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It isn’t that life ashore is distasteful to me. But life at sea is better.
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ABSTRACT

The advent of the HL-LHC is projected to increase the volume of data generated by
LHC experiments for Particle Physics, or High Energy Physics (HEP), by at least an
order of magnitude, overwhelming current storage and analysis tools in the field such
as CERN’S ROOT. RNTuple is ROOT’s new 1/O subsystem engineered to lever-
age modern storage technologies. Object stores are an emerging asset in scalable
data storage, with widespread use in cloud and HPC applications. We propose to
integrate performant object store backends into RNTuple through two systems with
distinct use cases — DAOS and S3 —, in order to exploit, respectively, exascale super-
computing facilities for analyses and a vast storage topology for disseminating data
globally and granularly; in each case, the backend should cater to concerns in scal-
ability, efficiency and latency. We introduced to an experimental RNTuple-DAOS
backend a set of features designed to capitalize on bulk transfer, target co-locality
and our domain knowledge of HEP analysis patterns, with the goal of optimizing
throughput for data ingestion and retrieval. Informed by preliminary results re-
garding data volume, we further propose a zero—copy concatenation method based
on scatter—gather 1/O that improves transfer speed. A similar approach guided
our proof-of-concept RNTuple-S3 backend, adapted to consider latency limitations.
We evaluated the two contributions for single-node analyses on performant clusters
over InfiniBand RDMA and Ethernet, respectively. RNTuple-DAOS demonstrated
high throughput of over 10 GB/s (write) and 4.5 GB/s (read), corroborating our ap-
proach. The concatenation mechanism reached double the original write speed and
attained the same read speed as the targeted throughput, partially emancipating
transfer rates from the layout of the dataset. Furthermore, we validated RNTuple—
S3 as a backend for the cloud and developed next strategies for better performance.
Equipped with a production—grade DAOS backend for exascale supercomputers and
an S3 backend to access a global storage infrastructure, RNTuple is positioning itself
as the data format for the next era of HEP research at the HL-LHC and beyond.
Keywords: Particle physics. ROOT. DAOS. S3. high performance computing.
distributed systems.



Utilizando Object Stores para Analise em Fisica de Particulas com

RNTuple

RESUMO

A chegada do HL-LHC deve aumentar o volume de dados gerados por experimentos
do LHC para Fisica de Particulas, ou Fisica de Alta Energia (HEP), em pelo menos
uma ordem de magnitude, sobrecarregando atuais ferramentas de armazenamento
e andlise da drea, como ROOT. RNTuple é o novo subsistema de E/S do ROOT,
projetado para usufruir de tecnologias modernas de armazenamento. Object stores
sdo um recurso para armazenamento escalavel de dados usado para nuvem e compu-
tagao de alto desempenho (HPC). Propomos integrar ao RNTuple backends a object
stores por meio de dois sistemas de usos distintos — DAOS e S3 —, a fim de explorar,
respectivamente, centros de supercomputacao exaescala para analise e uma vasta
topologia para disseminagao global e granular de dados; ambos devem atentar para
escalabilidade, eficiéncia e laténcia. Introduzimos ao backend RNTuple-DAOS ex-
perimental melhorias que capitalizam transferéncia em massa, co-localidade e nosso
conhecimento de padroes de andlise para otimizar a vazao na ingestao e releitura de
dados. Informados por resultados preliminares, propomos um método de concate-
nagao sem copia baseado em E/S scatter—gather. Uma abordagem semelhante orien-
tou nosso backend prova de conceito, RNTuple-S3, com adaptagoes para considerar
limitacoes de laténcia. Avaliamos as duas contribuicoes em andlises nodo—inico
e em clusters de alto desempenho conectados por InfiniBand e Ethernet, respec-
tivamente. RNTuple-DAOS apresentou alta vazao, com picos acima de 10 GB/s
(escrita) e 4,5 GB/s (leitura), o que corrobora nossa abordagem. A concatenagao
atingiu o dobro da velocidade de escrita original e a mesma velocidade de leitura que
a vazao—alvo, parcialmente emancipando o desempenho do layout de dados. Além
disso, validamos o RNTuple-S3 como backend para a nuvem e desenvolvemos es-
tratégias para atingir alto desempenho. Equipado com um backend DAOS maduro
para supercomputadores exaescala e um backend S3 para acessar uma infraestrutura
de armazenamento global, RNTuple se posiciona como o formato de dados para a

proxima era de pesquisa em HEP, no HL-LHC e além.

Palavras-chave: fisica de particulas. ROOT. DAOS. S3. computacao de alto

desempenho, sistemas distribuidos.
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1 INTRODUCTION

The field of High Energy Physics is both a beneficiary and a benefactor of
groundbreaking technological progress in Computer Science. This chapter provides
context on some of its current and future challenges that motivated our work and
presents our guiding hypotheses. Following that is a brief description of the structure

of this thesis.

Context

High Energy Physics (HEP), or particle physics, studies elementary particles
and their interactions at the subatomic level in order to further our theoretical
understanding of matter at the smallest and largest scales of the universe.

For half a century, the most coherent set of equations to describe the fun-

damental forces behind particle interaction has been the Standard Model. The

Figure 1.1: The CERN Accelerator Complex in 2022. The points indicate where
each experiment’s detector is stationed.
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prevailing way to gather experimental data on the Standard Model is through col-
liding subatomic particles at high speeds. Such an impact decays the protons into
more basic subatomic particles, e.g., quarks and gluons, from whose interaction a
gamut of short-lived, composite particles may form. The higher the acceleration
between the initial particles, the more energy involved in the collision, increasing
the chances that heavier particles, such as bosons, be produced in the aftermath.

Currently, the largest particle collider in the world is the Large Hadron Col-
lider (LHC), with a circumference just shy of 27 kilometers intersected by the French-
Swiss border near Geneva. The LHC is maintained by the European Organization
for Nuclear Research (CERN). Collisions on the LHC are studied by four main ex-
periments, namely, A Large lon Collider Experiment (ALICE), A Toroidal LHC
ApparatuS (ATLAS), Compact Muon Solenoid (CMS) and LHC beauty (LHCb),
as pinpointed in figure 1.1. The much-publicized observation of the Higgs’ boson,
whose existence was experimentally validated in 2012 (AAD et al., 2012), was a
result of CMS efforts during the first run of the LHC.

Such findings come from analyzing data picked up by sensors in the detector,
which is then digitized, filtered and stored in tape and disk. Figure 1.2 presents a
timeline of LHC operations, or runs interspersed with long shutdowns, showcasing
the increase in energy, and thus particle collisions, since its inaugural startup. The

larger capacity for collisions, along with more powerful detector technology, directly

Figure 1.2: LHC timeline (2011-2040), including runs, shutdowns and capacity in
energy and number of particle collisions
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leads to more data that can be analyzed by researchers. Estimates place the volume
of data stored by all the LHC experiments at 1 petabyte of raw data per day of
operation during its second run (2015-2018); the third and fourth runs (respectively,
2022-2025 and 2029-2032) are expected to handily surpass these numbers (CERN,
2023; BOCKELMAN; ELMER; WATTS, 2023).

For decades, CERN has conceived in-house software solutions for its comput-
ing needs, designed and optimized for the usability and performance requirements
of particle physics data management and research. ROOT (BRUN; RADEMAK-
ERS, 1997) is the foremost data analysis framework for the HEP community, with
hundreds of contributors and thousands of daily users worldwide (ROOT Project,
2023a).

The pattern and scale of HEP data drove the development of ROOT’s own
data format and Input/Output (I/O) subsystem TTree. After a quarter—century of
evolution and over one exabyte of data cumulatively stored in the format, TTree
has established itself as the de facto standard format in the HEP community, out-
performing other formats for typical HEP analysis workflows (BLOMER, 2018).

Motivation

As figure 1.3a shows, the High Luminosity Large Hadron Collider (HL-LHC)
is projected to generate at least ten times as much collision data for end-user anal-
yses as past experiment cycles in the LHC, reaching the hundreds of petabytes per
year of operation. This context has motivated significant efforts by the HEP com-
puting community to adequate existing tools and leverage cutting-edge technologies
in software and hardware. One such push is IRIS-HEP’s Analysis Grand Challenge
(AGC), comprising performance objectives in critical steps of HEP analysis, e.g., in-
frastructure, data access, particle collision selection, and statistical model building.
ROOT figures among those projects contemplated by the AGC (BOCKELMAN;
ELMER; WATTS, 2023).

In order to store and analyze data at such a scale, comparable to the biggest
players in big data (1.4), it is necessary that distributing computing become the na-
tive theater for HEP analysis. Although researchers have benefited since Run 1 from
the scale-out orchestration of the Worldwide LHC Computing Grid (WLCG), cur-
rently servicing over two million jobs daily (WLCG, 2023), usability roadblocks com-
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Figure 1.3: Projected landscape on disk storage and compute needs by LHC exper-
iments and their estimated capacity in different funding scenarios
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mon to grid computing limit its effectiveness in facilitating HEP research. Such ob-
stacles come from the researcher’s need to manually divide-and-conquer large tasks
by splitting datasets, designating resources, and aggregating the results through
hand-crafted, shell-based scripts (LUTTGAU et al., 2018; PADULANO et al., 2022).

At the same time, throughout the last decade, the logistical challenges of big
data management have evoked paradigm-shifting developments in distributed and
parallel processing, e.g., object store-based cloud and High Performance Computing
(HPC) data centers and Storage-Class Memory (SCM). Two notable technologies
that embody such a paradigm change are the ubiquitous Amazon Web Services

(AWS) Amazon Simple Storage Service (S3) cloud topology and the Distributed

'HSO06 is a customary unit in high energy physics to represent computation resources, stemming
from the SPEC06 benchmark; 1 kHS06, or 10 HS06, corresponds approximately to the compute
power of 100 CPU cores as of 2012 and has been equated to 1 teraflop (BERGHGFER et al., 2015).
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Figure 1.4: The size of Big Data in 2021. Note the real and projected data volumes
for LHC projects, such as the WLCG and the HL-LHC.)
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Asynchronous Object Store (DAOS) (DAOS Project, 2023a; LIANG et al., 2020).
DAOS is a low-latency, high-throughput, high I/O operations per second (IOPS) ob-
ject storage system that is the basis of Intel’s exascale stack for HPC applications,
leveraging Non-Volatile Memory express (NVMe) devices and SCM (also referred to
as persistent memory). DAOS is present in a plurality of the top performing HPC
clusters in the 10500 list (I0500 Foundation, 2022) and is the underlying filesys-
tem for Argonne’s Aurora Exascale Supercomputer (Argonne National Laboratory,
2023).

However, T'Tree was not designed to facilitate native, fine-grained integration
with object stores. To address this and other concerns ahead of the HL-LHC, ROOT
has been developing RNTuple, an experimental I/O subsystem designed from scratch
with modern storage technologies and principles in mind. RNTuple’s architecture
is modular, allowing uncomplicated extensions for, e.g., new data types and storage
backends. With this backend agnosticism comes an unprecedented opportunity to
explore object store support for HEP analyses and tap into a widespread infrastruc-
ture of opportunist and specialized facilities. Through RNTuple, it becomes possible
to leverage both a global infrastructure of cloud storage facilities and a number of
exascale HPC data centers for efficient, distributed analysis of HL-LHC data.

Thus, extending RNTuple to support a production-grade native DAOS back-
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end could be the first step to enlist the power of exascale supercomputers toward
efficient, distributed ROOT analyses, while entering the cloud scene will provide
researchers with a scalable, fine—grained access to HEP datasets for the HL-LHC

era and beyond.

1.1 Hypotheses

In light of the requirement to attain a much higher I/O throughput for HEP
analysis to fully benefit from HPC data centers, we identify the following research

questions:

Hypothesis 1. Domain-specific knowledge of HEP analysis access patterns and the
DAOS storage model can improve RNTuple’s single-core 1/O performance and
throughput to DAOS object stores.

Hypothesis 2. Applying a similar approach, RNTuple can intercommunicate with
other object stores developed for different use cases, such as AWS S3 and other

cloud-based storage providers.

1.2 Objectives and Methodology

Objective 1. Identify approaches that improve DAOS integration into RNTuple
with regards to throughput.

la. Implement a more informed data mapping based on domain knowledge of
HEP analysis, RNTuple and DAOS.
1b. Evaluate the role of certain parameters under our control: page and clus-
ter sizes, replication and sharding levels.
1c. Develop a page concatenation mechanism for RNTuple inter-backend porta-
bility.
Objective 2. Based on the experience from the above objective, propose an RN-

Tuple backend for the cloud (AWS S3).

2a. Implement a proof-of-concept S3 backend that addresses cloud concerns,

subject to evaluation.
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Methodology. The above objectives 1la—c and 2a are met by means of raw read
and write throughput (defined in 2.5) in the context of an I/O-intensive, real-
istic benchmark for HEP analysis, as detailed in 5.2.

Main Contributions. We identify two especially noteworthy contributions in this

work:

1. An RNTuple-DAOS data mapping that exploits data co-locality in a
storage node’s target, storing together content that is typically fetched
together by HEP analyses;

2. A scatter-gather concatenation mechanism that enables transfer between

backends at higher speeds, irrespective of the ntuple’s native layout.

1.3 Structure

This thesis is structured as follows. Chapter 2 introduces the necessary foun-
dations to grasp the proposed method and ensuing evaluation. Chapter 3 provides
a brief survey on the state of the art that, to the best of our knowledge, eclipses
the body of related work at the time of writing. Chapter 4 presents a conceptual
model of our proposed solutions custom—made for DAOS and S3. Chapter 5 shows
the conducted experiments and contains an evaluation of our findings. Chapter
6 summarizes the findings and contrasts them to the objectives and hypotheses
enumerated in the introduction. The bibliography, which lists publications and ma-
terials that informed this work, follows suit. Finally, a glossary of domain-specific

terms closes the thesis.
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2 BACKGROUND

This chapter explains useful concepts for the remainder of this thesis. Section
2.1 introduces the ROOT framework in the context of HEP analysis. Section 2.4 lays
out the foundational elements of POSIX-compliant filesystems and object stores,
with an emphasis on their importance for scalability in distributed systems. In
section 2.3, we introduce DAOS and its properties. In section 2.5, we cover basic
concepts of High Performance Computing and its technologies, such as distributed

memory and interconnection networks.

2.1 High Energy Physics and its Analysis Patterns

High Energy Physics is a computationally intensive field with unique perfor-
mance and usability requirements. Given shortcomings of generic solutions found in
industry, physicists have long depended on domain-specific analysis tools fine-tuned
for their use cases to accelerate their research.

This section introduces useful concepts of Particle Physics and presents in-
sights into how data from Large Hadron Collider experiments is generated and an-
alyzed. Subsection 2.1.1 offers an abridged description of the lifetime of a collision
event, from beam acceleration to data point. Subsection 2.1.2 discusses the partic-

ularities of HEP analysis and its prevailing data access patterns.

2.1.1 Large Hadron Collider Data

The object of study for HEP analysis is the event. Henceforth, we refer to
an event as a collision between accelerated groupings of protons launched together —
proton bunches —, described in terms of certain properties and the collateral particles
that decayed from the collective impact.

Experiments at the LHC can now yield billions of collisions every second.
These originate from accelerating pairs of proton bunches in opposing directions
at a frequency of 40 MHz. As each event generates around 1 MB of signal data,
current LHC experiments can spawn information in the order of petabytes per second

(PB/s).
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However, a majority of this information reiterates well-understood phenom-
ena that do not advance the field of particle physics; thus, a complex filtering and
selection pipeline exists in order to keep analysis data tractable.

The first step in the pipeline, data acquisition, involves highly selective, on-
line triggers that filter out sensor readings corresponding to ordinary events. These
trigger mechanisms are implemented as layers in hardware and software to keep
storage latency as low as possible (ARDINO et al., 2023). After culling event data
by five orders of magnitude, the event reconstruction step pieces out particle tra-
jectories from various sensor readings to describe particle interactions throughout
their lifetimes post-collision.

Reconstruction-originated datasets are organized in custom data formats,
with degrees of compactness optimized for the analysis needs of each experiment.
Since the LHC’s first run, CMS analyses have been based on the Analysis Object
Data (AOD) format, an extract from reconstruction data. Each AOD event occu-
pies about 400 kB in memory. On subsequent runs, more compact formats, designed
for the use cases of a majority of analysis workflows, have spawned from the AOD:
the MiniAOD (35-60 kB per event) and NanoAOD (1-2 kB per event) layouts (PE-
RUZZI et al., 2020).

In parallel, artificial datasets are painstakingly generated through Monte
Carlo simulation frameworks such as Geantd (AGOSTINELLI et al., 2003). Statis-
tical processes are informed by theoretical formulae to be validated or rejected by
real-world experiments.

Each entry in LHC datasets lists a collision event and its noteworthy after-
effects. Since each event relates to a separate proton bunch crossing, entries are
treated as statistically independent data points, conditioned on experimental con-
text.

Two events can have different outcomes in terms of the particles they generate
and the features of interest to the researcher. Thus, HEP datasets have a mutable
schema and store data in jagged arrays, leading to support of these less common

mechanisms in HEP-fomented tools, e.g., ROOT.
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2.1.2 Data Analysis for High Energy Physics

HEP Analysis Workflows

In HEP analyses, physicists are interested in validating or falsifying theories
on particle interaction. To that end, analysis workflows typically compare ground
truth observations reconstructed from the experiment detectors to data generated
from Monte Carlo simulation processes that follow such theoretical models.

As with any data-intensive statistical analysis, it is critical to establish fea-
tures of interest to filter out irrelevant information. These cuts may target entire
feature columns or data points failing a given threshold, leaving the physicist with
only the interesting subset of events from the dataset. These events’ features of
interest are then processed to generate custom observables in a step akin to feature
engineering. Finally, the physics observables are aggregated and summarized, com-
monly in binned histograms, so that their distribution patterns can be interpreted
through statistical inference methods. The column-oriented design of HEP data

formats facilitates such analyses centered around features of interest.

LHC Analysis at Scale

With a volume of LHC data in the exabytes, HEP data analysis requires vast
computation and storage resources that surpass the capacity of any single node.
On the other hand, since an experiment’s events are statistically independent, its
workloads fall in with other computationally—intensive tasks called “embarrassingly
parallel” that are ideal targets for divide—and—conquer strategies, e.g., for distributed
computing across nodes working in unison.

Before the LHC’s first run, the Grid (FOSTER; KESSELMAN; TUECKE,
2001) was already under development to overcome the logistical challenges ushered
by data outflows of its projected scale. The Grid defines a virtual, resource-sharing
organization able to orchestrate a heterogeneous architecture of computing resources
across collaborating facilities globally. The WLCG (WLCG, 2023) is the Grid’s
implementation that concerts the combined efforts of HEP research contributors
toward more efficient LHC analyses. Currently, the WLCG counts over 1.4 million

cores and 1.5 exabytes of storage around the globe.
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2.2 The ROOT Framework

This section introduces the ROOT framework (ROOT Project, 2023a) and its
role for HEP data analysis. For brevity, we give more meticulous attention only to

its I/O subsystems TTree and RNTuple, despite the toolkit’s wide range of features.

Overview

ROOT (BRUN; RADEMAKERS, 1997; ANTCHEVA et al., 2009) is a general-
purpose software framework developed at CERN to provide the petabyte-scale stor-
age and efficient data processing required for high-volume scientific analyses in var-
ious fields of study, including HEP (KHACHATRYAN et al., 2014), genomics (GI-
ANNUZZI et al., 2011) and medicine (GREVILLOT et al., 2011). The four main
experiments at the LHC (ATLAS, ALICE, CMS and LHCb) are among ROOT’s
most prominent users; as such, the framework’s design is heavily influenced by their
particular requirements.

As seen in chapter 1, the scale at which LHC data generation occurs calls
for specialized software. Over a quarter-century, ROOT has cemented itself as the

main language of HEP storage and analysis.

2.2.1 ROOT 1/0

HEP analyses typically target only a subset of arbitrarily-formed observables
across the entire range of events derived from an experiment’s collision (HART-
MANN; ELMSHEUSER; DUCKECK, 2021). As such, ROOT’s I/O subsystem
subscribes to a columnar data storage paradigm, in addition to its support for arbi-
trary types and collections in C++.

