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“Keep it simple, as simple as possible,

but not simpler.”

— ALBERT EINSTEIN
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ABSTRACT

This dissertation presents an extended implementation of the (1-D) Discrete Wavelet

Transform (DWT) method in the P4 programming language, enabling efficient and real-

time analysis of periodic behavior in network traffic. The DWT is a mathematical tool

widely used for signal analysis, allowing the division of a given signal into different

frequency components and analyzing each component with a resolution tailored to its

scale. By addressing the limitations of existing P4-programmable data plane devices,

we develop an efficient online algorithm that performs the DWT decomposition entirely

in the data plane, overcoming constraints and complexities associated with offloading

computations to external devices or relying solely on centralized controllers. Our eval-

uation focuses on a hardware implementation of the algorithm, utilizing the Netronome

NFP-4000 SmartNIC, and demonstrates minimal throughput overhead, with less than 1%

impact on average-sized packets, while operating within the constraints of limited data

plane resources. In addition to the implementation, we showcase a practical application

of our lightweight P4 implementation by introducing a novel threshold-based approach

for real-time detection of periodic behavior in signals, enabling efficient and timely iden-

tification of periodic patterns at line rate in the data plane (40 Gbps). Various examples

of synthetic and real-world packet-level traffic traces, exhibiting periodic patterns of both

benign and malicious origins, illustrate the effectiveness of our approach. The contribu-

tions of this dissertation extend to both the field of network traffic analysis and the practi-

cal implementation of the DWT in programmable data planes, offering opportunities for

real-time analysis and detection of periodic behaviors directly in the network fabric. Our

approach demonstrates scalability, efficiency, and accuracy, making it a valuable tool for

applications such as anomaly detection, congestion control, and network security. This

dissertation contributes to the advancement of in-network traffic analysis and provides a

foundation for future research in the domain, showcasing the viability and potential of

performing the DWT entirely in the data plane with minimal overhead and constraints,

and highlighting the benefits of in-network traffic analysis for network management and

security.

Keywords: DWT. P4. Periodicity Detection. Haar Wavelets. Programmable Data Plane.



DWT em P4: Detecção de Periodicidades em Plano de Dados

RESUMO

Esta dissertação apresenta uma implementação estendida do método da Transformada

Discreta de Wavelet (DWT, na sigla em inglês) de uma dimensão na linguagem de pro-

gramação P4, permitindo uma análise eficiente e em tempo real do comportamento pe-

riódico no tráfego de rede. A DWT é uma ferramenta matemática amplamente utilizada

para análise de sinais, permitindo a divisão de um sinal dado em diferentes componentes

de frequência e analisando cada componente com uma resolução adaptada à sua escala.

Ao abordar as limitações dos dispositivos de plano de dados programáveis em P4 exis-

tentes, desenvolvemos um algoritmo online eficiente que realiza a decomposição DWT

inteiramente no plano de dados, superando as restrições e complexidades associadas ao

deslocamento de cálculos para dispositivos externos ou dependendo exclusivamente de

controladores centralizados. Nossa avaliação concentra-se em uma implementação de

hardware do algoritmo, utilizando o Netronome NFP-4000 SmartNIC, e demonstra um

mínimo impacto na taxa de transferência, com menos de 1% de impacto em pacotes de

tamanho médio, operando dentro das restrições dos recursos limitados do plano de dados.

Além da implementação, demonstramos uma aplicação prática de nossa implementação

leve em P4, introduzindo uma abordagem baseada em limiar para a detecção em tempo

real do comportamento periódico em sinais, permitindo a identificação eficiente e opor-

tuna de padrões periódicos na taxa de linha do plano de dados (40 Gbps). Vários exemplos

de traços de tráfego de nível de pacote sintéticos e do mundo real, exibindo padrões pe-

riódicos de origens benignas e maliciosas, ilustram a eficácia de nossa abordagem. As

contribuições desta dissertação se estendem tanto ao campo da análise de tráfego de rede

quanto à implementação prática da DWT em planos de dados programáveis, oferecendo

oportunidades para análise em tempo real e detecção de comportamentos periódicos di-

retamente no tecido da rede. Nossa abordagem demonstra escalabilidade, eficiência e

precisão, tornando-se uma ferramenta valiosa para aplicações como detecção de anoma-

lias, controle de congestionamento e segurança de rede. Esta dissertação contribui para o

avanço da análise de tráfego em rede e oferece uma base para pesquisas futuras no domí-

nio, demonstrando a viabilidade e o potencial de realizar a DWT inteiramente no plano

de dados com um impacto mínimo e restrições, e destacando os benefícios da análise de

tráfego em rede para o gerenciamento e a segurança da rede.



Palavras-chave: DWT, P4, Deteção de periodicidades, Haar Wavelets, Programação no

Plano de Dados.
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1 INTRODUCTION

The recent proliferation of Internet-connected devices (e.g., notebooks, telephones,

and Internet of Things (IoT) Devices), systems, services, and dramatic changes in Inter-

net usage [Cisco 2020] are among the main reasons for the continued exponential growth

in Internet traffic. These network environments generate an enormous volume of data

when interacting within the network. The information generated describes the interaction

between them in the Internet traffic exhibiting the behavior of their activities, which can

result from benign or malign activities [Ahmed, Naser Mahmood e Hu 2016, Moustafa,

Hu e Slay 2019]. Thus, network operators need to respond timely as possible to many

issues that can arise and perform tasks such as detecting or distinguishing nefarious net-

work activities from benign behavior [Ding, Savi e Siracusa 2020]. To achieve that, they

must collect and analyze vast network measurement data. These large volumes of data

require efficient traffic measurements to monitor the network behavior. Also, analyzing

these measurements can be daunting for the network operator because storing and pro-

cessing such data involves considerable work and requires computational resources not

always at hand.

The analysis of measurement data may impose timing constraints (e.g., non-real-

time vs. real-time), determining the type of methods to apply at the operators’ dis-

posal, such as traditional statistical analysis techniques [Fu et al. 2021, Ji, Choi e Jeong

2015, Callegari et al. 2011, Mai, Yuan e Chuah 2008], information theory-based ap-

proaches [Ding, Savi e Siracusa 2020, González et al. 2021], and machine learning algo-

rithms [Fu et al. 2021]. These methods can be further separated into time-domain [Popa

e Manea 2015], frequency-domain [Fu et al. 2021, Luo, Li e Zhang 2019], and wavelet-

domain techniques, and some of them (e.g., mean, variance, standard deviation [Gao,

Handley e Vissicchio 2021], and Haar Discrete Wavelet [Bartlett, Heidemann e Papadopou-

los 2011]) can be adapted for streaming data analysis. Analyzing streaming data allows

operators to consider different features (e.g., packet and byte size counts) that are re-

quired for inferring certain network activities, computing them in high throughput scenar-

ios [Mai, Yuan e Chuah 2008] and at line rate [Fu et al. 2021] without having to store the

data under analysis.

One possible approach to analyze the network behavior is signal processing, which

can be used for analyzing streaming data to infer regular activities within network traffic.

Such activities often indicate recurring patterns in network usage and can be malicious or
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benign. Inferring periodic activities of unknown origins will typically trigger a detailed

post-mortem and offline forensic analysis by the network operator [Franco et al. 2021]

to identify the observed periodic activities’ root cause(s). Examples of such efforts in-

clude detecting anomaly behavior [Du et al. 2018, Ji, Choi e Jeong 2015], reconstructing

the signal of a network communication [Jiang et al. 2020], and analyzing the energy

spectrum [Yue et al. 2018]. However, traditional signal processing techniques such as

the Discrete Fourier Transform (DFT) are known to have a high computational overhead

that prevents them from being used for real-time periodicity detection in high throughput

scenarios [Fu et al. 2021, Du et al. 2018]. Therefore, their practical use in this context

is limited to performing post-mortem analysis tasks [Luo, Li e Zhang 2019, Jiang et al.

2020].

In contrast, the Discrete Wavelet Transform (DWT) method can be used to analyze

time-series data with low computational overhead by leveraging their intrinsic ability for

time-frequency localization, i.e., dividing the data into different frequency components

and used in prior works [Ji, Choi e Jeong 2015,Callegari et al. 2011,Bartlett, Heidemann

e Papadopoulos 2011, Mai, Yuan e Chuah 2008] to analyze networking traffic data, the

DWT method is a promising technique for analyzing streaming data where the “signal” is

given in the form of packet-level network traces. Not only does it allows for the simultane-

ous analysis of the signal at different scales, but the method can be naturally parallelized

and performed at line rate to enable real-time signal analysis [Roughan, Veitch e Abry

2000].

Despite its low computational overhead, implementing the DWT method to pro-

cess high-volume traffic streams at a line rate poses significant challenges. Using Com-

mercial Off-The-Shelf (COTS) hardware to perform the necessary time-frequency local-

ization of the incoming traffic is, in general, inefficient as it can introduce additional

overhead that offsets the benefits of using the DWT. In turn, recent advances in pro-

grammable data plane technologies (e.g., Programming Protocol-Independent Packet Pro-

cessors (P4) [Budiu e Dodd 2017, Consortium 2021] and Data Plane Development Kit

(DPDK) [Intel e Foundation]) present unique opportunities to use techniques such as

the DWT for line rate traffic processing in the data plane. However, P4’s limited sup-

port for commonly used arithmetic operations (e.g., addition, subtraction, and multiplica-

tion [Consortium 2021]) makes it challenging to implement the DWT method in P4 and

run it on actual hardware. Therefore, there is a research gap in implementing DWT in P4

for detecting network traffic periodicities within the data plane.
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This dissertation presents a P4 implementation of the DWT method to directly

perform a signal’s time-frequency localization in the data plane. To achieve that, we

compute the energy function to analyze each decomposition level of the DWT and use

a threshold-based heuristic to automatically alert the network operator of identified pe-

riodic behavior. To circumvent the limitations imposed by existing P4-enabled devices

about floating point values, we rely on several mathematical modifications (i.e., division,

division with a floating point value (
√
2) and power-of-two algorithms) that reduce the

need for complex arithmetic operations. Also, the solution was proposed to have a small

memory footprint in the data plane, which results in only minimal throughput overhead

(less than 1% for average-sized packets). Finally, several performance and security ex-

periments were conducted considering selected flows (e.g., based on the number of data

packets and recurrent behavior) from different datasets. These experiments show how the

proposed solution correctly identifies periodic behavior in synthetic and real-world packet

traffic traces. This work has been published in IEEE GLOBECOM 2022 [Huaytalla et al.

