
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

GABRIEL COUTO DOMINGUES

Evaluating data imbalance approaches for
classifying semantic relations using

machine learning and word embeddings

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Joel Luís Carbonera
Coadvisor: MSc. Alcides Gonçalves Lopes Junior

Porto Alegre
September 2023

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

ABSTRACT

Explicit knowledge models are artifacts that represent domain knowledge in an explicit

way and can be used in different ways, including structuring data, supporting information

retrieval and reasoning. The identification and classification of semantic relationships be-

tween concepts is a critical task in the development of knowledge models. This work

investigates the use of machine learning approaches and pre-trained static word embed-

dings to classify semantic relationships between concepts, evaluating different techniques

to deal with the challenges imposed by data imbalance in this context. We proposed

a methodology for building datasets for the task of semantic relationship classification

from word embeddings using WordNet as a semantic reference. By applying the proposed

methodology, we generated two different datasets, with two variations, for the target task.

Finally, we evaluated a set of general approaches for dealing with data imbalance in clas-

sification tasks. Our results indicated that while some strategies like SMOTE showed

promise in specific metrics, the baseline model consistently achieved superior perfor-

mance in terms of F1 score.

Keywords: Word Embeddings. Machine Learning. Supervised Learning. Neural Net-

works. Ontologies. Knowledge Graphs. WordNet. Semantic Relationships.

RESUMO

Modelos de conhecimento explícito são artefatos que representam conhecimento de domí-

nio de forma explícita e podem ser usados de diferentes maneiras, incluindo estruturação

de dados e suporte à recuperação de informações e raciocínio. A identificação e classifi-

cação das relações semânticas entre conceitos é uma tarefa crítica no desenvolvimento de

modelos de conhecimento. Este trabalho investiga o uso de abordagens de aprendizado de

máquina e word embeddings estáticos pré-treinados para classificar relações semânticas

entre conceitos, avaliando diferentes técnicas para lidar com os desafios impostos por da-

dos desbalanceados neste contexto. Propomos uma metodologia para construir conjuntos

de dados para a tarefa de classificação de relações semânticas a partir de word embeddings

usando o WordNet como referência semântica. Ao aplicar a metodologia proposta, gera-

mos dois conjuntos de dados diferentes, com duas variações, para a tarefa de classificação.

Por fim, avaliamos um conjunto de abordagens gerais para lidar com desbalanceamento

de dados em tarefas de classificação. Nossos resultados indicaram que, enquanto algu-

mas estratégias, como o SMOTE, mostraram promessa em métricas específicas, o modelo

base demonstrou consistentemente um desempenho superior em termos de F1 score.

Palavras-chave: Word Embeddings, Aprendizado de Máquina, Aprendizado Supervisio-

nado, Redes Neurais, Ontologias, Grafos de Conhecimento, WordNet, Relações Semân-

ticas.

LIST OF FIGURES

Figure 2.1 Representation of neural networks. ...14
Figure 2.2 Confusion matrix with evaluation metrics...17
Figure 2.3 SMOTE-Tomek: (a) original data set ; (b) over-sampled data set; (c)

Tomek links identification; and (d) borderline and noise examples removed.21
Figure 2.4 Borderline SMOTE: (a) The original distribution of an example dataset.

(b) The borderline minority examples (solid squares). (c) The borderline syn-
thetic minority examples (hollow squares). ..21

Figure 2.5 Example of an ontology. ..23
Figure 2.6 Example of a knowledge graph for flight data...24
Figure 2.7 Network representation of hyponymy, antonymy and meronymy rela-

tions among an illustrative variety of lexical concepts. ..26

Figure 4.1 Example of different meanings of the word "car". ..33
Figure 4.2 Processing pipeline. ...34
Figure 4.3 Difference in number of matches with both datasets with and without

the matching and normalization rules. ..36
Figure 4.4 Percentage of pairs of words of each relationship per dataset: A) Word-

Net, B) Gensim, C) FastText...37
Figure 4.5 Neural network model used for the classification task.39

Figure 5.1 Average confusion matrices for baseline model with three relationships.42
Figure 5.2 Average confusion matrices for weighted loss experiments with three

relationships. ...44
Figure 5.3 Average confusion matrices for focal loss experiments with three rela-

tionships. ...44
Figure 5.4 Average confusion matrices for random under-sampling experiments

with three relationships. ..46
Figure 5.5 Average confusion matrices for doubled random under-sampling exper-

iments with three relationships. ..46
Figure 5.6 Average confusion matrices for Tomek links experiments with three re-

lationships. ..47
Figure 5.7 Average confusion matrices for SMOTE experiments with three rela-

tionships. ...48
Figure 5.8 Average confusion matrices for SMOTE/Tomek experiments with three

relationships. ...49
Figure 5.9 Average confusion matrices for Borderline SMOTE experiments with

three relationships. ..49
Figure 5.10 Average confusion matrices for baseline model with two relationships.52
Figure 5.11 Average confusion matrices for weighted loss experiments with two

relationships. ...53
Figure 5.12 Average confusion matrices for focal loss experiments with two rela-

tionships. ...54
Figure 5.13 Average confusion matrices for random under-sampling experiments

with two relationships. ..55
Figure 5.14 Average confusion matrices for doubled random under-sampling ex-

periments with two relationships. ...56
Figure 5.15 Average confusion matrices for Tomek links experiments with two re-

lationships. ..56

Figure 5.16 Average confusion matrices for SMOTE experiments with two rela-
tionships. ...58

Figure 5.17 Average confusion matrices for SMOTE/Tomek experiments with two
relationships. ...58

Figure 5.18 Average confusion matrices for Borderline SMOTE experiments with
two relationships. ..59

Figure 5.19 Macro F1 scores from the experiments with three relationships and
two relationships for Gensim. ...60

Figure 5.20 Macro F1 scores from the experiments with three relationships and
two relationships for FastText...60

LIST OF TABLES

Table 4.1 Number of pairs of words of each relationship per dataset.36
Table 4.2 Percentage of pairs of words of each relationship per dataset.37
Table 4.3 Number of Pairs of words with more than one relationship per dataset.37
Table 4.4 Percentage of pairs of words with more than one relationship per dataset.38

Table 5.1 Evaluation metrics for the baseline model with three relationships................42
Table 5.2 Evaluation metrics for loss changes for Gensim dataset with three rela-

tionships. ...43
Table 5.3 Evaluation metrics for loss changes for FastText dataset with three rela-

tionships. ...43
Table 5.4 Evaluation metrics for under-sampling for Gensim dataset with three re-

lationships. ..45
Table 5.5 Evaluation metrics for under-sampling for FastText dataset with three

relationships. ...45
Table 5.6 Evaluation metrics for over-sampling for Gensim dataset with three rela-

tionships. ...47
Table 5.7 Evaluation metrics for over-sampling for FastText dataset with three re-

lationships. ..48
Table 5.8 Evaluation metrics for experiments for Gensim dataset with three rela-

tionships. ...50
Table 5.9 Evaluation metrics for experiments for FastText dataset with three rela-

tionships. ...50
Table 5.10 Evaluation metrics for baseline model with two relationships......................51
Table 5.11 Evaluation metrics for loss changes for Gensim dataset with two rela-

tionships. ...53
Table 5.12 Evaluation metrics for loss changes for FastText dataset with two rela-

tionships. ...53
Table 5.13 Evaluation metrics for under-sampling for Gensim dataset with two re-

lationships. ..54
Table 5.14 Evaluation metrics for under-sampling for FastText dataset with two

relationships. ...55
Table 5.15 Evaluation metrics for over-sampling for Gensim dataset with two rela-

tionships. ...57
Table 5.16 Evaluation metrics for over-sampling for FastText dataset with two re-

lationships. ..57
Table 5.17 Evaluation metrics for experiments for Gensim dataset with two rela-

tionships. ...61
Table 5.18 Evaluation metrics for experiments for FastText dataset with two rela-

tionships. ...61

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

BERT Bidirectional Encoder Representations from Transformers

CBOW Continuous Bag-of-Words

ELMo Embeddings from Language Models

GPU Graphics Processing Unit

NLP Natural Language Processing

SMOTE Synthetic Minority Over-sampling Technique

CONTENTS

1 INTRODUCTION...10
2 BACKGROUND..13
2.1 Machine learning ..13
2.2 Word embeddings ...15
2.3 Performance metrics...16
2.4 Data imbalance..18
2.4.1 Algorithm-level methods ...19
2.4.2 Data-level methods ..19
2.5 Knowledge models ..22
2.6 WordNet...24
3 RELATED WORKS ...27
4 METHODOLOGY ...31
4.1 Development environment..31
4.2 Building the datasets...32
4.2.1 Methodology for creating the datasets...32
4.2.2 Datasets for classifying semantic relationships ...35
4.3 Approach for classifying semantic relationships..38
4.4 Experiments...39
5 RESULTS...41
5.1 Experiments with three relationships ...41
5.1.1 Baseline..41
5.1.2 Experiments with weighted loss and focal loss ...42
5.1.3 Under-sampling experiments. ..43
5.1.4 Over-sampling experiments ...47
5.1.5 Comparing results ..48
5.2 Experiments with two relationships ..51
5.2.1 Baseline..51
5.2.2 Weighted loss and focal loss experiments..52
5.2.3 Under-sampling experiments. ..54
5.2.4 Over-sampling experiments ...57
5.2.5 Comparing results ..57
6 CONCLUSION ...62
REFERENCES...65

10

1 INTRODUCTION

Explicit knowledge models, like knowledge graphs, play a crucial role in storing,

structuring, and interpreting information, making explicit the semantics underlying the

domain knowledge and allowing for the processing of concepts, their properties, and the

relations among them. However, building these models is a highly resource-demanding

task, requiring the input of domain experts and knowledge engineers. In the last few years,

the scientific community has proposed machine learning-based approaches to streamline

this process by automating some tasks required for building explicit knowledge models.

One of these tasks is classifying the semantic relationships between concepts (SUN et

al., 2019; KHADIR; GUESSOUM; ALIANE, 2021; HOSSEINI et al., 2021), which has

as input information regarding two related words or concepts, and classifies the relation-

ship between these concepts. A possible approach for this task involves representing the

related concepts with word embeddings, which are real-valued vectors that encode the

semantics of words, and using these word embeddings as inputs for a machine learning

approach that classifies the relation between pairs of concepts.

When considering word embeddings, it is important to differentiate between static

and contextual embeddings. Contextual embeddings, such as those produced by language

models like BERT (DEVLIN et al., 2019) and ELMo (PETERS et al., 2018), have the

advantage of taking into account the context in which words are used. Thus, in this ap-

proach, a given word is represented by different embeddings in different contexts, which

results in a more flexible representation of contextual variations of the semantics of a

given word. However, the training process of these models tends to be heavier and more

resource-demanding and produces computationally demanding models. In contrast, static

embeddings, such as those developed by Mikolov et al. (2013) in the Word2Vec model,

have the advantage of the models trained with them being relatively lighter, making them

suitable for a wide range of applications and research.

In this scenario of classifying semantic relationships, it is common for datasets to

be highly imbalanced. Data imbalance can harm the performance of machine learning

models since they can be biased to prioritize majority classes, resulting in poor perfor-

mance for minority classes. Although the literature provides several works that apply

machine learning approaches to classify relationships from pre-trained static word em-

beddings that represent concepts, according to our knowledge, there are no works that

systematically investigate the application of techniques to deal with data imbalance in

11

this task.