Though TTree 1/0 speed and storage performance has been demonstrated to
topple other formats like HDF5 and Apache Parquet in the context of HEP analyses
(BLOMER, 2018), its near three decade long design carries shortcomings. The most
critical of them are optimization choices intending to hide seek latency in spinning
disks - pointless in an age of modern, NVMe flash storage systems. The underlying,

Portable Operating System Interface (POSIX)-compliant storage backend is built
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monolithically, taking major rewriting to adapt to other backends.

TTree’s performance bottlenecks may hinder analysis workflows starting with
LHC’s Run 4, once the planned HL-LHC upgrade is completed (High Luminosity
LHC Project, 2022). This occasion is expected to usher an increase of at least an
order of magnitude in the volume of data the LHC generates. Such an influx rate
would be untenable for TTree to handle, instigating its gradual retirement in favor
of a new, canonical data format for the future of HEP storage.

77, named for nested tuple, is the backwards-incompatible evolution of TTree
touted to address the latter’s shortcomings. In addition to modernized software
design principles that promise adaptability to shifting requirements, it brings a
smaller on-disk representation, more robust interfaces and type-safety by default.
To accelerate early adoption, there are ongoing developments to expand 77’s feature
set and eclipse TTree’s, e.g., integration with ROOT RDataFrame and a planned,
minimal I/O API in C, christened RNTuple Lite, which will enable ntuple migration
to existing machine learning stacks (BLOMER et al., 2020).

77 subscribes to a columnar layout that is reminiscent of design characteris-
tics seen in TTree and Apache’s Arrow (The Apache Software Foundation, 2023a)
and Parquet (The Apache Software Foundation, 2023b).

2.2.2 RNTuple Architecture

As described in subsection 2.2.1, 77 is a proposed, modernized format built
for the next generation of LHC experiments, while inheriting decades of domain
knowledge from TTree.

RNTuple’s architecture comprises four separate and functionally distinct lay-
ers. The event layer offers a user interface to read and write collision event entries,
either through hand-crafted event loops or through ROOT’s declarative interface
for analysis RDataFrame. The logical layer maps C++ objects to their correspond-
ing columns of fundamental types. Objects may be custom structures that are
fully composable and that include arbitrarily—nested collections, e.g., dictionaries
and vectors of vectors. The primitives layer coalesces ranges of values of the same
fundamental type into RNTuple pages. Lastly, the storage layer implements the con-
crete backend that handles I/O operations for pages, clusters and their metadata

(LOPEZ-GOMEZ; BLOMER, 2021).
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Figure 2.1 illustrates RNTuple’s high-level architecture. The layered design
makes it simple to cater to shifting requirements and technologies, e.g., including

support for new data types and storage backends.

Figure 2.1: Layers of the RNTuple subsystem

Event iteration
Looping over events for reading or writing

RNTupleView, RNTupleReader/Writer

Logical layer: C++ objects
Mapping of C++ types onto columns, e.g.,
std: :vector<float> — {index column, value column}

RField, RNTupleModel, REntry

Primitive layer: basic types
Columns containing elements of fundamental types (e.g.,
float, int) grouped into compressed pages, clusters

RColumn, RPage, ..

Storage layer: byte ranges
POSIX files, object stores

RPageStorage, RCluster, ..

Source: The Authors (adapted from Lopez-Gomez and Blomer (2021)).

2.3 DAOS

The Distributed Asynchronous Object Store (DAOS) is an open source, high
performance object store designed for massively distributed Non-Volatile Memory
(NVM) devices (LIANG et al., 2020; DAOS Project, 2023c). It is the foundation
of Intel’s exascale storage stack, running on Argonne National Laboratory (ANL)’s
Aurora supercomputer.

In this section, we provide an overview of DAOS’ architecture, storage and
data models, with emphasis on key design choices that make DAOS different com-

pared to opportunist object stores, and particularly suited for HPC applications.



25

2.3.1 System Architecture

DAOS is designed from the ground up to exploit HPC architectures based on
modern storage systems with low latency, byte-granular access and high through-
put interconnects. As such, it breaks away from traditional I/O models by not
supporting high latency, block-based disks.

Its architecture is defined by three “building blocks”: Persistent Memory
(PMem), NVMe and libfabric. PMem, as a form of SCM, is significantly faster
than Solid State Drives (SSDs) (see section 2.5). PMem is the storage destination
for all internal metadata and as a stage for critical small I/O operations, where they
undergo aggregation before being committed. For this reason, PMem must account
for at least 6% of total storage as of DAOS 2.2 (DAOS Project, 2023d). For bulk
transfers and noncritical small I/O, NVMe SSDs are supported (and recommended,
due to PMem storage costs). Lastly, libfabric, or Open Fabrics Interfaces (OFI)
(OFIWG, 2023), is a low-level communication library for HPC. In the context of
DAOS, it provides low-latency integration with underlying fabric communication
hardware.

The absence of system calls after spinup contributes to DAOS’ lower latencies.
This is achieved by memory mapping PMem storage and the employment of user-
level libraries and kernel-bypassing remote transfer protocols like Non-Volatile Mem-
ory express over Fabrics (NVMe-oF). Though this makes DAOS very lightweight,
applications that expect the POSIX 1/O API must go through DAOS File System
(DFS) compatibility middleware, e.g., dfuse (user space mount) and libioil (I/O

intercept).

2.3.2 Storage and Data Models

The data organization in DAOS is unique to object stores. In this subsec-
tion, we detail how data and metadata are managed in DAOS and how its rich
interfaces grant the user a distinctive degree of control on data locality, distribution
and integrity, contrasting to other popular solutions in the field.

The schematic in figure 2.3 exemplifies DAOS’ stratified storage model, from
the pool of physical storage targets, to its potential hundreds of independent, names-

pace containers, to their potential billions of objects, each capable of holding an
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extremely large number of data values.

Pool

The pool represents a reservation of storage distributed across a subset of the
physical targets that make up a server’s storage nodes. Once allocated, the pool’s
storage space in a given target are known as one of the pool’s shards.

In DAOS, a pool can sustain hundreds of object stores - containers - which
operate independently of each other. Data pertaining to a container can be spread

across pool targets to achieve a particular level of resilience and 1/O performance.

Container

A container denotes a private address space within the pool that is able to
hold in the order of 10?® unique data-containing objects. Containers must be opened
by applications connected to the DAOS pool before I/O requests can be issued.
Container types, denoting different data layouts, can be implemented on top of the
DAOS Application Programming Interface (API) provided through libdaos, such
as the POSIX-based DFS or ROOT’s own middleware featured in this work.

The container is responsible for data versioning and transactional consistency
based on epoch timestamps. For permanent references to consistent dataset states,
DAOS supports timestamped and immutable snapshots, allowing the entire con-
tainer to be rolled back. To cope with distributed settings and mitigate contention,
multiple I/O operations are combined into a transaction with Atomicity, Consis-

tency, Isolation, Durability (ACID) properties, which is subjected to optimistic,

Figure 2.2: DAOS storage model: the pool abstraction.

Storage Node 1 Storage Node 2

Target 1 Target 2 Target 3 Target 4

Storage Node 3
Target 1 Target 2 Target 3 Target 4

Target 1 Target 2 Target 3 Target 4

Pool 1 (shard)
" Pool 1 (shard)
Pool 1 (shard)

Source: The Authors (adapted from DAOS Project (2023b)).
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Figure 2.3: A simplified view of the storage model and data organization with the
multi-level Key-Value Store API in DAOS.

Pool _ Objects
00 //Contame‘r—/___,,,—f‘ dkey | akey | value ____@ Target n
T (O dkeyl | .. e
e . N dkey | akey | value ___@ Target 2
dkeyl | ..
dkeyl | . 8 Target 1

Source: The Authors.

multi-version concurrency control; versioned updates are eventually aggregated to
reclaim space. Concurrency conflicts are settled on the basis of timestamp ordering.

Each container is associated with a Universally Unique Identifier (UUID).
Since DAOS 2.0, string labels have become the default interface for container iden-

tifiers, matching S3.

Object

A DAOS object is a data partition capable of containing multiple blobs,
unlike the most ubiquitous object stores. This entity has two supported paradigms,

depending on whether the stored data is structured.

1. The array API turns objects into arrays. Array elements have fixed size, are
accessed through an index and can be overwritten individually. Both flat and
multi-dimensional arrays are supported.

2. The Key-Value Store (KVS) API turns objects into full-blown key-value stores.
Elements, or blobs, have variable size. A key is assigned to access each blob.
The complexity of this key depends on the particular KVS interface chosen by

the user:

2a Single-level KVS, with pairs (akey, value). This is akin to a traditional
object store interface: an attribute key (akey) maps to the value.

2b Multi-level KVS: with pairs ((akey, dkey),value). Here, the mapping
interface has a composite key, where the addition of a distribution key

(dkey) impact data locality in hardware.
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Figure 2.3 exemplifies how data is assigned to storage under the multi-level
KVS model. The dkey directly determines where data is physically stored in the
server. Under the same object, two values sharing the same dkey are guaranteed to
be mapped to the same node target. This guarantee does not extend to the same
dkey under different objects, even in the same container namespace. The akey
completes the composite key to form a unique identifier among object values.

Whatever the underlying paradigm, each object is uniquely identifiable within
its container namespace by the object id (0id), a 128-bit numerical value. The first
32 bits of the oid are reserved for DAOS metadata. The remaining 96 bits are the

user’s to define.

Object Operations DAOS operations are concentrated on the object. The values
within an object are immutable, replaceable blobs. DAOS is optimized to fetch or
update these values as a single request unit. Thus, at this time, partial, byte-range
requests are unsupported, either for reading or writing.

Object updates and fetches are triggered by API calls to daos_obj_update()
and daos_obj_fetch(), which take vectors with an arbitrary number of I/O Vectors
(IOVs) and Scatter-Gather Lists (SGLs). As such, these operations support Linux’
scatter-gather 1/O — multiple buffers on the user’s machine may be combined into
one single data Binary Large Object (blob) server-side. Each blob is sequentially
described by a corresponding akey stored in the list of IOVs, which inform the total

size of each blob.

Table 2.1: A subset of pre-defined object classes in DAOS.

Object Class Replication Factor Sharding Factor
TINY 1 1

MAX 1 “Maximum”
SX 1 All
RP_2G1 2 1
RP_TINY 1 All
RP_MAX “Maximum” All

XSF 12..128 1
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Object Classes: DAOS object classes are a shorthand for properties relating to
object data redundancy and layout across pool shards. There exist pre-defined object
classes optimal for common object store use cases. Custom object class schema can
be defined at any time. Table 2.1 contains examples of pre-defined object classes
relevant to this work, along with their data protection factor (i.e., replication count)

and sharding level (i.e., distribution between the available physical devices).

Metadata Management: Metadata is a known source of contention and scala-
bility concerns in distributed systems (BOITO et al., 2018). DAOS’ storage model
addresses these concerns by keeping metadata lightweight and low-latency. For this
reason, metadata I/0 is exclusive to PMem devices, a form of SCM significantly
faster than NVMe.

DAOS sacrifices object-level metadata granularity for many details tradition-
ally maintained by file systems. Only object type and schema - regulating striping
and replication, for example -, are kept on a per-object basis (DAOS Project, 2023b).

2.4 Data Storage Paradigms

Storage systems comprise the infrastructure and logical abstractions devel-
oped for organizing, storing and protecting the correctness of data. Throughout the
years, file and database systems have been proposed for efficient data I/O in local
and distributed settings. In this section, we provide an overview of traditional and

emerging systems and their efforts to manage stored content coherently.

2.4.1 Traditional Approaches

In this work, we refer to traditional data storage systems as the conven-
tional paradigms that predate modern approaches targeting distributed and cloud
storage. We briefly discuss three important concepts and their approaches to data

management: POSIX files, block storage and transactional databases.
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File-Based Storage

File-based systems are organized in a tree-like hierarchy of directories and
data-containing files. Its elements are typically saddled with metadata, permissions,
timestamps and ownership credentials. Data is accessible by a path location stem-
ming from the root directory. As file-based systems grow in size, managing the
hierarchy’s metadata becomes cumbersome, which hurts the scalability of such sys-
tems. One source of contention in file-based systems is the adherence to the POSIX

standards.

Definition (POSIX I/0) A POSIX standard which describes well-defined seman-
tics and interfaces for 1/0 in file systems across platforms, stipulating stateful file
descriptors, atomic operations, inter-process sequential consistency and prescrip-
tive metadata for owner, group permissions and timestamps, among others. It also

regulates aspects like buffering and flushing of data to storage, blocking and asyn-

chronous I/0.

Though POSIX 1/0 semantics provides systems with data integrity and con-
sistency, it comes at the cost of limited scalability in data and concurrency. Some
concerns include file-level consistency through locking, blocking 1/O by default, cen-

tralized metadata management and hierarchical traversal and data placement.

Block-Based Storage

Block-based storage splits content into granular chunks of equal size, called
blocks. Each block is stored independently, which enables better hardware utiliza-
tion and access through block-level addressing.

In contrast to file-based storage, block storage eschews a hierarchical struc-
ture and metadata bookkeeping, which can lead to better scalability for applications
managing their own data structuring, such as databases. In particular, block stor-
age provides a robust foundation for transactional databases, as block granularity
mitigates the effects of contention caused by transactions. However, management
and scalability concerns may arise from the need for lookup tables to keep track of

the storage blocks to which data are assigned.
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Transactional Databases

Transactional databases are designed to ensure reliable and consistent data
management. Such databases are based on transactions, or sequences of one or
more database operations that are executed reliably in the presence of concurrency
or unexpected crashes. Transactions offer guarantees described by four properties

better known for their shorthand ACID.

Definition (ACID). A shorthand for four properties of database transactions —
Atomicity, Consistency, Isolation, Durability —, whose definitions follow suit. Atom-
icity: a transaction’s statements are unitary and indivisible. Consistency: the
database transitions between consistent states. Isolation: concurrent operations
act on the system’s state as if they were sequential. Durability: committed trans-

actions are not lost in case of crashes.

2.4.2 Modern and Distributed Storage Systems

Emerging storage systems propose advanced and specialized concepts in data
management and access, such as parallel file systems, columnar databases and object
stores that are better suited to distributed settings. Such systems are geared toward

scalability and reliability in contexts from big data analytics to HPC.

Parallel File Systems

Parallel file systems distribute files through striping across multiple, block-
based storage nodes in a cluster, seeking to achieve fast and concurrent access to
data. They represent an especially-designed data-sharing solution to mitigate I/O
bottlenecks in parallel data processing. Once requested, data is served concurrently
and transparently through separate 1/O paths to saturate bandwidth. HPC ap-
plications with high data volume typically resort to parallel file systems for these

benefits; a prominent example is Lustre (BRAAM, 2019).

Distributed Systems

Distributed systems span multiple networked nodes working in tandem to-

ward common tasks as if a single computing system. Together, these systems can



32

tackle much larger problems than any single node. Examples of distributed systems
include cloud platforms like AWS, Ceph (JEONG et al., 2019) and the Hadoop Dis-
tributed File System (HDFS). The latter deploys scale-out file systems consisting of
commodity nodes to distribute work, though its tree hierarchies at the node level
impact the system’s manageability at scale.

As can be seen, for their benefits, distributed systems introduce many chal-
lenges to maintain a globally synchronized and consistent state against data con-
currency and component failures. For this, modern storage solutions can apply
distributed transactions and consistency control, as well as fault tolerance through

the replication of the same data across several backup nodes.

Definition (Availability, Partition Tolerance, Consistency): Availability is
kept if requests always receive a response within an acceptable timeframe. High
availability rates are referred by their number of "nines” (i.e., 99.99 % as "four
nines”). Partition tolerance means system operability despite arbitrary network
latency between nodes. Consistency models impose an ordering of operations that
maintains a coherent global state between nodes. Some guarantees include “strong
consistency” (a read always accesses the most globally recent content) and its relax-

ation, “eventual consistency” (updates are eventually propagated to every node).

The strong consistency expectations of POSIX-compliant file systems cause
I/O bottlenecks for distributed applications. Not only does this cripple scalability
for databases where structure is not critical, but it affects concurrent access due to
frequent locking. This is supported by the acronymous Consistency, Availability,

Partition tolerance (CAP) theorem, presented below.

Theorem 2.4.1 (Brewer’s CAP Theorem) A distributed system may attain at
most two out of the three following properties to a rigorous degree at any given time:

(strong) consistency, availability and tolerance to networking partitioning.

Naturally, CAP is only applicable in networked systems. Depending on their
purpose, services may offer CAP trade-offs like consistency degradation (e.g., from
strong to eventual) in order to keep availability rates high (MUROZ-ESCOI et al.,
2019).

A weaker set of guarantees ubiquitous to distributed systems is BASE (”Basi-

cally Available, Soft-state, Eventually consistent”), prioritizing scalable availability
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and fault tolerance over strict consistency. Its properties affirm that nodes may
temporarily be unresponsive or have inconsistent data views due to concurrent op-

erations and network latency before converging to a consistent state.

Columnar Storage

In column-oriented Database Management System (DBMS), data of a given
column is stored sequentially; a column spans several entry records consecutively
on disk. This is in contrast with row-oriented DBMS, wherein each entry is an in-
dividual, heterogeneous record spanning all columns in the database. Apache Par-
quet (The Apache Software Foundation, 2023b) is a highly popular and performant
columnar DBMS.

According to Abadi, Boncz and Harizopoulos (2009), columnar databases
tend to be more compact than row-based approaches in terms of storage footprint,
due to the effectiveness of compression algorithms when applied to homogeneous
data with low information entropy, e.g., values from the same column.

The on-disk data layout of column stores makes them suitable for large vol-
ume, read-intensive applications such as scientific and business analytical workloads:
only the columns corresponding to features of interest are accessed, yielding higher
effective I/O rates. However, columnar layouts lead to high seek latency by spinning
media when serving scattered 1/O requests from different columns (HARTMANN;
ELMSHEUSER; DUCKECK, 2021; ABADI; MADDEN; HACHEM, 2008).

Object Storage

The reliance of traditional file systems on file hierarchy and lookup tables to
access blocks in storage globally slows the system down as the database expands.
A more scalable approach is to do away with structure altogether and keep a flat
collection of data, each piece associated to a unique key. This is known as a KVS.

Key-value object stores (or "object stores”) segment data as self-contained
and independent units ("objects”) bundled with a custom set of embedded metadata.
This benefits navigation and access to objects. The latter is provided through a set
of intentionally-simple operations, e.g., GET, PUT and DELETE. As a downside of this
limited interface and the lack of block granularity, object stores are better suited for

predominantly static, Write Once, Read Many (WORM) databases instead of those
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with regularly changing data.

According to Liu et al. (2018a), a key factor behind the scalability of object
stores is the self-describing nature of the data; unlike with POSIX I/O schemes, nei-
ther a directory hierarchy nor a set of prescribed properties are enforced on objects.
Metadata exists as custom tags on objects, favoring flexibility over usability Trans-
actions are kept simple to prevent concurrency locks: objects are immutable and
their access is stateless and not descriptor-based. Additionally, strong consistency
is often downgraded to eventual consistency guarantees.

Myriad object store solutions exist in the market, such as Amazon Dynamo,
Apache Cassandra, Google Spanner, AWS S3, and DAOS. The latter two have been
validated in HPC contexts (GADBAN; KUNKEL, 2021; LIU et al., 2018a).

2.5 High Performance Computing

High Performance Computing (HPC) engages powerful, interconnected nodes
to tackle intensive tasks efficiently. At the scale of thousands or millions of cores,
these nodes make up a supercomputer or HPC cluster that leverages cutting edge
components in processing, storage and networking, tuned to operate in parallel with

minimal latency and exceptionally high throughput.

2.5.1 Persistent Storage Technologies

Non-Volatile Memory

NVM describes a persistent storage system that retains its contents if power is
interrupted. These systems are typically designed for long term, secondary storage,
such that latency is a lesser concern than cost and access is block-granular. As such,
even NVMs based on NAND flash, such as SSDs, are multiple orders of magnitude
slower than Dynamic Random Acces Memory (DRAM), a type of volatile memory.