2022].

The remainder of this dissertation is organized as follows. In Chapter 2, we in-

troduce a review of Wavelet Transform concepts with an emphasis on DWT method and

how it works. We also present an overview of related work on programmable data planes

and signal processing techniques for network traffic analysis. Chapter 3 introduces the

overall periodicity detection methodology, including the DWT method’s signal decom-

position and the reasoning behind the proposed DWT-based Energy function analysis for

detecting periodic activities. In Chapter 4, we report on our experimental evaluations of

the proposed approach, and we conclude, in Chapter 5, the dissertation by summarizing

our main contributions and by discussing future work.
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2 BACKGROUND AND RELATED WORK

In this chapter, we provide a background on Discrete Wavelet Transform (DWT),

the general idea behind DWT, its properties, and how they can be useful for network

traffic analysis, as well as the Haar Wavelets filters used to decompose the input signal.

Then, we describe how the coefficients produced by the DWT can be used to identify

periodic behavior in signals using the energy function. Also in this chapter, we review

and discuss the different works in the literature to show the current efforts on the analysis

of recurrent patterns in network traffic traces, applications of signal processing techniques

in networking, and previous attempts at statistical analysis performed in programmable

switches. The identified challenges and research gaps are further discussed as well.

2.1 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) method uses waveforms to “localize" a

signal in both frequency and time. In addition to pinpointing the specific times when

each frequency occurs in the signal [Roughan, Veitch e Abry 1998], the DWT has lower

computational complexity than the more traditional Fourier transform method—O(n) vs.

O(n log n) [Roughan, Veitch e Abry 1998, Fu et al. 2021], where n is the number of

samples in the signal—making it more appealing for analyzing signals in high-throughput

settings such as network traffic.

To decompose a signal, the DWT uses a low-pass filter (a.k.a., scaling function or

father wavelet) and a high-pass filter (a.k.a., wavelet function or mother wavelet). These

filters are convolved with k data points at a time (depending on the size of the filters),

encoding high- and low-frequency information into two distinct levels of decomposition

and effectively sub-sampling the original signal by half. The encoded data points gener-

ated by the high-pass and low-pass filters are referred to as the detail and approximation

coefficients, respectively. We can apply the DWT decomposition recursively m times us-

ing the approximation coefficients at level j−1 as input to level j (1 ≤ j ≤ m) to analyze

frequencies at a finer granularity. The original signal corresponds to level zero.

The original DWT method was proposed alongside a simple set of wavelet fil-

ters known as the Haar wavelet [Bartlett, Heidemann e Papadopoulos 2011]. Here, we

also use the Haar wavelet and leave the application of other wavelets filters such as the

Daubechies wavelets [Ji, Choi e Jeong 2015] for future work. We define the Haar wavelet



16

low-pass and high-pass filters as (1/
√
2, 1/
√
2 and (1/

√
2,−1/

√
2), respectively [Huang,

Feldmann e Willinger 2001] and consider a time series X0,k, k = 0, 1, 2, . . . representing

the input signal. For scale one of the DWT decomposition, we multiply these values with

consecutive samples in the input signal and then add the resulting products to compute

the approximation and detail coefficients, respectively. More generically, we describe the

approximation and detail coefficients for scale j, j ≥ 1, at position k by Equations 2.1

and 2.2, respectively.

Xj,k =
1√
2
(Xj−1,2k +Xj−1,2k+1) (2.1)

dj,k =
1√
2
(Xj−1,2k −Xj−1,2k+1) (2.2)

Most of the existing methods for analyzing recurring patterns in networking re-

quire storing a high volume of network traffic data and mining it post-mortem. Due to

the high computational complexity of these methods [Roughan, Veitch e Abry 1998],

this type of analysis can take a long time. However, mining traffic in today’s high-speed

networks to detect patterns in communication requires analyzing measurements at line

rates with methods that have low computational complexity. Compared to most existing

approaches, the DWT method with its low computational complexity and broad applica-

bility to different problems is especially well suited for the high-throughput conditions

and real-time requirements imposed by modern-day networks.

In particular, the energy function of the detail coefficients has been used to detect

periodic signals in different scenarios (e.g., for studying network congestion and its im-

pact on TCP re- transmissions [Huang, Feldmann e Willinger 2001]). The energy function

Ej is defined as

Ej =
1

Nj

∑

k

|dj,k|2, j = 1, 2, . . . ,m (2.3)

where j is the decomposition level, and Nj is the number of coefficients at level j.

Computing the energy of the detail coefficients at each decomposition level allows us to

examine the temporal properties in the signal from high to low frequencies as the level of

the wavelet decomposition increases.

Feldmann et al. [Feldmann et al. 1999] show that plotting the function g(j) =

log2(Ej) can be used as a means to detect periodicity in a signal. As each decomposition
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level filters out a specific frequency range in the original signal, a particular periodicity

manifests as a sudden decrease in g(j). Figure 2.1 shows an example with five different

signals. Y1 is white noise with no periodicity. Y2–Y5 are mixtures of white noise with a

periodic signal of period 8, 10, 16, and 20, respectively. The figure shows that while g(j)

decreases for Y2–Y5 near the point marking the signal’s period, g(j) remains flat for Y1.

Figure 2.1: Using the energy function to detect periodicity.
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2.2 Periodicity Detection in Network Traces

This section presents works concerned with detecting periodic patterns in net-

working with several applications, such as (i) analysis of network traffic measurement,

(ii) analysis of Netflow data, (iii) study of a specific protocol such as HTTP, and (iv)

analysis of industrial network traffic. These applications are evaluated with several meth-

ods (e.g., theory information-based [Akgül et al. 2011], machine learning [Akgül et al.

2011,Bilge et al. 2012,Eslahi et al. 2015,Barbosa, Sadre e Pras 2016]) to detect recurrent

behavior using real-world network traces.

To analyze network traffic, Akgül et al. [Akgül et al. 2011] evaluates the flow

measurements to detect periodic patterns using the Hurst parameter computed by esti-

mation methods in different domains (e.g., time, frequency, wavelet, and Eigen). Also,

they conducted analytical research on theoretical concepts of the estimator methods (e.g.,

Higuchi method (HM), Aggregated Variance Method (AVM), Periodogram-based Method

(PBM), Wavelet-based Method (WBM) and Principal Component Analysis (PCA-based

Method)) for studying the periodicity effects in the traffic flow. To prove these effects,



18

they employ synthetic uses cases and two use cases in real-world scenarios using the

data from two different networks (gathered from the University of North Carolina and the

Traffic Measurement and Analysis on the WIDE Internet - MAWI) where are performed

in post-mortem analysis. In their results, WBM and PCA-based methods present better

visualization in their regression plots for detecting periodic components than the time

domain-based estimator methods.

Similarly, Bilge et al. [Bilge et al. 2012] proposes a botnet detection system in

large-scale and wide-area using Netflow records. To achieve this detection, they apply

supervised machine learning to train a subset based on the features of the aggregating

data obtained from the Netflow data in half-duplex connections. Such data generates

flow size-based, client access patterns-based, and temporal behavior-based features used

in the trained model to identify the C&C servers. Further, they introduce an external

reputation score (i.e., based on Fire, Exposure, and Google Safe Browsing) to reduce

false positives. The model is created using a Random Forest classifier with better results

when combining all the features as input. Their proposal can perform in real-time since

the feature extraction performance requires half of the time it takes to collect the data,

which mean that not perform at the data rate.

Other works put their effort into studying a specific protocol. Eslahi et al. [Es-

lahi et al. 2015] explores the HTTP communication protocol between bots with their

bot master in a Command and Control - C&C botnet scenario. This malicious commu-

nication takes advantage of the HTTP protocol due to the network activities generated

by client and server communication. It is wide-used by end-users (e.g., web browsers,

web applications). They mainly strive to study the PULL style pattern of HTTP Botnet

communication, which means that the bot requests the C&C for updates and brings up

new commands if required [Gu, Zhang e Lee 2008]. This communication style naturally

presents a recurrent behavior, where the authors perform a decision tree with a j48 classi-

fier using three measurements (i.e., Periodic Factor, Range of Absolute Frequencies, and

Time Sequence Factor). The classification results in five categories: (i) Non-Periodic, (ii)

Weak Periodic, (iii) Periodic, (iv) Uniform Periodic, and (v) Strong Periodic, where able

to detect the periodic behavior and classify into four categories (i.e., (ii) -(v) ). Evaluat-

ing offline the different datasets, they achieve to label the periodicity presence in many

botnets correctly.

In an environment like Industrial Control Systems (ICS), Barbosa et al. [Barbosa,

Sadre e Pras 2016] analyzes the network traffic periodicity produced by the commands
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executed by the devices. Such an environment regularly presents recurrent activities in

communication among its devices. They propose an ICS-learning approach to analyze

the periodic behavior of the communication produced by the commands executed by the

devices. Using the frequency generated, they detect the presence of periodicity in the

commands and build a command allow-list for protecting the system against intrusion.

To achieve that, the authors filter the packets into different flows for cover-up in a tok-

enization process, and the learner algorithm module uses this information to identify the

different cycles existing in each flow. This approach has an exponential time complexity

for testing all combinations to detect the presence of cycles (i.e., periodicity) in each flow.

The authors perform their tests in real-world industrial traffic, and the learner module has

a good performance despite their exponential time complexity because they can process

30 min traces in 100 ms. Although the outstanding performance, the analysis did not

manage to evaluate at line rate.

