
Número 11, 2001 Engenharia Civil • UM 69 
 

 
 

Numerical simulation of vortex-induced vibrations of a pair of cylinders 
 

Luis Alberto Segovia González1, Armando Miguel Awruch2 

 

Programa de Pós-Graduação em Engenharia Civil, 
Universidade Federal do Rio Grande do Sul 

Av. Osvaldo Aranha 99 - 3o Andar 
Porto Alegre - RS - Brasil - 90035-190 

 
 
 
 
 
ABSTRACT 
 
     The 2-D numerical simulation of vortex-induced vibrations of two closely spaced parallel 
rigid circular cylinders, restrained by elastic springs and aligned in a normal direction with respect to 
the free stream flow, is presented in this work. Fluid-structure interaction is taken into account by a 
strong coupling based in equilibrium and compatibility conditions at the interfaces. A moving mesh, 
adjustable to the motion of the bodies, is included using an Arbitrary Lagrangean-Eulerian (ALE) 
description. 
 
 
1. INTRODUCTION 
 
     A 2-D numerical simulation of vortex-induced vibration of a pair of cylinders arranged side 
by side in a normal direction to the free stream flow is presented in this work. 
     Practical applications of this simulation include wind-induced vibrations of groups of high rise 
buildings, free standing chimneys or cooling towers, bundles of electrical transmission lines, vibration 
of ducts in nuclear reactors, etc. 
     All the above mentioned cases are typical examples of structures sorrounded by a fluid, 
where the deformations of the bodies are negligible in comparison with their deflections and, 
consequently, the structure may be idealized as a rigid body supported by elastic springs. This 
approach was first used by Kawahara et al. (1984) employing a two-step explicit scheme with 
selective lumping for the flow analysis. 
     The flow of a viscous incompressible fluid is analysed here with an explicit Taylor-Galerkin 
scheme using the Finite Element Method (FEM) for space discretization. Taylor-Galerkin schemes 
were used firstly by Donea (1984) and Donea et al. (1984) for advection-diffusion problems, by 
Laval & Quartapelle (1990) and Tabarrok & Su (1994) for unsteady incompressible flows and by 
Löhner et al. (1984), Morgan et al. (1991) and Peraire et al. (1988) in the context of high 
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compressible flows and wave propagation problems. Later, this scheme was used by several others 
authors. 
     The dynamic equilibrium equations of the structure are solved using the standard Newmark's 
Method (Bathe (1996)). 
     Structure-fluid coupling is carried out considering displacement compatibility and equilibrium 
of forces at the interface, modifying structural mass and damping matrices and the load vector acting 
on the solid body. 
     Mesh movement is controlled by an Arbitrary Lagrangean-Eulerian (ALE) scheme, which is 
suitable for problems involving moving boundaries. A mixed Eulerian-Lagrangian description has 
been used by Hughes et al. (1981) for incompressible viscous flows and by Donea et al. (1982), Liu 
& Ma (1982) and Liu & Gvildys (1986) for fluid-structure interaction problems related to nuclear 
reactor power plants and sloshing problems. Löhner (1988) employed the ALE description for high 
compressible flows. This useful technique was later used by many authors in the field of 
Computational Fluid Dynamics as well as in Computational Structural Analysis. 
     Two examples show that the model is an efficient tool for the study of fluid-structure 
interaction problems such as vortex-induced vibrations. 
 
 
2. GOVERNING EQUATIONS AND COMPUTATIONAL FORMULATION 
 
     The unsteady isothermal flow of a viscous and slightly compressible fluid is governed by the 
following system of differential equations (Kawahara et al. (1984)) 
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with the corresponding boundary conditions 
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where vi are the velocity components, p is the pressure, ρ is the specific mass, fi are the body 

force components, c is the velocity of propagation of sound, µ and λ are the molecular viscosity 

and bulk coefficient respectively, v
i
 are prescribed values of the velocity components in Γv, si are 

the components of the surface force in Γs, ni is the direction cosine of the outflow normal with 

respect to the axis xi, δij is the Kroenecker's delta and Ω is the domain, with boundary Γ=Γv ∪ 
Γs. 
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      The continuity equation (2) is obtained using the state equation 
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in the mass conservation equation given by 
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     Using the Taylor expansion of equations (1) and (2) up to the second order terms and 
applying the classical Buvnov-Galerkin scheme in the context of the FEM, the following  expressions 
are obtained for the velocity components and pressure (Donea et al. (1982)) 
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where ∆t is the time interval, Ωe is the element domain, 

