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ABSTRACT

The 2D numericd amulaion of vortex-induced vibrations of two closdy spaced pardld
rigid circular cylinders, restrained by dadtic sorings and digned in anormd direction with respect to
the free stream flow, is presented in this work. Fluid-structure interaction is taken into account by a
strong coupling based in equilibrium and compatibility conditions at the interfaces. A moving mesh,
adjustable to the motion of the bodies, is included usng an Arbitrary LagrangeanEulerian (ALE)
description.

1. INTRODUCTION

A 2-D numericd amulation of vortex-induced vibration of a pair of cylinders aranged sde
by sdein anormd direction to the free stream flow is presented in this work.

Practica gpplications of this smulation include wind-induced vibrations of groups of high rise
buildings, free standing chimneys or cooling towers, bundles of dectricd transmisson lines, vibration
of ductsin nuclear reactors, €tc.

All the above mentioned cases are typical examples of Structures sorrounded by a fluid,
where the deformations of the bodies are negligible in comparison with ther deflections and,
consequently, the Structure may be idedlized as a rigid body supported by dagtic springs. This
gpproach was first used by Kawahara et d. (1984) employing a two-step explicit scheme with
sective lumping for the flow andlyss

The flow of a viscous incompressible fluid is andysed here with an explicit Taylor-Gaerkin
scheme using the Finite Element Method (FEM) for space discretization. Taylor-Galerkin schemes
were used firstly by Donea (1984) and Donea et a. (1984) for advection-diffuson problems, by
Lava & Quartapelle (1990) and Tabarrok & Su (1994) for unsteady incompressible flows and by
Lohner et d. (1984), Morgan et da. (1991) and Peraire et d. (1988) in the context of high
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compressible flows and wave propagation problems. Later, this scheme was used by severd others
authors.

The dynamic equilibrium equations of the Sructure are solved using the standard Newmark's
Method (Bathe (1996)).

Structure-fluid coupling is carried out conddering displacement compatibility and equilibrium
of forces at the interface, modifying structurd mass and damping matrices and the |load vector acting
on the solid body.

Mesh movement is controlled by an Arbitrary Lagrangean-Eulerian (ALE) scheme, which is
suitable for problems involving moving boundaries. A mixed EulerianLagrangian description has
been used by Hughes et d. (1981) for incompressible viscous flows and by Donea et d. (1982), Liu
& Ma (1982) and Liu & Guvildys (1986) for fluid-structure interaction problems related to nuclear
resctor power plants and doshing problems. Lohner (1988) employed the ALE description for high
compressible flows. This useful technique was later used by many authors in the fidd of
Computational Huid Dynamics as well asin Computationd Structurd Analyss.

Two examples show that the mode is an efficient tool for the study of fluid-structure
interaction problems such as vortex-induced vibrations.

2. GOVERNING EQUATIONS AND COMPUTATIONAL FORMULATION

The ungteady isothermd flow of a viscous and dightly compressible fluid is governed by the
following system of differentia equations (Kawahara et d. (1984))
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where V; are the velocity components, P is the pressure, I is the specific mass, f; are the body
force components, C is the velocity of propagation of sound, Mmand | are the molecular viscosity
and bulk coefficient respectively, v, are prescribed values of the velocity components in G, S5 ae
the components of the surface force in G, N; s the direction cosine of the outflow normd with
respect to the axis X, Gj; is the Kroenecker's delta and W is the domain, with boundary G=G, E

G
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The continuity equation (2) is obtained using the Sate equation

®)
in the mass conservation equation given by
ﬂ_r + —ﬂ ( r Vj ) =0
qt X

Using the Taylor expanson of equations (1) and (2) up to the second order terms and
applying the dlasscad Buvnov-Gaerkin scheme in the context of the FEM, the following expressions
are obtained for the velocity components and pressure (Donea et d. (1982))
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where Dt is the time intervdl, Wa is the dement domain, M is the lumped mass matrix, index N
~ L

indicates the time step, while index K is the number of the iterations and BT denotes the boundary
terms arising from the integration by parts of viscous and pressure terms.