2.3 Signal Processing in Networking

This section describes works related to signal processing techniques, such as (i)

DWT method [Mai, Yuan e Chuah 2008, Callegari et al. 2011, Ji, Choi e Jeong 2015],

and (ii) DFT method [Fu et al. 2021] applying in networking. These works put their

efforts into detecting anomalies in the network traffic where signal processing techniques

are part of their process to highlight the change produced in the signal behavior, even in

some cases makes to be able to detect which kind of attack was produced.

One application of signal processing techniques is applied in Autonomous Sys-

tems (AS). Mai et al. [Mai, Yuan e Chuah 2008] propose a BAlet framework for ana-

lyzing the BGP update messages behavior to detect anomalies. In their analysis process,

they construct a matrix with the counting of BGP updates messages where each vector

represents an AS origin in a time series (i.e., the signal), then each vector pass through

a DWT method to accentuate the possible existing abnormalities. If not exists abrupt

changes in the vector, the signal is discarded. Using a clustering algorithm, they detect

network-wide anomalies (i.e., anomalies produced in different AS origins) for generating

an alarm to the network operator. Also, they achieve to detect attacks caused by a massive

amount of packets in the current Route Views Dataset (i.e., slammer attacks). Even so,

the authors perform a post-mortem analysis to validate their framework using the Réseaux
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IP Européens Network Coordination Center (RIPE NCC) dataset due to the difficulty of

testing on arbitrary BGP routing.

Another work that uses signal processing techniques is proposed in the study of

Callegary et al. . which aim to detect anomalies in the network using Information Theory

techniques (e.g., Sketches and Entropy distribution) and Wavelet Analysis (e.g., DWT).

In their approach, they parser the input data originating from Netflow records, then the

output is formatted into a sketches tables based on IP address, their number of bytes gen-

erated in each time bin, and the distinct hash functions. After this process, the entropy of

the distribution aggregates the information by distinct time bin in a time series, since the

data storage produced by the sketches tables generates huge volume of data to process and

require high computational resources. The time series is analyzed by blocks for the DWT

method for seeing discontinuities in the network traffic, and the euclidean distance is cal-

culated on each analyzed block with the reference coefficients (i.e., computed in the first

block) for detecting anomalies if the distance surpass the threshold. The proposed work

achieve to detect anomalies in the Internet2 Network Dataset adding synthetic anomalies

in the data, but the process is not concerned in periodicity detection and not willing to

perform at line-rate.

Ji et al. [Ji, Choi e Jeong 2015] analyze the network traffic to classify anoma-

lous behavior, discerning between normal behavior depicted by three services (i.e., FTP,

Mail, P2P) where each service is considered as a class, and the abnormal behavior is rep-

resented by a unique class called attack (i.e., virus and worm attack). They set up their

datasets based on their classes and balanced the number of records to have an equilib-

rium between normal and abnormal behavior data. For designing their predictive model,

they pre-processed the dataset with a data normalization process. The authors use a DWT

method to highlight the changes in the data records to extract the relevant features for

the model. To choose the most suitable features, the authors apply statistical analysis

(i.e., analysis of variance - ANOVA), and the selected features are used for training the

predictive model using Logistic Regression (LR). Their evaluations present better results

to generate a model for classifying the anomalies using the DWT method in their fea-

tures than raw values. Besides, the efforts of the authors are not included in detecting

periodicities; their focus is on detecting anomalies.
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2.4 Statistical Analysis in Programmable Data Planes

Recent research has witnessed a growing interest in incorporating statistical anal-

ysis directly within the data plane. For instance, Lapolli et al. [Lapolli et al. 2019]

propose a novel approach by implementing entropy estimation in P4 to detect distributed

denial-of-service (DDoS) attacks. Their work demonstrates the effectiveness of integrat-

ing statistical analysis techniques within the data plane, enabling real-time detection of

DDoS attacks. By leveraging P4’s programmability, their implementation of entropy pro-

vides valuable insights into network behavior and enhances network security.

In a similar vein, Ding, Savi, and Siracusa [Ding, Savi e Siracusa 2020] present

methods for estimating logarithmic and exponential functions in P4 to track network traf-

fic entropy. Their approach acknowledges the importance of monitoring and understand-

ing network traffic entropy as a key metric for identifying anomalies and potential security

threats. By integrating logarithmic and exponential functions into P4, they approximate

entropy values efficiently and accurately. Their work contributes to effective monitor-

ing and detection of network anomalies, facilitating insights into network behavior and

enhancing network security.

Furthermore, Gao, Handley, and Vissicchio [Gao, Handley e Vissicchio 2021]

make significant contributions by implementing a library of statistical techniques directly

in P4. Their work encompasses a range of statistical techniques, including mean, variance,

and other measures, providing a comprehensive suite of tools for statistical analysis within

the data plane. By gathering these techniques in a library, they offer a reusable resource

that enables researchers and practitioners to leverage statistical analysis capabilities in P4-

based networks. Their work showcases the potential of integrating statistical techniques

into the data plane, promoting improved network monitoring, anomaly detection, and

analysis of network behavior.

Building upon these works, our research further contributes to the field by ex-

tending the existing library of statistical techniques implemented in P4 [Huaytalla et al.

2022]. Specifically, we introduce a P4 implementation of the Discrete Wavelet Transform

(DWT) and a data plane-based periodicity detection technique. These additions enhance

the capabilities of the existing library, enabling more comprehensive statistical analysis

within the data plane. By incorporating the DWT and periodicity detection, our work ex-

pands the range of statistical tools available in P4-based networks, facilitating improved

monitoring, anomaly detection, and network behavior analysis.
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3 ONLINE DWT DECOMPOSITION

We present a P4 implementation of the DWT method to perform a signal’s time-

frequency localization directly in the data plane [Huaytalla et al. 2022]. Figure 3.1 pro-

vides an overview of our solution, in which a P4-enabled programmable device is running

an efficient algorithm that we designed to perform the DWT decomposition. We compute

the energy function to analyze each decomposition level of the DWT, and use a threshold-

based heuristic to automatically alert the network operator of identified periodic behavior.

To circumvent the limitations imposed by existing P4-enabled devices, we rely on a num-

ber of mathematical modifications that reduce the need for complex arithmetic operations.

Figure 3.1: Wavelets analysis for periodicity detection in P4.
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We consider a signal where each sample is indexed and represents the number

of packets of a flow in a fixed time interval. A flow refers to all the packets that match

a rule specified by the network operator, e.g., all packets with a given destination port

or IP address. Implementing the DWT transform for such signals in P4 presents signif-

icant challenges. First, P4 does not allow loops and does not support all the arithmetic

operations required to evaluate Equations 2.1, 2.2 and 2.3. Second, processing in P4 is

asynchronous, meaning that we need a packet arrival to trigger a computation. Finally,

computing and storing the signal and the approximation coefficients at different levels

may impose significant processing and storage overheads.

3.1 Arithmetic Operations

At first sight, Equation 2.3 presents additional hurdles for its implementation in

P4, including the division by a number Nj that varies over time for each level of the

decomposition and floating-point operations (division by
√
2). However, by expanding

the equation to different levels, we can simplify it to the point where these operations are
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no longer needed. First, we assume without loss of generality that the length of the signal

is a power of two, i.e., N = 2n for some n, so Nj = N/2j , where j represents the level

of the decomposition or the signal when j = 0. Then, we can write Equation 2.3 as

Ej =
1

Nj

∑

k

∣∣∣∣
Xj−1,2k −Xj−1,2k+1√

2

∣∣∣∣
2

(3.1)

NEj = 2j−1
∑

k

|Xj−1,2k −Xj−1,2k+1|2 (3.2)

For conciseness, let Aj,w = Xj−1,2w + Xj−1,2w+1, where Xj is the signal for

j = 0 or the approximation coefficients for j ≥ 1 as defined in Section 2. Aj,w is a

parameterized version of the expression inside the parenthesis of Equation 2.1, i.e., Aj,w

is the approximation coefficient without the
√
2 normalization factor. For j ≥ 2, we can

expand Equation 3.1, using the definition of Aj,w and Equation 2.1 as

NEj = 2j−1
∑

k

∣∣∣∣
Aj−1,2k√

2
− Aj−1,2k+1√

2

∣∣∣∣
2

(3.3)

NEj = 2j−2
∑

k

|Aj−1,2k − Aj−1,2k+1|2 (3.4)

Note that, since Aj,w references the approximation coefficients Xj−1,2w from the

previous level j−1, we haveAj−1,2k = Xj−2,4k+Xj−2,4k+1 andAj−1,2k+1 = Xj−2,4k+2+

Xj−2,4k+3. With these simplifications, we can compute Equation 3.4 using only additions,

subtractions, and multiplications. Moreover, we can efficiently implement multiplication

of a number by itself or by a power of two using only shift and addition operations.

Finally, since we are only interested in finding points where g(j) decreases, we do not

need to divide the right-hand side of Equation 3.4 by N .

3.2 Asynchronous Computation and Resource Usage

To build a signal on a P4 switch, we need to execute an action to count the number

of packets in a sampling interval. However, the switch runs an action only when a packet

arrives and matches an operator-defined rule. If no packet arrives during long periods,

we have a signal with multiple consecutive samples equal to zero. Since P4 does not

allow loops, we cannot simply iterate over these samples to compute the approximation
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and detail coefficients of the DWT transform and propagate them to calculate the other

decomposition levels. Also, storing the signal’s samples and the approximation and detail

coefficients for each decomposition level would consume a large amount of memory in

the switch and limit the length of the signal and the number of flows we could analyze.

