
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

GIOVANNA LAZZARI MIOTTO

Leveraging Object Stores
for Particle Physics Analysis

with RNTuple

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Claudio Resin Geyer
Coadvisor: Dr. Javier López–Gómez

Meyrin, Switzerland
September 2023

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

It isn’t that life ashore is distasteful to me. But life at sea is better.
(Sir Francis Drake)

ACKNOWLEDGMENTS

This work took a village. First and foremost, it is dedicated to the villagers

who persisted in protecting higher education and science in Brazil and abroad against

adversity. I can only name a subset of those who have shared their time, knowledge

and laughter with me along my trajectory and motivated me toward my goals.

Ai miei genitori – è impossibili ringraziarvi per tutta una vita di amore e

sostegno incondizionati. Quest’opera è tanto vostra quanto mia.

To my advisor Claudio Geyer, thank you for your support and unyielding en-

couragement over the years, without which this thesis would not have been possible.

To Javier López and Jakob Blomer for the perplexing depth of your knowledge

and enthusiasm to share it, which has unequivocally elevated this work. You, along

with Axel Naumann and Philippe Canal, made ROOT I/O my second family.

To Laura Promberger, who pushed me beyond my comfort zone and brought

invaluable advice to this thesis (rarely solicited but always astonishingly pertinent).

Aos professores e mentores que guiaram minha trajetória acadêmica: Ana

Bazzan, Bruno Castro, Mariana Kolberg, Lucas Schnorr. A Marcelo Walter, Rodrigo

Machado, Sergio Cechin e Danielle Rosa pelo apoio incessante da COMGRAD. Aos

meus amigos, pela camaraderie incondicional: Arthur, Eduardo, Giovane, Lucas A.,

Lucas R. e Maria Flávia.

To the brightest and funnest in CERN–EP: Andrea, Bernhard, Elliott, En-

rico, Eugenio, Dante, Florine, Harald, Jakob E., Jonas, Jolly, Marta, Vincenzo.

Thank you for the coffee breaks, concerts, hikes, swims, Wizard rounds and evenings

at Ô’B, in R1, Bari and Norfolk. To my talented partners–in–crime, Baidyanath,

Garima, Piyush and Ivan, for the worst judgment and the best stories.

To HPE’s Lance Evans, Kevan Rahm and Sridhar Balachandriah and CERN

openlab’s Krzysztof Mastyna, for the pivotal help with this work’s experiments.

This page is incomplete without those who cheered me on through the finish

line: Diptarko and Niccolò, for the co–working through all-nighters and summer

weekends in Bdg. 40; my inspiring classmates at CSC Tartu - Andreas, Beth, Elias,

Eva, Ksenia, Mark and Valeria; and Tom and Emilio, for your faith in me.

This work benefited from support by the CERN Strategic R&D Programme on Technologies for Future

Experiments CERN-OPEN-2018-006 and the Intel–CERN openlab collaboration. Access to the hardware for the

experimental evaluation was provided by Hewlett-Packard Enterprise and CERN openlab.

ABSTRACT

The advent of the HL-LHC is projected to increase the volume of data generated by

LHC experiments for Particle Physics, or High Energy Physics (HEP), by at least an

order of magnitude, overwhelming current storage and analysis tools in the field such

as CERN’S ROOT. RNTuple is ROOT’s new I/O subsystem engineered to lever-

age modern storage technologies. Object stores are an emerging asset in scalable

data storage, with widespread use in cloud and HPC applications. We propose to

integrate performant object store backends into RNTuple through two systems with

distinct use cases – DAOS and S3 –, in order to exploit, respectively, exascale super-

computing facilities for analyses and a vast storage topology for disseminating data

globally and granularly; in each case, the backend should cater to concerns in scal-

ability, efficiency and latency. We introduced to an experimental RNTuple–DAOS

backend a set of features designed to capitalize on bulk transfer, target co-locality

and our domain knowledge of HEP analysis patterns, with the goal of optimizing

throughput for data ingestion and retrieval. Informed by preliminary results re-

garding data volume, we further propose a zero–copy concatenation method based

on scatter–gather I/O that improves transfer speed. A similar approach guided

our proof–of–concept RNTuple–S3 backend, adapted to consider latency limitations.

We evaluated the two contributions for single–node analyses on performant clusters

over InfiniBand RDMA and Ethernet, respectively. RNTuple–DAOS demonstrated

high throughput of over 10 GB/s (write) and 4.5 GB/s (read), corroborating our ap-

proach. The concatenation mechanism reached double the original write speed and

attained the same read speed as the targeted throughput, partially emancipating

transfer rates from the layout of the dataset. Furthermore, we validated RNTuple–

S3 as a backend for the cloud and developed next strategies for better performance.

Equipped with a production–grade DAOS backend for exascale supercomputers and

an S3 backend to access a global storage infrastructure, RNTuple is positioning itself

as the data format for the next era of HEP research at the HL–LHC and beyond.

Keywords: Particle physics. ROOT. DAOS. S3. high performance computing.

distributed systems.

Utilizando Object Stores para Análise em Física de Partículas com
RNTuple

RESUMO

A chegada do HL-LHC deve aumentar o volume de dados gerados por experimentos

do LHC para Física de Partículas, ou Física de Alta Energia (HEP), em pelo menos

uma ordem de magnitude, sobrecarregando atuais ferramentas de armazenamento

e análise da área, como ROOT. RNTuple é o novo subsistema de E/S do ROOT,

projetado para usufruir de tecnologias modernas de armazenamento. Object stores

são um recurso para armazenamento escalável de dados usado para nuvem e compu-

tação de alto desempenho (HPC). Propomos integrar ao RNTuple backends à object

stores por meio de dois sistemas de usos distintos – DAOS e S3 –, a fim de explorar,

respectivamente, centros de supercomputação exaescala para análise e uma vasta

topologia para disseminação global e granular de dados; ambos devem atentar para

escalabilidade, eficiência e latência. Introduzimos ao backend RNTuple-DAOS ex-

perimental melhorias que capitalizam transferência em massa, co-localidade e nosso

conhecimento de padrões de análise para otimizar a vazão na ingestão e releitura de

dados. Informados por resultados preliminares, propomos um método de concate-

nação sem cópia baseado em E/S scatter–gather. Uma abordagem semelhante orien-

tou nosso backend prova de conceito, RNTuple–S3, com adaptações para considerar

limitações de latência. Avaliamos as duas contribuições em análises nodo–único

e em clusters de alto desempenho conectados por InfiniBand e Ethernet, respec-

tivamente. RNTuple–DAOS apresentou alta vazão, com picos acima de 10 GB/s

(escrita) e 4,5 GB/s (leitura), o que corrobora nossa abordagem. A concatenação

atingiu o dobro da velocidade de escrita original e a mesma velocidade de leitura que

a vazão–alvo, parcialmente emancipando o desempenho do layout de dados. Além

disso, validamos o RNTuple–S3 como backend para a nuvem e desenvolvemos es-

tratégias para atingir alto desempenho. Equipado com um backend DAOS maduro

para supercomputadores exaescala e um backend S3 para acessar uma infraestrutura

de armazenamento global, RNTuple se posiciona como o formato de dados para a

próxima era de pesquisa em HEP, no HL–LHC e além.