Storage-Class Memory and Persistent Memory

Despite latency reductions of an order of magnitude introduced by SSDs

compared to Hard Disk Drives (HDDs), I/O remains the performance bottleneck in
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storage devices. To address this divide between cutting-edge processors and NAND-
based storage, a new tier of storage technology, called SCM, has emerged with the
potential to make modern storage as fast as the rest of its system (HADY et al.,
2017).

SCM denotes solid state storage that share features with both NAND and
DRAM devices, serving as a compromise between the two. It is nonvolatile; as
such, it is also referred to as PMem. On the other hand, it offers an order of mag-

nitude lower latency than SSDs, while remaining more cost-effective than DRAM

(THOMASIAN, 2022).

3D XPoint Storage (Optane)

3D XPoint (“cross-point”) is a type of NVM jointly developed by Intel and
Micron Technology that is speculated to have a phase-change memory (PCM),
transistor-less architecture with a dense layout of stacked memory cells (HADY et
al., 2017). The technology has been commercialized under the Intel Optane brand
for different use cases. Among them, we note the Optane SSD - a POSIX-compliant

storage for block-abstracted, asynchronous I/O interfaces -, and Optane PMem.

2.5.2 Communication Technologies

Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is a network communication tech-
nique that generalizes Direct Memory Access (DMA) for networked nodes. In DMA,
subsystems can bypass the CPU and directly access the system’s storage, as opposed
to programmed, memory-mapped and TCP socket-based 1/0O, where the CPU has
more active and computationally expensive roles. Instead, for RDMA and DMA
both, the CPU only steps in to grant initial access to the data region and to han-
dle the end of the transfer signaled by the driver. Particularly, the RDMA-enabled
host grants its Network Interface Card (NIC) access to application memory so that
guest nodes may read and write data without going through the I/0O stack at either
endpoint (Nvidia, Inc., 2023). Though overhead from setting up endpoint access is

significant, its impact is attenuated by much faster transfer rates for bulk data.
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InfiniBand

InfiniBand is a high-throughput and low-latency standard that implements
RDMA to achieve reliable communication between interconnected nodes. A switched
fabric topology enables point-to-point data transfer across multiple channels in par-
allel. As of 2022, InfiniBand could reach a theoretical effective data rate of 100 Gbps
per link (InfiniBand Trade Association, 2023).

NVMe

Non-Volatile Memory express (NVMe) is a high-bandwidth communication
protocol specification to enable access of SSDs through Peripheral Component Inter-
connect Express (PCle) buses and better capitalize on the parallelism capabilities
of their hosts’ storage. Non-Volatile Memory express over Fabrics (NVMe-oF) is
an extension of the above protocol that encapsulates it through transport proto-
cols, e.g., TCP, RDMA and InfiniBand, allowing NVMe commands to be tunneled
between remote nodes.

The verbs API is available through the libfabric library and provides
functions for applications to access NICs. It supports direct read and write access
between remote nodes from the application layer with guarantees against packet

losses.

2.5.3 HPC Clusters and Exascale Computing

Above the computational capability for 10'8 64-bit operations per second,
supercomputers are considered exascale (KOGGE et al., 2008). This barrier was
only recently crossed with a growing class of exascale supercomputers, like 2022’s
Frontier (Oak Ridge National Laboratory), and the upcoming Aurora (Argonne
National Laboratory) and JUPITER (Forschungszentrum Jiilich).

The 10500 benchmark suite (I0500 Foundation, 2022) is a well known test
battery comprising five workloads to evaluate the I/O performance of HPC systems.
The tests measure bulk, small and metadata I/O for both random and pattern-based
data access, to which a single score is assigned. Ranked listings with the world’s top-
scoring systems are unveiled twice a year. A “research” listing is currently headed

by Pengcheng Laboratory’s Cloudbrain-II on Atlas 900, based on their SuperFS
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filesystem. In the “production” listing, the headliner is the Leibniz Supercomputing
Centre’s LRZ, running DAOS.

The most important metric in I/O benchmarks is the Data Transfer Rate
(DTR), or throughput, which is capped by the link medium’s capacity, or bandwidth.

We define these terms below.

Definition (Throughput). Throughput, alternatively Data Transfer Rate (DTR),
is the transmission speed R, of successfully sending d units of information between
connected devices over a link M in the time ¢4. It is usually measured in bytes per

second.

R..(d,ty) = % (2.1)

Definition (Bandwidth). Bandwidth refers to the theoretical capacity C,, for
data transfer over a connecting link m. It corresponds to the peak or maximum

throughput observable over any period of time on that medium, i.e., C,, > R,,,Vm.

Exascale clusters require modernized software stacks that fully exploit the
capabilities of their hardware components.

Among parallel storage solutions, the prevalent use of parallel file systems is
a known chokepoint to scalability in applications that do not need the consistency
semantics or hierarchical structure of POSIX I/0, such as computationally-intensive
analysis workflows with WORM data.

Therefore, HPC storage systems are designed around object-based seman-
tics, despite being traditionally exposed to middleware (e.g., Hierarchical Data For-
mat version 5 (HDF5)) through POSIX. Recently, HPC and cloud-based applica-
tions have started to exploit object interfaces natively and efficiently (GADBAN;
KUNKEL, 2021; LIU et al., 2018a).
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3 RELATED WORK

TTree and RNTuple as Data Formats for Scientific Analysis

Though not yet production-ready, ROOT RNTuple is already present in
the literature for HEP storage and analysis applications. The format has been
extensively shown to outperform its predecessor ROOT TTree in quantitative and
qualitative criteria. RNTuple boasts a compact representation of nested collections,
which has led to 15-25% smaller LHC experiment files post—compression. It has
also demonstrated finer-grained parallelism and improved memory management and
I/O performance in SSDs, with over 500 MB/s/core throughput (BLOMER et al.,
2020; BLOMER, 2018; LOPEZ-GOMEZ; BLOMER, 2022).

In addition to promising metrics on local SSDs, claimed to be partly due to
forgoing spinning disk optimizations, RNTuple has been adapted for use in tandem
with remote storage solutions, such as Hypertext Transfer Protocol (HTTP) through
libdavix (DEVRESSE; FURANO, 2014), XRootD (DORIGO et al., 2005) and object
stores (NAUMANN et al., 2022; LOPEZ-GOMEZ; BLOMER, 2021).

In particular, Lopez-Gomez and Blomer (2021) introduced an experimental
DAOS backend for ROOT’s RNTuple as a probe towards first-class support of object
stores. The work extended RNTuple’s generic storage layer with a concrete imple-
mentation for DAOS without altering the user API. The authors defined a naive data
mapping of one RNTuple data chunk per DAOS object. The native DAOS backend
was evaluated over sockets and compared against both a local POSIX filesystem
and a Filesystem In Userspace (FUSE) filesystem, accessible through a compatibil-
ity layer. Experimentally, the proposed backend outperformed FUSE in throughput
by wide margins, while falling short of RNTuple’s file backend on local SSDs. The
results suggested that a native solution with a more thoughtful data mapping was
needed to fully exploit DAOS.

As in-house solutions, TTree and RNTuple have both been subjected to com-
parisons against industry-standard data formats for analysis. In Blomer (2018),
TTree had overall better performance than a wide range of popular I/O libraries
like Parquet (The Apache Software Foundation, 2023b), HDF5 (SOUMAGNE et al.,
2022), and SQLite for the HEP use case, i.e., partial, columnar and repeated read-
ing of the dataset, at which columnar formats excel. In Lopez-Gomez and Blomer

(2022), RNTuple was similarly compared to Parquet and HDF5. A qualitative study
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showed RNTuple’s efforts to cover features critical to HEP analysis, such as schema
evolution and creation from C++ classes. Furthermore, RNTuple dominated the
aforementioned formats throughput—wise when accessing from CephFS, HDD, and
particularly SSD.

With each upgrade cycle, the LHC experiments generate larger volumes of
data. For HEP analysis to cope with this increased data production, has been a
push to modernize HEP workflows and its specialized software to make full use
of cloud computing, HPC clusters and distributed data centers. There has been
considerable effort to adapt ROOT for distributed computing settings (SEHRISH;
KOWALKOWSKI; PATERNO, 2017). Particularly, its declarative analysis interface
RDataFrame has been adapted to leverage modern and scalable analytics engines
like Spark and Dask and enable distributed performance transparently to ROOT
end—users without the complexity of grid computing (PADULANO et al., 2020;
PADULANO et al., 2023; PADULANO, 2023).

To speed up RDataFrame analyses with repeated data access, Padulano et al.
(2022) proposed a caching system for RNTuple that exploits available fast storage
locations, e.g., SSDs and remote object stores, in a backend-agnostic way. While
compressed chunks are read from slow, mass storage, the mechanism writes a copy of
the data in parallel to the cache location, interleaving the I/O operations with CPU-
bound decompression and analysis. Subsequent workflows by any user can access
the cache directly. Using DAOS as cache over the conceptual backend introduced
in Lopez-Gomez and Blomer (2021), with transfer chunks of 4 MiB, the authors
evaluated the proposal on one and seven client nodes armed with an InfiniBand
interface and spawning 16 threads each. They observed processing throughputs of
8 GB/s and 37 GB/s, equivalent to 46% and 74% of the theoretical maximum reading
throughput, respectively.

Storage Models for High Performance Computing Applications

In recent literature, many data-intensive applications have turned to HPC-
targeted storage engines and experimented with object stores, e.g., in the context
of research and scientific analysis, seeking to avoid performance and scalability bot-
tlenecks associated with POSIX I/0.

Both in generic benchmarks and realistic contexts such as numerical weather

prediction, simulation and deep learning, the performance of object stores has been
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stress-evaluated and compared with that of parallel filesystems geared toward HPC
applications, e.g., Lustre, OrangeF'S and BeeFS. Through emulation, object stores
were shown to boost scalability for the HDF5 library in intensive HPC workloads
(CHIEN et al., 2018). For the past years, a plurality of the top-performing storage
stacks on the 10500 benchmark suite have utilized DAOS as their underlying sys-
tem (10500 Foundation, 2022), including Argonne’s Aurora exascale supercomputer
(Argonne National Laboratory, 2023). In studies, DAOS was shown to handily out-
perform kernel-dependent storage stacks on small and average-sized clusters of up
to dozens of nodes equipped with persistent memory and NVMe devices. These
demonstrated DAOS as particularly performant for small 1/O transfers of 10 MiB or
less, and an equivalent contender for bulk data to the order of several tens of MiB,
suggesting that it can better sustain a high throughput of metadata transactions. In
contrast, the same studies suggested limitations at larger scales having more complex
network topologies — i.e., hundreds or thousands of nodes —, especially with regards
to metadata bottlenecks for a high count of thousands of Message Passing Interface
(MPI) tasks. Furthermore, as big data clusters typically rely on HDDs as primary
storage, there are concerns that NVM-based storage systems like DAOS will be lim-
ited to mid-sized clusters or kept to caching layers at best (MANUBENS et al., 2022;
MANUBENS et al., 2023; LOGAN et al., 2023; HENNECKE, 2023). At the same
time, other object stores have been explored for HPC. Ceph is a versatile and popu-
lar storage system based on an underlying object store layer, RADOS (WEIL et al.,
2007). Jeong et al. (2019) revealed challenges in applying Ceph to HPC workloads
because large files are transcribed to small objects, throttling performance.

For existing parallel filesystem libraries with established interfaces and imple-
mentations built around POSIX I/0O semantics that impair their scalability to larger
clusters, a common solution is to develop connectors to more scalable backends that
have been promoted for HPC, e.g., DAOS, OpenStack Swift, Ceph RADOS, Ceph
BlueStore. This approach, based on the concept of a Virtual Object Layer (VOL),
bypasses block storage backends and operates in users-space. Though performance
tends to lag in comparison to native backends, it avoids significant changes in middle-
ware and application codebases. Through evaluation, these VOLs have consistently
shown better scalability than parallel filesystems, though object stores still lack the
degree of optimization the former have attained in the past decades (SOUMAGNE
et al., 2022; DUWE; KUHN, 2021; LIU et al., 2018b).
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Though less focused on performance, the use of HT'TP-based managers can
bridge the gap between heavy data processing and object stores. One example is
CERN'’s Davix, which offers a single interface to manage different object stores APIs
remotely over HT'TP, e.g., Amazon S3, Google Cloud, Microsoft Azure and WebDAV
(DEVRESSE; FURANO, 2014). Despite optimizations such as range coalescing, as
a file manager, integration with object stores is limited to converting operations at
the POSIX I/0 level rather than the application’s. Even so, integration of object
stores to grid computing infrastructure through Davix was proposed by Ayllon et al.
(2017), as a promising alternative to distribution of HEP data through FTS (FTS,
2023).
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4 INTEGRATING OBJECT STORES INTO ROOT RNTUPLE

In this chapter, we propose the integration of two object store backends into
RNTuple. The first is a production—grade, DAOS-based 1/0 layer to allow HEP
analysis workflows to be efficiently deployed to HPC facilities. A proof-of—concept
was already in place before our work; therefore, we focus on the added features to the
framework. The second contribution is an experimental approach to cloud—based
object stores through an AWS S3 backend.

The chapter layout is as follows. Section 4.1 presents RNTuple as a data
format and introduces key terminology to understand the proposed approaches.
Section 4.2 verses on the challenges of adapting file-based ntuples to object storage.
Section 4.3 explains the added features to the RNTuple-DAOS backend. Section
4.4 introduces the experimental RNTuple-S3 backend, focusing on the differences
to the DAOS backend. Finally, section 4.5 describes the tools and technologies used

in the development of this project.

4.1 The RNTuple Data Format

In this section, we introduce RNTuple’s data organization as it is serialized
on disk and the modifications made toward interoperability with the object store

paradigm.

Layout and Serialization

The RNTuple binary format describes the layout of an ntuple in its serialized
and on-disk representation, i.e., in terms of its pages (with data) and envelopes (with

metadata). Figure 4.1 gives a complete example of a serialized ntuple.

Data Building Blocks

On disk, ntuples are stored in horizontal splits called clusters (“RCluster”),
equivalent to the T'Tree counterpart. These are self-contained blocks holding a range
of sequential entries (“REntry”) and its contents for the scheme’s features. Sized at

O(100 MB), the cluster is RNTuple’s unit for efficient I/O and serves as a recovery
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checkpoint in the case of crashes while taking in data.

Each feature of an entry represents a homogeneously-typed field (“RField”)
that is internally mapped to one or more columns, depending on the complexity
of the type. For instance, to attend expectations of HEP analysis mentioned in
subsection 2.1.2, RNTuple supports arbitrarily-deep nested collections. These are
projected on disk as multiple columns: the offset column indexes the start of each
entry in the value column, which can be another collection.

This nested approach gives “ntuple” its name. Its benefits include random
access of each entry (after one indirection step to retrieve the index) and the fast
vertical merging of two datasets under the same schema. Data compression can also
be more efficient, as type-appropriate compression algorithms are applicable on a
per-column basis.

Each column (“RColumn”) has a fundamental type associated with it. For
data positioned in the same cluster, the contents of a column are serialized contigu-
ously on disk, as expected of a columnar system.

Columns are further broken into pages (“RPage”). Pages are the building
blocks of RNTuple and the smallest data unit in the subsystem, occupying sizes in
the order of O(64 kB) before compression. Since pages are the compounds of columns
and thus share the same fundamental type, it is at this scale that compression
algorithms are applied. It is roughly equivalent to TTree’s basket.

Finally, a page group (“RPageGroup”) denotes the set of pages that belong
in the same column and cluster; their contents stem from nearby entries, share the
same fundamental type. Page groups can be seen as corresponding to the “unit of

analysis”, as their data is typically accessed together in such workflows.

Figure 4.1: RNTuple on-disk format.

struct Event {

int fId;
Particle ; Page Group
}; —
struct Particle { [T lw )U\\\\ W]l U [ \’\'U [TTICTTT \/u\ [TT11
. e s-eolzezl -t — —
> Header ’P—‘ """""" Page List ~ Footer
vector<int> fIds; age

Cluster

Source: The Authors (adapted from Blomer et al. (2020)).
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Metadata Envelopes

The point of entry for a serialized ntuple is the anchor envelope. It is a
minimal record that specifies the format version, total dataset size and location and
length of the remaining envelopes that describe how to read the ntuple.

The header envelope delineates the RNTuple schema. It contains the ntuple
name, along with identifiers and types for the data model, indicating how to interpret
the fields and columns.

The footer envelope is integral to traversing the data stored in the ntuple.
It is the point of entry for nested lists called pagelists, which indirectly stores the
location and size of the pages through double indirection. Each pagelist covers a
group of consecutive clusters, providing an on-disk descriptor for each cluster. These
descriptors contain the columns descriptors, which finally index the column’s pages

on disk.

RNTuple I/0

A well designed 1/O subsystem must competently orchestrate computational
resources, e.g., CPUs, memory and storage, and minimize the impact of communica-
tion latency. l.e., efficiently storing and retrieving data from external devices should
consider the computer system holistically while operating on a bounded memory
budget.

RNTuple provides a mature interface that implements efficient techniques
for I/O operations at the page and cluster scale. The specific implementations for

writing and reading are known as the data sink and data source, respectively.

Data Sink

RNTuple’s data sink is the mechanism responsible for the writing of data (in
the form of pages) into storage. The functions of the data sink are to manage data
ingestion efficiently, apply suitable data compression according to type and scale,
and keep metadata updated through regular transactions.

As the granular data unit of compression and I/O access, pages can be com-
mitted individually or through a vector write mechanism. With vector writes, the

writing of pages is deferred until all belonging to the current cluster are ready for
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1/0, i.e., have been compressed and buffered. The main advantage of vector writes
is the potential for asynchronous compression in parallel and throughput saturation
by increasing the volume of data being transferred.

When the option for vector writes, or “buffered writes”, is not available, e.g.,
when the backend does not support this ingestion mode or when only a partial
range of the column’s data is being committed, RNTuple defaults to synchronous,
individual commits for each page. This approach has been shown in the literature
to collapse performance in the face of large amounts of data, especially for backends

that might deal with significant network latency:.

Data Source

RNTuple’s data source manages data retrieval from storage to the user ap-
plication. Since reading data is more common than updating it in data analysis,
a pattern reminiscent of the WORM storage paradigm, the efficiency of the data
source is seen as a more pressing concern than the sink’s.

Analogously to the sink, the source provides the functionality to fetch pages
individually or in bulk; unlike the sink, only pages from fields needed by ongoing
analyses are requested. When performing bulk fetching, the source is able to include
columns from clusters within a given read-ahead window (e.g., the current cluster
and the next two), provided enough memory is available. Reading ahead is useful
to increase throughput when the set of columns requested for analysis is sparse and

to engage the link layer while decompression utilizes the CPU.

Compression

RNTuple supports compression at the page level with various built-in algo-
rithms, including, in approximate increasing order of compression rate, z1ib, 1z4,
zstd and 1lzma. Because of RNTuple’s columnar format, different compression con-
figurations can be applied to each column according to its type. Furthermore, the
separation of composite fields, e.g., collections, into separate offset and value columns

leads to higher compression rates due to lower data entropy.
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Task Scheduler

RNTuple relies on a thread pool model implemented through Threading
Building Blocks (TBB) (Intel Corporation, 2023) to schedule its I/O operations
and achieve task concurrency. Thread pools are a resource-bounded, efficient ap-
proach to concurrent programming, as they consist of a limited group of preallocated
worker threads that consume tasks submitted to a queue. To enable parallelism, the
implicit multi-threading option ROOT: :EnableImplicitMT() must be signaled by
the user.

In RNTuple, this is applied at the cluster bunch level, i.e., a range of clus-
ters fetched at once for parallel decompression and analysis. The cluster pool
(“RClusterPool”) spawns an asynchronous thread responsible for preloading pages
whose columns are on demand by the analysis at hand. With parallelism, comes
the potential for optimizing the data source’s fetching pattern. Specifically, queued

requests can be merged, linearized or otherwise manipulated when supported by the

storage backend (BLOMER et al., 2020).

4.2 Adapting RNTuple for Object Stores

Emerging object store solutions provide invaluable capabilities for future
analysis. In particular, their relevance for HEP research stems from their ubiquity
in cloud topologies, horizontal scalability and cost-effectiveness (section 2.4).

