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“Progress is made by trial and failure; the failures are generally

a hundred times more numerous than the successes,

yet they are usually left unchronicled.”

— SIR WILLIAM RAMSAY
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ABSTRACT

Prognostics and Health Management (PHM) is one of the main services encompassed by

Industry 4.0. However, the scarcity of failure data due to the nature of machines’ opera-

tion is still a challenge to be transposed in this field. Due to recent advances in computing

power, simulation, sensing, and networking technologies digital twins allow us to adopt

a different approach to this problem: inserting failures into a digital replica of the real

asset to train data-driven PHM models. In this work, we propose a general methodology

to generate and validate synthetic failure data for PHM purposes. Also, we present an

application of the proposed methodology, which produced a synthetic failure dataset val-

idated with real data. In the experiment, we have modeled a smart petroleum well in a

commercial computational fluid-dynamics simulator and injected failures into the system

by modifying the expected behavior of the equipment to generate synthetic failure data.

Then, we assessed the quality of the synthetic data by training machine learning algo-

rithms on them, testing on data from a petroleum plant production, and applying fidelity

metrics to verify the necessary improvements to the process. The results show the feasibil-

ity of generating useful synthetic data for PHM purposes, and the proposed methodology

indicates points of enhancement in the generated data. The presented methodology still

has limitations concerning its extrapolation for the general PHM case, and this work also

discuss alternatives to overcome these constraints.

Keywords: Synthetic Data. Digital Twins. Prognostics and Health Management (PHM).

Industry 4.0.



Metodologia para geração sintética de dados de falha para modelos de Prognostics

and Health Management orientados a dados em gêmeos digitais

RESUMO

PHM (acrônimo na língua inglesa para Prognostics and Health Management) é um dos

principais serviços englobados pela Indústria 4.0. Entretanto, a escassez de dados de fa-

lhas devido à natureza de operação das máquinas ainda é um desafio a ser transposto neste

campo. Devido aos recentes avanços tecnológicos em poder computacional, simulação,

detecção e rede, os gêmeos digitais nos permitem adotar uma abordagem diferente para

esse problema: inserir falhas em uma réplica digital do ativo real para treinar modelos de

PHM orientados a dados. Neste trabalho, propomos uma metodologia geral para gerar

e validar dados sintéticos de falha para PHM. Além disso, apresentamos uma aplicação

da metodologia proposta, produzindo um conjunto de dados sintéticos de falha validado

com dados reais. No experimento, modelamos um poço de petróleo inteligente em um

simulador de fluido-dinâmica computacional comercial e injetamos falhas no sistema,

modificando o comportamento esperado do equipamento para gerar dados sintéticos de

falha. Em seguida, avaliamos a qualidade dos dados sintéticos treinando algoritmos de

aprendizado de máquina sobre eles, testando com dados reais de um poço de petróleo e

aplicando métricas de fidelidade para verificar as melhorias necessárias no processo. Os

resultados mostram a viabilidade de geração de dados sintéticos úteis para fins de PHM,

e a metodologia proposta indica pontos de aprimoramento nos dados gerados. A metodo-

logia apresentada ainda possui limitações quanto à sua extrapolação para o caso geral de

PHM, e este trabalho também discute alternativas para superar essas restrições.

Palavras-chave: Dados Sintéticos. Gêmeos Digitais. PHM. Indústria 4.0.
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1 INTRODUCTION

Prognostics and Health Management (PHM) is an engineering discipline whose

main objective is to provide an integrated view of the health state of a machine or an over-

all system. The foundation for PHM has its roots in maintenance engineering concepts

such as preventative maintenance, reliability-centered maintenance, and condition-based

maintenance (LEE et al., 2014). To achieve such an objective, PHM uses sensors to

monitor the system of interest and then apply different algorithms to assess the asset’s

condition. In this way, PHM systems support technical decisions to improve the asset’s

profitability by predicting and preventing possibly costly or even catastrophic failures.

In the context of Industry 4.0, PHM is one of the primary services to enhance

the reliability and productivity of industrial assets, allowing for detection, diagnosis, as-

sessment, and prediction (JIA et al., 2018), improving reliability and reducing the down-

time of the asset. PHM is based on concepts and techniques used in predictive mainte-

nance1, which has been already used to support industrial asset management decisions

for decades. The evolution of predictive maintenance was enabled by the advances in

computing, sensoring, and communication technologies, which have transformed strate-

gies and techniques used to maintain industrial assets, from the first industrial offline

applications at the end of the last century, evolving to the concept of e-maintenance in

the early 2000s, which already integrates information and communication technologies

to enable proactive maintenance decisions (MULLER; MARQUEZ; IUNG, 2008), until

finally reach the current stage with the industrial internet of things (IIoT) and PHM.

A modern PHM data-driven approach may benefit from machine learning model-

ing (LUO et al., 2020), enabling the modeling of more complex systems using not only

theoretical models and equipment data but complex process data as well. A data-driven

approach for such a problem has the advantage of using the pattern-recognition power of

machine learning, to detect complex non-linear failure patterns in the process data. Other

advantage is the real-time response of a trained machine learning model for detecting or

predicting failures, instead of waiting a new simulation to be done for every condition

change, which sometimes may take hours and even days. However, the problem is that

this approach requires a large amount of failure data that are not usually available. The

rarity of failure data is a major challenge in the PHM area nowadays (MAUTHE; HAG-

MEYER; ZEILER, 2021). That is an inherent feature of machinery health data, mainly

1According to (MOBLEY, 2002), predictive maintenance is a condition-driven preventive maintenance.
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because machines generate normal-state data most of the time.

Regarding that problem, the digital twin concept, implemented inside the Industry

4.0 context, may offer a feasible solution. Intuitively, a digital twin is a system com-

posed of a physical asset and its digital replica (virtual entity) that can interact with each

other. (TAO; ZHANG, 2017) states that a complete digital twin should encompass five

dimensions: a physical part, a virtual part, connection, data, and service. For PHM pur-

poses, a digital twin should use multiple sources of data: real-time sensors, maintenance

history, maintenance plans, failure analysis, machine manufacturer’s manuals, and simu-

lation models. This way, digital twins enable the creation of multiple what- if scenarios

in its virtual world to support the operational optimization of the real-world asset.

Based on this principle of digital twins, this work proposes a solution for the lack

of equipment failure data, whose main contributions are:

• A general methodology for generating synthetic failure data;

• An experiment description applying the proposed methodology;

• A synthetic failure dataset produced in the experiment described that was validated

using real data.

To achieve those results, we used process data from a smart petroleum well (in-

cluding sensor measurements, plant diagrams, and operational annotations) and an one-

dimensional (1D) computational fluid-dynamics (CFD) simulator software with an API to

automate the simulation process to generate failure data. Later on, we validated the syn-

thetic data using application fidelity metrics to verify how well machine learning models

trained on synthetic data would perform when tested on real unseen test data. Finally, we

used the pairwise correlation difference (PCD) to evaluate how well the synthetic data fit

to the real test data.

The rest of this work is organized as follows: section 2 introduces the main theo-

retical concepts used in this work, section 3 presents the related works, section 4 details

the methodology used in the experiment, section 5 shows the application of the proposed

methodology and its main results, followed by a discussion in section 6 and, finally, con-

clusions and future work in section 7. Appendix A is an expanded abstract in Portuguese

language; appendix B presents an exploratory data analysis of the boundary conditions

used to run the simulations; appendix C contains the simulation parameters; appendix D

compares the produced synthetic dataset to the corresponding real data; and appendix E

exposes details about the machine learning modeling process and validation.
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2 THEORETICAL FOUNDATION

Before discussing the experiment and its results, we discuss the concepts of a

digital twin, PHM, and how data-driven models can be useful to predict failures, the

problem caused by the lack of failure data, and how a digital twin may be a feasible

solution. It is also important to understand the basics of how a petroleum smart well and

its main components work and how the failures occur.

2.1 Digital Twins

The term Digital Twin (DT) was first introduced in the aeroespacial industry, at-

tributed to John Vickers of the National Aeronautics and Space Administration (NASA).

Later, in the early 2000s, its application was extended to Product Lifecycle Management

(PLM). However, by that time, the concept was considered immature, with the informa-

tion about physical products being limited, manually collected, and mostly paper-based

(GRIEVES, 2014).

Beyond the intuitive idea of digital twins presented in section 1, here we present a

more formal definition. Min and colleagues (MIN et al., 2019) define a digital twin as a

realization of a cyber-physical system. The work of (WANASINGHE et al., 2020) refers

to this concept as a cyber-physical interaction and simulation. Nevertheless, until now,

there has been no consensus about a digital twin and its essential parts and characteristics.

While some authors understand that a DT is only a simulation of reality, others state that a

DT is a complex entity comprised of at least three dimensions: a physical entity, a virtual

entity, which is a virtual representation of the physical entity, and the connections between

them.

Tao and Zhang (TAO; ZHANG, 2017) proposed a DT framework of a complete

digital twin composed of five dimensions: the physical entity, the digital entity, the con-

nections between them, the data, and the provided services. Figure 2.1 shows the Tao

architecture of a DT. In the industry context, PHM is one of the services provided by a

digital twin, as well as the simulations or production optimizations.

It is important to notice that a digital twin is not a static model. Namely, it is not

just a simulation of scenarios based on history and real-time data collected from sensors.

It is a live model that allows the virtual entity to act in the physical entity for process

optimization and vice-versa. This continuous connection between physical and virtual
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spaces differs between a digital twin and a traditional simulation model that develops of-

fline analysis. The continuous physical-virtual connection enables a cycle of state-change

monitoring that captures not only the possible changes in the physical environment but

also the changes caused by interventions done by the virtual entity itself, making the

digital twin able to assess the effects of its own actions (JONES et al., 2020).

Figure 2.1 – Five-dimension digital twin model, adapted from (TAO et al., 2018).

Virtual EntityPhysical Entity

Services

Iterative
Optimization

Iterative
Optimization

Connection

Iterative
Optimization

Data

Connection Connection

Connection Connection

A digital twin has, therefore, a modeling process that feeds back itself. Such a

process, called the twinning process in the literature, is the capturing of state changes by

metrology techniques, transferring it to the virtual or physical environment, and the state

realization in the virtual or physical entity by a parameter synchronization. The physical

and virtual environments have means for metering and realizing the state changes. The

twinning rate is the frequency of the state synchronization between physical and digital

entities (JONES et al., 2020). Therefore, the detection and learning of previous events in

the twinning process, which is the focus of this work, is an essential step in the construc-

tion of a digital twin itself.
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2.2 Prognostics and Health Management (PHM)

According to (ZIO, 2022), Prognostics and Health Management (PHM) is a com-

putation-based paradigm that enables detecting equipment and process anomalies of ma-

chines and systems, diagnosing its degradation states and faults, predicting the evolution

of degradation to failure. This is done by means of physical knowledge, information and

data of the operation and maintenance of the assets.

PHM systems may have four distinct functions (JIA et al., 2018):

• Detection: identification if a failure has occurred without knowledge about its root

cause;

• Diagnosis: determining the root causes of a detected failure;

• Assessment: evaluating the risk of failure of a system based on its recent behaviors;

• Prognosis: prediction of the future health states and when a failure will happen.

A frequently used indicator for prognosis purposes in PHM is the Remaining Use-

ful Life (RUL). The work of (SI et al., 2011) defined RUL as the lasting from the current

time to the end of the useful life, with the definition of useful life depending on the con-

text. In a more precise definition, (BANJEVIC, 2009) defines RUL as the remaining time

until the next failure occurs. Other indicators are useful, like a customized health index, or

simply a boolean faulty/not-faulty status in the case of detecting anomalous conditions.

However, quantifying the time left until the machine stops working properly offers the

advantage of planning.

In recent years, many initiatives have proposed digital twins or cyber-physical

systems for PHM both in industry and academia. The work of (JONES et al., 2020)

highlights PHM as a well-established research area that predates and underpins concepts

for digital twins. In addition, according to (TAO et al., 2018), most DT applications are

related to PHM, and DT-driven PHM has many advantages compared to the traditional

PHM, overcoming its shortcomings of relying mainly on empirical data, leading to more

accurate and timely predictions.

2.3 Smart wells

In the O&G industry, a smart well is a well with downhole instrumentation (sen-

sors and valves for inflow control) that allows the tuning of production by the continuous
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monitoring of fluid flow rates and pressures, and that supports adjustments of the valve

configuration (YETEN et al., 2004). Such equipment assures flexibility and predictability

of the well production since it makes it possible to blend fluid stream sources from differ-

ent reservoirs with different chemical and physical properties, such as the oil quality and

proportions of oil, gas, water, and sediments.