In this context, our hypothesis is that by adopting strategies for mitigating the

data imbalance we can improve the performance of machine learning approaches for this

task. With this hypothesis in mind, we defined three goals for this work. The first one

is defining a methodology for building datasets for classifying semantic relationships be-

tween concepts represented by pre-trained static word embeddings. The second one is

building two datasets for this task. Finally, the third one is systematically applying some

common approaches for dealing with data imbalance and evaluating the impacts of these

techniques on the performance of machine learning models trained for this task.

In this work, we first defined a methodology for building datasets for the target

task. The methodology takes as input a set of pre-trained static word embeddings and

adopts the WordNet lexical resource as a reference for establishing semantic relationships

between pairs of words in the word embeddings set. In order to do that, we defined a set of

normalization rules and matching rules, to be used during the execution of the matching

process for mapping the words in the word embeddings set and the words specified in

WordNet.

After, we selected two different sets of word embeddings, with different charac-

teristics and applied our methodology and a pipeline of pre-processing for building two

different datasets with two different variations for the target task. Each variation of each

dataset assumes a different set of relations. Finally, we selected a set of strategies for

dealing with data imbalance and evaluated their impacts on the performance of a standard

neural network trained for classifying semantic relationships.

In the experiments considering the datasets with three and two relationships, the

majority of techniques failed to outperform the baseline in terms of F1 score. Although

some methods, like SMOTE and its variants, showed potential in improving recall, par-

ticularly for the holonymy class, the baseline achieved the best performance, in general.

Furthermore, findings from experiments using two relationships mimicked those from the

three relationships dataset, but with marginally better F1 scores. Differences between

recall and precision were evident, showing the challenge of optimizing one without de-

grading the other. Future studies might explore leveraging contextual word embeddings

for this task and devising strategies to address dataset imbalance specifically designed for

this task.

The remainder of the work is organized as follows. In Chapter 2, we detail the nec-

essary background to understand this work, providing an overview of machine learning,

12

word embeddings, performance metrics, data imbalance techniques, knowledge models

and WordNet. In Chapter 3, we discuss some studies that are related to the task of clas-

sifying semantic relations using word embeddings. In Chapter 4, we detail the work’s

methodology, describing the development environment, the datasets used and the pro-

cessing we performed on them, the neural network architecture used in our experiments,

the experiments performed, and the metrics chosen to evaluate the experiments. In Chap-

ter 5, we analyze the results of our experiments. And, in Chapter 6, we summarize the

conclusions of this work and present the possibilities for future work.

13

2 BACKGROUND

In this chapter, we present the necessary background to understand this work.

Section 2.1 presents an overview of machine learning and neural networks. Section 2.2

presents an overview of word embeddings and their use in natural language processing

tasks. Section 2.3 presents a set of performance metrics that can be used to evaluate

machine learning models in classification tasks. Section 2.4 details the set of approaches

designed for dealing with data imbalance that were evaluated in this work. Section 2.5

discusses knowledge models, such as ontologies and knowledge graphs. Finally, Section

2.6 presents WordNet, a lexical database of words.

2.1 Machine learning

According to Russell and Norvig (2020), machine learning is a subset of artifi-

cial intelligence (AI) that involves the use of statistical techniques to enable machines

to improve their performance on a task with experience and feedback. There are three

main types of feedback that define the three main types of learning for machine learning

models: supervised learning, unsupervised learning and reinforcement learning.

Supervised learning is a type of learning where a model is created to make predic-

tions based on a set of labeled training data. This means that each example in the training

data comes with a corresponding output value or label. The goal in this scenario is to use

this labeled data as input for training a model that is able to map unseen samples to their

corresponding labels. A common example of supervised learning is classifying images

according to the class of objects in the image, such as classifying images of handwritten

digits.

Unsupervised learning, on the other hand, involves training a model using data

that is not labeled. The model is tasked with finding patterns within the data. A common

application of unsupervised learning is clustering (grouping similar data together), with

an example being grouping different customers of a store into different profiles, based on

their preference for certain types of products.

In reinforcement learning, an agent learns to make decisions by taking actions in

an environment to achieve a goal. The agent learns by trial and error, receiving rewards

or penalties for its actions. Over time, the agent learns a policy, which is a strategy

for choosing actions that maximize the total reward. An example of an application of

14

reinforcement learning is training an agent to play games, like Go and chess.

This work focuses on a supervised learning context and adopts neural networks for

classifying semantic relationships. Neural networks, often referred to as artificial neural

networks, are inspired by neural networks of the brain and in the learning process of those

systems to make predictions and decisions. A neural network is a collection of nodes

connected by weighted links. In general, nodes are organized in layers, in a way that nodes

in a given layer are connected to nodes of adjacent layers. Neural network architectures

are organized in such a way that the input layers receive input data, the output layer

represents the predictions associated with the input, and the intermediate layers carry out

the processing. In this process, in traditional neural network architectures, the input data

is multiplied by the weights between the units, and this process repeats across the layers.

The learning process in a neural network involves adjusting the weights and biases of

the network to minimize the error between the network’s output and the desired output

(GOODFELLOW; BENGIO; COURVILLE, 2016). Backpropagation is the algorithm

enabling this adjustment. It works by computing the gradient of the cost function with

respect to each weight, allowing for efficient weight updates in the direction that reduces

the error. This backward flow of adjustments, after the process of forward propagation,

ensures an iterative refinement of the model’s predictions. In Figure 2.1 we can see two

examples of neural networks with an input layer, an output layer, and hidden layers. The

neural network on the left has just one hidden layer and the one on the right has four

hidden layers.

Figure 2.1: Representation of neural networks.

Source: Dastres and Soori (2021)

One mechanism that is used to quantify how far the predicted output is from the

15

actual output is the loss function, also known as the cost function. The purpose of a loss

function is to guide the process of learning the weights in a neural network. One func-

tion that is commonly used for classification problems is the cross-entropy loss function

(GOODFELLOW; BENGIO; COURVILLE, 2016). The cross-entropy loss function is

described by Lin et al. (2017) as CE(pt) = −log(pt), in which pt is the model’s esti-

mated probability for the class with label t.

2.2 Word embeddings

Word embeddings are n-dimensional vectors of real words that represent the se-

mantics of words, in a way that different dimensions capture different aspects of the

word’s meaning. They are used to capture semantic and syntactic relationships between

words, based on the context in which they appear. They can be used in natural language

processing tasks to represent text for machine learning models.

It is important for this work to differentiate between static and contextual embed-

dings. The main difference between them is that contextual embeddings have the advan-

tage of taking into account the context in which words are used, meaning that the same

word is represented by different word embeddings in different contexts. Contextual em-

beddings such as those produced by BERT (DEVLIN et al., 2019) and ELMo (PETERS

et al., 2018) are able to capture many syntactic and semantic properties of words under

diverse linguistic contexts by considering the context of a sentence during training (LIU;

KUSNER; BLUNSOM, 2020). ELMo, for example, uses a bidirectional language model

that takes into account at each of its layers, contextualized representations which are the

concatenation of the left-to-right and right-to-left representations, obtaining N represen-

tations, for a sequence of length N (LIU; KUSNER; BLUNSOM, 2020).

Static embeddings obtain a single global representation for each word, ignoring

their context (LIU; KUSNER; BLUNSOM, 2020). Word2Vec is a popular model for

creating static word embeddings. It was developed by researchers at Google, and provides

two architectures to generate word embedding: Continuous Bag-of-Words (CBOW) and

Skip-Gram (MIKOLOV et al., 2013). The difference between those models is that the

CBOW architecture predicts the current word based on the context (surrounding words),

and the Skip-gram architecture predicts surrounding words given the current word, with

both models trying to maximize the classification of a word based on another word in the

same sentence during training.

16

FastText1 and Gensim2 are both popular open-source libraries for natural language

processing and machine learning that are used to create static word embeddings. FastText,

based on Skip-gram takes into account subword information by representing each word as

a bag of character n-grams. An n-gram is a contiguous sequence of n items from a given

text, for example, taking the word where and n = 3 as an example, it will be represented by

the character n-grams: <wh, whe, her, ere, re> (BOJANOWSKI et al., 2017a). A vector

representation is associated with each character n-gram, with words being represented as

the sum of these representations. Gensim, on the other hand, is a Python library that offers

tools for topic modeling, document indexing, and similarity analysis, and can be used to

generate standard Word2Vec embeddings, without considering subword information (but

it also supports the creation of models that consider such information).

Word embeddings are commonly used in several natural language processing prob-

lems. They are used to feed word-level input to neural networks for tasks such as text

classification, sentiment analysis, entity recognition, etc (JURAFSKY; MARTIN, 2023).

2.3 Performance metrics

In machine learning, performance metrics are used for evaluating the effectiveness

of a machine learning approach in a given task. The selection of performance metrics de-

pends largely on the problem at hand. The following metrics have their own advantages

and shortcomings, especially regarding data imbalance, as they provide different perspec-

tives on the performance of a classifier. To understand the metrics shown in this section

it’s necessary to understand the concept of a confusion matrix.

A confusion matrix is a table that is often used to describe the performance of a

classification model. Figure 2.2 represents a confusion matrix, where each column repre-

sents the instances of an actual class and each row represents the instances of a predicted

class. The main diagonal represents correct predictions (true positive and true negative

results), while elements outside of the main diagonal represent incorrect predictions (false

positive and false negative results). The main metrics we can calculate from a confusion

matrix are accuracy, precision, recall and F1 score. Traditionally, confusion matrices and

the metrics precision, recall, and F1 score are defined for binary classification problems,

being presented in the following paragraphs as described by Faceli et al. (2011).

1<https://fasttext.cc/>
2<https://pypi.org/project/gensim/>

https://fasttext.cc/
https://pypi.org/project/gensim/

17

Figure 2.2: Confusion matrix with evaluation metrics.

Source: Jeppesen et al. (2019)

Accuracy is the simplest evaluation metric. It’s the ratio of the number of correct

predictions over the total number of input samples. It works well if there are an equal

number of samples belonging to each class. But if we have an imbalanced dataset this

metric can be deceiving, as it is possible that a model has great accuracy but misses most

samples of the minority class. It can be calculated from the confusion matrix with the

following formula:

accuracy = (TP + TN)/(TP + FP + TN + FN) (2.1)

Precision is the fraction of the total amount of correct classifications for the pos-

itive class over the number of instances that were predicted as being from the positive

class. It’s a measure of a classifier’s exactness. It can be calculated from the confusion

matrix with the following formula:

precision = TP/(TP + FP) (2.2)

Recall is the fraction of the total amount of correct classifications of the positive

class among the number of instances of that class. It’s a measure of a classifier’s com-

pleteness. It can be calculated from the confusion matrix with the following formula:

recall = TP/(TP + FN) (2.3)

A summary of both Precision and Recall is the F1 score; a single number that is

defined as the harmonic mean of precision and recall. It is especially useful in the case

18

of an uneven class distribution because it balances the two previous measures. It can be

calculated with the following formula:

F1 = 2 ∗ P ∗R/(P +R) (2.4)

In the context of multi-class classification, the common approach is to calculate

the metrics for each class and then average the values, considering the class as the positive

class in a binary problem, and considering all other classes as negative. Some options to

average the precision, recall, and F1 score metrics are macro-averaging, micro-averaging,

and weighted-averaging. Macro-averaging will compute the metric independently for

each class and then take the average treating all classes equally, micro-averaging will

aggregate the contributions of all classes to compute the average metric, and weighted-

averaging will compute the metric independently for each class and then take the average

considering the number of instances for each classes.

2.4 Data imbalance

Handling imbalanced datasets is a common challenge in machine learning. Com-

mon scenarios with this problem are credit card fraud and spam e-mail detection. In these

cases, the positive class instances - fraud transactions or spam e-mails - are far fewer than

negative class instances - non-fraud transactions and non-spam e-mails. If we apply a ma-

chine learning approach to detect the positive class instances, the models might perform

poorly, since the imbalanced data has a bias towards the negative class, which has many

more instances, leading to a high number of false negatives.