We leverage the simplification of the energy function we developed in Section 3.1

to develop an efficient algorithm that stores for each signal only a sliding windowWj with

two approximation coefficients and the cumulative sum Sj =
∑

k |Aj−1,2k − Aj−1,2k+1|2

for each level j. We also store the index (L) of the sample that was last processed by

the switch, totaling 3 ∗MAX_LEVEL + 1 integers per flow, where MAX_LEVEL is the

maximum number of decomposition levels. To compute the k-th approximation coeffi-

cient at level j, we need the coefficients (or signal samples if j = 1) with indices 2k and

2k + 1 at level j − 1 (See Equations 2.1 and 3.4). We can map this dependence of the

approximation coefficients to a tree structure where signal samples are the leaves, and the

coefficients are the internal nodes of a binary tree, as illustrated in Figure 3.2.

Figure 3.2: Examples of signal decompositions and computations of the energy function.
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Note that to calculate the coefficient of an internal node, we always need the values

of its two children. Since our algorithm performs online computations, some samples or

coefficients might not be available when trying to compute the approximation coefficient

and the cumulative sum of the energy function at the next level at a specific time. Also, to

deal with the case where the switch does not receive any packet for a flow during several

sampling intervals, we introduce samples with a value set to zero. Therefore, the arrival

of a packet at the switch may trigger the computation of the coefficients at several levels

as a new sample may complete an entire subtree. For example, the availability of sample

7 in Figure 3.2d allows the computation of the approximation coefficients 3 at level 1, 1

at level 2, and 0 at level 3.

Algorithm 1 shows the pseudo-code to decompose a signal using the DWT trans-

form, compute the energy function for each decomposition level, and generate an alarm

when it detects a periodicity in a signal. To simplify the explanation, we present the al-

gorithm with recursive functions to traverse the decomposition tree. Although P4 does

not support recursion, we can implement the algorithm by simply expanding the recur-

sive functions MAX_LEVEL times. We evaluate the maximum number of levels we can

support on a programmable NIC in Section 4. Line 1 shows the main function of the

algorithm that is invoked every time the switch receives a packet that marks the end of

a sampling interval. Figure 3.2a illustrates a signal with nine samples indexed from 0 to

8 that triggers the call to function OnlineDWT with L = 2, R = 8, and s = 4. We

use L and R and the fact that all samples between them are zero to define four different

cases depending on whether L and R are even or odd: EvenEven, EvenOdd, OddEven,

and OddOdd (Figures 3.2a-d).
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Algorithm 1 Online DWT Decomposition and Energy Function.
1: procedure ONLINEDWT(

L: Index of the previously measured sample,
R: Index of the currently measured sample,
s: Number of packets in the current sample)

2: if ISEVEN(L) and ISEVEN(R) then PROPAGATEL(L,R, 1)
3: else if ISEVEN(L) and ISODD(R) then PROPAGATELR(L,R, 1, s)
4: else if ISODD(L) and ISEVEN(R) then PROPAGATEL(L+ 1, R, 1)
5: else if ISODD(L) and ISODD(R) then
6: PROPAGATELR(L+ 1, R, 1, s)
7: W0,ISEVEN(R) ? 0 : 1 ← s
8: L← R
9: procedure PROPAGATEL(L, R, j)

10: if R− L < 2 then
11: if R− L = 1 and ISODD(L) then
12: BRANCHODD(L, j)

13: else
14: DECOMPOSE(L2 , j)

15: if j < MAX_LEVEL then PROPAGATEL(L2 ,
R
2 , j + 1)

16: procedure PROPAGATELR(L, R, j, s)
17: if R− L = 1 then
18: if j = 1 then W0,1 ← s

19: DECOMPOSE(L2 , j + 1)

20: if ISODD(L) then BRANCHODD(L2 , j + 1)

21: else
22: BRANCHEVEN(L,R, j)
23: W0,1 ← s
24: BRANCHODD(R, j)

25: procedure BRANCHODD(index, j)
26: DECOMPOSE( index2 , j)

27: if j < MAX_LEVEL and ISODD( index2 ) then
28: BRANCHODD( index2 , j + 1)

29: procedure BRANCHEVEN(L, R, j)
30: if R− L < 2 then
31: if ISODD(L) then BRANCHODD(L, j)

32: else
33: DECOMPOSE(L2 , j)

34: if j < MAX_LEVEL then BRANCHEVEN(L2 ,
R
2 , j + 1)

35: procedure DECOMPOSE(index, j)
36: Wj,ISEVEN(index) ? 0 : 1 ←Wj−1,0 +Wj−1,1

37: Sj ← Sj + (Wj−1,0 −Wj−1,1)
2

38: if α(Sj−1 � (j − 3))− β(Sj � (j − 2)) > 0 then
39: GENERATEALARM(j − 1)
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We only describe the EvenEven case here, but note that similar arguments apply

when considering the remaining cases as detailed by Algorithm 1. We use Figure 3.2a to

illustrate how the algorithm works with an example where L = 2 and R = 8. Function

OnlineDWT calls PropagateL (Line 9) to propagate sample L (saved in W0,0) to the

next levels because its sibling (e.g., sample with index 3 in Figure 3.2a) for computing the

approximation coefficient was not available in the previous invocation of OnlineDWT.

As R is even and its sibling is not available yet, the algorithm does not propagate sample

R to the next levels and just updates W0,0 with the current sample (Line 7) and L with

R (Line 8) for a future invocation of OnlineDWT. The PropagateL function recurses

with L andR divided by two (Line 15) to map them to the proper nodes of the decomposi-

tion tree at the next level. This recursion stops when j reaches MAX_LEVEL (Line 15) or

when the difference between L and R becomes less than two (Line 10). In this last case,

the propagation has reached a level where either L is equal to R, and there is nothing

more to propagate, or we call BranchOdd if L is odd at that level of the decomposition.

When index at BranchOdd is odd at a level, it means we have a sample that completes

a pair of children for computing an approximation coefficient, so the BranchOdd func-

tion recurses while index is odd in the subsequent levels, computing the approximation

coefficients until j reaches MAX_LEVEL or the function reaches a node with index even

that does not have its sibling yet to compute the next approximation coefficient.

To detect periodicity in a signal, we use a heuristic that divides the energy at level

j − 1 by the energy at level j and checks if the result is greater than a threshold. If the

energy decreases suddenly from level j − 1 to level j, then Ej−1/Ej will be greater than

one. More specifically, we check if Ej−1

Ej
> α

β
, where α and β are integers and α > β.

Using Equation 3.4 and the definition of Sj , we rewrite this formula as 2j−3Sj−1

2j−2Sj
> α

β
.

Substituting the multiplication by powers of two with shift operations, we can rewrite the

equation as β(Sj−1 � (j − 3)) − α(Sj � (j − 2)) > 0, which is the same as Line 38

of Algorithm 1. In Section 4, we determine α and β empirically for a set of use cases

evaluated in this dissertation.
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4 EVALUATION

To evaluate the performance and applicability of our approach, we first imple-

ment our algorithm in P4 with Micro-C and load it into a Netronome NFP-4000 Smart-

NIC to assess its overhead. Next, we determine the threshold for our periodicity heuris-

tic and use publicly available traces of periodic traffic to analyze the energy function

plot. To support reproducibility, the artifacts of our work are available in Github at

https://github.com/ComputerNetworks-UFRGS/p4wavelets.

4.1 Performance Evaluation

This section focuses on assessing the performance of the proposed mechanism.

It consists of two subsections: setup and results. The setup subsection describes the

experimental environment, including employed hardware. The results subsection presents

the results of the experiments.

4.1.1 Setup

We use two servers with two Intel(R) Xeon(R) Silver 4114, each with 128 GB of

RAM and a dual-port Netronome NFP-4000 40 GbE NIC directly connected on a sender-

receiver configuration. The SmartNICs have a limit of 8k instructions per flow-processing

core, allowing us to use at most 17 levels of decomposition. The receiver’s SmartNIC

receives packets, processes them according to Algorithm 1, and forwards them back to

the sender. The sender sends packets and collects the throughput results. To quantify the

throughout overhead of our implementation, we consider different packet sizes (from 64

to 1500 bytes) and different number of decomposition levels (from 1 to 17), and report

experimental results for two different sampling intervals (250µs and 1s).

4.1.2 Results

Starting with the extreme case where all packets are of minimal size (i.e., 64

bytes), Figures 4.1 and 4.2 show the SmartNIC throughput (in Mpps) for up to 17 de-

composition levels (in red) for the sampling intervals 250µs and 1s, respectively. In both
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cases, level 0 (in black) denotes the throughput for basic packet capture without any de-

composition (i.e., constructing per-sample signal), and the baseline (in blue) is measured

by simply forwarding packets to their destination. The SmartNIC provides 64-bits integer

packet timestamps composed of two 32-bits variables, one for seconds and the other for

nanoseconds. To compute accurate sampling intervals, we implemented a set of shift and

multiplication operations to perform integer divisions using constants. As a result, when

using a 250µs sampling interval, the throughput overhead for construction of the signal is

roughly 17% when compared to the baseline (see level 0 in Figure 4.1).

Figure 4.1: Performance results varying levels using 64b packets - 250µs
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However, this overhead drops to less than 5% when the sampling interval is 1s

(see level 0 in Figure 4.2), mainly because in this case, calculating accurate timestamps

requires fewer operations.

Figures 4.1 and 4.2 also show that our algorithm manages to compute the DWT

using very few resources. In particular, we observe that the performance overhead for the

different decomposition levels (red bars) is small – roughly 12% compared to constructing

the signal (black bar). This result indicates that accurately constructing the input signal

(i.e., placing samples in the correct interval) is responsible for most of the throughput

overhead. When the sampling interval is 1s, the overhead is negligible because the Smart-

NIC provides timestamps already at the required granularity and there are fewer cases

when the algorithm has to propagate coefficients to the subsequent levels.

All previous results assume a worst-case scenario where all packets are of minimal

size (i.e., 64 bytes). In Figures 4.3 and 4.4, we consider more realistic scenarios and

analyze the throughput overhead of our algorithm with 17 levels of decomposition for
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Figure 4.2: Performance results varying levels using 64b packets - 1s.
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packet sizes that vary from 64 to 1500 bytes. When the sampling interval is 250µs (Figure

4.3), we notice that for packets of size 512 bytes and larger, the throughput overhead of

our algorithm becomes negligible.

