as pressoes sobre grandes lagos ao redor do
globo, Jenny et al. (2020) mostrou a devido a proximidade a grandes populagoes, mudancas
de uso do solo e sinergia entre diversos estressores tém deteriorado a qualidade da agua de
grandes lagos. A Figura 2.1 mostra uma panorama das principais mudancas exercendo
pressdo sobre grandes lagos em cada continente ao redor do globo, como eutrofizac¢ao (prin-
cipalmente por aumento de fésforo), mudangas na dindmica do DOC, sobrepesca, excesso

de retirada d’dgua, e aquecimento, deteriorando a qualidade da dgua destes ecossistemas.
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Figura 2.1 — Principais mudancas exercendo pressao sobre grandes lagos em cada con-
tinente, ressaltando a pressao por aumento de poluicao pontual e difusa e
aquecimento nos grandes corpos d’dgua brasileiros. (Fonte: Jenny et al. 2020)

Mudancgas na bacia ou no aporte de nutrientes tém efeitos diretos na composicao e
distribuicao de espécies, reducao da transparéncia da agua, aumento de anoxia, perda de
biodiversidade, e aumento de eventos de floracao de algas, que podem deteriorar ainda mais
a qualidade da dgua (Jenny et al., 2020; Amorim e Moura, 2021). Além disso, as mudangas
no aporte de DOM também afetam diretamente a producao priméria e a disponibilidade

de oxigénio, como ja afirmado acima (Olson et al., 2020).

As mudancas climaticas vém causando e irdo causar mudangas nestes ambientes
(Woolway et al., 2020); O’Reilly et al. (2003), por exemplo, em um trabalho seminal,
mostrou que houve variacao na produtividade primaria do Lago Tanganyika em funcao de
variagoes no clima local. Diversos estudos ja mostraram que houve aumento na temperatura
superficial de lagos (LSWT, do inglés lake surface water temperature) (Livingstone, 2003;
Schneider e Hook, 2010; O’Reilly et al., 2015). Em muitos casos, a LSWT tém aumentado,
inclusive, mais rapidamente do que a temperatura do ar local, mostrando a sinergia
entre as mudancas de componentes atmosféricas afetando lagos (Lenters et al., 2005),
principalmente devido ao aumento de radiagao solar (O'Reilly et al., 2015; Schmid e Koster,
2016) ou diminuicao sistémica da velocidade do vento na superficie (Woolway et al., 2019).
Estes parametros, junto com a temperatura, afetam diretamente o balango de calor e a
hidrodindmica de lagos (Woolway et al., 2018), e o impacto destas mudangas nestes fluxos

de calor sdo complexas (Fink et al., 2014; Woolway et al., 2019).

Estas mudancas, na maioria das vezes, nao sao constantes ao longo do ano, mas sim
apresentam uma forte componente sazonal em funcao da variagdo sazonal da temperatura

(Winslow et al., 2017; Kelleher et al., 2021) ou de aumento acentuado em funcao de
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acentuada estratificacao térmica, que reduz a camada d’agua interagindo com a atmosfera
e modifica os padroes de balango de calor quando a estratificagao ocorre (Lee et al., 2012;
Woolway e Merchant, 2018; Toffolon et al., 2020). A estratificagdo térmica também é
diretamente afetada por caracteristicas como morfologia (Kraemer et al., 2015) e velocidade
do vento, e mudancas no vento podem resultar em variacdo mais acentuada no balanco de
calor superficial (Woolway et al., 2019). Além disso, estas variagoes sazonais tem impacto
adicional sobre o funcionamento dos ecossistemas, como modificagoes na fenologia dos

produtores primdrios (Deng et al., 2014).

Um resumo dos impactos das mudancas climaticas sobre lagos pode ser visto na
Figura 2.2. Estes incluem mudancas no balago térmico, reducao da cobertura de gelo,
aumento da estratificagdo térmica e do balang¢o hidrico (Woolway et al., 2020). Como
resposta a estas mudangas ocorre, por exemplo, redugdo do oxigénio dissolvido (a sua
solubilidade diminui com a temperatura), podendo aumentar a hipoxia de dguas profundas,
alteragoes na produtividade primaria, e modificagoes no habitat relacionados a temperatura
da dgua (tanto vertical como horizontalmente) (Jenny et al., 2020; Halverson et al., 2021;
Hansen, 2021).

|
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Figura 2.2 — Fluxograma ilustrando os impactos fisicos das mudancas climaticas em lagos,
como mudancas nos fluxos de energia, balanco hidrico, e mistura por vento.
(Fonte: Woolway et al. 2020)
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Assim, o entendimento de quais mudancas estao ocorrendo, com qual intensidade,
e como estas afetam os ecossistemas aquaticos é essencial. Nesse sentido, o sensoriamento
remoto se mostra como uma excelente ferramenta para esta tarefa, provendo dados
consistentes e espacializados de alguns parametros limnolégicos que tém grande valor
nestes estudos, como por exemplo para estimar a taxa de aumento da temperatura
superficial de lagos (Woolway e Merchant, 2018; Toffolon et al., 2020) e como estas afetam
o habitat e a distribui¢do espacial de espécies (Halverson et al., 2021; Hansen, 2021). A

sessao a seguir faz um resumo de como esta ferramenta pode ser utilizada na limnologia.

2.2 Sensoriamento remoto de variaveis limnolégicas

O sensoriamento remoto é uma grande ferramenta para ajudar a compreender
a variacao espacgo-temporal de varidveis resposta de ecossistemas aquaticos, e tem sido
cada vez mais tanto estudado e desenvolvido para fornecer melhores produtos, como
em aplicacoes para o entendimento de impactos antropicos e climaticos sobre ambientes
aquaticos l6ticos e, principalmente, lénticos. Isto se deve nao s6 ao crescimento do niimero
de sensores com caracteristicas 6timas para o sensoriamento da cor da dgua, como também
as limitagoes do monitoramento continuo quanto a acurada descricao espago-temporal de
processos que ocorrem nestes ambientes (Dornhofer e Oppelt, 2016). Esta revisao mostra
um pequeno panorama do sensoriamento remoto de aguas continentais, mostrando as
principais varidveis que podem ser estimadas, o procedimento, as limitagoes e os erros

geralmente associados a estas estimativas.

O sensoriamento remoto de dguas continentais ou interiores (em inglés inland
waters) também é conhecido como sensoriamento remoto da qualidade da dgua ou da
cor da dgua (water colour), neste ultimo caso quando considerando apenas a radiacao
de ondas curtas, que inclui a regiao do visivel. Como considerarei também o espectro de
ondas longas, para estimativas de temperatura da agua, usarei entao a terminologia de
sensoriamento remoto de d4guas continentais, que é mais geral. Além disto, aqui trataremos
mais especificamente do SR da dgua por sensores orbitais (a bordo de satélites), e quando

tratarmos de medi¢oes de campo, por espectroradidmetros, isto sera especificado.

O SR da cor da agua se baseia na interacao entre a radiagdo eletromagnética e a
matéria, que neste caso nao apenas os constituintes da agua — incluindo a agua — como
também a atmosfera. Isto foi, inicialmente, aplicado para estudos de aguas oceanicas,
que proveu uma base inicial de conhecimento para o SR de aguas interiores. Este é
comparativamente muito mais recente do que o da terra ou dguas oceénicas (Topp et al.,
2020). Isto porque, além do fato da limnologia ser uma area mais restrita e recente, também
apresenta maior complexidade por a cor da dgua ser, em geral, muito mais escura (sinal

mais baixo) do que a da superficie terrestre, e muito mais diversificada do que aguas
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ocednicas (Topp et al., 2020). A exemplo de curiosidade, a primeira missao orbital com
diferentes bandas espectrais, o Landsat 1, lancado em 1972, foi designado principalmente
para estudos de recursos naturais terrestres, com poucas aplicacoes nas relativamente

escuras aguas oceanicas e interiores.

Desde entao, as bandas dos sensores foram consideravelmente modificadas para
incorporar aplicagoes do SR da cor da agua. A Figura 2.4 e a Tabela 2.1 resumem todas
as variaveis limnoldgicas que podem ser estimadas por SR. Sdo muitas as propriedades
da agua cuja informagdo pode ser obtida por SR, o que provém uma potencial base
de dados imensa para se melhor compreender os ecossistemas aquaticos e o impacto de
forcantes externas sobre eles. Contudo, ressalta-se que o SR de ecossistemas aquaticos é
relativamente recente, como mencionado anteriormente, e ainda ha muitos desafios para

expandir sua aplicabilidade na limnologia, principalmente para os sensores mais recentes.

Tabela 2.1 — Lista das propriedades de lagos, as suas variaveis-resposta, e os indicadores
estiméveis por sensoriamento remoto (adaptado de Adrian et al., 2009 e
Dérnhofer e Oppelt, 2016).

Propriedade | Variavel Indicador estimavel
DOC CDOM
material particulado suspenso (SPM)
~ .| Turbidez turbidez
Transparéncia

coeficiente de atenuagao difusa (Kj)
profundidade de disco de Secchi (zgp)

Disco de Secchi profundidade da zona eufética (z,)

: R hi
Biomassa de fitoplancton C “
Ficocianina
. Fenologia Bloom de algas
B .
1ota Macrofitas submersas
Composigao de espécies Macrofitas emersas

Sedimento de fundo
Nivel (altimetria)
Hidrologia Nivel Batimetria

Area inundada
Temperatura | Temperatura epilimnética | Temperatura superficial

Inicialmente, nesta se¢ao vou dar uma introdugao ao sensoriamento remoto de dguas
interiores, e entao, as subsegoes seguintes focarao apenas nas trés variaveis estimadas neste
trabalho, clorofila-a, matéria organica cromoférica dissolvida (CDOM), e temperatura,
além do processo de remocao da influéncia da atmosfera no sinal medido pelos sensores

orbitais, conhecido como correcao atmosférica.

E sabido que a luz solar entra na agua, interage com as moléculas de dgua e outros
materiais que interagem com a luz, e parte desta luz é retroespalhada para fora da agua,
denotando sua cor, o que provém informacoes sobre o corpo d’agua e os materiais ali

presentes (Gordon, 2019). Portanto, a informagao da relagao entre a luz incidente e a luz
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Figura 2.3 — Figura ilustrando a interagao da radiagdo solar com a matéria apds a entrada
na atmosfera e seu caminho até atingir os sensores, e as propriedades de
dguas interiores que podem ser estimadas por sensoriamento remoto. (Fonte:

Dornhofer e Oppelt 2016)

retroespalhada, e de como os materiais presentes na dgua interagem com a luz, formam o
principio basico de funcionamento do SR da cor da dgua. Os materiais que interagem com
agua sao conhecidos como constituintes opticamente ativos (COAs), e sao 4: pigmentos
fotossintetizantes, principalmente a clorofila-a, presentes no fitoplancton; material organico
dissolvido na agua e que interage com a luz, conhecido como cromoférico ou colorido;
particulas nao-algais suspensas, ou material particulado suspenso; e a prépria agua. Estes
4 componentes possuem propriedades Opticas inerentes e interagem com a luz de maneira
complexa, e as diferentes concentragoes entre si levam a diferentes comportamentos de
interacdo com a luz, interferindo entre si. Aguas que contém os 3 componentes (além
da dgua) sdo chamadas de opticamente complexas pela dificuldade na quantificacao das
concentragoes destes constituintes por conta desta interagao (Gordon, 2019). Esta interagao
gera tantas possibilidade de cores de agua, que levou a criagdo de subgrupos de tipos opticos
da dgua (optical water types, OWTS), com o objetivo de se definir possiveis simplificagoes
para cada grupo, assim como os melhores modelos biofisicos de estimativas dos COAs.

Spyrakos et al. (2018), por exemplo, propos 13 grupos de OWTs para dguas continentais,



Capitulo 2. Referencial tedrico 34

e mais 9 grupos de OW'Ts para aguas costeiras. Subsequentes trabalhos utilizaram esta
divisdo para propor os melhores algoritmos para cada grupo (Neil et al., 2019; Pahlevan
et al., 2021).

Estas subdivisoes mostram como as aguas possuem diferentes cores em funcao
da interagao dos constituintes com a luz. Estes interagem de dois modos: por absorcao
ou espalhamento. A cor que observamos é o resultado da luz solar que é retroespalhada
pela superficie observada, num comprimento de onda aproximado de 400 a 700 nm, como
mostrado na Figura 2.3. Portanto, uma superficie azul como a 4gua do oceano absorve a luz
nos comprimentos de onda do verde até o vermelho, e espalha a luz no azul. Nesse sentido,
o CDOM possui um comportamento de absor¢ao principalmente no azul e verde, o que faz
com que aguas ricas em CDOM tenham uma coloracao azul escura. Fitoplancton absorve a
luz principalmente no azul e vermelho, tendo uma coloragao geralmente esverdeada, embora
haja grande variacao dentre grupos e espécies de individuos fotossintetizantes e pigmentos.
O sedimento inorgéanico espalha muita luz, aparecendo claro na maior parte do espectro,
principalmente do verde ao vermelho, tornando as dguas marrons. Este conhecimento de
como os COAs interagem com a luz ao longo do espectro, isto é, suas curvas de absorcao e

retroespalhamento, formam a base dos algoritmos para sua quantificacao.

Low frequency
Long wavelength

High frequency

Short wavelength Energy decreasing with increasing wavelength —=

Gamma X-rays Ultra- | | Infrared (IR)| Radar |FM| TV | Short |Long
violet wave |wave (AM)
T T T T T T
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Figura 2.4 — Espectro da radiagao eletromagnética. (Fonte: Purkis e Klemas 2011)

Devido a complexidade da interacao dos COAs com a luz, nos algoritmos de quanti-
ficacdo dos constituintes geralmente sao utilizados os picos de absorc¢ao e espalhamento da
luz pelos COAs, principalmente aqueles que sao tnicos aquele COA. A Figura 2.5 mostra
um exemplo do padrao de absorcao da luz pelos COAs, neste caso em aguas eutroficas,
com grande presenga de fitoplancton. Por exemplo, em aguas ocednicas onde ha a presenca
apenas de dgua e fitoplancton, sao utilizadas bandas do verde (560 nm) e do azul (440 nm)

para estimar a concentracao de clorofila-a, contudo para aguas produtivas com presenca de
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CDOM, que absorve luz nestas faixas, se utilizando modelos nas faixas do verde e red-edge
(700 nm), onde ha pico de espalhamento e absor¢ao da luz pelo pigmento (Gitelson e

Kondratyev, 1991; Dall’Olmo et al., 2003).

20 ter T UL LR S T ) T L . . O T O
La e Phycocyanin |/
[ Tripton ]
0l CDOM i
— Water 1
— Phytoplankton ||

Wavelength(nm)

Figura 2.5 — Exemplo de coeficiente de absorcao, a()\), dos COAs ao longo do espectro
medidos em um conjunto de 15 tanques de aquacultura no Delta Research
Extension Center. (Fonte: Mishra e Mishra 2014)

A partir do conhecimento dos COAs e da cor da 4gua, se faz possivel também
estimar outras varidveis limnoldégicas. A turbidez (transparéncia) da dgua, por exemplo, é
o resultado da interacdo entre estes 4 COAs, e é estimado a partir de modelos de turbidez
ou outros indicadores de transparéncia da agua, por exemplo com o disco de Secchi, muito
utilizado por sua facilidade de medicao e bons resultados, além de existirem relagdes para
se estimar a profundidade da zona eufética e o coeficiente de atenuacao difuso (Lee et al.,
2015; Ji, 2017).

Para quantificar pardmetros por sensores orbitais, se faz necessario primeiro corrigir
a intensidade da luz que é medida pelo sensor (conhecido como radiagdo de topo da
atmosfera, top of atmosphere — TOA) para a superficie (conhecido como radia¢ao de fundo
da atmosfera, bottom of atmosphere — BOA). Este procedimento, conhecido como corregao
atmosférica, é bastante complexo, envolve varias variaveis, e é sucintamente descrito a

seguir.

2.2.1 Correcdo atmosférica

O processo de compensacao pelo espalhamento e absorcao da atmosfera e dos
efeitos de reflexdo na superficie da agua (skyglint and sunglint) do sinal medido no topo da
atmosfera (TOA) é conhecido como o processo de corre¢ao atmosférica (AC — atmospheric

correction). Este processo é essencial para uma correta extragao da reflectancia da superficie
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da dgua (p,) e de todos os produtos que dela derivam. Este processo é bem sucedido sobre
aguas oceanicas, porém em aguas continentais e costeiras ainda ha bastante incerteza e
erros, em especial em sensores mais recentes, e isto limita a geragao de produtos derivados
destes dados (Pahlevan et al., 2021).

O processo de correcao atmosférica é bastante complexo por haver muita interfe-
réncia da atmosfera no sinal medido pelos sensores, principalmente na faixa do visivel,
sendo mais intenso no azul e decaindo com o comprimento de onda, podendo representar
mais de 90% do sinal medido no TOA (Barbosa et al., 2019). Além disso, o reflexdo da luz
na superficie, conhecida como glint, em que a reflexdo do céu, conhecida como skyglint, e
do disco solar, conhecida como sunglint, afetam diretamente a medicao correta da cor da
agua, influenciam nao apenas o sinal medido por sensores orbitas como também medi¢oes
de campo, utilizando espectroradiémetros, que devem ser cuidadosamente coletados de
maneira a compensar por estas duas reflexoes. A Figura 2.6 resume como a agua e a
atmosfera interagem com a luz até esta chegar no sensor. As substancias presentes na
agua (COAs) interagem com a luz e sdo responsaveis pela cor da dgua, mas a radia¢ao
medida pelo sensor também inclui as componentes da atmosfera e de glint. Cada um destes
componentes sao resumidos pela equagao de transferéncia radiativa (sem considerar efeitos

de adjacéncia):

pr(A) = tpw(A) + [pr(A) + pa(A) + par(N)] + Lgpg(A) (2.1)

em que p; € a reflectancia no topo da atmosfera, ¢ é transmitancia difusa da atmosfera, p,
¢é a reflectancia de Rayleigh, p, ¢ a reflectancia dos aerosséis, p,, ¢ o espalhamento por
aerossoOis e espalhamento Rayleigh, p, ¢ a reflectancia por glint, e ¢, ¢ a transmitancia
da radiacao especular pela atmosfera. Em certos algoritmos de correcao, os componentes

entre colchetes podem ser calculados juntos como ppath-

A transmissividade difusa é computada conhecendo as transmissoes por moléculas
na atmosfera e aerossois. A componentes dos aerosséis é a mais dificil de ser estimada,
e pequenos erros nesta componente podem levar a grandes erros em p,,, principalmente
em fungao do baixo sinal da reflectancia da dgua (absorve muita luz) (Gordon e Wang,
1994; Barbosa et al., 2019). Por isto, esta é a componente que apresenta maior diversidade
de métodos de estimativa (Pahlevan et al., 2021). Em dguas ocednicas, sua estimativa
é facilitada por haver quase nenhuma radiacdo da dgua no NIR (suposi¢do de pixel-
negro) e haver homogeneidade espacial de aerossdis com pouca absor¢ao de luz. Em dguas
continentais ou costeiras, a reflectancia da agua no NIR é muitas vezes significativa em
funcao de sedimento que espalha luz nesta faixa, além de haver presenca de multiplos
aerossois com variabilidade espacial e espalhamento por aerossoéis de superficies terrestres

que afetam p,q, (efeito de adjacéncia) (Moses et al., 2017; Bulgarelli e Zibordi, 2018).

O trabalho de Pahlevan et al. (2021) realizou um grande estudo de revisao e
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Figura 2.6 — Imagem mostrando como a luz interage com a atmosfera e a dgua até chegar
ao sensor orbital. Os p’s indicam os componentes que interagem com a luz e
influenciam no sinal medido pelo sensor. (Fonte: Barbosa et al. 2019)

comparagao dos principais processadores de AC para os dois principais sensores de média-
resolucao com usabilidade em aguas interiores, Sentinel-2 MSI e Landsat 8 OLI. Em geral,
os processadores podem ser divididos em duas grandes categorias, modelo de duas etapas
e modelos de aprendizado de maquina. No primeiro, os efeitos de absor¢ao sao removidos
primeiro e entao a contribuicao por aerossol é estimada. Esta contribuicao, como dito
anteriormente, é a que apresenta maior variabilidade de métodos, podem ser de abordagens
terrestres ou oceanicas adaptadas a aguas continentais, ou abordagens espectrais. J& os
modelos de aprendizado de maquina sao redes neurais artificiais que foram calibradas com
dados medidos de reflectancia de campo e de satélite, informacoes de geometria de visada,
e parametrizac¢oes atmosféricas e de constituintes da agua para a estimativa da reflectancia
da dgua (Doerffer e Schiller, 2007). Este estudo testou 8 processadores de AC, e mostrou
que ha grande variabilidade de desempenho entre os varios processadores de acordo com a
banda e 0o OWT, além do impacto disso nas estimativas de clorofila-a e solidos suspensos
totais, principalmente considerando como os diferentes desempenhos nas bandas afetam a
forma espectral de p,,. Mais informagoes sobre o funcionamento dos processadores de AC

estao incluidos no Capitulo 3 desta tese, em que é apresentada uma pequena descricao de
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como cada processador testado funciona, suas simplificagoes e suposigoes.

Além destes desafios relacionados a composicao atmosférica, os efeitos de superficie
também tem consideravel efeito na estimativa de p,,. A Figura 2.7 mostra a ocorréncia
de sunglint numa imagem do Sentinel-2 MSI sobre as lagoas Mangueira e Mirim, areas
de estudo desta tese. Esta reflexdo direta do disco solar causa uma grande mudanga na
reflectancia da dgua medida pelo sensor, podem até ocasionar saturacao das bandas. Ela
afeta a superficie da agua principalmente quando o angulo zenital solar é alto, que ocorre
durante o verao, mas em regioes proximas ao Equador pode ocorrer ao longo do ano
(Harmel et al., 2018). Para a sua corregao, uma das abordagens é considerar que a radiagao
residual medida no infravermelho de ondas curtas (SWIR) apés a corregao atmosférica é
toda devido ao sunglint, e entao utilizar um modelo espectral linear para corrigi-lo nas
demais bandas (Barbosa et al., 2019). O modelo do GRS (Glint Removal for Sentinel-2),
utilizado no Capitulo 3, se baseia nisso, porém a correcao espectral é feita utilizando uma
estimativa da fungao de distribuigao de reflectancia bidireccional (BRDF) no SWIR e da
t, (Harmel et al., 2018).

Figura 2.7 — Imagem do Sentinel-2 MSI sem corre¢ao atmosférica mostrando a ocorréncia
de sunglint sobre a parte sul da lagoa Mangueira, e em algumas area da lagoa
Mirim, mais a oeste.

Além do sunglint, os efeitos de adjacéncia também podem ter grande efeito na
estimativa da reflectancia da agua, principalmente em corpos d’agua proximos a superficies

brilhantes como dreas urbanas (Bulgarelli e Zibordi, 2018). A sua corre¢ao é complexa e
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ainda incipiente na literatura para aguas interiores, mas este tema nao foi abordado nesta

tese.

A interacao da atmosfera com a luz decai do azul para comprimentos de onda
maiores, com variacoes. No infravermelho termal, a correcao dos efeitos atmosféricos é
bastante simplificada pois, além de a radiacdo medida ser emitida pela superficie, ou seja,
interagir apenas uma vez com a atmosfera (“up”), os sensores geralmente estao localizados
em janelas atmosféricas, isto é, a interagao entre os compostos da atmosfera e a luz é
minimizada. Como comparagao, da radiacao medida por sensores na faixa do azul, até
90% pode ser devido a efeitos atmosféricos (Moses et al., 2017), enquanto que os efeitos
atmosféricos correspondem a erros de cerca de 1 K da temperatura superficial (Jiménez-
Murtioz e Sobrino, 2006; Coll et al., 2012). A corregao atmosférica no infravermelho termal
geralmente é feita juntamente com a transformagao de temperatura de brilho (medida
pelo sensor) para temperatura de superficie, e este processo é melhor explicado na se¢ao

sobre o sensoriamento remoto da temperatura.

2.2.2 Clorofila-a

O fitoplancton é o conjunto de organismos aquaticos microscopicos fotossinte-
tizantes que nao consegue se mover na agua, apenas verticalmente controlando a sua
flutuagao, e vivem portanto dispersos na agua. Eles formam a base da cadeia alimentar dos
ecossistemas aquaticos, iniciando o fluxo de energia do sol para a teia trofica, e produzindo
aproximadamente metade do oxigénio terrestre (considerando também o fitoplancton
oceénico). Seu entendimento é essencial para a compreensao de ecossistemas aquaticos
terrestres ou ocednicos, sua estrutura e funcionamento, e como as mudancas climaticas

irao impactar estes ecossistemas.

A necessidade de mapear fitoplancton por sensoriamento remoto é antiga (Gordon,
2019), porém a forma como o fitoplancton interage com a luz é bastante complexo. O efeito
medido ¢ o de milhoes de células interagindo com a luz através de suas diferentes células
fotossintetizantes, com diversos fatores que afetam esta interagao (absorcao e espalhamento)
como o tamanho e formato das células, a variedade de grupos de organismos, a pigmentacao

(conjunto de pigmentos que absorvem luz), e a sua estrutura celular (Matthews, 2017).

O pigmento clorofila-a (chla) tem sido amplamente utilizado como prozy da bio-
massa de fitoplancton nao apenas no sensoriamento remoto como na limnologia em geral.
Este é quase sempre o principal pigmento de absor¢ao de luz, e tem comportamento
espectral bem conhecido. Como afirmado anteriormente, contudo, a contragao de chla
varia entre os diferentes grupos de fitoplancton, com diferentes configuragoes de luz, e
até com o tamanho das células destes organismos (efeito de empacotamento), o que,
somada a variabilidade na coluna d’agua (multiplos grupos ao mesmo tempo), aumenta a

complexidade das estimativas de chla por sensoriamento remoto (Matthews, 2017).
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A base de algoritmos de estimativa de chla sdo o seu comportamento espectral, i.e.,
picos de absorcao e espalhamento de luz. Como mostrado na Figura 2.5, a chla apresenta
picos de absor¢ao no azul (440 nm) e vermelho (670 nm), e picos de retroespalhamento no
verde (560 nm) e infravermelho préoximo (a partir de 700 nm). Logo, uma maior biomassa
de fitoplancton na dgua provavelmente terd (esta relagdo nao é linear e depende de uma
série de fatores, como dito anteriormente) uma maior concentragao de chla, com maior
absorcao no azul e vermelho e reflexao no verde, resultando em dguas mais esverdeadas.
Esta relacao é a base de algoritmos semi-empiricos relacionando a razao da luz azul e a
verde com a chla. Um dos algoritmos mais conhecidos é o desenvolvido para o MERIS
(OC4Me) (O’Reilly et al., 1998):

chla = 10" (ap + a1z + axz® + azx® + asz”) (2.2)
em que
Rrs
x = log, <Rrs:> (2.3)
Ryer = max|Rys(443), Rys(489), Rys(510)] (2.4)
R, o = R,4(560) (2.5)

Este algoritmo é a base de algoritmos de cor do oceano e ele e suas derivagoes sao

utilizadas até hoje para estimativas de chla em lagos de aguas claras.

Para aguas opticamente complexas com quantidades significativas de material
suspenso e, principalmente, CDOM, a absorcao é a soma destes 3 componentes. Por
exemplo, no pico de absorcao do fitoplancton em 440 nm, a absorcao da luz por CDOM é
bastante alta (Figura 2.5), e em dguas com bastante detrito e CDOM o uso de algoritmos
no azul se torna inviavel devido a soma disto ao baixo sinal resultante nesta faixa, e aos
efeitos atmosféricos, que sao mais altos no azul (Moses et al., 2017). Nestes casos, outras
informagoes sao utilizadas para se estimar chla nestas condigoes.

De maneira analoga, muitos algoritmos utilizam o outro pico de retroespalhamento

3 como mostrado

da chla, em 700 nm em diante para concentragoes acima de 10 mg m™
na Figura 2.5, que geralmente tem alta correlagdo com a concentragao de chla (Gons
et al., 2002). Enquanto em aguas apenas com ou dominadas por fitoplancton a banda do
verde ¢é utilizada, em dguas com concentragoes significativas de CDOM e NAP a banda de
700 nm (red-edge) é preferivel por conta da influéncia maior destes dois COAs no verde.
Algoritmos semi-empiricos semelhantes ao OC4 sao utilizados, porém utilizando as bandas
do vermelho (alta absor¢ao da luz) e red-edge (alto retroespalhamento da luz), em vez do
azul e verde (Gitelson e Kondratyev, 1991; Dall’Olmo et al., 2003). Esta é a base de muitos
algoritmos desenvolvidos para dguas interiores mesoeutroficas, como mostrado em Neil

et al. (2019). Alguns exemplos sdo o modelo de razao de bandas (Gitelson e Kondratyev,
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1991; Moses et al., 2009):
R,4(708)

hla oc 2\ 0
R (665)

(2.6)

O modelo de trés bandas (Gitelson et al., 2003; Dall’Olmo et al., 2003; Moses et al.,
2009):
chla o [R,(753) x (R (665) — Ry, (708))] (2.7)

E o0 modelo de indice de bandas (Band Index) (Dall’Olmo e Gitelson, 2005; Gitelson
et al., 2008; Le et al., 2009; Yang et al., 2010):

R-1(665) — R-1(708)
chla (le<753) - Rm1(708)> (2.8)

Outro grupo de algoritmos sao os semi-analiticos, que utilizam alguma forma de
relacdo entre as propriedades épticas inerentes (inherent optical properties, IOPs) e a
reflectancia, para estimar o coeficiente de absor¢ao do fitoplancton (a,n,) e, entdo, a chla.
Estes métodos de inversao semi-analiticos geralmente utilizam pressupostos, simplificagoes,
parametrizacdes empiricas ou aproximacoes para as IOPs, ou rela¢des empiricas entre
a reflectancia e a IOP desejada (Mouw et al., 2015). Um exemplo bastante conhecido
deste tipo de modelo é o desenvolvido por Gons et al. (2002), que utiliza bandas do
vermelho e NIR e é parametrizado em funcao do coeficiente de absorcao e simplificagoes
no coeficiente de retroespalhamento. Ele assume que a absorcao da luz na faixa do red-edge
se deve principalmente a agua devido ao alto espalhamento pela chla e pouca influéncia do
CDOM e NAP, e na faixa do vermelho é principalmente pela agua e chla. O coeficiente de
retroespalhamento é assumido como independente do comprimento de onda, e é calculado
analiticamente a partir da radidncia no infravermelho préximo (Gons et al., 2002, 2005,
2008):

TR,s(778)
by =1.61 2.9
b " 0,082 — 0, 67 Ry (778) (29)
e a chla é calculada como:
Rys(708 c
) % (030ua(T08) + By) — ggua(665) — ! 210,

C2

em que zguq(665) = 0,4 m™' e a45u,(708) = 0,7 m™' (Buiteveld et al., 1994) sdo
valores aproximados do coeficiente de absorcao da agua nas faixas do vermelho e NIR,

respectivamente, e ¢ sdo as constantes de calibracao.

Além dos modelos semi-empiricos e semi-analiticos, algoritmos de aprendizado de
maquina tém ganhado espago recentemente na literatura. O mais conhecido deles é o MDN
(Mixture Density Networks), desenvolvido por Pahlevan et al. (2020) para os sensores
Sentinel-2 MSI e Sentinel-3 Ocean and Land Color Imager (OLCI) para estimar chla

para uma grande variedade de dguas continentais. A MDN é uma classe de redes neurais
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combinadas com modelos de mistura (mixture models), que estima fungdes de densidade
de probabilidade, utilizando o método de méaxima verossimilhanca, para extrai o valor
otimo de dada variavel baseado num conjunto de dados de treinamento. Este conjunto
consiste em 1000 dados pareados de R, e chla medidos em campo em aguas continentais
diversas no globo. Para o MSI, os dados de entrada sao as R,; das bandas entre 400-800
nm range (Bl a B7). O algoritmo foi desenvolvido especialmente para sensores orbitais,
porém ele tem certa sensibilidade a correcao atmosférica, isto é, a qualidade dos dados de
entrada de radidncia (Pahlevan et al., 2020).

Outros modelos de chla também utilizam o comportamento da fluorescéncia dos
fotossistemas (principalmente do PSII, em 685 nm), que resulta do descarte de energia
nao usada na fotossintese e é emitida em comprimento de onda maior (menor energia) do
que a absorvida (Matthews, 2017), mas este tema nao serd abordado aqui por nao ter sido

utilizado neste trabalho.

Dada a grande gama de algoritmos disponiveis na literatura e a complexidade das
aguas continentais, ha uma alta variabilidade de erros associados a estas estimativas. Um
valor desejavel de erro estipulado para estimativas de chla por sensores orbitais é de 30%
(Gordon, 2019), mas estes valores também variam devido a amplitude de concentracao de
chla encontrada em aguas interiores. O estudo de Neil et al. (2019), utilizando uma grande
quantidade de dados com diferentes concentracgoes de chla, e variados modelos, encontrou
RMSE de 1,8 a até 251 mg/m?, e quando utilizando os melhores modelos, um valor de
RMSE de 1,8 mg/m? e r = 0,89. H4 também um esforco recente para se entender qual
a melhor escolha para cada caso. Neste mesmo estudo de Neil et al. (2019), os autores
utilizaram a divisao das dguas continentais em OWT feita por Spyrakos et al. (2018) para
testar os melhores modelos em cada OWT. Como resultado foi mostrado que ha grande
variabilidade para a maioria dos OWT, e que ainda ha necessidade de mais estudos neste

tema para delinear as melhores opgoes.