Contrary to ROOT TTree’s tight integration with file systems (subsection
2.2.1), RNTuple imposes a separation between higher-level abstractions and the
lower-level storage layer. The process of extending support to object stores is sim-

plified as a result. RNTuple presence in object stores is envisioned as two-fold:

Cloud: massively distributed object storage as an intermediate and transient stage
between workflow extremities, leveraging existing global infrastructure to pro-
vide granular ntuple access to researchers worldwide. For this use case, we
chose AWS S3. S3 is among the most popular object stores in the industry
and its API has become the standard for other cloud providers. Therefore,
extending support to its API allows the future leveraging of multiple others,

e.g., Microsoft Azure.

HPC: cluster-local distributed object storage for HPC data centers as a stage for
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Figure 4.2: The RNTuple-to-object mapping problem
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big data analysis. While object stores are still gaining a foothold into the
HPC space lately, their scalability has been successfully demonstrated (LIU
et al., 2018b). For the past several years, Intel DAOS has figured among the
best performing stores in the category; that, along with its open-source status,

made it a natural choice for ROOT.

Guiding Principles

The development of this project sought to adhere to the following design and

performance principles:

Principle 1 Efficient Resource Management. Sober memory allocation and mini-

mal use of system calls.

Principle 2 Bulk Transfer and Deferred Engagement of the Link Layer. Launch-
ing requests individually for small data chunks hinders transfer scalability and
negatively affects throughput. By waiting to issue data requests in bulk, ef-
fective 1/O rates may increase; in parallel, the processing unit is freed from

interruptions to tackle other threads.
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Principle 3 Minimal New Metadata. No additional descriptors unless strictly

necessary, minimizing format specification overhead and metadata latency.

Principle 4 Thoughtful Data Mapping. Preserve RNTuple’s column-based pat-
tern across storage paradigms. Exploit maximally the backend’s mapping in-
terface to achieve fine-tuned, backend-specific results. Also, HEP reading pat-

terns should be taken into account (“data read together is stored together”).

Principle 5 Granular Data Access. When possible, new backends should preserve
a reading granularity closer to RNTuple’s file backend, e.g., by supporting

byte range requests.

Principle 6 Artificial RNTuple Layout. When possible, object store data should
not be bound by an existing ntuple’s native layout boundaries, which may be

optimized for a different backend.

Principle 7 Coexistence of ntuples. Bucket-like namespaces should handle dis-
tinct ntuples that share the same underlying resources, but kept distinguished

via an implicit hierarchy or partitioning transparent to the user.

4.3 RNTuple-DAOS: Design and Implementation

In this section, we provide an overview of our proposed mechanisms and
strategies to redesign RNTuple’s DAOS backend into a high-performance alternative
for HEP analyses.

Operation Management

In order to saturate the bandwidth capacity, our approach hinges on DAOS’
support for scalable and non-blocking bulk transfer. For that, the I/O pipeline must

avoid superfluous system calls and simplify operation polling.

Operation Queue

Creating DAOS operation queues (“event queues”) incurs significant over-

head, as they are instantiated in tandem with a communication endpoint for data
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transfer. In the case of RDMA-enabled interfaces, such as InfiniBand through
libfabric’s verbs API, spawning a fabric endpoint requires a prohibitively costly
system call.

Therefore, optimal I/O performance takes a persistent operation queue through-
out the program’s execution. Our approach ties the lifetime of the queue to that of
the programmatic container manager. When creating and tearing down the instance
of RNTuple’s class for DAOS containers, so is the queue constructed and destroyed.
With that, endpoint costs are paid only once while spinning up the backend, before
the first I/O request.

Asynchronous Calls

In RNTuple, I/O operations act as transactions at the cluster level: each
cluster is guaranteed to be committed before progressing to the next one. For
reading, a cluster bunch with multiple clusters may be optionally fetched at once,
provided the data volume fits the application’s memory budget.

In lockstep, the DAOS backend operates within this transaction window to
issue all calls to remote storage based on the cluster(s) at hand. Operations are
launched asynchronously until all pages requests in the cluster have been made; at
this point, the backend reaches a blocking barrier which waits for any pending oper-
ations. This asynchronous scheduling is especially useful for large enough clusters,
e.g., with 500 MiB or more in size, where the link might go underutilized for too

long as requests are processed and issued.

Grouping Operations

For each cluster, many DAOS requests may be issued asynchronously, con-
tingent on the pages needed by the analysis and on the mapping function selected
for RNTuple-to-DAOS data ingestion.

To avoid polling several operations on synchronization points, we instantiate
a symbolic parent operation corresponding to the batch of operations presently in-
flight and for whose completion the barrier should wait. In DAOS, this parent may
be launched after the actual operations, and its completion is subservient to that of
its children.

The uses of symbolic parents and the blocking barrier are demonstrated in



50

Algorithm 1; line 2 instantiates the parent “event” (in DAOS nomenclature), which
is conditioned to the success of all child operations instantiated in line 5. These child
operations are sent in-flight by the calls to FetchBy0b jDkey () or UpdateBy0bjDkey (),
lines 9 or 11 respectively, depending on the mode being reading or writing. Finally,
a blocking call waits only for the parent operation in line 13; this raises an opera-
tion barrier in DAOS that prevents new children from being instantiated until the
current batch is no longer in—flight. We return the success or failure of the parent
operation in line 14.

If parent operations were not used, the implementation would be more com-
plex; the blocking call would have to poll every child operation in the list, popping

them as they are concluded.

Pseudocode 1: RNTuple-DAOS Container Vector Read/Write Op-
erations
1 function Container:: VectorRead Write(batches : MultiObjectRW Batch,
mode : WRITE U READ)"

2 parentOp <—daos_event_t{}, childOps <List
3 > Iterate over coalesced batches, instantiate operation handles.
4 for ((oid, dkey), batch : RWBatch ) in batches do
5 childOps.Append(daos_event_t{})
6 daosPool.queue.InitializeOperation(oid, parentOp)
7 > Launch fetch or update operation asynchronously. Tie IODs and
SGLs to child operation.
8 if mode is READ then
9 FetchByObjDkey(oid, dkey, batch.dataRequests.iods,
batch.dataRequests.sgls, childOps|[-1])
10 else
11 UpdateByObjDkey(oid, dkey, batch.dataRequests.iods,
L batch.dataRequests.sgls, childOps|[-1])
12
13 > Blocking call waits for the symbolic operation.
daosPool.queue.Wait(parentOp)
14 return daosPool.queue.IsSuccess(parent0Op)

4.3.1 Co-Locality Mapping Function

The typical access pattern of a HEP analysis is columnar, retrieving row-

sequential values for a feature of interest (subsection 2.1.2). However, migration to

lyectorReadWrite () on Github: RDaos.cxx#L231
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an object store dissolves the ntuple’s columnar schema by virtue of its key-value
paradigm (subsection 2.4.2).

From section 2.3, the co-locality of a DAOS object’s data blob in the server
is determined by the distribution key, i.e., an object’s data is stored together if
they share an identical dkey. This interface, uncommon in object stores, enables
the otherwise-unstructured key-value frame to be imbued with columnar semantics
through an especially-crafted function between RNTuple pages and DAOS values.
and ¢ be-
tween RNTuple pages and DAOS objects. Both project the k™ page in the j™* col-

Below, we formally define two mappings, Pobj—per—page co—locality

umn and 7" cluster onto a unique object store locator of the form (oid, dkey, akey).

¢: (cluster;, column;, pagey) — (oid, dkey, akey)

Dobi—per—page (Cluster;, columny, pagey) — (pagey, Qaxey; Vaxey) (4.1)

Do tocatiy (Clusters, column;, pagey.) = (cluster;, column;, pagey.) (4.2)

Figure 4.3: A visualization of the RNTuple-to-DAOS mapping based on target co-
locality
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Source: The Authors.

The proposed mapping function ensures that the pages of a page group re-
main associated throughout the data’s lifetime. Coupled with the request coalescing

pre-processing step introduced in 4.3.2, this mapping offers an opportunity to treat
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a page group as a single transfer unit, speeding up an analysis’ reading stage.

4.3.2 Request Coalescing

The mapping based on co-locality, proposed in subsection 4.3.1, ensures a
page group’s physical coincidence in DAOS servers. This offers an opportunity to
write and read data from all pages in a page group in parallel, as if they were a
single transfer unit.

To benefit from this parallel optimization, pages belonging to the same
page group should be requested simultaneously, i.e., in the same call. From sub-
section 2.3.2, the DAOS API can issue multiple operations together through the
daos_obj_fetch and daos_obj_update calls. These operate on multiple attribute
keys for the same oid and dkey.

The DAOS calls above are represented in Algorithm 1 through the evocation
of FetchByObjDkey () and UpdateByObjDkey () in lines 9 and 11, respectively. In-
ternally, they conform to the DAOS API by specifying the open handle associated
with the object oid, the dkey, contiguous arrays with the I/O Descriptors (I0Ds),
SGLs and their total sizes in bytes.

The DAOS IOD contains a description of the element as it pertains to DAOS
storage, such as the akey, total size, and whether the element is a simple blob or
follows the array API (see background section 2.3). The SGL contains the actual
buffer pointers in size as they are disposed in application memory, i.e., the transfer
IOVs which will be copied to DAOS through scatter—gather 1/0.

The fetch and update calls also specify a pointer to the child operation,
instantiated in line 5, so that its completion can be later polled, as introduced in
the above subsection.

Provided all page operations in a cluster are known ahead of time, we can
effectively coalesce requests by co-locality via a <oid, dkey> pair. With the appro-
priate redundancy levels, we attain parallel and bulk transfers for page groups.

Algorithms 2 and 3 present our approach to coalesce requests based on a
common root of the DAOS mapping that is aligned with the required arguments of
the provided DAOS API calls (the <oid, dkey>). This is evidenced by lines 12-14
and 23-24, respective to both algorithms. Note that the tuple — and hence the

coalescing potential — are sensitive to the mapping strategy (lines 13 or 23).
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This tuple serves as index for the (requests) dictionary, passed to the
VectorReadWrite () call (in lines 21 and 25, respectively). The method, presented

in Algorithm 1, is part of our backend’s “RDaosContainer” class.

Batch I/0

Executing I/O operations in batches can amortize network fabric overhead
costs and exploit parallel transfer, thus maximizing bandwidth usage. Shortening

the data import and export stages is critical for HEP analyses on larger datasets.

Pseudocode 2: RNTuple-DAOS Vector Write (With Caging Sup-
port)
function Sink::CommitPages (ntupleld, clusterld, pageGroups:List) 2

1
2 requests < Map[(int, int) — List|, locators «+List
3 > Coalesce requests by (oid, dkey)
4 for (columnId, columnPages : List ) in pageGroups do
5 offset < 0, itemCount < 0, index < itemCount++
6 for page : columnPages do
7 iov <—(page.buffer, page.size)
8 if offset + page.size > MAX_CAGE_SIZE then > New cage
9 offset < 0, index < itemCount+-+
10 L > Advance cage index
11
12 > Map RNTuple page location to DAOS
13 (oid, dkey, akey) < RNTuple2DaosMapping(ntupleld,
clusterId, columnId, index)
14 requests[(oid, dkey)].Append(iov)
15 > Encode page location within DAOS cage
16 pageLocator.position < EncodePosition(index, offset)
17 pagelocator.size < page.size
18 locators.Append(pageLocator)
19 offset < offset + page.size
20 > Issue sorted requests to backend in bulk
21 daosContainer.VectorReadWrite(requests, WRITE)
22 return locators

In order to speed up data transfer, RNTuple implements both vector reads
and vector writes. In ROOT analyses, the range of events and fields to be ac-
cessed, e.g., in a for-loop, triggers the fetching of their corresponding pages in stor-

age. When vector reads are enabled, multiple clusters are fetched at once (by the

2CommitSealedPageVImpl() on Github: RPageStorageDaos.cxx#L307.


https://github.com/root-project/root/blob/36e4f3e4c27579dc0f154d652e5b1a36d42313a0/tree/ntuple/v7/src/RPageStorageDaos.cxx#L307
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LoadClusters() method in Algorithm 3), scheduled for decompression and eventu-
ally accessed.

Analogously, vector writes are available by means of the CommitSealedPages ()
method in Algorithm 2. This method is activated by buffering event data after page
compression. If enough compressed pages have accumulated to fill one or more

clusters, including every column thereof, then the committing is done in bulk.

Pseudocode 3: RNTuple-DAOS Vector Read (With Caging Support)

1 function Source::LoadClusters(clusterDescriptors : List) 3

2 // Initialize collections.
3 requests <MultiObjectRWBatch
4 clusterPages < Map[int —(PageType,int)]
5 pagemaps <List
6 for cluster : clusterDescriptors do > Clusters in read-ahead window
7 for column : cluster.columns do
8 for page : column.pages do
9 ( cagePosition, cageOffset) < DecodePosition(page)
10 > Collect page requests under their cages to prevent duplicate
requests.
11 clusterPages|cagePosition|.Append(({page, cageOffset))
12 Allocate clusterPayload V cage s.t. cage € cluster
13 > Pagemaps know the page metadata and own their data buffers
14 Instantiate cluster’s pagemap
15
16 > Coalesce IOVs under (oid, dkey)
17 for (cagePosition, sortedPages) : clusterPages do
18 for page : sortedPages do
19 > Tie memory area to logical page
20 pagemap.RegisterPage((page.columnld,
page.indexInColumn), (clusterPayload +
page.payloadOffset, page.size))
21 pagemaps.Append(pagemap)
22
23 iov < (clusterPayload, cageOffset, cage.size)
24 (oid, dkey, akey) < RNTuple2DaosMapping(page.ntupleld,
page.clusterld, page.columnld, cagePosition)
25 requests|(oid, dkey)].Append(iov)
26 daosContainer.VectorReadWrite(requests, READ) > Request to read
from DAOS
27 return pagemaps

3LoadClusters() on Github: RPageStorageDaos.cxx#L688


https://github.com/root-project/root/blob/36e4f3e4c27579dc0f154d652e5b1a36d42313a0/tree/ntuple/v7/src/RPageStorageDaos.cxx#L688
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4.3.3 Scatter-Gather Concatenation (Caging)

During (de-)compression and 1/O, pages are stored in individual buffers man-
aged in a memory pool by RNTuple. In general, considering that page groups are
limited by the cluster barrier, and that the page size attribute applies ntuple-wide,
the page size attribute cannot be too large: this can regularly lead to wasteful
memory allocation for columns with types that have a small footprint (even byte-
packed, like booleans). Page sizes cannot be too small, either, as that can cripple a
compression algorithm’s effectiveness.

From inception, RNTuple was designed around the partitioning column data
in building blocks of around O(100kB) in size, before compression. For the file
backend, keeping chunks at that scale showed a balanced compromise between data
granularity, memory consumption and compression rates. Therefore, RNTuple’s
default, uncompressed page size was set to 64 kB.

However, one page size is unlikely to fit all backends. With object stores
come considerations on remote communication, both in endpoint overhead costs
and network latency, e.g., over RDMA or sockets (FREY; ALONSO, 2009). It
remains to be seen if the scale used for the file backend is adequate for transfers over
the network, as throughput is sensitive to a number of often stochastic factors, the
size of transfer buffers especially.

Thus, in order to emancipate an ntuple file’s migration to object stores from
its native page size, we propose a mechanism that logically concatenates neighboring
pages in RNTuple’s data sink.

The term cage is a portmanteau of concatenated page. It underlines that the
constituting pages are written and read back together, always sharing the same 1/0
request throughout their lifetime. Note that grouping is incidental and driven by
workflow efficiency, as values in sequential rows are statistically independent in an
ntuple. In other words, there is no semantic meaning behind which event’ data are
caged together.

All pages in the same cage share the DAOS identifiers, i.e., oid, dkey and
akey. In effect, a cage is a single, contiguous blob in the DAOS namespace.

Sequential pages from the same page groups are concatenated into a cage
until (a) no more pages fit within a given maximum cage size; or (b) there are no

additional pages in the page group to commit. The maximum cage size is user-
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Figure 4.4: Scheme for scatter-gather concatenation (caging). An update request
contains a scatter-gather list of IOVs. Each IOV describes the memory region of a
buffered page. 1/O descriptors denote that the memory regions are to be stored as

a blob.
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Source: The Authors.
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scatter-gather list

defined with an empirically-adequate default value of 1 MiB, as seen in subsection
5.3.3. Algorithms 2 and 3 present our caging—supported implementation.

In Alg. 2, pages from the same page group are sequentially assigned the
same akey in DAOS until the limit in MAX_CAGE_SIZE in line 8 is reached. If that
happens, a new cage is inaugurated by progressing the index that serves as the
akey. In other words, pages from the same cage are filed under the same 77 in the
update call from Algorithm 1, even though data is located in separate buffers and
thus separate IOVs of the corresponding SGL. Caging can be disabled by simply
assigning MAX_CAGE_SIZE a value of zero, such that every page will be its own cage
with an independent blob.

As for Alg. 3, the potential multiple requests to pages belonging to the
same cage unit is an issue to circumvent if we are to avoid the same blob being
fetched repeatedly by RNTuple. We tackle this with a dictionary structure, which
is populated in lines 8-11: the indexing value is the same cagePosition later used
as the akey to perform a single fetch operation to object storage.

We note that page location metadata is kept minimal at 64-bit values; to
accurately retrieve the page data, we pack together into those bits both the cage
position and the offset within the cage, in bytes, where the data for that specific
page starts. Thus, the backend needs to EncodePosition and DecodePosition in

lines 16 (CommitPages()) and 9 (LoadClusters()), respectively.
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Once written, DAOS blobs are only opaquely—accessible to the user, i.e.,
without support for partial and byte-range read (subsection 2.3.2). Thus, regardless
of how many pages are requested in the page group, the cage is read back from
storage as a whole — though only the requested pages within it are decompressed.
At worst, any request for a single page forcefully requires the backend to request
dozens to hundreds of pages, depending on the cage size and compression factor.

While this is a clear limitation of the caging mechanism for analysis, HEP use
cases are unlikely to subscribe to such a reading pattern. Instead, sequential ntuple
field ranges are requested in bulk for analysis over the statistically-independent
events (i.e., rows).

In light of this, the interface for page requests is disabled for reading ntuples
stored as cages, i.e., the ‘cluster caching’ option must remain activated. This simpli-
fies the implementation and prevents users from misguidedly and silently executing

inefficient analyses.

Multiple NTuples per Container

From subsection 2.3.2, a DAOS pool can host hundreds of containers, each
with billions of objects. A one-ntuple-per-container approach is likely to (a) waste
the mapping image, and (b) be impractical, as the container limit would saturate
quickly, as dozens of sibling datasets can spawn from the same raw experiment data.

We tackle that by enabling multiple (billions of) ntuples to populate the same
container, assigning segments of the addressable object space to separate datasets
without an explicit hierarchy.

For that, we designate the 32 most-significant, non-reserved bits of the object
ID to specify the dataset. This 32-bit value is derived from the ntuple’s name as
outputted by the std: :hash function implementation for std: :strings. With the
zeroth ntuple reserved, this allows for 232 — 1 = 4294967295 different ntuples per
user namespace, which is likely sufficient for most projects and experiments.

There are no plans to support the handling of hashing collisions for differently-
named ntuples, as empirical tests with randomized inputs exhibited a 0.244% ntuple
name collision rate. This decision simplifies RNTuple index resolution by eschewing
linked lists of RNTuple headers or an index table. More importantly, it keeps the

solution metadata-less, observing Principle 3 in 4.2.
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Figure 4.5: Composition of the DAOS object ID with support for multiple ntuples.
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Table 4.1: Differences and similarities between DAOS and S3 w.r.t. properties
relevant to RNTuple.

Property DAOS S3

Storage Structure Flat

Namespace Access (server:string, id:string) — namespace

Namespace Terminology Container Bucket

Blob Access N3 — blob string — blob

Data Locality Control Explicit (dkey) Induced by Naming

Object Structure array or KVS blob

Buffer Management IOV IOV /Stream

Latency Very Low Average to High
Custom (Object Service Tier

Protection, Acceleration Classes) (Region, Batch)

4.4 RNTuple-S3: Backend for the Cloud

Developing RNTuple’s DAOS backend to a mature and production-ready
state provided knowledge applicable to other object stores. We sought to leverage
it toward supporting a new use case: the cloud.