Figure 2.2 shows a simple scheme of the basic elements of a smart well. The

figure also shows two zones of reservoir rocks containing oil and water. The key elements

for understanding the operation of a smart well are the inflow control valves (ICVs),

represented by the number 3 in figure 2.2. The ICVs may free or block the flow from the

reservoir rock to the tubing (number 2 in figure 2.2) that carries the produced fluids to the

surface. The isolation packers (number 4 in figure 2.2) seal the space between the casing

(number 1 in figure 2.2) and the tubing, isolating segments and hence the fluid to enter the

tubing through only one ICV, avoiding the mix of fluids from the different zones without

the control of the operators. P/T gauges (number 5 in figure 2.2) measure temperature and

pressure inside and outside the tubing, allowing the control system to calculate the flow

from each ICV.

Figure 2.2 – Basic elements of a smart well. 1 - Casing, 2 - Tubing, 3 - Inflow Control Valves
(ICV), 4 - Isolation packer and 5 - P/T gauges.

Oil

Oil

1
 2


3


4


5


The work of (SHAW, 2011) presents the evolution of ICV technologies, including

a comparison between generations, reliability, and cost issues of all-electric, electric-

hydraulic, and all-hydraulic ICVs. ICVs are complex machines with instrumentation and

moving parts that must be able to work whenever required, generally operating in severe
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conditions (high pressures and temperatures, which cause a higher likelihood of electronic

components failures). Therefore, considering the ICV as the system’s weakest point in

terms of reliability is not unreasonable.

Nevertheless, being the less reliable point in the system does not necessarily mean

absolute low reliability. In (LANGLI et al., 2001), experts estimated the mean time to

failure (MTTF) of first-generation petroleum production ICVs to be two years, as no

data were found by authors thus far. Later, (JOUBRAN, 2018) calculated the equipment

MTTF as 148 years, with data from 1,120 first-generation ICVs. The same study pre-

sented the reliability improvement achieved in the latest-generation ICVs, with an MTTF

of 425 years (based on data from 734 units over three years). The analysis of the universe

size of 734 ICVs needed in that work required to observe a total of 5 failures during three

years indicates the sparse failure data of this type of equipment.

Despite being rare, the consequences of an ICV failure are costly, requiring a

restoration process without guaranteed results, and may lead to real production losses or,

in some cases, with the valves declared as no longer useful (AL-HAJRI et al., 2021). De-

pending on the kind of failure or the valve configuration, the valve may stick in its current

setting due to loss of control from a surface or mechanical stuck, or else automatically

open or close (YETEN et al., 2004). Because of that, spurious actions are not impossible.

Furthermore, the unpredictability of the need to operate the equipment (LANGLI et al.,

2001) increases the difficulty of predicting when a failure will take place.

However, such unpredictability does not mean the causes of failures in that equip-

ment are unknown. The work of (YETEN et al., 2004) presents a model of ICV failures

probability density function as the bathtub curve1, where, at the early stage of equipment

life, the high failure rates refer predominantly to inappropriate installation, such as cables

and badly assembled mateable connectors. In the medium term, the failure probability

decreases until it reaches a stable plateau, when the failures refer to connections, tubing

hangers, packers, and gauges, among others. In a late stage, the probability of failures in-

creases, with one of its main causes being short circuits at gauges or connections. Rahman

and colleagues (RAHMAN; ALLEN; BHAT, 2012) describe a complete failure mode and

effect analysis (FMEA) of the second generation ICVs, where the main causes of failures

are debris produced during the well completion2 phase, erosion, corrosion, and wear.

1The bathtub curve is a typical pattern of the failure probability densities of most equipment, represent-
ing high failure rates in early life, followed by a stability period before the rates rise rapidly in the wear-out
stage. Such patterns are explained in (NARESKY, 1970).

2Well completion is defined as a single operation involving the installation of production casing and
equipment to bring the well into production, including the perforation of the casing (IANNUZZI, 2011),
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In order to avoid or mitigate the impact of ICV failures, there are some good

practices to be adopted in the completion and operational phases. The first one to be

done before well completion is the removal of debris using junk baskets and magnets,

eliminating one of the main causes of failures according to (AL-RABEH; AL-NOAIMI;

BROWN, 2018). Another recommendation is to actuate the valves periodically since

ICVs malfunction if not actuated for a long time (AL-HAJRI et al., 2021). Last, the

good practices recommend opening all ICVs before closing any of them, eliminating the

possibility of all valves stuck at a closed position (AL-RABEH; AL-NOAIMI; BROWN,

2018), which would stop production completely.

which may cause some debris (AL-RABEH; AL-NOAIMI; BROWN, 2018).



21

3 RELATED WORK

The scarcity of data is not a new problem when it comes to PHM. In fact, as we

mentioned before, it is indeed an inherent feature of the machinery operation, since the

vast majority of data is produced when machines operate in a normal condition.

However, if our goal is to produce reliable failure data, reproducing real failure

patterns, we need either some amount of data or domain knowledge. In (ENO; THOMP-

SON, 2008) the authors propose an approach that inverts the mapping generated by the

application of data mining techniques to an original dataset. This approach is suitable for

cases in which some failure data is available. The application of such a strategy might

even detect some hidden patterns in data, not perceived previously by domain experts.

However, having data that reflects all the possible data states caused by equipment fail-

ures is not a likely scenario.

Thus, the expertise and knowledge gathered by specialists are essential to generate

appropriate data. Despite not being specifically related to machine failures, (VARGAS et

al., 2019) create a public dataset of undesirable events in oil and gas (O&G) production

context, with data from real measurements, but also from simulations and graphs designed

by specialists.

In (LEE; JO; HWANG, 2017), the authors use generative adversarial networks

(GAN) to generate augmented failure data from failure patterns described in literature,

inserted over normal condition data collected in bench tests. The disadvantage of this

approach may be the computational cost to generate realistic data and the specificity of

conditions: it covers only machines with degraded failures, failures that are gradual or

partial1 according to some output measurement, and, therefore, whose decay can be mea-

sured over time, or even fully monitored by online sensors (which is still not a likely

scenario for downhole equipment).

The work of (RAO, 2020) describes a digital twin based on the Simulink model

of a triplex pump2 with parameters calibrated with real measured data. Then, the authors

applied the machine operation knowledge and its failure modes3 to simulate those failures

based on how the simulation parameters change after that failure. Although it is a simple

and efficient approach, it relies on a model provided by a specific simulator that may not

1A failure that does not cease all function but compromises that function (CCPS, 2023).
2Triplex pump: a common type of pump in oil and gas industry used in both drilling and well service

operations.
3A failure mode is the effect by which a failure is observed (NARESKY, 1970).
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include equipment models or allow the simulation of all the failure modes of interest.

The work presented by (WANG et al., 2021) uses a digital twin to enhance the

failure prediction process for an autoclave by generating failure data and using it to train

neural network predictive models. In contrast with the approach we used, that work ap-

plied a digital twin composed of a 3D model of the focused equipment. It also used

finite element analysis to solve the differential equations to determine the temperature at

any point of the machine. Although it produces precise information about the simulated

physical quantity at any point inside the control volume, the method is computationally

expensive and provides a precision that may not be necessary in most cases.

Finally, the method requires some criteria to measure how close the synthetic data

are to the actual data it intends to emulate. A simple and efficient approach is to directly

compare the actual and the simulated data graphically and tune the parameters so the

synthetic data fit the curve of real data, as done in (RAO, 2020). However, the difficulty

of this method increases with the number of parameters to be set and outputs to fit. Wang

and colleagues (WANG et al., 2021) used the coefficient of determination (r-squared)

to compare the simulation output with the corresponding real measurement, given the

same input data. This method, though, is limited by the number of real measurements to

compare with the generated data.

The work of (DANKAR; IBRAHIM; ISMAIL, 2022) presents a large set of met-

rics to evaluate synthetic data, which includes univariate, bivariate, population, and appli-

cation fidelity metrics. In univariate fidelity metrics, like Hellinger distance, the distribu-

tion of real and synthetic variables is compared, ignoring the other variables. The bivari-

ate fidelity metric considers the relations between variables within the real and synthetic

datasets. In this work, the pairwise correlation distance (one metric we chose to evalu-

ate the synthetic data) shows if the relations between variables follow the same trends in

real and synthetic data. There are also the population fidelity metrics, which compare the

similarity of the entire real and synthetic datasets, and application fidelity score, which is

basically a machine-learning model trained with synthetic data that is tested on real data,

using the appropriate metric (also a metric we used in the evaluation of synthetic data

generated in this work).
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4 METHODOLOGY

Our work aims to generate synthetic failure data that captures the common be-

havior of an industrial asset over the years of operation. The synthetic data will help in

the training stage of a machine-learning algorithm intended to support the detection and

prognosis functions of PHM for a petroleum well during its lifetime.

The data generation methodology stands on two main pillars: understanding the

physical process, ruled by a set of physical laws that must be respected, and compre-

hending how the equipment involved in that process works, what are its expected behav-

iors, and what happens when it fails. To respect those pillars, we apply a computational

simulation to ensure the dependencies between variables and the correct behavior of the

equipment under the desired conditions.

The methodology proposed in this work may be summarized in three stages: a

simulation modeling stage, a failure insertion stage, and a validation stage. Figure 4.1

illustrates the inputs and outputs of the proposed stages. In the following, each of these

stages will be detailed.

Figure 4.1 – Methodology proposed for synthetic data generation.
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4.1 Simulation modeling

This stage aims to obtain a simulation model for reproducing the real system with

the necessary accuracy level. To do so, we propose the algorithm 1, with comments about

these steps in the following:

Algorithm 1: Simulation modeling algorithm
begin Simulation modeling stage

Data: PD = (X1, X2, ..., Xm, Y1, Y2, ..., Yn): Process data (e.g.,
timestamp, pressure, temperature, fluid parameters.);

Data: FD = (P1, P2, ..., Pi): Facility data (e.g., P&ID diagrams,
geometry and material parameters.);

Data: ϵ: Acceptance criteria;
Result: Smodel: Simulation model artifact; receives boundary conditions

and returns simulated outputs;
Smodel ←− BuildModel(FD);
BoundaryConditions←− (X1, X2, ..., Xm);
ProcessOutputs←− (Y1, Y2, ..., Xn);
SimulatedOutputs←− Smodel(BoundaryConditions);
δ ←− ∥ProcessOutputs− SimulatedOutputs∥;
while δ > ϵ do

FD ←− Update(FD);
Smodel ←− BuildModel(FD);
SimulatedOutputs←− Smodel(BoundaryConditions);

end
end

1. Data gathering: engineering documents and data about the system, like P&ID1

diagrams, machinery data books, and process data, for instance.

2. Definition of the simulator: there is a wide range of simulators available, using dif-

ferent simulation techniques, and suitable for different levels of abstraction. Many

simulators provide standard models for common industrial machines like pumps,

motors, and valves and make it possible to integrate several of these elements into

a system. The simulator must offer the possibility of automating the simulation

process.

3. Assembly of the simulation model: the engineering documents of the system and

the elements provided by the simulation tool may allow the building of a model

that represents the system.
1A piping and instrumentation diagram (P&ID) is an engineering drawing that describes a process plant

with the process equipment and pipes represented by conventional symbols without and no geographical
orientation (TOGHRAEI, 2019).
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4. Definition of the simulation parameters: constants of the system, required to re-

produce the asset’s characteristics, such as geometry, friction losses, and material

compositions. The engineering documents contain the information needed to cus-

tomize the standard elements provided by the simulator.

5. Definition of the simulation variables: the simulation process needs the specifica-

tion of boundary conditions2 and simulation outputs. Boundary conditions must

come from process data history to check if the simulation model behaves as ex-

pected.

6. Definition of the acceptance criteria: different levels of precision must be achieved

depending on the user’s requirements. However, it is important to keep in mind that

industrial processes have statistical variability and a narrow criterion may not be

adequate to evaluate the simulation model.

7. Simulation test: given several boundary conditions scenarios, the outputs must be

coherent with the process data available.

8. Evaluation of simulation model: the results of the previous step must be consistent

with the process data, within the margin defined by the acceptance criteria, before

advancing to the next stage. If not, it is necessary to check the simulation parameters

and the boundary conditions.

At the end of the application of those steps, an adequate simulation model to

generate the synthetic data must be built.