223 CDOM

A matéria orgéanica dissolvida colorida, também conhecida como matéria organica
dissolvida cromoférica (ou gelbstoff ou yellow substance) é a por¢ao da matéria organica
dissolvida que interage com a luz. E uma mistura complexa de carbono, nitrogénio, fosforo
e enxofre com grande variabilidade de composicao, peso molecular e biodisponibilidade, e
¢ importante nos ciclos biogeoquimicos e de fluxo de energia em ecossistemas aquaticos
(Zhang et al., 2020). Recentemente tém atraido mais aten¢ao devido a necessidade de
se mapear e quantificar as fontes e sumidouros de carbono, para melhor compreender o
balanco de carbono no planeta, levando em consideracao trabalhos recentes que mostram a
importancia de ecossistemas aquaticos como processadores de carbono (“active pipe”, Cole

et al., 2007; Tranvik et al., 2009). Em relagao a produtividade primaéria, especificamente
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o CDOM é importante nao apenas pela disponibilidade de nutrientes, mas também por
atuar a luz na agua, controlando a produtividade do fitoplancton pela disponibilidade

de luz, assim como por atenuar a radiagao ultravioleta (UV), nociva a estes organismos
(Seekell et al., 2015).

O CDOM entra em ambientes aquaticos de forma al6ctone, vindo da bacia por
rios tributarios e lancamento de esgotos industriais e domésticos, ou autdctone, por
decomposicao de fitoplancton e plantas macroéfitas, e tem altas variacao espacial e temporal,
o que dificulta a identificacdo de sua origem. Neste sentido, o tempo de residéncia do
corpo d’agua, junto com o que as fontes de CDOM no corpo d’agua, definem a taxa e o
fluxo de geragao e consumo de CDOM (Wetzel, 2001). O monitoramento de CDOM por
sensoriamento remoto é relativamente mais recente, tendo mais desafios para ser estimado
com acurdcia de forma global, e tanto no caso do carbono orgénico dissolvido (DOC)
como do DOM, apenas o CDOM pode ser estimado, e este também é entao utilizado como

um indicador destas outras variaveis, embora esta relagdo ainda nao seja bem conhecida
(Griffin et al., 2018).

O CDOM interage com a luz apenas por absor¢ao, nao havendo espalhamento da
luz. Seu espectro de absor¢ao é préximo a uma exponencial, com pico no UV e azul e
decaimento até o NIR, como mostrado na Figura 2.5. O espectro de absorcao do CDOM
no azul coincide tanto com a absorcao da clorofila-a do fitoplancton quanto a de material
particulado nao-algal (NAP), o que dificulta a sua quantificagao. Por isso, estimativas
de CDOM geralmente usam o coeficiente de absor¢gao (aCDOM) como medida, que pode
ser analisado no espectro do ultravioleta ao visivel (Barbosa et al., 2019). Em aguas
continentais, se usa 0 aCDOM em um comprimento de onda especifico no azul, em funcao

de ser o pico de absorcao.

Os modelos de estimativa de aCDOM estabelecem uma relagao direta entre o
aCDOM e a Rrs, utilizam modelos semi-empiricos de razao de bandas, ou modelos semi-
analiticos de dguas continentais, como feito para a chla (Barbosa et al., 2019). Por ser
mais recente na literatura (Kutser et al., 2015), a maior parte dos modelos sdo empiricos
ou semi-empiricos, estando estes, entao, com aplicacao limitada a area de estudo onde
o modelo foi treinado (Zhang et al., 2020). Além disso, nenhum sensor orbital contém
bandas designadas especificamente para a estimativa de CDOM em &aguas continentais, e
sua acurdcia estd limitada devido a absor¢ao concomitante de CDOM e chla (Brezonik
et al., 2015). Devido a esta caracteristica empirica dos modelos de aCDOM, seus erros
tipicos variam na literatura, de 0,19 m~! a 0,73 m~!, mas com valores de aCDOM que

vao desde 0,1371 a até ~107!, dificultando a comparacao de métricas entre estudos.

Os modelos semi-empiricos de razdao de bandas geralmente seguem a seguinte
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formulacao:
Rrs(A)
CDOM(A\) o« ———=
: () o Rrs(As)
em que A\; e Ay sdo comprimentos de onda onde ha grande e baixa absor¢ao por CDOM,

de preferéncia com pouca influéncia dos demais COAs.

2.2.4 Temperatura

Ao contrario do SR da cor da agua, que se baseia na luz solar refletida pela
superficie, o SR da temperatura superficial se baseia na emissao de radiacao pela superficie
do planeta. Pela lei de Planck, todo corpo emite radiagao eletromagnética em todos os
comprimentos de onda, e a energia irradiada total e o pico, no espectro, em que esta
emissao ocorre dependem da temperatura do corpo. Para a superficie do planeta, a uma
temperatura média de 25°C (300 K), este pico ocorre préximo a 10000 nm (10 pum), na
regido conhecida como infravermelho termal (Figura 2.3), que corresponde também a uma
janela atmosférica nesta regiao, o que faz que a maioria dos sensores termais seja na faixa
de 10 a 12 pum.

Visto que os sensores medem a radiagao medida pelos corpos, a sua medicao é
chamada de temperatura radiométrica, e difere de sua temperatura de fato, esta medida
por um termometro e chamada de temperatura cinética. Para superficies isotérmicas e
homogéneas, em equilibrio térmico, essas temperaturas sao iguais; como estes casos quase
nunca sao encontrados, estas temperaturas quase sempre sao diferentes (Li et al., 2013),

usualmente na faixa de décimos ou centésimos de diferenca (Handcock et al., 2012).

As relagdes entre radia¢ao emitida e temperatura de uma superficie sao formuladas
matematicamente pelas leis de Planck, lei do deslocamento de Wien (derivada da lei
de Planck), lei de Stefan-Boltzmann e pela lei de Kirchhoff (Jensen, 2009). Estas leis
sdo enunciadas para um corpo negro, um corpo tedrico (idealizado) que, em equilibrio
térmico com o ambiente, emite radiagao eletromagnética na maior taxa (energia por tempo)
possivel. A partir desta defini¢io, define-se também a emissividade, que é a razao entre a
emissao de radiagao eletromagnética de um corpo e um corpo negro; em outras palavras,
um corpo negro possui emissividade 1, e todas superficies reais possuem emissividade entre
0 e 1, a depender de sua temperatura e da faixa espectral observada (Purkis e Klemas,
2011). A lei de Planck, base do sensoriamento remoto termal, relaciona a temperatura de
um objeto com a radidncia espectral por ele emitida nos diferentes comprimentos de onda.
Para um corpo negro, ela é dada por (Schott, 2007):

C1
B\(\,T) = Nexp (%> 1

em que B é a radiancia espectral emitida pelo corpo, no comprimento de onda A e a uma

(2.11)

temperatura T, e ¢; e ¢, 530 as constantes de Planck, e valem ¢; = 1,191 x 10* W um* /m? sr

e cy = 1,439 x 10* Kum, respectivamente.
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A lei de Stefan-Boltzmann, derivada da lei de Planck, determina que a energia total
irradiada por um corpo negro é proporcional a quarta poténcia da sua temperatura absoluta.
Também derivada a partir da lei de Planck, a lei do deslocamento de Wien determina o
comprimento de onda em que ocorre o pico de emissao de radiacao eletromagnética por
um corpo. A lei de Kirchhoff enuncia que, para um objeto em equilibrio termodindmico,
sua emissividade ¢é igual a sua absortividade. Isso significa que, para objetos com alta
emissividade na faixa do infravermelho termal, grande parte da radiacao emitida pelo
Sol e que chega a superficie é absorvida, e o restante é refletida para o ambiente. Isto
também contribui que o sensoriamento da temperatura seja realizado na faixa do TIR,
considerando apenas a energia emitida pela superficie e captada pelo sensor, a partir
da inversao da lei de Planck, obtendo-se o que é chamado de temperatura de brilho da
superficie. Conhecendo a emissividade do corpo, esta temperatura ¢é transformada entao

em temperatura da superficie.

A temperatura da superficie é, ao contrario da temperatura de brilho, uma variavel
cinética independente do comprimento de onda, e representa a temperatura termodinamica
da camada mais superficial (“skin”), também sendo chamada de skin temperature na
literatura (Guillevic et al., 2018). Quando utilizando sensores orbitais para a estimativa
da temperatura, dois efeitos precisam ser corrigidos para transformar a temperatura de
brilho em temperatura de superficie: a emissividade da superficie e os efeitos atmosféricos
(Ottlé e Stoll, 1993; Schott, 2007). Diferentes maneiras foram propostas pra lidar com estas
correcoes de formas distintas, para os diferentes sensores, em varios estudos na literatura,

como revisado por Li et al. (2013).

Como descrito em Li et al. (2013), a estimativa da LST e da emissividade ao
mesmo tempo é impossivel utilizando sensoriamento remoto. Contudo, ela é essencial para
a correcao da emissao de radiacao pela superficie em temperatura; estudos mostraram que
erros na emissividade estao associados em erros na estimativa da temperatura superficial
da dgua (WST) de 0,2 a 0,7°C (Friedman, 1969; Jiménez-Munoz e Sobrino, 2006; Hulley
et al., 2011). Para contornar isto, ha duas opgoes: o uso de valores fixos de emissividade, ou
modelos que usem informagoes de outras bandas para a estimativa desta, como propostos
por Sobrino et al. (2004) e Sobrino et al. (2008) para diversos tipos de usos do solo, por
exemplo. No caso da agua, esta se aproxima a um corpo negro nos comprimentos de onda
de 10-12 um, mas sua emissividade varia com condigoes da agua, como a temperatura, a
salinidade, a turbidez e a quantidade de dcido himico (Wenyao et al., 1987 apud Dugdale,
2016; Handcock et al., 2012), além de condigoes de geometria, variando com o angulo de
visada (Masuda et al., 1988). Por isto, ha grande dificuldade de se estimar um valor de
emissividade para cada corpo d’agua, pois além da demanda de trabalho de campo e de
laboratério para sua aferi¢do, pode variar no tempo e no espago. Por isso, em estudos de

WST o que se faz é assumir um valor fixo de emissividade.
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A emissao de radiagdo também interage com a atmosfera, cujos efeitos devem ser
corrigidos. A radiagdo emitida pela atmosfera nao é a mesma que chega ao sensor (topo
da atmosfera — TOA, do inglés top of atmosphere), mas esta é afetada pela atmosfera,
principalmente em funcao do vapor d’agua, que possui alta variabilidade espacial e
temporal (Jiménez-Munoz e Sobrino, 2003). De fato, apesar do espectro do TIR utilizada
pelos sensores (10 a 12 wm, geralmente) se situar em uma janela atmosférica, ainda héa
consideravel influéncia da atmosfera nesta regiao do espectro, que atua tanto emitindo
radiagdo (em todas as diregoes, portanto na diregdo do sensor e também em direcdo a
superficie) quanto absorvendo e refletindo parte da radiagdo emitida pela superficie. A
nao-remocao destes efeitos, isto é, calcular a temperatura de brilho diretamente utilizando
a radiacao TOA medida pelo sensor pode acarretar em erros de até 2°C, em casos de rios
e lagos (Kay et al., 2005). A correcao destes efeitos é feita apenas com o conhecimento dos
perfis verticais da temperatura e da quantidade de vapor d’agua atmosféricos (Perry e
Moran, 1994 apud Li et al., 2013).

Estes efeitos sdo dados por trés varidveis: 7, a transmissividade da atmosfera
(sem unidade), que é uma medida da interacao entre a atmosfera e a radiacao em dado
comprimento de onda e varia de 0 (totalmente opaca) a 1 (totalmente transparente), Ly,
(upwelling radiance), que é a quantidade de radiagdo emitida pela atmosfera na dire¢ao
do sensor, € Laown (downwelling radiance), que é a quantidade de radiacao emitida ou
refletida pela atmosfera na direcao da superficie, cujas unidades sao as mesmas da radiagao
absorvida pelo sensor. Para cada pixel, a radiagao TOA medida pelo sensor é dada por
(Schott, 2007):
Lensor = [eB + (1 — ) L%"™|7 + L' (2.12)

em que Lgnsor ¢ a radiagdo medida pelo sensor (TOA, em W/(m? sr um), e € é a

emissividade da superficie.

Com o uso de modelos de transferéncia radiativa, como os modelos MODTRAN e
Lowtran, é possivel fazer a estimativa destas variaveis usando os perfis de temperatura
e vapor d’agua da atmosfera para se chegar ao valor corrigido de radiagao emitida pela
superficie imageada. A corregao da radiagao é feita usando a seguinte equagao (Schott,

2007):

Lsensor — L' — Ldown 11—
Leown = a 1-¢) (2.13)
ET

Com o valor corrigido de L e da emissividade da agua, é possivel, entao, se calcular

a temperatura de superficie invertendo a lei de Planck (Equagao 2.11).

Contudo, esses valores de correcao dependem de perfis acurados da atmosfera, que
nem sempre estao disponiveis, e dos modelos de transferéncia radiativa, que sao softwares
privados e caros (Li et al., 2013). Por isso, outros modelos foram desenvolvidos com este

intuito, e que podem ser divididos em trés grandes grupos, considerando que a emissividade
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da superficie seja conhecida (Li et al., 2013): com uma banda termal, com vérias bandas

termais, ou uma aproximagao multi-angulo.

Aqui, trataremos apenas do segundo grupo, que inclui o MODIS. Ha dois produtos
de temperatura de superficie disponibilizados pelo MODIS, o MOD11, que é o produto
de LST, e o MOD28, que é o produto de temperatura superficial dos oceanos (SST,
sigla para sea surface temperature). Estes produtos também usam algoritmos diferentes
para calcular a temperatura, mas ambos usam o que é chamado de split-window (janela
dividida), que usa informacao das duas bandas termais e dados complementares para fazer
a estimativa. Esses algoritmos usam a diferenca de radiancia que é medida por cada banda
termal (com comprimentos de onda adjacentes) para fazer a corregao atmosférica e estimar
a temperatura. A correcao atmosférica é, geral, feita com base em parametrizagoes da

quantidade de vapor d’agua atmosférico.

O produto MOD11 LST usa um algoritmo split-window linear, chamado de ge-
neralizado, desenvolvido por Wan e Dozier (1996) especificamente para o MODIS. Ele
é baseado em uma relacao linear entre as temperaturas de brilho nas bandas 31 e 32, e
considera a diferenca de emissividade em cada banda, que é um valor tabelado (Zhang,
1999) e calculado com base no uso de solo utilizando outras bandas (e.g., vermelho e NIR),

cuja equacao é:

1—¢ A€>E_7}

by +0 be—

1-2  AN\T 4T,
c 5) it (2.14)

LST =0b by +b by —
S 0+<1+26 +352 5

em que 7; e T; sao as temperaturas de brilho, ¢ é a emissividade média das duas bandas,
Ac é a diferenca de emissividade entre as duas bandas, e b,, n = 0,1, ...,6 sdo constantes
calibradas usando dados medidos de temperatura, e variam conforme a emissividade, o
angulo de visada do sensor, o vapor d’agua atmosférico e a temperatura do ar (calculados no
produto MODO07 de perfis atmosféricos do MODIS). Estes coeficientes estdo em constante
revisao e calibragao pela equipe do MODIS (e.g. Hulley et al., 2011), de modo a melhorar
a acuracia da estimativa da LST pelo produto MOD11, que é de cerca de 1°C (Wan e
Dozier, 1996).

Contudo, especificamente para a agua, outra limitacao aparece: os efeitos de
superficie. A radiacao medida pelos sensores é emitida por uma fina camada superficial
(~10-20 pm), que na maioria das condigoes é mais fina do que a camada superficial
da dgua interagindo na atmosfera (Wong e Minnett, 2018), devido ao fluxos de calor
superficiais (fluxo de radiagdo de onda longa e fluxos turbulentos de calor — condugao e
evaporacao) (Schluessel et al., 1990), esta camada superficial, chamada na literatura de
skin layer, é quase sempre mais fria que a agua imediatamente abaixo. Essa diferenca de
temperatura, que é medida por sensores radiométricos mas nao pelos termometros, que
medem a temperatura da camada d’dgua (bulk temperature), é chamada de efeito cool-

skin (“pele fria”) e afeta as estimativas de temperatura superficial da dgua por sensores
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no infravermelho termal, causando um viés negativo nas estimativas da temperatura
epilimnética da ordem de 0,1 a 1,0°C (Schluessel et al., 1990; MacCallum e Merchant,
2012; Wilson et al., 2013; Alappattu et al., 2017; Prats et al., 2018), como mostrado por
exemplo com dados medidos por Alappattu et al. (2017) na Figura 2.8. O efeito de warm
layer (“camada quente”) também pode ocorrer, mas apenas durante o dia, quando ha
radiacao solar o suficiente para causar estratificacdo térmica superficial, causando um
gradiente superficial de temperatura que pode suprimir o efeito cool-skin. O efeito é menos
comum (Alappattu et al., 2017, por exemplo, identificou viés positivo em apenas 1,5% das
medigoes em dguas costeiras e ocednicas), dependendo de estratificacio térmica, mas pode

causar um viés positivo nas estimativas da temperatura de até 6°C (Fairall et al., 1996a).
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Figura 2.8 — Grafico das diferencas entre a temperatura da camada d’dgua (bulk) e na
camada mais superficial (skin) da dgua medidas por boias com termémetro e
sensor radiométrico. (Fonte: Alappattu et al., 2017)

O efeito cool-skin tem sido extensivamente estudado em dguas ocednicas (Robinson
et al., 1984; Schluessel et al., 1990; Fairall et al., 1996a; Donlon et al., 2002; Minnett et al.,
2011; Alappattu et al., 2017), contudo, poucos foram os estudos sobre como isto afeta as
medigoes de LSWT (Oppenheimer, 1997; Wilson et al., 2013; Prats et al., 2018). Muitos
modelos foram desenvolvidos para quantificar o efeito de cool-skin em aguas oceanicas,
tanto empiricas (Donlon et al., 2002; Alappattu et al., 2017) quanto deterministicas (Fairall

et al., 1996b), dependendo principalmente da velocidade do vento, que regula tanto a
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mistura turbulenta e o fluxo de calor quanto a renovacao do ar, com ventos mais fortes
resultando em uma camada menor e, portanto, em uma diferenca de temperatura inferior
(Fairall et al., 1996a; Donlon et al., 2002). Em 4guas continentais, entretanto, estudos se
limitaram a investigar o efeito (Wilson et al., 2013), Riffler et al. (2015) aplicando um
modelo empirico desenvolvido por Minnett et al. (2011) para dguas ocednicas, e Prats
et al. (2018) avaliando a aplicagdo de um modelo deterministico adaptado para dguas

continentais.

O efeito cool-skin pode ter impactos em céalculos de tendéncias pois sua amplitude
depende principalmente da velocidade do vento, e portanto tendéncias de variacao de
velocidade do vento (Woolway et al., 2019) vao impactar vieses sistematicos na temperatura
estimada por sensores orbitais. Além disso, a temperatura na camada mais superficial da
agua, sob o efeito cool-skin (na maioria das condigoes), é a que interage com a atmosfera
na troca de gases e calor (Minnett et al., 2019), e por isso deve ser utilizada nos célculos
destes fluxos (Oppenheimer, 1997). Oppenheimer (1997) mostrou que usar temperaturas
da camada d’agua sem o efeito cool-skin para o calculo de fluxos de calor latente e sensivel
em lagos resultam em uma superestimativa de ~10%. Esta correcao também tem sido
utilizadas para melhoras as estimativas de trocas entre ar e oceanos, por exemplo, em
modelos de previsdo do tempo (Brodeau et al., 2017; Zhong et al., 2019). Os modelos
de correcao do efeito cool-skin mais utilizados sao modelos empiricos, principalmente
em funcao da velocidade do vento. Eles geralmente relacionam o efeito com uma funcao

exponencial da seguinte forma (Donlon et al., 2002; Minnett et al., 2011):
Tskin = ¢ — bexp(—a X uyg) (2.15)

em que Tyin € a diferenca de temperatura causada pelo efeito cool-skin, e a, b e ¢ sao

coeficientes calibrados com dados de campo.

Outros modelos também incluem mais varidveis como fluxo de radiagdo de onda
longa (Alappattu et al., 2017) e salinidade (Fairall et al., 1996a; Prats et al., 2018).

2.2.5 Sensores utilizados neste trabalho

Como mostrado acima, modelos bio-6pticos em geral precisam de informacao em
picos de absorcao ou espalhamento dos COAs para estimar concentracoes, e isto depende
de configuragoes de sensores (resolucoes radiométrica e espectral) para obter um valor
acurado da radiagdo que esta sendo reflectida pela dgua nestes comprimentos de onda
especificos. Além disso, os sensores orbitais necessitam de boa resolucao espacial para
mapear pequenos lagos, rios e reservatérios com suficiente delineamento espacial, e com
boa resolucdo temporal para mapear as variaveis com significativa frequéncia para o

entendimento da variacao temporal destas variaveis. Devido a esta limitagao, sao poucos
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os sensores configuragoes Otimas para serem aplicados de forma geral na limnologia,

principalmente os sensores mais recentes.

Neste trabalho, foram utilizados dois sensores orbitais, com caracteristicas bastante
diferentes. O primeiro deles é o MSI (MultiSpectral Instrument), sensor da ESA (Agéncia
Espacial Europeia) a bordo dos satélites Sentinel-2A, langado em 23 de junho de 2015, e 2B,
lancado em 7 de marco de 2017. Os satélites tém um tempo de revisita no Equador de 10
dias, sendo entdo uma revisita a cada 5 dias a partir de 2017. O sensor MSI possui 13 bandas
espectrais com resolugao espacial variando de 10 a 60 m, dependendo do comprimento de
onda, do visivel até o SWIR (infravermelho de ondas curtas), utilizadas, por exemplo, para a
correcao atmosférica em dguas turvas (Pahlevan et al., 2017). Suas configuragoes permitem
uma série de aplicagoes na limnologia, como estimativa de chla, CDOM, e mapeamento de
macrofitas (Pahlevan et al., 2017). Uma de suas limitagoes, como mostrado no Capitulo 3, é
a corregao atmosférica, que tem sido bastante estudada e discutida na literatura (Pahlevan
et al., 2021). Quanto a sua usabilidade, as imagens sao disponibilizadas gratuitamente pela
Copernicus em sua plataforma SciHub (https://scihub.copernicus.eu/dhus/). Aqui,
o download das imagens foi realizado com auxilio do pacote sentinelsat (Valgur et al.,
2019).

O outro sensor utilizado nesta tese foi o MODIS (Moderate Resolution Imaging
Spectroradiometer), a bordo dos satélites Terra, lancado em 18 de dezembro de 1999, e o
Aqua, langado em 4 de maio de 2002. Este sensor da NASA possui 36 bandas espectrais,
desde o visivel até o infravermelho termal, com resolucao de 250 m a 1 km, a depender
da banda, e com um tempo de revisita de no maximo 2 dias. Além disso, devido & sua
orbita e grande angulo de visada, na maioria das regides os satélites passam duas vezes por
dia pela mesma area, o Terra aproximadamente as 10h30 da manha e da noite, e 0 Aqua
aproximadamente as 1h30 da tarde e da madrugada. Considerando a grande durabilidade
dos sensores, se destaca a grande série gerada, com mais de 23 anos de dados diarios

coletados até o momento.

A grande quantidade de bandas do sensor, junto com os produtos prontos disponi-
bilizados pela equipe do MODIS (como de indices espectrais, evapotranspiracao e cor do
oceano) resulta num grande ntimero de aplicagoes, principalmente no monitoramento da
vegetacao, solos e oceanos. Contudo, na limnologia suas aplicagoes sao mais limitadas, se
comparadas ao Sentinel-2, principalmente devido as suas resolugoes espaciais e radiométri-
cas e ao decaimento do funcionamento de algumas bandas, embora, ainda assim, muitos

sao os estudos de qualidade utilizando MODIS na literatura.

A maioria destes trabalho utilizam os dados de temperatura da dgua do MODIS, que
se destaca devido & sua resolugao espectral (duas bandas termais, 31 e 32) e radiométrica
(diferenca de temperatura equivalente ao ruido, do inglés “noise equivalent temperature
difference” — NEAT, de 0,05°C a 27°C) (Barnes et al., 1998), e consisténcia da série de
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dados. O produto de temperatura do MODIS é o MOD11, em que o produto MOD11A1 é
o diario com resolugao de ~1 km, e inclui informagoes da temperatura diurna e noturna,

a qualidade dos pixels, a emissividade em cada banda, e o angulo de visada.

As imagens de temperatura do MODIS foram baixadas da plataforma da NASA
AppEEARS (Application for Extracting and Ezploring Analysis Ready Samples, https:
//appeears.earthdatacloud.nasa.gov/), que disponibiliza a op¢ao de download de
camadas de imagens de sensores da NASA, que podem ser recortadas apenas para uma

regiao delimitada, reduzindo o tamanho dos dados a serem baixados.

2.3 Lagos rasos brasileiros

Embora o Brasil seja o “pals das dguas”, a maior parte desta agua esta distribuida
entre seus grandes rios e areas alagadas, havendo poucos lagos naturais no pais, em com-
paragdo a outras regides (Tundisi e Tundisi, 2016). Por outro lado, hd muitos barramentos
nestes rios, como os conhecidos reservatérios nos rios Tieté, Parana e Sao Francisco, criando
lagos artificiais profundos. Lagos naturais, no entanto, sao na sua maioria pequenos e rasos,
e no Brasil os lagos naturais também sdao (Pi et al., 2022). As regides mais conhecidas que
abrigam lagos sdo a Regiao dos Lagos, com lagoas como a hipersalina Lagoa de Araruama,
com 200 km?2, e a regido dos Pampas, bioma que cobre também Uruguai e Argentina e
abriga uma grande quantidade de lagos devido ao seu relevo plano. Apenas na provincia de
Buenos Aires, na Argentina, ha uma quantidade aproximada de 14000 lagos rasos maiores
que 10 ha (O’Farrell et al., 2021). No Brasil, o Pampa estd presente apenas no estado
do Rio Grande do Sul, que concentra alguns dos principais e mais conhecidos lagos do
Brasil: lago Guaiba e a Lagoa dos Patos, além das grandes lagoas Mirim e Mangueira, no
extremo sul do Brasil. Estes lagos costeiros tém origem no processo de aumento e redugao
do nivel do mar e agao do vento criando depressdes no solo e dunas de areia num relevo
plano que resultaram numa grande quantidade de lagos rasos que vao desde o sul de Santa
Catarina até o sul do Uruguai, sendo lagos como a lagoa Itapeva outro exemplo desta
regiao (Schwarzbold e Schéfer, 1984). Além disto, também em fungao deste relevo plano,
esta regiao abriga algumas areas imidas extremamente ricas em biodiversidade, sendo
importantes refigios de aves migratdrias e para reproducao de peixes (Bridgewater e Kim,
2021). As seguintes areas na regiao sao areas imidas Ramsar: a Lagoa do Peixe, entre o
Oceano Atlantico e a Lagoa dos Patos; a Estacdao Ecolégica do Taim, no norte da lagoa

Mangueira, e os Baniados del Este, localizados a sudeste da Lagoa Mirim.

Além destes, o estado do Alagoas também abriga uma grande quantidade de lagos
costeiros, tendo este nome justamente por este motivo (Pereira, 2023). O principal sistema
¢ o Complexo Estuarino Lagunar Mundai Manguaba (CELMM), formados pelas lagunas

Manguaba e Mundat (a titulo de curiosidade, cujos nomes antigamente eram referenciados
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como Alagoa do Sul e Alagoa do Norte, respectivamente), que tém origem na deposi¢ao
de sedimento pelos rios Mundau, Paraiba do Meio e Sumaima, gerando um sistema
de canais e ilhas entre os rios e o oceano e aprisionando a dgua no complexo, criando
uma condicao de aguas salobra que, atualmente, é mais doce, principalmente na lagoa
Manguaba. Curiosamente, o nome Maceid, a capital do estado que se desenvolveu ao largo
da lagoa Mundat e dela depende econdémica e socialmente, vém do tupi “Macayd”, que
significa “o que tapa o alagadi¢o”, ou seja, a localizacdo onde ocorreu a deposi¢ao do

sedimento “tapando” o leito antigo dos rios.

Embora sejam lagos rasos e costeiros, estas lagoas possuem caracteristicas bastante
distintas. Além da diferente génese e caracteristicas geograficas, as lagoas estudadas
nesta tese também possuem diferentes caracteristicas limnoldgicas. As lagoas alagoanas
recebem uma contribuicao grande de nutrientes e sedimentos vinda de sua grande bacia, e
associadas ao deposito de esgotos sem tratamento e de fertilizantes utilizados na agricultura,
principalmente da cana, criando condigoes para proliferacao de algas grande, com grande
ocorréncia de floracoes que talvez nao sejam maiores por conta da cor da agua, que é
escura pela combinagao de CDOM e sedimentos (Oliveira e Kjerfve, 1993; Melo-Magalhaes
et al., 2009; Lins et al., 2018). J& as lagoas gatichas s@o em geral oligomesotréficas, com
turbidez que se deve mais a ressuspensao do sedimento pela acao do vento do que por
contribuigao da bacia (Fragoso Jr et al., 2008; Crossetti et al., 2014; Cavalcanti et al.,
2016). A acao do vento também contribui para a oxigenagao do sedimento, que ocasiona o
sequestro de fosforo e reduz o efeito da eutrofizacao na disponibilidade de nutrientes nestes
lagos. Destes lagos, provavelmente apenas o lago Guaiba tem um processo mais avangado
de eutrofizacao em funcao dos rios que fazem parte de sua bacia e da area urbana de
Porto Alegre, em sua margem leste, com deterioracao da qualidade da dgua e ocorréncia

de floracao de algas nas margens em que a agua é mais parada.
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Abstract

Remote monitoring of chlorophyll-a (chla) has been widely used to evaluate the trophic state of inland and coastal
waters, however, there is still much uncertainty in the algorithms applied in different optical water types. The influence
of different atmospheric correction (AC) processors, which can also provide correction for sunglint and adjacency
effects, on the retrieved chla is poorly understood. In this study, state-of-the-art atmospheric correction and chla
algorithms are evaluated using Sentinel-2 MSI imagery in the Mundati-Manguaba Estuarine-Lagoon System (MMELS),
a productive tropical system that consists of two turbid lagoons of different optical water types (OWT). We compared
the performance of six different AC processors, with the addition of sunglint correction for two of them, with measured
water reflectance. There was difficulty in correcting for the atmospheric effects, especially for bands 2, 3 and 8A.
Overall, C2X showed the best performance over MMELS, but with sunglint correction, ACOLITE and GRS provided
the most consistent water reflectance (p,,). Sunglint correction might be essential for retrieving accurate p,, in most
low-latitude water bodies. We also found that in Mundat, the dense urban area surrounding it likely caused heavy
adjacency effects in the satellite-retrieved reflectance, and thus correction for it is necessary. We also compared the
performance of six chla algorithms recommended for the OWTs present in MMELS in addition to a widely applied and
a global chla algorithm in retrieving this variable using both field and satellite reflectance, in this case corrected with the
three best performing processors. For the in situ data, most algorithms performed well in Manguaba lagoon, while in
Mundad lagoon the semi-analytical NIR-red ratio (2SAR) algorithm was the most consistent model, and in both cases
the locally calibrated algorithms outperformed the global algorithm. When retrieving chla with the satellite-derived
Pw, considerably poorer results were produced, especially in Mundau lagoon. The global algorithm was found to
be especially sensitive to the atmospheric effects. We also found that the quality of AC provided by the algorithms
is not a general predictor of the performance of the chla models, even when analysing individual bands separately,
while the relationship between chla concentration and the ratio of bands used by most algorithms can be. Despite
containing distinct water characteristics, chla can be modelled using a single algorithm, 2SAR, calibrated for MMELS
as a whole, with 72 of 0.77 and nRMSE of 38.7%, and we consider that 2SAR has the potential to be a global algorithm

for this OWT, provided that it is recalibrated for a large dataset of satellite-derived BOA reflectance. We recommend



that further studies explore the impacts of AC, sunglint and adjacency effects on the performance of chla algorithms,
in order to delineate the most suitable combinations of AC + chla algorithms for the variable OWTs, in an effort to
provide the basis for global-scale retrievals of this pigment using medium-resolution sensors such as MSI and OLL

Keywords: Chlorophyll-a (chl-a), Sentinel-2 MSI, Turbid productive waters, Algorithm validation, Optical water type,
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1. Introduction

Estuarine systems are complex transitional zones between the continent and the ocean. Due to their unique
characteristics, they can be very productive, harbouring high biodiversity and providing essential ecosystem services
such as fisheries, habitat provision, and sediment retention (Barbier et al., 2011). These systems generally exhibit
spatial variability and distribution of organisms influenced by environmental factors, mainly a variable salinity gradient,
and seasonal river inflow and nutrient discharge, which are also associated with the hydrodynamics of the water body
(Mitchell et al., 2015). However, for being at the end of the watershed and commonly associated with socio-economic
development in its surroundings, these ecosystems can be impacted by anthropogenic effects such as increased nutrient
discharge, pollution, and unrestrained fishing, which in turn can undermine their ecological status and ecosystem
services provision (e.g., Courrat et al., 2009). This, associated with the limited water exchange and high retention times,
can enhance the harmful effects of these activities, resulting in increased water turbidity, algal blooms, and fish kills
(Orive et al., 2002).