Whereas HPC exploits distributed processing by spreading data cluster-
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locally, cloud-based solutions bring data to the users at the edge of a global topology.
This comes with the cost of dealing with high latency from, e.g., the TCP/IP pro-
tocols, as well as heterogeneous service depending on the facility’s support of S3
features and infrastructure.

For a first RNTuple backend for the cloud use case, AWS S3 was our provider
of choice. S3 has become ubiquitous to the point that its API can be considered the
de facto standard for the industry. By adhering to its interface and modus operandi,
we intend to more easily adapt to other cloud providers, such as Microsoft Azure
and Google Cloud.

The cloud standard, however, is dissimilar to DAOS. On the one hand, S3
its data organization relatively black—boxed to ensure cloud storage remains simple
and scalable. On the other hand, this approach limits our ability to propose an
informed mapping like the one in section 4.3. We refer to Table 4.1 for a summary

of the differences - and similarities - between S3 and DAOS.

Cloud Development Concerns

Based on our past experience, we identified the following main concerns when

developing an I/O approach targeting cloud storage:

Network latency: Provider-side, a multi-tier topology of data centers and edge
locations may be available to reduce network latency, which is a known liability
of solutions based on cloud storage. To counteract the impact of latency on the
user side, the framework can adapt its I/O behavior and schedule operations in
a cloud-optimized manner. Examples of such strategies include larger transfer
buffers, asynchronous scheduling of operations and R/W models that do not
require forthwith consistency among replica nodes.

Non-standardized coverage of features: Different S3 servers offer a distinct sub-
set of the features. Some features, like byte-range requests, impact the data
scale at which objects are concocted.

Choice of API: There exist several interfaces used to communicate with S3 ser-
vices due to HTTP request support. Examples include the AWS C++ SDK
and HTTP managers like Davix. The choice of interface has impact on per-

formance, feature support, maintenance effort and library dependencies.
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4.4.1 Mapping Function

Compared to DAOS, S3 offers a more opaque mapping interface. Firstly,
the flat hierarchy in the namespace (“bucket”) means that its objects are simple
blobs, as seen in Table 4.1. Secondly, its storage model does not explicitly allow
for user input on data co-locality, though it is known that an object’s label plays a
deterministic part in mapping objects or their shards to specific hardware targets
(Amazon, Inc., 2023).

The mapping @pop—per—page PetWeen RNTuple pages and S3 object blobs is
defined below. It casts the k™ page in the j** column and ** cluster onto a unique

string label in the S3 bucket namespace, which displays this information separated

by slashes (“/”).

¢: (cluster;, column;, pagey) — object_identifier : string

Diob—per—page (Clusters, column;, pagey,) = string(cluster;/column;/pagey) (4.3)

More elaborate mappings can be considered based on efficiency concerns in
lieu of an apparent loss of access granularity; one such example is pictured in Figure
4.6, storing entire page groups together, as these are expected to be fetched together

under normal HEP workflows.

4.4.2 Davix—based Implementation

Multiple interfaces are available to enable interoperability between RNTuple
and AWS S3, including several APIs provided by Amazon, e.g., the AWS C++
SDK. 4 For this work, we chose to leverage CERN’s own Davix. ® Davix is already
a ROOT dependency for supporting file transfers with FTS. Furthermore, Davix
provides support for byte-range requests, which the evaluation in section 5.4 will
prove to be a crucial feature for a mature, cloud backend for RNTuple. Finally,
Davix implements the same IOV-based interface for its transfer buffers, making the

development of a connecting layer straightforward.

“Documentation on AWS: https://aws.amazon.com /sdk-for-cpp.
SRepository on Github: cern-fts/davix.


https://aws.amazon.com/sdk-for-cpp/
https://github.com/cern-fts/davix
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Figure 4.6: A visualization of a proposed RNTuple-to-S3 mapping (page groups as
S3 objects) retaining columnar access and projected to amortize latency concerns.
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Source: The Authors.

Our S3 backend does not include any request coalescing in its sink or source
layers, once again differing from the DAOS backend. While it still processes read
and write requests in batches on a cluster bunch basis for similarity with the DAOS

backend, there is no support for vector writes in our connector to Davix.

Pseudocode 4: RNTuple-S3 (Davix) Iterated Write

1 function Bucket:: Vector Write(operation : MultiObjectRWBatch)®

2 > Iterate over single—buffer operations
3 for operation : RWBatch in operations do

4 davixURI <« GetDavixLocator(bucket, operation.akey)

5 davixObjects < Davix::DavFile(davixUri)

6 > Blocking call to write a single object
davixObjects.put(operation.buffer, operation.size)

7 return

Algorithm 4 presents a simple implementation that writes RNTuple pages as
S3 objects through Davix API calls. We reuse the MultiObjectRWBatch structure
for managing cage requests, though the simpler mapping interface limited us from
exploiting it fully. The procedure iterates over each (unique) identifier, generating a

string label from the RNTuple locators (i.e., the cluster, column and page identifiers),
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as defined by the mapping @yop—per—page 10 this section.

Pseudocode 5: RNTuple-S3 (Davix) Vector Read

function Bucket:: VectorRead (batches : MultiObjectRWBatch)”
> Iterate over batches (cages) sequentially, instantiating lightweight Davix
object handles based on the derived URIs.
for batch : RWBatch in batches do
davixURI < GetDavixLocator(bucket, batch.akey)
davixObject < Davix::DavFile(davixUri)
> Blocking call to read batch under the same cage index.
davixObject.readPartialBufferVec(batch.iov, batch.sgls,
batch.sizes)

N =

[ B SN

7 return

The implementation of vector reads in RNTuple-S3 is detailed in Algorithm
5. While Davix provides the means to request multiple blobs through the DavFile
interface, these are meant to stitch together different remote objects as a file unit
in memory. Due to the single writes limitation discussed above, we do not exploit
this capability in the current proof—of—concept, though we retain the structures that
would support it in the future. In particular, we envisage this interface for partially
reading segments of much larger blobs using byte-range requests. This is discussed

in detail in the evaluation section 5.4.

4.5 Tools and Technologies

ROOT is mostly written in the C++ and Python programming languages.
As such, C4++ was the language used in the development of our approaches. Given
C++20 support limitations in ROOT, our particular flavor of C4++ consists of mod-
ern programming practices based on the C++17 standard’s feature set, with the
inclusion of back-ported libraries only standardized in C++20, such as std: : span.

Being an open source framework hosted on Github, some of the technical
contributions in this work have made their way to the main branch (ROOT Project,
2023b), leveraging Git version control, a continuous integration pipeline and code
review. Other tools used throughout development include gdb (debugging), valgrind

(memory management) and perf (statistical profiling).

6yectorWrite() on Github: RS3Davix.cxx#L156
"VectorRead() on Github: RS3Davix.cxx#L196


https://github.com/glmiotto/root/blob/s3/davix/tree/ntuple/v7/src/RS3Davix.cxx#L156
https://github.com/glmiotto/root/blob/s3/davix/tree/ntuple/v7/src/RS3Davix.cxx#L196
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5 EVALUATION

With the proposed contributions introduced in chapter 4, we evaluate our
approach and the hypotheses in section 1.1.

This chapter is organized as follows: first, in section 5.1, we set out our evalua-
tion objectives. In section 5.2, we describe the hardware and software configurations
and explain our chosen benchmark. Section 5.3 presents our results and analyses
on the proposed DAOS backend, including the concatenation feature. Section 5.4

shows preliminary results obtained with the experimental S3 backend.

5.1 Evaluation Objectives

In this evaluation, we seek to:
1. Validate DAOS as a high throughput object store for HEP.

la. Compare the features presented in chapter 4 with the experimental base-
line.
1b. Investigate the impact of user-defined parameters in RNTuple and DAOS.

1c. Understand which features bring the most significant improvements.

2. Confirm the viability of the proposed, experimental S3 backend.
3. Compare the two object store backends in RNTuple.

3a. Identify key differences between the Cloud and HPC use cases for HEP.

3b. Extract common patterns as a blueprint for a future, generic object store

layer for RNTuple.

Our evaluation methodology is based on the effective I/O throughput as
measured in both the writing and reading stages. We consider throughput as a
metric of I/O-boundness and saturation of the link layer to be maximize, under
the assumption that CPU workload can be parallelized around it in future. As
such, this evaluation will guide future developments in RNTuple. In our throughput
measurement, we include any and all preparation steps introduced by our proposal

in Chapter 4, such as request coalescing.
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5.2 Experimental Setup
The evaluations were conducted on two different platforms, named DAOS-
Setup and S3-Setup, which are specified below. The former includes a modest

HPC cluster meant to benchmark production-grade software. The latter is an ad-

hoc setting for the purpose of testing software under development.

5.2.1 Platforms

The DAOS-Setup Platform:

Hardware. We were granted access to Hewlett-Packard Enterprise’s Delphi clus-
ter, consisting of two servers and six client nodes interconnected by an InfiniBand

fabric. This is how the nodes were configured:

Server nodes. 4x Intel Xeon Gold 6240M CPU sockets, each with 18

physical cores, running at 2.60 GHz. Hyper-threading SMT enabled. Each server
was equipped with 24.75MB of level 3 (L3) cache, 185 GB of DDR4 RAM and a
Mellanox M'T28908 ConnectX-6 InfiniBand network adapter.

Client nodes. 2x Intel Xeon E5-2640 v3 CPU sockets, each with 8 phys-

ical cores, running at 2.60 GHz. Hyper-threading SMT enabled. Each client node
had 20 MB of L3 cache and 131 GB of DDR4 RAM. High-speed interconnection
was available through a Mellanox MT27800 ConnectX-5 InfiniBand adapter. Each
client had two Non-Uniform Memory Access (NUMA) topologies, one of which was
associated with the adapter; thus, we pinned the experiment jobs with taskset to

the range of logical CPUs local to the interface for optimal RDMA transfer.

IOR Benchmark. Interleaved or Random (IOR) is an I/O benchmark suite de-
signed to measure the performance of parallel storage systems in various access
patterns. For this reason, IOR tests are frequently used to arrive at a practical
throughput limit against which to compare 1/O applications.

We ran the benchmark on the Delphi cluster to measure the working band-

width as a reference point for our results. For the SX DAOS object class, default
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Table 5.1: Results, IOR Benchmark, HPE Delphi cluster.

Transfer Mean Tput, Std. Tput, Mean Tput, Std. Tput,
Size (bytes) Write (GB/s) Write Read (GB/s) Read
65536 0.695 0.003 0.462 0.006
131072 1.012 0.009 0.780 0.005
262144 1.311 0.21 1.191 0.003
524288 1.601 0.046 1.260 0.008
1048576 1.755 0.034 1.428 0.023
2097152 2.789 0.115 2.316 0.002

SCM-SSD ratio of 6 / 94 % through the DFS interface, 100 GiB block size and buffer
sizes ranging from 64 kB to 2 MiB, the measured bandwidth values over InfiniBand
interconnect are presented in Table 5.1. IOR reached a throughput of 2.8 GB/s
(write) and 2.3 GB/s (read) with 2MiB transfer buffer size on our single client,
two-server DAOS-Setup running DAOS 2.2.

Software. The operating system was Red Hat Enterprise Linux 8.4 (kernel 4.18.0-
305). The DAOS deployment was based on daos-2.2.0 (ofi+verbs provider) and
libfabric 1.15.1. The project was compiled with g++ 8.5.0 and O2-optimization.

Project Versions. Below, we specify the versions of ROOT we evaluated, along
with their short-hand and covered features introduced in chapter 4. The revisions
are taken from the main branch of ROOT Project’s repository on Github !, at points
in time that coincide with ROOT release versions v6.26 and v6.28, with a minor
patch that moves atomic timers to the start of each request function, in order to

cover the entire request preparation:

v0-BASE: ROOT revision #d8de5d0, containing a basal implementation of a DAOS
backend with synchronous, single-page requests and a flat data mapping (one
page per KVS object).

v1-PERS: ROOT revision #cda2281. Incorporates a persistent operation queue and
symbolic operations to simplify operation polling (see subsection 4.3).

v2-COAL: ROOT revision #2e38273. Adds support for vector writes ("Batch 1/0”

'ROOT Project on Github, main branch: https://github.com/root-project /root/tree/master


https://github.com/root-project/root/commit/d8de5d0
https://github.com/root-project/root/commit/cda2281
https://github.com/root-project/root/commit/2e38273
https://github.com/root-project/root/tree/master
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Table 5.2: Feature matrix for named versions of RNTuple-DAOS under evaluation.

Feature vO-BASE v1-PERS v2-COAL v3-COLO v4-CAGE

Persistent Queues
Batch I/0

Request Coalescing
Co-Locality Mapping

Page Concatenation

in subsection 4.1) and request coalescing. With kDefaultDaosMapping :=
kOidPerPage.

v3-COL0: ROQOT revision #2e38273. Adds the proposed mapping based on target
co-locality, i.e., kDefaultDaosMapping := k0idPerCluster.

v4-CAGE: ROOT revision #eeedc8e. Atop previous features, enables page concate-
nation from subsection 4.3.3, given a positive concatenation target size, in

bytes. For the purposes of this evaluation, we fix MAX CAGE_SIZE := 1048576.

The S3-Setup Platform:

In order to evaluate the RNTuple-S3 backend, we sought to observe the
framework’s behavior in a controlled scenario. This avoids sources of latency and
instability typical to realistic I/O over network, e.g., channel and server-side resource
contention, inconsistent routing or replication delays. From observing 1/O patterns
in idealized circumstances, we hope to extract insights specific to the RNTuple-S3

integration for further development of the backend.

Simulated S3 Server. MinIO (MinlO, Inc., 2023) is an open-source object stor-
age solution whose client-facing components are compatible with S3’s APIs. MinIO
can be used as a validating tool for object store middleware development, as it

simplifies the management of locally set-up servers.

Hardware. For a preliminary setup, we instantiated a MinlO server on our bench-

marking node ntpl-perf-01, while the client executed on a node from CERN open-


https://github.com/root-project/root/commit/2e38273
https://github.com/root-project/root/commit/eee4c8e
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lab’s 0lsky-03 cluster.

Server node. 1x AMD EPYC 7702P CPU socket with 64 physical cores,
running at 2.1 GHz Hyper-threading SMT enabled. 16 MB of L3 cache. 125 GB of
RAM. Mellanox MT27800 ConnectX-5 Ethernet interface at 33 MHz with 40Gbit /s
capacity, 64-bit width.

Client node. 2x Intel Xeon Platinum 8160 CPU sockets, each with 24
physical cores, running at 2.10 GHz. Hyper-threading SMT enabled. 33.7 MB of L3
cache. 187 GB of RAM. Intel Ethernet Controller X550 interface at 33 MHz with
10 Gbit/s capacity, 64-bit width.

Software. The operating system was Red Hat Enterprise Linux 8.5 (kernel 4.18.0-
425). The MinlO version was RELEASE.2023-04-20T17-56-55Z. The project was
compiled with g++ 8.5.0 and O2 optimization.

5.2.2 LHCb Benchmark

Table 5.3: Excerpt of the “B meson decays to 3 hadrons” (B2HHH) dataset, from
CERN OpenData Run 1 for the LHCb experiment (LHCb collaboration (2017),
2017).

Entry B Meson Data Hadron 1 Data
FlightDist VertexX? PX .. Prob m Charge IsMuon?
0 25.3 1.497 CHERE . 0.89 -1 false
1 94.7 1.38 -4985.13 .. 0.04 -1 true
42 21.2 3.48 673.34 .. 0.95 +1 false

The LHC beauty (LHCDb) experiment investigates primarily the matter—
antimatter asymmetry of the universe by observing interactions between B hadrons.
For our evaluation, we use one of their findings from LHC’s Run 1, the “B-meson
decays to three hadrons” (B2HHH) dataset, which estimates the mass of the short-

lived B-meson by tracking its decay to hadron particles. It has been made public
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through CERN OpenData (LHCb collaboration (2017), 2017). The dataset has no
nested collections, spans 26 columns and contains over 8.5 million events (i.e., en-
tries), for a total uncompressed file size of 1.5 GB. Table 5.3 shows a partial excerpt
of a few entries in the dataset.

The analysis of the B2ZHHH data is conducted by the benchmark program
lhcb.cxx in Blomer et al. (2022). This benchmark is realistic, yet simple and
well-understood. From the 26 existing columns, the analysis program iterates over
all entries and 18 of the columns in B2HHH to build a histogram of the B mass

spectrum, as demonstrated in Algorithm 6.

Pseudocode 6: LHCb Analysis Benchmark (B2HHH Dataset)
function LHCb(ntuple)?

1
2 > Iterate over entries (i.e., LHC events with collision data).
3 for entry : ntuple.GetEntries() do
4 > Filter out event unlikely to contain B meson.
5 if IsMuon in entry.Hadrong, 53y then
6 L continue
7 if ProbK in entry.Hadrong; 53y < 0.5 then
8 L continue
9 if ProbPi in entry.Hadrong 53y > 0.5 then
10 L continue
11 > Compute mass of event’s B meson.
12 b E+ 0
13 for h in entry.Hadrong 53y do
14 L b_E < b_E + GetKaonEnergy(h.PX, h.PY, h.PZ)
15 Pzt Z?Zlentry.Hadroni.PX
16 Py Z;{f’:len’cry.Hadroni.PY
17 Pz Z?Zlentry.Hadroni.PZ
18 b_mass < /b_E? — ||p||)2
19 | FillHistogram(b_mass)
20 | return

The flatness of the ntuple and relatively high proportion of columns be-
ing read during the analysis make this end-to-end analysis especially I/O-intensive.
Thus, it constitutes a natural candidate for the evaluation of new I/O features in
RNTuple.

To simulate a high-volume data analysis, such as those typical on HPC clus-

ters, we artificially extended the dataset through vertical concatenation. The final

2LHCb Analysis Benchmark on Github: 1hcb.cxx#L275


https://github.com/jblomer/iotools/blob/master/lhcb.cxx#L275
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content is equivalent to 10 identical copies of the original data, resulting in a 15 GB

uncompressed dataset with over 85 million events.

Experiment Combinations

We break down the total number of runs conducted for this evaluation:
On DAOS-Setup, we used the following parameters for RNTuple-DAOS, for

a total of 1224 combinations before repetitions:

Versions. 5x. vO-BASE, v1-PERS, v2-COAL, v3-COLO, v4-CAGE (with 1 MiB cages);
Cluster Size. 2x. 50 MB, 100 MB;
Page Size. 7x. 32kB, 64kB, 128kB, 256 kB, 512kB, 1 MiB, 2MiB, the latter

excepted from version v4-CAGE);
Compression Algorithm. 3x. none, zstd, 1z4;
Object Class. 6x. 0C_SX, 0C_TINY, 0C_MAX, OC_XSF, 0C_RP_TINY, OC_RP_MAX;

Repetitions. 5x.

Due to the number of combinations and relative lack of diversity in the results,
not all are presented in this document.

On S3-Setup, because of the proof-of-concept nature of the RNTuple-S3
evaluation, we only executed our experiment on six page sizes (64 kB, 1 MiB, 2 MiB,
4 MiB, 8 MiB, 16 MiB), with a 500 MB cluster size and no compression algorithm or

replication options. The experiment was repeated five times, for a total of 30 runs.

5.3 Evaluation of the RNTuple-DAOS Backend

In this section, we present the findings from our evaluation of the RNTuple—
DAOS backend proposed in section 4.3 on the DAOS-Setup platform described in
section 5.2.

The DAOS object class is one of the parameters we studied in this evaluation.
It regulates replication and sharding for blobs under DAOS KVS objects. A descrip-
tion of these properties for the studied object classes is present in the background
section 2.3.

First, we compare all named versions of the backend (see Table 5.2) with a
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fixed cluster size of 100 MiB and no compression, ranging over all page sizes, in order
to establish which of the proposed improvements had the most impact on write and
read throughput. Version v4-CAGE, with the caging mechanism toggled, is excluded
from this study.

Then, we present the entire gamut of results for three versions: vO-BASE
(baseline prior to our modifications), v3-COLO (proposed version with co-locality
mapping, but no caging) and v4-CAGE with 1 MiB cages. Due to the cutoff at
1 MiB, the experiments for the latter version were not run for 2 MiB page size.

Lastly, we discuss observations and limitations of the backend through a

statistical performance analysis on CPU utilization.