~ L
M  is the lumped mass matrix, index n 

indicates the time step, while index k is the number of the iterations and BT denotes the boundary 
terms arising from the integration by parts of viscous and pressure terms. 
     Using four node isoparametric quadrilateral elements with bilinear interpolation functions for 
velocity components and with constant pressure over the element domain, matrices and vectors in 
expressions (7) and (8) are given by 
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where 
~
Φ  is a vector containing the usual bilinear interpolation functions and index T indicates 

transposition. In the expressions for 
~ ii
L  and 

~ ij
L  we have ( ) 1

1
i

j i
+= + − . 

     With (7) and (8) the increments of velocity components at each node and pressure at element 
level are obtained. Nodal values of pressure may be calculated by a smoothing process employing 
local and global least-square techniques. As an explicit integration scheme is used, the local stability 
condition is given by (Kawahara et al. (1984)) 
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where ∆x is a characteristic element size, v is the velocity and α is a safety factor. 
     Values of the velocity components in each node 

~ i
V  and values of pressure on each element 

~
P  at time level n+1 are obtained with 
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     The equation of motion for the structure is given by 
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where 

~ S
M , 

~ S
C  and 
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K  are the mass, damping and stiffness matrices respectively, 

~
Y&& , 

~
Y&  and 

~
Y  

are the acceleration, velocity and displacement vectors respectively, and 
~ S
Q  is the load vector. 

     In this work each body has three degrees of freedom (displacements in the direction of each 
global axis and rotation around an axis normal to the domain Ω) and (13) is applied at the center of 
the body. 
     The momentum equation (1) may be written, in the context of the Galerkin scheme and the 
FEM, as a matrix equation given by 
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or, in compact form 
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     The compatibility condition at a node in the fluid-solid interface is 
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where t
1
 and t

2
 are the components of the distance from the node at the interface to the center of 

the body. Equation (16) indicates that the velocity at the center of the rigid body, transferred to the 
fluid-solid boundary, are equal to the fluid velocity at the same point. 
     The equilibrium condition at an element side in the fluid-solid interface is given by 
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where 
~
T  was defined in (16) and 

~
S  is a vector with their components defined in (4). Equation (18), 

together with (13), indicate that surface loads due to the fluid flow at the fluid-solid interface, 
transferred to the center of the rigid body, are in equilibrium with inertia, damping and elastic forces. 
     Considering expressions (13) to (18), the equation of motion of a body, taking into account 
the fluid-structure coupling, is given by 
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where 
~
R  is obtained applying matrix 

~
T  for each node of the m finite elements having a common 

side with the fluid-solid interface. 
     As an example, assume that we are considering a quadrilateral element (e) with nodes I, J, 
K, L, with I and J lying at the fluid-solid interface and K and L have not any contact with the body 
boundary. In this case, matrix R

~
  in (19) is given by 
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Solving (19) at the center of each body, the values of 
~
Y&  must be transferred to the fluid-solid 

interface in order to introduce boundary conditions for the fluid. The flow problem is analysed using 
expressions (7) to (12). 
     As the finite element mesh used for the flow simulation must follow the interface motion due 
to body oscillations, an Arbitrary Lagrangean-Eulerian (ALE) description is used. To introduce mesh 
movement it is necessary to modify advective terms in the momentum equation (1) taking 
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( )i j jv v wρ − , where w j  are the components of the mesh velocity and consequently modifying 

matrix L
ii~
, given in (9). 

     The criterion used to compute the velocity components of each node I in the finite element 
mesh is (Donea et al. (1982)). 
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where N indicates the number of nodes connected to node I through elements side or diagonals, n
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 denote the displacement components of node J. In order to 

avoid undesirable mesh distortions, it is convenient to use together with (20) some restrictions such 
as (Giuliani (1982)). 
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where ,i Iw%  are obtained with expression (20), vi I,  are the fluid velocity components and ζ  is a 

coefficient (0 1ζ≤ ≤ ). 
 
