RECICLABILIDADE DO POLICARBONATO: AVALIAÇÃO DA DEGRADAÇÃO DO MATERIAL DECORRENTE DE REPROCESSAMENTO POR EXTRUSÃO E INJEÇÃO

*Carolina S. Defferrari, André L. Catto, Ruth M.C, Santana

Departamento de Engenharia de Materiais - UFRGS – RS *(sdefferrari@gmail.com) LAPOL – Porto Alegre - Brasil

Resumo— O policarbonato é um polímero de engenharia que possui diversas aplicações na construção civil, área médica, e outras áreas diversas. Ente elas, uma muito significativa pelo grande volume de produção na década de 90 (hoje, porém, em declínio), é em Cds. Isso deve-se a um conjunto único de propriedades óticas e mecânicas, como alta transparência e boa capacidade de absorção de impacto, além da boa processabilidade. As toneladas de material aplicado em Cds e DVDs é ou será em breve, à medida que o produto vai sendo substituído por outras tecnologias e torna-se obsoleto, resíduo. A reciclagem desse material poderia produzir grandes quantidades de matéria-prima a um custo muito inferior ao da síntese do material virgem. Mas para isso é de fundamental importância saber qual o grau de degradação decorrente do reprocessamento, pois esse é o principal fator de modificação das propriedades do material. O objetivo do presente projeto é avaliar a degradação do material através da variação da massa molar causada pelo reprocessamento (extrusão e injeção) a que é submetido para obtenção de novos produtos.

Palavras-chave: Policarbonato, Reciclagem do policarbonato, Degradação do policarbonato.

Introdução

O policarbonato é um polímero termoplástico de engenharia obtido por policondensação do Bisfenol A com fosgênio ou com difenilcarbonato [1], por isso sua síntese apresenta um custo superior a de polímeros commodities como o PP ou o PE, por exemplo, obtidos por poliadição (custo inferior à policondensação) [2]. É também um polímero termoplástico com boa processabilidade [1]. Por esses motivos é importante conhecer sua reciclabilidade: não só é viável com economicamente vantajosa.

$$\left[\begin{array}{c}
CH_3 \\
C \\
CH_3
\end{array}\right] = 0$$

$$\left[\begin{array}{c}
O \\
C \\
CH_3
\end{array}\right]$$

Figura 1. Estrutura química do policarbonato.

Além disso apresenta diversas propriedades únicas e bastante interessantes, motivo pelo qual possui diversas aplicações na construção civil, em componentes automotivos e aeroespaciais, em componentes eletrônicos, e em outras áreas [3]. Uma aplicação muito importante por empregar grandes quantidades de material, mas que hoje está em declínio, é em Cds e DVDs. Os Cds começaram a ser comercializados em 1982 e, desde então, toneladas de material foram empregadas nisso. Em 2000, 2,5 bilhões de Cds foram vendidos. A partir de 2006 o produto entrou em declínio, pois foi sendo substituído por outras formas de armazenamento, e hoje a quantidade fabricada e comercializada do produto é pequena se comparada à dos períodos de maior demanda [4].

Existem hoje algumas indústrias especializadas na reciclagem de Cds. Nos Estados Unidos existe o Recycling Center of America, fundado em 2006, que recebe material de todo o país e recicla também os encartes e caixinhas [5]. Da mesma forma funciona o Polymer Recycling Ltd., no Reino Unido, existente desde 1996 [6]. No processo de reciclagem o PC é isolado dos outros materiais do CD e depois triturado. Mas algumas etapas desse processo não são conhecidas, pois os métodos são desenvolvidos individualmente pelas empresas, patenteados e não são divulgados.

12° Congresso Brasileiro de Polímeros (12°CBPol)

As propriedades que tornam o material tão útil são alta transparência, boa resistência química a solventes orgânicos, pois é um polímero polar, rigidez à temperatura ambiente e alta resistência ao impacto, mesmo a baixas temperaturas. A Tg e a Tm do PC são, respectivamente, 150°C e 267°C. Um conjunto de propriedades semelhante é encontrado em outros poucos polímeros mas mas esses apresentam custo muito superior, a exemplo das polissulfonas, ou perdem em propriedades mecânicas, não podendo ser aplicados como o policarbonato [3].

O objetivo do presente estudo é avaliar a possível degradação do PC proveniente de resíduos de Cds, através de análise do material antes e depois de reprocessado por dois métodos diferentes (extrusão e injeção) bastante utilizados em polímeros, de modo a compará-los, e otimizar a reciclagem do material, buscando condições de processamento mais próximas do ideal, pois a degradação do material causa sensível variação em suas propriedades.

Parte Experimental

O policarbonato proveniente de CDs foi fornecido pelos Correios do Rio Grande do Sul para o LAPOL – UFRGS (Laboratório de Materiais Poliméricos). Este material foi moído em um moinho de facas Retsch SM200. Uma parte dele foi extrusada em uma extrusora de rosca simples (L/D=22; perfil de temperaturas: 140°C, 160°C e 180°C; velocidade de 40rpm) e outra, injetada em uma mini-injetora Thermo Scientific Haake Minijet II (temperatura: 230°C; pressão: 600bar). Dessa forma, obteve-se uma amostra do material apenas moída, não reprocessada, outra amostra extrusada, e uma terceira, injetada. Cabe mencionar que não foi separado os outros materiais contidos nos CDs, tais como o alumínio presente na superfície do PC.

Figura 2. Representação esquemática da produção das amostras.

Tahela	1 D)escricão	dae	amostras	avaliadas.
i abeia	I . I	rescricao	uas	amostras	avallauas.