Palavras-chave: física de partículas. ROOT. DAOS. S3. computação de alto

desempenho, sistemas distribuídos.

LIST OF FIGURES

Figure 1.1 The CERN Accelerator Complex in 2022. The points indicate
where each experiment’s detector is stationed. .. 12

Figure 1.2 LHC timeline (2011–2040), including runs, shutdowns and capacity
in energy and number of particle collisions .. 13

Figure 1.3 Projected landscape on disk storage and compute needs by LHC
experiments and their estimated capacity in different funding scenarios 15

Figure 1.4 The size of Big Data in 2021. Note the real and projected data
volumes for LHC projects, such as the WLCG and the HL-LHC.)................ 16

Figure 2.1 Layers of the RNTuple subsystem... 24
Figure 2.2 DAOS storage model: the pool abstraction... 26
Figure 2.3 A simplified view of the storage model and data organization with

the multi-level Key-Value Store API in DAOS. ... 27

Figure 4.1 RNTuple on-disk format.. 43
Figure 4.2 The RNTuple-to-object mapping problem... 47
Figure 4.3 A visualization of the RNTuple-to-DAOS mapping based on target

co-locality ... 51
Figure 4.4 Scheme for scatter-gather concatenation (caging). An update re-

quest contains a scatter-gather list of IOVs. Each IOV describes the mem-
ory region of a buffered page. I/O descriptors denote that the memory
regions are to be stored as a blob... 56

Figure 4.5 Composition of the DAOS object ID with support for multiple ntuples.58
Figure 4.6 A visualization of a proposed RNTuple-to-S3 mapping (page groups

as S3 objects) retaining columnar access and projected to amortize latency
concerns.. 61

Figure 5.1 RNTuple-DAOS Version Comparison, OC_{SX, TINY, MAX}.............. 71
Figure 5.2 RNTuple-DAOS Version Comparison, OC_{XSF, RP_TINY, RP_MAX}. 72
Figure 5.3 RNTuple-DAOS Cluster Size Impact. ... 75
Figure 5.4 RNTuple-DAOS Compression Impact {none, zstd, lz4}. 76
Figure 5.5 RNTuple-DAOS Caging Throughput, OC_{SX, TINY, MAX} 78
Figure 5.6 Throughput comparison for native 64 KiB pages and 1 MiB con-

catenation under different RNTuple-DAOS versions. 79
Figure 5.7 Stack flame graphs, CPU usage, RNTuple–DAOS backend. 81
Figure 5.8 RNTuple–S3 throughput and cost estimate for 500 MiB clusters,

no compression, varying page sizes, evaluated with a simulated server in
idealized network settings... 84

LIST OF TABLES

Table 2.1 A subset of pre-defined object classes in DAOS. 28

Table 4.1 Differences and similarities between DAOS and S3 w.r.t. properties
relevant to RNTuple... 58

Table 5.1 Results, IOR Benchmark, HPE Delphi cluster. 65
Table 5.2 Feature matrix for named versions of RNTuple-DAOS under evaluation.66
Table 5.3 Excerpt of the “B meson decays to 3 hadrons” (B2HHH) dataset,

from CERN OpenData Run 1 for the LHCb experiment (LHCb collabo-
ration (2017), 2017).. 67

LIST OF ABBREVIATIONS AND ACRONYMS

ACID Atomicity, Consistency, Isolation, Durability

AGC Analysis Grand Challenge

ALICE A Large Ion Collider Experiment

ANL Argonne National Laboratory

AOD Analysis Object Data

API Application Programming Interface

ATLAS A Toroidal LHC ApparatuS

AWS Amazon Web Services

BASE Basically available, Soft-state, Eventual consistency

CAP Consistency, Availability, Partition tolerance

CERN European Organization for Nuclear Research

CMS Compact Muon Solenoid

DAOS Distributed Asynchronous Object Store

DBMS Database Management System

DFS DAOS File System

DMA Direct Memory Access

DRAM Dynamic Random Acces Memory

FUSE Filesystem In Userspace

HDD Hard Disk Drive

HDF5 Hierarchical Data Format version 5

HDFS Hadoop Distributed File System

HEP High Energy Physics

HL-LHC High Luminosity Large Hadron Collider

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

IOPS I/O operations per second

IOR Interleaved or Random

KVS Key-Value Store

LHCb LHC beauty

LHC Large Hadron Collider

MPI Message Passing Interface

NIC Network Interface Card

NUMA Non-Uniform Memory Access

NVMe-oF Non-Volatile Memory express over Fabrics

NVMe Non-Volatile Memory express

NVM Non-Volatile Memory

OFI Open Fabrics Interfaces

PCIe Peripheral Component Interconnect Express

PMem Persistent Memory

POSIX Portable Operating System Interface

RDMA Remote Direct Memory Access

S3 Amazon Simple Storage Service

SCM Storage-Class Memory

SSD Solid State Drive

TBB Threading Building Blocks

UUID Universally Unique Identifier

VOL Virtual Object Layer

WLCG Worldwide LHC Computing Grid

WORM Write Once, Read Many

I/O Input/Output

DTR Data Transfer Rate

CONTENTS

1 INTRODUCTION ...12
1.1 Hypotheses ...17
1.2 Objectives and Methodology ..17
1.3 Structure ..18
2 BACKGROUND..19
2.1 High Energy Physics and its Analysis Patterns19
2.1.1 Large Hadron Collider Data .. 19
2.1.2 Data Analysis for High Energy Physics... 21
2.2 The ROOT Framework...22
2.2.1 ROOT I/O .. 22
2.2.2 RNTuple Architecture ... 23
2.3 DAOS ...24
2.3.1 System Architecture .. 25
2.3.2 Storage and Data Models .. 25
2.4 Data Storage Paradigms...29
2.4.1 Traditional Approaches ... 29
2.4.2 Modern and Distributed Storage Systems ... 31
2.5 High Performance Computing..34
2.5.1 Persistent Storage Technologies... 34
2.5.2 Communication Technologies .. 35
2.5.3 HPC Clusters and Exascale Computing.. 36
3 RELATED WORK ..38
4 INTEGRATING OBJECT STORES INTO ROOT RNTUPLE........42
4.1 The RNTuple Data Format ..42
4.2 Adapting RNTuple for Object Stores ...46
4.3 RNTuple-DAOS: Design and Implementation48
4.3.1 Co-Locality Mapping Function.. 50
4.3.2 Request Coalescing.. 52
4.3.3 Scatter-Gather Concatenation (Caging).. 55
4.4 RNTuple-S3: Backend for the Cloud..58
4.4.1 Mapping Function ... 60
4.4.2 Davix–based Implementation .. 60
4.5 Tools and Technologies ...62
5 EVALUATION ..63
5.1 Evaluation Objectives ...63
5.2 Experimental Setup ..64
5.2.1 Platforms... 64
5.2.2 LHCb Benchmark.. 67
5.3 Evaluation of the RNTuple-DAOS Backend69
5.3.1 Version Comparison... 70
5.3.2 Analysis of Native Parameters .. 74
5.3.3 Artificial Page Size (Caging) ... 77
5.3.4 Performance Analysis .. 80
5.4 Evaluation of the RNTuple-S3 Backend ...83
5.5 Design Considerations for a Generic Object Store Backend...........89
6 CONCLUSION AND OUTLOOK ...92
REFERENCES ...97
GLOSSARY ..104

12

1 INTRODUCTION

The field of High Energy Physics is both a beneficiary and a benefactor of

groundbreaking technological progress in Computer Science. This chapter provides

context on some of its current and future challenges that motivated our work and

presents our guiding hypotheses. Following that is a brief description of the structure

of this thesis.