5.3.1 Version Comparison

We begin by fixing the cluster size at 100 MB and using no compression
in order to investigate precisely which versions introduce the greatest performance
gains (or losses) among the following: vO-BASE, v1-PERS, v2-COAL and v3-COLO.
From the baseline backend to the co-locality mapping proposal, each version builds
on top of the previous one, as already specified in Table 5.2.

We allowed both the page size and object class parameters to vary to identify
any residual effects w.r.t. the different request pipelines and mappings throughout
the implementations. The results are plotted in Figures 5.1 and 5.2

From the get—go, considering the results across object classes, three key take-

aways are evident:

1. Performance asymmetry w.r.t. implemented features. The results suggest
an asymmetry between request preparation efforts for writing and reading.
Taking for example subfigure 5.1a, the entire feature pipeline is needed to
achieve mensurable improvements in write throughput. Like a centerfold rest-
ing on top of the previous structures, it is only when the proposed mapping is
toggled that we see performance gains with high peaks of 10 GB/s. The anal-
ysis, on the other hand, benefits immediately from a more sensible operation
management that retains the persistent operation queue, achieving peaks of
44 GB/s read speed. These results suggest that, depending on the use case —

e.g., “write-once-read—thousands” —, the proposed mechanisms of request co-
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Figure 5.2: RNTuple-DAOS Version Comparison, 0C_{XSF,
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alescing, vector 1/O and co-locality mapping may only introduce unnecessary
complexity and buffering overhead without clear benefits. On the other hand,
if fast population of the object store is a priority, the entire “feature ladder”

is required for best results.

. Impact of replication factor for the setup. Some object classes show differences
of over 10 % in write throughput, e.g., the cases of 256-512kB pages in sub-
figures 5.2b, 5.2¢, 5.1a and 5.2a. It makes sense that the classes 0C_RP_TINY
and 0C_SX on one side, and 0C_RP_MAX, 0C_XSF on the other, have the biggest
throughput discrepancy on write, as they are on opposite extremes of the

replication factor.

. Unusually high write/read throughput discrepancy. We make note of the sub-
stantial discrepancy between the peak write and read speed, respectively
around 10 GB/s and 4.5GB/s. Usually, the write speed is lower than the
read’s, as exemplified in the same setup with the IOR benchmark (see results
in Table 5.1). A possible explanation is that DAOS reports an update proce-
dure as completed before data has finished moving, due to uncertainty by the
application on when an RDMA transfer is done. Alternatively, the high speed
on update is related to DAOS caching the update in PMem storage, so that
later, the contents can be committed into slower, SSD storage (see 2.5) at the

same target location.

. Faster throughput than the IOR benchmark. From section 5.2 and Table 5.1),
the results shown here trump those obtained in the IOR benchmark. This
can be explained by the fact that operations go through DFS in IOR to mea-
sure DAOS performance, as it is designed to benchmark POSIX I/O systems.
However, IOR may present inferior performance simply due to access patterns

and circumstances of the experiment.

. Higher variance for v3-COLO. As the highest performing curve, the version
v3-COLO is the most noticeably reactive to latency variance (see error bars)
and to the chosen object class. Particularly, we note the almost ritual steep
decline in write throughput at the 2 MiB page size, wherein some object classes
are more affected than others. It may be the case that the small cluster is
causing contention, which impact more strongly classes with high replication

factors, such as 0C_RP_MAX, when dealing with large blobs.
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5.3.2 Analysis of Native Parameters

We continue our evaluation by analyzing parameters native to RNTuple (page
size, cluster size, compression algorithm) and DAOS (object classes governing repli-

cation and sharding strategies).

RNTuple Page Size

From subsection 4.1, pages are the basic unit of storage in RNTuple, and our
background research indicates that a page size of 64 kB offers sound performance
for file-based backends.

Our evaluation extensively suggests that the above assumption is not appli-
cable for object stores, and that the appropriate transfer buffer size for fast data

ingestion is orders of magnitude higher.

RNTuple Cluster Size

The cluster is a size-bound partition of sequential entries in an ntuple that
serves as a checkpoint for I/O. Changing the size of the cluster impacts the average
amount of data from pages accessible for transfer at any point of writing or analysis,
which has ramifications on throughput.

Figure 5.3 demonstrates that a larger cluster directly, albeit marginally, im-
pacts write throughput when requests are coalesced and committed using the pro-
posed co-locality mapping. We estimate this is due to the higher amount of pages

that can be requested at once when operating with larger clusters.

RNTuple Compression Algorithm

In general, as the analyses in section 5.3.2 indicate, the size of the transfer
buffer has an indubitable effect on performance for our setup. Doubling the page
size can have as much as a 180% improvement on write throughput and 100% gain
on read speed (e.g., from 64kB to 128 kB in Figure 5.2b). Given that, one could
assume the use of compression algorithms at the page level would degrade transfer
speed in accordance with their compression rates.

Some experiments demonstrated this performance degradation when com-

pression was toggled. For example, Figure 5.4 shows a stark decrease in write
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throughput for the cases of zstd and 1z4 compression in comparison to no com-
pression. This trend is however less clear on reading. The impact of compression

on throughput should be investigated further.

5.3.3 Artificial Page Size (Caging)

As described in chapter 4, the caging mechanism was conceptualized after
observing the impact of RNTuple’s native page size on throughput seen in subsection
5.3.2, which confirm that the traditional page size of 64 kB for the file backend does
not port well to object stores.

However, this insight does not affect any preexisting ntuples that were created
with optimal configurations for file-based systems. To speed up HPC cluster data
ingestion, the entire ntuple would first need to be reprocessed with the refactored
layout before the analysis pipeline can properly start.

Subsection 4.3.3 explained that the proposed concatenation mechanism seeks
to avoid the aforementioned ntuple refactor with an approach based on scatter-
gather I/O. Our intent was to benefit from server-side concatenation of buffers by
tuning the mapping function and submitting batched-up requests.

From our experiment in Figure 5.3.3, the method had the expected effects on
fetching efficiency, with reading throughput reaching the artificial target throughput
of the larger chunk (in our tests, 1 MiB). In short, we validated that:

a. Separate, user-side buffers are mapped to the same blob in object storage,

despite being relayed through different IOV descriptors in an update request;

b. Data fetching achieves the read throughput of the targeted chunk size, i.e.,
the speed observed in the evaluation for the corresponding native page size,

even though the request comprised multiple pages.

The fact that fetching achieves the target throughput is not surprising. Once
in server storage, cages are no different than any contiguous, unitary blob, and so
should trivially match the throughput of native page sizes at the cage size targeted.

The same cannot be said for data ingestion with the caging mechanism, as the
writing throughput did not match the targeted estimates. Still, there is a tangible
improvement compared to non-concatenated native pages, when looking at page

sizes smaller than 1 MiB when setting the maximum cage size to that value. As
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Figure 5.6: Throughput comparison for native 64 KiB pages and 1 MiB concatena-
tion under different RNTuple-DAOS versions.
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visualized in Figure 5.6, the performance of 64 kB pages concatenated into 1 MiB
cages is over twice that of 64 kB pages in the native evaluation (subsection 5.3.2).
As the page buffers increase, this advantage starts to saturate until it plateaus for
pages sized 256 kB or bigger.

We now consider possible explanations for the observed bounded write per-
formance which prevents the set of smaller, scattered buffers from achieving write

throughput much closer to the target:

1. Throttled scalability in RDMA, inherent or caused by buffer mismanagement.
This packs two possibilities. The more unlikely one is that the noncontiguous
set of page buffers from the still-scattered cage prevents the transfer imple-
mentation by OFI verbs from scaling to the expected throughput in scatter—
gather 1/0. More likely and more insidiously, the higher number of buffers
incurs inordinate overhead costs directly associated with RDMA transfer, and
this overhead is not being amortized throughout execution; i.e., there are pro-
cessing costs repeatedly paid for each buffer and for each cage sink procedure.
In this case, the higher number of buffers once again would explain how smaller

pages are hit more heavily.

2. DAOS server contention or limitations on the number of IOVs that DAOS
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servers can withstand at once. In this case, the high number of individual
buffers could be causing causing server—side contention, either by implemen-
tation or due to a partitioning of the NIC’s available bandwidth. If this were
the case, our experimental setup with two servers should show at least alle-
viated effects thereof when subscribing to object classes with high replication

factors. However, no such mitigation was seen.

Due to the high impact of memory registration costs on RDMA-based trans-
fer (see the following subsection) and due to general efficiency concerns, this evalu-
ation has guided our development focus primarily toward improving memory buffer

reuse in RNTuple, which is a work in progress.

5.3.4 Performance Analysis

In addition to the above benchmarks, we collected performance statistics of
our backend’s CPU usage with the help of perf?, a statistical profiler for Linux
systems, and the FlameGraph visualization tool*, which agglutinates the collected
stack frames in perf in a visually—comprehensive way.

A stack trace profiler collects snapshots, or frames, of the stack trace at a
uniform sampling rate during the execution of a program. It is thus a statistical
tool to measure which function calls have demanded the most CPU resources in a
program. Flame graphs summarize these stack traces in colorful piles; the widest
the slab, the more frames contain a certain function call in its trace. Note that pile
height holds no importance with regards to resource usage, and that piles are not
organized in chronological order.

In Figure 5.7, we present two flame graphs which exemplify the CPU engage-
ment during data ingestion and retrieval in the RNTuple-DAOS backend.

Figure 5.7a contains both the writing and reading stages of a simples stan-
dalone development tool built by us and nicknamed “RNTuple Backend Zoo”. This
tool generates random data to populate a given object storage location and subse-
quently retrieves the data, confirming its validity via a hash function. Thus, the
Backend Zoo is a useful tool to debug backend behavior without the obfuscating

complexity of ROOT.

30nline documentation: perf official wiki.
4Repository available on Github: brendangregg/FlameGraph.
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Figure 5.7: Stack flame graphs, CPU usage, RNTuple-DAOS backend.
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Lastly, Figure 5.7b documents a complete LHCb analysis for 64 kB pages
with compression, which calls the real ROOT RNTuple. As expected, the majority
of the CPU effort is spent on decompression during the actual analysis of HEP
events, represented there by the call to UnsealPage () under the NTupleDirect ()
function in the LHCDb analysis script.

Most prominently, these graphs reveal the expensive effects of memory reg-
istration in RDMA—enabled clusters. RDMA depends on given ranges of the appli-
cation memory to be made visible to the adapter endpoint before remote transfer
can begin. This requires a system call to register the memory region, which is a
significant part of the overhead associated with such transfer methods. To amortize
these costs, memory regions that will be reused for transfer buffers should remain
registered throughout execution, or kept in a cache to be lazily de-registered once
idle (MIETKE et al., 2006).

These steps are identifiable in the graphs by the verbs calls ibv_cmd_reg_mr ()
and ibv_cmd_dereg_mr (), implemented by libfabric for the Mellanox InfiniBand
interface. These calls clearly dominate the performance analysis in Figure 5.7a,
where the standalone procedure is simple enough and does not engage in expensive
compression and decompression.

But even the LHCb analysis in Figure 5.7b suffers from memory registration
almost as much as it is impacted by decompression, which should be the biggest
source of CPU-boundness. This presents a problem: in the same analysis run,
memory regions which should already be registered and available for the next batch
of pages are incurring additional overhead costs before data is transferred. Since
calls to ibv_cmd_dereg_mr () are not visible in the flame graph, the regions are not
being forcefully de-registered before they are no longer needed. Instead, the graph
suggests that memory regions that do not entirely overlap with existing ones could
be undergoing memory registration because transfer buffers are not being efficiently

reused by RNTuple.

RNTuple-DAOS Evaluation Summary

In this evaluation, we systematically measured the real RW throughput of
multiple versions of the RNTuple-DAOS backend across the RNTuple and DAOS

parameter spaces, in order to understand their impact on performance for realistic
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HEP analyses. We found that the introduction of the co-locality mapping function is
the cornerstone for high write throughput, whereas it is inconsequential for reading
in the LHCb analysis workflow; for the latter, scalability is achieved with a persis-
tent operation queue that does not invoke system calls throughout execution, unlike
the baseline. The throughput sensitivity to transfer buffer size was solidified across
all scenarios; in particular, we were able to validate the caging approach as a viable
way to achieve higher throughput in spite of smaller native page sizes (and thus,
transfer buffers), both for reading and, to a lesser degree, for writing. We observed
minimal effect of compression algorithms on throughput, even though that directly
affects buffer size at the sink and source level. The evaluation revealed that bigger
clusters work in the favor of the backend when using the co-locality mapping. The
different DAOS object classes have a definite effect on performance; however, the
limited scope of the setup, with one single client and two servers in a modest HPC
cluster, hinder our ability to draw conclusions on the impact of the replication factor
and sharding on analyses. For that, distributed tests should be conducted on a more
powerful HPC cluster. Finally, a statistical analysis showed CPU bottlenecks asso-
ciated with memory registration in RDMA—interconnected nodes, which indicates
that better buffer management in RNTuple might lead to improved performance on

these interfaces.

5.4 Evaluation of the RNTuple-S3 Backend

For an evaluation of our experimental RNTuple backend for cloud-based ob-
ject stores, we designed a test similar to the one in subsection 5.3.2. Due to latency
and scalability concerns, the test uses abnormally larger pages (natively, i.e., con-
tiguously). For that, we fixed the cluster size at 500 MiB so that each cluster can
support at least one page for each of the 26 columns in the LHCb dataset.

With that in mind, we varied the native page size and measure the resulting
I/O throughput for the usual LHCb analysis without data compression. Note that
page sizes at this scale are not expected to be recommended for the RNTuple Cloud
use case due to loss of data granularity and a steeper page size imbalance between

different data types in the same cluster.
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Figure 5.8: RNTuple-S3 throughput and cost estimate for 500 MiB clusters, no com-
pression, varying page sizes, evaluated with a simulated server in idealized network

settings.
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The leftmost y-axis in Figure 5.8 records the throughput, in GB/s, as mea-
sured for the LHCb-based end-to-end analysis across page sizes ranging from 32 KiB
to 16 MiB.

The curves observed for both the writing and reading stages are not much
differently-shaped than the ones presented in the previous section for DAOS.

In both cases, there is a positive relation between throughput and page size,
i.e.; larger transfer buffers again lead to faster transfer rates. The curves for writing
and reading are both monotonically increasing throughout the x-axis. In this exper-
iment, we identify a turning point at MiB scales, which starts off a plateau trend.
We did not evaluate page sizes above 16 MiB.

The key difference between this backend evaluation and the one in subsec-
tion 5.3.2 is the start of the plateau at a larger page size. Whereas the DAOS
backend indicated a sensible trade-off around 512 KiB-2 MiB-sized pages, a similar
plateau pattern places our desirable transfer buffer size around the 8 MiB mark here.

Applying the same reasoning, we arrive at a 4-16x higher target.
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Discussion on Latency-Curbing Strategies

Informed by the above results, we discuss the viability of the caging mecha-
nism in a matured RNTuple-S3 backend.

The results suggest that the caging mechanism might not be enough for a
performant RNTuple backend for the cloud. In the DAOS backend (see 5.3.3),
caging is limited to pages from the same page group up to 1 MiB in uncompressed
size. This can be a significant amount of data for a given page group, since the
cluster size (50 MiB by default) is the limiting factor across all columns. With a
reasonable data distribution, clusters with hundreds of columns are unable to scale

up to the 2-8 MiB cages suggested by Figure 5.8.

Option 1: Large Clusters and Page Group — Object Mapping. For large enough
clusters (e.g., 100-500 MB in size), an alternative to consistently reach higher through-
puts is to map entire page groups as S3 objects. Effectively, this is what happens
already through caging for large enough target sizes. However, its feasibility depends
on the memory budget, as RNTuple would become more memory-hungry due to ad-
ditional allocation quotas for page compression and decompression. Also, buffering
data would strain memory budget constraints. As with any WORM application, the
most frequent /O operation between RNTuple and object stores is assumed to be a
fetch operation. When reading data during analyses, the recommended read-ahead
window (3), which pre-fetches subsequent compressed clusters in advance, by itself

triples the memory budget needed to process clusters.

Option 2: Cluster — Object Mapping. Going farther, a more drastic possibility is
to map each RNTuple cluster as its own S3 object. Cloud services are often adver-
tised for large files (e.g., movies, datasets) as the higher latencies can greatly affect
performance at smaller scales of transfer. Thus, a cluster-to-object mapping could
potentially leverage a much higher throughput. At such volumes, certain S3 imple-
mentations automatically trigger multipart uploading — a feature for writing large
S3 objects in parallel despite data being stored in a contiguous buffer, something
likely to be beneficial to performance only at the scale of 100+ MB objects. This is
conditioned on the hosting bucket having the feature enabled and belonging to an
S3 region that supports it.

While this approach maximizes potential ingestion speed, it complicates the
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fetching procedure considerably. From background sections 2.1.2 and 2.2, the HEP
use case follows a selectively columnar reading pattern. Thus, pages from only
a handful of columns may be requested for a given cluster. Storing clusters as
a single, indivisible unit in object storage negates R/W throughput gains for any
reading pattern that is not very dense (i.e., a majority of columns requested in each
cluster).

For this reason, mapping clusters to S3 objects is strongly conditioned on
another feature: byte-range requests. Byte-range requests break away from the
simple GET and PUT object requests, traditional to cloud-based object stores like S3,
in order to support partial fetch requests (and, less commonly, update requests) for
an arbitrarily long and contiguous segment of one of its blobs. The S3 API does
support this feature, backed by an underlying HT'TP request with the Range header
from RFC-2616 (NIELSEN et al., 1999).

Partial reads would enable a cluster-to-object mapping likely to perform ide-
ally for writing and for sparse reading of ntuple fields. However, it is still unclear
if such a solution would be as performant for column-dense analyses; instead, this
scenario could lead to socket contention caused by the multiple Range requests is-
sued at once, one per column. Should this problem arise, the common strategy of
concatenating any contiguous range requests for neighboring columns in the same

cluster would be advised.

Request Density x Page Size

Commercial cloud providers like AWS S3 and Microsoft Azure have a pricing
model that charges, among others, for storage and network utilization.

The rightmost y-axis in Figure 5.8 presents an estimation of the aggregate
cost associated with storing and accessing data in an S3 bucket with standard plan

rates.

Cost Estimate Calculation

We based our estimate of the financial investment of each data ingestion and
analysis step on AWS S3’s basic pricing information (Amazon Web Services, 2023),

which lists the costs to store and retrieve data across several of their service tiers.



87

We assumed the subscription to the “S3 Standard” service tier based on an
European location (Paris region, server “eu-west-3"). In this tier, there are fixed
monthly costs for storage per GB, as well as fees for each individual GET and PUT

request issued, among others. Our calculations are as follows:

Cuwrite(D) = qourDp + qs[1077Dyi.]  [i-e., PUT requests + storage volume] (5.1)

Cheten(Ap) = qeer Ay + ¢:[107° Ayi.e]  [ie., GET requests + transfer volume] (5.2)

where:
D = ntuple dataset.
Ap = analysis based on a given ntuple D.
D, = number of data and metadata pages in dataset (thus, single object
requests).
A, = number of pages requested in a given analysis Ap.

D.i.. = sum of all page sizes in dataset, in bytes
A,i.e = sum of all page volume requested during analysis, in bytes.

geur = S3 cost, in United States Dollars (USD), per single PUT object request

(i.e. write).
geer = S3 cost, in USD, per single GET object request (i.e., fetch).

qgs = S3 storage cost per GB under first rate (i.e., first 50 TB in bucket,
Standard), in USD.

¢ = S3 outbound transfer costs per GB under first rate (i.e., first
10 TB/month, Standard), in USD.

From Amazon Web Services (2023), the costs quoted in our evaluation for
the named server were gpyr = 0.0053, ¢s = 0.024, geer = 0.00042, ¢; = 0.09, all in
USD.

S3 offers more elaborate storage tiers that could prove useful in future anal-
yses. Tiers are approximately classified by the expected demand for object access,

with packages for frequent, infrequent and very infrequent (“S3 Glacier”) access, all
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of which regulate availability via data replication, edge caching or long-term stor-
age on hdd. An “Intelligent Tiering” option promises to adapt this tiering for each
object based on recent access patterns.

However, these are commercial subscriptions which may not reflect the reality
of a real-world leveraging of S3 infrastructure for LHC data analysis. In particular,
the specification and deployment of a federated storage solution for HEP research

falls outside the scope of this thesis and of RNTuple as a project.