4.2 Failure insertion

The failure insertion stage begins when the simulation outputs are coherent with

the real measured process data from the real asset. The expected result is a dataset with a

failure or degrading process label to be used for PHM purposes. To accomplish that, the

simulation must be run not only with the system working in normal condition, but also in

failure or degrading conditions. This approach may be applied for both failure condition

and degrading process data generation, with the necessary adaptions. We propose the

algorithm 2 followed by comments about the process:

2Boundary conditions are constraints necessary for the solution of a boundary value problem. A bound-
ary value problem is a differential equation (or system of differential equations) to be solved in a domain
on whose boundary a set of conditions is known (SIMSCALE, 2023).
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Algorithm 2: Failure insertion algorithm
begin Failure insertion stage

Data: failure_index←→ f(PD,FD): failure definition as a relation
with process variables and facility data;

Result: Dsynth: Synthetic failure dataset with Nobs observations;
BCtrain, BCtest ←− TrainTestSplit(BoundaryConditions);
BCtrain ←− InsertNoise(BCtrain);
for Nobs times do

failure_index←− None
BCtrain ←− InsertNoise(BCtrain);
Smodel ←− BuildModel(FD, failure_index);
SimNormalOutputs←− Smodel(BCtrain);
BCtrain ←− InsertNoise(BCtrain);
FD ←− Update(FD, failure_index);
Smodel ←− BuildModel(FD);
SimFailureOutputs←− Smodel(BCtrain);
Dsynth ←− Append(Dsynth, BCtrain, SimNormalOutputs,

SimFailureOutputs, failure_index)
end

end

1. Definition of failure / degrading process: what is considered a failure or a degraded

process in the simulated system context. A common approach is to consider a

failure a condition where a system does not execute a required function and each

failure is related to a failure mode. In its turn, a degrading process is related to a

physical process called failure mechanism3. Failure modes insertion allows only

detecting failures while degrading process insertion allows also the construction of

predictive models.

2. Relation of failure / degrading process with simulation parameters: the implica-

tions of the failure modes or the failure mechanisms in the simulation parameters.

When inserting failure modes, it is acceptable to change only the machine response

(a valve not opening, for example). However, to reproduce a failure mechanism,

it is necessary to change the system’s physical properties (metal fatigue causing

cracking, for instance) with the consequent behavior change.

3. Attribution of a failure label / degradation measure: for failure detecting purposes

a binary label to indicate failure is enough, but a degrading process requires a quan-

tification scale.

4. Automate the simulation process to generate data, including the following steps:

3Physical or chemical process that results in failure (NARESKY, 1970).
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1. Set boundary conditions for baseline condition: the boundary conditions in-

serted into the simulator must be physically consistent with the real conditions.

2. Simulate baseline condition: serves as a reference to compare to the fault

condition / degraded mode. When inserting failure modes, the baseline must

be the normal condition; when inserting degrading processes, the baseline may

be a less degraded state.

3. Register inputs and outputs of the simulation: the dataset must include the

simulation parameters, boundary conditions, and outputs for the baseline sce-

nario.

4. Set boundary conditions for failure condition / degraded mode: using the same

boundary conditions as in the baseline simulation, but inserting a compati-

ble noise for the period typical for the simulated scenario. For example, if a

degrading process evolves from a normal condition within one month, then

compatible randomness must be inserted to represent the possible variability

of conditions in such a period.

5. Insert failure / degraded mode: if inserting a failure mode, it must be a ran-

dom binary variable (failure or normal), so it makes it possible to compare

normal and failure states under similar variability conditions; when inserting

a degraded mode, it must be a degradation measure. The step requires the

change of the corresponding parameters in the simulator before running the

simulation.

6. Simulate possible failure condition / degrading process: simulates a possible

scenario taking into consideration the randomness of the process and a possi-

ble failure or degrading process.

7. Register the inputs and outputs of the simulation: the same variables and pa-

rameters registered in the baseline simulation, for comparison purposes, as

well as the failure label or degradation measure.

At the end of the execution of these steps, a synthetic failure dataset will be pro-

duced.
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4.3 Synthetic Data Validation

Once the failure insertion stage is complete and produces a synthetic dataset, it

is time to validate the generated data and all the assumed premises of emulating failures

inside the simulated system. The assessment of the synthetic data is based on the metrics

detailed in the work of (DANKAR; IBRAHIM; ISMAIL, 2022). We propose the algoritm

3 followed by explanatory comments:

Algorithm 3: Synthetic data validation algorithm
begin Validation stage

Data: label: failure label related to BCtest;
Data: Req: performance requirements for the machine learning models;
Result: MLmodel: machine learning model for PHM trained on synthetic

data;
MLmodel ←− Train(Dsynth);
Dtest ←− (BCtest, failure_label);
pred←−MLmodel(Dtest);
metrics←− EvaluateMetrics(pred, label);
if metrics > Req then

keep the machine learning models
else

go back to failure insertion stage and check premises;
rebuild the synthetic dataset;
optimize machine learning models;

end
end

1. Train machine learning models with the synthetic data: serves as a base for testing

the quality of generated dataset with its ultimate purpose of training PHM models.

Classification algorithms are used for failure detection and regression algorithms

for failure prediction.

2. Test the trained models on real labeled data: comparison between the models’

prediction and the real output for the same real input data. It is important to remark

that the data used in this step must not be the same data used to extract the boundary

conditions to produce the synthetic data described in section 4.2.

3. Evaluate the application fidelity metrics: the performance of the trained models

when applied to real data. For failure detection models, the global accuracy4 may

not be sufficient to validate the produced data due to the imbalanced characteris-
4Accuracy is one of the most used metrics to evaluate a classification model, and is defined as the ratio

of the number of correct predictions and the number of total predictions (THARWAT, 2020).
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tic of failure data, so the F1-score5 for the failure class should be also taken into

consideration.

4. Evaluate other metrics: population, bivariate, and attribute metrics compare the

synthetic and real datasets enabling adjustments in the process of data generation.

Once the results of application fidelity metrics are considered adequate for the

needs of the application, the synthetic data may also be considered suitable for training

PHM models.

5F1-score is a classification metric that is defined by the harmonic mean of precision (proportion of pos-
itive samples that were correctly classified to the total number of positive predicted) and recall (proportion
of positive correctly classified to the total number of positive samples) (THARWAT, 2020).
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5 EXPERIMENT DESCRIPTION AND RESULTS

This section describes the experiment execution and results obtained in the same

order described in chapter 4. Our repository (BDI-UFRGS, 2023) contains the simulation

model, scripts, notebooks, and datasets produced for repeatability purposes.

5.1 Simulation modeling

The experiment started gathering data and information about the system to be

modeled. The selected asset for our project for the study was a petroleum smart well

in production mode1 with two ICVs. Process data, operational records, equipment data

books, and P&ID diagrams were used to model the process in the simulation environment.

The data used in this experiment were provided by Libra Consortium, our partner in

Petwin Project2, and were collected from a smart petroleum well located 160 km offshore

Rio de Janeiro, Brazil.

The process data were collected by a Plant Information Management System

(PIMS), which collects and integrates data from different sources in an industrial plant

(KRAFT, 2008). Among the sources used by the PIMS system, pressures and temper-

atures measured by P/T gauges are of special interest, since these measures allow the

calculation of other physical quantities along the system using the laws of fluid dynamics.

Pressures and temperatures used in this work were sampled in the PIMS system every 15

seconds for 598 days. However, because of unsynchronized timestamps, we have flat-

tened the timestamps of these data in windows of 30 seconds, so that different measures

could be considered synchronized if they were at the same time window, resulting in a

dataset with 569003 samples (rows) and 10 features (columns) containing a timestamp

and 9 pressure and temperature measures along the fluid’s path.

The dataset with process data has been finally combined by date with the infor-

mation provided in operational reports containing ICVs actuation tests history, which

contained labels for normal and failed ICVs actuation tests.

1Petroleum wells can also operate in injection mode, injecting water or gas into the reservoir.
2For more information, please visit petwin.org.

https://petwin.org
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Figure 5.1 shows the schematic diagram of the modeled system with the measured

variables location, table 5.1 shows the metadata of the measured data without any aggre-

gation. Figure 5.2 shows the distribution of null values3 in the measured dataset as blank

spaces in the variable’s columns.

Figure 5.1 – Schematic diagram of the modeled system with the location of each measured
variable.

3There are different reasons why time series data could possibly be missing when retrieved from a
PIMS system. One of the possibilities is that the data were omitted during a period of time due to negligible
variance, as a data compression strategy to save storage space. In such a case, the information of that period
could be reconstructed with a minimum information loss. That situation differs from others which cause
significative information loss, such as sensor failures. It is important to assure if that decompression process
could be applied before defining any data imputation strategy.
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Table 5.1 – Metadata of the measured data without any aggregation.
Column Description Non-Null Count
timestamp Unsynchronized timestamps. 569003 non-null
FPSO_choke Choke valve position (%) 569003 non-null
WELL01_ICV_BottomDP Bottom ICV annular pressure (kgf/cm²) 91563 non-null
WELL01_ICV_TopDP Top ICV annular pressure (kgf/cm²) 100270 non-null
WELL01_MA2_T Bottom ICV annular temperature (ºC) 106119 non-null
WELL01_MA4_P Tubing downhole pressure (kgf/cm²) 568577 non-null
WELL01_MA4_T Tubing downhole temperature (ºC) 98564 non-null
WELL01_MA_36 Wellhead temperature (ºC) 328529 non-null
WELL01_MA_37 Wellhead pressure (kgf/cm²) 199141 non-null

WELL01_TubingDP
Downhole pressure difference between
the annular and the tubing (kgf/cm²). 113496 non-null

Figure 5.2 – Diagram of missing values distribution in raw measured dataset (non-null values are
represented as black horizontal lines and missing data are blank spaces in the columns, while the

line graph at the right shows the number of non-null values per row).
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ICVs actuation tests were done on 235 different days, containing 23 failure days

and 212 days with normal behavior. However, the available operational reports contain the

date of the tests, but not the exact moment when the valves’ actuation occurred. Therefore,

the time resolution of labels is 1 day, in contrast to the resolution of 30 seconds of the

process dataset described earlier. To achieve an appropriate choice of process data to

merge with the ICVs actuation tests history, we have proceeded to an aggregation of

process data in hourly and daily means. For each variable of the process dataset, we

have registered the daily means, the first and last hour mean for each day, as well as the

hourly standard deviations. This period of 235 days combined with the corresponding

process data has been set apart as a test dataset for the validation stage detailed in section

5.3, while the data of the remaining 363-day period served as the base for the boundary

conditions for the simulations executed in section 5.2. Table 5.2 shows the Metadata of the

measured data aggregated on a daily basis with means and standard deviations combined

with the operational report data, and figure 5.3 shows the distribution of null values4 in

this combined dataset. Appendix B shows an exploratory data analysis of the data used

as boundary conditions for the simulations.

4The variables WELL01_ICV_BottomDP, WELL01_ICV_TopDP and WELL01_TubingDP have been
discarded due to the number of missing values in the first 235 days that served as test data, which was
intended to remain with as little manipulation as possible. All the remaining measured data had no missing
value in the same period. We have adopted a data imputation with the mode of each measured variable for
the latter 363-day period, which had no significant influence in the final achieved result. Nevertheless, the
proposed methodology establishes checkpoints to analyze and review assumptions like this in the case of
unsatisfactory results.
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Table 5.2 – Metadata of the measured data aggregated on a daily basis with means and standard
deviations combined with the operational report data.

Column Description Non-Null Count

timestamp
Timestamps aggregated with
1-day resolution 600 non-null

(mean, FPSO_choke)
Daily mean of choke valve
position (%) 596 non-null

(std, FPSO_choke)
Daily std deviation of choke
valve position (%) 594 non-null

(mean, WELL01_ICV_BottomDP)
Daily mean of bottom ICV
annular pressure (kgf/cm²) 199 non-null

(std, WELL01_ICV_BottomDP)
Daily std deviation of bottom
ICV annular pressure (kgf/cm²) 134 non-null

(mean, WELL01_ICV_TopDP)
Daily mean of bottom ICV
annular pressure (kgf/cm²) 221 non-null

(std, WELL01_ICV_TopDP)
Daily std deviation of bottom
ICV annular pressure (kgf/cm²) 157 non-null

(mean, WELL01_MA2_T)
Daily mean of bottom
ICV annular pressure (kgf/cm²) 445 non-null

(std, WELL01_MA2_T)
Daily std deviation of bottom
ICV annular pressure (kgf/cm²) 374 non-null

(mean, WELL01_MA4_P)
Daily mean of tubing downhole
pressure (kgf/cm²) 596 non-null

(std, WELL01_MA4_P)
Daily std deviation of tubing
downhole pressure (kgf/cm²) 593 non-null

(mean, WELL01_MA4_T)
Daily mean of tubing downhole
temperature (ºC) 490 non-null

(std, WELL01_MA4_T)
Daily std deviation of tubing
downhole pressure (kgf/cm²) 421 non-null

(mean, WELL01_MA_36)
Daily mean of wellhead
temperature (ºC) 528 non-null

(std, WELL01_MA_36)
Daily std deviation of wellhead
temperature (ºC) 433 non-null

(mean, WELL01_MA_37)
Daily mean of wellhead
pressure (kgf/cm²) 503 non-null

(std, WELL01_MA_37)
Daily std deviation of wellhead
pressure (kgf/cm²) 406 non-null

(mean, WELL01_TubingDP)
Daily mean of downhole
pressure difference between annular
and tubing (kgf/cm²)

241 non-null

(std, WELL01_TubingDP)
Daily std deviation of downhole
pressuredifference between annular
and tubing (kgf/cm²)

182 non-null

Tipo de Acionamento Type of valve actuation 65 non-null
Status Status of actuation 55 non-null
Tipo de Falha Type of failure 42 non-null
Fase Stage of the field implementation 65 non-null
Top_ICV_Status_Ant Status of top ICV before actuation 65 non-null
Top_ICV_Status_Pos Status of top ICV after actuation 65 non-null
Bottom_ICV_Status_Ant Status of bottom ICV before actuation 65 non-null
Bottom_ICV_Status_Pos Status of bottom ICV after actuation 65 non-null
Pressurizações Pressurization cycle 65 non-null
Observações Notes 65 non-null
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Figure 5.3 – Diagram of missing values distribution in the combined dataset with measured data
aggregated with 1-day resolution and operational report data (non-null values are represented as
black horizontal lines and missing data are blank spaces in the columns, while the line graph at

the right shows the number of non-null values per row).