Context

High Energy Physics (HEP), or particle physics, studies elementary particles

and their interactions at the subatomic level in order to further our theoretical

understanding of matter at the smallest and largest scales of the universe.

For half a century, the most coherent set of equations to describe the fun-

damental forces behind particle interaction has been the Standard Model. The

Figure 1.1: The CERN Accelerator Complex in 2022. The points indicate where
each experiment’s detector is stationed.

Source: Ewa Lopienska, February 2022 (adapted).

13

prevailing way to gather experimental data on the Standard Model is through col-

liding subatomic particles at high speeds. Such an impact decays the protons into

more basic subatomic particles, e.g., quarks and gluons, from whose interaction a

gamut of short-lived, composite particles may form. The higher the acceleration

between the initial particles, the more energy involved in the collision, increasing

the chances that heavier particles, such as bosons, be produced in the aftermath.

Currently, the largest particle collider in the world is the Large Hadron Col-

lider (LHC), with a circumference just shy of 27 kilometers intersected by the French-

Swiss border near Geneva. The LHC is maintained by the European Organization

for Nuclear Research (CERN). Collisions on the LHC are studied by four main ex-

periments, namely, A Large Ion Collider Experiment (ALICE), A Toroidal LHC

ApparatuS (ATLAS), Compact Muon Solenoid (CMS) and LHC beauty (LHCb),

as pinpointed in figure 1.1. The much-publicized observation of the Higgs’ boson,

whose existence was experimentally validated in 2012 (AAD et al., 2012), was a

result of CMS efforts during the first run of the LHC.

Such findings come from analyzing data picked up by sensors in the detector,

which is then digitized, filtered and stored in tape and disk. Figure 1.2 presents a

timeline of LHC operations, or runs interspersed with long shutdowns, showcasing

the increase in energy, and thus particle collisions, since its inaugural startup. The

larger capacity for collisions, along with more powerful detector technology, directly

Figure 1.2: LHC timeline (2011–2040), including runs, shutdowns and capacity in
energy and number of particle collisions

Source: Gibney (2022).

14

leads to more data that can be analyzed by researchers. Estimates place the volume

of data stored by all the LHC experiments at 1 petabyte of raw data per day of

operation during its second run (2015–2018); the third and fourth runs (respectively,

2022–2025 and 2029–2032) are expected to handily surpass these numbers (CERN,

2023; BOCKELMAN; ELMER; WATTS, 2023).

For decades, CERN has conceived in-house software solutions for its comput-

ing needs, designed and optimized for the usability and performance requirements

of particle physics data management and research. ROOT (BRUN; RADEMAK-

ERS, 1997) is the foremost data analysis framework for the HEP community, with

hundreds of contributors and thousands of daily users worldwide (ROOT Project,

2023a).

The pattern and scale of HEP data drove the development of ROOT’s own

data format and Input/Output (I/O) subsystem TTree. After a quarter–century of

evolution and over one exabyte of data cumulatively stored in the format, TTree

has established itself as the de facto standard format in the HEP community, out-

performing other formats for typical HEP analysis workflows (BLOMER, 2018).

Motivation

As figure 1.3a shows, the High Luminosity Large Hadron Collider (HL-LHC)

is projected to generate at least ten times as much collision data for end-user anal-

yses as past experiment cycles in the LHC, reaching the hundreds of petabytes per

year of operation. This context has motivated significant efforts by the HEP com-

puting community to adequate existing tools and leverage cutting-edge technologies

in software and hardware. One such push is IRIS–HEP’s Analysis Grand Challenge

(AGC), comprising performance objectives in critical steps of HEP analysis, e.g., in-

frastructure, data access, particle collision selection, and statistical model building.

ROOT figures among those projects contemplated by the AGC (BOCKELMAN;

ELMER; WATTS, 2023).

In order to store and analyze data at such a scale, comparable to the biggest

players in big data (1.4), it is necessary that distributing computing become the na-

tive theater for HEP analysis. Although researchers have benefited since Run 1 from

the scale-out orchestration of the Worldwide LHC Computing Grid (WLCG), cur-

rently servicing over two million jobs daily (WLCG, 2023), usability roadblocks com-

15

Figure 1.3: Projected landscape on disk storage and compute needs by LHC exper-
iments and their estimated capacity in different funding scenarios

(a) CMS disk storage in petabytes (left) and CPU use in kHS06 1(right).

Source: CMS Offline Software and Computing (2022).

(b) ATLAS disk storage in exabytes (left) and CPU use in MHS06, or 103 kHS06 (right).

Source: ATLAS Collaboration (2022).

mon to grid computing limit its effectiveness in facilitating HEP research. Such ob-

stacles come from the researcher’s need to manually divide-and-conquer large tasks

by splitting datasets, designating resources, and aggregating the results through

hand-crafted, shell-based scripts (LüTTGAU et al., 2018; PADULANO et al., 2022).

At the same time, throughout the last decade, the logistical challenges of big

data management have evoked paradigm-shifting developments in distributed and

parallel processing, e.g., object store-based cloud and High Performance Computing

(HPC) data centers and Storage-Class Memory (SCM). Two notable technologies

that embody such a paradigm change are the ubiquitous Amazon Web Services

(AWS) Amazon Simple Storage Service (S3) cloud topology and the Distributed

1HS06 is a customary unit in high energy physics to represent computation resources, stemming
from the SPEC06 benchmark; 1 kHS06, or 103 HS06, corresponds approximately to the compute
power of 100 CPU cores as of 2012 and has been equated to 1 teraflop (BERGHöFER et al., 2015).

16

Figure 1.4: The size of Big Data in 2021. Note the real and projected data volumes
for LHC projects, such as the WLCG and the HL-LHC.)

Source: The Authors (adapted from Clissa (2022)).

Asynchronous Object Store (DAOS) (DAOS Project, 2023a; LIANG et al., 2020).

DAOS is a low-latency, high-throughput, high I/O operations per second (IOPS) ob-

ject storage system that is the basis of Intel’s exascale stack for HPC applications,

leveraging Non-Volatile Memory express (NVMe) devices and SCM (also referred to

as persistent memory). DAOS is present in a plurality of the top performing HPC

clusters in the IO500 list (IO500 Foundation, 2022) and is the underlying filesys-

tem for Argonne’s Aurora Exascale Supercomputer (Argonne National Laboratory,

2023).