Amostra	stra Característica das amostras material apenas moído	
1		
2	material extrusado	
3	material injetado	

Amostras de cada grupo foram caracterizadas por viscosimetria, usando oViscosímetro de Ostwald-Fenske, com capilar nº 100; o solvente usado foi THF; a temperatura de 25°C. Estas soluções foram previamente filtradas para remover as partículas sólidas provenientes do aluminio. Foram preparadas soluções com cada amostra (0,2; 0,4; 0,6; 0,8, e 1g/dL). A partir dos tempos de escoamento obtidos calculou-se (para cada concentração/tempo) a viscosidade relativa (Eq. 1), específica (Eq. 2), específica reduzida (Eq. 3) e inerente (Eq. 4). Plotando-se as últimas duas em um gráfico, encontrase o ponto de intercepto e obteve-se a viscosidade intrínseca, a partir da qual é possível calcular a massa molar média visosimétrica (Eq. 5) das amostras.

```
\eta rel = t/t0 (onde: t = \text{tempo} de escoamento de cada solução, e t0 = \text{tempo} de escoamento do solvente puro) (eq.1) \eta esp = \eta rel - 1 (eq.2) \eta esp red = \eta esp/C (sendo C a concentração da solução) (eq.3) \eta iner = \eta rel/C (eq.4) Mv = ([\eta]/K)^{(1/a)} (sendo [\eta] a viscosidade intrínseca, K e \alpha constantes associadas ao material; para o policarbonato tem-se: K = 0.000389; \alpha = 0.7) (eq.5)
```

Resultados e Discussão

Na Tabela 2 são apresentados os resultados da viscosidade intrínseca ([η]) e a massa molar viscosimétrica média (Mv) das três amostras avaliadas, onde é observado uma diminuição drástica no primeiro reprocessamento, isto é, a passagem de *flakes* (proveniente da cominuição dos CDs) para grânulos (obtidos por extrusão). Estes valores mostraram ser baixos, porém pode ser devido a presença de adesivo e outros componentes de massa molar menor que poderiam estar influenciando neste resultado.

	·= -	· · · · · · · · · · · · · · · · · · ·
Amostra	Viscosidade Intrínseca ([η])	Massa molar visc. (Mv) (g/mol)
1	0,426	21983
2	0,208	7894
3	0.175	6168

Tabela 2. Viscosidade intrínseca ([η]) e Massa molar viscosimétrica (Mv) obtidas para cada amostra.

Na Figura 4 é mostrado os resultados da massa molar viscosimétrica das amostras de PC, onde é possível visualizar um decréscimo pronunciado da viscosidade de mas de 50% quando comparado a amostra extrusada. Também é possível observar que o decréscimo maior foi com a amostra injetada, resultado já esperado, por se tratar de ser um dos processos de maior taxa de cisalhamento quando comparada com o processo de extrusão.

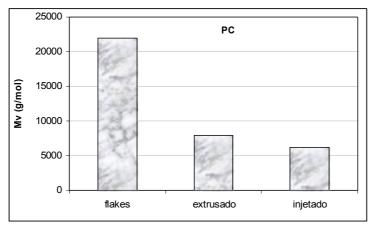


Figura 3. Massa Molar viscosimétrica das amostras de PC.

O resultado desse estudo mostraram que houve uma sensível variação nas propriedades do polímero em análise após o primeiro ciclo de reprocessamento, pois sendo a massa molar um fator decisivo na intensidade com que as propriedades de um polímero se manifestam, é possível fazer tal afirmação e, polímeros com massa molar abaixo de 10 000 g/mol podem ser considerados oligômeros [7]. Essa redução na massa molar deve, portanto, limitar a utilização do PC reciclado, pois ainda que o policarbonato seja um polímero que apresenta fortes interações entre as cadeias, as massas molares resultantes do reprocessamento estão abaixo desse valor (10 000g/mol) e certamente as propriedades do material reciclado serão diferentes (inferiores) das comumente apresentadas no policarbonato.

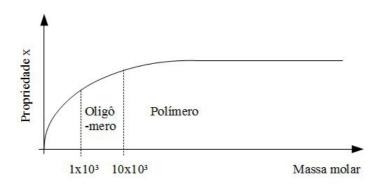


Figura 4. Influência da massa molar na manifestação das propriedades do polímeros.

Conclusão

Resultados de este estudo mostraram que o PC proveniente de CDs pós-uso, sofre degradação térmica e mecanicamente dos reprocessamento ao qual foi submetido, sendo o decréscimo mais intenso da massa molar viscosimétrica das amostras de PC processadas por injeção. Resultados preliminares deste estudo mostraram que este material é sensível as condições de processamento drástico, isto é, temperaturas altas e alto cisalhamento, o que vai influenciar nas propriedade mecânicas deste material.

Agradecimentos

Os autores agradecem ao LAPOL e à UFRGS pela infraestrutura usada no trabalho, e por tornar possível o projeto.

Referências

- 1. V R Gowariker, N. V. Viswanathan, J, Sreedhar; *Polymer Science*, Ed. New Age International, Nova Delhi, 1986.
- 2. M. A. S. Spinacé; M. A. De Paoli; A Tecnologia da Reciclagem de Polímeros, 2005, Q. Nova, Vol.28, No. 1.
- 3. D. G. LeGrand, J. T. Bendler; *Handbook of Polycarbonate Science and Technology*, Marcel Dekker Incorporated, 2000.
- 4. BBC News, 17 de agosto de 2007. http://news.bbc.co.uk/2/hi/technology/6950933.stm
- 5. CD Recycling Center of America (US), Site: http://www.cdrecyclingcenter.org/
- 6. Polymer Recycling Ltd. UK; Site: http://www.polymerrecycling.co.uk/cd.html
- 7. S. V. Canevarolo Jr., *Ciência dos Polímeros*, ArtLiber Editora, 3a Ed., Sao Paulo, Brasil, 2010.