Monitoring of chlorophyll-a (chla), a phytoplankton biomass indicator, has been frequently used to evaluate the
trophic state of inland and coastal waters due to their sensitivity and quick response to multiple environmental factors
(Carlson, 1977; Baban, 1996; Boyer et al., 2009). Due to its spatio-temporal variability and limited representation
of field monitoring, associated with the difficult and laborious field campaigns, remote sensing of chla has been
widely used to complement this monitoring (Gitelson and Kondratyev, 1991; Matthews, 2017; Giardino et al., 2019).
Considering its known spectral characteristics, different algorithms have been developed to maximise sensitivity to
chla while minimising the effects of other optically active water constituents, mainly chromophoric dissolved organic
matter (CDOM), detritus, also known as non-algal particles (NAP), and water itself (Mouw et al., 2015; Gege, 2017).
However, there is still much uncertainty related to the retrieval of chla due to the high variability of water spectral
response as a function of different concentrations of the optically active water constituents (Mouw et al., 2015).

Recently, Spyrakos et al. (2018) proposed a classification system for inland and coastal waters based on their
spectral response, as well as taking into account the main optically active water constituents, dividing inland waters
into 13 categories of optical water types (OWT). Based on this, Neil et al. (2019) analysed how a large number of chla
algorithms performed considering the different inland OWT using an extensive dataset of measured chla and water
reflectance. The results show a large variability in the performance of the algorithms even when considering each OWT,
also noted in other studies considering OWT classification (Cui et al., 2020), especially for turbid waters, where the
absorption and scattering by CDOM and NAP have higher relative importance in relation to chla. Therefore, further
validation of these algorithms is still needed to provide a better understanding of the strengths and limitations of each
algorithm, in order to produce more accurate results.

In addition to the algorithms, another challenge in retrieving chla from satellite-borne sensors is that the radiance
measured by these sensors can be highly influenced by the atmosphere. The gaseous molecules and aerosols in the

atmosphere can both absorb and scatter light reflected from the surface, especially smaller wavelengths, influencing the



signal received by the sensor (Moses et al., 2017). Therefore, correcting for these effects is essential in order to retrieve
water-leaving radiance accurately. However, atmospheric correction (AC) is a complex process, as there are difficulties
associated not only with atmospheric modelling (e.g., aecrosol modelling, diffusive sky reflectance and heterogeneous
atmospheric conditions over a scene) (Gordon et al., 1988; Wang and Gordon, 1994), but also with the air-water
interface itself, which is potentially roughened by steady or gusty winds. From a remote sensing point-of-view, the
water surface produces undesirable effects such as reflection of the direct sunlight toward the sensor field of view. That
reflection of the Sun disk, called sunglint, can be highly unpredictable precluding proper remote sensing of the in-water
constituents. On the other hand, the sunglint signal becomes more pronounced when the Sun is high on the horizon,
which is mostly the case for space observation in the tropical regions (Harmel and Chami, 2013).

Atmospheric correction methods commonly used for water applications separate the water and atmospheric signals
using different approaches (Jamet et al., 2011). Particularly in inland waters, methods designed to correct for the
atmospheric effects over open ocean waters can not be used as some assumptions, such as the altitude at mean sea level
and the NIR black-pixel assumption, are not valid as a consequence of elevation, suspended solids and adjacency effects
(Jamet et al., 2011; Vanhellemont and Ruddick, 2015; Moses et al., 2017). Furthermore, water reflects only a small
portion of the incident light, and thus a stronger influence of the atmosphere occurs due to low signal-to-noise-ratio
(SNR), and additional noise signals such as adjacency effects and the aforementioned sunglint, adding more complexity
to the process (Moses et al., 2017; Bulgarelli and Zibordi, 2018; Harmel et al., 2018). There has been a recent effort
in developing and testing AC algorithms for coastal and inland waters, but as in the case of the chla models, there is
high uncertainty in the strengths and limitations of these algorithms (Doxani et al., 2018; Pereira-Sandoval et al., 2019;
Warren et al., 2019). Besides the uncertainty in the AC itself, there is also uncertainty in the impacts of the AC methods
in retrieving biophysical parameters such as chla, which also needs to be addressed (Maciel et al., 2019; Molkov et al.,
2019). Exploring these questions, in this study we evaluated state-of-the-art atmospheric correction processors, in
addition of a sunglint correction method, and chlorophyll-a algorithms are evaluated using Sentinel-2 MSI imagery in a

productive tropical coastal system in Northern Brazil.

2. Methodology

2.1. Study area

The study area is the Mundai-Manguaba Estuarine-Lagoon System, a shallow (maximum depth of 3.5 m) tropical
lagoon system located in the metropolitan area of Maceid, state of Alagoas, northeastern Brazil, between 9°35° S and
9°46’ S latitude and 35°34° W and 35°58° W longitude (Figure 1). The MMELS is composed of two lagoons, the
Mundat Lagoon (surface area of 27 km?), located in the Northern part of the system, which receives freshwater mainly
from the Mundad river basin (annual average discharge of 35 m3/s); and the Manguaba Lagoon (surface area of 42
km?), which is located in the Southern part of the system and receives freshwater from two basins, the Paraiba do Meio

and the Sumatima river basins (annual average discharge of 28 m?/s). The MMELS exhibits a tropical semi-humid
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climate with well-defined wet (from May to July) and dry (from October to December) seasons. Temperature varies
little throughout the year, with an average annual mean temperature of 25°C, and the winds blow predominantly from a
southeasterly direction (Oliveira and Kjerfve, 1993). A more detailed description of the MMELS can be found in Lins
et al. (2018).
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Figure 1: Location map showing the MMELS, the sampling stations in Mundad and Manguaba lagoons, and land cover surrounding the system,

highlighting the extensive urban area of Maceid city (capital of Alagoas state).

Although they are connected, the lagoons have distinct characteristics, as described in Lins et al. (2017). Both
lagoons are characterised by eutrophic conditions and are dominated by phytoplankton, but Manguaba lagoon is larger,
has a higher retention time, and is less affected by the tides, which makes it generally less saline than Mundau lagoon.
Additionally, there is a small water flow between the lagoons through the connecting channel system, which creates
different conditions of nutrients and hydrodynamics in each lagoon due to their different geometries and tributary rivers.
In terms of the water constituents, Manguaba lagoon has higher chlorophyll-a concentration and lower total suspended
solids (T'SS) concentration, while also exhibiting less spatial variability than Mundau lagoon (Lins et al., 2017).

Furthermore, despite being shallow, the high turbidity observed in both lagoons, with Secchi disk values ranging
between 0.58-0.95 m, implies that bottom sediment has little or no effect on water reflectance as the photic zone depth
is lower than water depth in MMELS, and so measurements of reflectance can be considered as water reflectance only

(Lins et al., 2017).



2.2. Field measurements

Shipboard data were collected during ten field campaigns conducted between March 2017 and March 2019 (Table
1), however, there were only six match-ups between these campaigns and Sentinel-2 MSI images, considering a window
of one day between satellite overpass. During each field campaign, a set of sampling stations, well-distributed across
MMELS, was established (Figure 1). At each sampling station, above-water optical measurements and water sample
collection for laboratory analysis were carried out. In total, 152 (97 considering only dates with satellite overpass) field

water quality and corresponding water reflectance data were collected.

Table 1: Data of each field campaign and the number of collected optical measurements and water samples in MMELS, and information about

match-up with Sentinel-2 MSI images

Date Lagoon site Sampling stations Satellite match-up Sensor Image Date
03/24/2017 Mundai 15 No NA NA
03/22/2018  Manguaba 14 No NA NA
05/22/2018 Mundau 12 Yes S2B 05/23/2018
05/23/2018  Manguaba 14 Yes S2B 05/23/2018
08/06/2018  Manguaba 5 No NA NA
10/25/2018 Mundai 18 No NA NA
02/26/2019 Mundad 18 Yes S2B 02/27/2019
02/27/2019  Manguaba 17 Yes S2B 02/27/2019
03/23/2019  Manguaba 18 Yes S2A 03/24/2019
03/24/2019 Mundai 18 Yes S2A 03/24/2019

In each station, a 2-litre bottle collected water 0.2 m below the water surface immediately after optical measurements.
The samples were stored in a cooler with ice in the dark, and taken back to the laboratory for analysing the concentration
of chla and total suspended solids (TSS). All samples were filtered on land, no later than 12 h after sampling, using
Whatman GF/F glass fibre filters (pore size of 0.45 pm). The filters were wrapped in aluminium foil and kept frozen
until analysis. For each water sample, chla was extracted from the filters and left into a solution of 90% ethanol for
18h in an amber flask and measured by the spectrophotometric trichromatic method (Rice et al., 2005). For TSS
determination, Whatman GF/F filters (pore size of 0.47 um) were dried before and after water filtering to a constant
weight at 103 to 105°C, and measured gravimetrically (Rice et al., 2005).

Above-water hyperspectral reflectance measurements were performed using TriOs RAMSES radiometers (operating
in the range 320-950 nm), with a spectral resolution of approximately 3.3 nm, following the ocean optics protocols
recommended by NASA (Mueller et al., 2003). All of the radiometers were mounted in an aluminium pole vertically
positioned on the top of the boat. An irradiance sensor was used to measure downwelling irradiance above the water
surface, E;(1), and two radiance sensors (with a 7°field of view) were used to measure upwelling radiance above the
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surface water, as well as the incident sky radiance, L;(1), that was used to correct for the skylight reflection effect at the
air-water interface.
The remote sensing reflectance, R,(1), was calculated as follows:

Ly(d) _ L) - pLs(/l)

Ri(t) = 2@ _
D= Z0 Ea)

ey

The total radiance measured above surface, L,(1), is composed of the water-leaving radiance, L, (1), and the portion
of the L; that is reflected by water surface, L,(1). Because only L,(1) is directly measurable, and L,,(1) and L,(1) are

not measured, and L,(1) is assessed as pL(1), where p is a proportionality factor, as provided by Mobley (1999).

2.3. Atmospheric correction

We tested six algorithms for the atmospheric correction, we tested six algorithms, considering the ones most used
and that produced the best results for inland and coastal water bodies in the literature (e.g., Doxani et al., 2018, Ilori
et al., 2019, Maciel et al., 2019): ACOLITE, C2RCC, GRS, iCOR, SeaDAS and Sen2Cor. We considered only bands 2
to 8A (except for B8) in the analysis, for being the bands considered in the chlorophyll-a algorithms (Section 2.5.1),
and also the most commonly used bands in remote sensing applications in general. We did not consider B1, the aerosol
band, for being the most sensitive to atmospheric effects, as it is difficult to remove these effects to retrieve surface
reflectance, and also due to its coarse resolution of 60 m, which can produce mixed pixels.

In addition, sunglint correction was also applied to the best performing AC methods, using the algorithm developed
for GRS (Harmel et al., 2018). In the following sections we broadly describe each tested algorithm, and in Section
2.4 we describe the algorithm for sunglint correction. There were 51 match-ups between in situ and Sentinel-2 MSI
reflectance data, 25 in the Mundat and 26 in the Manguaba lagoon. For the comparison with measured water reflectance,

in situ reflectance was resampled to the Sentinel-2 bands (S2A and S2B according to Table 1) using the sensors

Relative Spectral Responses (RSR):
[¥ Ry(DRSR()dA

Rys(do) = = 2
’ [; RSR()dA

where Ay is the centre wavelength of each S2 band, 4; and A, are the lower and upper wavelengths of each band, and A
represents each wavelength in this range according to the spectral resolution of the radiometers.

The nomenclature of the AC algorithms is described in Table 2. For the assessment of performance of these
algorithms, we used the coefficient of determination (%), the slope of the linear regression, root-mean-squared error
(RMSE), bias, mean absolute error (MAE) and the spectral angle mapper (SAM). Due to the low data values, we

calculated normalised bias and MAE using a normalised approach:

N 7 - .

nBias = 10° Zi='(l‘)g10(EZ loglo(M,))] o
N NE A

nMAE = 10{21‘1 'lOg'O(E;) logio(M))| “



where E and M are the retrieved and measured reflectance, and » is the number of data points. For both metrics, a
value of 1 indicates a perfect fit, and variations are in percent and indicate an over or underestimation, for nBias, and
overall error, for nMAE.

SAM is a metric to assess the spectral similarity between two spectra. It considers the retrieved and measured
reflectance spectra as vectors, and the similarity is based on the angle between these two vectors in a vector space with
b dimensions, where b is the number of bands analysed. It is calculated as:

E-M b EM,
SAM = arccos | ————— | = arccos = (5)

- NSNS

Table 2: Nomenclature of the algorithms applied for atmospheric and sunglint correction of the Sentinel-2 MSI images

Name Description
Aco ACOLITE processor
Aco-SG ACOLITE with GRS-sunglint correction

C2RCC Regular C2RCC
c2X C2RCC calibrated for turbid waters
GRS-AC GRS — atmospheric correction

GRS-SG GRS - atmospheric and sunglint correction

iCOR iCOR processor
SDS SeaDAS processor
S2C Sen2Cor processor

2.3.1. ACOLITE

The Atmospheric Correction for OLI “lite” (ACOLITE) processor was applied to correct for atmospheric effects
using the dark spectrum fitting (DSF) proposed by Vanhellemont and Ruddick (2018) and Vanhellemont (2019), over
the previous implemented SWIR-based exponential extrapolation (EXP) (Vanhellemont and Ruddick, 2014, 2015,
2016). The DSF algorithm is based on two assumptions: a homogeneous atmosphere over the satellite scene (or
subscene used) and the black-pixel assumption. For the latter, however, instead of assigning a determined band with
zero reflectance for estimating atmospheric path reflectance (0,a11,), such as the SWIR bands in the EXP method, for
each scene, the band with the lowest reflectance pixels is chosen for determining p 4. To retrieve this, for each band, a
linear regression using ordinary least squares is fitted to the darkest thousand pixels in the reflectance histogram, and
the darkest object, that is, the “dark spectrum”, p4,«, is estimated as the offset of this regression.

In this process, a few values (such as water vapour transmittance, Rayleigh optical thickness, and the atmospheric

path reflectance) are used from a Look-Up Table (LUT) generated using 6SV (Kotchenova et al., 2006). A base
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LUT was generated for various atmospheric transmittance windows for different atmospheric conditions. It was then
interpolated to create a dataset from 0.39 to 2.40 um, with a 1 nm resolution. Then, for Sentinel-2 MSI, a specific LUT
was generated by interpolating it to the sensor bands’ relative spectral response (RSR).

For the range of bands and each aerosol model, aerosol optical thickness (derived at 550 nm, 7,) is estimated based
on this LUT. Then, for each aerosol model, the band giving the lowest positive value of 7, is used, and an aerosol
model is chosen based on the lowest RMSE between py,+ and the retrieved p,q,. With the estimated 7, ppam, tWo-way
diffuse atmospheric transmittance (z4,) and the spherical albedo of the atmosphere (s,) are retrieved from the specific
LUT and the surface reflectance p; is estimated as:

_ pt/tg — Ppath — Psky
tay + Sa(pt/tg — Ppath — psky)

(6)

Ps

where p; is the top-of-atmosphere (TOA) reflectance, ¢, is the atmospheric gas transmittance, which is estimated using
an average transmittance of water vapour and ozone, and pg, is the diffusive sky reflectance, which is calculated
analytically (Gordon et al., 1988).

The ACOLITE processor can also remove sunglint, as it has implemented GRS (Harmel et al., 2018; Vanhellemont,
2019), which is described in Section 2.4.

2.3.2. C2RCC

The Case 2 Regional processor, originally developed by Doerffer and Schiller (2007) and updated by Brockmann
et al. (2016) as the Case 2 Regional Coast Colour (C2RCC), is an AC processor based on sets of neural networks that
related TOA water reflectance to radiative transfer simulations of water-leaving radiances.

Atmospheric characteristics are modelled based on radiative transfer model SOS (Chami et al., 2001; Lenoble et al.,
2007), and aerosol optical properties are derived from AERONET-OC data. Water characteristics are modelled using
Hydrolight (Mobley, 1994) and a bio-optical model (described in Doerfter and Schiller, 2007) considering absorption
of phytoplankton, CDOM and non-algal particles, and sediment scattering as a white scatterer (for calcareous sediment).
These water characteristics are all parameterised considering only p,, in the deep blue spectrum (B1/aerosol — 443
nm), based on bio-optical databases (Werdell and Bailey, 2005; Nechad et al., 2015). The neural networks were then
trained based on TOA reflectance, these modelled water characteristics and environmental variables (such as ozone
concentration). Additionally, a special set of networks was also trained for extreme ranges of absorption and scattering,
that is, for very turbid waters. Both the regular, hereafter called C2RCC, and the high turbidity-focused network,
hereafter called C2X (both names in reference to their designation in SNAP, ESA’s Sentinel toolbox) were used in this
work to correct for atmospheric effects. Although this model also retrieves IOPs, these were not tested here.

The algorithm is available in ESA’s SNAP and was applied after resampling to 20 m for all bands and considering

fixed values of water salinity (15 PSU), temperature (25°C), and ozone concentration (280 ppm).



2.3.3. GRS

The GRS (Glint Removal for Sentinel-2) processor was proposed by Harmel et al. (2018) as a coupled atmo-
spheric—sunglint correction algorithm. The overall processing enables to handle gas absorption, molecule scattering
and radiation imputed to weakly absorbing aerosols along with the direct light reflected on the rough air-water interface
(i.e., the spectral sunglint signal). For the sake of clarity, we divide the two modalities of the GRS algorithm: (i)
GRS-AC, the component dealing with the atmospheric correction only, and (ii) GRS-SG, the coupled AC-sunglint
removal process. In this section, the GRS-AC is described, while the sunglint removal of GRS-SG is detailed in Section
2.4.

First, the gaseous absorption (mainly CO,, H,O and Oj3) correction is performed with the SMAC software
(Rahman and Dedieu, 1994), which is based on parameterizations of the gas transmittances from full radiative transfer
computations using 6S (Kotchenova et al., 2006). Atmospheric pressure and gas concentrations are retrieved from
bilinear interpolation within the grid of the Copernicus Atmosphere Monitoring Service dataset (CAMS). Then, spectral
radiances are corrected for the diffuse sky light and its reflection on the air-water interface. For each pixel, the diffuse
radiance component is reconstructed for the given viewing geometry (i.e., sensor and Sun viewing angles and relative
azimuth) from pre-computed LUTs. Those LUTs were generated based on the radiative transfer model OSOAA (Chami
et al., 2015) for typical fine and coarse mode aerosol models (Levy et al., 2009), including the specific spectral response
of the sensor bands (Bodhaine et al., 1999). The atmosphere diffuse radiance coupled with surface reflection, L, is

obtained considering a bimodal aerosol model (Wang and Gordon, 1994) as follows:

Lay (4,7a) = YLLI (A, 74) + (1 = 9) L™ (4, 7,) (7)

where Lf ;{;’e and L;'Z;f”" are the radiances for the fine and coarse aerosol modes, respectively, for 7,; y is the mixing
coefficient corresponding to the relative amount of each mode in the atmosphere. Note that 7, is obtained from the
CAMS dataset (Benedetti et al., 2009; Morcrette et al., 2009) and 7 is retrieved from non-linear fitting including the
LUT aerosol parameters with the spectral values of 7, provided by CAMS. If no sunglint correction is applied (case
of GRS-AC), the water-leaving component is eventually obtained after subtraction of Ly, and division by the total

transmittance (i.e., diffuse + total transmittances) calculated for the bimodal aerosol model from the LUT.

2.34. iCOR

iCOR is an algorithm developed by De Keukelaere et al. (2018) to correct for atmospheric effects in both land and
water (except open ocean) environments. In addition to the atmosphere, it also corrects for adjacency effects, using
different approaches for land and water pixels. It depends on ancillary data, mainly a digital elevation model (DEM),
viewing geometry and information of the atmosphere, which are inputted based on an aerosol model (a fixed rural
model) and pre-generated LUTs (providing parameters such as aerosol density, aerosol type, and water vapour content)
derived with MODTRANS (Moderate-Resolution Atmospheric Radiance and Transmittance Model — version 5) (Berk
et al., 20006).
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Initially, 7, is retrieved based on land pixels using a technique developed by Guanter et al. (2005). First, cloud
pixels are retrieved using VNIR bands, then the scene is subdivided into tiles, and for each tile, the darkest pixels
for each band are selected. The radiance of these pixels, the corresponding ppqs, and MODTRANS LUT are used to
estimate an upper boundary of 7,, and then 7, is retrieved using an endmember inversion technique based on NDVI
and band centre wavelength.

The correction of adjacency effects for water pixels is applied using the SIMilarity Environmental Correction
(SIMEC) developed by (Sterckx et al., 2015). The method assumes the NIR similarity (the shape of p,, in the NIR is
regular) and that pixels for which this assumption is invalid are affected by adjacency reflectance. For these pixels, the
corrected reflectance is estimated based on the surrounding water pixels using bands 5 (red-edge) and 7 (NIR). The
number of pixels used in this process is determined iteratively based on a maximum value of reflectance stipulated by
the NIR similarity.

Finally, the pixels are corrected for the adjacency effects, and the atmospheric effects are corrected by solving the
radiative transfer equation using ancillary data and MODTRANS LUTs (Kaufman, 1984; Sterckx et al., 2011). In
this study, we used the SNAP plugin to apply iCOR using default settings. For dates 02/27/2019 and 03/24/2019, the

algorithm could not retrieve uy, o for the estimation of 7,, and values of 7, derived from Sen2Cor were used instead.

2.3.5. SeaDAS

The SeaWiFS (Sea-viewing Wide Field-of-view Sensor) Data Analysis System is an algorithm originally developed
by Gordon and Wang (1994) to correct TOA reflectance data from the SeaWiFS sensor. The algorithm has since been
updated by NASA’s Ocean Color Biology Processing Group (OBPG) to perform atmospheric correction of most ocean
colour sensors (Mobley et al., 2016), such as MODIS, the Landsat missions, and Sentinel-2 (Pahlevan et al., 2017a,b).

In this algorithm, the TOA radiance is expressed as:
Lipt =tLy,+ L, + Ly + Ly, ®)

where ¢ is the diffuse atmospheric transmittance, L,, is the water-leaving radiance, L, is the radiance from scattering
by air molecules in the absence of aerosol, L, is the aerosol radiance, and L, is the radiance resulting from multiple
scattering by air molecules and aerosol.

Rayleigh scattering is assumed known and corrected using ancillary data (such as O3 and NO, concentration and
wind speed), observing geometry and LUTs (Mobley et al., 2016). Aerosol particle size distribution is divided into fine
and coarse particles, and this distribution is estimated at two bands where reflectance is assumed zero (black-pixel
assumption) (Gordon and Wang, 1994). Aerosol radiance is then estimated from aerosol LUTs and relative humidity
(Ahmad et al., 2010) and extrapolated for the other bands. Diffuse atmospheric transmission is estimated based on
LUTs calculated for the retrieved aerosol type and Rayleigh optical thickness (Yang and Gordon, 1997).

Here, the function [2gen (version 9.5.0) was used to correct for atmospheric effects using the algorithm developed

by Gordon and Wang (1994) with two configurations: the NIR/SWIR switching algorithm proposed by Wang and Shi
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(2007) using the 740-865 nm combination for the NIR bands and the 1613-2200 nm combination for the SWIR bands,
and the iterative NIR-signal removal method (Bailey et al., 2010) with the 865—-1609 nm band combination suggested
by Pahlevan et al. (2017a) and Mobley et al. (2016) for turbid waters.

2.3.6. Sen2Cor

Sen2Cor is the default atmospheric correction algorithm for Sentinel-2 MSI in SNAP (Miiller-Wilm et al., 2016).
It is a simple algorithm based on LUTs generated with a large dataset and the atmospheric radiative transfer model
libRadtran (Mayer and Kylling, 2005; Emde et al., 2016) for different aerosol models, elevation, viewing geometries,
and atmospheric conditions (such as visibility, ozone concentration, aerosol optical thickness, and water vapour content)
generated specifically for Sentinel-2 MSI.

7, is retrieved based on the Dark Dense Vegetation method (Kaufman and Sendra, 1988), which assumes that the
behaviour of the reflectance of dark vegetation (dark soil and water may also be used) pixels is known and that the
ratio of reflectance between the SWIR (B12) and the blue (B2) and red (B4) bands is constant, and then different ratios
are a result of atmospheric scattering. uy, o is retrieved using the Atmospheric Precorrected Differential Absorption
algorithm (Schldpfer et al., 1998), which uses a band in an atmospheric absorption spectrum (B9) and a band in an
atmospheric window (B8A) and, assuming that the reflectance in both bands is equal, estimates the absorption by the
atmosphere and then, the columnar water vapour content. Both variables are pixel-derived and generated for the whole
scene.

With the parameters, the image is corrected for all bands using the LUTs. We used the Sen2Cor SNAP plugin with
default settings, except the aerosol type, which was set as maritime, and ozone content, which was set as 290 Dobson

Units.

2.4. Sunglint correction

The GRS algorithm Harmel et al. (2018) was specifically developed to handle and correct for the sunglint signal for
Sentinel-2-like sensors, that is, nadir or near-nadir viewing sensors with SWIR bands. The main principle is to estimate
the bidirectional reflectance distribution function (BRDF) of the rough air-water interface from the SWIR bands (i.e.,
~1610 and ~2200 nm). The sunglint signal obtained in the SWIR is then propagated toward the NIR and visible bands.

Estimation of the sunglint radiance is based on the fact that water body is virtually totally absorbing; the water
absorption coefficient in the SWIR is several orders of magnitude greater than that in the NIR. It is worth remembering
that more than 99.99% of the light radiation in the SWIR is absorbed within the first millimetre. The authors also
highlighted that atmosphere interferes less with light in this part of the spectrum, improving the accuracy of the sunglint
estimation in relation to NIR approaches. Once corrected for atmosphere signal (from the AC processor), the remaining
radiance in the SWIR is interpreted as the pure surface component of the signal and then translated into BRDF. This
BRDF in the SWIR is extrapolated to the other bands considering the spectral variation of the refractive index of water

and its important consequences onto the spectral sunglint signal (see Harmel et al., 2018 for details). The sunglint
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radiance is eventually retrieved from the spectral BRDF and the atmosphere direct transmittance computed from the
spectral aerosol optical thickness.

The version used here accounts for the spectral response of each band of Sentinel-2 A and B. Practically, the AC
processor is first applied, then the sunglint correction is performed based on the aerosol parameters retrieved by the AC
processor. Finally, the sunglint radiation is calculated for each pixel, for each band, considering the estimated BRDF,
atmosphere direct transmittance, and the extraterrestrial sun radiance reaching the atmosphere, and the water-leaving

radiance is then corrected by removing this value.

2.5. Chlorophyll-a retrieval

To retrieve chlorophyll-a, we used reflectance data from both the atmospheric-corrected satellite images and in
situ measurements. The algorithms used to retrieve chla are described in the following section. The algorithms were
processed in R (R Core Team, 2020), with the help of packages minpack.Im (Elzhov et al., 2016) for implementation of

the non-linear least-squares algorithm and openair (Carslaw and Ropkins, 2012) for plotting the Taylor diagrams.

2.5.1. Algorithms

The selection of the most suitable algorithms was based on the results provided by Neil et al. (2019). Since the
lagoons have distinct water optical characteristics, the selected models were fit to each lagoon separately and also
considering MMELS as a whole. To select the algorithms, we first classified each lagoon according to Spyrakos et al.
(2018), and since there is no phycocyanin or NAP data available, this classification was based solely on chlorophyll-a
concentrations and a visual comparison of the reflectance curves (Figure 2).
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Figure 2: Mean (black dots) and standard deviation (grey ranges) of the remote sensing reflectance measured in (a) Mundad and (b) Manguaba

lagoons in the 10 field campaigns.

According to Spyrakos et al. (2018), Mundau lagoon is classified as optical water type (OWT) 6 due to medium
values of chla (i = 12.9 mg/m?), a higher peak in the green spectrum, and lower peaks in the red and red-edge spectra
(Figure 2a). Waters of this type are characterised by a balanced effect of CDOM, NAP, and phytoplankton to absorption,
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and usually high content of cyanobacteria (although this may not be the case for Mundad, since the trough at 620 nm is
not as apparent as in Manguaba, for example). Manguaba lagoon is classified as OWT 8 due to high values of chla
(1 = 42.8 mg/m?) and near equally high peaks in the green and red-edge spectrum. Phytoplankton is generally the
dominant absorbing pigment, as it is likely the case for Manguaba since it is less turbid than Mundau despite having
consistently much higher concentrations of chla, and also due to the high peaks in the red-edge spectrum, which are
generally higher than in the green spectrum (Figure 2b).

As identified by Neil et al. (2019), the best-performing algorithms (following their nomenclature) were, for OWT
6, models A, C,H, I, J,L, M, N, and R, and, for OWT 8§, models A, C, H, J, L, and R, while when considering any
OWT, the recommended algorithms were A, C, J, L, M, and R. However, since Model R (Quasi-analytical algorithm)
(Mishra et al., 2013) needs bands centred at 411 nm and 620 nm (which are not present in MSI), it was not considered
here. Additionally, since Sentinel-2 MSI lacks a band centred at 520 nm, we used model N instead of L, considering
only the 490 nm blue band. Therefore, here we selected models A, C, H, I, J, and N, which are described below. In
addition, we also tested the widely applied three-band algorithm (Gitelson et al., 2003; Dall’Olmo et al., 2003; Moses
et al., 2009) and the recently released Mixture Density Network algorithm, developed by Pahlevan et al. (2020) to be a
global algorithm, which can be applied over a large range of OWT. The nomenclature of these algorithms is described
in Table 3.

The input data for the algorithms is the remote sensing reflectance (R,) for the selected bands, which is derived by
dividing surface reflectance by « (units of 1/sr). For the calibration of the models, data were selected randomly from
all dates available, and we used 2/3 of the data for the calibration of the models and 1/3 for validation, except for the
MDN algorithm, which is a global algorithm and is already calibrated. To remove possible effects of the dataset in the
calibration, this process was repeated 100 times for each algorithm, resampling the datasets in every run and the mean
values of the metrics were used. For the assessment of performance, we used 2, bias, RMSE and RMSE normalised to

the chla concentration (nRMSE), using the mean values of the metrics calculated for each run of each algorithm.

Table 3: Nomenclature of the chlorophyll-a algorithms tested in this study.

Acronym Model in Neil et al. (2019) Description
2BLR Model A Two-band linear NIR-red ratio algorithm
2BQR Model C Two-band quadratic NIR-red ratio algorithm
2SAR Model H Semi-analytical NIR-red ratio algorithm
3BR Model B Three-band NIR-red ratio algorithm
BI Model I Band index algorithm
MDN NA Mixture Density Network
NDCI Model J Normalised Difference Chlorophyll Index
ocC2 Model N Two-band blue-green ratio algorithm
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Two-band linear NIR-red ratio algorithm — 2BLR. In the two-band linear NIR-red ratio (2BLR) algorithm (Gitelson

and Kondratyev, 1991; Moses et al., 2009), chla is estimated based on the ratio:

Rrs(708)) . ©)

hl =
CHiaBLR “X(Rm(665>

This algorithm is based on the high absorption in the red spectrum and high peak in the red-edge by chlorophyll
pigments, which is also the basis of algorithms used for the mapping of terrestrial vegetation (e.g., NDVI) (Dall’Olmo
et al., 2003).

Two-band quadratic NIR-red ratio algorithm — 2BOR. The two-band quadratic NIR-red ratio (2BQR) algorithm (Gurlin

et al., 2011) is similar to the 2BLR algorithm, but it uses a second-order polynomial instead of a linear regression:

Rm<708))2 b (R,SGOS)) ‘e .

hl =
ciamer “X(Rm<665> Ry.(665)

The second-order polynomial was proposed due to the non-linear relationship between the ratio of MERIS (MEdium

Resolution Imaging Spectrometer) red-edge and red bands and measured chla data (Gurlin et al., 2011).

Semi-analytical NIR-red ratio algorithm — 2SAR. In the semi-analytical NIR-red ratio (2SAR) algorithm (Gons et al.,
2002, 2005, 2008), chla is estimated based on water absorption and backscattering. It assumes that the absorption
in the red-edge spectrum is mainly due to water, and in the red spectrum it is due to chla and water combined. The

backscattering coefficient is assumed to be wavelength-independent and is calculated from radiance in the NIR region

as.
7R, (778)
by = 1.61 x 11
b 0.082 — 0.67R,,(778) an
and chla as: R.(708)
Ry(08) o (,,(708) + bp) — a,,(665) — b?
chlayspg = £ b (12)

b
where a,,(665) = 0.4 m™' and ,,(708) = 0.7 m~! (Buiteveld et al., 1994) are approximated values of water absorption

coefficients in the red and red-edge bands, respectively.

Three-band NIR-red ratio algorithm — 3BR. The three-band NIR-red ratio (3BR) algorithm was proposed by Gitelson
et al. (2003) to estimate chla from terrestrial vegetation, and then applied by Dall’Olmo et al. (2003) to retrieve
phytoplankton chla in turbid waters. The algorithm was further developed by Dall’Olmo and Gitelson (2005) and

Moses et al. (2009) and is calculated as:
chlaspr = a X [Ry(753) x (R} (665) — R, (708))| + b (13)

In this algorithm, the third band was added to reduce the effect of backscattering on the retrieved chla. This band is

located in a spectral region where the absorption by CDOM, NAP and chla is negligible.
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Band index algorithm — Bl. The band index (BI) algorithm was developed by Yang et al. (2010) based on Dall’Olmo
and Gitelson (2005), Gitelson et al. (2008) and Le et al. (2009):

(14)

R;1(665) — R;1(708
chlag; = a X r (065) =Ry, ( )) b

R;1(753) - R;1(708)

where the term multiplying a is termed index, based on the band sensitivities of phytoplankton and CDOM.
The three optimal wavelengths for the estimation of chla concentrations in turbid waters were identified in the 3BR

algorithm (Dall’Olmo and Gitelson, 2005), and Yang et al. (2010) modified it by adding another term subtracting in the

denominator, to compensate for non-negligible absorption and scattering by suspended particles around 750 nm in

turbid waters, but removing the need of another band in the algorithm developed by Le et al. (2009).