However, TTree was not designed to facilitate native, fine-grained integration

with object stores. To address this and other concerns ahead of the HL-LHC, ROOT

has been developing RNTuple, an experimental I/O subsystem designed from scratch

with modern storage technologies and principles in mind. RNTuple’s architecture

is modular, allowing uncomplicated extensions for, e.g., new data types and storage

backends. With this backend agnosticism comes an unprecedented opportunity to

explore object store support for HEP analyses and tap into a widespread infrastruc-

ture of opportunist and specialized facilities. Through RNTuple, it becomes possible

to leverage both a global infrastructure of cloud storage facilities and a number of

exascale HPC data centers for efficient, distributed analysis of HL-LHC data.

Thus, extending RNTuple to support a production-grade native DAOS back-

17

end could be the first step to enlist the power of exascale supercomputers toward

efficient, distributed ROOT analyses, while entering the cloud scene will provide

researchers with a scalable, fine–grained access to HEP datasets for the HL-LHC

era and beyond.

1.1 Hypotheses

In light of the requirement to attain a much higher I/O throughput for HEP

analysis to fully benefit from HPC data centers, we identify the following research

questions:

Hypothesis 1. Domain-specific knowledge of HEP analysis access patterns and the

DAOS storage model can improve RNTuple’s single-core I/O performance and

throughput to DAOS object stores.

Hypothesis 2. Applying a similar approach, RNTuple can intercommunicate with

other object stores developed for different use cases, such as AWS S3 and other

cloud-based storage providers.

1.2 Objectives and Methodology

Objective 1. Identify approaches that improve DAOS integration into RNTuple

with regards to throughput.

1a. Implement a more informed data mapping based on domain knowledge of

HEP analysis, RNTuple and DAOS.

1b. Evaluate the role of certain parameters under our control: page and clus-

ter sizes, replication and sharding levels.

1c. Develop a page concatenation mechanism for RNTuple inter-backend porta-

bility.

Objective 2. Based on the experience from the above objective, propose an RN-

Tuple backend for the cloud (AWS S3).

2a. Implement a proof-of-concept S3 backend that addresses cloud concerns,

subject to evaluation.

18

Methodology. The above objectives 1a–c and 2a are met by means of raw read

and write throughput (defined in 2.5) in the context of an I/O-intensive, real-

istic benchmark for HEP analysis, as detailed in 5.2.

Main Contributions. We identify two especially noteworthy contributions in this

work:

1. An RNTuple-DAOS data mapping that exploits data co-locality in a

storage node’s target, storing together content that is typically fetched

together by HEP analyses;

2. A scatter-gather concatenation mechanism that enables transfer between

backends at higher speeds, irrespective of the ntuple’s native layout.

1.3 Structure

This thesis is structured as follows. Chapter 2 introduces the necessary foun-

dations to grasp the proposed method and ensuing evaluation. Chapter 3 provides

a brief survey on the state of the art that, to the best of our knowledge, eclipses

the body of related work at the time of writing. Chapter 4 presents a conceptual

model of our proposed solutions custom–made for DAOS and S3. Chapter 5 shows

the conducted experiments and contains an evaluation of our findings. Chapter

6 summarizes the findings and contrasts them to the objectives and hypotheses

enumerated in the introduction. The bibliography, which lists publications and ma-

terials that informed this work, follows suit. Finally, a glossary of domain-specific

terms closes the thesis.

19

2 BACKGROUND

This chapter explains useful concepts for the remainder of this thesis. Section

2.1 introduces the ROOT framework in the context of HEP analysis. Section 2.4 lays

out the foundational elements of POSIX-compliant filesystems and object stores,

with an emphasis on their importance for scalability in distributed systems. In

section 2.3, we introduce DAOS and its properties. In section 2.5, we cover basic

concepts of High Performance Computing and its technologies, such as distributed

memory and interconnection networks.

2.1 High Energy Physics and its Analysis Patterns

High Energy Physics is a computationally intensive field with unique perfor-

mance and usability requirements. Given shortcomings of generic solutions found in

industry, physicists have long depended on domain-specific analysis tools fine-tuned

for their use cases to accelerate their research.

This section introduces useful concepts of Particle Physics and presents in-

sights into how data from Large Hadron Collider experiments is generated and an-

alyzed. Subsection 2.1.1 offers an abridged description of the lifetime of a collision

event, from beam acceleration to data point. Subsection 2.1.2 discusses the partic-

ularities of HEP analysis and its prevailing data access patterns.

2.1.1 Large Hadron Collider Data

The object of study for HEP analysis is the event. Henceforth, we refer to

an event as a collision between accelerated groupings of protons launched together –

proton bunches –, described in terms of certain properties and the collateral particles

that decayed from the collective impact.

Experiments at the LHC can now yield billions of collisions every second.

These originate from accelerating pairs of proton bunches in opposing directions

at a frequency of 40 MHz. As each event generates around 1 MB of signal data,

current LHC experiments can spawn information in the order of petabytes per second

(PB/s).

20

However, a majority of this information reiterates well-understood phenom-

ena that do not advance the field of particle physics; thus, a complex filtering and

selection pipeline exists in order to keep analysis data tractable.

The first step in the pipeline, data acquisition, involves highly selective, on-

line triggers that filter out sensor readings corresponding to ordinary events. These

trigger mechanisms are implemented as layers in hardware and software to keep

storage latency as low as possible (ARDINO et al., 2023). After culling event data

by five orders of magnitude, the event reconstruction step pieces out particle tra-

jectories from various sensor readings to describe particle interactions throughout

their lifetimes post-collision.

Reconstruction-originated datasets are organized in custom data formats,

with degrees of compactness optimized for the analysis needs of each experiment.

Since the LHC’s first run, CMS analyses have been based on the Analysis Object

Data (AOD) format, an extract from reconstruction data. Each AOD event occu-

pies about 400 kB in memory. On subsequent runs, more compact formats, designed

for the use cases of a majority of analysis workflows, have spawned from the AOD:

the MiniAOD (35–60 kB per event) and NanoAOD (1–2 kB per event) layouts (PE-

RUZZI et al., 2020).

In parallel, artificial datasets are painstakingly generated through Monte

Carlo simulation frameworks such as Geant4 (AGOSTINELLI et al., 2003). Statis-

tical processes are informed by theoretical formulae to be validated or rejected by

real-world experiments.

Each entry in LHC datasets lists a collision event and its noteworthy after-

effects. Since each event relates to a separate proton bunch crossing, entries are

treated as statistically independent data points, conditioned on experimental con-

text.

Two events can have different outcomes in terms of the particles they generate

and the features of interest to the researcher. Thus, HEP datasets have a mutable

schema and store data in jagged arrays, leading to support of these less common

mechanisms in HEP-fomented tools, e.g., ROOT.

21

2.1.2 Data Analysis for High Energy Physics

HEP Analysis Workflows

In HEP analyses, physicists are interested in validating or falsifying theories

on particle interaction. To that end, analysis workflows typically compare ground

truth observations reconstructed from the experiment detectors to data generated

from Monte Carlo simulation processes that follow such theoretical models.