To address these issues, the literature provides several approaches, which can be

classified into algorithm-level methods and data-level methods, according to Leevy et al.

(2018). Algorithm-level methods try to mitigate data imbalance by algorithmically chang-

ing the learning process. These approaches can be divided into ensemble methods and

cost-sensitive methods. Ensemble methods, such as bagging and boosting, combine mul-

tiple classifiers to determine the output of the classification task. Cost-sensitive methods

try to assign more weight to an instance that is misclassified. Data-level methods, on the

other hand, try to mitigate data imbalance by changing the data available for training the

models. These methods can be divided into feature selection methods and data-sampling

methods, such as over-sampling and under-sampling.

19

The following sections present some approaches considered in this work. Firstly

presenting the algorithm-level approaches and, after, presenting the data-level approaches.

2.4.1 Algorithm-level methods

Two common algorithm-level methods we can use to improve the learning process

for neural networks with imbalanced datasets are using a weighted loss function and a

focal loss function.

A weighted loss function uses different weights that are assigned to different

classes in the loss function. The weight is usually inversely proportional to the class

frequency, meaning that higher weights are assigned to the minority class and lower

weights are assigned to the majority class, in a binary classification problem. This means

the model is penalized in a higher degree for incorrectly predicting the minority class

(ELKAN, 2001). The formula for a weighted cross-entropy loss function as described

by Lin et al. (2017) is CE(pt) = −αtlog(pt). This formula adds αt, a weighting factor,

to the cross-entropy loss, where pt is the model’s estimated probability for the class with

label t.

The idea of the focal loss function technique, on the other hand, is to assign more

importance to hard-to-classify instances and less importance to easy instances. This is

achieved by adding a factor to the cross-entropy function which decreases the loss contri-

bution from easy-to-classify examples (LIN et al., 2017). Its formula, as described by Lin

et al. (2017) is FL(pt) = −αt(1 − pt)
γlog(pt). This formula adds a modulating factor

to the weighted cross-entropy loss with a parameter γ >= 0, where pt is the model’s

estimated probability for the class with label t, and αt is the weighting factor for the class.

2.4.2 Data-level methods

For data-level methods, common approaches involve under-sampling the majority

class (or classes if the problem classifies more than two classes) so we can have a more

balanced dataset, or over-sampling the minority class (or classes), creating new instances

for those minority classes. In this work, we chose to focus on random-under-sampling

and Tomek links under-sampling as under-sampling techniques, and on three techniques

that are a variation of SMOTE, for over-sampling.

20

Random under-sampling is a technique where instances of the majority class are

randomly eliminated until a desired balance between the majority and minority class is

achieved (HE; GARCIA, 2009). One common pitfall of this technique is that, since we

are removing instances randomly, it is possible that the removed instances may cause

the classifier to miss important concepts pertaining to the majority class (HE; GARCIA,

2009).

Tomek links are pairs of instances that are the closest to one another but are of

opposite classes (TOMEK, 1976). Different from random under-sampling, this technique

tries to preserve the classification frontier, but it requires many additional computations

when compared to random under-sampling, which can have a huge impact on big datasets,

taking 10 times more to execute for our largest datasets.

Synthetic Minority Over-sampling Technique (SMOTE) is an over-sampling method

that works by creating synthetic samples from the minority class by selecting nearest

neighbor instances from the same class for a given instance and creating new instances

between the given instance and those by a random amount within the difference between

them (HE; GARCIA, 2009). One of the advantages of SMOTE is that it makes the deci-

sion regions larger and less specific (HAN; WANG; MAO, 2005).

The SMOTE-Tomek technique is a combination of over-sampling of the minority

class using SMOTE and then under-sampling the class using Tomek links (BATISTA;

BAZZAN; MONARD, 2003). The algorithm tries to perform a cleanup of the new over-

sampled instances by removing the Tomek links. One problem with combining these two

algorithms is that this technique takes a long time to run, making it by far the most costly

technique we used. The algorithm process can be seen in Figure 2.3, with (a) showing

the original dataset, (b) showing an over-sampled dataset using SMOTE, (c) showing the

Tomek links found, and (d) showing the dataset after removing the Tomek links.

The Borderline SMOTE Technique is a variant of SMOTE, which takes advantage

of the fact that examples far from the borderline may contribute little to a classification

task. Instead of over-sampling the minority class and taking into consideration the nearest

neighbors of each example, the algorithm generates synthetic examples in the borderline

space where the majority class examples may intrude into (HAN; WANG; MAO, 2005).

In order to do this, the algorithm determines the m-nearest neighbors for each instance

of the minority class, and then the instances are classified into three categories: as noise,

if all its neighbors are from another class; as safe, if less than half of its neighbors are

from its own class; or as borderline (or in danger), if half or more than half of its neigh-

21

Figure 2.3: SMOTE-Tomek: (a) original data set ; (b) over-sampled data set; (c) Tomek
links identification; and (d) borderline and noise examples removed.

Source: Batista, Bazzan and Monard (2003)

bors are from another class. For those borderline instances, new instances are created

by selecting the k-nearest neighbor instances from the minority class and creating new

instances between the given instance and those by a random amount within the differ-

ence between them. The algorithm process can be seen in Figure 2.4, with (a) showing

the original dataset, (b) showing the borderline examples in the minority class, and (c)

showing the dataset after over-sampling the minority class with the Borderline SMOTE

algorithm, with new instances being displayed with hollow squares.

Figure 2.4: Borderline SMOTE: (a) The original distribution of an example dataset. (b)
The borderline minority examples (solid squares). (c) The borderline synthetic minority
examples (hollow squares).

Source: Han, Wang and Mao (2005)

22

2.5 Knowledge models

Explicit knowledge models play a crucial role in storing, structuring, and inter-

preting information, making explicit the semantics underlying the domain knowledge and

allowing for the processing of concepts, their properties, and the relations among them.

Common types of knowledge models are ontologies and knowledge graphs.

An ontology is a formal, explicit specification of a shared conceptualization (BORST,

1999). In simpler terms, it is a formal definition, with the use of a formal language, which

guarantees that the ontology is unambiguous and machine-readable, with a vocabulary

that is mapped to elements of a conceptualization, a simplified, generalized view of an

observed universe or part of the universe (KONOPKA, 2015). An ontology, then, has

three main elements: a set of concepts, formal axioms that constrain the semantics of

those concepts, and definitions that define concept meanings (lexicon). It is important to

note that ontologies focus on universal concepts of the domain, not describing specific

instances from it.

An example of an ontology of a set of molecules can be seen in Figure 2.5. In the

example, the ontology comprises 6 concepts: with four classes of elements (Enzyme, Sub-

strate, Product, Molecule) and two relations (interacts-with and subclass-of). There are

two axioms included in the ontology Axiom a1 says that only objects that are molecules

can interact. Axiom a2 denotes that the interacts-with relation is symmetric. the ontology

also comprises two lexicons: LC lists the definitions of classes, LR lists the definitions

of relations. The description of the universe is done through annotation. In the figure,

elements of the universe (ProteinA, ProteinB, ProteinC, ProteinD, CH4, PO4
3−) were

annotated with terms from the ontology, which is marked with thick black lines between

elements and concepts. It is also worth noting that there’s a class hierarchy in the ontol-

ogy, with Molecule being the most general term, and Enzyme, Substrate, Product being

the specific cases of a molecule.

A knowledge graph is a graph of data intended to accumulate and convey knowl-

edge of the real world, whose nodes represent entities of interest and whose edges repre-

sent potentially different relations between these entities (HOGAN et al., 2021). Common

examples of knowledge graphs are DBpedia3, aiming to structure data from Wikipedia,

and Wikidata4, a source of open data that Wikipedia uses. Knowledge graphs can be un-

3<https://www.dbpedia.org/>
4<https://www.wikidata.org/wiki/Wikidata:Main_Page>

https://www.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page

23

Figure 2.5: Example of an ontology.

Source: Konopka (2015)

24

derstood as a graph that represents knowledge, which can include an ontology as well as

information regarding instances, which is structured according to the schema provided by

the ontology. They gained popularity when Google announced their knowledge graph to

enhance search engine results (JI et al., 2022). Figure 2.6 shows an example of a knowl-

edge graph for flight data.

Figure 2.6: Example of a knowledge graph for flight data.

Source: Hogan et al. (2021)

2.6 WordNet

WordNet (MILLER, 1995) is a large lexical database of words in English, devel-

oped by the Cognitive Science Laboratory at Princeton University. It groups words into

sets of synonyms denoting a lexical concept, called synsets, provides their definitions,

and records the various semantic relations between these synonym sets. The purpose of

WordNet is to facilitate natural language processing (NLP) tasks.

The structure of WordNet distinguishes between different types of relations for

different lexical categories. For nouns, the main relations include hypernymy (super-

name), hyponymy (sub-name), meronymy (part-name), and holonymy (whole-name). For

verbs, the key relations are hypernymy (super-name), troponymy (manner-name), and

entailment relations. Adjectives and adverbs are linked via synonymy and antonymy

relations. The definitions of the relationships mentioned throughout this work provided

by Miller et al. (1990) and Khadir, Guessoum and Aliane (2021) are as follows:

• Synonymy: Two expressions are synonymous in a linguistic context if the substitu-

tion of one for the other in that context does not alter the truth value in the context.

25

• Antonymy: Lexical relationship between word forms, not a semantic relation be-

tween word meanings, denoting that one word represents the opposite of another

word.

• Hypernymy/Hyponymy: Semantic relation between word meanings. A concept

represented by the synset {x, x′, ...} is said to be a hyponym of the concept rep-

resented by the synset {y, y′, ...} if native English speakers accept sentences con-

structed from such frames as "An x is a (kind of) y". In such example we de-

fine the synset {y, y′, ...} as the hypernym of synset {x, x′, ...}. A specific kind of

hypernymy relationship is the instance hypernymy relationship, denoting that an

expression is an instance of another, such as "Barrack Obama" is an instance of

"President".

• Meronymy/Holonymy: A concept represented by the synset {x, x′, ...} is a meronym

of a concept represented by the synset {y, y′, ...} if native English speakers accept

sentences constructed from such frames as "A y has an x" (as a part) or "An x is

a part of y" . In such example we define the synset {y, y′, ...} as the holonym of

synset {x, x′, ...}. The holonymy relationship can be split into further relationships,

such as part holonymy, denoting that a synset is a component of another, such as a

"branch" is a component of a "tree", member holonymy, denoting that a synset is

an element of another, such as a "tree" is an element of a "forest", and substance

holonymy, denoting that a synset is a material of another, such as "wood" is a ma-

terial of a "door".

• Similarity: The relationship exists between primary adjectives and their corre-

sponding satellite adjectives. Satellite adjectives are those that share a semantic

link with central adjectives. For instance, "accurate" is a primary adjective that is

linked with the satellite adjectives: "straight", "surgical", "true", and "veracious".

26

Figure 2.7: Network representation of hyponymy, antonymy and meronymy relations
among an illustrative variety of lexical concepts.

Source: Miller et al. (1990)

27

3 RELATED WORKS

In this chapter, we give a brief overview of works in the literature that deal with

classifying semantic and lexical relations using word embeddings. Most of the work

we could find used relations that were domain-specific instead of focusing on domain-

independent relations, such as hypernymy and holonymy. Also, of the few that we could

find that used the relations present in this work, many were focused on relation classifica-

tion tasks for a specific domain.