Mixture Density Network — MDN. This algorithm was developed by Pahlevan et al. (2020) for both Sentinel-2 MSI
and Sentinel-3 Ocean and Land Color Imager (OLCI) to be able to retrieve chla over a wide range of different OWT.
The MDN is a class of neural networks (NN) that estimates probability density functions (PDF) to retrieve the optimal
value of a variable based on the training dataset, in this case using the maximum likelihood. For this algorithm, a
five-layer NN with 100 neurons per layer was trained, outputting the parameters (mean, standard deviation and the
mixing coefficient) of five PDFs. The training dataset consisted of 1000 co-located in situ R, and chla pairs from a
wide range of different typically optical waters. For MSI, the input R, data consists of the seven bands within the
400-800 nm range (B1-B7). As this is a global algorithm, no calibration was applied, and the results were generated

only for the global (entire) dataset.

Normalised Difference Chlorophyll Index — NDCI. The Normalised Difference Chlorophyll Index (NDCI) was
developed by Mishra and Mishra (2012) and is based on the best adjust (a second-order polynomial) of a normalised
index, varying between -1 and +1 (similar to NDVI), of a relationship between red and red-edge bands. The algorithm,

based on this index, retrieves chla as:

5)

R,,(708) — R,,(665 R,,(708) — R,,(665)\*
chlaypcr =a+ b X s ) i ))+c><( o ) o )

R,5(708) + R,4(665) R,5(708) + R,4(665)
Two-band ratio algorithm — OC2. The NASA Ocean Colour two-band ratio (OC2) algorithm (O’Reilly et al., 1998;
O’Reilly et al., 2000; O’Reilly and Werdell, 2019) is based on the ratio of blue to green R,,:

chlaocy = 10a+bX+cX2+dX3+eX4 (16)
where
R,;(490)
X=1 —_— 17
0810 (R,5(56O)) (17)

It is based on the selection of the blue band with higher reflectance (OC4 was recommended by Neil et al. 2019),
but in light of the issues mentioned above with B1, here only B2 (490 nm — blue band) was used. Although this
algorithm was designed for Case-I waters only and has been shown to perform poorly in turbid inland waters due to the
absorption of CDOM and NAP in the blue and green spectra, we included it in our analysis for comparison.
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2.5.2. In situ models
For the semi-empirical algorithms using in situ reflectance data, we considered all field campaigns, including those
without satellite match-ups (Table 1). In total, there were 152 data points in MMELS, 81 in the Mundau lagoon, and 71

in the Manguaba lagoon.

2.5.3. Satellite data models

For the satellite data, we applied the algorithms to the images after correction using the three best AC algorithms.
The bands used in Neil et al. (2019), from MERIS, were adapted to the Sentinel-2 MSI bands: the red-edge band (BYS),
which is centred at 705 nm instead of 708 nm, B6, which is centred at 740 nm instead of 753 nm, and B7, which is
centred at 783 nm instead of 778 nm. We also considered that differences between the spectral response of S2A and
S2B were negligible. For these match-up data, there were 49 chlorophyll data points, 24 in the Mundau lagoon, and 25

in the Manguaba lagoon.

3. Results

3.1. Atmospheric correction

Due to the large amount of results, only metrics for MMELS and Mundaid and Manguaba lagoons, considering all
bands, were included here (Table 4). The plots of the results for each band individually are seen in Figure 3, while the
metrics for each band were included in the Supplementary material.

The results show that there is difficulty in retrieving p,, using the satellite data, with elevated errors and low 72,
especially bands 2 (blue), 3 (green) and 8A (NIR) (Tables S1, S2 and S7). For bands 4 (red), 5 (red-edge), 6 (NIR),
and 7 (NIR) (Tables S3 to S6), most algorithms performed reasonably well, except for C2RCC. Without considering
sunglint removal, C2X showed the best performance (Table 4), with % of 0.60, nBias of 1.2, nMAE of 1.61, RMSE of
0.0117, and SAM of 3.8°, when considering all bands for MMELS.

We note that SeaDAS failed to accurately retrieve water reflectance across the three dates (Figures S1 and S2) using
both configurations, estimating negative reflectances for many points (and providing no results for 20 of the 51 data
points). In the case of Manguaba, even the mean value of the retrieved reflectances was negative for all but bands 4,
5 and 6. This huge variation of performance between the two lagoons might be related to the different water optical
characteristics found in the scene (Mundad, Manguaba and ocean waters), where the reflectance in Mundaud lagoon may
be used for the calculation of Rayleigh-corrected radiance and determination of the aerosol type, and the extrapolation
to Manguaba causes the negative p,, (as seen in the metrics in Table S10); the low signal-to-noise ratio of the SWIR
band, as observed by Pahlevan et al. (2017a) or the adjacency effects in Mundau lagoon. However, as done in the study
conducted by Molkov et al. (2019) where a similar problem occurred, we did not consider this processing tool in our
study.

As C2X is a neural network which estimates water reflectance from a measured database, without the influence
of sunglint, this effect cannot be removed from the retrieved reflectance, only if applied before the AC, which is not
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Table 4: Metrics calculated for each atmospheric correction algorithm between in situ and satellite-derived water reflectance for MMELS and

Mundat and Manguaba lagoons (values in bold represent the best result in each case)

Algorithm Raw* Aco | Aco-SG | C2RCC | C2X | GRS-AC | GRS-SG | iCOR S2C
MMELS | 0.27 0.54 0.64 0.26 0.60 0.51 0.65 0.52 0.49
r MUD 0.24 0.48 0.68 0.67 0.70 0.41 0.69 0.44 0.38
MAG 0.30 0.60 0.63 0.14 0.61 0.64 0.60 0.60 0.60
MMELS | 0.83 0.80 0.85 0.41 0.79 0.81 0.86 0.84 0.92
Slope MUD 0.86 0.71 0.85 0.85 0.98 0.64 0.85 0.70 0.76
MAG 0.83 0.90 0.86 0.19 0.70 0.96 0.88 0.96 1.08
MMELS | 3.29 2.03 1.55 0.47 1.20 1.74 1.36 2.10 2.07
nBias MUD 3.88 2.47 1.79 0.87 1.37 2.20 1.60 2.54 2.55
MAG 2.80 1.68 1.34 0.26 1.05 1.38 1.17 1.75 1.69
MMELS | 3.31 2.11 1.70 245 1.61 1.92 1.63 2.18 2.19
nMAE MUD 3.90 2.55 1.93 1.48 1.78 2.37 1.79 2.63 2.71
MAG 2.82 1.76 1.52 3.98 1.45 1.57 1.49 1.83 1.78
MMELS | 0.0438 | 0.0194 | 0.0128 0.0172 | 0.0117 | 0.0174 0.0116 | 0.0211 | 0.0234
RMSE MUD 0.0462 | 0.0211 | 0.0126 0.0090 | 0.0116 | 0.0190 0.0110 | 0.0227 | 0.0254
MAG 0.0414 | 0.0176 | 0.0130 0.0224 | 0.0118 | 0.0157 0.0121 | 0.0194 | 0.0212
MMELS | 22.3° 10.5° 7.0° 15.0° 3.8° 8.7° 4.9° 11.0° 9.4°
SAM MUD 19.6° 10.4° 5.8° 7.1° 4.8° 8.8° 3.8° 10.1° 8.8°
MAG 25.0° 11.2° 8.2° 22.2° 5.7° 9.1° 6.2° 12.1° 10.2°

*no atmospheric correction

possible as GRS corrects for sunglint after AC, based on the retrieved aerosol parameters. Therefore, this correction

was applied to the two best performing algorithms besides C2X, ACOLITE and GRS-AC. With the addition of the

sunglint removal, the performance of both ACOLITE and GRS greatly improved, with r? increasing from 0.54 to 0.64

and from 0.51 to 0.65, RMSE decreasing from 0.0194 to 0.0128 and from 0.0174 to 0.0126, and SAM decreasing from

10.5°to 7.0°and from 8.7°to 4.9°, respectively (Table 4). It is also interesting to note that the results were bettered in

every band for both algorithms. Analysing each band individually, the best results were achieved using:

e B2: GRS-SG (best metrics except for RMSE)

e B3: GRS-SG (best metrics except for slope)

e B4: C2X (best metrics except for slope)

e B5: GRS-SG (best metrics except for slope)
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e B6: GRS-SG (best metrics except for nBias)
e B7: GRS-SG (highest 7 and slope) and C2X (lowest nBias, nMAE and RMSE)
e B8A: C2X (best metrics except for slope)

The performance of the algorithms showed a considerable variation between each lagoon, except for the algorithms
with sunglint removal. Most algorithms showed better results for Manguaba, except for C2RCC. For C2X, r* and slope
were higher for Mundad, while nBias, nMAE and RMSE were lower for Manguaba. Figure 4 shows a comparison of
the mean p,, measured at both Mundati and Manguaba lagoons and the mean reflectances retrieved from S2 images
after AC. While most algorithms retrieved the reflectance at Manguaba lagoon quite well, for Munda, there is a
considerable overestimation of the reflectance over all bands, more pronounced in bands 2 (blue), 3 (green), 7 (NIR),

and 8A (NIR).

Mundat lagoon Manguaba lagoon

Reflectance curve
Aco

ACO-SG

C2RCC

c2x

GRS-AC
GRS-SG

ICOR

Sen2Cor

=== Field
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Reflectance
Reflectance
tttd

0.02- 0.02-

500 600 700 800 500 600 700 800
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Figure 4: Mean reflectance curves measured at Mundaui and Manguaba lagoons (thicker lines), and the reflectances retrieved by Sentinel-2 MSI

images after atmospheric correction. The curves of the measured data are plotted only for the central wavelength of Sentinel-2 MSI bands 1 to 8A.

Despite GRS-SG consistently showing better metrics than Aco-SG, these differences were only marginal, and
their performances were similar (Table 4 and Figure 4), although these small differences can be significant for the
chla models. Both GRS and ACOLITE with sunglint correction were the most consistent algorithms, which is needed
in analysing the performance of the chla algorithms applied in this study since they use all bands (except for B8A)
evaluated here. Furthermore, C2X showed the best results for B4, which is widely used in chla models. Therefore, due
to the large number of analyzed algorithms, we chose to use reflectances corrected with these three methods, GRS-SG,
Aco-SG and C2X, to properly evaluate chla retrieval procedures. Note that the first two algorithms exemplify the

“physically-based approach” whereas the latter enables us to evaluate the “machine-learning” approach.
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3.2. Chlorophyll-a

3.2.1. In situ data

There was a high variation in chlorophyll-a concentration across dates in MMELS as a whole and in each lagoon.
In MMELS, it varied from a mean of 64.4 mg/m3 in 05/22-23/2018 to 110.7 mg/m3 in 03/23-24/2019 (Table 5), and
showed a higher variation across the sampling points in 05/22-23, when the standard deviation was almost 50%, also
found in Manguaba lagoon, and slightly higher than what was found in Mundau lagoon (39%). It also showed a high

standard deviation in 03/23-24 due to the large difference of chla content between each lagoon.

Table 5: Mean (Standard Deviation) chlorophyll-a (mg/m?) measured on each field campaign

Site 03/24/2017  03/22/2018  05/22-23/2018  08/06/2018  10/25/2018  02/26-27/2019  03/23-24/2019

Mundad  23.7 (7.6) NA 51.1(20.1) NA 52.2(19.5) 16.7 (5.6) 24.3 (6.1)
Manguaba NA 64.2(282)  68.0(24.5)  465(11.1) NA 1012 (23.1)  197.0(17.9)
MMELS NA NA 60.3 (24.3) NA NA 57.7 (45.8) 110.7 (88.5)

*NA: no field measurements on this date

Mundau showed a steady increase, considering a calendar year, from February, when it showed a mean concentration
of 16.7 mg/m? of chla, to May, when it showed 51.1 mg/m?, also showing high chla (52.2 mg/m?) in October, while
Manguaba showed high variability between 2018 and 2019, with large values in February (101.2 mg/m®) and March
(197.0 mg/m?) 2019, but smaller, more constant values in 2018 (64.2 mg/m? in March to 46.5 mg/m? in August).

Most models showed an efficient performance (Figure 5, Table S11) for MMELS. The performance for MMELS
and Manguaba was similar, with all algorithms showing consistent performances, except for the OC2 algorithm. In both
cases (MMELS and Manguaba), the BI, 3BR and 2SAR algorithms produced the best results (r2 of 0.95-0.97, nRMSE
of 10.2-19.2%), with very consistent performances in both calibration and validation. The global algorithm, MDN,
showed a consistent performance for MMELS and Manguaba, with > > 0.90 in both cases, although the nRMSE was
high, comparable to OC2, due to a large bias. In the case of Mundad, the 2SAR algorithm produced relatively consistent
results, with 72 of 0.79-0.82 and nRMSE of 25.9-28.0%. The other algorithms also showed a decent performance,
except again for the OC2 model, while nRMSE was higher for MDN.

3.2.2. Satellite-derived reflectance models

Using satellite reflectance corrected with Aco-SG, GRS-SG and C2X, for MMELS, 2BRL, 2BQR, 2SAR, 3BR,
and NDCI models (r* of 0.75-0.81, nRMSE of 33.3-43.2%) performed well with Aco-SG (Figure 6, Table S12), while
for C2X and GRS-SG (Figure 7, Table S13), performance decreased considerably for most algorithms in comparison
with the in situ models, with the 2SAR algorithm presenting the best results for GRS-SG (7 of 0.75, nRMSE of
39.8%), and 2BQR and NDCI algorithms presenting the best results for C2X (1> of 0.61-0.63, nRMSE of 45.8-52.9%).

Considering each lagoon separately, the results are very different, and as with the in situ models, most algorithms
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Figure 5: Taylor diagrams for the chlorophyll-a retrieved from algorithms using in sifu measured reflectance.
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performed well in Manguaba but not in Mundai. For the former, the results are similar to MMELS when using Aco-SG

(although slightly poorer), with 2BRL, 2BQR, 2SAR and NDCI algorithms (r? of 0.67-0.70, nRMSE of 23.3-29.5%)

producing the best results (Figure 9). For C2X, all models showed relatively similar performances except for the OC2

algorithm, and 2BRL, 2BQR and NDCI algorithms showed the best results (+> of 0.65-0.71, nRMSE of 22.9-26.5%).

For GRS-SG, performance decreased considerably when compared to Aco-SG and C2X, with the 2SAR algorithm

producing the best results (> of 0.59, nRMSE of 28.7%). For Munda, all algorithms showed low performance, and

the best results were produced using C2X with the OC2 algorithm (r? of 0.33-0.55, nRMSE of 48.4-72.4%) (Figure 9).

In all cases, the performance of MDN greatly decreased, showing a very inconsistent performance.
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Figure 6: Taylor diagrams for the chlorophyll-a retrieved from algorithms using Sentinel-2 MSI images corrected using ACOLITE with sunglint

correction.

Figure 9 shows a comparison of measured and modelled chla in different scenarios, considering the best model in

different cases, while Figure 10a) shows the comparison of the same model, the 2SAR algorithm, in MMELS when
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Figure 8: Taylor diagrams for the chlorophyll-a retrieved from algorithms using Sentinel-2 MSI images corrected using GRS with sunglint correction.

locally calibrated (mean values of the coefficients over the 100 runs) considering in situ and Aco-SG-corrected satellite
reflectance and with the coefficients provided by Neil et al. (2019) when calibrated for OWT 8 (hereafter named Cluster,
as in their study), the class of Manguaba lagoon, and Figure 10b) also compares the effect of the different calibrated
coeflicients (Field, Satellite and Cluster). Although the in situ model (Figure 9a) presents more data points, the loss of
performance is evident when modelling chla using satellite-derived reflectance. It also shows that most algorithms
performed better using reflectance corrected with Aco-SG, and that unsatisfactory results were generated for Mundau
in all scenarios. In addition to this difference in performance, when using satellite-derived reflectance, there is also a
tendency in overestimating small chla and underestimating very high chla concentrations, which was not observed
when using in situ data.

In addition, the metrics in Table 6 show that although the Cluster calibration provides consistent results, with high

r* in both cases (in situ and satellite reflectance), the bias and errors are high, almost doubling for the field data, and
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Figure 9: Plots of measured vs. estimated chlorophyll-a using Sentinel-2 MSI images for (a) MMELS, using the NDCI algorithm with Aco-SG, (b)
Manguaba, using the 2SAR algorithm with Aco-SG, (¢) using the NDCI algorithm with C2X, and (d) Mundad, using the OC2 algorithm with C2X.

The models were generated using the mean values of each coefficient obtained in the calibration procedure.
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Figure 10: Plots of measured vs. estimated chlorophyll-a in MMELS using the 2SAR algorithm with the coefficients calibrated using Field and
Satellite (Aco-SG corrected MSI) reflectance, and provided by the Cluster calibration (OWT 8 in Neil et al., 2019) (the first name refers to the

coefficients used, and the second to the water reflectance data used in the model).

increasing by almost 25% for satellite data. However, for the latter, the results are similar to the produced by the model

when using the coefficients calibrated for field data, although these coefficients are very divergent.

Table 6: Metrics for the 2SAR algorithm with the coefficients (a and b) calibrated using Field and Satellite (Aco-SG corrected MSI) reflectance, and
provided by the Cluster calibration (OWT 8 in Neil et al., 2019) (the first name refers to the coefficients used, and the second to the water reflectance

data used in the model)

Model a b r? Bias (mg/m3) RMSE (mg/m3) nRMSE (%)
Field/Field 2.50 0.0142 0.95 -3.7 15.2 21.6
Cluster/Field 1.25 0.0174 0.93 -22.7 26.9 383
Satellite/Satellite 1.67 0.0141 0.78 0.7 25.5 36.2
Field/Satellite ~ 2.50 0.0142 0.65 24 30.7 43.7
Cluster/Satellite 1.25 0.0174 0.73 -15.0 31.9 45.3

Lastly, chlorophyll-a maps were created from S2 corrected reflectance using the most consistent algorithm, the
2SAR algorithm. Figure 11 shows the map on the date with less cloud cover, 05/23/2018. This is also the date with the
smaller differences found in chla in the in situ measurements (Table 5), which is uncommon since the higher values
of chla in Manguaba lagoon are generally found in the rainy season (April to July), whereas in Mundau lagoon they
are found in the dry season (October to March) (Lins et al., 2018). In Mundad, the higher values are found in the
Southeastern part of the lake, closer to the urban area, and this is probably caused by organic load due to point and
non-point sources from this area, from where urban stormwater and untreated sewage discharge flow (Costa et al.,
2011). The lowest values of chla are concentrated in the Southern area, likely due to the influence of saltwater from
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the flood tide, since the lagoons are dominated by freshwater phytoplankton, while diatom marine species have a
lower growth rate in the lagoon due to high turbidity (Melo-Magalhaes et al., 2009). The effect of tide is minimised in
Manguaba, hence the higher values even in points close to the connecting channels (Oliveira and Kjerfve, 1993). The
higher values found in Manguaba are in the Western margin, close to the mouth of river Paraiba do Meio and along
this margin, following the hydrodynamics of the lake. This is a result of the high retention time in this lagoon and the
organic loading by the river, carrying fertiliser and nutrient loading, probably coming from sugarcane crops, in addition

to minor wastewater discharge from urban areas (Costa et al., 2011).
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Figure 11: Map of concentration of chlorophyll-a in MMELS, created with the locally calibrated 2SAR algorithm using reflectance derived from the
Sentinel-2 MSI image on 05/23/2018 and corrected with Aco-SG.

4. Discussion

4.1. Atmospheric correction

The results show that all algorithms reduced the error between surface and satellite reflectance (Table 4); however,
in some cases, the > decreased after the AC, in comparison with the uncorrected reflectance. For Sen2Cor, for example,
r? decreased in all cases, although the other metrics were improved. Bands 2 (blue) and 3 (green), being the most
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affected by Raleigh and aerosol scattering and thus the most influenced by the atmosphere (Mouw et al., 2015), were
the most difficult for correction, and even though errors decreased substantially using all algorithms, the highest r? for
B2 was 0.14, for example. For B5 (red-edge), most AC algorithms showed slight improvement, when raw reflectance
showed the highest r? (0.45) and one of the lowest errors. Molkov et al. (2019), for example, found > and RMSE of
0.87 and 0.0169 for this band, although mean reflectance values were smaller in the Gorky Reservoir. Poorer results
were also expected for BSA (NIR) due to higher atmospheric absorption in this spectrum, while better results were
expected for B4 (red), when r* was lowest than 0.5 for all algorithms. Vanhellemont (2019), for example, found, for
this band, 7* of 0.71 and RMSE of 0.0068 when applying ACOLITE to S2 and validating it with AERONET-OC data,
while the best result found in MMELS was using C2X, with r? and RMSE, respectively, of 0.48 and 0.0098.

The main issue in accurately correcting for atmospheric effects is the retrieval of aerosol optical thickness (aerosol
contribution to radiance measured in each band) (Moses et al., 2017). Due to the different sources of aerosols in the
study area (urban area, crops and marine aerosols, for example), not only the complexity in retrieving 7, is increased,
but aerosol types and load can also have large spatial variability, further reducing the accuracy of this estimation over
the system, especially for the processors that assume atmosphere homogeneity over each scene, such as ACOLITE and
C2RCC.

C2X showed a consistent performance, and although 7> was not high for any specific band, it was higher than 0.60
when considering all data and for each lagoon separately, while also showing consistently low errors for all bands, and it
is recommended for studies in turbid waters (Pereira-Sandoval et al., 2019; Warren et al., 2019). When not considering
sunglint removal, its performance was considerably better than the other algorithms applied here, and this consistency
has been shown in other studies (e.g., C2RCC in Ansper and Alikas, 2019; Molkov et al., 2019; Pereira-Sandoval
et al., 2019). Among the two options for C2RCC, C2X is clearly the best for MMELS for being designed for turbid
waters, which was expected. Its consistent performance was likely due to the minimisation of adverse effects that
limit the quality of the AC, i.e., the strong influence of the atmosphere (aerosols), and sunglint and adjacency effects.
This efficiency was achieved despite its simplified methodology, consisting of a neural network calibrated to TOA
reflectance and atmospheric data. As a result, these adverse effects had reduced importance since the final output,
Pw, 18 not a “corrected” bottom-of-atmosphere (BOA), but rather a value of “expected” water reflectance given the
atmospheric conditions and the TOA reflectance (Doerffer and Schiller, 2007). Limitations in this algorithm might
also be related to uncertainty in the determination of the IOPs (variability of the absorption of each IOP) (Brockmann
et al., 2016), assumption of a rough water surface caused by a constant wind with a speed of 3 m/s (Doerffer and
Schiller, 2007), the use of B1 (deep blue) for the derivation of the IOPs which, although being commonly used for this
retrieval (since CDOM is more optically active in the blue and green bands) (Babin et al., 2003), is the most affected by
atmospheric aerosols (Kutser, 2012), and the sunglint and adjacency effects that indirectly affect the estimated p,,,.

Algorithms that are not specific for water bodies showed lower efficacy. iCOR is based on two assumptions that
are not valid for MMELS (and for many other aquatic environments): the absence of sunglint and moderate or low
turbidity. The first assumption is for the adjacency correction, and as shown by the improvement of the results when
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using GRS, sunglint affects most pixels on most dates. Even though adjacency correction is necessary for coastal and
inland water bodies (Martins et al., 2017; Bulgarelli and Zibordi, 2018; Ansper and Alikas, 2019), this assumption,
and the inflexibility of this algorithm as to whether or not to apply this adjacency correction, limits its application to
the AC of images in aquatic environments. It also could not retrieve up,o in two dates, which might be due to the
elevated values and that may not be present in the LUTSs used by the AC method. Because of this, iCOR did not show
considerable correction of the atmospheric effects in terms of 7> (Table 4), although errors were substantially reduced.
Sen2Cor also provided poor results, in contrast to other lake studies (Martins et al., 2017; Maciel et al., 2019). This can
be due to its simplified methodology and the effects of sunglint and adjacency, as well as to the retrieval of 7, and ug, 0,
resulting in miscorrection of the atmospheric contribution to p;.

ACOLITE performed relatively better than iCOR, likely due to its interesting approach in not selecting bands
before analysing the image. Switching reflectance thresholds have been proposed to switch from NIR-SWIR-based AC
(Wang et al., 2009; Liu et al., 2019), but an image-based selection of the best bands to retrieve 7, can result in lower
errors in the estimation of p 4, particularly in waters with sunglint, with high adjacency effect or very turbid waters
(Ilori et al., 2019; Maciel et al., 2019; Vanhellemont, 2019), which are all existing conditions in MMELS, especially
in Mundau lagoon. Its limitations are likely related to the assumption of a homogeneous atmosphere over the whole
scene (due to high variability in the aerosol load and type, considering the proximity to the dense urban area), and the
adjacency effects, as observed in Pereira-Sandoval et al. (2019). GRS-AC showed the best performance among the
physically-based algorithms, which is related to the robustness of the algorithms it is based on (SMAC and OSOAA). It
may also reduce the uncertainty in retrieving 7, by using gridded values provided by CAMS, which have been shown to
be consistent (Cesnulyte et al., 2014), improving the accuracy of the modelling of aerosols and thus, Lg,. Limitations
of GRS are related to the resolution of the CAMS dataset (~80 km) and its consequent loss of accuracy in retrieving
more accurate aerosol optical properties. To our knowledge, this is the first study that directly compares the AC of GRS
with other processors, and the results show potential for broad applicability.

Considering the application of sunglint correction, Vanhellemont (2019) did not find a substantial improvement in
ACOLITE’s performance with S2 data (decrease of RMSE but little variation of r?). Here, on the other hand, sunglint
showed to be essential in the AC of satellite images when using physically-based algorithms. The sunglint correction
algorithm improved the results produced by both ACOLITE and GRS-AC for all bands, which was also observed by
Harmel et al. (2018), testing GRS with AERONET data for a large number of S2 images, when r? increased from 0.56
to 0.87 and RMSE decreased from 0.78 to 0.32 mW/(cm? sr um), considering all bands, and especially for B4 (red), r?
increased from 0.19 to 0.88.

The influence of sunglint is probably relevant for most water bodies in low latitudes (Harmel et al., 2018; Maciel
et al., 2019). Figure 12 shows the values of sun zenith angle, sensor viewing angle and the incident angle of the light
at the water surface through the year for Sentinel-2 overpass times in 2019. Although an estimate of the probability
of sunglint to occur takes into account wind and surface rugosity (that is, when not considering the actual measured
radiance data), this probability is greater for smaller incident angles. Since sunglint mainly affects water surface when
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the sun zenith angle is high on the horizon and for sensor viewing angles close to nadir (which is the case for Sentinel-2
viewing configuration), the contribution of sunglint signal to the sensor measurements can be high throughout the year
in MMELS and any other water bodies in the tropical region (Harmel and Chami, 2013). Thus, we recommend the
usage of sunglint corrections in all studies dependent on p,, under such circumstances. It would also be interesting to
test whether the performance of other algorithms would also improve with the application of this technique. In this
sense, it is important to highlight that this sunglint algorithm cannot be applied to C2X since it retrieves p,, based on
a large measured dataset, and thus the sunglint has influence only on TOA reflectance, which are input to the neural
network, and not on the outputted p,,, but the implementation of a sunglint correction method for this algorithm is in

development (Pereira-Sandoval et al., 2019).
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Figure 12: Sun zenith, sensor viewing and incident angles for Sentinel-2 overpass times in MMELS for 2019.

A considerable difference in performance between each lagoon was observed. Most algorithms showed better
results for Manguaba lagoon, and even C2X, Aco-SG and GRS-SG, which showed a higher 7> for Mundad, showed
high errors (Figure 4) for this lagoon. This poor retrieval of Mundau reflectances is most likely due to adjacency effects
on water reflectance since Mundau lagoon is close to a highly anthropised area in Macei6 city (Figure 1), with a large
urban area, which covers most of its Northeastern margin, as well as coconut and sugarcane crops surrounding the other
parts of the lagoon. The urban area is the most important adjacency affecting the water reflectance, since it typically
has higher reflectance in all bands, as verified by examining different pixels in this area. Forest and grasslands, which
cover most of the area surrounding Manguaba lagoon, and lagoon waters have fairly similar spectral responses, except

for bands 7 and 8A, and thus a larger error was expected for these bands in the AC of reflectance for Manguaba lagoon
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as well, as observed (Figure 4). Accordingly, this is a possible reason for the overestimation of p,, in these bands by
both Aco-SG and GRS-SG. Adjacency correction has been shown to be required for accurate retrieval of reflectance of
inland waters using satellite imagery (Martins et al., 2017; Bulgarelli and Zibordi, 2018; Ansper and Alikas, 2019), and
this is likely the case for MMELS as well, especially Mundau lagoon. iCOR, which could have shown an improved
performance due to its adjacency correction model, also retrieved poor results for Mundau due to the sunglint effect
(Sterckx et al., 2015), as discussed above. The variability of 7, can also be of importance since the aerosol load is likely
higher in Mundad due to the dense urban area in its vicinity, further reducing the accuracy of the AC.

Another aspect that could have influenced the AC in Mundau lagoon is the fact that most match-up data had one
day of difference between in situ measurements and satellite overpass (Table 1). However, due to the high retention
times in this lagoon (ca. 16 days), especially in the dry season (Oliveira and Kjerfve, 1993), the temporal variability of
its optical properties is small, thus this effect is minimised, and other effects, as discussed above, are responsible for the

inadequate correction of atmospheric effects in this lagoon.

4.2. Chlorophyll-a

4.2.1. Retrieval using measured reflectance data

In general, all NIR-red algorithms produced consistent results in all three datasets of in situ reflectances (MMELS,
Manguaba, and Mundau) (Figure 5, Table S11), with the best results always found for Manguaba, with 2SAR, 3BR
and the BI algorithm showing particularly consistent results with RMSE of ~10-14%. In Neil et al. (2019), the mean
values of r? and the slope of the regression line for OWT 8 (Manguaba), considering all recommended algorithms, were
0.66-0.71 and 0.84-0.89, respectively, while for OWT 6 (Mundat), these values were ~0.50 and ~0.60, considerably
lower than found here. For MDN, the results were very consistent in terms of %, however, the bias was very high
and negative in all cases, resulting in high nRMSE. This might be related to the low percentage of the dataset in
hypereutrophic water (chla > 90 mg/m®) used for calibration (~5%), and a poor identification of the OWT of the
lagoons, leading to OWT with possibly higher concentrations of CDOM and NAP, resulting in this wide underestimation
of the chla concentrations.

For Mundadi, the performance decreased considerably for all models (which is expected as performance varies
across OWTs, Neil et al., 2019, 2020), with the best results provided by the 2SAR algorithm (+* of 0.81 and nRMSE of
~27%). The performance of the models for Mundai was better than the mean found in Neil et al. (2019) but poorer
than other similar studies. For example, Moses et al. (2009) found r* of 0.95 and RMSE of 3.7 mg/m? when applying
the 2BRL algorithm with MERIS in waters with a reflectance curve similar to Mundau and chla concentrations of 0-65
mg/m?, although Mundaii reflectance curves have a higher peak at 700 nm. The high turbidity of Mundad is likely
influencing the performance of the algorithms, as the absorption by CDOM and NAP or backscattering by suspended
particles might be comparable to the absorption coefficient by chla (ay,), especially in low chla concentrations, affecting
the modelling by the algorithms (Gitelson et al., 2008; Kutser et al., 2016). In Gitelson et al. (2008), the 3BR algorithm

performed better since it removed the influence of backscattering in higher wavelengths, but here the BI and the 3BR
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algorithms produced results similar to the two-band models, which means that the absorption by CDOM and NAP
likely has more influence on the results than backscattering. The same applies to the NDCI algorithm, which also
assumes that CDOM and NAP absorption do not vary in the red and red-edge spectra (Mishra and Mishra, 2012).

By combining the reflectance of both lagoons, the resulting performance of the models appeared to mask the fairly
poorer performance for Mundad, since Manguaba shows higher chla concentrations, and thus, the nRMSE is lower
for Mundati. When combining the modelled chla in Manguaba and Mundat lagoons separately, the resulting 7> and
nRMSE are 0.96 and 17.8%, showing only marginal difference from the metrics for the MMELS dataset (> of 0.96
and nRMSE of 18.8%, Table S11). Therefore, chla can be modelled in MMELS as a whole without loss of accuracy,
when considering measured p,,. Additionally, a few studies (e.g., Dall’Olmo and Gitelson, 2005; Huang et al., 2014)
found limitations in NIR-red algorithms for chla <20 mg/m?, however here this difference was not observed for 2SAR
(Figure 9), when considering MMELS or Mundau separately, showing that this algorithm is more robust in lower chla

concentrations, which can be the reason for its consistency in Mundau lagoon (Figure 5).

4.2.2. Retrieval using satellite data

For the satellite reflectance models, there was a substantial loss of performance in the results, when compared
with the in sifu models, due not only to the differences between the satellite-derived and the measured in situ water
reflectance, but also to the influence of the difference of efficiency in removing the atmospheric influence across the
satellite bands: a disproportionate increase or decrease in reflectance, especially at the red and red-edge bands, causes
inaccurate estimations of chla (Mishra and Mishra, 2012). Dall’Olmo et al. (2005) found that NIR-red models are
reasonably resistant to these errors due to AC for SeaWiFS and MODIS; however, here we notice a much stronger
influence of the AC in the results, especially when comparing the different results produced by each model when
using Aco-SG (Figure 6, Table S12) or C2X (Figure 7, Table S13). This also agrees with the results recently found by
Pahlevan et al. (2020), where they found that the chla retrieved using the MDN algorithm varied greatly when using
ACOLITE, POLYMER or SeaDAS. We also highlight that MDN is highly dependant on the quality of the AC, as its
performance strongly decreased for tested AC methods (Tables S11 to S13), impairing its applicability to our study
area. The low number of data points used may also decrease its performance by constraining the identification of the
OWT and thus the retrieval of IOPs.