As with any data-intensive statistical analysis, it is critical to establish fea-

tures of interest to filter out irrelevant information. These cuts may target entire

feature columns or data points failing a given threshold, leaving the physicist with

only the interesting subset of events from the dataset. These events’ features of

interest are then processed to generate custom observables in a step akin to feature

engineering. Finally, the physics observables are aggregated and summarized, com-

monly in binned histograms, so that their distribution patterns can be interpreted

through statistical inference methods. The column-oriented design of HEP data

formats facilitates such analyses centered around features of interest.

LHC Analysis at Scale

With a volume of LHC data in the exabytes, HEP data analysis requires vast

computation and storage resources that surpass the capacity of any single node.

On the other hand, since an experiment’s events are statistically independent, its

workloads fall in with other computationally–intensive tasks called “embarrassingly

parallel” that are ideal targets for divide–and–conquer strategies, e.g., for distributed

computing across nodes working in unison.

Before the LHC’s first run, the Grid (FOSTER; KESSELMAN; TUECKE,

2001) was already under development to overcome the logistical challenges ushered

by data outflows of its projected scale. The Grid defines a virtual, resource–sharing

organization able to orchestrate a heterogeneous architecture of computing resources

across collaborating facilities globally. The WLCG (WLCG, 2023) is the Grid’s

implementation that concerts the combined efforts of HEP research contributors

toward more efficient LHC analyses. Currently, the WLCG counts over 1.4 million

cores and 1.5 exabytes of storage around the globe.

22

2.2 The ROOT Framework

This section introduces the ROOT framework (ROOT Project, 2023a) and its

role for HEP data analysis. For brevity, we give more meticulous attention only to

its I/O subsystems TTree and RNTuple, despite the toolkit’s wide range of features.

Overview

ROOT (BRUN; RADEMAKERS, 1997; ANTCHEVA et al., 2009) is a general-

purpose software framework developed at CERN to provide the petabyte-scale stor-

age and efficient data processing required for high-volume scientific analyses in var-

ious fields of study, including HEP (KHACHATRYAN et al., 2014), genomics (GI-

ANNUZZI et al., 2011) and medicine (GREVILLOT et al., 2011). The four main

experiments at the LHC (ATLAS, ALICE, CMS and LHCb) are among ROOT’s

most prominent users; as such, the framework’s design is heavily influenced by their

particular requirements.

As seen in chapter 1, the scale at which LHC data generation occurs calls

for specialized software. Over a quarter-century, ROOT has cemented itself as the

main language of HEP storage and analysis.

2.2.1 ROOT I/O

HEP analyses typically target only a subset of arbitrarily-formed observables

across the entire range of events derived from an experiment’s collision (HART-

MANN; ELMSHEUSER; DUCKECK, 2021). As such, ROOT’s I/O subsystem

subscribes to a columnar data storage paradigm, in addition to its support for arbi-

trary types and collections in C++.

Though TTree I/O speed and storage performance has been demonstrated to

topple other formats like HDF5 and Apache Parquet in the context of HEP analyses

(BLOMER, 2018), its near three decade long design carries shortcomings. The most

critical of them are optimization choices intending to hide seek latency in spinning

disks - pointless in an age of modern, NVMe flash storage systems. The underlying,

Portable Operating System Interface (POSIX)-compliant storage backend is built

23

monolithically, taking major rewriting to adapt to other backends.

TTree’s performance bottlenecks may hinder analysis workflows starting with

LHC’s Run 4, once the planned HL-LHC upgrade is completed (High Luminosity

LHC Project, 2022). This occasion is expected to usher an increase of at least an

order of magnitude in the volume of data the LHC generates. Such an influx rate

would be untenable for TTree to handle, instigating its gradual retirement in favor

of a new, canonical data format for the future of HEP storage.

??, named for nested tuple, is the backwards-incompatible evolution of TTree

touted to address the latter’s shortcomings. In addition to modernized software

design principles that promise adaptability to shifting requirements, it brings a

smaller on-disk representation, more robust interfaces and type-safety by default.

To accelerate early adoption, there are ongoing developments to expand ??’s feature

set and eclipse TTree’s, e.g., integration with ROOT RDataFrame and a planned,

minimal I/O API in C, christened RNTuple Lite, which will enable ntuple migration

to existing machine learning stacks (BLOMER et al., 2020).

?? subscribes to a columnar layout that is reminiscent of design characteris-

tics seen in TTree and Apache’s Arrow (The Apache Software Foundation, 2023a)

and Parquet (The Apache Software Foundation, 2023b).

2.2.2 RNTuple Architecture

As described in subsection 2.2.1, ?? is a proposed, modernized format built

for the next generation of LHC experiments, while inheriting decades of domain

knowledge from TTree.

RNTuple’s architecture comprises four separate and functionally distinct lay-

ers. The event layer offers a user interface to read and write collision event entries,

either through hand-crafted event loops or through ROOT’s declarative interface

for analysis RDataFrame. The logical layer maps C++ objects to their correspond-

ing columns of fundamental types. Objects may be custom structures that are

fully composable and that include arbitrarily–nested collections, e.g., dictionaries

and vectors of vectors. The primitives layer coalesces ranges of values of the same

fundamental type into RNTuple pages. Lastly, the storage layer implements the con-

crete backend that handles I/O operations for pages, clusters and their metadata

(LOPEZ-GOMEZ; BLOMER, 2021).

24

Figure 2.1 illustrates RNTuple’s high-level architecture. The layered design

makes it simple to cater to shifting requirements and technologies, e.g., including

support for new data types and storage backends.

Figure 2.1: Layers of the RNTuple subsystem

Storage layer: byte ranges
POSIX files, object stores

RPageStorage, RCluster, …

Primitive layer: basic types
Columns containing elements of fundamental types (e.g.,

float, int) grouped into compressed pages, clusters
RColumn, RPage, …

Logical layer: C++ objects
Mapping of C++ types onto columns, e.g.,

std::vector<float> 7→ {index column, value column}
RField, RNTupleModel, REntry

Event iteration
Looping over events for reading or writing

RNTupleView, RNTupleReader/Writer

Source: The Authors (adapted from Lopez-Gomez and Blomer (2021)).

2.3 DAOS

The Distributed Asynchronous Object Store (DAOS) is an open source, high

performance object store designed for massively distributed Non-Volatile Memory

(NVM) devices (LIANG et al., 2020; DAOS Project, 2023c). It is the foundation

of Intel’s exascale storage stack, running on Argonne National Laboratory (ANL)’s

Aurora supercomputer.

In this section, we provide an overview of DAOS’ architecture, storage and

data models, with emphasis on key design choices that make DAOS different com-

pared to opportunist object stores, and particularly suited for HPC applications.

25

2.3.1 System Architecture

DAOS is designed from the ground up to exploit HPC architectures based on

modern storage systems with low latency, byte-granular access and high through-

put interconnects. As such, it breaks away from traditional I/O models by not

supporting high latency, block-based disks.