Discussion on the Cost of Cloud-Based Analysis

The results demonstrate the impact of native page size on total storage and
transfer costs for the writing and analysis fetching stages. Since the dataset size does
not change, as the maximum uncompressed page size increases, the fewer pages
are stored as S3 objects and requested via PUT or GET calls. This leads to a 6x
cheaper writing stage when comparing 64 kB pages to 4-16 MiB ones, accompanied
by a decrease of 30% in the analysis. Note that, as a WORM pattern dataset, the
writing stage is expected to take place between once and a handful of times, while
the same data may be read thousands of times by different users, analysis workflows
or experiments.

This cost simulation exercise is meant to highlight and quantify the financial
incentive in having a smaller number of pages, each larger in size on average. First,
it shaves off costs for repeated analyses due to lesser volume of S3 object requests,
e.g., by 25% from 64 kB to 2MiB sizes for the LHCb dataset artificially extended
tenfold. Second, with higher compression potential for bigger data chunks, the long-
term maintenance and storage costs are also likely to be reduced, as these are based
on the total stored content in a user’s bucket.

Ultimately, the impact of compression on throughput and storage costs was
not studied in this experiment due to scope and the minimal differences observed
in the DAOS backend evaluation already presented beforehand. Likewise, the sim-
ulated setup dissuaded a realistic evaluation that considered replication on real S3
server nodes and edge locations; as a proof-of-concept, we expect our current results
to lead to testbed access opportunities for the continued development of RNTuple’s

cloud backends.



89

5.5 Design Considerations for a Generic Object Store Backend

We concerted our development of RNTuple-DAOS and RNTuple-S3 to max-
imize the similarity between the backends. This common approach stems naturally
from the task of adapting RNTuple to an object-centric data model, converging to-
ward concepts and patterns likely to appear in the implementation of other object
store backends for RNTuple in the future.

Given the proven potential of object stores for HEP analysis, and as a step
toward widespread coverage of existing scalable storage infrastructure for LHC ex-
periments, we expect an extraction of these common concepts into a generic object
storage layer to follow. This layer would connect RNTuple’s sink and source mod-
ules to concrete API implementations for myriad object storage providers. Thus,

we identify below the key considerations for the design of such a generic backend.

— Layered design. RNTuple’s sink and source already offer interfaces that can
be specialized by backends; notably, the file and DAOS backends override
their virtual methods. An additional inheriting layer that inserts a blueprint
for granular object store interoperability and management is recommended to

hide backend details behind generic, opaque structures and templates.

— User-level namespaces. Private namespaces are archetypal in the context of
scalable, shared hardware resources such as data centers, serving as a par-
titioned directory for user data. Examples from this work include DAOS
containers and S3 buckets. Their programmatic counterparts act as a bridge
between RNTuple sink and source data structures and the underlying backend
APIs.

In a generic backend, an “RBucket” manager structure should be encumbered

with:

v/ Connection management: establishing the connection with remote stor-
age, instantiating fabric endpoints and managing read and write creden-
tials securely. For certain services, this entails parsing a server region as
part of the namespace URI.

v ntuple-wide management: mapping an ntuple to an index and resolv-
ing it (when applicable), preventing mapping collisions in the process;

keeping track of all ntuples in the namespace; listing and transforming
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all of an ntuple’s objects in storage (e.g., changing permissions and repli-
cation, dropping or duplicating data), etc.

v/ Storage health and access patterns: collecting statistics, at the level
of either object, ntuple or namespace, potentially optimizing redundancy

and thus availability at more impactful granularities.

v Generalized operations: providing a flexible interface for bulk opera-
tions that can be exploited by the underlying storage implementation,
depending on support by the API and the chosen server. This interface
would assume native support for either dedicated vector write and read
operations or multiple, simple ones in parallel, as well as for partial, byte-
range requests in fetch operations; the concrete implementation may then
leverage the appropriate API calls or, if absent, implement an equivalent
or simplified approach, depending on performance requirements. This
interface must make as few limiting assumptions as possible, as opti-
mizations such as request coalescing are not available before mapping is

applied.

— Permissive mapping: determining the exact mapping between units of RN-
Tuple data (e.g., pages, cages, page groups, clusters or cluster bunches) and
the various potential storage units (e.g., object, distribution, array element,
region edge) is to be kept close to the implementation details of the backend.
The generic layer should expose a virtual interface that enables rich mapping
strategies, passing all of the above information for the concrete backend to
exploit them.

— I0OV-based buffer management. The implementations of RNTuple’s sink
and source are based on page chunks defined by contiguous memory segments
directly representable as IOV structures. Some cloud object store APIs utilize
streams for relaying content, most notably in fetch operations; to circumvent
that, custom stream structures can be implemented to still rely on a pre-
existing buffer corresponding to the sealed page content and described by the
IOV; going further, these custom implementations can take multiple IOVs in
order to enable caging-type concatenation in backends that do not present the

scatter-gather interface exploited for the DAOS backend in section 4.3.

— Redundancy shorthands. A set of desirable configurations specifying de-
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grees of replication, sharding and data protection should be generically de-
fined by RNTuple and translated to the closest available alternative by the
concrete backend layer, thus transparently to the user. This may be useful
when transferring ntuples from one object store to another, or even to regu-
late data redundancy at the (generic) namespace level in an automatic fashion,

based on access pattern metrics collected by that entity.

— Generalized number of namespaces. A generic layer allows enough lati-
tude to explore a generalization on the number of namespaces simultaneously
connected. Applications for this are limited: examples would include writ-
ing out data to different services in parallel, under the assumption that the
adapter interface would not be saturated due to network latency, or writing
out to the same service, but different server regions, as these imply a different
namespace for certain providers like S3. This is similar to the related work
in (PADULANO et al., 2022), which leverages DAOS as a fast cache option
for HPC clusters during fetching procedures by the traditional file backend.
A generic layer could, then, retain several “bucket” namespaces open, submit-
ting write requests to all at once; during analyses, different backends could be
queried for data in parallel, avoiding network delays and bottlenecks for more

reliable fetching.

The aforementioned building blocks form a blueprint for a connector layer
between the logical ntuples and their practical counterparts responsible for interop-
erability with remote object stores. As exemplified, this generic object store layer
could take up a majority of the duties and strategies for efficient throughput, elim-
inating redundant work when expanding this work to the myriad alternative object
stores not yet explored for RNTuple.

The proposed functionality could enable RNTuple to exploit, with minimal
effort, virtually every major existing cloud facility, as well as an expanding number
of object-store-based HPC clusters, in service of the HEP community and LHC

research.
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6 CONCLUSION AND OUTLOOK

The higher luminosity from the HL-LHC is projected to increase the event
data generation by 10-20xbefore the 2030s, compared to current runs at the LHC.
Tools in HEP data analysis and storage must be adequated for this influx of data
in order for the HEP field to benefit from this feat of engineering. In order to do
so, it becomes critical to leverage modern storage technologies, e.g., NVMe devices,
persistent memory and object stores, toward fast and scalable storage and 1/0,
enabling efficient and high-throughput analyses for the next generation of LHC
experiments at CERN.

In this work, we proposed two backends that integrate object stores into
RNTuple, ROOT’s new I/O subsystem for the next generation of HEP analyses
ushered by the HL-LHC. Each backend takes up an approach fit for its own use case
in HEP analysis: DAOS, Intel’s open—source object store, leveraging the power of
HPC supercomputers and clusters for intensive analyses; and AWS S3, the dominant
interface for cloud storage, as a transient stage meant to exploit existing cloud
infrastructure and distribute HL-LHC data to thousands of researchers worldwide.

DAOS has risen to prominence in the last half decade as a high-performing
object store for HPC. Our goal with RNTuple’s DAOS backend, which predated this
work in an experimental capacity, was to rework it to implement accepted techniques
in the field, as seen in section 4.3. These techniques include request coalescing,
supported by vector reads and writes, as well as more efficient scheduling queue
management and reduced use of system calls, all of which enabled the proposal of
a new data mapping between RNTuple and DAOS driven by physical target co-

locality, ¢ defined in equation 4.2).

co—tocality (

As the evaluation in section 5.3 shows, our implementation significantly im-
proved I/0O performance in comparison to the existing, proof-of-concept baseline.
The particular reason for the improvement is unveiled in our “feature ladder” eval-
uation, where each partial version of the framework is benchmarked to identify the
most impactful changes. For reading, the reduced use of system calls by keeping a
persistent endpoint queue is necessary and sufficient for scalable fetches over RDMA.
For writing, we found the opposite: only after all features are factored in, including

the new data mapping, does write speed achieve high throughput. This finding un-

locks a great potential for RNTuple to defer its writes by coalescing requests while,
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in parallel, engaging in compression of the next batch of pages, as these are the two
biggest sources of CPU utilization according to our performance analysis in section
5.3. Given the above, we consider that this work has met the Objective 1la set out
in section 1.1.

A subsequent evaluation of the RNTuple and DAOS parameter space revealed
useful information for future deployment in HPC clusters. Regarding RNTuple pa-
rameters, the weight of the page size on scalable throughput is confirmed, while
the evaluation suggests that bigger RNTuple clusters favor writing speed due to
larger request volumes. In spite of that, the impact of compression was negligi-
ble on the LHCb analysis and B2HHH dataset; results might differ for different
datasets. Though our setup was too simplistic to extract insights on distributed
analyses, we found native and caged pages to peak at around 10 GB/s for writing
and 4.2 GB/s for reading. As expected, replication often caused decreases in write
speed, particularly for large blobs at MiB scales. However, we cannot claim with
confidence that higher replication always leads to lower write throughput and higher
readbacks, or that increased sharding has benefits on performance. Given this, we
estimate that Objective 1b was only partially satisfied; a systematic evaluation in
a distributed setting, with different datasets and on a larger HPC cluster is necessary
to understand the impact of the above parameters in realistic scenarios.

In light of the results, we proposed a concatenation feature (“caging”) to
allow ntuples with smaller data blobs to be spliced together server—side, without
any additional copying. While this scatter—gather approach provided faster reading
of the concatenated blobs, it did not attain the targeted throughput for writing,
though an increase is observed for natively smaller pages. After further investigation,
we observed a significant CPU effort tied to memory registration in our RDMA-
enabled experimental setup for DAOS. Ultimately, this suggests RNTuple’s sink
mechanism is not optimally reusing IOV buffers. For sinking processes with many
small blobs, such as when caging is toggled, the cost of memory registration is more
significant. We deem Objective 1lc reached by this method, showing promising
results for the use cases that most need it and emancipating the sink layer from native
parameters that are detrimental to network transfer: for data ingestion, we measured
up to 2-3 xbetter throughput when comparing 32-64 kB pages being spliced together
as 1 MiB cages, whereas reading is improved 7—4xfor the same parameters. As

native pages grow larger, the gains in transfer rate become negligible, suggesting this
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mechanism to be particularly beneficial for transfers from RNTuple’s file backend,
which sees default page sizes of 64 kB, to DAOS.

In order to benefit from the existing cloud infrastructure, our cloud backend
approach targets the S3 service and API, which has become the unofficial standard
for cloud interfacing among cloud providers. Our proposal is a proof-of-concept
based on the foundations acquired with DAOS, seeking to understand the service’s
performance and limitatins. We began by identifying the characteristic differences
and similarities between the two models (Table 4.1), such as S3’s more opaque
mapping interface and higher latency compared to DAOS, which we were able to
counteract by increasing the transfer buffer sizes on the integration’s data mapping,
satisfying Objective 2 in section 1.1.

Specifically, we were able to demonstrate that page sizes associated with a
performant S3 backend should be bigger than those of the DAOS counterpart by a
significant factor (4-16x). This goes hand-in-hand with our service cost estimates
for ingestion and analysis, wherein larger pages directly lead to fewer requests and
cost savings of up to 6-fold for writing and 30% for reading. Note that under
our WORM access pattern, the latter metric should be prioritized, and its savings
are quickly the dominating factor after two dozen analyses. Given the results, we
formulated two additional approaches for the S3 backend, whose implementation
depends on the underlying provider’s support for byte-range requests.

Through this work, as envisaged in the introductory section 1.1, RNTuple
made headway into first—class support for object stores, with a production—grade
DAOS backend that efficiently populates HPC data centers and a clear path to a
performant S3 backend for fast HEP data distribution throughout the cloud.

Contributions

The object of this thesis has generated multiple contributions in HEP-related
scientific events with dedicated computing sessions. This section lists appearances of
this work in HEP conferences and a workshop organized by CERN openlab (CERN,
2023). !

In HEP conferences, authors customarily present their works before an arti-

LA public-private initiative coordinated at CERN to accelerate the development of computing
technologies that present practical benefits to HEP research and test them in real-world scenarios.
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cle is produced, much less peer reviewed. Such an approach stimulates discussion
in a field guided by deductive reasoning and whose experiments typically require
significant funding and time to conduct. The conferences that showcased our work
have followed this formula. Thus, we include submissions to their corresponding
proceedings, though their peer review processes are still ongoing or have not begun

at the present time of writing.

ACAT 2022 (poster): RNTuple: Towards First-Class Support for HPC' data cen-
ters (MIOTTO; LOPEZ-GOMEZ, 2022).

CERN openlab Workshop (talk): Mapping ROOT RN Tuple 1/0 data structures
to DAOS objects (LOPEZ-GOMEZ; MIOTTO, 2023).

CHEP 2023 (talk): Storing LHC Data in DAOS and S3 through RN Tuple (MIOTTO;
LOPEZ-GOMEZ, 2023).

There are two proposed publications about this work. The first is pending

review; the second is being submitted in September 2023:

ACAT 2022 Proceedings: MIOTTO, G. L.; LOPEZ-GOMEZ, J. RNTuple: To-
wards First-Class Support for HPC' data centers. 2023. Pending peer review.

CHEP 2023 Proceedings: MIOTTO, G. L.; LOPEZ-GOMEZ, J.; GEYER, C.
R. RNTuple: Efficient HEP Data 1/0O for Object Stores. 2023. Submission

imminent.

Outlook

The findings in this work have and will continue to guide object store sup-
port strategies for RNTuple. In this section, we list some of the directions for the
backends, going forward.

This work has identified an important bottleneck in memory registration
overhead costs over RDMA interconnects, as mentioned in 5.3.3. Approaches for
the reuse of allocated transfer buffers in RNTuple are being considered.

The evaluation of the DAOS backend in a distributed setting was kept out
of this thesis’ scope; in exploratory experiments, scalability constraints prevented
the link layer saturation during multi-node analysis over RDMA. In the future, this

should be revisited in a larger HPC cluster, after RNTuple leaves the experimental
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stage.

In its current state, the AWS S3 backend is a proof-of-concept. Its path
toward production goes through the implementation of byte-range read request
support, so that TCP/IP latency can be circumvented in the sink by coalescing
page groups or clusters into single blobs, as described in section 5.4.

Going further, the AWS S3 backend can springboard compatibility with other
object storage providers sharing similar APIs and feature sets, e.g., Microsoft Azure,
Google Cloud Platform, IBM Cloud and Oracle Cloud. More generally, this hints
at the implementation of a provider—agnostic connector between RNTuple’s stor-
age layer and a plethora of concrete cloud backends. The insights of this work,
which identify common structures, request patterns and mappings between the two

proposed backends, can be used to inform that endeavor.



97

REFERENCES

AAD, G. et al. Observation of a new particle in the search for the standard
model higgs boson with the ATLAS detector at the LHC. Physics Letters
B, Elsevier BV, v. 716, n. 1, p. 1-29, sep 2012. Available from Internet:
<https://doi.org/10.1016%2Fj.physletb.2012.08.020>.

ABADI, D. J.; BONCZ, P. A.; HARIZOPOULOS, S. Column-Oriented
Database Systems. Proc. VLDB Endow., VLDB Endowment, v. 2,

n. 2, p. 1664-1665, aug 2009. ISSN 2150-8097. Available from Internet:
<https://doi.org/10.14778 /1687553.1687625>.

ABADI, D. J.; MADDEN, S. R.; HACHEM, N. Column-stores vs. row-
stores: How different are they really? In: Proceedings of the 2008
ACM SIGMOD International Conference on Management of
Data. New York, NY, USA: Association for Computing Machinery, 2008.
(SIGMOD '08), p. 967-980. ISBN 9781605581026. Available from Internet:
<https://doi.org/10.1145/1376616.1376712>.

AGOSTINELLI, S. et al. Geant4d—a simulation toolkit. Nuclear instruments
and methods in physics research section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, Elsevier, v. 506, n. 3, p. 250-303, 2003.

Amazon, Inc. Best practices design patterns: optimizing Amazon
S3 performance. Amazon, Inc., 2023. Accessed: 2023-07-24. Available
from Internet: <https://docs.aws.amazon.com/AmazonS3/latest/userguide/
optimizing-performance.html>.

Amazon Web Services. Amazon S3 Pricing. Amazon Web Services, Inc., 2023.
Accessed: 2023-05-03. Available from Internet: <https://aws.amazon.com/s3/
pricing/>.

ANTCHEVA, I. et al. ROOT - A C++ framework for petabyte data storage,
statistical analysis and visualization. Comput. Phys. Commun., v. 180, p.
2499-2512, 2009.

ARDINO, R. et al. A 40 mhz level-1 trigger scouting system for the cms
phase-2 upgrade. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, v. 1047, p. 167805, 2023. ISSN 0168-9002. Available from Internet:
<https://www.sciencedirect.com/science/article/pii/S016890022201097X>.

Argonne National Laboratory. Aurora Exascale Supercomputer. 2023.
Accessed: 2023-07-27. Available from Internet: <{https://www.anl.gov/auror}.>

ATLAS Collaboration. ATLAS Software and Computing HL-LHC Roadmap.
Geneva, 2022. Available from Internet: <https://cds.cern.ch/record/2802918>.

AYLLON, A. A. et al. Making the most of cloud storage - a toolkit for exploitation
by wlcg experiments. Journal of Physics: Conference Series, v. 898, 2017.
Available from Internet: <https://api.semanticscholar.org/CorpusID:67176643>.


https://doi.org/10.1016%2Fj.physletb.2012.08.020
https://doi.org/10.14778/1687553.1687625
https://doi.org/10.1145/1376616.1376712
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://www.sciencedirect.com/science/article/pii/S016890022201097X
{https://www.anl.gov/auror}.
https://cds.cern.ch/record/2802918
https://api.semanticscholar.org/CorpusID:67176643

98

BERGHOFER, T. et al. Towards a Model for Computing in European
Astroparticle Physics. 2015.

BLOMER, J. A quantitative review of data formats for hep analyses. Journal of
Physics: Conference Series, IOP Publishing, v. 1085, n. 3, p. 032020, sep 2018.
Available from Internet: <https://dx.doi.org/10.1088/1742-6596/1085/3/032020>.

BLOMER, J. et al. Evolution of the ROOT Tree 1/O. ArXiv, abs/2003.07669,
2020.

BLOMER, J. et al. ROOT RNTuple Virtual Probe Station. 2022. Accessed:
2023-06-23. Available from Internet: <https://github.com/jblomer/iotools/tree/
acat22>.

BOCKELMAN, B.; ELMER, P.; WATTS, G. IRIS-HEP Strategic Plan for
the Next Phase of Software Upgrades for HL-LHC Physics. 2023.

BOITO, F. Z. et al. A Checkpoint of Research on Parallel 1/O for High-Performance
Computing. ACM Computing Surveys, v. 51, p. 1-35, 03 2018.

BRAAM, P. The Lustre Storage Architecture. 2019.

BRUN, R.; RADEMAKERS, F. ROOT—An object oriented data analysis
framework. Nuclear instruments and methods in physics research section
A: accelerators, spectrometers, detectors and associated equipment,
Elsevier, v. 389, n. 1-2, p. 81-86, 1997.

CERN. CERN openlab. 2023. Accessed: 2023-07-12. Available from Internet:
<https://openlab.cern>.

CERN. Storage: what data to record? CERN, 2023. Accessed: 2023-05-22.
Available from Internet: <https://home.cern/science/computing/storage>.

CHIEN, S. W. der et al. Exploring scientific application performance using
large scale object storage. In: Lecture Notes in Computer Science.
Springer International Publishing, 2018. p. 117-130. Available from Internet:
<https://doi.org/10.1007%2F978-3-030-02465-9  8>.