We used the work from Khadir, Guessoum and Aliane (2021) as the main ref-

erence for our work. In this work, the authors present a neural network model to clas-

sify eight types of relations: hypernymy, instance hypernymy, part holonymy, member

holonymy, substance holonymy, similarity, antonymy, synonymy. They use WordNet to

extract relations from all synsets in the dataset and then replace the involved words with

their pre-trained word vectors with 300 dimensions using pre-trained Skip-gram word

embeddings. For the matching of words to word embeddings, they also perform some

format changes such as adding/deleting spaces or hyphens (-) between words that com-

pose the same lemma to match the way they may be written in the word embeddings set.

In the end, they had a dataset with 307,856 pairs. They adopt a neural network model

with two hidden layers that contain 512 neurons each and use the ReLU activation func-

tion. After each hidden layer, a dropout of 0.2 is applied to prevent overfitting. They

use the RMSprop optimizer with a batch size of 128 and categorical cross-entropy as the

loss function. The output layer uses the softmax activation function. They made three ex-

periments, one with the entire dataset which resulted in 0.84 F1 score, one with only the

hypernymy, part holonymy, antonymy and synonymy classes, which resulted in 0.78 F1

score and a third experiment for binary classification with a hypernymy class and a non-

hypernymy class, which resulted in 0.87 accuracy. They note that some classes had much

better performance than others. According to them, a possible explanation is due to pos-

sible semantic overlapping in some cases, as they ignored ambiguity in the experiments.

Our work tries to be an improvement on top of this paper by proposing an improved

methodology for building datasets that removes ambiguity in the dataset, doing tests with

another pre-trained word embeddings set, and using more matching rules evaluating data

imbalance techniques to improve performance.

Another related work is by Sun et al. (2019). In their work, they explore machine

learning techniques to evaluate suggested changes in an existing biomedical ontology.

28

They use a hybrid convolutional neural network and multi-layer perceptron classifier us-

ing a combination of graphs, concept features, and word embeddings to classify hyper-

nymy relations. They also use Skip-gram Word2Vec word embeddings, but with word

embeddings with 200 dimensions. To perform the matching of words to word embed-

dings they perform many format changes such as removing punctuation, removing digits,

transforming words to lowercase, and performing stemming. They find that their model

performs really well, achieving an impressive 0.972 precision score for the task of pre-

dicting a hypernymy relationship (IS-A relation). It is important to notice that this work

focuses on classifying relations for the biomedical domain, which might explain the much

higher performance results compared to other papers. The high performance can also be

explained by the fact that this work considers a richer set of information as input, instead

of using only word embeddings. Some of their ideas for transforming words for word

embedding matching were also applied to our work.

In Hosseini et al. (2021), the authors propose an automated approach to infer se-

mantic relations among concepts and construct an ontology to help requirements authors

in the selection of the most appropriate information type terms for privacy policies. For

this, they utilize word embeddings and convolutional neural networks to classify informa-

tion type pairs as either hypernymy, synonymy, or unknown. They gathered data from the

Google Play Store and trained their own Skip-gram Word2Vec word embeddings. They

perform tests using a weighted loss function to account for imbalance in ontological rela-

tions, and consider using over-sampling as a next step for their work. For the hypernymy

instances they do not only consider direct relations, but also gather the indirect hypernyms

for creating their dataset. Their model results in a 0.904 F1 score. Even though this work

didn’t consider a comprehensive set of methods to combat data imbalance, they used a

weighted loss function and suggested trying over-sampling, which we both tested in our

work.

Similarly to the approach proposed in Hosseini et al. (2021), another work that

creates a label to represent the lack of a relation between words is Chen et al. (2020), and

in that the authors find that having a label to represent a lack of relationship results in

diminished relation extraction performance. We didn’t consider a label to represent the

absence of relations between concepts in our work because even though a pair of words

isn’t classified as having a certain relation we can’t say they don’t have one of the selected

relations, because the dataset can be incomplete.

In Gasmi, Laval and Bouras (2019), the authors predict instances of classes in a

29

cybersecurity ontology and the semantic relationship between them using a Long Short

Term Memory model and Word2Vec embeddings. In their work, they obtain data from the

National Vulnerability Database, and also use conversion rules such as converting words

to lowercase before word embedding matching, and converting digits to 0. The model

shows an F1 score of 0.79. Even though in this work they consider different relations from

ours, we included it because they found that their model seems to suffer from overfitting,

perhaps needing more data, which is something that we also found was true from our tests

with our models initially, and seems to occur in other papers as well. Besides that, this

work also proposes other methods of matching words to their own word embedding set.

In Oussaid, Bouarab-Dahmani and Cullot (2022), the authors propose an approach

that aims to automate the extraction of new ontological concepts from unstructured data

with the goal of enriching a food ontology. For this purpose, an ontology and a corpus

of food data have been built. The data is obtained from web scraping from Wikipedia

(Wikipedia contributors, 2004) and is used to train a Skip-gram Word2Vec model. They

also pre-process their data with lowercase conversion, removal of special characters and

lemmatization (representing each word by its lemme). The obtained results show a pre-

cision score of 0.78. The interesting aspect of this work is the fact that they trained their

own word embeddings to create a food ontology. We didn’t try creating our own word

embeddings, given that it is an extremely costly process that requires resources that are

not available in our project.

In Lezama-Sánchez, Vidal and Reyes-Ortiz (2022), the authors present three em-

bedding models based on semantic relations extracted from Wikipedia (Wikipedia con-

tributors, 2004) to classify texts using sentence patterns between related words. For test-

ing the models they use a convolution neural network. The relations they choose to clas-

sify are synonymy, hyponymy and hypernymy. One interesting technique they used to

augment their dataset was to create more synonyms, by creating another pair inverting the

order of the words in the relationship pair, which is a technique that we also applied in our

dataset. They compare their word embedding models with other existing models (GloVe,

FastText, and WordNet-based) and find that it performs better in the classification task.

As we can see there are many works that try to classify semantic relations using

word embeddings, but many of these try to perform that task in a specific domain, such

as biomedicine. Furthermore, we couldn’t find works that systematically evaluated data

imbalance techniques to mitigate the high level of imbalance that is common in the task

of classifying general semantic relationships. We also noticed that many of the papers

30

developed different matching techniques to create the datasets for training their machine

learning models. With that in mind, we propose another method to perform such word

matching and perform experiments for evaluating different data imbalance techniques to

mitigate such issues.

31

4 METHODOLOGY

In this chapter, we present the methodology of this work. Section 4.1 details

the development environment for the experiments. Section 4.2 presents the proposed

methodology for building datasets for semantic relationship classification and the datasets

that we developed following the proposed methodology. Section 4.3 details our approach

for classifying semantic relationships, describing the neural network architecture that we

adopted in our experiments. Section 4.4 details the different experiments we performed.

4.1 Development environment

The development of this work was done using the programming language Python1.

Most of the scripts developed were run locally, with some training and validation of the

neural network models performed using the Google Colaboratory environment2 with its

free tier.

We also used many Python libraries to aid the development done in this work. We

mainly used the libraries Tensorflow3 and Keras4 for training and defining the neural net-

work models, the library nltk5 to access the WordNet database and the library imbalanced-

learn6 for its techniques to mitigate data imbalance in our datasets. Other supporting li-

braries such as scikit-learn7, numpy8, pandas9, seaborn10, focal-loss11, matplotlib12 and

textblob13 were used as well.

1<https://www.python.org/>
2<https://colab.research.google.com/>
3<https://www.tensorflow.org>
4<https://keras.io/>
5<https://www.nltk.org/>
6<https://imbalanced-learn.org/stable/>
7<https://scikit-learn.org/stable/>
8<https://numpy.org/>
9<https://pandas.pydata.org/>

10<https://seaborn.pydata.org/>
11<https://focal-loss.readthedocs.io/en/latest/>
12<https://matplotlib.org/>
13<https://textblob.readthedocs.io/en/dev/>

https://www.python.org/
https://colab.research.google.com/
https://www.tensorflow.org
https://keras.io/
https://www.nltk.org/
https://imbalanced-learn.org/stable/
https://scikit-learn.org/stable/
https://numpy.org/
https://pandas.pydata.org/
https://seaborn.pydata.org/
https://focal-loss.readthedocs.io/en/latest/
https://matplotlib.org/
https://textblob.readthedocs.io/en/dev/

32

4.2 Building the datasets

In this section, we present the proposed methodology for creating the datasets

and, besides that, we present the datasets that we developed following our methodology

for carrying out our experiments. Section 4.2.1 describes our methodology proposed for

building datasets for our target task. Section 4.2.2, on the other hand, presents the datasets

that we developed following our methodology.

4.2.1 Methodology for creating the datasets

As previously mentioned, in this work we propose a methodology for building

datasets for our target task. It is important to notice that the proposed methodology is

agnostic regarding the technique used to generate the word embeddings from the words.

The proposed methodology takes as input a set of pre-trained word embeddings,

which consists of a list of tuples (W,E). In these tuples, W is a word and E is its corre-

sponding pre-trained static word embedding (an n-dimensional vector of real numbers).

In other words, it’s a list of words with their respective corresponding word embeddings.

With that in mind, the creation of the datasets can be divided into four parts: obtaining the

words that will be used to search for related words, searching for pairs of related words,

processing these pairs, and finally creating the dataset using word embeddings.

For the list of words, all the words from each Synset (set of synonyms) from

WordNet are downloaded using the nltk library, and then, for each word on the list, we

search for related words using a set of chosen relationships (any set of relationships from

WordNet can be chosen). For the search of related words, given a word from the list,

we search for related words considering all possible meanings for the search word in

WordNet. That is, when a related synset was found, all words that could represent that

related synset were included as related words. For example the word "car" has multiple

meanings, such as "a motor vehicle with four wheels; usually propelled by an internal

combustion engine" or "a wheeled vehicle adapted to the rails of railroad", for the first

meaning a direct hypernym would be "motor vehicle", and for the second a direct hyper-

nym would be "wheeled vehicle", both of those were included as hypernyms of the word

"car". This process of agglutinating the multiple meanings of words is done specifically

for static word embeddings, as we have only one embedding for each word, even though

it may affect performance, as we are losing the different meanings of words. In Figure

33

4.1 we can see those definitions and those direct hypernyms.

Figure 4.1: Example of different meanings of the word "car".

Source: WordNet Search14

After finding the related words for each of the words from WordNet, a process of

completion of the pairs for symmetric relations is done for the chosen relationships. For

example, for the pairs of words related by the synonymy relationship, if that relationship

is included. Thus, if we have a pair of related words A and B, we included the pair B and

A, if not already included.

After obtaining those related words, the dataset generated will possibly contain

pairs of words that are related by more than one relationship, resulting in a multi-label

dataset. After that, each word from the pairs from the previous phase is transformed into

its equivalent word embedding using a set of word embeddings, and the relationships

between the pairs are replaced by numbers that represent them.

To search for words in the set of word embeddings, we use normalization rules

that are applied to all words before the matching process begins, and matching rules that

create variations of the word during the execution of the matching process in case the

word is not normally found, in order to increase the probability of matching. When a

word from the pair of related words was not in the set, then the pair is not included in

the dataset. It is also important to note that we singularized the words in the lists of word

embeddings, if the singular version of the word was not already present in the data.

• Normalization Rules:

• Normalize everything to lowercase;

• Replace all special characters, characters that are not letters or numbers, with

34

’_’ (the ’_’ was chosen as the replacement for special characters because it

was commonly used for WordNet in nltk).

• Matching rules:

• Replace last letter, if it is a ’y’, with an ’e’ (ex: antecedency and antecedence);

• Remove last letter, if it is a ’y’, and add ’ies’ (plural);

• Add an ’s’ at the end (plural);

• Replace ’s’ with ’z’ and ’z’ with ’s’ (differences between American and British

English);

• Add/remove a ’d’ at the end (ex: telecommunicate and telecommunicated).