Its architecture is defined by three “building blocks”: Persistent Memory

(PMem), NVMe and libfabric. PMem, as a form of SCM, is significantly faster

than Solid State Drives (SSDs) (see section 2.5). PMem is the storage destination

for all internal metadata and as a stage for critical small I/O operations, where they

undergo aggregation before being committed. For this reason, PMem must account

for at least 6 % of total storage as of DAOS 2.2 (DAOS Project, 2023d). For bulk

transfers and noncritical small I/O, NVMe SSDs are supported (and recommended,

due to PMem storage costs). Lastly, libfabric, or Open Fabrics Interfaces (OFI)

(OFIWG, 2023), is a low-level communication library for HPC. In the context of

DAOS, it provides low-latency integration with underlying fabric communication

hardware.

The absence of system calls after spinup contributes to DAOS’ lower latencies.

This is achieved by memory mapping PMem storage and the employment of user-

level libraries and kernel-bypassing remote transfer protocols like Non-Volatile Mem-

ory express over Fabrics (NVMe-oF). Though this makes DAOS very lightweight,

applications that expect the POSIX I/O API must go through DAOS File System

(DFS) compatibility middleware, e.g., dfuse (user space mount) and libioil (I/O

intercept).

2.3.2 Storage and Data Models

The data organization in DAOS is unique to object stores. In this subsec-

tion, we detail how data and metadata are managed in DAOS and how its rich

interfaces grant the user a distinctive degree of control on data locality, distribution

and integrity, contrasting to other popular solutions in the field.

The schematic in figure 2.3 exemplifies DAOS’ stratified storage model, from

the pool of physical storage targets, to its potential hundreds of independent, names-

pace containers, to their potential billions of objects, each capable of holding an

26

extremely large number of data values.

Pool

The pool represents a reservation of storage distributed across a subset of the

physical targets that make up a server’s storage nodes. Once allocated, the pool’s

storage space in a given target are known as one of the pool’s shards.

In DAOS, a pool can sustain hundreds of object stores - containers - which

operate independently of each other. Data pertaining to a container can be spread

across pool targets to achieve a particular level of resilience and I/O performance.

Container

A container denotes a private address space within the pool that is able to

hold in the order of 1028 unique data-containing objects. Containers must be opened

by applications connected to the DAOS pool before I/O requests can be issued.

Container types, denoting different data layouts, can be implemented on top of the

DAOS Application Programming Interface (API) provided through libdaos, such

as the POSIX-based DFS or ROOT’s own middleware featured in this work.

The container is responsible for data versioning and transactional consistency

based on epoch timestamps. For permanent references to consistent dataset states,

DAOS supports timestamped and immutable snapshots, allowing the entire con-

tainer to be rolled back. To cope with distributed settings and mitigate contention,

multiple I/O operations are combined into a transaction with Atomicity, Consis-

tency, Isolation, Durability (ACID) properties, which is subjected to optimistic,

Figure 2.2: DAOS storage model: the pool abstraction.

Source: The Authors (adapted from DAOS Project (2023b)).

27

Figure 2.3: A simplified view of the storage model and data organization with the
multi-level Key-Value Store API in DAOS.

Pool Container dkey akey value
dkey1 … …

dkey akey value
dkey1 … …
dkey2 … …
dkey1 … …

Objects

Target 1

Target 2

...

Target n

Source: The Authors.

multi-version concurrency control; versioned updates are eventually aggregated to

reclaim space. Concurrency conflicts are settled on the basis of timestamp ordering.

Each container is associated with a Universally Unique Identifier (UUID).

Since DAOS 2.0, string labels have become the default interface for container iden-

tifiers, matching S3.

Object

A DAOS object is a data partition capable of containing multiple blobs,

unlike the most ubiquitous object stores. This entity has two supported paradigms,

depending on whether the stored data is structured.

1. The array API turns objects into arrays. Array elements have fixed size, are

accessed through an index and can be overwritten individually. Both flat and

multi-dimensional arrays are supported.

2. The Key-Value Store (KVS) API turns objects into full-blown key-value stores.

Elements, or blobs, have variable size. A key is assigned to access each blob.

The complexity of this key depends on the particular KVS interface chosen by

the user:

2a Single-level KVS, with pairs 〈akey, value〉. This is akin to a traditional

object store interface: an attribute key (akey) maps to the value.

2b Multi-level KVS: with pairs 〈〈akey, dkey〉, value〉. Here, the mapping

interface has a composite key, where the addition of a distribution key

(dkey) impact data locality in hardware.

28

Figure 2.3 exemplifies how data is assigned to storage under the multi-level

KVS model. The dkey directly determines where data is physically stored in the

server. Under the same object, two values sharing the same dkey are guaranteed to

be mapped to the same node target. This guarantee does not extend to the same

dkey under different objects, even in the same container namespace. The akey

completes the composite key to form a unique identifier among object values.

Whatever the underlying paradigm, each object is uniquely identifiable within

its container namespace by the object id (oid), a 128-bit numerical value. The first

32 bits of the oid are reserved for DAOS metadata. The remaining 96 bits are the

user’s to define.

Object Operations DAOS operations are concentrated on the object. The values

within an object are immutable, replaceable blobs. DAOS is optimized to fetch or

update these values as a single request unit. Thus, at this time, partial, byte-range

requests are unsupported, either for reading or writing.

Object updates and fetches are triggered by API calls to daos_obj_update()

and daos_obj_fetch(), which take vectors with an arbitrary number of I/O Vectors

(IOVs) and Scatter-Gather Lists (SGLs). As such, these operations support Linux’

scatter-gather I/O – multiple buffers on the user’s machine may be combined into

one single data Binary Large Object (blob) server-side. Each blob is sequentially

described by a corresponding akey stored in the list of IOVs, which inform the total

size of each blob.

Table 2.1: A subset of pre-defined object classes in DAOS.

Object Class Replication Factor Sharding Factor

TINY 1 1

MAX 1 “Maximum”

SX 1 All

RP_2G1 2 1

RP_TINY 1 All

RP_MAX “Maximum” All

XSF 12..128 1

29

Object Classes: DAOS object classes are a shorthand for properties relating to

object data redundancy and layout across pool shards. There exist pre-defined object

classes optimal for common object store use cases. Custom object class schema can

be defined at any time. Table 2.1 contains examples of pre-defined object classes

relevant to this work, along with their data protection factor (i.e., replication count)

and sharding level (i.e., distribution between the available physical devices).

Metadata Management: Metadata is a known source of contention and scala-

bility concerns in distributed systems (BOITO et al., 2018). DAOS’ storage model

addresses these concerns by keeping metadata lightweight and low-latency. For this

reason, metadata I/O is exclusive to PMem devices, a form of SCM significantly

faster than NVMe.

DAOS sacrifices object-level metadata granularity for many details tradition-

ally maintained by file systems. Only object type and schema - regulating striping

and replication, for example -, are kept on a per-object basis (DAOS Project, 2023b).

2.4 Data Storage Paradigms

Storage systems comprise the infrastructure and logical abstractions devel-

oped for organizing, storing and protecting the correctness of data. Throughout the

years, file and database systems have been proposed for efficient data I/O in local

and distributed settings. In this section, we provide an overview of traditional and

emerging systems and their efforts to manage stored content coherently.