Figure 4.3: Performance results varying packet size using 17 levels - 250µs.
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In fact, assuming averaged-sized packets in the Internet to have 900 bytes [CAIDA

2021], we observe a throughput overhead of less than 1% when compared to the baseline.

For a sampling interval of 1s (Figure 4.4), the throughput overhead is practically zero

when compared to the baseline behavior of the SmartNIC.
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Figure 4.4: Performance results varying packet size using 17 levels - 1s.
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4.2 Applicability Evaluation

This section assesses the practical usability of the proposed method. It consists of

two subsections: setup and results. The setup subsection describes the experimental setup

and methodology, while the Results subsection presents the findings and analysis of the

evaluation. This section provides insights into the applicability of the method to detect

peridiocity.

4.2.1 Setup

To apply our algorithm in practice, it is first necessary to define an appropriate

threshold to be used in Line 38. To this end, we examine the examples considered in

Figure 2.1 (see Chapter 2), dividing the energy value at one level by that at the next level.

Figure 4.5 shows that for a non-periodic signal such as Y1, after some initial phase, the

ratios between successive scales converge to a value of around 0.5.
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Figure 4.5: Threshold analysis - Y1.
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In contrast, for periodic signals such as Y4 (Figure 4.6), the ratios between levels

4/5 (dip in energy evident in Figure 2.1) converge to a value larger than 6. Based on

those observations, we consider a heuristic threshold value of 1.5 (α = 3 and β = 2 in

Algorithm 1).

Figure 4.6: Threshold analysis - Y4.
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To experiment with our algorithm, we next surveyed the literature for security and

performance use cases with intrinsic periodic behavior and summarize the examples we

found in Table 4.1. Performance use cases (1-2) capture the RTT of packets in benign

traffic over a normal link and a congested link, respectively. The security use cases (3-5)

consist of different attacks that generate malicious traffic such as Heartbleed and Cobalt

strike.
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Table 4.1: Network traffic use cases.

# Use Cases Period Trace Length [minutes] Sampling
Interval

1 Normal link RTT [Feldmann et al.
1999]

≈24ms 14 750µs

2 Congested link RTT [Feldmann et
al. 1999]

≈1.3s 33 325ms

3 Heartbleed [Sharafaldin., Habibi
Lashkari. e Ghorbani. 2018]

≈1s 20 125ms

4 Cobalt strike [Malware-Traffic-
Analysis.net 2021]

≈60s 17 4s

5 Trickbot (a) [Malware-Traffic-
Analysis.net 2021], (b) [Malware-
Traffic-Analysis.net 2021]

≈300s 291, 161 20s

We analyze each use case’s traffic separately. Also, for each use case we rely on

a different sampling interval to facilitate presentation. While a larger sampling interval

limits the applicability for fine-grained periodicity, it simply shifts the dips in the en-

ergy function to smaller levels. We illustrate this behavior for the Heartbleed use case in

Figure 4.7.

Figure 4.7: Energy function plots for use cases from Table 4.1 - Heartbleed.
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4.2.2 Results

Figure 4.8 shows the energy function plots for all use cases. Each use case corre-

sponds to a different line, and the relevant sampling interval is as specified in Table 4.1.

As shown in Chapter 2, the second X-axis at the top of the plot represents the period

of each decomposition level when multiplied by the sampling interval. In all use cases,

the drop in the energy plot happens in the correct periodic interval where it generates an

alarm. For instance, the Heartbleed attack (use case 3 in Figure 4.8) has a period of 1s

and a sampling interval of 125ms. Hence, we see a decrease in the energy function plot

between levels 3-4, which indicates a periodicity of 8× 125ms = 1s.

Figure 4.8: Energy function plots for use cases from Table 4.1 - All use cases.
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These results highlight that our algorithm is both accurate and versatile with re-

spect to detecting periodic behavior. For example, it can capture fine-grained periodic

behavior such as the 24ms RTT pattern in a regular link (use case 1) using a 750µs sam-

pling interval as well as coarser periodicities such as the 300s cycle of the Trickbot attack

(use case 5) using a 20s sampling interval. Moreover, because of its demonstrated ef-

ficiency (see Section IV.A), the algorithm is highly effective in leveraging modern data

plane technologies to detect periodic patterns in real-time.
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5 CONCLUSIONS AND FUTURE WORK

In this dissertation, we presented an innovative approach for performing period-

icity detection in the data plane using the Discrete Wavelet Transform (DWT) in the

P4 language. By leveraging the capabilities of programmable data planes, we demon-

strated the feasibility and effectiveness of integrating periodicity detection directly into

the network fabric. Our research contributes to the field of in-network traffic analysis and

addresses critical challenges in network management, security, and resource allocation.

The findings and contributions of this work has been published in IEEE GLOBECOM

2022 [Huaytalla et al. 2022].

Throughout this dissertation, we have made significant contributions to the state-

of-the-art in periodicity detection. Firstly, we introduced a method for embedding DWT-

based periodicity detection algorithms in P4-compatible switches, allowing for real-time

analysis of network traffic without the need for offloading to external devices or relying

solely on centralized controllers. Our solution empowers network operators with the abil-

ity to perform sophisticated traffic analysis at the edge of the network, providing increased

visibility and control.

Secondly, we designed and implemented an efficient and scalable DWT-based pe-

riodicity detection module in the P4 language. This module is flexible and programmable,

enabling network operators to adapt and customize the periodicity detection algorithms

based on their specific requirements. By leveraging the programmability of P4-compatible

switches, we offer a powerful and extensible platform for in-network traffic analysis,

paving the way for further research and innovation in this field.

Furthermore, we conducted extensive experiments using various network topolo-

gies and traffic scenarios, ensuring a thorough evaluation of our proposed approach. Our

results demonstrate the accuracy and efficiency of the DWT-based periodicity detection

in the data plane. By detecting periodic patterns directly in the network fabric, we en-

able faster response times to network events, enhance network security by identifying

anomalous periodic behaviors, and optimize network resource allocation based on real-

time traffic analysis.

The potential impact of our research extends beyond the scope of this dissertation.

Integrating periodicity detection in the data plane can revolutionize network operations,

providing numerous benefits to both service providers and end-users. The ability to detect

periodic patterns directly in the network fabric opens up new possibilities for intelligent
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network management, enabling dynamic adaptation to changing traffic patterns, efficient

utilization of network resources, and proactive identification of network anomalies.

While our work has achieved considerable advancements, there are promising av-

enues for future research and development. Firstly, we plan to explore more advanced

DWT-based algorithms and investigate their applicability in the context of periodicity de-

tection. This could involve incorporating machine learning techniques to enhance detec-

tion accuracy and adaptability to dynamic network environments. We also aim to further

optimize the performance of our solution by exploring hardware acceleration techniques

and leveraging the capabilities of emerging programmable switch architectures. Addi-

tionally, we envision extending our work to consider other types of temporal patterns

beyond periodicity. Burstiness, seasonality, and other temporal characteristics play cru-

cial roles in network traffic analysis. Investigating and developing techniques to detect

and analyze such patterns in the data plane could significantly enhance the understanding

and management of complex network behavior.

In conclusion, this dissertation presented a novel approach for integrating DWT-

based periodicity detection in the data plane using the P4 language. Our research demon-

strated the feasibility, effectiveness, and scalability of performing periodicity analysis

directly in the network fabric. By pushing the boundaries of in-network traffic analysis,

we provided valuable insights and lay the foundation for future research in the field. The

potential applications of our work extend to various domains, including network manage-

ment, security, and resource allocation, fostering a more efficient and resilient network

infrastructure.
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APPENDIX A — RESUMO EXPANDIDO

Esta dissertação apresenta uma implementação estendida do método da Transfor-

mada Discreta de Wavelet (DWT) de uma dimensão na linguagem de programação P4,

permitindo uma análise eficiente e em tempo real do comportamento periódico no tráfego

de rede. A DWT é uma ferramenta matemática amplamente utilizada para análise de

sinais, permitindo a divisão de um sinal dado em diferentes componentes de frequência e

analisando cada componente com uma resolução adaptada à sua escala.

Ao abordar as limitações dos dispositivos de plano de dados programáveis em

P4 existentes, desenvolvemos um algoritmo online eficiente que realiza a decomposição

DWT inteiramente no plano de dados, superando as restrições e complexidades associadas

ao deslocamento de cálculos para dispositivos externos ou dependendo exclusivamente de

controladores centralizados.

Nossa avaliação concentra-se em uma implementação de hardware do algoritmo,

utilizando o Netronome NFP-4000 SmartNIC, e demonstra um mínimo impacto na taxa

de transferência, com menos de 1% de impacto em pacotes de tamanho médio, operando

dentro das restrições dos recursos limitados do plano de dados.

Além da implementação, demonstramos uma aplicação prática de nossa imple-

mentação leve em P4, introduzindo uma abordagem baseada em limiar para a detecção

em tempo real do comportamento periódico em sinais, permitindo a identificação eficiente

e oportuna de padrões periódicos na taxa de linha do plano de dados (40 Gbps).

Vários exemplos de traços de tráfego de nível de pacote sintéticos e do mundo

real, exibindo padrões periódicos de origens benignas e maliciosas, ilustram a eficácia de

nossa abordagem.

As contribuições desta dissertação se estendem tanto ao campo da análise de

tráfego de rede quanto à implementação prática da DWT em planos de dados programáveis,

oferecendo oportunidades para análise em tempo real e detecção de comportamentos per-

iódicos diretamente no tecido da rede.

Nossa abordagem demonstra escalabilidade, eficiência e precisão, tornando-se

uma ferramenta valiosa para aplicações como detecção de anomalias, controle de con-

gestionamento e segurança de rede.