In our experiment, we used Flownex® Simulation Environment5, in which the

system can be represented by a P&ID diagram. The simulation model has been adjusted

to the real data so that the simulation outputs are compatible with real observations, given

the same inputs (boundary conditions).

Using such a high-level simulation tool enables the modeling of large systems

without concern about describing the details of the system geometry. The simulation

parameters reflect all these details in the model components, such as tubes, valves, and

heat exchangers. Since ICVs are not included in the simulator’s default equipment model

database, we have modeled each ICV as a set of two valves as shown in figure 5.4, one

of them controlling the influx of fluid from the reservoir to the tubing that carries it to the

surface. At the same time, the other one enables the isolation or restriction of flux from

upstream production zones inside the tubing, as shown in figure 2.2. Figure 5.5 shows the

smart well modeled in the simulator. Tables C.1, C.2, C.3, C.4, and C.5 in appendix C

show the main parameters used for each simulation modeling element.

When the simulation model outputs were adequate, we started the synthetic data

generation, advancing to the second stage, the failure insertion stage. The simulation

5Flownex® Simulation Environment is a one-dimensional simulator that allows for computational fluid
dynamic simulations of complete industrial systems, for both steady-state or transient cases. For more
details: https://flownex.com/

https://flownex.com/
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model produced is available in our repository (BDI-UFRGS, 2023).

Figure 5.4 – Modeling of ICVs in a 1-D simulator.
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5.2 Failure insertion

In the failure insertion stage, we have inserted failure modes for PHM failure de-

tection models. We have inserted the failures by emulating an abnormal behavior (a fail-

ure mode) in one of the two ICVs. An automation script has executed the whole process,

interacting with the simulator, changing the simulation parameters, running the steday-

state simulations, collecting the results and registering them in the synthetic dataset. The

script randomly decides the action of any of the ICVs, as well as the ocurrence of a fail-

ure on that action. This random choice determines the label (failure or normal) of each

observation of the synthetic dataset.

The failure definitions adopted for the ICVs were: valves do not respond to the

command at all, incomplete actions for both opening or closing, and spurious action when

the valves are not required to act. The action may occur or not (50% chance for each

possibility), and for each case, a failure may occur or not (also 50% chance for each

possibility).

We have modeled these cases in the simulation with a parameter that describes

the valve opening. That parameter is called "valve-lift" and varies from 0 for the valve
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Figure 5.5 – Modeling of a smart well system in a 1-D simulator.
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completely shut to 1 for the valve completely open. Even though ICVs can be set as

partially open, in this experiment we considered that an opening actuation changes the

"valve-lift" parameter from 0 to 1, and analogously, a closing actuation changes the same

parameter from 1 to 0. An incomplete (failed) actuation may have a "valve-lift" between

0.3 and 0.7. Both the statistical distribution of failure modes and the valves’ behaviors

during the failures are assumptions subject to change according to the results obtained in

the next stage.

The steady-state simulation has run twice for each observation created: a baseline

simulation in normal condition and a second simulation with a possible inserted failure.

The script simulates the baseline steady-state scenario with a set of boundary conditions

based on a tuple composed by the corresponding variables at the same instant, chosen

randomly from the real data, and then the results are registered. Then the script simulates a

second steady-state scenario, with a compatible noise inserted in the boundary conditions.

At this point, the script determines the valves’ actions and failures at random, avoiding

the situation in which both valves may stuck at a closed position, causing a complete

production stop as described by (AL-RABEH; AL-NOAIMI; BROWN, 2018). At the end

of each this cycle, the script selects another tuple of boundary conditions and repeats the

process 10,000 times. All the generated data have been registered in a dataset, available

in the project’s repository (BDI-UFRGS, 2023).

Our data repository contains the data generated in this stage for download (BDI-

UFRGS, 2023). Table 5.3 describes the dataset metadata.
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Table 5.3 – Metadata of the synthetic failure dataset generated.
Column Description Non-Null Count Dtype

P_Z0_before
Pressure on the production zone 0,
upstream bottom ICV before any valve action. 10000 non-null float64

P_Z0_after
Pressure on the production zone 0,
upstream bottom ICV after any valve action. 10000 non-null float64

P_Z1_before
Pressure on the production zone 1,
upstream top ICV before any valve action. 10000 non-null float64

P_Z1_after
Pressure on the production zone 1,
upstream top ICV after any valve action. 10000 non-null float64

P_WH_before Pressure on the wellhead before any valve action. 10000 non-null float64
P_WH_after Pressure on the well after any valve action. 10000 non-null float64

T_Z0_before
Temperature on the production zone 0,
upstream bottom ICV before any valve action. 10000 non-null float64

T_Z0_after
Temperature on the production zone 0,
upstream bottom ICV after any valve action. 10000 non-null float64

T_Z1_before
Temperature on the production zone 1,
upstream top ICV before any valve action. 10000 non-null float64

T_Z1_after
Temperature on the production zone 1,
upstream top ICV after any valve action. 10000 non-null float64

top_icv_status_before
Status of top ICV (open or closed),
before any valve action
True for open, False for closed.

10000 non-null bool

top_icv_status_after
Status of top ICV (open or close),
after any valve action
True for open, False for closed.

10000 non-null bool

bottom_icv_status_before
Status of bottom ICV (open or close),
before any valve action
True for open, False for closed.

10000 non-null bool

bottom_icv_status_after
Status of bottom ICV (open or close),
after any valve action
True for open, False for closed.

10000 non-null bool

P_bottom_before
Pressure on the bottom of the tubing.
before any valve action
(Output of the simulation).

10000 non-null float64

P_bottom_after
Pressure on the bottom of the tubing.
after any valve action
(Output of the simulation).

10000 non-null float64

T_WH_before
Temperature on wellhead before any valve action
(Output of the simulation). 10000 non-null float64

T_WH_after
Temperature on wellhead after any valve action
(Output of the simulation). 10000 non-null float64

command_type
Type of action simulated, with 5 possible values:
Open/Close Top or Bottom ICV or no-action. 10000 non-null object

failure
Indicates if a failure
has occurred (True) or not (False). 10000 non-null bool
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5.3 Synthetic Data Validation

The main objective of this stage is to verify the suitability of the synthetic dataset

for constructing data-driven PHM models. To achieve this goal, we have used application

fidelity metrics and bivariate metrics. Application fidelity metrics use machine learning

models trained with synthetic data to classify failure events based on real data. Bivariate

fidelity metrics compare the synthetic and real data directly, evaluating how alike the

relations between variables are in both datasets.

To assess the application fidelity metrics, we have trained nine machine learn-

ing classification algorithms with the data described in table 5.3: Logistic Regression,

Decision Tree, Random Forest, KNN, Naive-Bayes, SVC, Adaboost, XGBoost RF, and

Multi-layer perceptron. For machine learning modeling we have used the library scikit-

learn6. The target variable was the failure label, and the models trained on synthetic data

should detect if a failure happened in a real dataset. We have also included a dummy

model that classifies all the test samples as the most common class (normal). Appendix E

contains details about the machine learning modeling process.

The dataset used for testing the models is completely disjoint with the dataset

used to extract boundary conditions in the description of section 5.2. The test dataset had

to be adequated to the same data structure shown in table 5.3 so that we could generate

predictions with the models fed with real data.

We have chosen the global accuracy and also and the F1-score for both failure

and normal class as the application fidelity metrics. The pursued goal was to evaluate

if the models trained with synthetic data could perform well in detecting failures in both

cases. Applying this metric, we verified how well the synthetic data transcripts the desired

failure pattern to the point of being detectable by machine learning. Table 5.4 presents the

test metrics, while tables 5.5 to 5.14 show the confusion matrices7 of the tested models.

Complete test reports are presented in appendix E.

However, as the application fidelity metrics do not provide any clue about what

could be improved in the data generation process, we have chosen a bivariate metric to

evaluate if the synthetic dataset respects the relations between the variables of the real

dataset. So, we applied the pairwise correlation difference (PCD), a bivariate fidelity met-

6More information about the implementation of the chosen algorithms is available in the Scikit-learn
library documentation (SCIKIT-LEARN, 2022).

7A confusion matrix in a two-class classification problem is a 2 x 2 matrix that shows the counting
the four possible outputs of a 2-class classification model (true positive, false positive, true negative, false
negative) (THARWAT, 2020)
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ric, in its more intuitive form described in (DANKAR; IBRAHIM; ISMAIL, 2022) as the

difference between the correlation matrices of the real and the synthetic dataset. As each

pair of correlations may vary from -1 to 1, the difference of correlations for each pair of

variables will lay in the range from -2 to +2. Ideally, the smaller the absolute value of

each PCD element, the better, which means that the synthetic data represents well the re-

lationship of that pair of variables. Analogously, greater values of PCD elements indicate

that the model requires an adjustment at that exact point. The intention in applying such

a technique was to capture the relationship among the data variables. The simple analysis

of excursion range occupation for each variable may not be enough to describe the system

correctly. It is important to highlight that physical quantities in real systems frequently

cannot be considered independent, since they tie to physical laws that must be respected,

e.g., the pressures and temperatures in different points of an oil field. Figure 5.6 shows

the pairwise correlation difference between the synthetic and the real dataset heatmap as a

bivariate fidelity metric. Appendix D contains univariate comparisons between synthetic

and corresponding real data.
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ML Classification
Algorithm

Global
accuracy

F1-score
(macro avg)

F1-score
(weighted avg)

F1-score
(failure)

F1-score
(normal)

Precision
(failure)

Precision
(normal)

Recall
(failure)

Recall
(normal)

Support
(failure)

Support
(normal)

Dummy 0.902 0.474 0.856 0.000 0.949 0.000 0.902 0.000 1.000 23 212
Logistic Regression 0.902 0.474 0.856 0.000 0.949 0.000 0.902 0.000 1.000 23 212
Decision Tree 0.940 0.849 0.943 0.731 0.967 0.655 0.981 0.826 0.953 23 212
Random Forest 0.940 0.843 0.943 0.720 0.967 0.667 0.976 0.783 0.958 23 212
KNN 0.102 0.096 0.034 0.173 0.019 0.095 0.667 0.957 0.009 23 212
Naive-Bayes 0.902 0.474 0.856 0.000 0.949 0.000 0.902 0.000 1.000 23 212
SVC 0.902 0.474 0.856 0.000 0.949 0.000 0.902 0.000 1.000 23 212
Adaboost 0.953 0.890 0.957 0.807 0.973 0.676 1.000 1.000 0.948 23 212
XGBoost RF 0.953 0.890 0.957 0.807 0.973 0.676 1.000 1.000 0.948 23 212
Multi-layer perceptron 0.183 0.176 0.236 0.103 0.250 0.058 0.727 0.478 0.151 23 212
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Table 5.5 – Confusion matrix of the Dummy model trained on synthetic data and tested on real
data.

Predicted label
Failure Normal Total

True label
Failure 0 23 23
Normal 0 212 212

Total 0 235 235

Table 5.6 – Confusion matrix of the Logistic Regression model trained on synthetic data and
tested on real data.

Predicted label
Failure Normal Total

True label
Failure 0 23 23
Normal 0 212 212

Total 0 235 235

Table 5.7 – Confusion matrix of the Decision Tree model trained on synthetic data and tested on
real data.

Predicted label
Failure Normal Total

True label
Failure 19 4 23
Normal 10 202 212

Total 29 206 235
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Table 5.8 – Confusion matrix of the Random Forest model trained on synthetic data and tested on
real data.

Predicted label
Failure Normal Total

True label
Failure 18 5 23
Normal 9 202 212

Total 27 208 235

Table 5.9 – Confusion matrix of the KNN model trained on synthetic data and tested on real data.
Predicted label

Failure Normal Total

True label
Failure 22 1 23
Normal 210 2 212

Total 232 3 235

Table 5.10 – Confusion matrix of the Naive-Bayes model trained on synthetic data and tested on
real data.

Predicted label
Failure Normal Total

True label
Failure 0 23 23
Normal 0 212 212

Total 0 235 235

Table 5.11 – Confusion matrix of the SVC model trained on synthetic data and tested on real data.
Predicted label

Failure Normal Total

True label
Failure 0 23 23
Normal 0 212 212

Total 0 235 235

Table 5.12 – Confusion matrix of the Adaboost model trained on synthetic data and tested on real
data.