2.4.1 Traditional Approaches

In this work, we refer to traditional data storage systems as the conven-

tional paradigms that predate modern approaches targeting distributed and cloud

storage. We briefly discuss three important concepts and their approaches to data

management: POSIX files, block storage and transactional databases.

30

File-Based Storage

File-based systems are organized in a tree-like hierarchy of directories and

data-containing files. Its elements are typically saddled with metadata, permissions,

timestamps and ownership credentials. Data is accessible by a path location stem-

ming from the root directory. As file-based systems grow in size, managing the

hierarchy’s metadata becomes cumbersome, which hurts the scalability of such sys-

tems. One source of contention in file-based systems is the adherence to the POSIX

standards.

Definition (POSIX I/O) A POSIX standard which describes well-defined seman-

tics and interfaces for I/O in file systems across platforms, stipulating stateful file

descriptors, atomic operations, inter-process sequential consistency and prescrip-

tive metadata for owner, group permissions and timestamps, among others. It also

regulates aspects like buffering and flushing of data to storage, blocking and asyn-

chronous I/O.

Though POSIX I/O semantics provides systems with data integrity and con-

sistency, it comes at the cost of limited scalability in data and concurrency. Some

concerns include file-level consistency through locking, blocking I/O by default, cen-

tralized metadata management and hierarchical traversal and data placement.

Block-Based Storage

Block-based storage splits content into granular chunks of equal size, called

blocks. Each block is stored independently, which enables better hardware utiliza-

tion and access through block-level addressing.

In contrast to file-based storage, block storage eschews a hierarchical struc-

ture and metadata bookkeeping, which can lead to better scalability for applications

managing their own data structuring, such as databases. In particular, block stor-

age provides a robust foundation for transactional databases, as block granularity

mitigates the effects of contention caused by transactions. However, management

and scalability concerns may arise from the need for lookup tables to keep track of

the storage blocks to which data are assigned.

31

Transactional Databases

Transactional databases are designed to ensure reliable and consistent data

management. Such databases are based on transactions, or sequences of one or

more database operations that are executed reliably in the presence of concurrency

or unexpected crashes. Transactions offer guarantees described by four properties

better known for their shorthand ACID.

Definition (ACID). A shorthand for four properties of database transactions –

Atomicity, Consistency, Isolation, Durability –, whose definitions follow suit. Atom-
icity: a transaction’s statements are unitary and indivisible. Consistency: the

database transitions between consistent states. Isolation: concurrent operations

act on the system’s state as if they were sequential. Durability: committed trans-

actions are not lost in case of crashes.

2.4.2 Modern and Distributed Storage Systems

Emerging storage systems propose advanced and specialized concepts in data

management and access, such as parallel file systems, columnar databases and object

stores that are better suited to distributed settings. Such systems are geared toward

scalability and reliability in contexts from big data analytics to HPC.

Parallel File Systems

Parallel file systems distribute files through striping across multiple, block-

based storage nodes in a cluster, seeking to achieve fast and concurrent access to

data. They represent an especially-designed data-sharing solution to mitigate I/O

bottlenecks in parallel data processing. Once requested, data is served concurrently

and transparently through separate I/O paths to saturate bandwidth. HPC ap-

plications with high data volume typically resort to parallel file systems for these

benefits; a prominent example is Lustre (BRAAM, 2019).

Distributed Systems

Distributed systems span multiple networked nodes working in tandem to-

ward common tasks as if a single computing system. Together, these systems can

32

tackle much larger problems than any single node. Examples of distributed systems

include cloud platforms like AWS, Ceph (JEONG et al., 2019) and the Hadoop Dis-

tributed File System (HDFS). The latter deploys scale-out file systems consisting of

commodity nodes to distribute work, though its tree hierarchies at the node level

impact the system’s manageability at scale.

As can be seen, for their benefits, distributed systems introduce many chal-

lenges to maintain a globally synchronized and consistent state against data con-

currency and component failures. For this, modern storage solutions can apply

distributed transactions and consistency control, as well as fault tolerance through

the replication of the same data across several backup nodes.

Definition (Availability, Partition Tolerance, Consistency): Availability is

kept if requests always receive a response within an acceptable timeframe. High

availability rates are referred by their number of ”nines” (i.e., 99.99 % as ”four

nines”). Partition tolerance means system operability despite arbitrary network

latency between nodes. Consistency models impose an ordering of operations that

maintains a coherent global state between nodes. Some guarantees include “strong

consistency” (a read always accesses the most globally recent content) and its relax-

ation, “eventual consistency” (updates are eventually propagated to every node).

The strong consistency expectations of POSIX-compliant file systems cause

I/O bottlenecks for distributed applications. Not only does this cripple scalability

for databases where structure is not critical, but it affects concurrent access due to

frequent locking. This is supported by the acronymous Consistency, Availability,

Partition tolerance (CAP) theorem, presented below.

Theorem 2.4.1 (Brewer’s CAP Theorem) A distributed system may attain at

most two out of the three following properties to a rigorous degree at any given time:

(strong) consistency, availability and tolerance to networking partitioning.

Naturally, CAP is only applicable in networked systems. Depending on their

purpose, services may offer CAP trade-offs like consistency degradation (e.g., from

strong to eventual) in order to keep availability rates high (MUñOZ-ESCOí et al.,

2019).

A weaker set of guarantees ubiquitous to distributed systems is BASE (”Basi-

cally Available, Soft-state, Eventually consistent”), prioritizing scalable availability

33

and fault tolerance over strict consistency. Its properties affirm that nodes may

temporarily be unresponsive or have inconsistent data views due to concurrent op-

erations and network latency before converging to a consistent state.

Columnar Storage

In column-oriented Database Management System (DBMS), data of a given

column is stored sequentially; a column spans several entry records consecutively

on disk. This is in contrast with row-oriented DBMS, wherein each entry is an in-

dividual, heterogeneous record spanning all columns in the database. Apache Par-

quet (The Apache Software Foundation, 2023b) is a highly popular and performant

columnar DBMS.

According to Abadi, Boncz and Harizopoulos (2009), columnar databases

tend to be more compact than row-based approaches in terms of storage footprint,

due to the effectiveness of compression algorithms when applied to homogeneous

data with low information entropy, e.g., values from the same column.

The on-disk data layout of column stores makes them suitable for large vol-

ume, read-intensive applications such as scientific and business analytical workloads:

only the columns corresponding to features of interest are accessed, yielding higher

effective I/O rates. However, columnar layouts lead to high seek latency by spinning

media when serving scattered I/O requests from different columns (HARTMANN;

ELMSHEUSER; DUCKECK, 2021; ABADI; MADDEN; HACHEM, 2008).

Object Storage

The reliance of traditional file systems on file hierarchy and lookup tables to

access blocks in storage globally slows the system down as the database expands.

A more scalable approach is to do away with structure altogether and keep a flat

collection of data, each piece associated to a unique key. This is known as a KVS.

Key-value object stores (or ”object stores”) segment data as self-contained

and independent units (”objects”) bundled with a custom set of embedded metadata.