Despite the loss of performance, the results produced by most locally calibrated algorithms were reasonably
consistent for Manguaba and MMELS when using Aco-SG, and compare well with the literature. When simulating
the reflectance of S2 bands from in situ data measured in MMELS, Lins et al. (2017) found 2 of 0.78 and RMSE of
10.4 mg/m? using the 2BLR algorithm, which is fairly similar to the results found here using Aco-SG (r* of 0.78 and
RMSE of 25.5 mg/m?), if considering the atmospheric effects. Watanabe et al. (2018) also simulated S2 bands, finding
r? of 0.82-0.85 and nRMSE of 45.3-52.5% when applying the 2BRL algorithm, the three-band algorithm, and the
NDCI algorithm in a hypereutrophic reservoir, with little variation in the results produced by each model. Here, the

best results were found for MMELS when using Aco-SG, with considerable difference in the results for Manguaba and
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Mundau for Aco-SG (Table S12), C2X (S13) and GRS-SG (Table S14).

Another example of the influence of the AC is the inconsistency of algorithms when using in situ and satellite data.
For MMELS and Manguaba, the NDCI algorithm, for example, was very consistent with Aco-SG and C2X, although it
did not produce the best results with in sifu reflectance. On the other hand, the BI algorithm showed the best results
for Manguaba with in situ reflectance but a poor performance with satellite data for all three AC algorithms. The
3BR also showed a loss of performance, although not as pronounced as observed for BI. This can be due to the lower
signal-to-noise ratio of B6, which makes this band more sensitive to the uncertainties in the AC (Moses et al., 2009).
However, the 2SAR algorithm was not as sensitive to the AC using Aco-SG and GRS-SG despite using reflectance at
B7, which showed considerable deviation from the measured water reflectance (Figure 4).

Interestingly, for Manguaba, with C2X, the 2SAR algorithm produced considerably poorer results, while the BI
algorithm produced better results than when using Aco-SG and GRS-SG. For the BI algorithm, this can be due to the
relation between bands 4, 5 and 6: while both Aco-SG and GRS-SG greatly overestimated R,;(740), C2X provided
much closer values for this band (Figure 4), thus providing more consistency for the values in the ratio of bands. For
the 2SAR algorithm, although C2X provided much closer values than Aco-SG and GRS-SG (Table S8), r*> and Slope
are lower for C2X, resulting in similar errors for all three algorithms. In the case of the MDN algorithm, as it depends
on the identification of the OWT to retrieve chla, this wide variation of AC across bands is greatly detrimental to its
performance, possibly more relevant than retrieving water reflectance with lower bias. Another significant drawback of
this algorithm is the consideration of B1 as input data. Although we did not consider this band in our analysis of the
performance of the AC methods, in Figure 4, it is clear that reflectance in this band was considerably overestimated.
It is also important to consider that it has a resolution of 60 m, which can substantially reduce its accuracy, further
contributing to the poor performance observed here.

Despite being an interesting metric to assess the performance of AC, the SAM is not a good predictor of the
performance of chla models. Even though C2X showed the lowest SAM when considering only the bands used in the
red-NIR models (Table S8), with angles close to 1°, it produced similar results for the algorithms using only bands
4 and 5, but poorer results when using the 2SAR algorithm (bands 4, 5 and 7), for example. It is probably because
SAM considers the mean values of retrieved reflectance, when the uncertainty associated with these mean values is also
of great importance in the resulting chla model. Even an analysis of individual bands is not a good predictive of the
performance, as GRS-SG produced consistent reflectance data for both bands 4 and 5 (Tables S3 and S4), low values of
SAM (Table S8), but performance of most algorithms was relatively poor. Comparing the values in Table S9 with those
in Tables S11 to S14, there is a clear relationship between the 72 for chla and the ratio R,4(705)/R,,(665) (which is first
order sensitive to chla concentration) and the 72 for the chla models based on this ratio in all cases. GRS-SG showed
lower performance for the linear regression between measured chla and this ratio than Aco-SG and C2X, which is
reflected in the poorer results produced by the chla models. Therefore, the set of metrics used here, in addition to the r?
for the regression between measured chla and the ratio of bands used in the chla models, might provide a more reliable
basis for the prediction of the performance of cila models than a smaller set or individual metrics alone, such as > and
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RMSE only.

Considering Mundau lagoon alone, all models produced poor results for both Aco-SG and C2X, even the 2SAR
algorithm, which showed reasonably good results when considering in situ reflectance data (Figure 5, Table S11). Chen
et al. (2017) found similar limitations in Lake Huron, which has a spectral response and water parameters similar to
Mundai lagoon, using S2 data corrected with Sen2Cor and Hydrolight, finding the best performance applying the
2BRL algorithm, with 72 of 0.49 and nRMSE of 48.5%. Here, the OC2 algorithm showed the best performance, when
it should have been the opposite, considering the poor performance of the AC algorithms in the blue and green bands,
and especially since it showed the poorer results with in situ data in all cases (as expected, as the waters in Mundau
are turbid and have a high content of dissolved organic matter and particulate material, which have a high absorption
coefficient in smaller wavelengths, especially blue) (Gons et al., 2002; Gurlin et al., 2011). It is possible that this
inadequate correction of the atmospheric effects (high RMSE in all bands for both Aco-SG and C2X) somehow reduced
the errors in retrieving chla. Nevertheless, all algorithms are very inconsistent and unreliable when considering Mundat
alone. This is a direct consequence of the poor AC, especially in the red and red-edge bands, which is likely caused
by the adjacency effects in Mundad, as discussed in Section 4.1. Therefore, to accurately retrieve chla in Mundau,
atmospheric, sunglint, and adjacency effects have to be corrected for, and this might be the case for other urban lakes.

As in the AC, the difference of one day between chla data and satellite reflectance could also be reducing the
performance of the models in Mundau lagoon. However, as discussed before, the retention time of this lagoon is high
and this effect is minimised, if compared to the importance of AC, as seen in other studies (Kutser, 2012). Additionally,
the tide is the most important driver of hydrodynamic variability in the system (Oliveira and Kjerfve, 1993), but
the effect of tide is more relevant, in this short period of time, only in the region closer to the channel, where chla
concentrations are lower (Figure 11). This variability could be the reason for the higher errors observed for very low
concentrations of chla, but has a low impact in the metrics calculated between field and modelled chla, if compared to
other effects such as due to adjacency.

When combining the datasets of both Mundad and Manguaba, the algorithms also show great improvement in
the > when using satellite reflectance, especially Aco-SG and GRS-SG, which might be not only due to the larger
amplitude of chla values but also to the higher number of points. Considering MMELS, the 2SAR algorithm showed
the most consistent performance considering in situ and satellite results (for all three AC algorithms tested, although
for C2X it produced slightly poorer results, as already discussed for Manguaba), as found in other results in turbid and
productive waters (Gurlin et al., 2011; Neil et al., 2019). Moreover, as with the chla modelling using measured p,,, the
combination of Manguaba and Mundau datasets did not reduce the performance of the model (the mean value of 72
decreased from (.79 to 0.77, and nRMSE increased from 35.2 to 38.7), showing that chla can be modelled in MMELS
with a single calibrated 2SAR algorithm, using satellite reflectance corrected with Aco-SG. Using the coefficients
calibrated for the cluster of OWT 8, the class of Manguaba, the 2SAR algorithm was able to retrieve chla with a certain
consistency (high %) however, the errors increased by about 25% (Table 6), a considerable increase. The possibility of
using 2SAR as a global algorithm for this OWT is further discussed in Section 4.3.
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Although Gurlin et al. (2011) highlighted that the assumption of the insensitivity of R,;(753) to any water
constituents might not be valid in very turbid waters due to scattering by suspended solids, here this did not affect
the modelling of chla even in Mundaui, where the 2SAR algorithm produced the best results using in situ reflectance.
The limitations of the NIR-red for low chla concentrations affected the modelling of chla using satellite reflectance
(Figure 10), however, this is a limitation of the AC algorithms and not the chla models, as discussed in Section 4.2.1.
Since there was a great overestimation of reflectance in Mundau (with lower chla concentrations) for all AC processors
(Figure 4), this directly affected the modelling of chla, reducing the r* for the regression between measured chla and
the ratio R,;(705)/R,;(665) (Table S9).

Also relating to the 2SAR algorithm, Gons et al. (2005) changed the absorption coefficient of water from a,,(704) =
0.63 m™! to a,,(708) = 0.70 m™! when updating it to be used with MERIS (Buiteveld et al., 1994). Since BS5 is centred at
705 nm, both values were tested here, and although this band has a higher spectral response to 704 nm than to 708 nm,
the model using a,,(708) showed the best results and was used here. There is difficulty in estimating the value of a,, for
BS5 since it varies considerably in the range of wavelengths to which this band is sensitive to, from 696 nm (0.524 m™")
to 714 nm (0.844 m™") (Buiteveld et al., 1994). An integration of S2 RSR to the water absorption coefficients provided
by Buiteveld et al. (1994) results in 0.64 m™!, while when also considering the absorption increment due to temperature
(a difference between water and reference temperatures of 5°C), a,,(B5) = 0.65 m™!, a marked difference from 0.70 m™'.
Although testing the sensitivity of the 2SAR algorithm to this value was not in the scope of this study, this limitation

has to be taken into account when applying this model with satellite-derived reflectance data.

4.3. Perspective for future studies

Our study showed that locally calibrated algorithms outperformed a global chla algorithm, MDN (Pahlevan
et al., 2020), in all tests over two turbid lagoons. Although MDN was consistent, it largely underestimated chla
concentrations, which is likely due to the small dataset of chla > 90 mg/m® used in the algorithm’s calibration,
hampering its applicability over eutrophic waters such as those found in MMELS. Although performance varied across
the two OWTs, the 2SAR algorithm produced consistent results when calibrated for both OWT and when combining
the datasets, providing a reliable model to retrieve chla in this system. When using the coefficients calibrated by Neil
et al. (2019) for OWT 8, which includes Manguaba lagoon, it showed a very high * but high bias, which resulted in an
increase of 100% in the nRMSE, so further refinement of this calibration is still needed in order to be applied broadly.
When considering only measured reflectance, calibrating algorithms for the same OWT might provide more general
applicable algorithms and reduce the need to locally adjust models to retrieve chla, but the magnification of errors
caused by this approach must be further investigated.

Furthermore, studies of distinct OWT rarely consider the impact of the atmospheric effects on the radiance measured
by the satellite sensor and its major effect on the performance of chla models, as identified in several studies (e.g. Ansper
and Alikas 2019; Molkov et al. 2019; Pahlevan et al. 2020). Although chla algorithms have been relatively well tested

over different OWTs, few studies have tested the performance of different AC methods and made recommendations
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according to these criteria (Warren et al., 2019). To effectively and operationally retrieve chla using satellite data, the
most suitable AC processors must be selected beforehand, in combination with the chla algorithm (as we showed that
quality of AC provided by the algorithms is not a general predictor of the performance of the chla models), and this
might be done according to OWTs (Spyrakos et al., 2018; Pereira-Sandoval et al., 2019), also taking into account other
characteristics such as environmental conditions at the moment of image acquisition (Ilori et al., 2019).

When applying chla models using satellite imagery, recalibrating them using satellite-derived — instead of field
measured — reflectance enhances performance, as observed here. The 2SAR model parameters, and thus the retrieved
chla concentrations, showed a considerable difference for the calibration using our dataset of in situ and satellite data,
as well as those calibrated in Neil et al. (2019). Although the latter coefficients produced elevated errors (an increase of
25%), the model showed remarkable efficiency in retrieving chla in MMELS using Aco-SG-corrected reflectance, when
considering that it was calibrated for p,, data based on MERIS bands. We consider that 2SAR has the potential to be a
global algorithm for this OWT (or larger groups of OWTs, Spyrakos et al., 2018), provided that it is recalibrated for
satellite-derived BOA reflectance, reinforcing the need for further studies on the suitability of AC processors for each
OWT (Pahlevan et al., 2020). The same applies to MDN: although it showed promising results for in situ reflectance
data, it lost much performance when applied with satellite data, which was already observed in Pahlevan et al. (2020).
We also highlight that a more consistent calibration for productive waters is needed, as it largely underestimated chla in
both lagoons. Additionally, the removal of R,;(B1) as input data for MDN, when retrieving chla in turbid waters, might
also be considered, as it has a lower resolution (60 m) and is the most sensitive to atmospheric effects, generally being
corrected with the lowest accuracy by the AC processors (e.g., Ansper and Alikas 2019; Ilori et al. 2019).

Based on our results and other studies (Pereira-Sandoval et al., 2019; Warren et al., 2019), we infer that ACOLITE
and C2X might be the best AC processors over meso and hypereutrophic complex waters (Pereira-Sandoval et al., 2019;
Warren et al., 2019). We also highlight that GRS provided very consistent atmospheric and sunglint correction, as also
shown in Harmel et al. (2018), however, this algorithm has not been extensively tested yet, and further studies are
needed to access it robustly. As studies in productive water in tropical regions are scarce, we also highlight that sunglint
correction may be necessary to accurately retrieve chla (Maciel et al., 2019) for the sensors that cannot be tilted to avoid
specular reflection, as is the case for Sentinel-2 MSI and Landsat 8 OLI, for example, and for MSI, technical limitations
should be addressed, such as lack of bands and the time difference between the bands’ measurements, which can hinder
the correction of this effect in very windy conditions. More generally, correction of adjacency effects is also important
(Martins et al., 2017; Bulgarelli and Zibordi, 2018; Ansper and Alikas, 2019; Pereira-Sandoval et al., 2019), considering
aerosol scattering and directional reflectance of the surrounding area (such as clouds and vegetation), especially in
smaller water bodies, since they might affect radiance for over 20 km, depending on atmospheric conditions (Bulgarelli
and Zibordi, 2018). We reinforce that further studies are needed to better understand the impacts of AC, sunglint
and adjacency effects on the performance of chla algorithms, in order to delineate the most suitable combinations of
AC + chla algorithms for each OWT, in an effort to provide the basis for global-scale retrievals of this pigment using
medium-resolution sensors such as MSI and OLIL
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5. Conclusions

In this study, we aimed to find the best combination of atmospheric correction and chlorophyll-a algorithms to
model this parameter in a productive tropical estuarine-lagoon system using Sentinel-2 MSI images. For this, we
considered a few of the most commonly used AC algorithms applied to coastal and inland water bodies, and the chla
models recommended by Neil et al. (2019) for the optical water types (Mundau lagoon was identified as OWT 6 and
Manguaba lagoon as OWT 8) present in MMELS, in addition to a widely applied and a global chla algorithm (MDN,
Pahlevan et al., 2020). First, we compared in situ with satellite radiance corrected with the selected AC algorithms and
found that C2X (C2RCC calibrated to turbid waters) (r* of 0.60, nBias of 1.2, RMSE of 0.0117, SAM of 5.7°), and
ACOLITE (#? of 0.64, nBias of 1.55, RMSE of 0.0128, SAM of 8.2°) and GRS (#? of 0.65, nBias of 1.36, RMSE of
0.0116, SAM of 9.1°), both with sunglint correction, provided the most consistent surface water reflectance, when
considering all bands analysed (bands 2, 3, 4, 5, 6, 7 and 8A). Sunglint correction was essential in deriving consistent
water reflectance from remote sensing data, which is likely the case for most low-latitude water bodies, and thus we
recommend the correction of this effect under such circumstances. In Mundau, where surrounding land, mainly the
dense urban area, can greatly influence the satellite-retrieved reflectance, we also verified that adjacency correction is
necessary for accurate retrievals of water reflectance.

Secondly, we used in situ radiance and chla data to assess the performance of the chla models using measured water
radiance. Most selected models showed consistent performances for both calibration and validation, especially for
MMELS and Manguaba, with the 2SAR (Gons et al., 2002, 2005) and the BI (Yang et al., 2010) algorithms producing
the best results (2 of 0.95-0.97, nRMSE of 10.2-19.2%), while for Mundat, the 2SAR algorithm was the most
consistent model (r* of 0.81, nRMSE of 26.8%). The higher turbidity and lower chla concentrations observed in this
lagoon are likely the cause for the loss of efficiency of the models due to higher absorption by CDOM and NAP, which
might be comparable to that by chla. We also showed that the locally calibrated algorithms outperformed the global
algorithm, however, its performance might be enhanced by increasing the proportion of eutrophic waters in the dataset
for the calibration procedure.

Lastly, when retrieving chla with the satellite-derived water reflectance, considerably poorer results were produced,
especially for Mundat, where the adjacency effects substantially affected water reflectance. We also found that the
quality of AC provided by the algorithms is not a general predictor of the performance of the chla models, even when
analysing individual bands separately, while the relationship between chlorophyll-a concentration and the ratio of
bands used in the chla models might be. The combination of both Manguaba and Mundat data increased both 7> and
nRMSE in relation to Manguaba in most cases. This is not only a consequence of the higher number of data points but
also of the increase of the amplitude of chla concentrations. We showed that there is no significant difference in the
results produced when modelling Manguaba or Mundau lagoons separately or MMELS as a whole, and thus chla can
be modelled in this system with the 2SAR algorithm, which showed the most consistent performance, using Sentinel-2

MSI images corrected with Aco-SG (r* of 0.78, nRMSE of 36.2%). The MDN algorithm was very susceptible to the

37



influence of AC in the reflectance, impairing its applicability in MMELS. We also compared our calibration with the
derived by Neil et al. (2019) for OWT 8 (which includes Manguaba), and 7> was similar but nRMSE increased by 25%.
We consider that 2SAR has the potential to be a global algorithm for this OWT (or larger groups of similar OWTs),
provided that it is recalibrated for a large dataset of satellite-derived BOA reflectance.

We recommend that further studies explore the impacts of AC, sunglint and adjacency effects on the performance of
chla algorithms, in order to delineate the most suitable combinations of AC + chla algorithms for the variable OWTs,
in an effort to provide the basis for global-scale retrievals of this pigment using medium-resolution sensors such as MSI

and OLIL
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Abstract

Estuarine systems are complex transitional zones between the continent and the ocean. They can be very productive,
harbouring high biodiversity and providing essential ecosystem services such as fisheries, habitat provision, and
sediment retention. These systems generally exhibit spatial variability and distribution of organisms influenced by
a salinity gradient, and seasonal river inflow and nutrient discharge, but for being at the end of the watershed and
commonly associated with socioeconomic development in its surroundings, can be heavily impacted by anthropogenic
activities, which in turn can undermine their ecological status and ecosystem services provision. In this study, we
assessed the spatiotemporal patterns of chlorophyll-a (chla) in a heavily anthropised system using a validated Sentinel-2
MSI-derived time series. We also used a remote sensing-derived series of the absorption coefficient of coloured
dissolved organic matter (aCDOM) to explore the chla-CDOM relationship and evaluated the impact of environmental
forcings on chla. The results showed that Manguaba is more eutrophic than Mundaud and has a less defined variation
throughout the year, mostly due the nutrient influx from the basin due to sugarcane crops. Mundati shows a more
defined pattern and pronounced variation along the year, affected by the sugarcane crop cycle and precipitation. The
chla maps showed the impact of the river inflows on the system, typically decreasing chla due to light limitation, as
well as the point sources of pollution, which increased chla during the wet season. A clustering technique divided
the two lagoons into four homogeneous spatial groups, where in Mundau they show a distinct longitudinal gradient
of chla, while in Manguaba the gradient showed an increase of chla from the extremities to the centre of the lagoon.
This most productive cluster, at the centre of the lagoon, included areas of recirculation, highlighting the importance
of hydrodynamics and water residence times in this system. A canonical correspondence analysis determined each
cluster’s most important drivers of chla. The short-term analysis also allowed for assessing the relative importance of
the tides on the system. Our results point to a further degradation of the water quality in the system, with possible
increase in algal bloom and fish kill events reported near Manguaba lagoon.
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1. Introduction

Estuarine systems are complex transitional zones between the continent and the ocean. Due to their unique
characteristics, they can be very productive, harbouring high biodiversity and providing essential ecosystem services
such as fisheries, habitat provision, and sediment retention (Barbier et al., 2011). These systems generally exhibit
spatial variability and distribution of organisms influenced by environmental factors, mainly a variable salinity gradient
and seasonal river inflow and nutrient discharge, which are also associated with the hydrodynamics of the water body
(Mitchell et al., 2015). However, for being at the end of the watershed and commonly associated with socioeconomic
development in its surroundings, these ecosystems can be impacted by anthropogenic activities such as increased
nutrient discharge, pollution, and unrestrained fishing, which in turn can undermine their ecological status and
ecosystem services provision (e.g., Courrat et al., 2009). This, associated with the limited water exchange and high
retention times, can enhance the harmful effects of these activities, resulting in increased water turbidity, algal blooms,
and fish kills (Orive et al., 2002).

Monitoring of chlorophyll-a (chla), a phytoplankton biomass indicator, has been frequently used to evaluate the
trophic state of inland and coastal waters due to their sensitivity and quick response to multiple environmental factors
(Carlson, 1977; Baban, 1996; Boyer et al., 2009), and remote sensing of chla has been widely used to complement this
monitoring (Gitelson and Kondratyev, 1991; Matthews, 2017; Giardino et al., 2019). The recently launched constellation
of satellites Sentinel-2A and B, carrying the Multispectral Instrument (MSI), provided the suite of resolutions (spatial,
temporal, spectral and radiometric) able to monitor many limnological variables to better comprehend the effects
of watershed inputs into smaller waterbodies with high spatial (10 to 20 m) and temporal (repeat cycle of 5 days)
resolutions (Pahlevan et al., 2017). Despite the limited variables that can be estimated via remote sensing, it is a very
powerful tool, especially in poorer regions with limited financial and human resources to monitor degraded aquatic
ecosystems, and compared with other satellite-bourne sensors, Sentinel-2 provides more spatially detailed observations
that allows for better comprehension of spatial variability of limnological parameters.

One of the optically active constituents, which can be mapped via remote sensing, is coloured dissolved organic
matter (CDOM), the organic matter that interacts with light. Research has shown that it is an important driver of
productivity with a non-linear relationship with primary production, which in larger concentrations the effects of
nutrient input (positive relationship) are superseded by light limitation (negative relationship) (Kelly et al., 2018; Olson
et al., 2020). In addition, changes in the watershed, along with climate change and eutrophication of the waterbodies,
resulted in generally increased inputs of CDOM to receiving aquatic ecosystems, directly affecting the nutrient content
and light absorption of DOM, altering the structure and function of these systems (Zhang et al., 2020). The different
stoichiometric ratios of nutrients in the DOM (Olson et al., 2020) can, for example, influence the occurrence of
cyanobacterial blooms, which can further degrade water quality (Fulweiler and Nixon, 2012; Amorim and Moura,
2021).

In this study, we used satellite-derived chla data and the effects of CDOM, also derived from satellite, to assess



the drivers of short-term phytoplankton dynamics and environmental forcings over an anthropised eutrophic tropical
estuarine-lagoon system for the period between 2016 and 2021, to better understand the spatiotemporal functioning of

the system with high-to-moderate resolution satellite data.

2. Methodology

2.1. Study area

The study area is the Mundati-Manguaba Estuarine-Lagoon System (MMELS), a shallow (maximum depth of 3.5
m) tropical lagoon system located in the metropolitan area of Maceid, state of Alagoas, northeastern Brazil, between
9°35” S and 9°46’ S latitude and 35°34” W and 35°58° W longitude (Figure 1). The MMELS is composed of two
lagoons, the Mundati lagoon (surface area of 27 km?), located in the Northeastern part of the system, which receives
freshwater mainly from the Mundad river basin (surface area of 4127 km?, annual average discharge of 35 m?/s); and
the Manguaba lagoon (surface area of 42 km?), which is located in the Southwestern part of the system and receives
freshwater from two basins, the Paraiba do Meio (surface area of 3145 km?, annual average discharge of 25 m?>/s) and
the Sumatima (surface area of 404 km?, annual average discharge of 3 m?/s) river basins. The tides are semidiurnal,
with an average amplitude of ~1.45 m, but the direct influence of the tides in this choked lagoon system is small due to
the complex system of channels connecting the lagoons to the ocean (Brito Jr et al., 2018). The MMELS exhibits a
tropical semi-humid climate, while the most inward areas of its basin are semi-arid, with the whole basin showing
well-defined wet (from May to July) and dry (from October to December) seasons. Over MMELS, temperature varies
little throughout the year, with an average annual mean temperature of 25°C, mean precipitation of ~1700 mm per year,
and the winds blow predominantly from a southeasterly direction.

The margins of Mundat lagoon are mainly occupied by the urban area of Macei6 city (Figure 1) and other
small urban areas, and coconut and sugarcane crops, while the margins of Manguaba lagoon are intensively used for
agriculture (mainly sugarcane crops), grassland, and vegetation fragments (forest and mangrove areas). A substantial
part of the large areas used for agriculture, particularly the Sumatima river basin, are covered by sugarcane crops that
withdraw water from the rivers to wash the sugarcane stalks. Most producers do not treat the effluents, which are
carried to the rivers with added fructose (high biochemical oxygen demand and nutrients), and are a major source of
pollutants and nutrients for the lagoons, especially Manguaba lagoon (Oliveira and Kjerfve, 1993). Additional sources
of nutrient loading and organic matter deposit into the lagoons are untreated sewage from the urban areas, industrial
effluents, and other untreated effluents (mainly from agriculture) from the Mundau and Paraiba do Meio river basins.
As aresult, both lagoons are characterised by eutrophic conditions and dominated by phytoplankton (Melo-Magalhaes
et al., 2009; Lins et al., 2018), with frequent algal blooms that can cause water anoxia and reported fish kill events.
Figure 2 shows point sources of sanitary and industrial effluents mapped by Luz et al. (2022) according to the Maceid

Sanitation Plan and high-resolution satellite imagery.
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Figure 1: Location map showing the MMELS watershed, land cover, and main hydrography. Source: Agéncia Nacional de Aguas, MapBiomas

(Souza Jr et al., 2020).

Although they are connected, the lagoons have distinct characteristics, as described in Lins et al. (2017). Both
lagoons are characterised by eutrophic conditions and are dominated by phytoplankton, but Manguaba lagoon is larger,
has a much higher retention time, and is less affected by the tides, which makes it generally less saline than Mundaud
lagoon. Additionally, the water flow between the lagoons through the connecting channel system is small, which creates
different conditions of nutrients and hydrodynamics in each lagoon due to their different geometries and tributary rivers.
Regarding the water constituents, Manguaba lagoon has higher chlorophyll-a concentration and lower total suspended
solids (TSS) concentration (Lins et al., 2017). Furthermore, despite being shallow, the high turbidity observed in both
lagoons, with Secchi disk values ranging between 0.58 and 0.95 m, implies that bottom sediment has little or no effect
on water reflectance as the photic zone depth is lower than water depth in MMELS, and only the shallower part of

Mundad lagoon (northeastern-most margin) was removed from processing due to possible bottom effects on water
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Figure 2: Sentinel-2 MSI image from 05/23/2018 showing the MMELS, the main tributary rivers, and point sources of sanitary and industrial
effluents (Luz et al., 2022).

reflectance.

2.2. Sentinel-2 MSI imagery processing

The Multispectral Instrument (MSI) is a high-to-moderate-resolution, multi-spectral imaging sensor aboard two
satellites, the Sentinel-2A (S2A) and Sentinel-2B (S2B) satellites, launched by the European Space Agency (ESA) on
June 23, 2015 and March 7, 2017, respectively. The satellites have a revisit time of 10 days, and the sensor samples 13
spectral bands, ranging from the visible to the shortwave infrared (SWIR) bands, with 10 m to 60 m spatial resolution.
The Sentinel-2 mission, along with Landsat 8 OLI (Operational Land Imager), has provided high-quality aquatic
science products over continental waters, with spatial, temporal, and spectral resolutions that considerably enhanced
the applications of remote sensing to inland waters (Pahlevan et al., 2017).

In this study, atmospheric and sunglint-corrected Sentinel-2 MSI imagery was processed using a combination of
ACOLITE (Atmospheric Correction for OLI “lite”’) and GRS (Glint Removal for Sentinel-2), as previously validated
(Tavares et al., 2021), to derive chlorophyll-a concentration and coloured dissolved organic matter absorption coefficient

(aCDOM) at 400 nm for the Mundaid-Manguaba Estuarine-Lagoon System from 2016 to 2021 using algorithms that
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were previously validated (Tavares et al., 2021; Lima Filho et al., 2022).

The ACOLITE processor was applied to correct for atmospheric effects using the dark spectrum fitting (DSF)
proposed by Vanhellemont and Ruddick (2018), and GRS (Harmel et al., 2018; Vanhellemont, 2019) was used to
correct for the sunglint signal (reflection of the sun disc on the water). A brief description of the processes, challenges,
and uncertainties regarding atmospheric correction (AC) of Sentinel-2 MSI imagery over MMELS and the validation
of the AC processors in this site are described in Tavares et al. (2021).

The sentinel-2 MSI images were downloaded using the Python package sentinelsat (Valgur et al., 2019), processed
using the Python package for ACOLITE, and then post-processed in R (R Core Team, 2021). In total, 142 images were
processed for the region (36 in the wet season and 62 in the dry season); the mean cloud cover was around ~ 50% for
each lagoon, so a maximum cloud cover of 75% was defined. For cloud and cloud shadow screening, we tested FMask
(version 4.5) (Qiu et al., 2019) and Sen2Cor (version 2.5.5) (Miiller-Wilm et al., 2016), but both showed unsatisfactory
results; for this reason, a pre-processing was run using a combination of MNDWI (Xu, 2006) and thresholds for bands
1 (443 nm, aerosols), 3 (560 nm, green) and 5 (705 nm, red-edge), and then the remaining clouds and cloud shadows
were removed manually.

To process the imagery, all bands were upscaled to 60 m (20 m bands aggregated to 3 x 3 pixels and 10 m bands
aggregated to 6 X 6 pixels) to reduce noise in the remote sensing data. All processing was carried out in the R

environment (R Core Team, 2021) with package ferra (Hijmans, 2021).

2.3. Water quality algorithms

To retrieve chla, the semi-analytical NIR-red ratio algorithm (Gons et al., 2002, 2005) was employed, as previously
validated in Tavares et al. (2021) (n = 49, r* = 0.78, RMSE = 36.2 mg m™3). In this algorithm, chla is estimated
based on water absorption and backscattering. It assumes that the absorption in the red-edge spectrum is dominated by
water, and in the red spectrum it is due to chla and water combined. The backscattering coefficient is assumed to be

wavelength-independent and is calculated from radiance in the NIR region as:

7R, ,(783)
by = 1.61 |
b % 0.082 — 0.67R,.(783) M

and chla as:

R0 X (a,(705) + by) — @,,(665) — b
0.0141
where a,,(665) = 0.4 m~! and a,,(705) ~ 0.7 m~! (Buiteveld et al., 1994) are approximated values of water absorption

chla = 2)

coefficients in the red and red-edge bands, respectively.

The coloured dissolved organic matter absorption coefficient (aCDOM) at 400 nm was used as a proxy for organic
matter inputs from the watershed (allochthonous source), as well as to infer light limitation of primary productivity.
To retrieve aCDOM(400), a semi-empirical algorithm validated in MMELS (Lima Filho et al., 2022) was employed
(n =29, r? = 0.65, RMSE = 0.30 m™"). This algorithm establishes a log ~ log relationship between aCDOM and a
band ratio, with one band in the NIR spectrum, where CDOM absorption is very weak but present, and the effects of
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other water constituents are minimised (water absorption is fixed), and the other in the blue spectrum, where CDOM

absorption is very strong. It is calculated as:

aCDOM(400) = exp [1.08 + 0.43 log(R,(740)/R,+(490))] 3)

2.4. Environmental data

To assess the drivers of short-term phytoplankton dynamics, we evaluated the impact of meteorological and
hydrodynamic forcings over the system. Information on the tide was provided by the Navy Oceanographic Center
(CHN) as water level data from Maceié Harbour (9°40.968’S, 35°43.424°W), located 9 km from the Mundat Lagoon
inlet. From this data, we calculated the tide at the time of satellite overpass using a fitted sinusoidal function (Brito Jr
et al., 2018). Meteorological data were retrieved from a meteorological station located 7.5 km northeast of the Mundaud
lagoon centre. This station is maintained by the Instituto Nacional de Meteorologia (INMET), providing hourly
meteorological data. We retrieved air temperature, solar radiation, precipitation, and wind speed and direction. River
flow data were retrieved from two river gauge stations maintained by the Agéncia Nacional de Aguas (ANA), Fazenda
Boa Fortuna, which measures Mundati river’s daily mean flow at 16 km from the Mundat lagoon, and Atalaia, which
measures Paraiba do Meio river’s daily mean flow at 15 km from the Manguaba lagoon. Unfortunately, no data from
the Sumatima river is available, and only the precipitation over Macei6 can be used to estimate its impact on Manguaba
lagoon. Figure 3 shows the climatology of precipitation and river flow in MMELS for the study period, highlighting

the region’s well-defined wet and dry periods.
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Figure 3: Climatology of precipitation and river inflow to MMELS during 2016-2021.



2.5. Spatiotemporal patterns of chla and drivers

To analyse the resulting rasters of chla concentrations, we calculated the mean values for each pixel for the whole
period of analysis, and the wet (May to August) and dry (October to January) periods. From these rasters, we calculated
the mean for each lagoon and for the system for these selected periods. We also assessed the correlation between chla
and aCDOM for each pixel over the system using Spearman rank correlation p, as this relationship may not be linear.