Em conclusão, esta dissertação contribui para o avanço da análise de tráfego em

rede e oferece uma base para pesquisas futuras no domínio, demonstrando a viabilidade e

o potencial de realizar a DWT inteiramente no plano de dados com um impacto mínimo e
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restrições, e destacando os benefícios da análise de tráfego em rede para o gerenciamento

e a segurança da rede.



42

APPENDIX B — GLOBECOM 2022 PUBLISHED PAPER

B. R. Huaytalla, A. S. Jacobs, M. V. B. Silva, F. B. Carvalho, R. A. Ferreira, W.

Willinger, L. Granville. "DWT in P4: Periodicity Detection in the Data Plane." 2022

IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 6343-6348

• Title: DWT in P4: Periodicity Detection in the Data Plane.

• Abstract: This paper presents a P4 implementation of the (1-D) Discrete Wavelet

Transform (DWT) method. As a mathe-matical tool for analyzing signals such

as packet-level traces, the DWT divides a given signal into different frequency

components and analyzes each component with a resolution matched to its scale.

We develop an efficient online algorithm that circumvents various limitations of

existing P4-programmable data plane devices and performs the DWT decomposi-

tion entirely in the data plane. Our evaluation of a hardware implementation (i.e.,

Netronome NFP-4000 SmartNIC) of the algorithm shows that it results in only

minimal throughput overhead (less than 1% for average-sized packets) and oper-

ates within constraints imposed by the limited available data plane resources. As

an application, we use our lightweight P4 implementation of the DWT and de-

scribe a novel threshold-based approach for detecting periodic behavior in a signal

in real-time, at line rate in the data plane (40 Gbps). We illustrate our approach

with different examples of synthetic and real-world packet-level traffic traces that

exhibit periodic patterns of either benign or malicious origins.

• Status: Published.

• Qualis: A1.

• Conference: IEEE Global Communications Conference (GLOBECOM).

• Date: 4–8 December 2022.

• Address: Rio de Janeiro, Brazil.

• URL: <https://globecom2022.ieee-globecom.org/>.

• Digital Object Identifier (DOI): 10.1109/GLOBECOM48099.2022.10000755

https://globecom2022.ieee-globecom.org/


DWT in P4: Periodicity Detection in the Data Plane
Briggette R. Huaytalla∗ Arthur S. Jacobs∗ Marcus V. B. Silva∗ Fabrı́cio B. Carvalho†

Ronaldo A. Ferreira† Walter Willinger‡ Lisandro Z. Granville∗
∗UFRGS, Brazil †UFMS, Brazil ‡NIKSUN, USA

Abstract—This paper presents a P4 implementation of the
(1-D) Discrete Wavelet Transform (DWT) method. As a mathe-
matical tool for analyzing signals such as packet-level traces, the
DWT divides a given signal into different frequency components
and analyzes each component with a resolution matched to its
scale. We develop an efficient online algorithm that circumvents
various limitations of existing P4-programmable data plane
devices and performs the DWT decomposition entirely in the
data plane. Our evaluation of a hardware implementation (i.e.,
Netronome NFP-4000 SmartNIC) of the algorithm shows that it
results in only minimal throughput overhead (less than 1% for
average-sized packets) and operates within constraints imposed
by the limited available data plane resources. As an application,
we use our lightweight P4 implementation of the DWT and
describe a novel threshold-based approach for detecting periodic
behavior in a signal in real-time, at line rate in the data plane
(40 Gbps). We illustrate our approach with different examples of
synthetic and real-world packet-level traffic traces that exhibit
periodic patterns of either benign or malicious origins.

I. INTRODUCTION

The recent proliferation of Internet-connected devices,
systems, and services and dramatic changes in Internet
usage [1] are among the main reasons for the continued
exponential growth in Internet traffic. To carry out tasks such
as detecting nefarious network activities or distinguishing
these activities from benign behavior, network operators
are required to collect and analyze enormous amounts of
network measurement data. The analysis of such data may
impose timing constraints (e.g., non-real-time vs. real-time),
determining the type of methods at the operators’ disposal,
such as traditional statistical analysis techniques [2]–[5],
information theory-based approaches [6], [7], and machine
learning algorithms [2]. These methods can be further
separated into time-domain [8], frequency-domain [2], [9], and
wavelet-domain techniques, and some of them can be adapted
for streaming data analysis. Analyzing streaming data allows
operators to consider different features (e.g., packet counts in a
time interval) required for inferring certain network activities,
computing them in high throughput scenarios [5] and at line
rate [2] without having to store the data under analysis.

One practical use of signal processing for analyzing stream-
ing data is to infer periodic activities within network traffic.
Such activities are often indications of recurring patterns in
network usage and can be either malicious or benign. Inferring
periodic activities of unknown origins will typically trigger a
detailed post-mortem and offline forensic analysis by the net-
work operator to identify the observed periodic activities’ root
cause(s). Examples of such efforts include detecting anomaly
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Fig. 1: Wavelets analysis for periodicity detection in P4.

behavior [3], [10], reconstructing the signal of a network
communication [11], and analyzing the energy spectrum [12].
However, traditional signal processing techniques such as the
Discrete Fourier Transform (DFT) are known to have a high
computational overhead that prevents them from being used
for real-time periodicity detection in high throughput scenar-
ios [2], [10]. Their practical use in this context is therefore
limited to performing post-mortem analysis tasks [9], [11].

In contrast, the Discrete Wavelet Transform (DWT) method
can be used to analyze time-series data with low computa-
tional overhead by leveraging their intrinsic ability for time-
frequency localization, i.e., dividing the data into different
frequency components and analyzing each component with
a resolution matched to its scale. Used in prior works [3]–
[5], [13] to analyze networking traffic data, the DWT method
is an especially promising technique for analyzing streaming
data where the “signal” is given in the form of packet-level
network traces. Not only does it allow for the simultaneous
analysis of the signal at different scales, but the method can
be naturally parallelized and performed at line rate to enable
real-time signal analysis.

Despite its low computational overhead, implementing the
DWT method to process high-volume traffic streams at line
rate poses significant challenges. Using off-the-shelf commod-
ity hardware to perform the necessary time-frequency localiza-
tion of the incoming traffic is, in general, inefficient as it can
introduce additional overhead that offsets the benefits of using
the DWT. In turn, recent advances in programmable data plane
technologies (e.g., P4 [14]) present unique opportunities to use
techniques such as the DWT for line rate traffic processing in
the data plane. However, P4’s limited support for commonly
used arithmetic operations makes it difficult to implement the
DWT method in P4 and run it on actual hardware.

This paper presents a P4 implementation of the DWT
method to perform a signal’s time-frequency localization di-
rectly in the data plane. Figure 1 provides an overview of
our solution, in which a P4-enabled programmable device is
running an efficient algorithm that we designed to perform
the DWT decomposition. We compute the energy function
to analyze each decomposition level of the DWT, and use a978-1-6654-3540-6/22/$31.00 © 2022 IEEE

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet
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threshold-based heuristic to automatically alert the network
operator of identified periodic behavior. To circumvent the
limitations imposed by existing P4-enabled devices, we rely on
a number of mathematical modifications that reduce the need
for complex arithmetic operations. Our solution has a small
memory footprint in the data plane and results in only minimal
throughput overhead (less than 1% for average-sized packets).
Finally, we show with several performance and security use
cases how our proposed solution correctly identifies periodic
behavior in both synthetic and real-world packet traffic traces.

II. BACKGROUND

The Discrete Wavelet Transform (DWT) method uses wave-
forms to “localize” a signal in both frequency and time.
In addition to pinpointing the specific times when each
frequency occurs in the signal [15], the DWT has lower
computational complexity than the more traditional Fourier
transform method—O(n) vs. O(n log n) [2], [15], where n
is the number of samples in the signal—making it more
appealing for analyzing signals in high-throughput settings
such as network traffic.

To decompose a signal, the DWT uses a low-pass filter
(a.k.a., scaling function or father wavelet) and a high-pass
filter (a.k.a., wavelet function or mother wavelet). These filters
are convolved with k data points at a time (depending on the
size of the filters), encoding high- and low-frequency informa-
tion into two distinct levels of decomposition and effectively
sub-sampling the original signal by half. The encoded data
points generated by the high-pass and low-pass filters are
referred to as the detail and approximation coefficients, re-
spectively. We can apply the DWT decomposition recursively
m times using the approximation coefficients at level j− 1 as
input to level j (1 ≤ j ≤ m) to analyze frequencies at a finer
granularity. The original signal corresponds to level zero.

The original DWT method was proposed alongside a simple
set of wavelet filters known as the Haar wavelet [13]. Here, we
also use the Haar wavelet and leave the application of other
wavelets filters such as the Daubechies wavelets [3] for future
work. We define the Haar wavelet low-pass and high-pass
filters as (1/

√
2, 1/
√
2) and (1/

√
2,−1/

√
2), respectively [16]

and consider a time series X0,k, k = 0, 1, 2, . . . representing
the input signal. For scale one of the DWT decomposition,
we multiply these values with consecutive samples in the
input signal and then add the resulting products to compute
the approximation and detail coefficients, respectively. More
generically, we describe the approximation and detail coeffi-
cients for scale j, j ≥ 1, at position k by Equations 1 and 2,
respectively.

Xj,k =
1√
2
(Xj−1,2k +Xj−1,2k+1) (1)

dj,k =
1√
2
(Xj−1,2k −Xj−1,2k+1) (2)

A. Periodicity Detection: An Energy-Function Analysis

Most of the existing methods for analyzing recurring pat-
terns in networking require storing a high volume of network

traffic data and mining it post-mortem. Due to the high compu-
tational complexity of these methods [15], this type of analysis
can take a long time. However, mining traffic in today’s high-
speed networks to detect patterns in communication requires
analyzing measurements at line rates with methods that have
low computational complexity. Compared to most existing
approaches, the DWT method with its low computational
complexity and broad applicability to different problems is
especially well suited for the high-throughput conditions and
real-time requirements imposed by modern-day networks.