Predicted label
Failure Normal Total

True label
Failure 23 0 23
Normal 11 201 212

Total 34 201 235

Table 5.13 – Confusion matrix of the XGBoost Random Forest model trained on synthetic data
and tested on real data.

Predicted label
Failure Normal Total

True label
Failure 23 0 23
Normal 11 201 212

Total 34 201 235
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Table 5.14 – Confusion matrix of the Multi-layer Perceptron model trained on synthetic data and
tested on real data.

Predicted label
Failure Normal Total

True label
Failure 11 12 23
Normal 180 32 212

Total 191 44 235



46Figure 5.6 – Pairwise correlation difference between the synthetic and the real dataset heatmap.
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6 DISCUSSION

The metadata about the synthetic data in table 5.3 show, at first inspection, what

is expected from a synthetic dataset: no missing values, clean data, and variable types

specifically designed for machine learning modeling. Since the data types of synthetic

data match the data types of real data, there is not any noticeable difference between them

at that stage of the experiment. A thorough comparison between real and synthetic data

was not convenient at this point since it would not overcome the need for application

fidelity metrics with real labeled data. The validation stage runs a deeper comparison

between real and synthetic data by including a bivariate metric.

The application fidelity metrics give the final definition of the suitability of the

generated data for producing data-driven failure-detecting models. Table 5.4 displays

metrics of machine learning modeling of nine classification algorithms fitted on the syn-

thetic dataset and tested on a real dataset containing 23 ICV action failures registered in

235 days. The first important observation about the metrics in table 5.4 is not analyzing

the global accuracy by itself, as more than 90% of the observations in the test dataset refer

to the normal class, a typical scarcity scenario of failure data. Because of this scenario,

even a Dummy classifier that attributed the normal condition to the inputs had an accuracy

score greater than 90%. So, the F1-score of the failure class is a better indicator of how

well the synthetic data replicate the real data patterns. It is important to notice that the

definition of what is a failure in terms of the equipment’s behavior is crucial for the quality

of synthetic failure data. In this work, we have taken into account not only no-response

failure modes but also half-open valves as failures, which represented 95% of the failures

in the synthetic dataset. This definition differs from that used in (LANGLI et al., 2001)

and (JOUBRAN, 2018), whose failure definitions were more strict. We considered that a

wider failure definition could represent an anomaly in the process that a machine learning

model can detect if the failure definition of the synthetic dataset was close enough to the

observed in the real data. The results in table 5.4 confirm the hypothesis that at least four

algorithms can recognize the failure pattern in real data based on the training on synthetic

data with an F1-score metric for failure status greater than 0.7. The confusion matrices

of tables 5.7, 5.8, 5.12, and 5.13 also confirm this interpretation. An eventual poor per-

formance of all models fitted to the synthetic data may indicate that the synthetic data did

not correctly represent the failure modes.

We can infer from tables 5.4, 5.12, and 5.13 that Adaboost and XGBoost Random
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Forest classifiers were the algorithms that have best captured the failure pattern in syn-

thetic data. Both identified correctly 23 out of 34 failure events, while classified all 201

normal situations correctly. The algorithms had no mistakes assigning a normal condition

label to a failure condition event, which we believe is the most expensive type of error

of a failure detection model. The 11 misclassified events were the same for both algo-

rithms, which brings us an important clue to be further examined. These events may carry

a similar failure pattern that was not correctly described in the failure insertion stage. An

ideal scenario would be to have more real data to avoid the risk of overfitting the synthetic

dataset to a small amount of real data.

Additionally, section 5.3 details a comparison between synthetic and real data

using the pairwise correlation difference technique. The analysis of the results for this

metric brings insights to enhance the failure insertion process. Figure 5.6 shows a heatmap

where the darker colors mean higher differences in correlations for that pair of variables.

The map spots pairs of variables whose relationships are not coherent, and it possibly

would improve by adjusting the adopted premises for the data generation.

If we highlight the simulation outputs variables from figure 5.6, the result will

be the map showed in figure 6.1, from where we can spot the greater correlation differ-

ences between correlations of inputs and outputs of the simulations. That may indicate

which pairs of variables should be investigated to improve the simulation model, possibly

leading us to adjust specific simulation parameters that model the physical relationship

between those variables, if needed to improve the synthetic dataset.

On the other hand, highlighting the simulation inputs from figure 5.6 results in

the map showed in figure 6.2, which shows us several improvement opportunities. Some

of them are autocorrelation differences, i.e., differences between the correlations of the

variable itself in different times. However, the majority of high difference spots lay in

the zones that relate boundary conditions. All of those difference spots led us to identify

an inaccurate premise that may have affected those relationships. The premise was that

those variables are independent, but what happens in the real world is that this premise

is not true. The boundary conditions in the physical world cannot vary freely like it was

assumed in the experiment, because the physical quantities in a petroleum reservoir are

tied together by physical laws. The addition of noise between the two instants when the

simulations were run is probably the cause of the autocorrelation differences, indicating

that the boundary conditions are time-related, i.e., they cannot vary freely from the pre-

vious value, as assumed in the experiment. In this case, this was not critical to affect the
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machine-learning performance of some models because of well-behaved noise inserted

in the boundary conditions. However, it remains an opportunity for enhancement if it

requires better algorithm performance in this scenario.

The exploration of improvement opportunities may continue as long as necessary

for the application of synthetic data. In appendix D we have performed an exploratory

data analysis of the synthetic dataset compared with its corresponding real measured data,

which may serve as a guide of what is necessary to change in the data generation process.

In the end, the performance obtained in the metrics for assessing the synthetic data

will be as good as the applied knowledge in the process modeling, with that knowledge

possibly coming from data or domain area experts. A possible drawback of reverse engi-

neering the real failure data too closely is the possible overfitting of the machine learning

models to the available data. We can avoid this with a larger set of real data to moni-

tor the fitting process. Without enough data to model the desired process, the approach

would rely only upon theoretical or empirical knowledge. The produced data will not be

so reliable, but still better than having no data.



50Figure 6.1 – Pressure and temperature simulation improvement opportunities (highlighted in black and red, respectively) from the PCD matrix of figure 5.6.
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Figure 6.2 – Autocorrelation and boundary conditions relations improvement opportunities (highlighted in black and red, respectively) from the PCD matrix of
figure 5.6.
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7 CONCLUSIONS AND FUTURE WORK

In this work, we presented a methodology for generating synthetic failure data

that can be used for data-driven PHM models validated with an experiment based on real

data of a petroleum production smart well. We defined a three-stage process to generate

synthetic failure data. The first step is the simulation modeling stage, where a compu-

tational fluid dynamics simulator models the process in normal conditions. The method

proceeds with a failure insertion stage, where we represent the desired failure modes

based on the previous-stage simulation model. The simulation emulates the failure data

by modifying the behavior of the equipment that composes the system in the simulation.

The last step is the validation stage, in which we assess the synthetic produced data using

two approaches. One approach considers the application fidelity, the capacity of training

machine-learning models that captures the patterns of the failures in real data, while the

other applies a bivariate technique that evaluates the pairwise relations between variables

in synthetic and real datasets. In the experiment, we have produced a contribution of a

dataset of 10,000 observations available in a public repository, along with the source code

of the entire project. We aim that further experiments may use the data for comparison.

Our approach has limitations concerning the generalization of the method for a

generic PHM case. The correspondence between the information gathered in the engi-

neering documents and the parameters to build the simulation model has to be made by a

specialist, since the documents do not contain all the simulation parameters needed and

some inference is usually necessary. Still regarding the generalization of the method, the

precise specification of all the necessary engineering information to create a simulation

model of a facility allows for the independence of any simulation software. In this mo-

ment, the choice of a commercial simulator speeded up the first development. On the

other hand, it has limited the customization of the equipment models and, therefore, the

possibility of simulating the desired phenomena not covered by the simulator.

Another limitation of the work lies in the assumption of independence between

the physical quantities that served as boundary conditions in the simulations. That simpli-

fying hypothesis works well with well-behaved noise conditions but certainly not for the

general case, possibly leading to a valid mathematical solution that makes no sense in the

real world. For that reason, work is still necessary in the description of the relationships

between the variables not handled by the simulator.

It is also important to remark that this work used a simplified simulation model that
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do not reflect all the possibilities offered by the latest-generation ICVs used in the facility

of the use-case. One of these simplifications concerns the valve’s opening movement

being done in just one step, while the real ICVs of the facility do it in 10 steps. The

modeling of such a complex movement would require, therefore, the generation of time-

series data encompassing the simulation of transient states between each step.

Also, as the focus of this work is not machine learning, but rather using machine

learning to determine if the real data patterns are correctly replicated in synthetic data,

the machine learning models are not optimized. Although the proposed goal for this work

has been acomplished, we still consider the machine learning solution for generating data-

driven PHM models as a limitation.

Future work in this research should address problems in two main areas: simula-

tion techniques and machine learning. Regarding the simulation process, the main issues

are the correct specification of engineering parameters (and the consequent independence

of any specific simulator) and the automation of the simulation modeling process. There

is plenty of research opportunities in the semantic and interoperability of system’s engi-

neering data. It is also possible to apply artificial intelligence to automatically test and

learn about the influence of different simulation parameters in synthetic data. The so-

lution to these problems would scale up the capacity of twinning different systems and

would bring flexibility in generating data at a lower level, modeling the physical phenom-

ena that cause the failures, and not only observing its consequences in the process data.

And this would also enable the generation of time series of degraded failures process and

time-evolving actions of the machines and their transient reflections, allowing the pre-

diction of the remaining useful life (RUL). Regarding the machine learning issues, there

is a wide universe of algorithms to be tested, hyperparameter optimizations, and cross-

validation, not to mention the application of time series prediction techniques. In the case

of having some more real labeled data, there is a research opportunity in the assessment

of the results of models trained with a mix of real and synthetic data compared to models

trained with purely real or synthetic data. This way, we could assess the real gain of using

synthetic data for data-driven PHM models.
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APPENDIX A — RESUMO EXPANDIDO

Prognostics and Health Management (PHM) é uma disciplina de engenharia cujo prin-

cipal objetivo é fornecer uma visão integrada do estado de saúde de uma máquina ou

de um sistema geral. A base do PHM tem suas raízes nos conceitos de engenharia

de manutenção, como manutenção preventiva, manutenção centrada na confiabilidade e

manutenção baseada em condição (LEE et al., 2014). Para atingir tal objetivo, o PHM

utiliza sensores para monitorar o sistema de interesse e então aplica diferentes algoritmos

para avaliar a condição do ativo. Desta forma, os sistemas PHM dão suporte a decisões

técnicas para melhorar a rentabilidade do ativo.

No contexto da Indústria 4.0, o PHM é um dos principais serviços para aumentar a

confiabilidade e a produtividade dos ativos industriais, permitindo detecção, diagnóstico,

avaliação e previsão (JIA et al., 2018), melhorando a confiabilidade e reduzindo o tempo

de inatividade do ativo. O PHM é baseado em conceitos e técnicas usadas na manutenção

preditiva1, que já é usada para apoiar decisões de gerenciamento de ativos industriais há

décadas. Uma abordagem moderna baseada em dados de PHM pode se beneficiar da

modelagem de aprendizado de máquina (LUO et al., 2020), permitindo a modelagem de

sistemas mais complexos usando não apenas modelos teóricos e dados de equipamen-

tos, mas também dados de processos complexos. O problema é que essa abordagem

requer uma grande quantidade de dados de falha que geralmente não estão disponíveis. A

raridade de dados de falha é um grande desafio na área de PHM atualmente (MAUTHE;

HAGMEYER; ZEILER, 2021). Esse é uma característica inerente aos dados de saúde das

máquinas, principalmente porque as máquinas geram dados de estado normal na absoluta

maioria do tempo.

Em relação a esse problema, o conceito de gêmeo digital, implementado no con-

texto da Indústria 4.0, pode oferecer uma solução viável. Intuitivamente, um gêmeo digi-

tal é um sistema composto por um ativo físico e sua réplica digital (entidade virtual) que

podem interagir entre si. (TAO; ZHANG, 2017) afirma que um gêmeo digital completo

deve abranger cinco dimensões: uma parte física, uma parte virtual, conexão, dados e

serviço. Para fins de PHM, um gêmeo digital deve usar várias fontes de dados: sensores

em tempo real, histórico de manutenção, planos de manutenção, análise de falhas, man-

uais do fabricante da máquina e modelos de simulação. Dessa forma, os gêmeos digitais

permitem a criação de vários se cenários em seu mundo virtual para suportar a otimização

1De acordo com (MOBLEY, 2002), a manutenção preditiva é uma manutenção preventiva orientada por
condição.
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operacional do ativo do mundo real.