The relationship between chla and environmental drivers was established using a methodology similar to Lins et al.
(2018), however, considering a daily scale, for short-term dynamics and fewer images. First, we divided the lagoons
into homogeneous spatial groups (HSG) using Ward’s minimum variance clustering (Legendre and Legendre, 1998),
considering the normalised values of chla and aCDOM in each pixel and 4 clusters in each lagoon, following Lins et al.
(2018), using packages cluster (Maechler et al., 2021) and vegan (Oksanen et al., 2022). For each cluster, we then
calculated the monthly means of chla and descriptive statistics over the whole period of analysis.

Then, we assessed the relationship between chla and the environmental data in each cluster for the time series using
Canonical Correspondence Analysis (CCA) (Legendre and Legendre, 1998). For this, we calculated each cluster’s
mean chla and aCDOM in each image, and the mean value of the environmental variables 24h before the satellite
overpass (at ~10:30 am, local time). A minimum threshold of 250 pixels for Manguaba and 125 pixels for Mundau
was set to process mean chla and aCDOM in each cluster. For the environmental data, we calculated daily mean solar
radiation (Rad), temperature (7Temp), wind speed (ws) and direction (wd, which was divided into 30°quadrants), as
well as wind speed in the x (u,) and y (u,) directions, precipitation in the 24h (P.24h) and 48h (P.48h) before satellite
overpass, river flow (Q), and the tide at the time of satellite overpass (7d.Hour), tide amplitude (7d.Amp) and mean
tide (Td.Mean) 24h before satellite overpass. Only mean temperature was considered due to a very high correlation
between daily maximum, minimum and mean temperatures.

The relationship established with CCA was processed with package vegan (Oksanen et al., 2022) and plotted using
ggvegan (Simpson, 2019). Due to missing pixels and missing data from the meteorological station, 93 data points were

available for Manguaba, and 84 data points were available for Mundad, of the 142 images available.

3. Results

3.1. Means

Figure 4 shows the mean values of chla over MMELS during different periods of the year, and Figure 5 highlights
the difference in chla between the wet and dry periods. Manguaba lagoon shows more eutrophic conditions than
Mundad lagoon, with higher values of chla over its western margin, especially in the centre of the lagoon, while in
Mundad, the higher values are closer to the urban area. In both lagoons, during the wet period, the chla values are
smaller near the inflow areas, except near the Sumatma river, and near the point sources of pollution the chla values are

higher this season. Table 1 quantifies the calculated mean chla values for the lagoons over different periods of the year.



It shows how chla is always higher in Manguaba lagoon and the months with the higher (March) and lower (September)

concentrations.
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Figure 4: Mean values of chlorophyll-a concentration in the a) wet and b) dry periods, and c) for all images.

Figure 6 shows the mean values of aCDOM(400) over the whole period. While the aCDOM distribution over the

system generally follows that of chla, we can see some differences, notably the similar amplitude of the absorption

coefficient in Manguaba and Mundati lagoons. The urban areas have a significant input of organic matter, but in the

southern part of Mundad, they do not contribute to aCDOM, probably due to the influence of the tides. The relationship

between aCDOM and chla is shown spatially using the Spearman correlation coefficient at different periods in Figure 7.

Near the Mundat and Paraiba do Meio inflows, the correlation is low, but it is higher than 0.7 over most of the system,
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Figure 5: Difference between the mean values of chlorophyll-a concentration in the wet and dry periods.

especially in the dry period when the input in the system is low. During the wet period, the correlation map is more

dispersed, but the correlation between chla and aCDOM significantly decreases.

3.2. Clusters

Figure 8 shows the clusters divided by Ward’s clustering method, considering the time series of chla and aCDOM.
As expected, the main drivers of spatial variability are the connecting channels (influence of tides) and the inflows.
However, while for Mundad there is a gradient from the Mundad river inflow to the channel inlet, with an influence of
the point sources of pollution contributing to a different cluster at the eastern margin, where Macei6 is, for Manguaba
the division resulted in a gradient starting at the centre of the lagoon, with the pixels at the extremes (at the Paraiba do
Meio river inflow and at the channel inlet) belonging to the same cluster.

Table 2 shows the descriptive statistics of chla for each cluster and the correlation between chla and aCDOM. In
Mundad, as expected, HSG1 showed the highest values of chla, influenced by the point sources of nutrients and organic
matter and more stagnant waters. HSG2 showed intermediate values of chla, with the lowest correlation between chla
and aCDOM due to the effect of discharge of the Mundad river, which carries DOM along with suspended sediments,

resulting in light limitation. HSG3 and HSG4 show similar statistics, with lower values of chla in the HSG4 due to the
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Table 1: Mean values (and standard deviation), in mg m™3, of the mean chlorophyll-a concentration of the pixels in each site during different periods

of the year

Site Whole period Wet Dry March September
MMELS 67.1 £22.1 62.6+£20.2 63.6+23.6 118.7+61.0 48.6+128
Mundat 41.8+10.5 452+135 376+11.8 53.6+209 46.0=+14.4

Manguaba  81.1 + 12.1 722 +165 780+143 1535+444 500116

stronger influence of the tides.

Table 2: Statistics (in mg m~3) of estimated chla considering the different HSG for each lagoon

Site Group Mean Min Max SD p (chla~CDOM)
HSG1 635 39.1 865 136 0.42
HSG2 489 339 659 100 0.25
Mundada
HSG3 429 298 572 7.6 0.76
HSG4 326 21.6 402 6.2 0.68
HSG1 959 548 171.8 30.1 0.63
HSG2 86.1 535 1580 27.0 0.58
Manguaba
HSG3 793 50.1 149.8 252 0.31
HSG4 69.7 453 139.1 239 0.54

In Manguaba, HSG1 showed the highest values of chla, being less affected by the sediments carried by Paraiba do
Meio river and influenced by more stagnant waters due the tides. It also extends to recirculation zones in the northwest
and southeast margins, where productivity hotspots are found. The gradient of chla occurs similarly to Munda, from
HSG1 to HSG4, with HSG4 being the most influenced by the river inflow and tides. However, chla is still high in HSG4,
with a contribution from the discharge of the Sumatima river, with potentially high nutrient content. Interestingly,
HSG3 showed the lowest correlation between chla and aCDOM, where there is a relatively low influence of the river
inflows. However, we can see from Figure 7 that, despite being in the same group, there is a very different relationship
between chla and CDOM in HSG4, with the area near the Paraiba do Meio inflow with a smaller correlation due to
light limitation by CDOM and sediment input.

Figure 9 shows the monthly means of chla in each cluster. The two lagoons show distinct patterns, with Mundau
showing a relatively larger variability, especially in HSG 1 and 2. They show higher chla and variability, with higher
chla in March, August and October, and lower concentrations in the dry period. Manguaba, on the other hand, shows a
more uniform variability across the clusters, with a clear increase in chla in the dry period leading to a distinct peak in

March, followed by low variability in the wet period and a minimum in September, as shown in Table 1.
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Figure 6: Mean values of aCDOM(400) for the studied period.

3.3. Environmental drivers

Figure 10 shows the plot of the first two axes of the CCA, which explain ~40% of the variability in Mundad and
~56% in Manguaba lagoon. In both lagoons, the clusters were divided in each plot quadrant, and the aCDOM did not
help explain much of the variability in chla. In Munda, the chla in HSG1 is mostly influenced by wind, favoured by
stagnant waters. It is not correlated to antecedent precipitation, contrary to expectation, but is negatively affected by
solar radiation, which is negatively correlated to precipitation. HSG2, being at the discharge area of the Mundaud river,
is controlled by river flow and precipitation. The tide is determinant for HSG3 and HSG4, as expected, as this cluster is
the most affected by it, with HSG3 being mostly influenced by tide amplitude and wind speeds, which is related to the
residence times, and chla in HSG4 being higher with higher temperatures and lower tides at the time of measurement,
showing how volatile is this transition area between fresh and seawater.

In Manguaba, the first axis of the CCA explained much more of the chla variability than in Mundau. Interestingly,
the tide affects the clusters differently, with the tide amplitude affecting the HSG1, related to the residence times of
these areas, the tide at the time of measurements influencing HSG2 the most, and the 24h mean tide determining HSG3
and HSG4, which are the most affected by the tides in the lower portion of the lagoon. Wind direction also has a
determining role in Manguaba, with stronger southerly winds contributing to chla in HSG3 and strong westerly winds

12



836000 852000 856000

852000 856000

Legend
— Hydrography
Cor (Chla~aCDOM)

1.0
oo

836000

(a) Wet

836000

836000

836000 840000 852000 856000

852000 856000

Legend

—— Hydrography
Cor (Chla~aCDOM)

\ 1.0
-1.0
836000 840000

(b) Dry

852000 856000

T
852000 856000

Legend
— Hydrography
Cor (Chla~aCDOM)

1.0
-1.0

(c) Whole period

Figure 7: Spearman correlation coefficient between chla and aCDOM(400) in the a) wet and b) dry periods, and c) for all images.



Legend
— Hydrography

Clusters

Il HSG1

Bl HSG2
HSG3
HSG4

Figure 8: Map of clusters in Manguaba and Mundau lagoons, considering the time series of chla and aCDOM.

contributing to chla in HSG4, both related to increased water residence times and sediment resuspension. HSG4 is also
affected by river flow and 24h-accumulated precipitation, mostly in its southern portion due to the Sumatima inflow, but
HSG1 is the most affected by 48h-accumulated precipitation, probably due to the long residence times, especially when

there is a high tide amplitude.

4. Discussion

In this study, we showed the spatial variation of chla over a eutrophic shallow estuarine-lagoon complex. The chla
patterns are much more homogeneous in the Mundau lagoon (Figure 4), with a defined distribution that follows the wet
and dry periods. In the Manguaba lagoon, however, the distribution is more complex, with varying patterns reflected in
the more chaotic cluster map (Figure 8). Chla is also always higher in Manguaba (Table 1), with a smaller difference
between the lagoons in September, at the end of the wet season, and a higher difference in March, when chla is very
high in Manguaba.

Our results also highlight the importance of the point sources of pollution in both lagoons, especially in HSG1 in

Mundau and near the mouth of the Sumatma river in the Manguaba lagoon. Despite previous reports of low sewage
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discharge into Manguaba lagoon (Costa et al., 2011), we see from Figure 6 that this source of pollution has a large
contribution to CDOM, and this can be due to the high population growth observed in this urban area in Marechal
Deodoro (growth of 15% between 2011 and 2021), leading to increased discharge of wastewater in Manguaba which,
in conjunction with the Sumadma discharge, causes the high chla concentration.

The effects of CDOM on chla are two-fold: the organic matter generally supplies nutrients that increase production,
but CDOM also attenuates light, causing a limitation on primary production (Kelly et al., 2018). This effect is still
understudied, but it is understood that it depends on the nutrient:carbon stoichiometry and the chromophoricity of
the DOM, i.e., how the DOM interacts with light (Seekell et al., 2015). Our mapping of CDOM does not take these
factors into account, only the absorption coefficient, therefore the maps of correlation between chla and aCDOM do not
consider the different nutrient content of the different sources of DOM, and how these different inputs of DOM affect
the relationship between DOM and primary production (Olson et al., 2020). For example, algal-derived DOC has a low
colour intensity, and DOC from wastewater effluent is even less coloured, but has a high nutrient content (Brezonik
et al., 2015).

Therefore, it is difficult to accurately quantify the influence of CDOM on chla in these lagoons, but we showed that
they are generally correlated (Figure 7), with a very high correlation in the dry season, when possibly most of CDOM
in the system is derived from phytoplankton (autochthonous source), as Costa et al. (2011) showed that most of the
particulate organic matter (POM) results from phytoplankton mortality. During the wet season, much OM is carried
to the lagoons, carrying loads of untreated sewage discharged, especially into the Mundati lagoon, and fertiliser and
nutrient loads from the river watersheds, mainly into the Manguaba lagoon (Costa et al., 2011). In this season, we
can see that the relationship between them is more complex and non-linear, notably in the Mundau lagoon where it is
largely negative. In this case, and at the mouth of the Mundau and Paraiba do Meio rivers in general, it is likely due to
light limitation due to the absorption of light by CDOM (Branco and Kremer, 2005), associated with the suspended
solids carried by both rivers, but more notably by Mundau river, as noted in Oliveira and Kjerfve (1993) and Lins et al.
(2017).

Another key variable that explains the spatial variation of chla is the water residence times. In eutrophic estuaries,
water residence times can be the variable controlling algal biomass (Wainger et al., 2016) and is a driver of chla in
MMELS (Lins et al., 2018). Mundad typically shows a lower residence time (Oliveira and Kjerfve, 1993; Brito Jr et al.,
2018; Cunha et al., 2021) for being smaller and receiving more freshwater discharge throughout the year (Figure 3).
Mundad is also more affected by the tides, decreasing the lagoon’s water renewal time (Brito Jr et al., 2018). Here
we highlight that since this region is close to the Equator, the tide amplitude can be high, up to 2.5 m, thus having a
large impact on the variability both of water residence times and in the phytoplankton community, regulating salinity
and nutrient availability, which associated with the high turbidity in Mundau lagoon, may limit primary production
(Oliveira and Kjerfve, 1993; Melo-Magalhaes et al., 2009), especially in the region of HSG4 (Figure 8). In Manguaba,
the water residence times are typically much higher (Cunha et al., 2021), with a very low influence of the tide in
the lagoon’s salinity (Oliveira and Kjerfve, 1993), with the hydrodynamics dominated by river discharge and wind
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stress. This, coupled with lower turbidity, allows for the higher chla, and with the characteristics of the phytoplankton
community, with a dominance by freshwater cyanobacteria species (Melo-Magalhaes et al., 2009) associated with low
wind speeds, form the conditions for algal blooms (Vaiciate et al., 2021), which are common in this lake.

Compared with the clusters generated by Lins et al. (2018), we highlight that the different periods, different
approaches, and, most importantly, the limited spatial coverage from MODIS resulted in the different clusters. That
work, however, also showed the longitudinal gradient found in the Mundau lagoon and indicated a region in the middle
of the Manguaba lagoon where chla values were much higher. The time series of chla in each cluster here show a much
higher value over the whole year, and the peak we found in March was only observed in Mundat, while in Lins et al.
(2018), the peak in Manguaba was in April-May. The difference in the results can be three-fold: the difference in the
methods to retrieve chla, the difference in the spatial coverage of the two sensors, and an actual difference in chla in the
system. In Lins et al. (2018), the authors applied a NIR-red model with MODIS Terra and Aqua, with an RMSE =
15.2 mg/m3 and a significant underestimation of chla in the low concentration range, which may partially explain the
differences. Here, the RMSE was significantly higher (36.2 mg/m3), with an uncorrected adjacency effect affecting
mainly Mundad, especially the HSG4 (closer to the urban area), that might explain the differences found in this lagoon.

We can also see that the monthly chla concentrations in Lins et al. (2018) follow the region’s climatology, with
the peak in May observed in Manguaba following the rainfall peak (Figure 3). Here, chla do not directly correlate
with the rainy and dry seasons, although this effect is more directly observed in Mundau (Figure 9), with both lagoons
showing a peak in chla in March, when rainfall and river flow are relatively low, resulting in common algal blooms
in Manguaba lagoon. This is a result of the sugarcane plantation cycle, as sugarcane crops are widespread over the
MMELS watershed, especially in the Sumatma river basin (Figure 1), with high potential to lower the water quality
of waterbodies, and already been investigated in other studies in Brazil (e.g., Barra Bonita reservoir, Tundisi et al.,
2008). From September, when the cycle starts, to March—May, when the sugarcane is harvested and processed, the
water quality of the rivers is heavily altered by the water use and leaching of the crop fields. Especially in March,
water is withdrawn from the rivers to wash ash from the burned leaf in the sugarcane stalks before processing them.
The water is returned to the rivers with no additional treatment, carrying a load with high biochemical and chemical
oxygen demand in the effluent, rapidly lowering the pH and DO concentrations (Oliveira and Kjerfve, 1993). This
leads to the occurrence of algal blooms that affects mostly the Manguaba lagoon, but its effects can also be seen in
Mundad. Unfortunately, the Sumaima river is not monitored, and therefore we could not quantify its impact on chla in
Manguaba lagoon, however, it clearly has a direct effect, as seen by the influence of rainfall in the clusters (Figure 10).

The short-term analysis also allowed for assessing the tides’ effect on the system. It is a determinant factor in
the whole system, whether by controlling salinity, nutrients, and phytoplankton composition or controlling the water
residence times (Melo-Magalhaes et al., 2009). The analysis with the CCA showed that different characteristics of the
tide have different impacts in the system, as in Manguaba, the region most affected by eutrophication and algal blooms
being determined by tide amplitude, whereas near the channel inlet, where fish kill events have been reported, the mean
daily tide preceding the event drives chla. The effects of the tide are even more pronounced in the dry season, when the
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water residence times are higher and chla is higher in the northern and central parts of the lagoon.

5. Conclusions

In this study, we assessed the spatiotemporal patterns of chlorophyll-a in a heavily anthropised system using a
validated Sentinel-2 MSI-derived time series. We also used a remote sensing-derived series of aCDOM to explore the
chla-CDOM relationship and evaluated the impact of environmental forcings on chla. The results quantified the mean
chla concentrations in the lagoons between 2016 and 2021, showing that Manguaba is more eutrophic than Mundau
and has a less defined variation along the year, mostly due to the nutrient influx coming from the basin due to sugarcane
crops. Mundat shows a more defined pattern and pronounced variation along the year, affected by the sugarcane crop
cycle and by precipitation. The chla maps also clearly showed the impact of the river inflows on the system, which
generally tend to decrease chla due to light limitation by CDOM and TSS (which were not quantified) inputs, as well as
the point sources of pollution, which increased chla during the wet season.

A clustering technique divided the two lagoons into four homogeneous spatial groups, where in Mundau they show
a distinct longitudinal gradient of chla, while in Manguaba the gradient showed an increase of chla from the extremities
to the centre of the lagoon. This most productive cluster, at the centre of the lagoon, included areas of recirculation,
highlighting the importance of hydrodynamics and water residence times in this system. A canonical correspondence
analysis was applied to determine each cluster’s most important drivers of chla. The short-term analysis also allowed
for assessing the relative importance of the tides on the system.

Compared to previous works in the system (Oliveira and Kjerfve, 1993; Melo-Magalhaes et al., 2009; Lins et al.,
2018), our results point to a further degradation of the water quality in the system, with a possible increase in algal
bloom events, and fish kill events reported near the Manguaba lagoon. We highlight how remote sensing monitoring
should be used as a tool for the management of the system to provide data and knowledge to management plans, such
as to prevent fish kill events, although it may lack variables necessary to fully understand the system dynamics (e.g.,
salinity and water residence times, Wainger et al., 2016), which have to be monitored in situ. Further studies in the
system should include a model of the Sumatima river discharge to quantify its effect in Manguaba lagoon, explore
water transparency (e.g., Secchi disk depth) effects on phytoplankton, and assess the occurrence of algal blooms in the

system (Vaiciate et al., 2021), as well as the impact of these algal blooms on CDOM.
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Abstract

The cool-skin effect affects the estimation of lake surface water temperatures (LSWT) by thermal infrared sensors
due to air-water heat interactions at thin superficial water, which emits thermal radiation (radiometric temperature),
causing a negative bias in estimations of bulk surface temperatures (kinetic temperature). The opposite is true for
lake-atmosphere heat exchange, when only this thin superficial water layer interacts with the air above the water. When
not considering this effect, studies of the impacts of climate change on lake surface water temperature and of lake heat
fluxes, which depend on this variable, might substantially under or overestimate changes, although these still need
to be quantified. In this study, we first validated two empirical cool-skin correction models, originally developed for
oceanic waters, for the MODIS surface temperature product in lake Mangueira, a subtropical shallow Brazilian lake,
using ancillary meteorological reanalysis data. The bias between the MODIS-derived LSWT and the in situ water
temperature was 0.5°C, and both models partially corrected for this, reducing bias to -0.2°C. The model developed
by Minnett et al. (2011), which is simpler and depends only on wind speed, showed the best metrics. Despite not
being developed for inland waters, the model showed a good performance with reanalysis wind speed data, and it was
selected in this study as the best method of correction for the cool-skin effect and applied thereafter. Subsequently,
we also assessed the impact of this correction on lake surface water temperature warming and heat balance trends of
lake Mangueira and two other nearby large shallow lakes between 2000 and 2022. The effects on the computation of
warming rates caused differences around 5%, ranging from 0% to 0.19°C dec™! (26%), with the skin (non-corrected)
T,, generally underestimated trends. In terms of trends of T,,, the results were expressive for Patos Lagoon, with a
difference of 0.09°C dec™! (14%). For the computation of lake heat budget, relatively high values for water evaporation,
of 7 ~ 9% (oscillating between 2 and 4 W m~2 over the period), and high differences in the sensible heat flux, of up to
55%. These differences reflected on generally smaller trends for the heat budget terms when using bulk 7', with the
highest differences being 0.8 W m~2 dec™! for Patos Lagoon. Since the cool-skin has an inverse relationship with wind
speed, the differences can be even greater in the heat budget of larger, sheltered lakes.
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1. Introduction

Water temperature is a key physical variable in lentic ecosystems, regulating many processes and metabolic
reactions, and is the most directly impacted by climate change (Woolway et al., 2020). These changes include
increasing air temperatures and solar radiation (O’Reilly et al., 2015) and variation in surface wind speeds (Woolway
et al., 2019), with impacts such as warming temperatures (Livingstone, 2003; Schneider and Hook, 2010; O’Reilly
et al., 2015), modified heat exchange and thermal stratification (Lee et al., 2012; Fink et al., 2014; Zhong et al., 2016;
Woolway and Merchant, 2018), phenology (Deng et al., 2014), and primary production (O’Reilly et al., 2003).

However, as temperature data are quite scarce, with field monitoring generally at few locations and low frequency,
remote sensing data has been increasingly used in studies of climate change impacts on lakes (Schneider and Hook,
2010; O’Reilly et al., 2015; Woolway and Merchant, 2018; Toffolon et al., 2020). Using remote sensing, temperatures
are obtained using thermal sensors (in the thermal infrared — TIR — spectral range) aboard satellites (Minnett et al.,
2019). Although these estimates have lower accuracy than field measurements, caused by factors such as atmospheric
correction (Jiménez-Muiioz et al., 2010), emissivity uncertainty (Wenyao et al., 1987) and adjacency effect (Torgersen
et al., 2001), they have the advantage of being spatialised measurements, limited only by the different sensor resolutions,
and provide a consistent data for investigating the effects of climate change on aquatic ecosystems on a global scale
(Schneider and Hook, 2010; O’Reilly et al., 2015).

A significant limitation of measuring water temperature with thermal infrared sensors is that they measure water’s
radiometric temperature, i.e., the radiation emitted by the water, according to Planck’s law, differing from the kinetic
temperature measured by a thermometer. The thermal radiation is emitted at a very thin superficial thermal layer
(~10-20 um), which is, in most conditions, thinner than the superficial layer interacting with the atmosphere (Wong and
Minnett, 2018). Due to the air-water heat interactions, mostly the net flux of long-wave (including thermal) radiation
and turbulent (conductive and evaporation) heat fluxes from water to air (Schluessel et al., 1990), this superficial layer,
termed the skin layer, is generally colder than the layer of water immediately below. This difference in temperature,
which is measured by thermal radiometers but not by thermometers, which measure bulk temperatures, is termed the
cool-skin effect and affects the estimation of lake surface water temperatures (LSWT) by TIR sensors aboard satellites,
causing a negative bias in estimations of bulk surface temperatures in the order of 0.1 to 1.0°C (Schluessel et al., 1990;
MacCallum and Merchant, 2012; Wilson et al., 2013; Alappattu et al., 2017; Prats et al., 2018).

The cool-skin effect has been extensively studied in ocean waters (Robinson et al., 1984; Schluessel et al., 1990;
Fairall et al., 1996a; Donlon et al., 2002; Minnett et al., 2011; Alappattu et al., 2017), however, few studies have
investigated how this affects measurements of LSWT by radiometers (Oppenheimer, 1997; Wilson et al., 2013; Prats
et al., 2018). Many models have been developed to quantify the cool-skin effect on ocean waters, both empirical
(Donlon et al., 2002; Alappattu et al., 2017) and deterministic (Fairall et al., 1996b), primarily as a function of wind
speed as it regulates both turbulent mixing and net heat flux, as well as air renovation, with stronger winds resulting

in thinner cool-skin layer depth and thus lower temperature difference (Fairall et al., 1996a; Donlon et al., 2002). In



inland waters, however, studies were limited to investigating the cool-skin effect (Wilson et al., 2013), with Riffler
et al. (2015) applying an empirical cool-skin model developed by Minnett et al. (2011) and Prats et al. (2018) assessing
the application of a deterministic model to correct for this effect. In this sense, more studies are necessary to assess
whether the ocean models can be applied to inland waters.

Additionally, although thermal sensors only measure LSWT, this parameter is critical for understanding the
exchange of heat and gases with the atmosphere (Minnett et al., 2019). Climate change has affected the heat exchange
between lakes and the atmosphere (emission of long-wave radiation and latent and sensible heat fluxes) (Fink et al.,
2014; Zhong et al., 2016). To accurately calculate these fluxes, it is necessary to know the water temperature at the
surface layer, which under most conditions is equal to the skin temperature (Oppenheimer, 1997). Oppenheimer (1997)
showed that using bulk temperatures to calculate lake latent and sensible heat fluxes resulted in an overestimation of
approximately 10%. Cool-skin correction has been shown to improve estimations of air-sea interactions, which are
used, for example, in numerical weather prediction (Brodeau et al., 2017; Zhong et al., 2019).

Therefore, the importance of understanding the cool-skin effect for studies of LSWT is two-fold: to accurately
determine bulk temperatures when measuring radiometric temperatures, for example, for understanding lake warming
rates using remote sensing data, and to accurately determine skin temperatures, when computing lake-atmosphere
interactions from bulk temperatures. In this study, we assessed both the occurrence and correction of the cool-skin
effect in retrieving LSWT from remote sensing data and its result in studies of climate change impacts on lakes. To
achieve this, we first validated two empirical cool-skin correction models, originally developed for oceanic waters,
for the MODIS LST product in a monitored subtropical shallow lake using ancillary meteorological reanalysis data.
Subsequently, we assessed the impact of this correction on LSWT warming and heat balance trends of this and two

other nearby large shallow lakes 22-yr long time series.

2. Methods

2.1. Study area

The study area Brazil’s three largest natural lakes (Figure 1): lake Mangueira, lake Mirim, which is partially in
Uruguayan territory, and the Patos Lagoon. They are all shallow lakes located in the southernmost state in Brazil, Rio
Grande do Sul, resulting from an ancient depression in the coastline enclosed by sand beaches that resulted from the
combined actions of wind and ocean currents (Schwarzbold and Schifer, 1984). The climate in the region is subtropical
(Cfa in Koppen'’s classification), with a mean annual temperature of ~ 18°C and rainfall ranging from 1,100 mm to
1,600 mm (Kottek et al., 2006), evenly distributed throughout the year, with slightly higher rainfall in winter and drier
periods in the summer.

Lake Mangueira is the smaller and the southernmost of the three lakes, with an area of 800 km?2, located in the
narrow strip of land between the Atlantic Ocean and lake Mirim. It has an elongated shape, with a length of 90 km

and width of 3 to 11.5 km (mean width of 8.3 m), mean depth of 2.6 m, and maximum depth of 7.5 m. It has a small
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Figure 1: Map of the study area, showing the Patos Lagoon, lake Mirim and lake Mangueira, the sampling stations in lake Mangueira, and the

location of the meteorological stations.

watershed, and the main water use is rice irrigation, the main economic activity in the region. Lake Mangueira is the
only monitored site with measured temperature data used in this study, further described in Section 2.4.

Lake Mirim is the largest freshwater lake in the region, with an area of 4,000 km?. It is 200 km along the major
axis and 30 km wide on average (maximum width of 43.7 km), with a maximum depth of 10 m and average depth
of 4.5 m. Besides ecological importance, it has political and economic significance for being on the Brazil-Uruguay
border and its waters supplying the local population and irrigating rice fields.

The Patos Lagoon is the world’s largest choked lagoon, with a surface area of approximately 10,000 km?, 260 km
in length in its major axis, maximum width of 60 km, and mean width of 40 km. It is a shallow lagoon with a mean
depth of 5 m (maximum depth of 8.5 m), and its waters are generally brackish only in its estuarine region since the
effect of the tides is softened by the narrow outlet channel. Here, the estuarine region of the Patos Lagoon was not
considered due to the influence of tides and the ocean in the water temperature, as well as the Casamento lake due to
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the shallowness of Abreu bank, which connects it to the main waterbody and can dry out in periods of low water levels.

All three lakes are shallow and have an elongated shape, with their major axis in the NNE-SSW direction,
coincident with the dominant wind direction. In this flat region, winds can be strong and are one of the main drivers of
hydrodynamics, especially in lake Mangueira and during low flow periods in the other lakes, producing mixing and
preventing stratification longer than a few days during the summer (Fragoso Jr et al., 2011; Munar et al., 2019). In this

sense, the warm layer effect was considered negligible for the three lakes, and only the cool-skin effect was considered.

2.2. MODIS data processing

MODIS Terra (launched on December 1999) and MODIS Aqua (launched on May 2002) daily LST products
(version 6.1) with a nominal spatial resolution of 1 km (actual 0.927 km) at nadir (MOD11A1 and MYD11A1) were
obtained for the period from March 2000 (July 2002 for Aqua) to February 2022 from NASA’s Application for Extracting
and Exploring Analysis Ready Samples (AppEEARS, https://appeears.earthdatacloud.nasa.gov/). The
MODIS/Terra LST data are recorded at approximately 10:30 a.m. local time, while MODIS/Aqua data are recorded at
approximately 1:30 p.m. local time. For nighttime data we only used the observations from Terra, which overpass the
study areas at approximately 10:30 p.m. local time.

MODIS LST product derives the temperature with a split-window algorithm (Wan and Dozier, 1996) based on the
differential brightness temperature measurements from its two thermal bands, band 31, centred on 11.03 ym, and band
32, centred on 12.02 um. Water emissivity is derived from the MODIS Emissivity Library (Zhang, 1999) for each
thermal band, and the surface temperature is estimated with calibrated coefficients depending on sensor viewing zenith
angle, surface air temperature and atmospheric water vapour content.

The MODIS data were processed for the three study areas according to the data quality flag recorded in the quality
control (QC) band. Only pixels with errors within 1°C or marked as good data quality (QC =0, 1, 5, 65) were used,
and the remaining pixels were discarded. LSWT data were then aggregated to a 2x2 pixels (~ 1.8x1.8 km) grid to
reduce noise in the remote sensing product. The aggregation was limited to 2 pixels due to the narrowness of lake
Mangueira. An inward (negative) buffer of 1 km was used for Mangueira and 2 km for lake Mirim and Patos Lagoon to
remove mixed land-water pixels and reduce the adjacency effect.

Processing was carried out in the R environment (R Core Team, 2021) with package ferra (Hijmans, 2021).

2.3. Cool-skin correction

We tested two empirical models developed for oceanic waters to correct the cool-skin effect in the remote sensing-
derived temperatures. The first model was developed by Minnett et al. (2011) (hereafter named M11), which quantifies
this effect based on wind speed and has already been applied to inland waters (Riffler et al., 2015). This model results
from a re-calibration of older models based on an exponential function of wind speed (Donlon et al., 2002; Horrocks

et al., 2003; Gentemann and Minnett, 2008), and the cool-skin effect is estimated as:

Tskin = —0.13 — 0.724 exp(—0.35u,¢) (1)
5



where T, is the cool-skin effect, and u is the wind speed measured at 10 m.

The second and more recent model was developed by Alappattu et al. (2017) (hereafter named A17), which
parameterises the cool-skin effect into three sub-models, which are functions of the net long-wave radiation flux (R,
the difference between the incident long-wave radiation and the radiation emitted by the water surface), the time of the
day at which the measurement is taken (&), and wind speed. The model also split the wind speed correction step into

two models, one for wind speeds up to 4 m s~! and the other for # > 4 m s™!, calculating the cool-skin effect as:

Tysq = 0.035u2, — 0.24u50 + 0.85 2
Tyes = —0.0037u;9 + 0.35 3)
Thour = 0.11sin(10.35h + 0.67) “4)

Th, = 0.002R;, — 0.15 ®)
Tsin = Tu + Thour + Thy (6)

The net long-wave radiation flux is calculated as the difference between the incident long-wave radiation (vafw")

and the radiation emitted by the water surface (J}"):

RZW - Jﬂgwn _ JW — Jdown _ EO—(TW)4 (7)

Iw Iw

where € = 0.97 is the water emissivity, o = 5.67 x 1078 W m~2 K* is the Planck constant, and T, is the surface water
temperature, in K, derived by MODIS.

Due to the limitation of hourly wind speed and incident long-wave radiation measured in sifu and the spatialisation
of these two variables over the lakes, we used the wind speed data from the ERAS reanalysis (Hersbach et al., 2020)
and incident long-wave radiation data from the ERAS Land (Mufioz-Sabater et al., 2021). Although these products
were not validated, meteorological data from ERAS have already been used to assess changes in temperature and
precipitation in the Amazon forest (Xu et al., 2020) and changes in water vapour over Europe (Yuan et al., 2021), for
example, and also other reanalysis products were used as a data source for cool-skin correction and comparison (Riffler
et al., 2015; Zhang et al., 2019).