In particular, the energy function of the detail coefficients
has been used to detect periodic signals in different scenarios
(e.g., for studying network congestion and its impact on TCP
retransmissions [16]). The energy function Ej is defined as

Ej =
1

Nj

∑

k

|dj,k|2, j = 1, 2, . . . ,m (3)

where j is the decomposition level, and Nj is the number of
coefficients at level j. Computing the energy of the detail co-
efficients at each decomposition level allows us to examine the
temporal properties in the signal from high to low frequencies
as the level of the wavelet decomposition increases.
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Fig. 2: Using the energy function to detect periodicity.

Feldmann et al. [17] show that plotting the function g(j) =
log2(Ej) can be used as a means to detect periodicities in
a signal. As each decomposition level filters out a specific
frequency range in the original signal, a particular periodicity
manifests as a sudden decrease in g(j). Figure 2 shows an
example with five different signals. Y1 is white noise with no
periodicity. Y2–Y5 are mixtures of white noise with a periodic
signal of period 8, 10, 16, and 20, respectively. The figure
shows that while g(j) decreases for Y2–Y5 near the point
marking the signal’s period, g(j) remains flat for Y1.

III. ONLINE DWT DECOMPOSITION

We consider a signal where each sample is indexed and rep-
resents the number of packets of a flow in a fixed time interval.
A flow refers to all the packets that match a rule specified by
the network operator, e.g., all packets with a given destination
port or IP address. Implementing the DWT transform for such
signals in P4 presents significant challenges. First, P4 does not
allow loops and does not support all the arithmetic operations
required to evaluate Equations 1, 2 and 3. Second, processing
in P4 is asynchronous, meaning that we need a packet arrival
to trigger a computation. Finally, computing and storing the
signal and the approximation coefficients at different levels
may impose significant processing and storage overheads.
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A. Arithmetic Operations
At first sight, Equation 3 presents additional hurdles for

its implementation in P4, including the division by a number
Nj that varies over time for each level of the decomposition
and floating-point operations (division by

√
2). However, by

expanding the equation to different levels, we can simplify
it to the point where these operations are no longer needed.
First, we assume without loss of generality that the length
of the signal is a power of two, i.e., N = 2n for some n, so
Nj = N/2j , where j represents the level of the decomposition
or the signal when j = 0. Then, we can write Equation 3 as

NEj = 2j−1
∑

k

∣∣Xj−1,2k −Xj−1,2k+1

∣∣2 (4)

For conciseness, let Aj,w = Xj−1,2w +Xj−1,2w+1, where
Xj is the signal for j = 0 or the approximation coefficients
for j ≥ 1 as defined in Section II. Aj,w is a parameterized
version of the expression inside the parenthesis of Equation 1,
i.e., Aj,w is the approximation coefficient without the

√
2

normalization factor. For j ≥ 2, we can expand Equation 4,
using the definition of Aj,w and Equation 1 as

NEj = 2j−2
∑

k

∣∣Aj−1,2k −Aj−1,2k+1

∣∣2 (5)

Also, since we have Aj−1,2k = Xj−2,4k +Xj−2,4k+1 and
Aj−1,2k+1 = Xj−2,4k+2+Xj−2,4k+3, we can compute Equa-
tion 5 using only additions, subtractions, and multiplications.
Moreover, we can efficiently implement multiplication of a
number by itself or by a power of two using only shift and
addition operations. Finally, since we are only interested in
finding points where g(j) decreases, we do not need to divide
the right-hand side of Equation 5 by N .

B. Asynchronous Computation and Resource Usage

To build a signal on a P4 switch, we need to execute an
action to count the number of packets in a sampling interval.
However, the switch runs an action only when a packet arrives
and matches an operator-defined rule. If no packet arrives
during long periods, we have a signal with multiple consec-
utive samples equal to zero. Since P4 does not allow loops,
we cannot simply iterate over these samples to compute the
approximation and detail coefficients of the DWT transform
and propagate them to calculate the other decomposition lev-
els. Also, storing the signal’s samples and the approximation
and detail coefficients for each decomposition level would
consume a large amount of memory in the switch and limit the
length of the signal and the number of flows we could analyze.

We leverage the simplification of the energy function we
developed in Section III-A to develop an efficient algorithm
that stores for each signal only a sliding window Wj with
two approximation coefficients and the cumulative sum Sj =∑

k |Aj−1,2k −Aj−1,2k+1|2 for each level j. We also store
the index (L) of the sample that was last processed by the
switch, totaling 3∗MAX LEVEL+1 integers per flow, where
MAX LEVEL is the maximum number of decomposition
levels. To compute the k-th approximation coefficient at level
j, we need the coefficients (or signal samples if j = 1) with

Algorithm 1 Online DWT Decomposition and Energy Function.

1: procedure ONLINEDWT(
L: Index of the previously measured sample,
R: Index of the currently measured sample,
s: Number of packets in the current sample)

2: if ISEVEN(L) and ISEVEN(R) then PROPAGATEL(L,R, 1)
3: else if ISEVEN(L) and ISODD(R) then PROPAGATELR(L,R, 1, s)
4: else if ISODD(L) and ISEVEN(R) then PROPAGATEL(L+1, R, 1)
5: else if ISODD(L) and ISODD(R) then
6: PROPAGATELR(L+ 1, R, 1, s)
7: W0,ISEVEN(R) ? 0 : 1 ← s
8: L ← R
9: procedure PROPAGATEL(L, R, j)

10: if R− L < 2 then
11: if R− L = 1 and ISODD(L) then
12: BRANCHODD(L, j)

13: else
14: DECOMPOSE(L

2
, j)

15: if j < MAX LEVEL then PROPAGATEL(L
2
, R
2
, j + 1)

16: procedure PROPAGATELR(L, R, j, s)
17: if R− L = 1 then
18: if j = 1 then W0,1 ← s

19: DECOMPOSE(L
2
, j + 1)

20: if ISODD(L) then BRANCHODD(L
2
, j + 1)

21: else
22: BRANCHEVEN(L,R, j)
23: W0,1 ← s
24: BRANCHODD(R, j)

25: procedure BRANCHODD(index, j)
26: DECOMPOSE( index

2
, j)

27: if j < MAX LEVEL and ISODD( index
2

) then
28: BRANCHODD( index

2
, j + 1)

29: procedure BRANCHEVEN(L, R, j)
30: if R− L < 2 then
31: if ISODD(L) then BRANCHODD(L, j)

32: else
33: DECOMPOSE(L

2
, j)

34: if j < MAX LEVEL then BRANCHEVEN(L
2
, R
2
, j + 1)

35: procedure DECOMPOSE(index, j)
36: Wj,ISEVEN(index) ? 0 : 1 ←Wj−1,0 +Wj−1,1

37: Sj ← Sj + (Wj−1,0 −Wj−1,1)
2

38: if α(Sj−1 ≪ (j − 3))− β(Sj ≪ (j − 2)) > 0 then
39: GENERATEALARM(j − 1)

indices 2k and 2k+1 at level j − 1 (See Equations 1 and 5).
We can map this dependence of the approximation coefficients
to a tree structure where signal samples are the leaves, and the
coefficients are the internal nodes of a binary tree, as illustrated
in Figure 3. Note that to calculate the coefficient of an internal
node, we always need the values of its two children. Since
our algorithm performs online computations, some samples or
coefficients might not be available when trying to compute
the approximation coefficient and the cumulative sum of the
energy function at the next level at a specific time. Also, to deal
with the case where the switch does not receive any packet for
a flow during several sampling intervals, we introduce samples
with a value set to zero. Therefore, the arrival of a packet at
the switch may trigger the computation of the coefficients at
several levels as a new sample may complete an entire subtree.
For example, the availability of sample 7 in Figure 3d allows
the computation of the approximation coefficients 3 at level 1,
1 at level 2, and 0 at level 3.

Algorithm 1 shows the pseudocode to decompose a signal
using the DWT transform, compute the energy function for
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Fig. 3: Examples of signal decompositions and computations of the energy function.

each decomposition level, and generate an alarm when it
detects a periodicity in a signal. To simplify the explanation,
we present the algorithm with recursive functions to traverse
the decomposition tree. Although P4 does not support recur-
sion, we can implement the algorithm by simply expanding
the recursive functions MAX LEVEL times. We evaluate the
maximum number of levels we can support on a programmable
NIC in Section IV. Line 1 shows the main function of the
algorithm that is invoked every time the switch receives a
packet that marks the end of a sampling interval. Figure 3a
illustrates a signal with nine samples indexed from 0 to 8
that triggers the call to function OnlineDWT with L = 2,
R = 8, and s = 4. We use L and R and the fact that all
samples between them are zero to define four different cases
depending on whether L and R are even or odd: EvenEven,
EvenOdd, OddEven, and OddOdd (Figures 3a-d).

Due to limited space, we only describe the EvenEven case,
but note that similar arguments apply when considering the
remaining cases as detailed by Algorithm 1. We use Figure 3a
to illustrate how the algorithm works with an example where
L = 2 and R = 8. Function OnlineDWT calls PropagateL
(Line 9) to propagate sample L (saved in W0,0) to the
next levels because its sibling (e.g., sample with index 3 in
Figure 3a) for computing the approximation coefficient was
not available in the previous invocation of OnlineDWT. As R
is even and its sibling is not available yet, the algorithm does
not propagate sample R to the next levels and just updates
W0,0 with the current sample (Line 7) and L with R (Line 8)
for a future invocation of OnlineDWT. The PropagateL
function recurses with L and R divided by two (Line 15) to
map them to the proper nodes of the decomposition tree at the
next level. This recursion stops when j reaches MAX LEVEL
(Line 15) or when the difference between L and R becomes
less than two (Line 10). In this last case, the propagation
has reached a level where either L is equal to R, and there
is nothing more to propagate, or we call BranchOdd if L
is odd at that level of the decomposition. When index at
BranchOdd is odd at a level, it means we have a sample that
completes a pair of children for computing an approximation
coefficient, so the BranchOdd function recurses while index
is odd in the subsequent levels, computing the approximation
coefficients until j reaches MAX LEVEL or the function
reaches a node with index even that does not have its sibling
yet to compute the next approximation coefficient.