Com base nesse princípio dos gêmeos digitais, este trabalho propõe uma solução

para a falta de dados de falha de equipamentos, cujas principais contribuições são:

• Uma metodologia geral para geração de dados sintéticos de falha;

• Descrição do experimento aplicando a metodologia proposta;

• Um conjunto de dados de falha sintético produzido no experimento descrito, vali-

dado usando dados reais.

A metodologia de geração de dados se baseia em dois pilares principais: com-

preender o processo físico, regido por um conjunto de leis físicas que devem ser re-

speitadas, e compreender como funcionam os equipamentos envolvidos nesse processo,

quais os seus comportamentos esperados e o que acontece quando falha . Para garantir

o respeito a esses pilares, foi utilizada na metodologia simulação computacional fluido-

dinâmica para garantir as dependências entre variáveis e o correto comportamento do

equipamento nas condições desejadas. A metodologia pode ser resumida em três etapas:

uma etapa de modelagem da simulação, uma etapa de inserção da falha e uma etapa de

validação. A seguir, cada uma dessas etapas será detalhada.

O experimento conduzido para validação da metodologia proposta foi baseado na

replicação de um poço inteligente de petróleo e gás natural. Um poço inteligente é um

poço dotado de instrumentação no fundo de poço (sensores e válvulas para controle de

vazão) que permite o ajuste da produção por monitoramento contínuo de vazões e pressões

de fluidos e ajustes da configuração da válvula (YETEN et al., 2004). Esses equipamen-

tos garantem flexibilidade e previsibilidade na produção do poço, pois permitem misturar

fontes de fluxos de fluidos de diferentes reservatórios com diferentes propriedades quími-

cas e físicas, como qualidade do óleo e proporções de óleo, gás, água e sedimentos.

Para tanto, foram utilizados dados de processo de um poço de petróleo inteligente

(incluindo medições de sensores, diagramas de plantas e anotações operacionais) e um

simulador comercial unidimensional (1D) de dinâmica de fluidos computacional (CFD)

com uma API para automatizar o processo de simulação para gerar dados de falha. Mais

tarde, foi realizada validação utilizando métricas de fidelidade do aplicativo para verificar

o desempenho dos modelos de aprendizado de máquina treinados em dados sintéticos

quando testados em dados de teste reais não vistos. Finalmente, foi utilizada a diferença

de correlação par-a-par (PCD) para avaliar o quão bem os dados sintéticos se ajustam aos

dados de teste reais.
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APPENDIX B — EXPLORATORY DATA ANALYSIS OF BOUNDARY

CONDITIONS

Next, we present some exploratory data analysis about the physical quantities used

as boundary conditions in the simulations executed in this work. Figure B.1 shows a

correlation map between the boundary conditions. Figures B.2, B.3, B.4, B.5, and B.6

show histograms of boundary conditions with 15 bins. Finally, section B.1 presents basic

descriptive statistics about each variable.

Figure B.1 – Pairwise correlation map between boundary conditions aggregated by daily means.
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Figure B.2 – Histogram of WELL01_MA4_P with 15 bins.

Figure B.3 – Histogram of WELL01_MA_37 with 15 bins.
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Figure B.4 – Histogram of WELL01_MA4_T with 15 bins.

Figure B.5 – Histogram of WELL01_MA2_T with 15 bins.
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Figure B.6 – Histogram of WELL01_MA_36 with 15 bins.

B.1 Descriptive statistics

------------------------------------------------------------

Variable: WELL01_MA4_P

Number of observations: 364

Number of missing values: 0

Number of distinct values: 360

Number of zeroes: 0

---

Maximum value: 641.72585

Q3: 639.384645

Average: 596.5061395451381

Median: 587.2375464870826

Q1: 584.2999653846153

Minimum value: 213.78626666666665
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---

Range: 427.9395833333334

IQR: 55.08467961538463

STD: 56.160705600043634

Kurtosis: 32.05672586643362

Skewness: -5.045910176555036

------------------------------------------------------------

Variable: WELL01_MA_37

Number of observations: 364

Number of missing values: 0

Number of distinct values: 189

Number of zeroes: 0

---

Maximum value: 438.95874215246636

Q3: 226.1285

Average: 215.86473455050654

Median: 226.08739739663093

Q1: 207.5724462280448

Minimum value: 77.668765

---

Range: 361.28997715246635

IQR: 18.55605377195519

STD: 56.87460288839495

Kurtosis: 5.352871930022012

Skewness: 1.0896284290154534

------------------------------------------------------------

Variable: WELL01_MA4_T

Number of observations: 364

Number of missing values: 0

Number of distinct values: 238
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Number of zeroes: 0

---

Maximum value: 89.03499500000001

Q3: 88.41497249999999

Average: 87.65971531061786

Median: 88.32518

Q1: 88.21486984693775

Minimum value: 68.98426255050505

---

Range: 20.05073244949496

IQR: 0.2001026530622454

STD: 2.164474280956942

Kurtosis: 27.53903096430728

Skewness: -4.685514510112574

------------------------------------------------------------

Variable: WELL01_MA2_T

Number of observations: 364

Number of missing values: 0

Number of distinct values: 195

Number of zeroes: 0

---

Maximum value: 89.9614979264214

Q3: 88.71454

Average: 88.03292071619319

Median: 88.71454

Q1: 88.31804954545456

Minimum value: 71.81522229865772

---

Range: 18.146275627763686

IQR: 0.39649045454544307

STD: 1.6594244755813068

Kurtosis: 30.419554142787867
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Skewness: -4.473348603123727

------------------------------------------------------------

Variable: WELL01_MA_36

Number of observations: 364

Number of missing values: 0

Number of distinct values: 171

Number of zeroes: 0

---

Maximum value: 76.23967

Q3: 75.61983

Average: 59.93328930983974

Median: 75.46804866666666

Q1: 69.783055

Minimum value: 3.3534633333333335

---

Range: 72.88620666666667

IQR: 5.836774999999989

STD: 28.46962311844858

Kurtosis: -0.03230227314269252

Skewness: -1.3679153569830511
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APPENDIX C — SIMULATION PARAMETERS

Table C.1 – Parameters of pipe elements in the simulation model of figure 5.5.
Tubing_0 Tubing_1 Tubing_2 Path_0 Path_1

Length 500 m 500 m 1727 m 500 m 500 m
Upstream Node P_out Node - 3 Node - 7 Node - 0 Node - 5
Downstream Node Node - 2 Node - 4 Node - 8 Node - 1 Node - 6
Diameter 5.92 in
Variable area No
Primary Loss Type Darcy Weisbach
Roughness 0,183
Secondary Losses No

Table C.2 – Parameters of valve elements in the simulation model of figure 5.5.
Bottom_ICV_0 Bottom_ICV_1 Top_ICV_0 Top_ICV_1

Upstream Node Node - 1 Node - 2 Node - 6 Node - 4
Downstream Node Node - 2 Node - 3 Node - 7 Node - 7
Valve lift /
fraction opening variable for each simulation round
Downstream
pipe diameter 5.92
Valve diameter 5
Upstream pipe
diameter 5.92
Force zero flow
when fully closed Yes
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Table C.3 – Elevation of nodes in figure 5.5 relative to the bottom of the well.
Node Elevation
P_out 0
Node_0 300 m
Node_1 300 m
Node_2 500 m
Node_3 500 m
Node_4 1000 m
Node_5 800 m
Node_6 800 m
Node_7 1000 m
Node_8 2727 m
T_WH 2727 m

Table C.4 – Parameters of boundary condition elements in the simulation model of figure 5.5.
Boundary condition
location Bottom Zone_0 Zone_1 Well_Head

Pressure boundary
condition Not specified

Fixed on user
total value
(value = variable
for each
simulation round)

Fixed on user
total value
(value = variable
for each
simulation round)

Fixed on user
total value
(value = variable
for each
simulation round)

Temperature boundary
condition Not specified

Fixed on user
total value
(value = variable
for each
simulation round)

Fixed on user
total value
(value = variable
for each
simulation round)

Not specified

Mass source
boundary condition

Fixed on
user value
(value = 0)

Not specified Not specified Not specified

Enthalpy boundary
condition Not specified Not specified Not specified Not specified

Table C.5 – Parameters of empirical relationship of heat exchange.
Parameter Value
Upstream node Node - 8
Downstream node T_WH
Ck 1
Beta 1
Alpha 1
Heat input 10000
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APPENDIX D — EXPLORATORY DATA ANALYSIS OF THE SYNTHETIC

DATASET PRODUCED VERSUS ITS REAL CORRESPONDING MEASURED

VARIABLES

Here we present an exploratory data analysis comparing the synthetic dataset pro-

duced in this work with its corresponding real measures. Figures D.1 and D.2 show the

correlation maps between the variables of each dataset. Figures D.3 to D.23 show super-

posed histograms of each variable of synthetic and real datasets with 15 bins. Finally,

section D.1 presents basic descriptive statistics about each variable of both real and syn-

thetic datasets.

Figure D.1 – Pairwise correlation map between synthetic dataset variables.
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Figure D.2 – Pairwise correlation map between real dataset corresponding variables.
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Figure D.3 – Histograms of synthetic (orange) and real (blue) P_WH_after variables with 15 bins.

Figure D.4 – Histograms of synthetic (orange) and real (blue) P_WH_before variables with 15
bins.
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Figure D.5 – Histograms of synthetic (orange) and real (blue) P_WH_delta variables with 15
bins.

Figure D.6 – Histograms of synthetic (orange) and real (blue) P_Z0_after variables with 15 bins.
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Figure D.7 – Histograms of synthetic (orange) and real (blue) P_Z0_before variables with 15
bins.

Figure D.8 – Histograms of synthetic (orange) and real (blue) P_Z0_delta variables with 15 bins.
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Figure D.9 – Histograms of synthetic (orange) and real (blue) P_Z1_after variables with 15 bins.

Figure D.10 – Histograms of synthetic (orange) and real (blue) P_Z1_before variables with 15
bins.
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Figure D.11 – Histograms of synthetic (orange) and real (blue) P_Z1_delta variables with 15 bins.

Figure D.12 – Histograms of synthetic (orange) and real (blue) P_bottom_after variables with 15
bins.
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Figure D.13 – Histograms of synthetic (orange) and real (blue) P_bottom_before variables with
15 bins.

Figure D.14 – Histograms of synthetic (orange) and real (blue) P_bottom_delta variables with 15
bins.
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Figure D.15 – Histograms of synthetic (orange) and real (blue) T_WH_after variables with 15
bins.

Figure D.16 – Histograms of synthetic (orange) and real (blue) T_WH_before variables with 15
bins.
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Figure D.17 – Histograms of synthetic (orange) and real (blue) T_WH_delta variables with 15
bins.

Figure D.18 – Histograms of synthetic (orange) and real (blue) T_Z0_after variables with 15 bins.
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Figure D.19 – Histograms of synthetic (orange) and real (blue) T_Z0_before variables with 15
bins.

Figure D.20 – Histograms of synthetic (orange) and real (blue) T_Z0_delta variables with 15
bins.
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Figure D.21 – Histograms of synthetic (orange) and real (blue) T_Z1_after variables with 15 bins.

Figure D.22 – Histograms of synthetic (orange) and real (blue) T_Z1_before variables with 15
bins.
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Figure D.23 – Histograms of synthetic (orange) and real (blue) T_Z1_delta variables with 15
bins.