Using four node isoparametric quadrilatera dements with bilinear interpolation functions for
velocity components and with constant pressure over the eement domain, matrices and vectors in
expressions (7) and (8) are given by
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where F is a vector containing the usud bilinear interpolation functions and index T indicates
transposition. Inthe expressonsfor L and L wehave j =i+ ( 1)”1.
~ii ~ij
With (7) and (8) the increments of velocity components at each node and pressure at €lement
level are obtained. Nodd values of pressure may be calculated by a smoothing process employing
local and globd least-sguare techniques. As an explicit integration scheme is used, the loca ability
condition is given by (Kawahara et d. (1984))

DtEa—>X (10)
V+C

where DX is a characteristic element size, V isthe velocity and @ is a safety factor.
Vaues of the velocity components in each node V'  and values of pressure on each element

I? a timelevd n+1 are obtained with

v _v + Dv“*1 (i =1,2) (11)
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The equation of motion for the structure is given by

M Y+C Y+K Y = Q (13)

where M, C and K are the mass, damping and stiffness meatrices respectively, Y, Y and Y
are the acceleration, velocity and displacement vectors respectively, and Q isthe load vector.
~S

In this work each body has three degrees of freedom (displacements in the direction of each

global axis and rotation around an axis norma to the domain W) and (13) is applied at the center of
the body.

The momentum equation (1) may be written, in the context of the Gaerkin scheme and the
FEM, as amatrix equation given by
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or, in compact form
M V+C V=-HP+S (15
Ce LTt
The compatibility condition at anode in the fluid-solid interface is
V=TY (19
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where t and t, are the components of the distance from the node at the interface to the center of

the body. Equation (16) indicates that the velocity at the center of the rigid body, transferred to the
flud-solid boundary, are equd to the fluid velocity at the same point.
The equilibrium condition & an dement Sde in the fluid- solid interface is given by

Of SdG=Q (18)
G ~S

where T was defined in (16) and S isavector with their components defined in (4). Equation (18),

together with (13), indicate that surface loads due to the fluid flow a the fluid-solid interface,
transferred to the center of therigid body, are in equilibrium with inertia, damping and eastic forces.

Congdering expressions (13) to (18), the equation of motion of a body, taking into account
the fluid- structure coupling, is given by

RY+K Y=-§ R - M _V-C V+HP| (19
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where R is obtained goplying matrix T for each node of the M finite elements having a common

sde with the fluid-solid interface.

As an example, assume that we are considering a quadrilateral dement (€) with nodes |, J,
K, L, with | and J lying a the fluid-solid interface and K and L have not any contact with the body
boundary. In this case, matrix R in(19) isgiven by
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Solving (19) a the center of each body, the vaues of Y must be trandferred to the fluid-solid

interface in order to introduce boundary conditions for the fluid. The flow problem is andysed usng
expressions (7) to (12).

As the finite dement mesh used for the flow smulation must follow the interface motion due
to body oscillations, an Arbitrary Lagrangean-Eulerian (ALE) description is used. To introduce mesh
movement it is necessary to modify advective terms in the momentum equation (1) taking
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rv (vj - wj) , where w; are the components of the mesh velocity and consequently modifying
matrix L , givenin (9).

The criterion used to compute the velocity components of each node | in the finite dement
meshis (Donea et d. (1982)).
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where N indicates the number of nodes connected to node | through elements side or diagonds, d )

is the length of the segment |J and d'; denote the displacement components of node J. In order to

avoid undesirable mesh digtortions, it is convenient to use together with (20) some redtrictions such
as (Giuliani (1982)).
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where W, are obtained with expression (20), V,, are the fluid velocity components and Z isa
coefficient (O£ z £1).

3. EXAMPLES
3.1 Example 1

As a firg example, in order to check the computationd modd, the open flow of a viscous
fluid around an oscillating cylinder restrained by dadtic springs with Reynolds number Re = 1193 is
andysed. Geometricd characteristics and boundary conditions are shown in Figure 1. A finite
element mesh with 2336 isoparametric quadrilatera elements and 2431 nodes, using bilinear shape
functions for velocity components and congtant pressure at eement level, was employed.