The rules were created experimentally by analyzing data from words that had the

smallest normalized distance value but weren’t a match. For this we used the hamming

distance (HAMMING, 1950) of the words divided by the length of the longest word

in the comparison. During this matching process, it was checked if a pair had already

been inserted in the dataset, to avoid duplicates. The complete transformation pipeline is

described in Figure 4.2.

Figure 4.2: Processing pipeline.

Source: The Author

35

4.2.2 Datasets for classifying semantic relationships

Notice that the methodology defined in Section 4.2.1 considers two parameters

for the dataset creation: the set of relationships selected and the set of word embeddings

used. In this work, we selected the following relationships:

• Hypernymy;

• Holonymy;

• Synonymy.

It is important to note that in Khadir, Guessoum and Aliane (2021), the study that

we are using as a reference, has datasets that use those same relations and include also

the following relations: similarity, antonymy, instance hypernymy relationships. Besides

that, the authors also split the holonymy relationship into three specific subtypes: sub-

stance holonymy, part holonymy and member holonymy relationships. We joined these

three holonymy relationships in a single relationship category because we are focusing

on general relations between parts and wholes, and because this category is the least

represented in our datasets. We also decided to remove from our dataset the instance

hypernymy relationship, because we are focusing on conceptual relationships and not on

instance relationships. Besides that, we removed the similar and antonymy relations, be-

cause these relationships are not as relevant to the construction of structured knowledge

bases as hypernymy, holonymy, and synonymy.

For creating our datasets we used two sets of pre-trained word embeddings. The

first pre-trained word embeddings dataset15, was trained using Gensim16 with the Skip-

gram algorithm, with the English Wikipedia Dump of February 2017 corpus17 and was

made available by the Language Technology Group of the University of Oslo18. It has

a vocabulary of 228,670 words, which were obtained using a lemmatization process and

produces word embedding vectors with 300 dimensions. It is worth noting that the process

of lemmatization for the words in this dataset may affect performance in the classification

task, similar to the process of agglutinating word meanings described in Section 4.2.1, as

we are losing the different meanings of words. The second dataset 19, is the same dataset

used in our reference paper (KHADIR; GUESSOUM; ALIANE, 2021). The vectors were

15<http://vectors.nlpl.eu/repository/20/23.zip>
16<https://radimrehurek.com/gensim/>
17<https://archive.org/details/enwiki-20170220>
18<https://www.mn.uio.no/ifi/english/research/groups/ltg/>
19<https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.vec>

http://vectors.nlpl.eu/repository/20/23.zip
https://radimrehurek.com/gensim/
https://archive.org/details/enwiki-20170220
https://www.mn.uio.no/ifi/english/research/groups/ltg/
https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.vec

36

obtained using a model trained on Wikipedia using FastText20. The resulting vectors,

in this case, also have 300 dimensions and were obtained using the Skip-gram model

described in Bojanowski et al. (2017b), with standard parameters. The datasets generated

from these sets of word embeddings will be called Gensim and FastText respectively.

Regarding the matching and normalization rules devised, in Figure 4.3 we can

see the matches for both datasets with and without the matching and normalization rules

mentioned in Section 4.2.1. We can see that the rules increase the number of matches in

each of the datasets.

Figure 4.3: Difference in number of matches with both datasets with and without the
matching and normalization rules.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

Table 4.1 presents statistics for the pairs of words for each relationship for Word-

Net, for the dataset generated with the Gensim word embeddings, and for the dataset

generated with the FastText word embeddings. These are complemented by Table 4.2 and

Figure 4.4, showing the percentages of pairs from each relationship per dataset.

Table 4.1: Number of pairs of words of each relationship per dataset.
Relationship WordNet Gensim FastText

Synonymy 549,388 184,814 272,673
Holonymy 105,360 15,536 26,107
Hypernymy 374,736 143,858 189,543

Total 1,029,484 344,208 488,323
Source: The Author

We can verify from the Tables 4.1 and 4.2 and Figure 4.4 that the FastText dataset

has a considerably larger number of word pairs than the Gensim dataset after the word

matching. Another interesting result is that the proportion of the relationships among the

three comparisons (WordNet and the two datasets) remains similar. Another important is-

sue is that Synonymy and Hypernymy are by far the relationships that have the most word
20<https://fasttext.cc/>

https://fasttext.cc/

37

Table 4.2: Percentage of pairs of words of each relationship per dataset.
Relationship WordNet Gensim FastText

Synonymy 53.37% 53.49% 55.84%
Holonymy 10.23% 4.51% 5.35%
Hypernymy 36.40% 41.79% 38.82%

Source: The Author

Figure 4.4: Percentage of pairs of words of each relationship per dataset: A) WordNet, B)
Gensim, C) FastText.

Source: The Author

pairs. It is also interesting to note that even with the FastText dataset, the correspondence

of words with WordNet does not reach 50%, showing that it may be possible to find sets

of word embeddings that have better correspondence.

Tables 4.3 and 4.4 present statistics for the pairs of words that are multi-labeled

for each set of relationships for WordNet, for the dataset generated with the Gensim word

embeddings, and for the dataset generated with the FastText word embeddings.

Table 4.3: Number of Pairs of words with more than one relationship per dataset.
Relationships WordNet Gensim FastText

Holonymy, Hypernymy 434 246 270
Holonymy, Hypernymy, Synonymy 87 45 60

Holonymy, Synonymy 7,308 1,852 2,760
Hypernymy, Synonymy 14,728 10,592 12,544

Total 22,557 12,735 15,634
Source: The Author

We can see in the results from Tables 4.3 and 4.4 that the percentage of pairs with

multiple relationships for WordNet and the two datasets is less than 4%. Thus, the result-

ing dataset is multi-labeled, but the percentage of samples with multiple classes is very

small. Due to this, and in an effort to deal with a simplified version of the problem, we

removed pairs classified by multiple types of relationships. In future works, it’s possible

38

Table 4.4: Percentage of pairs of words with more than one relationship per dataset.
Relationships WordNet Gensim FastText

Holonymy, Hypernymy 0.04% 0.07% 0.06%
Holonymy, Hypernymy, Synonymy 0.01% 0.01% 0.01%

Holonymy, Synonymy 0.71% 0.54% 0.57%
Hypernymy, Synonymy 1.43% 3.08% 2.57%

Total 2.19% 3.70% 3.20%
Source: The Author

to investigate how to handle the original multi-label classification problem.

4.3 Approach for classifying semantic relationships

In this work, our focus is on classifying semantic relationships between concepts

based on the word embeddings of the words that linguistically represent them. We de-

cided to adopt an approach based on neural networks to perform this classification task.

The neural network architecture adopted in this work is the same proposed in Khadir,

Guessoum and Aliane (2021). It takes as input two word embedding vectors of 300 di-

mensions of related words, as a 2× 300 matrix. The input layer is followed by one dense

layer (called hidden layer in Figure 4.5) with 512 nodes, with ReLU function. It’s fol-

lowed by a dropout of 0.2, in order to mitigate overfitting, and a flatten layer to adjust the

data to a unidimensional vector. After these layers, the architecture includes a dense layer

with 512 nodes, also with ReLU function, followed by a dropout of 0.2. After that, we

have the output layer, which uses the Softmax function and its number of nodes is equal

to the number of relationships in the given experiment.

We used the RMSprop optimizer and the categorical cross-entropy loss function

for training, except for the experiment using the focal loss function. For the RMSprop

optimizer, we use exponential decay with an initial learning rate of 0.001, a decay rate of

0.95, and the number of steps for the decay as 1600. These parameters were decided by

experimentation. The architecture can be seen in Figure 4.5.

It is also important to note that for the binary classification experiments we tried

using a sigmoid function in the output layer and using binary cross-entropy as the loss

function, but, since the performance was equivalent, we decided to keep a single architec-

ture adopting softmax at the output layer.

39

Figure 4.5: Neural network model used for the classification task.

Source: Khadir, Guessoum and Aliane (2021)

4.4 Experiments

We performed two categories of experiments, one using the complete dataset men-

tioned in Section 4.2.2, and another one using only the pairs of words related by the

hypernymy and holonymy relationships, removing the synonymy relationship from the

complete dataset. We decided to remove the synonym pairs because they were the main

source of confusion in classifications when analyzing the confusion matrices generated

by our tests.

For both categories of experiments, we conducted training with each of the datasets

generated by the different word embedding models. We adopted a stratified K-Fold cross-

validation process with 5 folds, where 10% of the training data was used for validation.

Also, we used 60 epochs for training. We also adopted early stopping for preventing over-

fitting, by monitoring the loss of the validation (making almost all experiments end before

the 20th epoch). For each category, we adopted both datasets presented in Section 4.2.2,

and performed the following list of experiments:

• Baseline experiment.

• An experiment using the default architecture mentioned in Section 4.3, with-

out applying any approach for dealing with data imbalance.

• Experiments changing the loss function.

40

• Using a weighted loss function, using the "compute_class_weight" function

from the sklearn library, with the "class_weight" parameter as "balanced",

which estimates class weights for imbalanced datasets.

• Using a focal loss function with γ = 1 and using "compute_class_weight"

with the same parameters used for weighted loss.

• Experiments applying under-sampling.

• Using random under-sampling with two different variations. For the first one,

the majority classes were under-sampled to have the same number of samples

as the minority class, and for the second one the majority classes were under-

sampled to have twice as many instances as the minority class. This was done

because to make the number of instances equal to the majority classes, those

classes had to lose a vast number of instances.

• Using Tomek links under-sampling, under-sampling the majority classes.

• Experiments with over-sampling, with three variations of SMOTE.

• For the first variation, SMOTE was used to over-sample the minority classes

using the 5 nearest neighbors of an instance to define the neighborhood to

generate the synthetic samples.

• For the second variation, we used SMOTE with the same parameters used for

the previous variation and then under-sampled the classes with Tomek links.

• For the last variation, the Borderline SMOTE algorithm was used, over-sampling

the majority classes using 5 as the number of nearest neighbors used to define

the neighborhood of samples to generate the synthetic samples and 10 as the

number of nearest neighbors used to determine if a minority sample is in dan-

ger.

For evaluating all experiments, considering that the datasets were imbalanced, we

decided to collect macro averages of F1 scores, precision, and recall. For the category of

experiments that excluded the synonym pairs we also collected separately the F1, preci-

sion, and recall metrics for the holonymy class, which was considered the positive class,

since it is the minority class in our setting. It is important to note that we decided to collect

the macro averages of the metrics, as weighted and micro averaging can be misleading on

account of the classes being highly imbalanced, as can be seen in Table 4.2.

41

5 RESULTS

In this chapter, we present the results of our experiments. For each experiment we

present the F1 scores, precision and recall metrics, also showing the average confusion

matrix of the 5 folds of testing. In the confusion matrices, the percentages show the ratio

of instances with a certain predicted label over the true label of the instances.

This chapter is divided into the following sections. Section 5.1 presents the exper-

iments to mitigate data imbalance for datasets that classified the pairs into three classes:

hypernymy, holonymy and synonymy. Section 5.2 presents the experiments that removed

the synonym pairs.

5.1 Experiments with three relationships

In this section, we will present the results of the experiments using the chosen

data imbalance mitigation techniques for the complete dataset, with three relationships.

Section 5.1.1 presents the results from the baseline experiments, without any method to

mitigate data imbalance. Section 5.1.2 presents the results from the loss changes ex-

periments, with weighted loss and focal loss. Section 5.1.3 presents the results from

the under-sampling experiments, with random under-sampling and Tomek links under-

sampling. Section 5.1.4 presents the results from the over-sampling experiments, with

SMOTE, SMOTE combined with Tomek links, and Borderline SMOTE. Section 5.1.5

presents a comparison of the results from the different experiments.