D.1 Descriptive statistics

------------------------------------------------------------

Real Data Synthetic Data

------------------------------------------------------------

------------------------------------------------------------

Variable: P_WH_after

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 235 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 643.70 864.29

Q3: 633.36 833.11

Avg: 602.57 795.78

Median: 596.00 791.05

Q1: 585.18 782.57
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Min value: 484.35 394.99

-------------------------------------------------------

Range: 159.35 469.30

IQR: 48.18 50.54

STD: 30.00 58.82

Kurtosis: 0.09 29.43

Skewness: -0.53 -4.89

------------------------------------------------------------

Variable: P_WH_before

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 235 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 643.70 862.22

Q3: 633.37 833.11

Avg: 602.43 795.90

Median: 596.04 791.18

Q1: 585.18 782.72

Min value: 480.55 397.56

-------------------------------------------------------

Range: 163.15 464.65

IQR: 48.19 50.40

STD: 29.84 58.85

Kurtosis: 0.24 29.47

Skewness: -0.54 -4.89

------------------------------------------------------------

Variable: P_WH_delta

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 235 10000

Number of zeroes: 0 0
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-------------------------------------------------------

Max value: 98.32 804.29

Q3: 0.04 773.41

Avg: -0.13 735.94

Median: -0.24 731.13

Q1: -0.78 722.71

Min value: -85.58 338.43

-------------------------------------------------------

Range: 183.90 465.86

IQR: 0.82 50.71

STD: 18.63 58.83

Kurtosis: 11.77 29.32

Skewness: 0.83 -4.87

------------------------------------------------------------

Variable: P_Z0_after

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 235 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 853.17 803.23

Q3: 842.83 773.22

Avg: 812.04 735.94

Median: 805.48 731.39

Q1: 794.65 722.45

Min value: 693.82 336.54

-------------------------------------------------------

Range: 159.35 466.69

IQR: 48.18 50.77

STD: 30.00 58.85

Kurtosis: 0.09 29.38

Skewness: -0.53 -4.88

------------------------------------------------------------
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Variable: P_Z0_before

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 235 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 853.17 445.72

Q3: 842.84 228.19

Avg: 811.91 214.86

Median: 805.51 224.56

Q1: 794.65 208.66

Min value: 690.02 71.86

-------------------------------------------------------

Range: 163.15 373.86

IQR: 48.19 19.53

STD: 29.84 56.42

Kurtosis: 0.24 5.23

Skewness: -0.54 0.96

------------------------------------------------------------

Variable: P_Z0_delta

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 235 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 98.32 444.20

Q3: 0.04 228.29

Avg: -0.13 214.89

Median: -0.24 224.59

Q1: -0.78 208.37

Min value: -85.58 70.81

-------------------------------------------------------
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Range: 183.90 373.38

IQR: 0.82 19.92

STD: 18.63 56.44

Kurtosis: 11.77 5.23

Skewness: 0.83 0.96

------------------------------------------------------------

Variable: P_Z1_after

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 235 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 817.08 93.89

Q3: 806.74 89.20

Avg: 775.95 87.65

Median: 769.38 88.00

Q1: 758.56 86.68

Min value: 657.73 67.07

-------------------------------------------------------

Range: 159.35 26.82

IQR: 48.18 2.52

STD: 30.00 2.60

Kurtosis: 0.09 11.00

Skewness: -0.53 -2.36

------------------------------------------------------------

Variable: P_Z1_before

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 235 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 817.08 94.81
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Q3: 806.75 89.16

Avg: 775.81 87.64

Median: 769.42 88.01

Q1: 758.55 86.66

Min value: 653.93 66.04

-------------------------------------------------------

Range: 163.15 28.77

IQR: 48.19 2.50

STD: 29.84 2.63

Kurtosis: 0.24 11.87

Skewness: -0.54 -2.44

------------------------------------------------------------

Variable: P_Z1_delta

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 235 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 98.32 93.42

Q3: 0.04 89.35

Avg: -0.13 88.02

Median: -0.24 88.27

Q1: -0.78 87.07

Min value: -85.58 70.53

-------------------------------------------------------

Range: 183.90 22.89

IQR: 0.82 2.29

STD: 18.63 2.10

Kurtosis: 11.77 9.07

Skewness: 0.83 -1.86

------------------------------------------------------------

Variable: P_bottom_after

-------------------------------------------------------
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Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 220 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 292.75 94.05

Q3: 228.61 89.32

Avg: 215.79 88.04

Median: 221.82 88.31

Q1: 201.10 87.12

Min value: 93.94 69.47

-------------------------------------------------------

Range: 198.81 24.59

IQR: 27.50 2.20

STD: 38.19 2.09

Kurtosis: 1.13 9.94

Skewness: -0.67 -1.96

------------------------------------------------------------

Variable: P_bottom_before

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 217 2

Number of zeroes: 0 2466

-------------------------------------------------------

Max value: 292.37 1.00

Q3: 228.64 1.00

Avg: 215.49 0.75

Median: 221.85 1.00

Q1: 200.07 1.00

Min value: 93.94 0.00

-------------------------------------------------------

Range: 198.43 1.00

IQR: 28.57 0.00



87

STD: 37.74 0.43

Kurtosis: 0.98 -0.62

Skewness: -0.59 -1.18

------------------------------------------------------------

Variable: P_bottom_delta

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 206 2

Number of zeroes: 0 2466

-------------------------------------------------------

Max value: 100.79 1.00

Q3: 1.43 1.00

Avg: 0.43 0.75

Median: -0.27 1.00

Q1: -1.09 1.00

Min value: -128.83 0.00

-------------------------------------------------------

Range: 229.62 1.00

IQR: 2.52 0.00

STD: 25.39 0.43

Kurtosis: 11.15 -0.62

Skewness: -0.64 -1.18

------------------------------------------------------------

Variable: T_WH_after

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 195 2

Number of zeroes: 0 2553

-------------------------------------------------------

Max value: 91.93 1.00

Q3: 88.35 1.00

Avg: 88.05 0.74
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Median: 88.21 1.00

Q1: 87.41 0.00

Min value: 80.39 0.00

-------------------------------------------------------

Range: 11.54 1.00

IQR: 0.94 1.00

STD: 0.96 0.44

Kurtosis: 17.79 -0.74

Skewness: -1.87 -1.12

------------------------------------------------------------

Variable: T_WH_before

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 202 2

Number of zeroes: 0 2554

-------------------------------------------------------

Max value: 92.00 1.00

Q3: 88.37 1.00

Avg: 88.01 0.74

Median: 88.20 1.00

Q1: 87.40 0.00

Min value: 73.28 0.00

-------------------------------------------------------

Range: 18.72 1.00

IQR: 0.97 1.00

STD: 1.28 0.44

Kurtosis: 74.52 -0.74

Skewness: -6.41 -1.12

------------------------------------------------------------

Variable: T_WH_delta

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0
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Number of distinct values: 189 10000

Number of zeroes: 5 0

-------------------------------------------------------

Max value: 4.21 858.96

Q3: 0.02 801.36

Avg: -0.08 774.17

Median: 0.00 785.31

Q1: -0.03 745.77

Min value: -12.45 386.39

-------------------------------------------------------

Range: 16.65 472.58

IQR: 0.05 55.59

STD: 0.99 62.80

Kurtosis: 103.83 14.71

Skewness: -8.01 -3.06

------------------------------------------------------------

Variable: T_Z0_after

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 227 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 91.96 860.53

Q3: 88.69 800.88

Avg: 88.12 774.14

Median: 88.27 785.33

Q1: 87.30 746.30

Min value: 83.50 377.31

-------------------------------------------------------

Range: 8.46 483.22

IQR: 1.39 54.58

STD: 0.95 62.72

Kurtosis: 2.76 14.72
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Skewness: -0.34 -3.06

------------------------------------------------------------

Variable: T_Z0_before

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 225 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 92.05 86.40

Q3: 88.70 73.73

Avg: 88.08 70.15

Median: 88.27 71.48

Q1: 87.30 69.14

Min value: 73.19 -19.46

-------------------------------------------------------

Range: 18.86 105.86

IQR: 1.40 4.60

STD: 1.32 10.95

Kurtosis: 69.18 34.21

Skewness: -6.09 -5.17

------------------------------------------------------------

Variable: T_Z0_delta

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 225 10000

Number of zeroes: 0 0

-------------------------------------------------------

Max value: 3.94 86.77

Q3: 0.03 73.69

Avg: -0.02 70.15

Median: 0.01 71.50

Q1: -0.01 69.22
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Min value: -12.57 -19.54

-------------------------------------------------------

Range: 16.50 106.31

IQR: 0.03 4.47

STD: 0.96 10.99

Kurtosis: 127.72 34.35

Skewness: -9.36 -5.19

------------------------------------------------------------

Variable: T_Z1_after

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 229 2

Number of zeroes: 0 4952

-------------------------------------------------------

Max value: 76.43 1.00

Q3: 75.52 1.00

Avg: 69.58 0.50

Median: 75.27 1.00

Q1: 74.04 0.00

Min value: 3.53 0.00

-------------------------------------------------------

Range: 72.90 1.00

IQR: 1.48 1.00

STD: 18.17 0.50

Kurtosis: 8.43 -2.00

Skewness: -3.18 -0.02

------------------------------------------------------------

Variable: T_Z1_before

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 229 10000

Number of zeroes: 0 0
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-------------------------------------------------------

Max value: 76.61 7.54

Q3: 75.54 1.27

Avg: 69.79 0.02

Median: 75.27 0.00

Q1: 74.08 -1.23

Min value: 3.52 -6.21

-------------------------------------------------------

Range: 73.09 13.75

IQR: 1.47 2.50

STD: 17.59 1.88

Kurtosis: 8.87 -0.01

Skewness: -3.23 0.02

------------------------------------------------------------

Variable: T_Z1_delta

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 230 10000

Number of zeroes: 3 0

-------------------------------------------------------

Max value: 69.40 9.63

Q3: 0.06 1.48

Avg: 0.25 -0.01

Median: -0.00 -0.02

Q1: -0.04 -1.51

Min value: -70.84 -7.93

-------------------------------------------------------

Range: 140.25 17.56

IQR: 0.09 3.00

STD: 15.77 2.22

Kurtosis: 12.96 -0.02

Skewness: 0.32 0.02

------------------------------------------------------------
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Variable: action_result

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 2 10000

Number of zeroes: 23 0

-------------------------------------------------------

Max value: 1.00 30.37

Q3: 1.00 6.07

Avg: 0.90 -0.00

Median: 1.00 0.06

Q1: 1.00 -6.00

Min value: 0.00 -33.29

-------------------------------------------------------

Range: 1.00 63.65

IQR: 0.00 12.07

STD: 0.30 8.95

Kurtosis: 5.47 -0.04

Skewness: -2.72 -0.01

------------------------------------------------------------

Variable: bottom_icv_status_after

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 2 10000

Number of zeroes: 16 0

-------------------------------------------------------

Max value: 1.00 36.26

Q3: 1.00 6.05

Avg: 0.93 0.12

Median: 1.00 -0.03

Q1: 1.00 -5.83

Min value: 0.00 -35.91

-------------------------------------------------------



94

Range: 1.00 72.17

IQR: 0.00 11.88

STD: 0.25 8.89

Kurtosis: 10.00 0.06

Skewness: -3.45 0.03

------------------------------------------------------------

Variable: bottom_icv_status_before

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 2 10000

Number of zeroes: 13 0

-------------------------------------------------------

Max value: 1.00 18.90

Q3: 1.00 3.18

Avg: 0.94 0.03

Median: 1.00 0.08

Q1: 1.00 -3.23

Min value: 0.00 -19.55

-------------------------------------------------------

Range: 1.00 38.46

IQR: 0.00 6.41

STD: 0.23 4.78

Kurtosis: 13.45 0.01

Skewness: -3.92 -0.00

------------------------------------------------------------

Variable: command_type_0

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 2 10000

Number of zeroes: 22 0

-------------------------------------------------------

Max value: 1.00 123.21
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Q3: 1.00 18.36

Avg: 0.91 -0.03

Median: 1.00 0.01

Q1: 1.00 -18.62

Min value: 0.00 -124.45

-------------------------------------------------------

Range: 1.00 247.66

IQR: 0.00 36.97

STD: 0.29 48.72

Kurtosis: 5.94 -0.34

Skewness: -2.81 -0.00

------------------------------------------------------------

Variable: command_type_1

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 2 10000

Number of zeroes: 7 0

-------------------------------------------------------

Max value: 1.00 24.67

Q3: 1.00 2.00

Avg: 0.97 0.00

Median: 1.00 0.01

Q1: 1.00 -1.98

Min value: 0.00 -24.72

-------------------------------------------------------

Range: 1.00 49.39

IQR: 0.00 3.98

STD: 0.17 3.64

Kurtosis: 29.25 7.44

Skewness: -5.57 -0.06

------------------------------------------------------------

Variable: command_type_2

-------------------------------------------------------
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Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 2 2

Number of zeroes: 233 8113

-------------------------------------------------------

Max value: 1.00 1.00

Q3: 0.00 0.00

Avg: 0.01 0.19

Median: 0.00 0.00

Q1: 0.00 0.00

Min value: 0.00 0.00

-------------------------------------------------------

Range: 1.00 1.00

IQR: 0.00 0.00

STD: 0.09 0.39

Kurtosis: 114.97 0.53

Skewness: 10.77 1.59

------------------------------------------------------------

Variable: command_type_3

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 2 2

Number of zeroes: 226 8151

-------------------------------------------------------

Max value: 1.00 1.00

Q3: 0.00 0.00

Avg: 0.04 0.18

Median: 0.00 0.00

Q1: 0.00 0.00

Min value: 0.00 0.00

-------------------------------------------------------

Range: 1.00 1.00

IQR: 0.00 0.00
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STD: 0.19 0.39

Kurtosis: 21.63 0.64

Skewness: 4.84 1.62

------------------------------------------------------------

Variable: command_type_4

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 2 2

Number of zeroes: 34 7486

-------------------------------------------------------

Max value: 1.00 1.00

Q3: 1.00 1.00

Avg: 0.86 0.25

Median: 1.00 0.00

Q1: 1.00 0.00

Min value: 0.00 0.00

-------------------------------------------------------

Range: 1.00 1.00

IQR: 0.00 1.00

STD: 0.35 0.43

Kurtosis: 2.15 -0.69

Skewness: -2.03 1.15

------------------------------------------------------------

Variable: top_icv_status_after

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 2 2

Number of zeroes: 224 8098

-------------------------------------------------------

Max value: 1.00 1.00

Q3: 0.00 0.00

Avg: 0.05 0.19
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Median: 0.00 0.00

Q1: 0.00 0.00

Min value: 0.00 0.00

-------------------------------------------------------

Range: 1.00 1.00

IQR: 0.00 0.00

STD: 0.21 0.39

Kurtosis: 16.79 0.49

Skewness: 4.32 1.58

------------------------------------------------------------

Variable: top_icv_status_before

-------------------------------------------------------

Number of observations: 235 10000

Number of missing values: 0 0

Number of distinct values: 2 2

Number of zeroes: 223 8152

-------------------------------------------------------

Max value: 1.00 1.00

Q3: 0.00 0.00

Avg: 0.05 0.18

Median: 0.00 0.00

Q1: 0.00 0.00

Min value: 0.00 0.00

-------------------------------------------------------

Range: 1.00 1.00

IQR: 0.00 0.00

STD: 0.22 0.39

Kurtosis: 14.98 0.64

Skewness: 4.11 1.62
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APPENDIX E — MACHINE LEARNING MODELING AND VALIDATION

DETAILS

Below we present more details about the machine learning modeling with the synthetic

data. Machine learning algorithms and encoders used are instances of sckit-learn classes

(SCIKIT-LEARN, 2022). All the codes and results are available in our repository (BDI-

UFRGS, 2023).