The specific mass, shear viscosity, volumetric viscosty and sound speed for the fluid are,
respectively

r =1.32" 10kg/n?
m=1.32" 10'% kg/ms
| =0.00 kg/ms
c=337.00 m/s
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The undisturbed upstream velocity was assumed to be V, = 42.30m/s

The solid body is characterized by the following geometrica and mechanicd properties
(mass, damping and stiffness, respectively) in X, direction
D=282m

m,, =84.43 kg
C,, =159.15Ns/m
k,, =3.00" 10° N /m
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Figure 1. Geometrica characteristics and boundary conditions for the flow around an oscillating
cylinder

Vdues of properties in X, direction are adopted such that oscillations in the longitudina
direction can be neglected.

The naturd frequency, the dimengonless frequency and the damping coefficient in X,
direction may be computed as follow

1 |k c
f =— |22 —300Hz W, =—%_ =500 X=—2 =005

" 2p\m, " f.D 2\/m, k,,

The initid conditions congder the sysem at rest in t =0.00 s, and assume that suddenly the
upstream velocity V, = 42.30m/ s isapplied.

The adopted time interval was Dt =1.00" 10 * s

After 5.00 s the following mean vaues were found for the lift coefficient, pitching moment
coefficient and drag coefficient respectively
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C, »0.00
C, » 0.00
C,=121

Mean vaues of the pressure coefficient and details of the stream lines are shown in Figure 2
and Figure 3, respectively.
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Figura2: Mean vaues of the pressure coefficient

Figura 3. Detalls of the stream lines

Digplacements of the center of the body, given in Figure 4, are Smilar to those obtained by
Kawahara et a. (1984).
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Figura4: Digplacements of the center of the cylinder

The Stround number & =0.22 was cdculated directly from the computed flow and isin
good agreement with vaues reported by Kawahara et d. (1984), Schlichting (1979) and Zukauskas
(21972).

3.2. Example 2

The mathematicd model described in the previous section, was dso gpplied to smulate
vortex-induced vibrations for two closdy spaced circular cylinders, aranged sde by sde
perpendicular to the free stream flow direction, with Reynolds number of the flow Re=1193.
Geometrical characterigtics and boundary conditions are shown in Figure 5.

The upstream velocity components were prescribed with the following vaues

V,=42.30m/s
v, =0.00m/s

and at the lateral boundaries the norma velocity component was prescribed with

Vv, =0.00m/s
The diameter and mechanical properties in X, direction (mass, damping and iffness,
respectively) of both cylinders were taken as
D=282m
m,, = 84.43 kg
C,, =159.15Ns/m
k,,=1.00" 10 N /m

and values of properties in X, direction were adopted such that oscillaions in the longitudina
direction can be neglected.
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Figure 5: Geometrica characteritics and boundary conditions for the flow around a pair of
osdillating cylinders
A mesh, despicted in Figure 6, with 5260 four node quadrilateral isoparametric elements and
5434 nodes was used to analyse this problem.

Figure 6: Finite e ement mesh

78 Engenharia Civil - UM Namero 11, 2001



In Fgure 7 detals of the moving finite dement mesh around cylinder 2 & t = 3.90 s. are
shown, and in Figure 8 stream lines around both cylindersat t = 3.00 s
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Figura8: Detalls of the stream lines
Transversd displacements of the center and mean vaues of the pressure coefficient for both
cylinders can be observed in Figure 9 and 10 respectively.
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FHgure 9: Perpendicular displacements of the center of cylinders 1 and 2
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with respect to the free stream
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Figure 10: Mean vaues of the pressure coefficients for cylinders 1 and 2

Mean vaues of drag, lift and pitching moment coefficients were dso obtained and are given
by
C,, =1.08 C,, =1.02 Cy, =-0.03
C, =022 C,=-024 Cy, =0.03

In dl cases, mean values were cdculated from time variation of ingantaneous vaues.
Results show good agreement with Zdravkovich (1977) and Price & Paidoussis (1984).

4. CONCLUSIONS

The encouragng results obtained in this work show the possibility to use the modd described
here as an fficient tool to study fluid-structure interactions problems, such as vortex-induced
vibrations in an arbitrary arrangement of structures. Further developments to extend this computer
code to 3D, incduding a turbulence modd as wdll, are being formulated and results will gppear in
future works.
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