 
3. EXAMPLES 
 
3.1. Example 1 
 
     As a first example, in order to check the computational model, the open flow of a viscous 
fluid around an oscillating cylinder restrained by elastic springs with Reynolds number Re = 1193 is 
analysed. Geometrical characteristics and boundary conditions are shown in Figure 1. A finite 
element mesh with 2336 isoparametric quadrilateral elements and 2431 nodes, using bilinear shape 
functions for velocity components and constant pressure at element level, was employed. 
     The specific mass, shear viscosity, volumetric viscosity and sound speed for the fluid are, 
respectively 
 

-1 3

2

1.32 10 /

1.32 10  /

0.00 /

337.00 /

kg m

kg ms

kg ms

c m s

ρ

µ
λ

−

= ×

= ×
=
=

 

 



Número 11, 2001 Engenharia Civil • UM 75 
 

     The undisturbed upstream velocity was assumed to be 0 42.30 /v m s=  
     The solid body is characterized by the following geometrical and mechanical properties 
(mass, damping and stiffness, respectively) in x2 direction 
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Figure 1: Geometrical characteristics and boundary conditions for the flow around an oscillating 
cylinder 

 
     Values of properties in x1 direction are adopted such that oscillations in the longitudinal 
direction can be neglected. 
     The natural frequency, the dimensionless frequency and the damping coefficient in x2 
direction may be computed as follow 
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     The initial conditions consider the system at rest in 0.00 t s= , and assume that suddenly the 
upstream velocity 0 42.30 /v m s=  is applied. 

     The adopted time interval was 41.00 10  t s−∆ = ×  
 

     After 5.00 s the following mean values were found for the lift coefficient, pitching moment 
coefficient and drag coefficient respectively 
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     Mean values of the pressure coefficient and details of the stream lines are shown in Figure 2 
and Figure 3, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 2: Mean values of the pressure coefficient 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figura 3: Details of the stream lines 
 
     Displacements of the center of the body, given in Figure 4, are similar to those obtained by 
Kawahara et al. (1984). 
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Figura 4: Displacements of the center of the cylinder 

 
     The Strouhal number 0.22St =  was calculated directly from the computed flow and is in 
good agreement with values reported by Kawahara et al. (1984), Schlichting (1979) and Zukauskas 
(1972). 
3.2. Example 2  
 
     The mathematical model described in the previous section, was also applied to simulate 
vortex-induced vibrations for two closely spaced circular cylinders, arranged side by side 
perpendicular to the free stream flow direction, with Reynolds number of the flow          Re = 1193. 
Geometrical characteristics and boundary conditions are shown in Figure 5. 
     The upstream velocity components were prescribed with the following values 
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and at the lateral boundaries the normal velocity component was prescribed with 
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     The diameter and mechanical properties in x2 direction (mass, damping and stiffness, 
respectively) of both cylinders were taken as 
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and values of properties in x1 direction were adopted such that oscillations in the longitudinal 
direction can be neglected. 
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Figure 5: Geometrical characteristics and boundary conditions for the flow around a pair of 
oscillating cylinders 

     A mesh, despicted in Figure 6, with 5260 four node quadrilateral isoparametric elements and 
5434 nodes was used to analyse this problem. 

Figure 6: Finite element mesh 
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     In Figure 7 details of the moving finite element mesh around cylinder 2 at t = 3.90 s. are 
shown, and in Figure 8 stream lines around both cylinders at t = 3.00 s  

Figure 7: Moving finite element mesh around cylinder 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 8: Details of the stream lines 

     Transversal displacements of the center and mean values of the pressure coefficient for both 
cylinders can be observed in Figure 9 and 10 respectively. 

 
Figure 9: Perpendicular displacements of the center of cylinders 1 and 2 
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with respect to the free stream 
 

 
Figure 10: Mean values of the pressure coefficients for cylinders 1 and 2 

 
 Mean values of drag, lift and pitching moment coefficients were also obtained and are given 
by 
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     In all cases, mean values were calculated from time variation of instantaneous values. 
     Results show good agreement with Zdravkovich (1977) and Price & Paidoussis (1984). 
 
 
4. CONCLUSIONS 
 
     The encouraging results obtained in this work show the possibility to use the model described 
here as an efficient tool to study fluid-structure interactions problems, such as vortex-induced 
vibrations in an arbitrary arrangement of structures. Further developments to extend this computer 
code to 3-D, including a turbulence model as well, are being formulated and results will appear in 
future works. 
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