5.1.1 Baseline

As shown in Table 5.1 we achieved a macro F1 score of 0.834 for our baseline

experiment using the Gensim dataset, and achieved a macro F1 score of 0.861 for the

FastText dataset. Note that in these results with macro averaging recall is smaller than

precision, reaching 0.820 compared to 0.850, for Gensim, and 0.851 compared to 0.873,

for FastText.

We can see in the confusion matrix shown in Figures 5.1a and 5.1b that one aspect

that worsens the macro recall, and consequently the macro F1 score, are the incorrect

classifications of holonyms, with most of the incorrect classifications being classified as

42

Table 5.1: Evaluation metrics for the baseline model with three relationships.

Dataset Macro
F1 Precision Recall

Gensim 0.834 0.850 0.820
FastText 0.861 0.873 0.851

Source: The Author

synonyms. For synonyms, most incorrect classifications end up being classified as hy-

pernyms, and for hypernyms most incorrect classifications were classified as synonyms.

All the experiments using three relations follow this pattern. It is also worth noting that

comparing the holonymy class to the other classes, there is a difference of at least 0.11

for Gensim and at least 0.06 for FastText with the recall of those other two classes.

Figure 5.1: Average confusion matrices for baseline model with three relationships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

5.1.2 Experiments with weighted loss and focal loss

The first experiments to mitigate the data imbalance try to achieve better results by

changing the calculation of the loss function. Unfortunately as can be seen in Tables 5.2

and 5.3, the results are consistently worse than the baseline. Considering macro-averaging

for the F1 score, compared to the baseline results, there is a decrease of approximately

0.04 with both word embedding datasets with weighted loss. With focal loss we have an

ever higher decrease of 0.11 for Gensim and of 0.14 for FastText compared to the baseline

43

results. Given that the weighted loss results were considerably better than the results from

the focal loss experiments with both datasets, it would be interesting for future works to

investigate if better parameter values could be used for it.

Table 5.2: Evaluation metrics for loss changes for Gensim dataset with three relationships.

Model Macro
F1 Precision Recall

Weighted 0.791 0.765 0.827
Focal 0.722 0.688 0.806

Source: The Author

Table 5.3: Evaluation metrics for loss changes for FastText dataset with three relation-
ships.

Model Macro
F1 Precision Recall

Weighted 0.812 0.790 0.842
Focal 0.716 0.683 0.816

Source: The Author

We see in Figures 5.2 and 5.3 that weighted loss greatly improves the recall of the

holonymy class compared to the baseline, with an increase of 0.09 for Gensim and 0.05

for FastText. However, weighted loss ends up worsening the recall of the other classes

compared to the baseline, with a decrease of approximately 0.04 for the other classes with

both datasets. With focal loss, compared to weighted loss, there was an increase in the

recall of holonyms by 0.04 for Gensim and 0.05 for FastText, but the recall of the other

classes was worsened, for the hypernymy class we have a decrease of 0.04 for Gensim

and 0.03 for FastText, and for the synonymy class we have a decrease of 0.05 for Gensim

and 0.10 for FastText.

5.1.3 Under-sampling experiments.

The second set of experiments tries to mitigate data imbalance by using under-

sampling techniques. In the results, we reference the variations described in Section 4.4

as "random", for the first variation of random under-sampling, and as "random 2", for the

second variation.

The results from the random under-sampling technique in Tables 5.4 and 5.5 show

that they worsened the model significantly compared to the baseline. Considering macro

F1 score, there was a decrease of 0.08 to 0.17 across the variations and datasets. Even

44

Figure 5.2: Average confusion matrices for weighted loss experiments with three rela-
tionships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

Figure 5.3: Average confusion matrices for focal loss experiments with three relation-
ships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

45

though doubling the number of instances of the majority classes increased F1 scores by

0.06 for Gensim and 0.05 for FastText, compared to using random under-sampling to

equal the number of instances per class, the results still were inferior to the baseline

model. The results from the Tomek links experiment are the closest we got to the baseline

model using under-sampling techniques, but they still do not surpass the baseline results

for the macro F1 score.

Table 5.4: Evaluation metrics for under-sampling for Gensim dataset with three relation-
ships.

Model Macro
F1 Precision Recall

Random 0.661 0.632 0.745
Random 2 0.725 0.697 0.776

Tomek 0.811 0.831 0.795
Source: The Author

Table 5.5: Evaluation metrics for under-sampling for FastText dataset with three relation-
ships.

Model Macro
F1 Precision Recall

Random 0.722 0.686 0.798
Random 2 0.777 0.753 0.813

Tomek 0.852 0.859 0.845
Source: The Author

Considering the confusion matrices shown in Figures 5.4, 5.5 and 5.6, for random

under-sampling methods, compared to baseline results, we see an improvement in the re-

call of holonyms, with an increase of approximately 0.09 for the first variation, and of

0.07 for Gensim and of 0.05 for FastText for the second variation. However, there was a

decrease in the recall of other classes, with a decrease for the synonymy class of at least

0.09 and for hypernyms of at least 0.06 across all variations and datasets. When compar-

ing the second random under-sampling variation with the first, there is an improvement in

the recall of the hypernymy and synonymy class, but there is a deterioration in the recall

of holonyms. Using Tomek Links, we see a slight deterioration in the recall of synonyms

and hypernyms compared to the baseline. For the holonymy class, we also see a simi-

lar recall to the baseline, 0.700 compared to 0.732 from the baseline for Gensim, 0.802

compared to 0.795 from the baseline for FastText. Considering those results, Tomek links

perform considerably better than random under-sampling, unfortunately, the outcome is

still worse with this method when comparing it to the baseline results.

46

Figure 5.4: Average confusion matrices for random under-sampling experiments with
three relationships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

Figure 5.5: Average confusion matrices for doubled random under-sampling experiments
with three relationships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

47

Figure 5.6: Average confusion matrices for Tomek links experiments with three relation-
ships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

5.1.4 Over-sampling experiments

For over-sampling, we tried using three variations of SMOTE presented in Section

4.4. The results of these experiments are presented in Tables 5.6 and 5.7. Considering

macro F1 scores, The three SMOTE variations respectively achieved an F1 score of 0.830,

0.819 and 0.830 compared to 0.834 from the baseline for the Gensim dataset, and achieved

an F1 score of 0.866, 0.861 and 0.866 compared to 0.861 from the baseline for the Fast-

Text dataset. All variations got close to the baseline model, or slightly surpassed it using

the FastText dataset when using SMOTE and SMOTE Borderline.

Table 5.6: Evaluation metrics for over-sampling for Gensim dataset with three relation-
ships.

Model Macro
F1 Precision Recall

SMOTE 0.830 0.831 0.828
SMOTE/Tomek 0.819 0.816 0.822

SMOTE Borderline 0.830 0.831 0.830
Source: The Author

Analyzing the three average confusion matrices for the SMOTE variations shown

in Figures 5.7, 5.8 and 5.9, we see a significant improvement in the holonymy class recall

compared to the baseline, with an increase of approximately 0.05 for both datasets. And

48

Table 5.7: Evaluation metrics for over-sampling for FastText dataset with three relation-
ships.

Model Macro
F1 Precision Recall

SMOTE 0.866 0.863 0.870
SMOTE/Tomek 0.861 0.856 0.866

SMOTE Borderline 0.866 0.864 0.869
Source: The Author

with a slight deterioration in the recall of other classes, with a decrease of 0.01 to 0.03

across datasets for the synonymy class, and varying from decreasing of 0.01 to increasing

of 0.01 for the hypernymy class.

Figure 5.7: Average confusion matrices for SMOTE experiments with three relationships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

5.1.5 Comparing results

The results of the experiments are summarized in Tables 5.8 and 5.9. Considering

the macro F1 score from all experiments, we can see that they showed worse results

than the baseline model. There were only slight improvements in other metrics, such as

the random under-sampling methods improving macro recall of the holonymy class, but

worsening it for other classes. It is important to notice that even with some improvements

in recall of classes in some experiments, all experiments showed the same pattern seen in

the baseline classification task.

49

Figure 5.8: Average confusion matrices for SMOTE/Tomek experiments with three rela-
tionships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

Figure 5.9: Average confusion matrices for Borderline SMOTE experiments with three
relationships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

50

The most interesting results are from the Tomek links experiments and SMOTE

experiments. Tomek links and its combination with SMOTE resulted in similar results

to the baseline model, but with the added training time for running these algorithms,

and not considerable improvements. Overall, the over-sampling methods SMOTE and

Borderline SMOTE have similar results, slightly superior for the FastText dataset, when

we compare them with baseline results. However, when we consider that the two methods

significantly improve the recall of the holonymy class, by approximately 0.05, with the

tradeoff of slightly worsening it for other classes, these models prove to be interesting

choices if having a better recall for that class is a desired result.

Table 5.8: Evaluation metrics for experiments for Gensim dataset with three relationships.

Model Macro
F1 Precision Recall

Baseline 0.834 0.850 0.820
Weighted 0.791 0.765 0.827

Focal 0.722 0.688 0.806
Random 0.661 0.632 0.745

Random 2 0.725 0.697 0.776
Tomek 0.811 0.831 0.795

SMOTE 0.830 0.831 0.828
SMOTE/Tomek 0.819 0.816 0.822

SMOTE Borderline 0.830 0.831 0.830
Source: The Author

Table 5.9: Evaluation metrics for experiments for FastText dataset with three relation-
ships.

Model Macro
F1 Precision Recall

Baseline 0.861 0.873 0.851
Weighted 0.812 0.790 0.842

Focal 0.716 0.683 0.816
Random 0.722 0.686 0.798

Random 2 0.777 0.753 0.813
Tomek 0.852 0.859 0.845

SMOTE 0.866 0.863 0.870
SMOTE/Tomek 0.861 0.856 0.866

SMOTE Borderline 0.866 0.864 0.869
Source: The Author

51

5.2 Experiments with two relationships

After analyzing the previous results, we saw that many of the errors in the con-

fusion matrices of all experiments were related to wrong classifications of synonyms, or

pairs from other classes being classified as synonyms. With that in mind, we decided to

perform experiments without considering the synonym relationship. Since we only have

two possible classes in the classification task, we chose the holonymy class as the positive

class, as that is the minority class, representing less than 0.15 of the dataset. It is also

worth noting that for the results, we are analyzing mainly the F1 score, recall, and preci-

sion metrics considering the positive class, but we calculated the macro averaged metrics

to compare them with the experiments with three relationships.

This section is divided as follows. Section 5.2.1 presents the results from the base-

line experiments, without any method to mitigate data imbalance. Section 5.2.2 presents

the results from the loss changes experiments, with weighted loss and focal loss. Sec-

tion 5.2.3 presents the results from the under-sampling experiments, with random under-

sampling and Tomek links under-sampling. Section 5.2.4 presents the results from the

over-sampling experiments, with SMOTE, SMOTE combined with Tomek links, and Bor-

derline SMOTE. Section 5.2.5 presents a comparison of the results from the different ex-

periments., comparing them with the results from the experiments with three relationships

as well.

5.2.1 Baseline

As shown in Table 5.10 we achieved an F1 score of 0.828 for our baseline ex-

periment using the Gensim dataset and achieved an F1 score of 0.885 for the FastText

dataset. Similar to the baseline model for three relationships, recall is smaller than pre-

cision, 0.772 compared to 0.893 for Gensim and 0.848 compared to 0.925 for FastText,

bringing the F1 score down.