E.1 Simulation Results Metadata

Int64Index: 10000 entries, 0 to 9999

Data columns (total 20 columns):

# Column Non-Null Count Dtype

--- ------ -------------- -----

0 P_Z0_before 10000 non-null float64

1 P_Z0_after 10000 non-null float64

2 P_Z1_before 10000 non-null float64

3 P_Z1_after 10000 non-null float64

4 P_WH_before 10000 non-null float64

5 P_WH_after 10000 non-null float64

6 T_Z0_before 10000 non-null float64

7 T_Z0_after 10000 non-null float64

8 T_Z1_before 10000 non-null float64

9 T_Z1_after 10000 non-null float64

10 top_icv_status_before 10000 non-null bool

11 top_icv_status_after 10000 non-null bool

12 bottom_icv_status_before 10000 non-null bool

13 bottom_icv_status_after 10000 non-null bool

14 P_bottom_before 10000 non-null float64

15 P_bottom_after 10000 non-null float64

16 T_WH_before 10000 non-null float64

17 T_WH_after 10000 non-null float64
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18 command_type 10000 non-null object

19 failure 10000 non-null bool

dtypes: bool(5), float64(14), object(1)

memory usage: 1.3+ MB

E.2 Data Engineering

For each measure (float64 variales) we calculated the difference after/before any

action and store it in a column of our dataset.

float_vars = set(

[col.split(’_’)[0]+’_’+col.split(’_’)[1]

for col in list(sim_results.columns) if

sim_results[col].dtype == ’float64’])

for name in float_vars:

cols = [col for col in list(sim_results.columns)

if col.startswith(name)]

sim_results[name+’_delta’] =

sim_results[cols[1]] - sim_results[cols[0]]

sim_results.info()

Int64Index: 10000 entries, 0 to 9999

Data columns (total 27 columns):

# Column Non-Null Count Dtype

--- ------ -------------- -----

0 P_Z0_before 10000 non-null float64

1 P_Z0_after 10000 non-null float64

2 P_Z1_before 10000 non-null float64

3 P_Z1_after 10000 non-null float64
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4 P_WH_before 10000 non-null float64

5 P_WH_after 10000 non-null float64

6 T_Z0_before 10000 non-null float64

7 T_Z0_after 10000 non-null float64

8 T_Z1_before 10000 non-null float64

9 T_Z1_after 10000 non-null float64

10 top_icv_status_before 10000 non-null bool

11 top_icv_status_after 10000 non-null bool

12 bottom_icv_status_before 10000 non-null bool

13 bottom_icv_status_after 10000 non-null bool

14 P_bottom_before 10000 non-null float64

15 P_bottom_after 10000 non-null float64

16 T_WH_before 10000 non-null float64

17 T_WH_after 10000 non-null float64

18 command_type 10000 non-null object

19 action_result 10000 non-null object

20 P_Z1_delta 10000 non-null float64

21 P_Z0_delta 10000 non-null float64

22 T_WH_delta 10000 non-null float64

23 T_Z1_delta 10000 non-null float64

24 P_bottom_delta 10000 non-null float64

25 P_WH_delta 10000 non-null float64

26 T_Z0_delta 10000 non-null float64

dtypes: bool(4), float64(21), object(2)

memory usage: 1.9+ MB

E.3 Encoding for Categorical Variables

Scikit-learn algorithms expect numeric features. So, categorical features need to

be encoded before inserted into the model.

dic_encoders = {’action_result’: LabelEncoder(),

’command_type’: OneHotEncoder(*, categories=’auto’,
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drop=None, sparse=False, sparse_output=True,

dtype=<class ’numpy.float64’>,

handle_unknown=’error’, min_frequency=None,

max_categories=None)}

dic_encoders[’action_result’].fit(sim_results[’action_result’])

new_col = dic_encoders[’action_result’].transform(

sim_results[’action_result’])

sim_results[’action_result’] = new_col

new_cols = dic_encoders[’command_type’].fit_transform(

sim_results[’command_type’].values.reshape(-1, 1)).T

for k in range(new_cols.shape[0]):

sim_results[f’command_type_{k}’] = new_cols[k]

sim_results.drop(columns=[’command_type’], inplace=True)

# Metadata of simulation results after the encoding stage.

sim_results.info()

Int64Index: 10000 entries, 0 to 9999

Data columns (total 27 columns):

# Column Non-Null Count Dtype

--- ------ -------------- -----

0 P_Z0_before 10000 non-null float64

1 P_Z0_after 10000 non-null float64

2 P_Z1_before 10000 non-null float64

3 P_Z1_after 10000 non-null float64

4 P_WH_before 10000 non-null float64

5 P_WH_after 10000 non-null float64

6 T_Z0_before 10000 non-null float64

7 T_Z0_after 10000 non-null float64

8 T_Z1_before 10000 non-null float64

9 T_Z1_after 10000 non-null float64
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10 top_icv_status_before 10000 non-null bool

11 top_icv_status_after 10000 non-null bool

12 bottom_icv_status_before 10000 non-null bool

13 bottom_icv_status_after 10000 non-null bool

14 P_bottom_before 10000 non-null float64

15 P_bottom_after 10000 non-null float64

16 T_WH_before 10000 non-null float64

17 T_WH_after 10000 non-null float64

18 command_type 10000 non-null float64

19 action_result 10000 non-null int32

20 P_Z1_delta 10000 non-null float64

21 P_Z0_delta 10000 non-null float64

22 T_WH_delta 10000 non-null float64

23 T_Z1_delta 10000 non-null float64

24 P_bottom_delta 10000 non-null float64

25 P_WH_delta 10000 non-null float64

26 T_Z0_delta 10000 non-null float64

E.4 Machine Learning Models Parameters

{’Logistic_Reg_clf’:

LogisticRegression(penalty=’l2’, *,

dual=False, tol=0.0001, C=1.0,

fit_intercept=True, intercept_scaling=1, class_weight=None,

random_state=42, solver=’lbfgs’, max_iter=100,

multi_class=’auto’, verbose=0, warm_start=False,

n_jobs=None, l1_ratio=None),

’DT_clf’: DecisionTreeClassifier(*, criterion=’gini’,

splitter=’best’, max_depth=None, min_samples_split=2,

min_samples_leaf=1, min_weight_fraction_leaf=0.0,

max_features=None, random_state=42,
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max_leaf_nodes=None, min_impurity_decrease=0.0,

class_weight=None, ccp_alpha=0.0),

’RF_clf’: RandomForestClassifier(n_estimators=100, *,

criterion=’gini’, max_depth=None,

min_samples_split=2, min_samples_leaf=1,

min_weight_fraction_leaf=0.0,

max_features=’sqrt’, max_leaf_nodes=None,

min_impurity_decrease=0.0, bootstrap=True,

oob_score=False, n_jobs=None, random_state=42,

verbose=0, warm_start=False, class_weight=None,

ccp_alpha=0.0, max_samples=None),

’KNN_clf’: KNeighborsClassifier(n_neighbors=5, *,

weights=’uniform’, algorithm=’auto’, leaf_size=30,

p=2, metric=’minkowski’, metric_params=None,

n_jobs=None),

’NB_clf’: GaussianNB(*, priors=None, var_smoothing=1e-09),

’SV_clf’: SVC(*, C=1.0, kernel=’rbf’,

degree=3, gamma=’scale’, coef0=0.0,

shrinking=True, probability=False, tol=0.001,

cache_size=200, class_weight=None, verbose=False,

max_iter=-1, decision_function_shape=’ovr’,

break_ties=False, random_state=42),

’Adaboost_clf’: AdaBoostClassifier(estimator=None, *,

n_estimators=50, learning_rate=1.0,

algorithm=’SAMME.R’, random_state=42,

base_estimator=’deprecated’),

’XGBoost_RF_clf’: XGBRFClassifier(base_score=0.5,

booster=’gbtree’, callbacks=None,
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colsample_bylevel=1, colsample_bytree=1,

early_stopping_rounds=None, enable_categorical=False,

eval_metric=None, gamma=0, gpu_id=-1,

grow_policy=’depthwise’, importance_type=None,

interaction_constraints=’’, max_bin=256,

max_cat_to_onehot=4, max_delta_step=0, max_depth=6,

max_leaves=0, min_child_weight=1, missing=nan,

monotone_constraints=’()’, n_estimators=100, n_jobs=0,

num_parallel_tree=100, objective=’binary:logistic’,

predictor=’auto’, random_state=42, reg_alpha=0,

sampling_method=’uniform’, scale_pos_weight=1, ...),

’MLP_clf’: MLPClassifier(alpha=1e-05,

hidden_layer_sizes=(5, 2), random_state=42,

solver=’sgd’)}

E.5 Classification Metrics Reports

Evaluating model Logistic_Reg_clf...

Making predictions to the test set...

Evaluating the metrics:

precision recall f1-score support

0 0.000 0.000 0.000 23

1 0.902 1.000 0.949 212

accuracy 0.902 235

macro avg 0.451 0.500 0.474 235

weighted avg 0.814 0.902 0.856 235

Evaluating model DT_clf...

Making predictions to the test set...

Evaluating the metrics:
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precision recall f1-score support

0 0.655 0.826 0.731 23

1 0.981 0.953 0.967 212

accuracy 0.940 235

macro avg 0.818 0.889 0.849 235

weighted avg 0.949 0.940 0.943 235

Evaluating model RF_clf...

Making predictions to the test set...

Evaluating the metrics:

precision recall f1-score support

0 0.667 0.783 0.720 23

1 0.976 0.958 0.967 212

accuracy 0.940 235

macro avg 0.821 0.870 0.843 235

weighted avg 0.946 0.940 0.943 235

Evaluating model KNN_clf...

Making predictions to the test set...

Evaluating the metrics:

precision recall f1-score support

0 0.095 0.957 0.173 23

1 0.667 0.009 0.019 212

accuracy 0.102 235

macro avg 0.381 0.483 0.096 235

weighted avg 0.611 0.102 0.034 235

Evaluating model NB_clf...
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Making predictions to the test set...

Evaluating the metrics:

precision recall f1-score support

0 0.000 0.000 0.000 23

1 0.902 1.000 0.949 212

accuracy 0.902 235

macro avg 0.451 0.500 0.474 235

weighted avg 0.814 0.902 0.856 235

Evaluating model SV_clf...

Making predictions to the test set...

Evaluating the metrics:

precision recall f1-score support

0 0.000 0.000 0.000 23

1 0.902 1.000 0.949 212

accuracy 0.902 235

macro avg 0.451 0.500 0.474 235

weighted avg 0.814 0.902 0.856 235

Evaluating model Adaboost_clf...

Making predictions to the test set...

Evaluating the metrics:

precision recall f1-score support

0 0.676 1.000 0.807 23

1 1.000 0.948 0.973 212

accuracy 0.953 235

macro avg 0.838 0.974 0.890 235

weighted avg 0.968 0.953 0.957 235
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Evaluating model XGBoost_RF_clf...

Making predictions to the test set...

Evaluating the metrics:

precision recall f1-score support

0 0.676 1.000 0.807 23

1 1.000 0.948 0.973 212

accuracy 0.953 235

macro avg 0.838 0.974 0.890 235

weighted avg 0.968 0.953 0.957 235

Evaluating model MLP_clf...

Making predictions to the test set...

Evaluating the metrics:

precision recall f1-score support

0 0.058 0.478 0.103 23

1 0.727 0.151 0.250 212

accuracy 0.183 235

macro avg 0.392 0.315 0.176 235

weighted avg 0.662 0.183 0.236 235
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