CLISSA, L. Survey of Big Data sizes in 2021. arXiv, arXiv, 2022.

CMS Offline Software and Computing. CMS Phase-2 Computing Model:
Update Document. Geneva, 2022. Available from Internet: <https:
//cds.cern.ch /record /2815292>.

DAOS Project. DAOS Overview. 2023. Accessed: 2023-04-25. Available from
Internet: <https://docs.daos.io/v2.2/overview /architecture/>.

DAOS Project. DAOS Overview: Storage Model. 2023. Accessed: 2023-04-25.
Available from Internet: <{https://docs.daos.io/v2.2/overview/storag}.>

DAOS Project. daos-stack/daos: DAOS Storage Stack (client libraries,
storage engine, control pane). Github, 2023. Accessed: 2023-04-25. Available
from Internet: <https://github.com/daos-stack/daos>.


https://dx.doi.org/10.1088/1742-6596/1085/3/032020
https://github.com/jblomer/iotools/tree/acat22
https://github.com/jblomer/iotools/tree/acat22
https://openlab.cern
https://home.cern/science/computing/storage
https://doi.org/10.1007%2F978-3-030-02465-9_8
https://cds.cern.ch/record/2815292
https://cds.cern.ch/record/2815292
https://docs.daos.io/v2.2/overview/architecture/
{https://docs.daos.io/v2.2/overview/storag}.
https://github.com/daos-stack/daos

99

DAOS Project. Hardware Requirements. 2023. Accessed: 2023-04-25. Available
from Internet: <{https://docs.daos.io/v2.2/admin/hardware}.>

DEVRESSE, A.; FURANO, F. Efficient HTTP based I/O on very large
datasets for high performance computing with the libdavix library. 2014.

DORIGO, A. et al. Xrootd - a highly scalable architecture for data access. WSEAS
Transactions on Computers, v. 4, p. 348-353, 04 2005.

DUWE, K.; KUHN, M. Using ceph’s bluestore as object storage in hpc storage
framework. Proceedings of the Workshop on Challenges and Opportunities
of Efficient and Performant Storage Systems, 2021. Available from Internet:
<https://api.semanticscholar.org/CorpusID:233384677>.

FOSTER, I. T.; KESSELMAN, C.; TUECKE, S. The Anatomy of the Grid -
Enabling Scalable Virtual Organizations. CoRR, ¢s.AR/0103025, 2001. Available
from Internet: <{https://arxiv.org/abs/cs/010302}.>

FREY, P. W.; ALONSO, G. Minimizing the hidden cost of rdma. In: IEEE. 2009
29th IEEE International Conference on Distributed Computing Systems.
[S.L], 2009. p. 553-560.

FTS. FTS Website. 2023. Accessed: 2023-08-12. Available from Internet:
<{https://fts.web.cern.ch/fts}.>

GADBAN, F.; KUNKEL, J. Analyzing the Performance of the S3 Object Storage
API for HPC Workloads. Applied Sciences, v. 11, n. 18, 2021. ISSN 2076-3417.
Available from Internet: <https://www.mdpi.com/2076-3417/11/18/8540>.

GIANNUZZI, G. et al. Analysis of high-identity segmental duplications in the
grapevine genome. BMC Genomics, v. 12, p. 436 — 436, 2011.

GIBNEY, E. How the revamped Large Hadron Collider will hunt for new physics.
Nature Research, v. 605, n. 7911, p. 604-607, May 2022. Available from Internet:
<{https://www.nature.com/articles/d41586-022-01388-}.>

GREVILLOT, L. et al. A monte carlo pencil beam scanning model for proton
treatment plan simulation using gate/geant4. Physics in Medicine & Biology,
v. 56, p. 5203 — 5219, 2011.

HADY, F. T. et al. Platform storage performance with 3d xpoint technology.
Proceedings of the IEEE, v. 105, n. 9, p. 1822-1833, Sep. 2017. ISSN 1558-2256.

HARTMANN, N.; ELMSHEUSER, J.; DUCKECK, G. Columnar data analysis
with atlas analysis formats. In: EDP SCIENCES. EPJ Web of Conferences.
[S.L1], 2021. v. 251, p. 03001.

HENNECKE, M. Understanding daos storage performance scalability.

In: Proceedings of the HPC Asia 2023 Workshops. New York,
NY, USA: Association for Computing Machinery, 2023. (HPC Asia 23
Workshops), p. 1-14. ISBN 9781450399890. Available from Internet: <https:
//doi.org/10.1145/3581576.3581577>.


{https://docs.daos.io/v2.2/admin/hardware}.
https://api.semanticscholar.org/CorpusID:233384677
{https://arxiv.org/abs/cs/010302}.
{https://fts.web.cern.ch/fts}.
https://www.mdpi.com/2076-3417/11/18/8540
{https://www.nature.com/articles/d41586-022-01388-}.
https://doi.org/10.1145/3581576.3581577
https://doi.org/10.1145/3581576.3581577

100

High Luminosity LHC Project. LS3 schedule change. CERN, 2022. Accessed:
2023-03-07. Available from Internet: <https://hilumilhc.web.cern.ch/article/
1s3-schedule-change>.

InfiniBand Trade Association. InfiniBand Roadmap. 2023. Accessed: 2023-03-05.
Available from Internet: <{https://www.infinibandta.org/infiniband-roadmap}.>

Intel Corporation. Intel® oneAPI Threading Building Blocks. 2023. Accessed:
2023-08-12. Available from Internet: <https://www.intel.com/content/www/us/
en/developer /tools/oneapi/onetbb.html>.

10500 Foundation. IO500 SC22 List. 2022. Accessed: 2023-03-17. Available from
Internet: <https://i0500.org/list/sc22/i0500>.

JEONG, K. et al. Optimizing the ceph distributed file system for high performance
computing. In: 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP). [S.1.: s.n.], 2019. p.
446-451.

KHACHATRYAN, V. et al. Search for the associated production of the higgs boson
with a top-quark pair. Journal of High Energy Physics, v. 2014, p. 1-64, 2014.

KOGGE, P. et al. ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems. Defense Advanced Research Projects Agency
Information Processing Techniques Office (DARPA IPTO), Techinal
Representative, v. 15, 01 2008.

LHCD collaboration (2017). Matter Antimatter Differences (B meson decays
to three hadrons) - Data Files. CERN Open Data Portal, 2017. Available from
Internet: <http://opendata.cern.ch/record/4900>.

LIANG, Z. et al. DAOS: A Scale-Out High Performance Storage Stack for Storage
Class Memory. In: [S.L: s.n.], 2020. p. 40-54. ISBN 978-3-030-48841-3.

LIU, J. et al. Evaluation of HPC Application I/O on Object Storage Systems. In:
2018 IEEE/ACM 3rd International Workshop on Parallel Data Storage
‘I&’ Data Intensive Scalable Computing Systems (PDSW-DISCS). [S.1.:
s.n.], 2018. p. 24-34.

LIU, J. et al. Evaluation of hpc application i/o on object storage systems. 2018
IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems (PDSW-DISCS), p. 24-34, 2018.
Available from Internet: <https://api.semanticscholar.org/CorpusID:59453124>.

LOGAN, L. et al. An evaluation of daos for simulation and deep learning

hpc workloads. Proceedings of the 3rd Workshop on Challenges and
Opportunities of Efficient and Performant Storage Systems, 2023.
Available from Internet: <https://api.semanticscholar.org/CorpusID:258486751>.

LOPEZ-GOMEZ, J.; BLOMER, J. Exploring object stores for high-energy physics
data storage. EPJ Web Conf., v. 251, p. 02066, 2021. Available from Internet:
<https://doi.org/10.1051 /epjconf/202125102066>.


https://hilumilhc.web.cern.ch/article/ls3-schedule-change
https://hilumilhc.web.cern.ch/article/ls3-schedule-change
{https://www.infinibandta.org/infiniband-roadmap}.
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://io500.org/list/sc22/io500
http://opendata.cern.ch/record/4900
https://api.semanticscholar.org/CorpusID:59453124
https://api.semanticscholar.org/CorpusID:258486751
https://doi.org/10.1051/epjconf/202125102066

101

LOPEZ-GOMEZ, J.; BLOMER, J. RNTuple performance: Status and Outlook.
arXiv, 2022. Available from Internet: <{https://arxiv.org/abs/2204.0904}.>

LOPEZ-GOMEZ, J.; MIOTTO, G. L. Mapping ROOT RNTuple I/O data
structures to DAOS objects. 2023. Accessed: 2023-07-21. Available from
Internet: <{https://indico.cern.ch/event/1225408 /contributions/524384}.>

LiTTGAU, J. et al. Survey of storage systems for high-performance computing.
Supercomputing Frontiers and Innovations, v. 5, n. 1, p. 31-58, Apr. 2018.
Available from Internet: <https://superfri.org/index.php/superfri/article/view/

162>.

MANUBENS, N. et al. Daos as hpc storage: a view from numerical weather
prediction. In: 2023 TEEE International Parallel and Distributed
Processing Symposium (IPDPS). [S.1.: s.n.], 2023. p. 1029-1040.

MANUBENS, N. et al. Performance comparison of daos and lustre for object
data storage approaches. 2022 IEEE/ACM International Parallel Data
Systems Workshop (PDSW), p. 7-12, 2022. Available from Internet:
<https://api.semanticscholar.org/CorpuslD:253581225>.

MIETKE;, F. et al. Analysis of the memory registration process in the mellanox
infiniband software stack. In: . [S.l.: s.n.], 2006. v. 4128, p. 124-133. ISBN
978-3-540-37783-2.

MinlO, Inc. MinIO. MinlO, Inc., 2023. Accessed: 2023-05-03. Available from
Internet: <https://min.io/docs/minio/linux/index.html>.

MIOTTO, G. L.; LOPEZ-GOMEZ, J. RNTuple: Towards First-Class Support
for HPC data centers. 2022. Accessed: 2023-07-21. Available from Internet:
<{https://indico.cern.ch/event/1106990/contributions/499135}.>

MIOTTO, G. L.; LOPEZ-GOMEZ, J. Storing LHC Data in DAOS and
S3 through RNTuple. 2023. Accessed: 2023-07-21. Available from Internet:
<{https://indico.jlab.org/event /459 /contributions/1132}.>

MUNOZ-ESCOI, F. D. et al. CAP Theorem: Revision of Its Related Consistency
Models. The Computer Journal, v. 62, n. 6, p. 943-960, 03 2019. ISSN
0010-4620. Available from Internet: <https://doi.org/10.1093/comjnl/bxy142>.

NAUMANN, A. et al. ROOT for the HL-LHC: data format. arXiv, 2022.
Available from Internet: <https://arxiv.org/abs/2204.04557>.

NIELSEN, H. et al. Hypertext Transfer Protocol — HTTP/1.1. RFC
Editor, 1999. RFC 2616. (Request for Comments, 2616). Available from Internet:
<https://www.rfc-editor.org/info/rfc2616>.

Nvidia, Inc. Benefits of Remote Direct Memory Access Over Routed
Fabrics. Nvidia, Inc., 2023. Accessed: 2023-06-05. Available from Internet: <https:
/ /network.nvidia.com/pdf/solutions/benefits-of-RDMA-over-routed-fabrics.pdf>.

OFIWG. Libfabric. OFIWG, 2023. Accessed: 2023-07-01. Available from Internet:
<https://ofiwg.github.io/libfabric/>.


{https://arxiv.org/abs/2204.0904}.
{https://indico.cern.ch/event/1225408/contributions/524384}.
https://superfri.org/index.php/superfri/article/view/162
https://superfri.org/index.php/superfri/article/view/162
https://api.semanticscholar.org/CorpusID:253581225
https://min.io/docs/minio/linux/index.html
{https://indico.cern.ch/event/1106990/contributions/499135}.
{https://indico.jlab.org/event/459/contributions/1132}.
https://doi.org/10.1093/comjnl/bxy142
https://arxiv.org/abs/2204.04557
https://www.rfc-editor.org/info/rfc2616
https://network.nvidia.com/pdf/solutions/benefits-of-RDMA-over-routed-fabrics.pdf
https://network.nvidia.com/pdf/solutions/benefits-of-RDMA-over-routed-fabrics.pdf
https://ofiwg.github.io/libfabric/

102

PADULANO, V. E. Distributed Computing Solutions for High Energy
Physics Interactive Data Analysis. Thesis (PhD) — Valencia, Polytechnic U.,
2023.

PADULANO, V. E. et al. Leveraging state-of-the-art engines for large-scale data
analysis in high energy physics. Journal of Grid Computing, v. 21, p. 1-21, 2023.
Available from Internet: <https://api.semanticscholar.org/CorpusID:256702277>.

PADULANO, V. E. et al. A caching mechanism to exploit object store speed in
high energy physics analysis. Cluster Computing, p. 1-16, 10 2022.

PADULANO, V. E. et al. Distributed data analysis with root rdataframe.
EPJ Web Conf., v. 245, p. 03009, 2020. Available from Internet: <https:
//doi.org/10.1051 /epjconf/202024503009>.

PERUZZI, M. et al. The nanoaod event data format in cms. Journal of Physics:
Conference Series, IOP Publishing, v. 1525, n. 1, p. 012038, apr 2020. Available
from Internet: <https://dx.doi.org/10.1088/1742-6596,/1525/1/012038>.

ROQOT Project. ROOT - Analyzing petabytes of data, scientifically. CERN,
2023. Accessed: 2023-03-29. Available from Internet: <https://root.cern.ch>.

ROOT Project. root-project /root: the official repository for ROOT.
Master branch. Github, 2023. Available from Internet: <https://github.com/
root-project/root /tree/master>.

SEHRISH, S.; KOWALKOWSKI, J.; PATERNO, M. F. Spark and hpc for
high energy physics data analyses. 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), p. 1048-1057,
2017. Available from Internet: <https://api.semanticscholar.org/CorpusID:
2357766>.

SOUMAGNE, J. et al. Accelerating HDF5 1/O for Exascale Using DAOS. IEEE
Transactions on Parallel and Distributed Systems, v. 33, n. 4, p. 903-914,
2022.

The Apache Software Foundation. Apache Arrow. 2023. Accessed: 2023-08-20.
Available from Internet: <{https://arrow.apache.or}.>

The Apache Software Foundation. Apache Parquet. 2023. Accessed: 2023-08-20.
Available from Internet: <{https://parquet.apache.org}.>

THOMASIAN, A. Chapter 2 - storage technologies and their data. In:
THOMASIAN, A. (Ed.). Storage Systems. Morgan Kaufmann, 2022.
p. 89-196. ISBN 978-0-323-90796-5. Available from Internet: <https:
/ /www.sciencedirect.com/science/article /pii/B9780323907965000115>.

WEIL, S. A. et al. Rados: A scalable, reliable storage service for petabyte-scale
storage clusters. In: Proceedings of the 2nd International Workshop on
Petascale Data Storage: Held in Conjunction with Supercomputing
’07. New York, NY, USA: Association for Computing Machinery, 2007.
(PDSW °07), p. 35-44. ISBN 9781595938992. Available from Internet:
<https://doi.org/10.1145/1374596.1374606>.


https://api.semanticscholar.org/CorpusID:256702277
https://doi.org/10.1051/epjconf/202024503009
https://doi.org/10.1051/epjconf/202024503009
https://dx.doi.org/10.1088/1742-6596/1525/1/012038
https://root.cern.ch
https://github.com/root-project/root/tree/master
https://github.com/root-project/root/tree/master
https://api.semanticscholar.org/CorpusID:2357766
https://api.semanticscholar.org/CorpusID:2357766
{https://arrow.apache.or}.
{https://parquet.apache.org}.
https://www.sciencedirect.com/science/article/pii/B9780323907965000115
https://www.sciencedirect.com/science/article/pii/B9780323907965000115
https://doi.org/10.1145/1374596.1374606

103

WLCG. Worldwide LHC Computing Grid. CERN, 2023. Accessed: 2023-07-22.
Available from Internet: <{https://wlcg-public.web.cern.ch}.>


{https://wlcg-public.web.cern.ch}.

104

GLOSSARY

akey Attribute key. In DAOS, it is a 64-bit value that complements the dkey to
comprise the blob key within the DAOS object using the KVS interface. 27,
28, 51, 52, 55, 56

dkey Distribution key. In DAOS, it is a 64-bit value that complements the akey
to comprise the blob key within the DAOS object using the KVS interface.
This key impacts target co-locality; within the same container and object, two
blobs under the same dkey are guaranteed to be stored in the same target
nodes on the DAOS server. 27, 28, 51, 52, 55

oid Object ID. In DAOS, it is a 128-bit value mapping to an object within the
DAOS container. The first 32 are reserved to DAOS, e.g., to encode object
class. The remaining 96 bits are freely describable by the user. 28, 51, 52, 55

blob Binary Large Object, a usually immutable entity stored as raw, binary data.
28, 51, 55-58, 60, 69, 77, 86, 93
bucket Private namespace in Cloud-based object stores, such as AWS S3, where

S3 objects are allocated. 85, 89

cage Portmanteau for concatenated page. The result of RNTuple’s caging in its
DAOS backend. 55-57, 69, 70, 77, 79, 85, 90

caging RNTuple’s scatter-gather concatenation mechanism, which combines neigh-
boring pages from the same page group into a single blob server-side. 56, 57,
85, 90

cluster A horizontal split of an RNTuple dataset, roughly O(100) MB in size. RN-
Tuple’s unit of writing. 17, 42, 44, 46, 49, 52, 55, 60, 70-72, 74-76, 78, 83, 85,
86, 90

cluster bunch A typically small (1-5) range of consecutive clusters in RNTuple
fetched together for parallel decompression in multi-threaded contexts. RN-
Tuple’s unit of reading. 46, 49, 61, 90

column A subset of fundamentally-typed data in RNTuple; internal component of
the external-facing field. Multiple columns can be part of a field, e.g. vectors,
which have an offset column and one or more columns for the comprising data.
45, 46, 60, 68

container Private namespace within pools in DAOS, where DAOS objects are al-
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located. 49, 89

event The set of particle collisions resulting from a proton bunch crossing. 19, 20,
23, 53-55, 57, 69, 82

exascale Term associated with a selective but growing group of the best performing
HPC clusters and supercomputers, able to achieve at least 10'8 IEEE754 64-
bit operations per second. 16, 17, 24, 36, 37

IOV Basic unit for scatter-gather I/O. It denotes a structure with a memory buffer
address and its corresponding length, in bytes. 28, 52, 56, 58, 60, 77, 79, 90,
93

ntuple A ROOT dataset 18, 23, 42-44, 46, 48, 51, 55, 57, 68, 74, 77, 86, 87, 89-91,
93

object In DAOS, entities with the capacity to store multiple data chunks according

to a given data model, which can be array-like or akin to a key-value store. 85

page A partition of column data in RNTuple, roughly O(100) kB in size. It is the
unit of compression and smallest scale at which 1/O is performed. 17, 43-46,
49, 51, 52, 55-57, 60, 66, 70, 74, 77, 79, 82, 83, 85-88, 90, 93, 94

page group Consists of all pages sharing a given cluster and column in RNTuple.
Can be described as the predominant unit of analysis. 43, 51, 52, 55, 57, 60,
85, 90

POSIX I/O Standard in the POSIX family 25, 30, 34, 37, 39-41, 73

proton bunch A batch of protons launched together in the same direction at the

Large Hadron Collider. 19, 20

Request For Comments A document by the Internet Engineering Task Force
(IETF) containing specifications, standards or technical memoranda on Internet-

related topics. 86

SGL Scatter-Gather Lists, a flat collection of IOVs used for scatter-gather 1/0. 28,
52, 56

shard A partition of a database integral to sharding, a technique for load balancing
that spreads different logical data across available server targets to reduce

contention for physical resources. 26
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TCP/IP Transmission Control Protocol/Internet Protocol, a set of communication
protocols between the nodes participating in the Internet. 59, 96

TTree ROOT’s long-established row and columnar data format and I/O subsytem
for HEP analysis. The predecessor to ROOT RNTuple. 14, 16, 22, 23, 38, 42,
43, 46

vector write Data transfer in bulk through data vectors that concentrate refer-

ences to multiple content buffers for different objects. 44, 45
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