Unidimensional wind velocities (u-v) at 10 m above ground are provided at an hourly frequency on a 0.5x0.5°grid
and were downloaded from NCAR’s Research Data Archive (https://rda.ucar.edu/datasets/ds633.0/) and
processed for the three lakes. The Jﬂ;’w“ data is supplied at an hourly frequency on a 0.1x0.1°grid, and were down-
loaded from Copernicus’s Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-erab-land) and processed for the three lakes. First, wind speed in each grid point were calculated
(u = Vu? +v2) and then interpolated on a refined grid using the inverse weighed distance method with a cubic function
(idw function in package gstat, Griler et al., 2016). The same interpolation was used for the Jl‘x’w“ data. Then, spatialised

T s1in Was calculated for both models, and the LSWT was corrected by adding 7 -



2.4. Validation of MODIS data

Lake Mangueira was selected as the site for validating the cool-skin models. It has already been used for validating
MODIS LST data (Tavares et al., 2019), but we conducted a new validation using an incremented measured bulk
water temperature dataset. It is monitored by the Laboratorio de Ecotecnologia e Limnologia Aplicada (Laboratory of
Ecotechnology and Applied Limnology) of the Federal University of Rio Grande do Sul (UFRGS) since 2000, with
seasonal measurements in three stations spread lengthwise over the lake, as shown in Figure 1. The measurements
were made usually in the morning, using a thermometer with a precision of +0.1°C at a depth of 30-50 cm.

The MODIS water temperature datasets were validated with the in sitfu measured data using matchups with a
window of up to 3h between the field measurement and satellite overpass. To obtain the LSWT at the sampling stations,
we used a rectangle involving 2x2 pixels at native resolution surrounding each station. In total, we used 118 matchups
of in situ measured and satellite-derived LSWT. To assess the satellite data, we used bias, the median of errors, the

maximum absolute error (Emax) and the root mean squared error (RMSE).

2.5. Meteorological data

To calculate the heat budget of the three lakes, we used the following monthly mean meteorological data: mean
air temperature (7,), relative humidity (RH) and wind speed. While we used the wind speed derived from the ERAS
dataset mentioned above, T, and RH were retrieved from the three local meteorological stations (Figure 1, from north
to south): Porto Alegre (WMO code 83967), Pelotas (83985), and Santa Vitéria do Palmar (83997). Due to size of lake
Mirim and Patos Lagoon, to represent the climatic forcings over these two lakes, we used the mean of the monthly
means at Porto Alegre and Pelotas stations for Patos Lagoon, and the mean of the monthly means at Pelotas and Santa
Vitéria do Palmar stations for lake Mirim. We used data only at Santa Vitéria do Palmar to represent the climatic
forcings over lake Mangueira.

To calculate the heat budget, wind speed measured at 10 m was converted to wind at 2 m (Tubelis and Nascimento,
1988): i

Uy = ujg X (1—0) ~ 0.795u; 8)

2.6. Computation of warming trends and heat budget

We compared the trends and heat budget terms calculated with the raw MODIS LSWT data (skin) to those using
corrected LSWT data using the best model (bulk), validated in Section 2.4. The seasonal trends calculated with the
corrected LSWT have already been estimated by Tavares et al. (2023).

First, we calculated the monthly means of T, of the entire lakes (lake-average LSWT, (T,)) for the period between
March 2000 and February 2022 for the three MODIS products: MODIS Terra Day, Terra Night and Aqua Day, and the
mean of the three products, T_W To calculate the means, we only considered images with a minimum of 70% of valid
pixels to avoid artificial spatialisation of water temperature, and monthly means were only calculated for the months

with at least 4 valid images. Then, the missing data in the time series of monthly mean (7',,) were filled using linear
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models using as input 7, in the closest station and (7, derived from the other MODIS products (bias = 0 and RMSE
=~ 0.4°C for all three datasets). In this filling, the Aqua Day time series was also filled from March 2000 to June
2002 to match the length of the Terra series. After processing the time series, we calculated the seasonal (Fall: MAM;
Winter: JJA; Spring: SON; Summer: DJF) T, trends using Sen’s slope with the Mann-Kendall (MK) trend analysis
and a significance level of 5% and then calculated the absolute and percentage difference between the trends calculated
with skin and bulk temperatures.

For computations of the surface heat flux at the water-atmosphere interface, the skin surface temperature must be
used, and therefore heat budget computations that employ bulk lake water temperatures generally overestimate the heat
exchange (Oppenheimer, 1997). To evaluate this overestimation, we calculated lake heat budget terms on a monthly
scale, using T, calculated for each lake, and considering only the terms that depend on T,,: emission of long-wave
radiation, and flux of sensible and latent heat (Alcantara et al., 2010). The emission of long-wave radiation is given by

equation 7. The flux of sensible heat (conduction) is given by (Large et al., 1997):
H = p,Cp,Cou(T,, — T,) )

where p, = 1.2 kg m~3 is the air density, Cp, = 1005 J kg~! K~! is the specific heat of air, C; = 1.1 x 10~ is a
coefficient of turbulent heat transfer, and 7, is the mean air temperature.

The flux of latent heat (evaporation) is given by (Large et al., 1997):
E = p,LeC1u,0.622(e,, — RHe,)/pa (10)

where Le = 2.264 x 10° J kg™! is the specific latent heat of vaporisation of water, C; = 1.1 x 1073 is a coefficient of
turbulent heat transfer, p, is the atmospheric surface pressure, fixed at 760 mmHg, and e, e e,, are the saturated vapour

pressure at T, and T, respectively, which are approximated by Magnus formula (Raudkivi, 1979):

17.27T
esa:[mmHg] = 4.596 exp( )

37347 (b
Then, the heat budget terms were aggregated seasonally, and we calculated the absolute and percentage difference
between each term for each lake.
Lastly, we also calculated the trends for the seasonal heat budget terms for each lake, using Sen’s slope with the

Mann-Kendall (MK) trend analysis and a significance level of 5%.

3. Results

Table 1 shows the metrics calculated for the MODIS LSWT data validated at lake Mangueira and with the cool-skin
correction by models M11 and A17. We observe a bias of -0.5°C for the raw MODIS data, caused by the cool-skin
effect, and that this effect is partially corrected by both models M11 and A17, reducing bias to -0.2°C and the median of

errors from -0.4°C to nearly 0. Model M11 also marginally improved the RMSE and Emax, showing the best metrics,
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although the differences in the results between models M11 and A17 were very small. Therefore, due to simplicity and
results, model M11 was selected in this study as the best correction method for the cool-skin effect and applied in the
following sections.

Table 1: Metrics (in °C) for the validation of MODIS data without correction and correction with models developed by Minnett et al. (2011) (M11)

and Alappattu et al. (2017) (A17). 118 match-ups were used, with a window of time of up to 3h between in situ measurements and satellite overpass

Data Bias | Emax | Median | RMSE
No correction | -0.5 4.2 -0.4 1.1
M11 -0.2 39 -0.1 1.0
A17 -0.2 4.0 -0.1 1.1

The difference between the seasonal means calculated for the raw and corrected (using model M11) LSWT data
showed a mean value close to 0.30°C, with little seasonal variation or among MODIS products, and with the smaller
differences found for T\,N (T, = 0.28°C), as in the nighttime winds are stronger, and with the larger differences found
in lake Mirim (T, = 0.32°C), the most inland of the lakes, where winds are slightly weaker.

Table 2 shows the difference in the trends calculated for the bulk and skin MODIS LSWT for each season and each
lake. We note a few very large percentage differences caused by low warming trends and, therefore, with low statistical
significance (Gray et al., 2018). Considering only the significant trends, the differences are around 5%, ranging from
0% for the yearly trends for T,,D for lake Mangueira to 0.19°C dec™! (26%) for T, A for the Patos Lagoon in spring, a
considerably high difference. The skin MODIS LSWT generally resulted in lower warming trends, although exceptions
occurred. In terms of trends of 7,, mean, which indicates the general seasonal warming rates of the lakes and are
significant only in spring (except for the yearly trends for lake Mangueira), the results are also only expressive for Patos
Lagoon, with a difference of 0.09°C dec™! (14%).

Table 3 shows the mean heat budget terms calculated with the bulk (corrected for the cool-skin) and skin 7, for
each lake for the period between March 2000 and February 2022. We note a very small difference in the emission of
long-wave radiation, around 0.5%, higher values for water evaporation, of 7 ~ 9%, and high differences in the sensible
heat flux, the smaller heat budget term, of up to 55%. Since the emission of long-wave radiation is much larger than the
other two terms, the difference in the total heat budget calculated here is small, up to 1.6% for Patos Lagoon. Figure 2
shows these differences for each season for the study period, totalling 88 seasons. The variation in Jj, is nearly constant
over the whole period, and because of this, the sum of the three terms is as well, in percentage difference. The absolute
difference of the sum of the three terms, however, shows a marked seasonality, as for all three terms, the dependency
on T,, enhances the differences when winds are weaker, i.e., in fall and winter, especially due to differences in lake
evaporation, which mostly oscillates between 2 and 4 W m~2 over the period, with a mean of 3.3 W m~2 (8.8%) in
fall and of 2.1 W m~2 (11.1%) in winter, and in the summer when lake evaporation is higher, with a mean of 3.8 W

m~2 (6.9%). The percentage difference shows peaks for latent and especially sensible heat, occurring mainly when the
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Table 2: Absolute (percentage) difference in the trends, in °C dec™! (%) calculated for the bulk (corrected with model M11) and skin 7,,. The

reference trends were calculated with the corrected bulk temperatures, available in Tavares et al. (2023). Values in bold indicate significant trends

Season Lake Terra Day Terra Night Aqua Day T,, mean
Patos | -0.01(-4.2) | -0.05(-323.1) | 0.01 (14.7) 0.00 (1.7)
Autumn | Mirim | 0.01 (16.0) | -0.01 (-168.6) | 0.01(10.3) -0.02 (-48.0)
Mang. | 0.02 (10.7) -0.02 (-10.3) | -0.01 (-27.3) | -0.02 (-17.2)
Patos | 0.03 (13.7) 0.03 (59.6) -0.04 (-36.9) | 0.01 (76.1)
Winter | Mirim | 0.00 (-4.4) 0.00 (7.2) -0.01 (-8.6) 0.00 (5.1)
Mang. | 0.09 (226.4) 0.04 (18.7) -0.14 (-63.0) | -0.03 (-20.8)
Patos | 0.10 (14.7) 0.02 (2.0) 0.19 (26.0) 0.09 (13.9)
Spring | Mirim | -0.02 (-6.0) 0.00 (0.4) 0.08 (10.7) 0.01 (1.5)
Mang. | 0.01 (3.0) 0.02 (4.7) -0.01 (-2.6) -0.01 (-1.1)
Patos | 0.05 (14.6) 0.00 (1.0) -0.01 (-7.8) 0.01 (3.3)
Summer | Mirim | -0.01 (-4.5) | -0.03 (-12.2) | -0.04 (-103.3) | 0.00 (-1.9)
Mang. | -0.03 (-10.3) | -0.03 (-7.6) 0.00 (-1.2) 0.02 (5.0)
Patos | 0.05(16.7) 0.01 (2.1) 0.04 (20.0) 0.03 (13.6)
Year Mirim | -0.02 (-8.56) 0.00 (-1.7) 0.02 (12.5) 0.01 (2.4)
Mang. | 0.00 (0.0) -0.01 (-3.8) -0.01 (-8.4) -0.02 (-8.0)

difference between T, and T, is small.

Table 4 shows the trends of each heat budget term for each lake in each season. There are some expressive
differences in the trends, generally higher for the skin T, with the larger variation found for the Patos Lagoon and in
the fall and winter, when wind speeds are lower. Considering only the significant trends (which, as occurred with the
temperature trends, are concentrated in spring), the differences are smaller, with the highest differences found for the
sum of the three terms, of up to 0.8 W m~2 dec™! for Patos Lagoon. We can also see that the trends are only significant

in a few cases when using the skin 7, especially in fall, due to higher trends.

4. Discussion

4.1. Cool-skin correction

Despite the incremented dataset, the validation of raw MODIS LSWT data showed the same metrics reported in the
previous study in lake Mangueira (Tavares et al., 2019), with a bias of -0.5°C and RMSE of 1.1°C. The methods of
cool-skin correction developed by ocean waters partially corrected for this bias, with the model developed by Minnett
et al. (2011) and by Alappattu et al. (2017) improving all metrics. Besides not being developed for inland waters, these
models depend on hourly, site-specific input data, especially wind speeds, which are difficult to obtain, especially for
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Table 3: Long-term mean of the terms of lake heat budget (in W m‘z) calculated with the bulk and skin T,. Percentage differences were calculated

in relation to the lake heat budget calculated with the skin T,

Lake | Term | bulk 7, | skin 7, | Diff (%)
T 405.4 403.5 0.5
H 3.2 14 54.8
Patos
E 40.3 36.8 8.7
Total 448.9 441.8 1.6
T 400.5 398.6 0.5
H 4.8 33 30.8
Mirim
E 33.6 30.7 8.6
Total 438.9 432.7 14
T 398.3 396.7 0.4
H 6.1 4.7 23.2
Mang.
E 39.8 37.1 6.7
Total 444.2 438.5 1.3

*Jpy = emission of longwave radiation; H = flux of sensible heat; E = flux of latent heat

large water bodies such as the lakes studied here, where a considerable spatial variation can occur (Minnett et al., 2019).
The ERAS wind speed data used here were robust enough to improve the accuracy of the remote sensing-derived
LSWT data, even though this data has not been, to our knowledge, validated in Brazil, and other reanalysis datasets
have already been used in studies of cool-skin effect in ocean and inland waters (Riffler et al., 2015; Zhang et al., 2019).
More accurate sources of wind data can further enhance the quality of cool-skin correction, but the ERA5 data could be
a dependable source of wind speed data for large-scale correction of remote sensing-derived LSWT.

The models showed very similar metrics, despite having different parameterisations. However, when inspecting
them, the two models provide very similar results for wind speeds up to 3 m s~! but diverge for stronger winds, which
are common in the region, when model A17 estimates higher 7'y;,. The addition of the other submodels (using the
hour of the day and net long-wave radiation) slightly reduces this overcorrection compared to model M11, which
results in close estimations of Ty;,. A limiting factor for model A17 is the source of incident long-wave radiation,
the ERAS Land (Mufioz-Sabater et al., 2021), which does not have grid points over water bodies and, therefore, the
data over the lake depends on the spatial interpolation of the surrounding land grid points, impairing its quality. This
significantly affects the ability of the submodel to correct for the cool-skin effect, although its overall effect is limited
when compared with the wind speed effect on 7 g;,, but in situ va‘v’wn data will likely enhance the model, correcting for
the still negative bias found here.

The cool-skin was not completely removed using the models, which can be a limitation of the models, as they were
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Table 4: Seasonal trends of each heat budget term (in W m~2 dec™!) calculated with the bulk and skin 7,,

Season Fall Winter Spring Summer

Term Patos | Mirim | Mang. | Patos | Mirim | Mang. | Patos | Mirim | Mang. | Patos | Mirim | Mang.
Jw | 0.7 0.3 04 | -0.1 | -0.2 -0.7 | 2.0 2.9 2.8 1.5 1.5 1.8
H 0.7 -0.4 0.8 | 0.2 0.0 -0.6 | 0.7 1.2 0.8 | -02 | -05 -0.7

bulk T,
E 3.1 1.3 1.9 0.2 0.5 0.1 2.5 4.0 4.2 04 -04 1.4
Total | 3.0 0.5 1.9 1.0 0.0 -1.5 7.5 6.8 7.1 2.0 1.6 1.9
T 1.2 0.3 0.6 0.9 0.0 -0.6 3.2 3.2 2.7 2.1 2.0 1.8
H 1.0 0.1 -0.8 0.5 0.1 -04 1.2 1.3 0.7 0.1 -0.1 -0.7
skin T,

E 44 25 1.9 0.8 0.4 0.1 2.8 4.3 4.1 1.7 0.6 1.2
Total | 6.1 23 2.0 33 0.4 -1.0 | 83 7.5 7.0 3.8 22 2.1

*Jpy = emission of longwave radiation; H = flux of sensible heat; E = flux of latent heat

developed for ocean waters, or as Wilson et al. (2013) asserted, it is not possible to correct for this effect in inland
waters using solely wind speed, as the other effects have higher importance than in ocean waters. They found, for
example, a large variation of the skin effect during weak winds (from -1 to +1°C, from Lake Tahoe buoys), which is
due to dominant convective heat exchange (Fairall et al., 1996a; Donlon et al., 2002) and the possible formation of a
warm layer. This effect occurs when there is a large T, — T, difference and thermal stratification occurs (Zhang et al.,
2019), which rarely occurs in lake Mangueira, but adds a positive bias in the skin temperature, masking the cool-skin
effect. A few validation data points showed an overestimation of 7\, by MODIS, suggesting that this effect might be
relevant during low wind speeds (although less pronounced than what was found by Wilson et al. 2013 in Lake Tahoe),
and the cool-skin could be stronger than the bias of 0.5°C observed here, as seen in other studies (Crosman and Horel,
2009; Liu et al., 2015).

Other limiting factors on the validation of MODIS-derived LSWT are the intrapixel variation, which can be
considerable in lake Mangueira due to its narrowness, and the water temperature variability between the in situ
measurement and satellite overpass (limited to 3h), although the diel variation of temperature in the lake is relatively
low, of around 0.7°C (Tavares et al., 2023). Furthermore, the formation of a warm layer could also impair the
validation of the cool-skin correction, as discussed above, and limitations in the remote estimation of LSWT add
further uncertainty in the data, including instrument calibration (Hulley et al., 2011), noise, atmospheric correction,
and emissivity uncertainty (Li et al., 2013), resulting in the almost invariant RMSE. All in all, due to the simplicity of
the model M11, it is recommended over the model A17, and further testing is required for its application over inland
waters. Additional discussion on the accuracy of remote sensing-derived LSWT is provided in Prats et al. (2018) and

Tavares et al. (2019), for example.
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4.2. Effects on warming trends and heat budget

We observe that the impact of cool-skin correction was generally limited, with most differences of ~ 5%, when
considering only the significant trends, but expressive in a few cases, especially in the Patos Lagoon, when differences
were up to 0.19°C dec™! (26%). As expected, the trends deviated less during nighttime, when winds are stronger, and
T s1in is smaller. The spatial variability in 7 'y;, could be a key factor in the differences in the trends, as the results showed
a gradient in the differences from the largest (Patos Lagoon) to the smallest (lake Mangueira) lake, suppressing the
effect of wind speeds, as winds are weaker in the more inland lake Mirim (Tavares et al., 2023). The effect in the trends,
therefore, can be more relevant in large, sheltered lakes (e.g., Lake Tahoe, Wilson et al., 2013), but we acknowledge
that the length of the series here is short (22 yrs) for a more robust analysis of the trends, especially considering that the
trends in spring and summer are around 0.5 and 0.3°C dec™!, respectively, considerably lower than the threshold of 1°C
dec! stipulated by Gray et al. (2018) for robust trend estimation of LSWT series shorter than 30 yrs. The effect on
longer series should be further investigated, but it might be lower than what we found here using MODIS-derived data.

To our knowledge, this is the study to assess the impact of skin correction on the calculation of warming trends
of LSWT. A few studies have estimated trends with a fixed bias correction (e.g., Liu et al. 2015), however, such an
approach does not correct for the small trend differences we found as cool-skin depends on spatiotemporal wind speeds,
i.e., it has monthly, seasonal and interannual variation, for example, due to atmospheric stilling (Woolway et al., 2019),
impacting the trends. Other studies have indicated such impact; Pareeth et al. (2017), for example, suggested that one
possible reason for the different trends they calculated for Italian alpine lakes, compared with Riffler et al. (2015), could
be the lack of cool-skin correction, as Riffler et al. (2015) applied the model M11. Other studies, for example those
that use LSWT derived from the Along Track Scanning Radiometer (MacCallum and Merchant, 2012; Woolway and
Merchant, 2018) without cool-skin correction, may also have underestimated epilimnetic warming rates.

While the use of bulk (i.e., cool-skin corrected) LSWT is necessary for robust estimation of epilimnetic warming
rates, to calculate lake heat flux the opposite is required, as the interaction of water-atmosphere occurs at the very thin
superficial thermal layer (Wong and Minnett, 2018) where the skin temperatures are estimated by thermal infrared
sensors (Minnett et al., 2019). Here we showed that using bulk temperatures can substantially overestimate surface heat
fluxes, with the effects on lake evaporation being the most important, with differences up to 20% (7 W m~2), mainly
in fall and winter, when winds are weaker, generally ranging between 8—12% (2-4 W m™2). Zhang et al. (2019), for
example, found an overestimation of 18% in the latent heat flux in the South China Sea when using bulk temperatures,
where the application of the COARE algorithm to correct for the cool-skin effect initially reduced it to 8.5%. Similarly,
on a sensitivity analysis, Brodeau et al. (2017) reported that the cool-skin correction could impact up to 10% in air-sea
heat fluxes. For inland waters, Oppenheimer (1997) found similar results, with an overestimation of nearly 10% in both
latent and sensible heat fluxes in a crater lake, however, in this case resulting from a bias of -1.5°C, much higher than
what we found in lake Mangueira. The differences in the latent heat fluxes, however, were similar, but for sensible heat
flux we found much higher overestimation, with a mean value up to 55% for the Patos Lagoon.

Studies that employ lake models (e.g., General Lake Model) or that use heat flux equating with in situ measured water
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surface kinetic temperatures to estimate surface heat fluxes generally do not consider the cool-skin effect (e.g., Fink et al.
2014; Woolway et al. 2018), which results in overestimation of heat fluxes and possibly underestimating heat budget
trends, as found here in most cases. The phenomenon of atmospheric stilling, reported in the Northern Hemisphere and
related to accelerated lake warming (Woolway et al., 2019), potentially enhances the overestimation of heat fluxes,
although it may also induce the formation of stronger warm layers, as it results in stronger thermal stratification.
Cool-skin correction or reparametrisation of heat flux equations considering bulk temperatures (Oppenheimer, 1997)
will help reduce this overestimation, although other processes, such as the formation of the warm layer, will still
influence the heat budget calculations.

We highlight that winds in our study area are strong and, for the three shallow lakes, produce mixing and drive the
hydrodynamics during most of the year (Fragoso Jr et al., 2011; Munar et al., 2018). Conversely, for lakes where winds
are weaker, the cool-skin effect is more pronounced (Wilson et al., 2013), and, therefore, the difference in trends and

heat budget can be even more expressive, especially in lakes where wind speed can have a high spatial variability.

4.3. Considerations on heat fluxes

Here we showed that the use of bulk or skin 7, impacts the estimation of the heat budget terms, especially of latent
heat flux, which is of substantial importance as it is a major form of lake heat and water loss. However, we also have to
consider that we only analysed the sensibility of the equations to the cool-skin correction, but the equating itself and
the precision of the other variables, such as air temperature and especially wind speed, a reanalysis product, should also
be taken into account. Furthermore, since the remote sensing-derived LSWT data had many missing data, mostly due
to cloud cover, we calculated the heat flux on a monthly scale (Alcéntara et al., 2010), which increases uncertainty.
Other assumptions, such as a fixed coefficient of heat transfer (which depends on wind speed, for example Garfinkel
et al. 2011) and atmospheric pressure, also impact the estimations.

The estimated heat budget terms (Table S1) and trends are relatively homogeneous for all three lakes, with the most
significant trends concentrated in spring, as expected since it is when the higher warming rates are found (Tavares
et al., 2023). Across all seasons, the trends were generally positive, except for lake Mangueira in a few cases. Also
using monthly means of MODIS-derived LSWT, Alcantara et al. (2010) found monthly latent heat fluxes of 20-120 W
m~2 for a large reservoir in Central Brazil, roughly in the same order of magnitude as our results, considering that this
region has very marked seasons, with monthly mean relative humidity varying between 45-80% over the year. The
annual mean and seasonal variation of the heat budget is also in the same order of magnitude as those calculated by
Munar et al. (2019), modelling lake Mirim’s heat budget using a hydrodynamic-water quality coupled model, finding
(with bulk temperatures) an annual mean of 51.1 W m~2 for the latent heat flux, and of 6.7 W m~2 for the sensible heat
flux. The overestimation, compared to our computations, probably arise from a large LSWT bias (1.45°C in relation to
MODIS-derived LSWT), which has been shown in other studies (Heiskanen et al., 2015). Also modelling lake heat
budgets, Woolway et al. (2018) showed that the relative contribution of latent heat can represent more than 90% of total

turbulent lake heat loss, with a larger contribution at the tropics and decreasing with latitude mostly due to decreased
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evaporation. Our results agree with these findings with a relatively larger contribution of E, as it ranged from 89% in
lake Mangueira to 96% in Patos Lagoon, the latter being due to its large surface area and strong winds (Woolway et al.,
2018), enhancing evaporation.

To our knowledge, only Fink et al. (2014) calculated trends of the lake heat budget terms to assess the observed

!'in Lake Constance using lake modelling. The authors found a mean of 42.6 W m™

warming trend of 0.46°C dec™
for E and 14.6 W m~2 for H, with trends of 2.7 and -0.3 W m~2 dec™!, respectively. The results diverge from what
we found here for H, possibly for being deep and in a much colder region, where the difference between T, and T, is
more significant, but for E the results are similar, indicating a similar magnitude of this increase despite the different
geographic and morphological characteristics. The rates found here for evaporation can have a significant effect on
reducing water level, which in turn can decrease water clarity and further enhance surface heating (Rose et al., 2016).

All in all, the results found here help to further understand the warming rates in these three large subtropical shallow

lakes (Tavares et al., 2023).

5. Conclusion

In this study, we validated two empirical cool-skin correction models, originally developed for oceanic waters,
for the MODIS surface temperature product in lake Mangueira, a subtropical shallow Brazilian lake, using ancillary
meteorological reanalysis data. Subsequently, we also assessed the impact of this correction on lake surface water
temperature warming and heat balance trends of lake Mangueira and two other nearby large shallow lakes between
2000 and 2022. The bias between the MODIS-derived LSWT and the in situ water temperature was 0.5°C, caused
by the cool-skin effect, and both models partially corrected for this effect, reducing bias to -0.2°C and the median of
errors from -0.4°C to nearly 0. The model developed by Minnett et al. (2011), which is simpler and depends only on
wind speed, also marginally improved the RMSE and Emax, showing the best metrics by a slight margin. Despite not
being developed for inland waters, the model showed a good performance with reanalysis wind speed data, and it was
selected in this study as the best method of correction for the cool-skin effect, applied in the following tests.

The effects of this correction on the computation of warming rates caused differences of around 5%, ranging from
0% to 0.19°C dec™! (26%), a considerably high difference. The skin (non-corrected) T, generally underestimated
trends. In terms of trends of T, the results were only expressive for Patos Lagoon, with a difference of 0.09°C dec™"
(14%). For the computation of lake heat budget, when the use of bulk water temperatures causes overestimation of
the heat fluxes, we observed a very small difference in the emission of long-wave radiation (~0.5%), higher values
for water evaporation, of 7 ~ 9% (oscillating between 2 and 4 W m~2 over the period), and high differences in the
sensible heat flux, the smaller heat budget term, of up to 55%, resulting in a small difference in the sum of the three
terms (since Jj,, is much larger than the other two terms), with the larger difference being of 1.6% for Patos Lagoon.
These differences reflected on generally smaller trends for the heat budget terms when using bulk T, with the highest

differences found for the sum of the three terms, of up to 0.8 W m~2 dec”! for Patos Lagoon. We also observed, in a
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few cases, that trends were only significant when using the skin T, especially in fall, due to the higher trends. These

differences can be even greater in the heat budget of larger, sheltered lakes.
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Abstract

Air temperature increase impacts on lake surface water temperature (LSWT) have been well documented in deep
northern lakes, however, these impacts are less understood in the southern hemisphere, especially in shallow lakes. In
this study, we assessed seasonal warming rates of three large shallow lakes in southern Brazil using a 22-year time
series of meteorological data and LSWT derived from MODIS imagery. We found high regional warming of lake water
concentrated in spring (mean trend of 0.5°C dec™!) and, to a lesser extent, in summer (0.3°C dec™!), with agreement
between the air and water temperature trends, as well as substantial shortening of the cold season and increase of
maximum and minimum air temperatures in these two seasons. Data also showed an overall homogeneity of the
warming rates but with notable spatial differences that may result from the tributaries’ temperature, discharge, or water
clarity variability. The high warming rates found here are comparable to those found in deep northern lakes, but with
distinguished changes and processes involved in the heating. The warming is stronger in early spring, resulting, for
example, in earlier start of phytoplankton phenology, and the spatial differences in the warming can have additional
ecological impacts such as changes in thermal habitat suitability.

Keywords: Lake surface water temperature, shallow lakes, warming rates, remote sensing, MODIS

*Correspondence author.
Email address: tavaresmatheush@gmail . com (Matheus H. Tavares)

Manuscript to be submitted to Science of the Total Environment March 27, 2023



1. Introduction

Water temperature is a key physical variable in lentic ecosystems, regulating many processes and metabolic
reactions, and is the most directly impacted by climate change (Woolway et al., 2020). These changes include
increasing air temperatures and solar radiation (O’Reilly et al., 2015) and variation in surface wind speeds (Woolway
et al., 2019a), with impacts such as warming temperatures (Livingstone, 2003; Schneider and Hook, 2010; O’Reilly
et al., 2015), modified heat exchange and thermal stratification (Lee et al., 2012; Fink et al., 2014; Zhong et al., 2016;
Woolway and Merchant, 2018), phenology (Deng et al., 2014) and primary production (O’Reilly et al., 2003).

Studies conducted in the northern hemisphere showed that the current rate of warming temperatures is unprecedented
(Woolway et al., 2017) in both meteorological drivers and lake responses (Schmid and Koster, 2016; Zhong et al., 2016;
Woolway et al., 2019a), however much less attention is paid to lakes in the southern hemisphere. A few studies have
explored the yearly warming rates in lakes with different geographic and climatic characteristics (O’Reilly et al., 2015;
Piccolroaz et al., 2020), but none, to our knowledge, have focused on the impacts of recent warming on Southern lakes,
especially shallow lakes.

Additionally, recent studies have shown that to understand these impacts better, yearly warming rates are insufficient,
as the trends have different seasonal or monthly magnitudes, which can be masked when analysing yearly means
(Winslow et al., 2017; Woolway et al., 2017; Kelleher et al., 2021). It is especially important when considering that
lower trends may be estimated with significant differences from their true value for shorter or less consistent water
temperature series (Gray et al., 2018), and that different strength among seasonal trends can have deep effects in lake
ecosystems (Winslow et al., 2017).

Furthermore, it has already been shown that besides seasonal or monthly differences, spatial differences are also
relevant (Woolway and Merchant, 2018; Toffolon et al., 2020; Calamita et al., 2021), and differential water warming
can have additional effects on lake ecosystems such as variability in thermal habitat suitability (Halverson et al.,
2021; Hansen, 2021). Regular temporal time series of in sifu measured temperatures are essential to understand
lake response to warming temperatures, however remote sensing techniques can complement this monitoring by
providing spatially-resolved lake surface water temperatures (LSWT), which can be applied to understanding the spatial
differences in water warming (Woolway and Merchant, 2018). These differences have been mostly related to summer
warming and thermal stratification of deep lakes (Woolway and Merchant, 2018; Zhong et al., 2019), and Toffolon et al.
(2020) indicated that shallower lakes have a more homogeneous response to warming temperatures, especially in the
summer, but this has to be further explored.

This study aims to assess the impacts of climate variability in the LSWT of three subtropical shallow lakes in
southern Brazil, taking advantage of the spatial and temporal capabilities of the MODIS sensors, aboard the Aqua and
Terra satellites, using a 22-year time series to investigate a) the seasonal warming rates and b) how different parts of

these lakes respond to climate change.



2. Methods

2.1. Study area

The study area contains Brazil’s three largest natural lakes (Figure 1): lake Mangueira, lake Mirim, which is
partially in Uruguayan territory, and the Patos Lagoon. They are all shallow lakes located in the southernmost state in
Brazil, Rio Grande do Sul, resulting from an ancient depression in the coastline enclosed by sand beaches that resulted
from the combined actions of wind and ocean currents (Schwarzbold and Schifer, 1984). The climate in the region is
subtropical (Cfa in Koppen’s classification), with mean annual temperature of ~ 18°C and rainfall ranging from 1,100
mm to 1,600 mm (Kottek et al., 2006), evenly distributed throughout the year, with slightly higher rainfall in winter
and drier periods in the summer. Table 1 shows lake characteristics, and meteorological and water temperature means
calculated for the study period.
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Figure 1: Map of the study area, showing the Patos lagoon, lake Mirim and lake Mangueira, their watersheds, and the location of the meteorological

stations.



This region contains three Ramsar sites: Lagoa do Peixe, a brackish lagoon located between Patos Lagoon and
the Atlantic Ocean, the Taim Ecological Station, a freshwater wetland with diverse ecosystems located north of lake
Mangueira, and the Bafiados del Este, a large wetland complex comprised of fresh and brackish water located southwest

of lake Mirim. They all harbour high biodiversity and are important zones of wintering and staging for migratory birds.