Table 5.10: Evaluation metrics for baseline model with two relationships.

Dataset Positive Macro
F1 Precision Recall F1 Precision Recall

Gensim 0.828 0.893 0.772 0.905 0.934 0.881
FastText 0.885 0.925 0.848 0.934 0.952 0.919

Source: The Author

52

We can see in the confusion matrix shown in Figures 5.10a and 5.10b that incorrect

classifications of hypernyms are fairly low, with the class having a recall of 0.990 for both

datasets.

Figure 5.10: Average confusion matrices for baseline model with two relationships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

5.2.2 Weighted loss and focal loss experiments

The results from the changes to the loss function experiments can be seen in Tables

5.11 and 5.12. Similar to the experiments performed with three relationships, the results

are worse than the baseline results, with a decrease of 0.04 for Gensim and 0.02 for

FastText for weighted loss, and of 0.10 for focal loss. It’s worth noting that similar to the

experiments with three relationships, the weighted loss metrics were better than the focal

loss metrics. In both changes, recall is superior to precision, different from the baseline

for two relationships, with a difference between the metrics of 0.16 for Gensim and 0.10

for FastText for weighted loss, and for focal loss with a difference between the metrics of

0.34 for Gensim and 0.26 for FastText.

We see in Figures 5.11 and 5.12 that, compared to the baseline results, weighted

loss greatly increases recall for the holonymy class, an increase of 0.10 for Gensim and of

0.06 for FastText. But, it decreases recall for the hypernymy class, by approximately 0.02

for both datasets, making the tradeoff not worth it overall and resulting in decreased preci-

53

Table 5.11: Evaluation metrics for loss changes for Gensim dataset with two relationships.

Model Positive Macro
F1 Precision Recall F1 Precision Recall

Weighted 0.783 0.709 0.877 0.878 0.847 0.918
Focal 0.719 0.588 0.930 0.839 0.790 0.929

Source: The Author

Table 5.12: Evaluation metrics for loss changes for FastText dataset with two relation-
ships.

Model Positive Macro
F1 Precision Recall F1 Precision Recall

Weighted 0.858 0.809 0.914 0.918 0.898 0.942
Focal 0.785 0.675 0.943 0.873 0.833 0.939

Source: The Author

sion. Focal loss, also increases the recall of the holonymy class, even more than weighted

loss, 0.05 for Gensim and 0.02 for FastText compared to weighted loss results, but de-

creases recall for the hypernymy class even more, approximately 0.03 for both datasets

compared to weighted loss results, having even a bigger disparity between precision and

recall.

Figure 5.11: Average confusion matrices for weighted loss experiments with two rela-
tionships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

54

Figure 5.12: Average confusion matrices for focal loss experiments with two relation-
ships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

5.2.3 Under-sampling experiments.

For the under-sampling experiments, the results can be seen in Tables 5.13 and

5.14. In the results, we reference the variations described in Section 4.4 as "random", for

the first variation of random under-sampling, and as "random 2", for the second variation.

The random under-sampling results show that both variations worsened the model sig-

nificantly, with a decrease in F1 score for the first variation of 0.11 and 0.09 for Gensim

and FastText respectively, and a decrease of approximately 0.05 for the second variation.

Similar to the experiments with three relationships, the second variation achieved a better

F1 score when compared to the first. Using Tomek links under-sampling, we managed to

have a similar F1 score to the baseline model with two relationships with an F1 score of

0.832 for Gensim and 0.886 for FastText.

Table 5.13: Evaluation metrics for under-sampling for Gensim dataset with two relation-
ships.

Model Positive Macro
F1 Precision Recall F1 Precision Recall

Random 0.711 0.602 0.876 0.835 0.794 0.906
Random 2 0.763 0.696 0.848 0.867 0.839 0.903

Tomek 0.832 0.878 0.792 0.907 0.927 0.889
Source: The Author

55

Table 5.14: Evaluation metrics for under-sampling for FastText dataset with two relation-
ships.

Model Positive Macro
F1 Precision Recall F1 Precision Recall

Random 0.794 0.705 0.913 0.880 0.846 0.929
Random 2 0.831 0.799 0.866 0.903 0.890 0.917

Tomek 0.886 0.904 0.870 0.935 0.942 0.928
Source: The Author

Considering the confusion matrices shown in Figures 5.13, 5.14 and 5.15, and

considering the random variations respectively, the random under-sampling experiments

achieved an increase in recall compared to the baseline for the holonymy class of 0.10 and

0.07 for Gensim and of 0.06 and 0.01 for FastText. For the hypernymy class, the results

show, compared to the baseline, a decrease in recall of 0.05 and 0.03 for Gensim, and

of 0.04 and 0.02 for FastText. Those results show that with the random under-sampling

variations, we increase recall for the holonymy class, decreasing recall for the hypernymy

class, similar to the loss experiments.

For Tomek links under-sampling we have similar results to the baseline model for

two relationships, with a recall for the holonymy class equal to 0.791 for Gensim and

0.869 for FastText, and with a recall for the hypernymy class of 0.988 for Gensim and

0.987 for FastText.

Figure 5.13: Average confusion matrices for random under-sampling experiments with
two relationships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

56

Figure 5.14: Average confusion matrices for doubled random under-sampling experi-
ments with two relationships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

Figure 5.15: Average confusion matrices for Tomek links experiments with two relation-
ships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

57

5.2.4 Over-sampling experiments

For the over-sampling experiments, the evaluation metrics can be seen in Tables

5.15 and 5.16. All variations got close to the baseline model for two relationships in

regards to F1 score, with an F1 score of approximately 0.815 for the three variations

compared to 0.828 from the baseline for Gensim, and of 0.877, 0.882 and 0.879 compared

to 0.885 from the baseline for FastText. In all variations, recall was better than the baseline

model and precision was worse. With an increase in recall of 0.04 to 0.07 across all

variations for Gensim, and of 0.02 to 0.04 across all variations for FastText, and with a

decrease in precision of 0.08 to 0.10 across all variations for Gensim, and of 0.04 to 0.06

across all variations for FastText.

Table 5.15: Evaluation metrics for over-sampling for Gensim dataset with two relation-
ships.

Model Positive Macro
F1 Precision Recall F1 Precision Recall

SMOTE 0.815 0.811 0.820 0.897 0.895 0.899
SMOTE/Tomek 0.816 0.792 0.844 0.898 0.887 0.910

SMOTE Borderline 0.816 0.805 0.827 0.897 0.893 0.902
Source: The Author

Table 5.16: Evaluation metrics for over-sampling for FastText dataset with two relation-
ships.

Model Positive Macro
F1 Precision Recall F1 Precision Recall

SMOTE 0.877 0.878 0.876 0.930 0.930 0.929
SMOTE/Tomek 0.882 0.878 0.886 0.932 0.931 0.934

SMOTE Borderline 0.879 0.865 0.894 0.931 0.925 0.937
Source: The Author

Analyzing the three average confusion matrices for the SMOTE variations shown

in Figures 5.16, 5.17 and 5.18, we have similar results to the baseline model, with an

increase of recall for the holonymy class and a slight decrease of recall for the hypernymy

class compared to the baseline.

5.2.5 Comparing results

The results of the experiments are summarized in Tables 5.17 and 5.18. It is im-

portant to note that the results were found to be extremely similar to the results with the

58

Figure 5.16: Average confusion matrices for SMOTE experiments with two relationships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

Figure 5.17: Average confusion matrices for SMOTE/Tomek experiments with two rela-
tionships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

59

Figure 5.18: Average confusion matrices for Borderline SMOTE experiments with two
relationships.

(a) Gensim dataset. (b) FastText dataset.

Source: The Author

complete dataset, but with better F1 scores, comparing the macro averages. With an in-

crease of macro F1 score of at least 0.06 when comparing these results to the experiments

with the complete dataset. For the baseline model, the increase was approximately 0.07,

and for other variations, the increase was as high as 0.17, for random under-sampling for

Gensim. That increase indicates that potentially removing relations from the classifica-

tion task of semantic relations that cause many misclassifications, such as the synonymy

relationship in our task, can result in substantial gains in terms of F1 scores. The Macro

F1 scores from the experiments with three relationships and two relationships can be seen

in Figure 5.19 and Figure 5.20.

One distinction from the results from the complete dataset is that recall and preci-

sion did not follow a pattern. In the baseline tests, precision consistently surpassed recall,

affecting the F1 score. When changing the loss function, the results were found to be less

effective than the baseline, although the weighted loss metrics outperformed the focal loss

metrics, but both variations showed a superior recall at the expense of precision. The most

significant observation in these experiments was the increase in the holonymy class recall,

with a significant decrease in the hypernymy class recall.

For the under-sampling experiments, random under-sampling had worse results

from the baseline, and affected recall similarly to the loss change experiments. However,

Tomek links under-sampling managed to achieve an F1 score comparable to the baseline.

60

Figure 5.19: Macro F1 scores from the experiments with three relationships and two
relationships for Gensim.

Source: The Author

Figure 5.20: Macro F1 scores from the experiments with three relationships and two
relationships for FastText.

Source: The Author

61

The over-sampling experiments with SMOTE, presented results that matched the baseline

results as well. While these techniques enhanced recall, they did so by decreasing preci-

sion. It is interesting to note that from the results from random under-sampling, it can also

be concluded that for this problem, not only is the imbalance a challenge, but the amount

of data is very relevant. This is because eliminating the imbalance, by drastically reducing

the size of the dataset, resulted in worse performance than reducing the imbalance to a

lesser extent but retaining more data.

While different experiments presented their own positives and negatives, the ex-

periments with the best results, the SMOTE variations and Tomek links under-sampling,

were only able to come close to the baseline performance. With that in mind, the baseline

model is still the best model considering these results.

Table 5.17: Evaluation metrics for experiments for Gensim dataset with two relationships.

Model Positive Macro
F1 Precision Recall F1 Precision Recall

Baseline 0.828 0.893 0.772 0.905 0.934 0.881
Weighted 0.783 0.709 0.877 0.878 0.847 0.918

Focal 0.719 0.588 0.930 0.839 0.790 0.929
Random 0.711 0.602 0.876 0.835 0.794 0.906

Random 2 0.763 0.696 0.848 0.867 0.839 0.903
Tomek 0.832 0.878 0.792 0.907 0.927 0.889

SMOTE 0.815 0.811 0.820 0.897 0.895 0.899
SMOTE/Tomek 0.816 0.792 0.844 0.898 0.887 0.910

SMOTE Borderline 0.816 0.805 0.827 0.897 0.893 0.902
Source: The Author

Table 5.18: Evaluation metrics for experiments for FastText dataset with two relation-
ships.

Model Positive Macro
F1 Precision Recall F1 Precision Recall

Baseline 0.885 0.925 0.848 0.934 0.952 0.919
Weighted 0.858 0.809 0.914 0.918 0.898 0.942

Focal 0.785 0.675 0.943 0.873 0.833 0.939
Random 0.794 0.705 0.913 0.880 0.846 0.929

Random 2 0.831 0.799 0.866 0.903 0.890 0.917
Tomek 0.886 0.904 0.870 0.935 0.942 0.928

SMOTE 0.877 0.878 0.876 0.930 0.930 0.929
SMOTE/Tomek 0.882 0.878 0.886 0.932 0.931 0.934

SMOTE Borderline 0.879 0.865 0.894 0.931 0.925 0.937
Source: The Author

62

6 CONCLUSION

In this work, we investigated a machine learning approach for classifying semantic

relations from word embeddings that represent concepts. When reviewing the related

works, we found that in this scenario, it is common for datasets to be highly imbalanced,

and we could not find works that tried to systematically investigate approaches for dealing

with this issue in this scenario. Thus, the main goal of this work was to evaluate common

techniques to mitigate data imbalance in classification tasks.