To detect periodicity in a signal, we use a heuristic that
divides the energy at level j − 1 by the energy at level j and
checks if the result is greater than a threshold. If the energy de-

creases suddenly from level j−1 to level j, then Ej−1/Ej will
be greater than one. More specifically, we check if Ej−1

Ej
> α

β ,
where α and β are integers and α > β. Using Equation 5 and
the definition of Sj , we rewrite this formula as 2j−3Sj−1

2j−2Sj
> α

β .
Substituting the multiplication by powers of two with shift
operations, we can rewrite the equation as β(Sj−1 ≪ (j−3))−
α(Sj ≪ (j − 2)) > 0, which is the same as Line 38 of Algo-
rithm 1. Line 39 generates an alarm the first time the condition
in Line 38 becomes true. In Section IV, we determine α and
β empirically for a set of use cases we evaluate in this paper.

IV. EVALUATION

To evaluate the performance and applicability of our ap-
proach, we first implement our algorithm in P4 with Micro-C
and load it into a Netronome NFP-4000 SmartNIC to assess its
overhead. Next, we determine the threshold for our periodicity
heuristic and use publicly available traces of periodic traffic to
analyze the energy function plot. To support reproducibility,
the artifacts of our work are available at [18].

A. Performance

Setup. We use two servers with two Intel(R) Xeon(R)
Silver 4114, each with 128 GB of RAM and a dual-port
Netronome NFP-4000 40 GbE NIC directly connected on a
sender-receiver configuration. The SmartNICs have a limit of
8k instructions per flow-processing core, allowing us to use at
most 17 levels of decomposition. The receiver’s SmartNIC re-
ceives packets, processes them according to Algorithm 1, and
forwards them back to the sender. The sender sends packets
and collects the throughput results. To quantify the throughout
overhead of our implementation, we consider different packet
sizes (from 64 to 1500 bytes) and different number of decom-
position levels (from 1 to 17), and report experimental results
for two different sampling intervals (250µs and 1s).

Results. Starting with the extreme case where all packets
are of minimal size (i.e., 64 bytes), Figures 4a and 4b show the
SmartNIC throughput (in Mpps) for up to 17 decomposition
levels (in red) for the sampling intervals 250µs and 1s,
respectively. In both cases, level 0 (in black) denotes the
throughput for basic packet capture without any decomposition
(i.e., constructing per-sample signal), and the baseline (in
blue) is measured by simply forwarding packets to their
destination. The SmartNIC provides 64-bits integer packet
timestamps composed of two 32-bits variables, one for seconds
and the other for nanoseconds. To compute accurate sampling
intervals, we implemented a set of shift and multiplication
operations to perform integer divisions using constants. As a
result, when using a 250µs sampling interval, the throughput
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Fig. 4: Performance results varying levels using 64b packets.
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Fig. 5: Performance results varying packet size using 17 levels.

overhead for construction of the signal is roughly 17% when
compared to the baseline (see level 0 in Figure 4a). However,
this overhead drops to less than 5% when the sampling interval
is 1s (see level 0 in Figure 4b), mainly because in this case,
calculating accurate timestamps requires fewer operations.

Figure 4 also shows that our algorithm manages to compute
the DWT using very few resources. In particular, we observe
that the performance overhead for the different decomposition
levels (red bars) is small – roughly 12% compared to construct-
ing the signal (black bar). This result indicates that accurately
constructing the input signal (i.e., placing samples in the
correct interval) is responsible for most of the throughput over-
head. When the sampling interval is 1s, the overhead is neg-
ligible because the SmartNIC provides timestamps already at
the required granularity and there are fewer cases when the al-
gorithm has to propagate coefficients to the subsequent levels.

All previous results assume a worst-case scenario where all
packets are of minimal size (i.e., 64 bytes). In Figure 5, we
consider more realistic scenarios and analyze the throughput
overhead of our algorithm with 17 levels of decomposition
for packet sizes that vary from 64 to 1500 bytes. When the
sampling interval is 250µs (Figure 5a), we notice that for
packets of size 512 bytes and larger, the throughput overhead
of our algorithm becomes negligible. In fact, assuming
averaged-sized packets in the Internet to have 900 bytes [19],
we observe a throughput overhead of less than 1% when
compared to the baseline. For a sampling interval of 1s
(Figure 5b), the throughput overhead is practically zero when
compared to the baseline behavior of the SmartNIC.
B. Applicability

Setup. To apply our algorithm in practice, it is first
necessary to define an appropriate threshold to be used in
Line 38. To this end, we examine the examples considered
in Figure 2 (see Section II), dividing the energy value at
one level by that at the next level. Figure 6a shows that for
a non-periodic signal such as Y1, after some initial phase,
the ratios between successive scales converge to a value
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Fig. 6: Threshold analysis.
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Fig. 7: Energy function plots for use cases from Table I.

of around 0.5. In contrast, for periodic signals such as Y4
(Figure 6b), the ratios between levels 4/5 (dip in energy
evident in Figure 2) converge to a value larger than 6. Based
on those observations, we consider a heuristic threshold value
of 1.5 (α = 3 and β = 2 in Algorithm 1).

TABLE I: Network traffic use cases.
# Use Cases Period Trace Length Sampling Interval

1 Normal link RTT [17] ≈24ms 14’ 750µs
2 Congested link RTT [17] ≈1.3s 33’ 325ms
3 Heartbleed [20] ≈1s 20’ 125ms
4 Cobalt strike [21] ≈60s 17’ 4s
5 Trickbot (a) [22], (b) [23] ≈300s 291’, 161’ 20s

To experiment with our algorithm, we next surveyed the
literature for security and performance use cases with intrinsic
periodic behavior and summarize the examples we found in
Table I. Performance use cases (1-2) capture the RTT of pack-
ets in benign traffic over a normal link and a congested link,
respectively. The security use cases (3-5) consist of different
attacks that generate malicious traffic such as Heartbleed and
Cobalt strike. We analyze each use case’s traffic separately.
Also, for each use case we rely on a different sampling interval
to facilitate presentation. While a larger sampling interval
limits the applicability for fine-grained periodicity, it simply
shifts the dips in the energy function to smaller levels. We
illustrate this behavior for the Heartbleed use case in Figure 7a.

Results. Figure 7b shows the energy function plots for all
use cases. Each use case corresponds to a different line, and the
relevant sampling interval is as specified in Table I. As shown
in Section II, the second X-axis at the top of the plot represents
the period of each decomposition level when multiplied by the
sampling interval. In all use cases, the drop in the energy plot
happens in the correct periodic interval where it generates an
alarm. For instance, the Heartbleed attack (use case 3 in 7b)
has a period of 1s and a sampling interval of 125ms. Hence,
we see a decrease in the energy function plot between levels
3-4, which indicates a periodicity of 8× 125ms = 1s.

These results highlight that our algorithm is both accurate
and versatile with respect to detecting periodic behavior. For
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example, it can capture fine-grained periodic behavior such as
the 24ms RTT pattern in a regular link (use case 1) using a
750µs sampling interval as well as coarser periodicities such
as the 300s cycle of the Trickbot attack (use case 5) using a
20s sampling interval. Moreover, because of its demonstrated
efficiency (see Section IV.A), the algorithm is highly effective
in leveraging modern data plane technologies to detect periodic
patterns in real-time.

V. RELATED WORK

Periodicity detection in network traces. Prior works
use real-world network traces with periodic components to
evaluate Hurst parameter estimation methods [24], focus on
detecting botnets using time- and frequency-based metrics to
capture the very coarse-grained periodicity [25], and rely on
the autocorrelation of their network traffic signals, producing
periodic-based features for a random forest classifier [26].
Another study [27] examines periodicity in network traf-
fic by tokenizing flows and looking for cycles in tokens
from individual packets. These efforts are mainly concerned
with performing post-mortem analyses of the traffic, and the
proposed methods are typically not amenable to processing
streaming-type data in programmable data planes.

Signal processing in networking. Several works use signal
processing techniques to analyze network traffic traces. Some
works use DWT coefficients to propose an anomaly detection
classification model [3] and analyze changing patterns in time
series with the entropy of IP addresses [4]. The BAlet [5]
framework detects anomalous BGP updates by leveraging the
DWT to decompose a signal of localized BGP update counts.
Whisper [2] is a machine learning-based intrusion detection
system that leverages frequency domain-based input features
(i.e., using the DFT). These efforts do not detect periodic
behavior and do not consider any data plane implementation.

Statistical analysis in programmable data planes.
Several recent papers propose statistical analysis approaches
directly in the data plane. [28] relies on a P4 implementation
of entropy to detect DDoS attacks and [6] presents methods
for estimating logarithmic and exponential functions in P4
to track traffic entropy. Gao et al. [29] implement several
statistical techniques (e.g., mean, variance) in P4 and gather
them in a library. Our work contributes to these ongoing
efforts and adds a P4 implementation of the DWT and a data
plane-based periodicity detection technique to this library.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a P4 implementation of the DWT
method and uses it to develop an energy function-based
method for detecting periodic patterns in an incoming signal in
real-time, at line rate in the data plane. Our P4 implementation
of the DWT is based on an efficient online algorithm that
overcomes the limitations of existing P4-programmable data
plane targets by exploiting mathematical properties of the
DWT decomposition. Using this new data plane capability
afforded by our P4 implementation of the DWT, our novel
energy function-based method for detecting periodic behavior
in signals such a packet-level network traffic traces in real-time

can be used to automatically alert network operators. Deter-
mining appropriate thresholds for our method and developing
a dashboard for facilitating an efficient post-mortem analysis
whereby operators can determine the alerts’ root cause(s) so as
to decide whether the automatically detected periodic patterns
are malicious or benign is part of our future work.
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