Table 1: Lake characteristics and long-term monthly means (standard deviation) of the meteorological and LSWT data for each lake/station for the

study period (2000-2022)

Parameter Patos/Porto Alegre | Mirim/Pelotas | Mangueira/Santa Vitéria
Latitude -31.2° -32.8° -33.2°
Longitude -51.4° -53.2° -52.8°
Area [km?] 10,000 4,000 800
Perimeter [km] 1,200 740 272
Mean depth [m] 5.0 4.5 2.6
Maximum depth [m] 8.5 10.0 7.5
Fetch [NNE, km] 168.9 90.4 50.7
Mean air temperature [°C] 20.0 (4.0) 18.2 (4.1) 17.2 (4.2)
Maximum air temperature [°C] 25.7(4.2) 23.5(4.1) 22.2 (4.4)
Minimum air temperature [°C] 16.0 (3.8) 14.3 (4.0) 13.4 (4.0)
Precipitation [mm/month] 125.9 (64.7) 119.3 (72.3) 102.6 (70.2)
Radiation [hours of sunlight] 6.0 (1.7) 6.5 (1.6) 6.3 (1.7)
Relative humidity [%] 76.7 (4.8) 82.5(3.9) 80.0 (4.6)
Wind speed [m/s] 4.8 (0.6) 4.1 (0.5) 4.6 (0.5)
Water temperature (mean) [°C] 19.8 (4.0) 18.9 (4.5) 18.5 (4.3)
Water temperature (Terra Day) [°C] 19.6 (4.0) 18.6 (4.5) 18.4 (4.4)
Water temperature (Aqua Day) [°C] 20.7 (4.3) 20.0 (4.9) 19.2 (4.4)
Water temperature (Terra Night) [°C] 19.1 (3.8) 18.0 (4.2) 17.8 (4.2)
Diel temperature range [°C] 0.4 (0.7) 0.6 (0.7) 0.7 (0.6)

Lake Mangueira is the smaller and the southernmost of the three lakes, with an area of 800 km?, located in the
narrow strip of land between the Atlantic Ocean and lake Mirim. It has an elongated shape, with a length of 90 km and
width of 3 to 11.5 km (mean width of 8.3 m), mean depth of 2.6 m, and maximum depth of 7.5 m. It is a seepage lake
with a small watershed (area of 400 km?), and its water flows to the Taim wetland, which then flows to lake Mirim. The
main water use is rice irrigation, the leading economic activity in the region.

Lake Mirim is the largest freshwater lake in the region, with an area of 4,000 km?. It is 200 km long along the major
axis and 30 km wide on average (maximum width of 44 km), with a maximum depth of 10 m and an average depth
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of 4.5 m. Besides ecological importance, it has political and economic significance for being on the Brazil-Uruguay
border, serving as water supply for the local population and for irrigating rice fields. Unlike lake Mangueira, it has a
large watershed, with a surface area of 58,400 km?, almost equally divided between Uruguay and Brazil, and with
Jaguardo, Cabollati, and Tacuari rivers as main tributaries. Lake Mirim is connected, at its northernmost tip, to the
Patos Lagoon through the Sao Gongalo Channel, discharging into the estuarine region of the lagoon.

The Patos Lagoon is the world’s largest choked lagoon, with a surface area of approximately 10,000 km?, 260 km
in length in its major axis, a maximum width of 60 km, and a mean width of 40 km. It is a shallow lagoon with a mean
depth of 5 m (maximum depth of 8.5 m). Its waters are generally brackish only in its estuarine region since the effect
of the tides is softened by the narrow outlet channel, and the lagoon is mostly composed of freshwater coming from
its large watershed (approximately 120,000 km?, not considering lake Mirim’s watershed), comprised of the rivers
Cai, Gravatai, Taquari, and Jacui, whose delta forms lake Guaiba, which flows into the northwest part of the Patos
Lagoon, and the Camaqua river. Here, the estuarine region of the Patos Lagoon was not considered due to the influence
of tides and the ocean in the water temperature, nor was the Casamento lake due to the shallowness of Abreu bank,
which connects it to the main waterbody and can dry out in periods of low water levels.

All three lakes are shallow and have an elongated shape, with their major axis in the NNE-SSW direction, coincident
with the dominant wind direction. In this flat region, wind can be strong and is one of the main drivers of hydrodynamics,
especially in lake Mangueira and during low flow periods in the other lakes, producing mixing and preventing longer

periods of stratification during summer, although it occurs ephemerally (Fragoso Jr et al., 2011; Munar et al., 2019).

2.2. Data sources and processing

2.2.1. MODIS data processing

MODIS Terra (launched on December 1999) and MODIS Aqua (launched on May 2002) daily LST products
(version 6.1) with a nominal spatial resolution of 1 km (actual 0.927 km) at nadir (MOD11A1 and MYD11A1) were
obtained for the period from March 2000 (July 2002 for Aqua) to February 2022 from NASA’s Application for Extracting
and Exploring Analysis Ready Samples (AppEEARS, https://appeears.earthdatacloud.nasa.gov/). The
MODIS/Terra LST data are recorded at approximately 10:30 a.m. local time, while MODIS/Aqua data are recorded at
approximately 1:30 p.m. local time. For nighttime data we only used the observations from Terra, which overpass the
study areas at approximately 10:30 p.m. local time.

MODIS LST product derives the temperature with a split-window algorithm (Wan and Dozier, 1996) based on the
differential brightness temperature measurements from its two thermal bands, band 31, centred on 11.03 ym, and band
32, centred on 12.02 um. Water emissivity is derived from the MODIS Emissivity Library (Zhang, 1999) for each
thermal band, and the surface temperature is estimated with calibrated coefficients depending on sensor viewing zenith
angle, surface air temperature and atmospheric water vapour content.

The MODIS data were processed for the three study areas according to the data quality flag recorded in the quality

control (QC) band. Only pixels with errors within 1°C or marked as good data quality (QC =0, 1, 5, 65) were used,
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and the remaining pixels were discarded. LSWT data were then aggregated to a 2x2 pixels (~ 1.8x1.8 km) grid to
reduce noise in the remote sensing product. The aggregation was limited to 2 pixels due to the narrowness of lake
Mangueira. An inward (negative) buffer of 1 km was used for Mangueira and 2 km for lake Mirim and Patos Lagoon to
remove mixed land-water pixels and reduce the adjacency effect.

Processing was carried out in the R environment (R Core Team, 2021) with package ferra (Hijmans, 2021).

Cool-skin correction. To correct for the cool-skin effect in the remote sensing-derived temperatures (Wilson et al.,
2013), we applied the empirical model developed by Minnett et al. (2011) for oceanic waters, which quantifies this
effect based on wind speed, and has already been applied to inland waters (Riffler et al., 2015). This model was
validated in lake Mangueira (Tavares et al., 2023, n = 118, bias = -0.2°C, RMSE = 1.0°C), reducing bias in 0.3°C and

improving all metrics. In this model, the cool-skin effect is estimated as follows:
Tskin = —0.13 = 0.724 exp(—0.35u) (D)

where T, is the temperature difference resulting from the cool-skin effect, and u is the wind speed measured at 10 m.
Due to the limitation of hourly wind speed and the spatialisation of these two variables over the lakes, we used wind
speed data from the ERAS reanalysis (Hersbach et al., 2020). Although this product was not validated, meteorological
data from ERAS have already been used, for example, to assess changes in temperature and precipitation in the Amazon
forest (Xu et al., 2020) and changes in water vapour over Europe (Yuan et al., 2021), and other reanalysis products
were used in studies of climate change impacts over lakes (Piccolroaz et al., 2020; Toffolon et al., 2020).
Unidimensional wind velocities (u,—u,) at 10 m above ground are provided at an hourly frequency on a 0.5x0.5°grid
and were downloaded from NCAR’s Research Data Archive (https://rda.ucar.edu/datasets/ds633.0/) and
processed for the three lakes. First, wind speed in each grid point was calculated (u = ,/u? + u)z,) and then interpolated
on a refined grid using the inverse weighed distance method with a cubic function (idw function in package gstat,
Griler et al., 2016). Then, spatialised T s, was calculated using equation 1, and the LSWT in each pixel was corrected

by adding T -

2.2.2. Meteorological data

Meteorological data, comprising of mean (7, med), maximum (7, max) and minimum (7, min) air temperature,
relative humidity (RH), and solar radiation (Rad, in hours of sunlight) were retrieved from the three local meteorological
stations (Figure 1, from north to south): Porto Alegre (WMO code 83967), Pelotas (83985) and Santa Vitéria do Palmar
(83997), to represent the climatic forcings over the Patos Lagoon, lake Mirim and lake Mangueira, respectively. Due
to a lack of consistent monitoring and to maintain coherence, we used wind speed data from the ERAS reanalysis,

calculating the daily means over each lake.

2.3. Data analysis
To analyse data, we calculated the monthly means of LSWT and meteorological data for the three lakes and three
stations. To be consistent with seasons, the years were accounted for by starting in austral Fall (March, April, and May)
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and ending in Summer (December, January, and February). Furthermore, as all three stations had no data collected in
1987, we analysed the meteorological data for the period between March 2000 and February 2022 as well as starting in
1988 (except for Pelotas, which had continuous data collection starting in 1996) to investigate long-term climate change
patterns. The LSWT data was explored data spatially and temporally, analysing the intralake variation of temperature
for the period from 2002 to 2022 (due to the launching date of the Aqua satellite) and conducting a temporal analysis
of lake-averaged water temperatures ({7,)) starting in 2000.

The monthly means of the meteorological data were calculated considering a minimum of 25 daily observations. A
linear model was developed for each variable using data from the other two meteorological stations to fill in missing
data. For the LSWT data, we calculated the monthly mean pixels values for each dataset, Aqua ({T,,)A), Terra Day
(T,,)D), and Terra Night ((T,,)N), considering only images with a minimum of 70% of valid pixels to avoid artificial
spatialisation of water temperature, and monthly means were only calculated for the months with at least four valid
images. The spatial LSWT monthly mean (T,,) was then calculated as the mean value of these three datasets, and (T, )
was calculated for the mean as well as each dataset (consisting of 4 time series of (7,)) and filled using linear models
(the Aqua Day time series was ), using as input 7, in the closest station and (7, derived from the other MODIS
products (bias = 0 and RMSE =~ 0.4°C for all three datasets). In this filling, the Aqua Day time series was also filled
from March 2000 to June 2002 to match the length of the Terra series.

After processing the time series, we calculated the monthly and seasonal (Fall: MAM; Winter: JJA; Spring: SON;
Summer: DJF) trends using Sen’s slope with the Mann-Kendall (MK) trend analysis and a significance level of 5%
for (T,,), the meteorological time series, and for the seasonal means of each pixel in each lake to assess intralake
differences.

We also used the warming efficiency introduced by Toffolon et al. (2020), a simple index to assess the relationship
between air and water temperature variations in time:

_NT,)
T AT,

2)
where A(T,,) and AT, are the seasonal variation of lake averaged water and air temperatures, respectively.

While in Toffolon et al. (2020) the authors considered different periods of air and LSWT warming, here we only
assessed 77 to assess seasonal warming (e.g., for warming during the summer). A value of = 1 indicates that the
lake surface water warmed/cooled exactly as much as air temperatures during a certain period of time, for > 1 the
lake showed increased warming/cooling than air, and < 1 indicates reduced lake response in comparison to air
temperatures. For lake Mangueira, T, was taken as the measurement at Santa Vitéria do Palmar station, while for lake
Mirim it was considered as the mean of 7, at Santa Vitéria do Palmar and Pelotas stations, and for Patos Lagoon as the
mean of T, at Pelotas and Porto Alegre stations.

Following Toffolon et al. (2020), we examined the spatial temperature differences between the hottest and coldest
years in the series. The five hottest and coldest years of each season were selected regionally, and the differences were
calculated for both water (pixel by pixel, the difference between the mean hottest and mean coldest years in the series)
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and air temperatures.

We also assessed whether the air and water temperatures are influenced by the El Nifio-Southern Oscillation (ENSO)
variability during the study period. The ENSO was assessed using the Oceanic Nifio Index (ONI Index; three-month
running mean of ERSST.v5 SST anomalies in the Nifio 3.4 region). These data were obtained from the National Oceano-
graphic and Atmospheric Administration (NOAA) website (https://origin.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/0ONI_v5.php), considering the 12-months-mean value (March—February) of
the ONI index. The periods of La Nifia comprised the years 2000, 2007, 2008, 2010, 2011, 2020, and 2021, while
periods of El Nifio comprised the years 2002, 2004, 2009, and 2015.

To further assess significant changes in the regional climate, we calculated the temperature indices developed by
the WMO/WCRP/JCOMM Expert Team on Climate Change Detection and Indices (Karl et al., 1999; Peterson et al.,
2001), which are standardised indices to detect changes in the climate extremes. Here we calculated the trends in
selected temperature indices, in addition to the yearly 20°C crossing date, widely used in limnological studies (e.g.,

Winslow et al., 2017):

e SU — Number of summer days: Annual count of days when TX (daily maximum temperature) > 25°C (trend in

days per decade)

e TR — Number of tropical nights: Annual count of days when TN (daily minimum temperature) > 20°C (trend in

days per decade)
e TXx — Hottest day: Maximum value of TX in each month (trend in °C per decade)
e TNx — Warmest night: Maximum value of TN in each month (trend in °C per decade)
e TXn — Coldest day: Minimum value of TX in each month (trend in °C per decade)
e TNn — Coldest night: Minimum value of TN in each month (trend in °C per decade)
e DTR: mean Diurnal Temperature Range (TX - TN) in each month (trend in °C per decade)
e ETR: Extreme Temperature Range (TXx - TNn) in each month (trend in °C per decade)

o Fall (start) and Spring (end) 20°C crossing date, and length of season when 7,, < 20°C (trend in days per decade);
since summer occurs before winter in a calendar year in the southern hemisphere, we considered the season
where temperatures are <20°C to account for this variability in a single year. They were calculated using a

moving average of 10 days to minimise the effects of cold and warm fronts, which are common in the region

These indices are based on daily air temperature data, and missing data in series were linearly interpolated. Regular
Mann-Kendall trend analysis was employed for the yearly data, and for the monthly indices, the seasonal Mann-Kendall

trend analysis was applied, both with a significance level of 5%.



3. Results

3.1. Temporal analysis

Table 2 shows the trends calculated for each lake and its closest meteorological station for each season for the
22-year period. It shows significant and high warming trends of T,, in the austral spring, of 0.5°C dec™! for lakes
Mangueira and Mirim and 0.6°C dec™' for Patos Lagoon, with the trends consistent across all MODIS products. In
spring, the results show higher a increment in 7', in comparison to T,. In summer, the opposite was found, with higher
warming trends of T, especially in the region of lake Mangueira, and lower trends of T,,, of ~0.3°C dec™!. Trends in
fall and winter were found to be low and not significant. Other results are the consistent increase in the minimum air
temperatures (trends close to 1°C dec™! throughout the year) and decreased relative humidity (up to -2% dec™! in fall)
in the region of lake Mangueira, and relative increase in solar radiation, especially in the northern part of the Patos

Lagoon in summer.

Table 2: Seasonal trends (unit per decade) of the meteorological and LSWT data for each lake/station. Significant trends are in bold

Season Fall Winter Spring Summer

Variable Patos | Mirim | Mang. | Patos | Mirim | Mang. | Patos | Mirim | Mang. | Patos | Mirim | Mang.

T, med 0.1 0.0 0.2 0.0 -0.1 0.0 0.4 0.3 0.4 04 0.3 0.5
T, max 0.2 0.5 0.4 0.2 0.3 -0.1 0.5 04 0.2 0.7 0.6 0.5
T, min 0.0 -0.3 0.7 -0.2 -0.4 0.6 0.3 0.2 1.0 0.2 0.0 0.8
u 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0
RH -1.1 -0.8 2.2 | 09 0.1 -1.0 | -0.1 04 -0.8 -0.7 1.2 -0.8
Rad 0.1 0.4 0.4 0.1 0.1 0.1 0.3 -0.1 -0.1 0.6 0.0 0.1

Terra Day 0.2 0.0 0.1 0.2 -0.1 0.0 0.7 04 04 0.3 0.3 0.3

Terra Night | 0.0 0.0 0.2 0.0 -0.1 -0.2 0.8 0.5 0.5 0.2 0.3 0.3

Aqua Day 0.1 -0.1 0.0 -0.1 -0.1 -0.2 0.7 0.8 0.5 0.2 0.0 0.2

(T,) 0.1 0.0 0.1 0.0 0.0 -0.2 0.6 0.5 0.5 0.3 0.3 0.3

Table 3 shows the climate indices calculated for each station. These results evidence the warming trends observed
in the region, reinforced by considering a longer period of time, showing a consistent increase of temperature extremes,
with an increasing number of days with mean temperatures over 25°C (over 12 days dec™' for both Pelotas and Porto
Alegre stations) and of both maximum and minimum 7, max in the region, as well as increase of both maximum and
minimum 7T, min in the region of lake Mangueira. Interestingly, it also shows an increase in the daily temperature
range in Pelotas station, while a decrease was observed in the southerly Santa Vitéria station.

1

It is also clear that the length of the cold season decreased, with a rate of -11.7 days dec™ in both Pelotas and Santa

Vitéria stations between 2000 and 2021, which is caused mainly by an earlier ending of the cold season, with the spring
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Table 3: Trends of the climate indices calculated at each meteorological station. Significant trends are in bold

Porto Alegre Pelotas Sta. Vitoria
Index

2000- | 1988- | 2000- | 1996- | 2000- | 1988-
SU [days decade™'] 12.5 8.2 12.5 14.0 7.1 33
TR [days decade '] 7.5 6.4 0.0 1.0 11.6 6.7
TXx [°C decade™'] 0.6 04 0.5 0.7 0.2 0.2
TNx [°C decade™'] 0.1 0.3 0.0 0.0 0.7 04
TXn [°C decade™'] 0.4 0.4 0.4 0.4 0.2 0.3
TNn [°C decade™'] 0.3 0.6 -0.1 -0.2 0.9 0.6
DTR [°C decade™'] 0.2 -0.1 0.5 0.5 -0.5 -0.3
ETR [°C decade™'] 0.3 -0.2 0.8 1.0 -0.6 -04
Fall 20°C crossing date [days decade™'] 4.8 3.6 2.2 5.5 2.1 4.2
Spring 20°C crossing date [days decade™'] 2.0 -5.3 -6.0 -1.5 -10.8 -4.8
Length of cold season* [days decade™'] -4.3 -10.0 | -11.7 -6.9 -11.7 | -10.0

*season where mean air temperatures <20°C

starting up to almost 11 days dec™! earlier in Santa Vitéria station. Similar results were found for the northerly Porto
Alegre station, however, for the period between 2000 and 2021 the trends are slightly divergent, which can be caused
by many missing data in the station in 2002 (affecting more directly the trend calculated for the shorter time series),
and by the wider variation in the ending of the season in this region (see Figure 2).

This decrease in the length of the cold season is observed year by year in the region in Figure 2. There is
considerable dispersion in the dates of the ending of the season, which are mostly a result of the wide variation in
the dates for the Porto Alegre station, reflected in the variation of the length of the season. Despite that, there is an
agreement in the trends, as observed in Table 3. The observed effect of ENSO in the cold season was mild, although
El Nifio appears to delay the start of the cold season, while La Nifia years present the later dates of the ending of the
season.

To further explore the air and water temperature trends, in Figure 3 we show the monthly trends for the three lakes
and meteorological stations and their mean. There is agreement across both air and water temperatures, and they
also agree with each other (Pearson’s r = 0.72), with warming concentrated in September and December, that is, the
transition between seasons. The monthly trends shed light on the smaller trends found in spring for 7,, in relation
to (T_W), with water and air trends in September of 0.75 and 0.9°C decade™, respectively, but much lower values in
October and November for T,,, while for (7,,) the values remain relatively high, of 0.3 and 0.6°C decade ™, respectively.
In the summer, T, trends are slightly higher, as seen in Table 2.

For fall and winter, the trends mostly fluctuate around 0, especially for (T,,), probably due to low statistical
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Figure 2: Mean start, end, and length of the cold season in the study area from 2000 to 2021. Blue bars denote the La Nifia years, and red bars denote

the occurrence of El Nifio.

-1, respectively.

significance, except for the T, trends in March and April, when they are of -0.4 and 0.5°C decade

Table 4 shows the seasonal mean warming efficiency and trends for each lake. There is a yearly pattern of higher
warming efficiency in spring or winter and decreasing values from summer through fall, where the lowest 7 are found.
Winter has high warming efficiency (i.e., water cools more than air) due to a combination of meteorological factors,
mostly the higher precipitation, which reduces solar radiation and increases water levels. 7 was also high in Spring
for both Mirim and Mangueira and considerably lower for the Patos Lagoon. The trends calculated for n were not

significant except for the summer in lake Mirim, but they indicate a regional tendency of increasing in spring and

diminishing in summer.
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Figure 3: Trends of monthly mean air and water temperatures ((T,,)) in the study area.

Table 4: Seasonal mean warming efficiency and trend

Lake Variable Fall | Winter | Spring | Summer
n[eC°C 0.83 | 1.14 1.01 1.03
Patos
Trend [decade™'] | 0.01 0.01 0.03 -0.03
n[°C°C™ 1.03 | 1.20 1.21 1.09
Mirim
Trend [decade™!] | 0.00 -0.01 0.04 -0.08
n[°C°C™!] 0.99 1.12 1.17 1.00
Mangueira
Trend [decade™!] | 0.04 -0.01 0.06 -0.06

3.2. Spatial analysis

12

Figure 4 shows the seasonal trends for the period between March 2002 and February 2022. The trends reflect the
spatial variability in warming seen in Table 2, with the exact trends calculated for each lake and season except for
spring, when trends are slightly lower for Mirim and higher for Patos, which is owed to the different time windows and

statistical power. For the pixels in Figure 4, only trends for spring (in all three lakes) and the higher summer trends are

The higher trends are found in spring, especially in eastern Patos Lagoon, and central and southern lake Mirim.



400000 500000 400000 500000

==

6300000

300000 400000 300000 400000

Figure 4: LSWT trends for lakes Mangueira, Mirim and Patos Lagoon in a) Spring, and ») Summer. Trends were calculated for the period between

March 2002 and February 2022.

Trends are also high in the summer in the western margin of lake Mangueira, in the southeastern part of the wider
area in lake Mirim, and the lake Guaiba inflow area in the Patos Lagoon. Figure 4 also shows that the inflows have a
significant impact on the local trends, predominantly in spring, whether it is increasing, as Jaguardo and Tacuari rivers
in lake Mirim, or decreasing the trends, as the major inflows of Patos Lagoon (i.e., lake Guaiba and the Camaqua river)
and the Cebollati river in lake Mirim and. In summer, this is slightly different, as, for example, lake Guaiba seemly
enhances the warming in Patos Lagoon. Besides this, warming rates are roughly spatially uniform for the three lakes.

Figure 5 also helps to visualise the possible interannual variation in the temperature in the lakes for the two seasons
with the higher T, warming rates, spring and summer. It shows that the difference between the warmest and coldest
year in the time series (defined regionally) for each season varies substantially, with spring showing a wider amplitude

in T, (resulting mostly from a large variation in September), but (7,,) varying roughly the same amount as in summer,
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with smaller variability in 7.
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Figure 5: Mean LSWT differences between the five hottest and coldest years in a) Spring (September, October, and November) and ») Summer
(December, January, and February). For spring, the hottest years were 2012, 2014, 2017, 2019, and 2021, and the coldest years were 2003, 2010,
2011, 2015, and 2016, and for summer, the hottest years were 2006, 2009, 2013, 2015, and 2016, and the coldest years were 2003, 2004, 2008, 2011,
and 2019.

We can also see the impact of the inflows in the differences, with waters from lake Guaiba and Camaqua showing a
higher variability of temperature differences in spring, as well as Cebollati river in lake Mirim and a small impact from
arroio Pastoreio in Mangueira. In comparison, the area of discharge of Jaguardo and Tacuari rivers shows much smaller
variability, and this variability contrasts with that found for summer, as found for the water warming rates, indicating a

relationship between the interannual river temperature variability and the trends.
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4. Discussion

4.1. Temporal analysis

Our results show a regional trend of reduced duration of the cold season, with an earlier start of the spring and
warmer summer temperatures, especially maximum air temperatures, as reinforced by the climate indices and indicated
in previous studies (Cordeiro et al., 2016). As a result, water temperature showed high warming trends in spring for
all three lakes, especially in September due to high air warming in this month. In this season, we also found higher
warming in 7, compared to T,, resulting from the lower T, warming rates in October and November. In the summer,
the observed impact on water temperatures was reduced. The trends were only significant in the spring due to the
limited length (22 years) of the time series and weaker trends in the other seasons (Gray et al., 2018). Water temperature
warming in the summer, however, may also be high and important, as observed in the trends of air temperatures, but the
extension of the series limits a more robust analysis (Schneider and Hook, 2010; Gray et al., 2018). Trends in fall and
winter were not significant and close to zero, although they showed considerable monthly variation, especially for air
temperatures (Figure 3), diverging from other studies (Woolway et al., 2019b). The climate indices also indicate that
these are long-term changes and have been intensifying in the last 20 years, notably the reduction of the duration of the
cold season, as well as the aforementioned increase of maximum air temperatures.

Despite the variable time span of the analysis, the warming trends in spring and summer observed here are similar
to other studies on shallow lakes, and comparable to trends estimated for deeper lakes. Li et al. (2019) found modelled
warming rates of 0.4-0.6°C dec™! for spring in four large subtropical, low-altitude shallow lakes in China between
1979 to 2017, with similar trends in the summer. The trends were also homogeneous for all four lakes, and the warming
was attributed to solar brightening and increased air temperatures. Shinohara et al. (2021) found, for a temperate turbid
shallow lake in Japan, trends of 0.7°C dec™! in March and May (corresponding to September and November in the
southern hemisphere), with similar trends in the summer. Other studies also found higher LSWT warming in spring
than in summer (Schmid and Késter, 2016). Woolway et al. (2017) also found higher spring warming on 20 Central
European lakes between 1961 and 2010, with warming concentrated on late spring (0.6°C dec™!) and similar rates of
summer warming (0.5°C dec™!), related to increased thermal stratification. Winslow et al. (2017), on the other hand,
found cooling air temperature trends between February and May (corresponding to August and November), with low
water temperature warming rates in this part of the year for six shallow and small temperate lakes in the USA over a
35-year period. Higher warming rates were found between September and December. In similarity, the authors also
found a high correlation between air and water temperature rates and trends of shortened cold season, with a more
pronounced trend of Fall 20°C crossing date, of 5.3 days dec™!.

The high warming rates of air temperature observed in our study area resulted in even higher warming of water
temperatures, and the warming efficiency calculated for each season can facilitate understanding the reason for this
(Toffolon et al., 2020). We observed high 7 in winter (i.e., water cools more than air) in all three lakes due to a

combination of meteorological factors, mostly lower solar radiation and high precipitation (Table S1), which further
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reduces solar radiation and increases water levels. As a result, 7, is only slightly higher than T, in this season, boosting
the water warming in September due to high air warming trends. Higher spring 7 (found in Mirim and Mangueira) can
be a result of this lower T, — T, difference (reduces heat loss from conduction and evaporation), and the lower 7 in
Patos Lagoon is likely due to its higher thermal inertia.

Other relevant factors in the high spring warming rates are morphometry and water transparency. Studies have
shown the influence of lake morphometry on warming (Ptak et al., 2018; Gonzdlez-Avila et al., 2021; Xie et al., 2022),
and the elongated shape and low depth of the three lakes contribute to the homogeneous, high warming rates in response
to warming temperatures (Toffolon et al., 2020). Furthermore, spring is the season with the strongest winds (Table
S1), and a slight tendency of increase was also observed. This, in conjunction with sediment resuspension (Crossetti
et al., 2014) and earlier spring, associated with earlier phytoplankton phenology (e.g., Deng et al., 2014), starting in
September (Fragoso Jr et al., 2011), decreases water clarity (which can include the tributary rivers), and has been shown
to enhance the effects of warming of lake waters (Rose et al., 2016).

Due to the excess lake water warming in spring, summer warming rates of (T_W) were considerably lower than T,
especially in December when higher air trends were found. We can see that except for Patos Lagoon, 7 is lower in
summer than in spring and even shows a tendency of decrease of 8% dec™! for lake Mirim (Table 4). Reported trends
of summer warming are, however, generally more pronounced in deep lakes, where air temperature warming induces
higher thermal stratification, reducing the water mass that exchanges heat with the atmosphere and further amplifying
LSWT warming (Woolway and Merchant, 2018; Woolway et al., 2019a; Zhong et al., 2019; Toffolon et al., 2020;
Calamita et al., 2021). Woolway and Merchant (2018), for example, found summer warming rates of 1.1°C dec™! for
the deepest and 0.6°C dec™! for the shallowest regions of Lake Huron, in Northern America, and similar trends for
other large northern lakes. Here, for the three warm polymictic shallow lakes, thermal stratification lasts only one or
two days in lake Mangueira (Fragoso Jr et al., 2011) and potentially for longer in the other two lakes, having a mild
impact on the T,, warming, which is further discussed in Section 4.2.

The trends in other meteorological variables also contribute to lower summer lake water temperature warming
compared to air temperature. Relative humidity, for example, showed a divergent trend in the Pelotas station, increasing
in both spring and summer while it decreased in the other two meteorological stations. This is likely a result of its
location, being at the centre of the three lakes, and therefore the RH increases as a result of increased evaporation
due to the warming of LSWT (especially in lake Mirim, with trends of increased latent heat flux of 4.3 W m~2 in this
period, Tavares et al. 2023), whereas RH in the other two stations decreases as a result of consistent warming of mean,
maximum and minimum air temperatures. This, associated with the excess warming in spring (resulting in enlarged
T, — T, difference), amplify lake heat loss via turbulent heat flux (Fink et al., 2014; Zhong et al., 2016; Tavares et al.,
2023), contributing to lower warming rates. It should also be noted that the trends in heat loss via turbulent heat flux
were much higher in spring (Tavares et al., 2023), due to the strong winds (Table S1) and enhanced T, — T, differences,
and without this increased source of heat loss, the trends in this season could be even higher.

ENSO events have considerable impacts on the meteorological conditions in the region, with El Nifio associated
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with higher precipitation (Cai et al., 2020) and La Nifia associated with droughts and colder weather, especially late fall,
winter, and spring (Cordeiro et al., 2016). Here, the observed effects of ENSO in the cold season were mild (Figure 2),
although El Nifio appears to delay the start of the cold season, while La Niiia years present some of the later ending

dates and longer cold seasons. The coldest years in the region were also La Nifia years (Figure S1).

4.2. Spatial analysis

In spite of the more limited time span of the series, the MODIS imagery provides a suitable dataset to examine not
only the mean warming rates but also how warming varies spatially. We see that the seasonal trends were generally
homogeneous in the region for the three lakes, with a few exceptions (Figure 4). This homogeneity has been shown, for
example, by Toffolon et al. (2020), which, while not calculating warming rates directly, showed that Lake Eire had
a more homogeneous response to differential warming compared to the remaining larger, much deeper Laurentian
Great Lakes. Here, this homogeneity also results from the lakes’ morphometry (Ptak et al., 2018; Gonzilez-Avila et al.,
2021), as discussed above.

In spring and, to some extent, in summer, trends are slightly different near the major river discharge areas. The
higher warming rates near the Jaguardo and Tacuari inflow areas in lake Mirim, and the opposite effect caused by
the Cebollati river, is likely a result of more consistent heat input by the former rivers, having a local effect on the
trends. Vinna et al. (2017) showed similar results, although the authors modelled deep, thermally stratified lakes,
finding substantial impact of tributaries on lake warming, with a dampening effect more pronounced in the hypolimnion.
Jaguardo and Tacuari have much similar behaviour regarding water discharge and temperature, differing from Cebollati,
which has a larger, more southwestern basin (Munar et al., 2018, 2019). Although Munar et al. (2019) showed that the
Cebollati river has a much larger impact on lake Mirim’s heat budget (despite minimal contribution to the overall lake
heat budget), it is primarily owed to the higher discharge, being higher than the combined discharge of Jaguarao and
Tacuari rivers in some years.

The same behaviour is observed for lake Guaiba and Camaqua river discharges in the Patos Lagoon in the summer,
as trends near the Camaqua discharge area are consistently inferior than in most of Patos Lagoon, but near the Guaiba
discharge they are higher than the mean warming rates in this season. In lake Mangueira this effect is much reduced,
owing to its much smaller watershed and thus, tributaries’ discharge contribution. When comparing the seasonal trends
with the differences between the hottest and coldest years of spring and summer (Figure 5), we see that river discharges
have sharper or dampened temperature differences, and this is reflected in the local warming rates: rivers with a
more consistent heat input, i.e., lower temperature difference between the hottest and coldest years in the time series,
generally increase the warming trends. The opposite is found in the river discharge areas with the largest temperature
differences, where lower-than-mean warming rates are found. River turbidity may also be relevant when considering
river discharge variations (Rose et al., 2016), as already discussed above. Although it was not further investigated here,
this suggests that river temperature (or river discharge) increase can have a strong local, long-term effect on LSWT, and

can be even more pronounced in smaller lakes.
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In brief, here we showed local spatial warming rate differences owed to tributary rivers. These spatial differences can
have substantial ecological impacts, as discussed in other studies, such as shifting species distribution and phenology of

ecosystem processes (Fragoso Jr et al., 2011; Deng et al., 2014; Halverson et al., 2021; Hansen, 2021).

5. Conclusion

In this study, we assessed the warming trends of three large shallow lakes in southern Brazil using a 22-year time
series of local meteorological data and LSWT derived from MODIS imagery. We focused on the seasonal scale,
analysing both temporal and spatial warming rates. Despite local differences, we found high warming of LSWT in
the region concentrated in spring and, to a lesser extent, in summer, with a considerable agreement between the air
and water temperature trends. Trends in meteorological forcings and climate indices show long-term warming with
a substantial shortening of the cold season and increasing maximum and minimum air temperatures in spring and
summer.

The remote sensing-derived data also showed an overall homogeneity of the warming rates, likely resulting from
the morphology of the shallow lakes, but with notable spatial differences that may be a result of variability in the
tributaries (Vinna et al., 2017).

Despite the different time span of the analysis, the high warming rates found here are comparable to those found in
deep northern lakes but with distinguished changes and processes involved in the heating. The warming is stronger in
early spring, resulting in earlier start of phytoplankton phenology (Fragoso Jr et al., 2011), and the spatial differences
in the warming can have other ecological impacts, such as shifting species distribution (Halverson et al., 2021; Hansen,
2021). We recommend further studies on the warming in the region, assessing changes in water clarity (Rose et al.,
2016), impacts of temperature increase on the tributaries, and using modelling to further understand the processes that

resulted in the observed high warming trends.
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