Since the literature does not provide datasets for our target task, it was necessary

to develop our own datasets for carrying out the evaluation of data imbalance mitigation

techniques. Thus, as a second goal, we developed a methodology for building datasets for

the task of classifying semantic relations from word embeddings. And, finally, following

our methodology, we developed two different datasets, with two variations, that were

adopted in our experiments.

The methodology proposed in this work for building datasets for the target task

considers as input a set of pre-trained word embeddings and adopts the WordNet lexical

resource as a reference for establishing semantic relationships between pairs of words in

the word embeddings set. In order to do that, we defined a set of normalization rules and

matching rules, to be used during the execution of the matching process for mapping the

words in the word embeddings set and the words specified in WordNet.

We applied our proposed methodology to developing two different datasets (with

two variations). In order to do that, firstly, we selected two different sets of pre-trained

static word embedding, which we named Gensim and FastText, with different character-

istics. After that, we applied our methodology to these two sets of word embeddings for

building two datasets suitable for being used as input for machine learning approaches.

We developed two versions of datasets from each set of word embeddings: one consider-

ing three relationships and the other considering two relationships.

Finally, we selected the following set of strategies for dealing with data imbalance:

focal loss function, weighted loss function, random under-sampling, Tomek links under-

sampling, and over-sampling with three SMOTE variations. We evaluated the impact

of the selected techniques on the performance of a standard neural network trained for

classifying lexical relationships. The results showed that even though we were able to

slightly surpass the baseline model in some cases, in general, the selected techniques

were not able to increase its performance.

63

For the experiments based on the complete dataset with three relationships, the

majority of the techniques demonstrated worse performance in terms of macro F1 score

than the baseline. Some techniques, such as random under-sampling demonstrated an

increase in other metrics. In that case, there was an enhancement in the recall for the

holonymy class, but they exhibited a decline for other classes. Notably, the over-sampling

methods, specifically SMOTE and Borderline SMOTE, showed a slight superiority for

the FastText dataset in comparison to the baseline results. They were able to enhance

the recall for the holonymy class by approximately 0.05, with minor trade-offs, showing

their potential in specific use-cases where the recall of the holonymy classes is of greater

importance.

The results from the experiments with two relationships were similar to those ob-

tained with the complete dataset, but boasted improved F1 scores. That increase indicates

that relations that cause many misclassifications can result in substantial gains in terms

of F1 scores if removed. The differences between recall and precision were notable in

these experiments, with the baseline model having better precision than recall. But, fur-

ther experiments on loss function changes and under-sampling methods highlighted the

challenges of improving one metric without compromising the other. The results of the

over-sampling experiments with SMOTE echoed the baseline results, and compared to the

results with three relationships, they also increased recall of the holonymy class, proving

again the consistency of those results.

In summary, while certain methods, especially the SMOTE variations and Tomek

links under-sampling, showed promise, they primarily echoed the performance of the

baseline model, with a reasonable increase in the consumption of computing resources.

Hence, based on these results, the baseline model remains the most effective solution for

the present classification task.

Future works can investigate approaches for classifying semantic relationships us-

ing contextual word embeddings and pre-trained language models like BERT, as those can

consider multiple meanings of words, as opposed to aggregate those meanings into a sin-

gle embedding with static word embeddings, as that may have affected the performance

of the classification task. It is also important to investigate other neural network architec-

tures to find a better balance between recall and precision across various classes. As the

data imbalance techniques failed to provide substantial improvement, future works could

also investigate specific techniques for mitigating data imbalance designed to deal with

the particularities of this task. Other hybrid approaches combining under-sampling and

64

over-sampling techniques could also be combined, as we only tested one such approach

with SMOTE combined with Tomek links. Another avenue that could be explored is not

excluding the pairs of related words that were related by more than one relationship and

dealing with a multi-label classification problem.

65

REFERENCES

BATISTA, G.; BAZZAN, A.; MONARD, M.-C. Balancing training data for automated
annotation of keywords: a case study. In: . [S.l.: s.n.], 2003. p. 10–18.

BOJANOWSKI, P. et al. Enriching Word Vectors with Subword Information. 2017.

BOJANOWSKI, P. et al. Enriching Word Vectors with Subword Information. 2017.

BORST, W. N. Construction of engineering ontologies for knowledge sharing and reuse.
1999.

CHEN, L. et al. A deep learning based method for extracting semantic information from
patent documents. Scientometrics, v. 125, p. 289–312, 07 2020.

DASTRES, R.; SOORI, M. Artificial neural network systems. International Journal of
Imaging and Robotics, v. 21, p. 13–25, 03 2021.

DEVLIN, J. et al. BERT: Pre-training of deep bidirectional transformers for language
understanding. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, 2019. p. 4171–4186. Available from Internet:
<https://aclanthology.org/N19-1423>.

ELKAN, C. The foundations of cost-sensitive learning. Proceedings of the Seventeenth
International Conference on Artificial Intelligence: 4-10 August 2001; Seattle, v. 1,
05 2001.

FACELI, K. et al. Inteligência artificial: uma abordagem de aprendizado de
máquina. [S.l.]: LTC, 2011.

GASMI, H.; LAVAL, J.; BOURAS, A. Cold-start cybersecurity ontology population
using information extraction with lstm. In: 2019 International Conference on Cyber
Security for Emerging Technologies (CSET). [S.l.: s.n.], 2019. p. 1–6.

GOODFELLOW, I. J.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT
Press, 2016.

HAMMING, R. W. Error detecting and error correcting codes. The Bell System
Technical Journal, v. 29, n. 2, p. 147–160, 1950.

HAN, H.; WANG, W.-Y.; MAO, B.-H. Borderline-smote: A new over-sampling method
in imbalanced data sets learning. In: HUANG, D.-S.; ZHANG, X.-P.; HUANG, G.-B.
(Ed.). Advances in Intelligent Computing. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005. p. 878–887. ISBN 978-3-540-31902-3.

HE, H.; GARCIA, E. A. Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, v. 21, n. 9, p. 1263–1284, 2009.

HOGAN, A. et al. Knowledge graphs. ACM Comput. Surv., Association for Computing
Machinery, New York, NY, USA, v. 54, n. 4, jul 2021. ISSN 0360-0300. Available from
Internet: <https://doi.org/10.1145/3447772>.

https://aclanthology.org/N19-1423
https://doi.org/10.1145/3447772

66

HOSSEINI, M. B. et al. Ambiguity and generality in natural language privacy policies.
In: 2021 IEEE 29th International Requirements Engineering Conference (RE). [S.l.:
s.n.], 2021. p. 70–81.

JEPPESEN, J. et al. A cloud detection algorithm for satellite imagery based on deep
learning. Remote Sensing of Environment, v. 229, p. 247–259, 08 2019.

JI, S. et al. A survey on knowledge graphs: Representation, acquisition, and applications.
IEEE Transactions on Neural Networks and Learning Systems, Institute of Electrical
and Electronics Engineers (IEEE), v. 33, n. 2, p. 494–514, feb 2022. Available from
Internet: <https://doi.org/10.1109%2Ftnnls.2021.3070843>.

JURAFSKY, D.; MARTIN, J. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
3. ed. [S.l.]: Pearson Prentice Hall, 2023.

KHADIR, A. C.; GUESSOUM, A.; ALIANE, H. Ontological relation classification
using wordnet, word embeddings and deep neural networks. In: CHIKHI, S. et al. (Ed.).
Modelling and Implementation of Complex Systems. Cham: Springer International
Publishing, 2021. p. 136–148. ISBN 978-3-030-58861-8.

KONOPKA, B. M. Biomedical ontologies—a review. Biocybernetics and Biomedical
Engineering, v. 35, n. 2, p. 75–86, 2015. ISSN 0208-5216. Available from Internet:
<https://www.sciencedirect.com/science/article/pii/S0208521614000503>.

LEEVY, J. et al. A survey on addressing high-class imbalance in big data. Journal of
Big Data, v. 5, 11 2018.

LEZAMA-SáNCHEZ, A. L.; VIDAL, M. T.; REYES-ORTIZ, J. A. An approach
based on semantic relationship embeddings for text classification. Mathematics,
MDPI AG, v. 10, n. 21, p. 4161, Nov 2022. ISSN 2227-7390. Available from Internet:
<http://dx.doi.org/10.3390/math10214161>.

LIN, T. et al. Focal loss for dense object detection. CoRR, abs/1708.02002, 2017.
Available from Internet: <http://arxiv.org/abs/1708.02002>.

LIU, Q.; KUSNER, M. J.; BLUNSOM, P. A Survey on Contextual Embeddings. 2020.

MIKOLOV, T. et al. Efficient Estimation of Word Representations in Vector Space.
2013.

MILLER, G. A. Wordnet: A lexical database for english. Commun. ACM, Association
for Computing Machinery, New York, NY, USA, v. 38, n. 11, p. 39–41, nov 1995. ISSN
0001-0782. Available from Internet: <https://doi.org/10.1145/219717.219748>.

MILLER, G. A. et al. Introduction to WordNet: an on-line lexical database.
International Journal of Lexicography, v. 3, n. 4, p. 235–244, 1990. Available from
Internet: <http://wordnetcode.princeton.edu/5papers.pdf>.

OUSSAID, M.; BOUARAB-DAHMANI, F.; CULLOT, N. Food ontology enrichment
using word embeddings and machine learning technologies. In: 2022 5th International
Symposium on Informatics and its Applications (ISIA). [S.l.: s.n.], 2022. p. 1–6.

https://doi.org/10.1109%2Ftnnls.2021.3070843
https://www.sciencedirect.com/science/article/pii/S0208521614000503
http://dx.doi.org/10.3390/math10214161
http://arxiv.org/abs/1708.02002
https://doi.org/10.1145/219717.219748
http://wordnetcode.princeton.edu/5papers.pdf

67

PETERS, M. E. et al. Deep contextualized word representations. 2018.

RUSSELL, S. J.; NORVIG, P. Artificial Intelligence: a modern approach. 4. ed. [S.l.]:
Pearson, 2020.

SUN, Q. et al. Validating auto-suggested changes for snomed ct in non-lattice subgraphs
using relational machine learning. Studies in health technology and informatics,
v. 264, p. 378–382, 08 2019.

TOMEK, I. Two modifications of cnn. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-6, n. 11, p. 769–772, 1976.

Wikipedia contributors. Wikipedia, The Free Encyclopedia. 2004. [Online; accessed
27-July-2023]. Available from Internet: <https://en.wikipedia.org>.

https://en.wikipedia.org

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 Machine learning
	2.2 Word embeddings
	2.3 Performance metrics
	2.4 Data imbalance
	2.4.1 Algorithm-level methods
	2.4.2 Data-level methods

	2.5 Knowledge models
	2.6 WordNet

	3 Related Works
	4 Methodology
	4.1 Development environment
	4.2 Building the datasets
	4.2.1 Methodology for creating the datasets
	4.2.2 Datasets for classifying semantic relationships

	4.3 Approach for classifying semantic relationships
	4.4 Experiments

	5 Results
	5.1 Experiments with three relationships
	5.1.1 Baseline
	5.1.2 Experiments with weighted loss and focal loss
	5.1.3 Under-sampling experiments.
	5.1.4 Over-sampling experiments
	5.1.5 Comparing results

	5.2 Experiments with two relationships
	5.2.1 Baseline
	5.2.2 Weighted loss and focal loss experiments
	5.2.3 Under-sampling experiments.
	5.2.4 Over-sampling experiments
	5.2.5 Comparing results

	6 Conclusion
	References