This benefits navigation and access to objects. The latter is provided through a set

of intentionally-simple operations, e.g., GET, PUT and DELETE. As a downside of this

limited interface and the lack of block granularity, object stores are better suited for

predominantly static, Write Once, Read Many (WORM) databases instead of those

34

with regularly changing data.

According to Liu et al. (2018a), a key factor behind the scalability of object

stores is the self-describing nature of the data; unlike with POSIX I/O schemes, nei-

ther a directory hierarchy nor a set of prescribed properties are enforced on objects.

Metadata exists as custom tags on objects, favoring flexibility over usability Trans-

actions are kept simple to prevent concurrency locks: objects are immutable and

their access is stateless and not descriptor-based. Additionally, strong consistency

is often downgraded to eventual consistency guarantees.

Myriad object store solutions exist in the market, such as Amazon Dynamo,

Apache Cassandra, Google Spanner, AWS S3, and DAOS. The latter two have been

validated in HPC contexts (GADBAN; KUNKEL, 2021; LIU et al., 2018a).

2.5 High Performance Computing

High Performance Computing (HPC) engages powerful, interconnected nodes

to tackle intensive tasks efficiently. At the scale of thousands or millions of cores,

these nodes make up a supercomputer or HPC cluster that leverages cutting edge

components in processing, storage and networking, tuned to operate in parallel with

minimal latency and exceptionally high throughput.

2.5.1 Persistent Storage Technologies

Non-Volatile Memory

NVM describes a persistent storage system that retains its contents if power is

interrupted. These systems are typically designed for long term, secondary storage,

such that latency is a lesser concern than cost and access is block-granular. As such,

even NVMs based on NAND flash, such as SSDs, are multiple orders of magnitude

slower than Dynamic Random Acces Memory (DRAM), a type of volatile memory.

Storage-Class Memory and Persistent Memory

Despite latency reductions of an order of magnitude introduced by SSDs

compared to Hard Disk Drives (HDDs), I/O remains the performance bottleneck in

35

storage devices. To address this divide between cutting-edge processors and NAND-

based storage, a new tier of storage technology, called SCM, has emerged with the

potential to make modern storage as fast as the rest of its system (HADY et al.,

2017).

SCM denotes solid state storage that share features with both NAND and

DRAM devices, serving as a compromise between the two. It is nonvolatile; as

such, it is also referred to as PMem. On the other hand, it offers an order of mag-

nitude lower latency than SSDs, while remaining more cost-effective than DRAM

(THOMASIAN, 2022).

3D XPoint Storage (Optane)

3D XPoint (“cross-point”) is a type of NVM jointly developed by Intel and

Micron Technology that is speculated to have a phase-change memory (PCM),

transistor-less architecture with a dense layout of stacked memory cells (HADY et

al., 2017). The technology has been commercialized under the Intel Optane brand

for different use cases. Among them, we note the Optane SSD - a POSIX-compliant

storage for block-abstracted, asynchronous I/O interfaces -, and Optane PMem.

2.5.2 Communication Technologies

Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is a network communication tech-

nique that generalizes Direct Memory Access (DMA) for networked nodes. In DMA,

subsystems can bypass the CPU and directly access the system’s storage, as opposed

to programmed, memory-mapped and TCP socket-based I/O, where the CPU has

more active and computationally expensive roles. Instead, for RDMA and DMA

both, the CPU only steps in to grant initial access to the data region and to han-

dle the end of the transfer signaled by the driver. Particularly, the RDMA-enabled

host grants its Network Interface Card (NIC) access to application memory so that

guest nodes may read and write data without going through the I/O stack at either

endpoint (Nvidia, Inc., 2023). Though overhead from setting up endpoint access is

significant, its impact is attenuated by much faster transfer rates for bulk data.

36

InfiniBand

InfiniBand is a high-throughput and low-latency standard that implements

RDMA to achieve reliable communication between interconnected nodes. A switched

fabric topology enables point-to-point data transfer across multiple channels in par-

allel. As of 2022, InfiniBand could reach a theoretical effective data rate of 100 Gbps

per link (InfiniBand Trade Association, 2023).

NVMe

Non-Volatile Memory express (NVMe) is a high-bandwidth communication

protocol specification to enable access of SSDs through Peripheral Component Inter-

connect Express (PCIe) buses and better capitalize on the parallelism capabilities

of their hosts’ storage. Non-Volatile Memory express over Fabrics (NVMe-oF) is

an extension of the above protocol that encapsulates it through transport proto-

cols, e.g., TCP, RDMA and InfiniBand, allowing NVMe commands to be tunneled

between remote nodes.

The verbs API is available through the libfabric library and provides

functions for applications to access NICs. It supports direct read and write access

between remote nodes from the application layer with guarantees against packet

losses.

2.5.3 HPC Clusters and Exascale Computing

Above the computational capability for 1018 64-bit operations per second,

supercomputers are considered exascale (KOGGE et al., 2008). This barrier was

only recently crossed with a growing class of exascale supercomputers, like 2022’s

Frontier (Oak Ridge National Laboratory), and the upcoming Aurora (Argonne

National Laboratory) and JUPITER (Forschungszentrum Jülich).

The IO500 benchmark suite (IO500 Foundation, 2022) is a well known test

battery comprising five workloads to evaluate the I/O performance of HPC systems.

The tests measure bulk, small and metadata I/O for both random and pattern-based

data access, to which a single score is assigned. Ranked listings with the world’s top-

scoring systems are unveiled twice a year. A “research” listing is currently headed

by Pengcheng Laboratory’s Cloudbrain-II on Atlas 900, based on their SuperFS

37

filesystem. In the “production” listing, the headliner is the Leibniz Supercomputing

Centre’s LRZ, running DAOS.

The most important metric in I/O benchmarks is the Data Transfer Rate

(DTR), or throughput, which is capped by the link medium’s capacity, or bandwidth.

We define these terms below.

Definition (Throughput). Throughput, alternatively Data Transfer Rate (DTR),

is the transmission speed Rm of successfully sending d units of information between

connected devices over a link M in the time td. It is usually measured in bytes per

second.

Rm(d, td) =
d

td
(2.1)

Definition (Bandwidth). Bandwidth refers to the theoretical capacity Cm for

data transfer over a connecting link m. It corresponds to the peak or maximum

throughput observable over any period of time on that medium, i.e., Cm ≥ Rm,∀m.

Exascale clusters require modernized software stacks that fully exploit the

capabilities of their hardware components.

Among parallel storage solutions, the prevalent use of parallel file systems is

a known chokepoint to scalability in applications that do not need the consistency

semantics or hierarchical structure of POSIX I/O, such as computationally-intensive

analysis workflows with WORM data.

Therefore, HPC storage systems are designed around object-based seman-

tics, despite being traditionally exposed to middleware (e.g., Hierarchical Data For-

mat version 5 (HDF5)) through POSIX. Recently, HPC and cloud-based applica-

tions have started to exploit object interfaces natively and efficiently (GADBAN;

KUNKEL, 2021; LIU et al., 2018a).

38

3 RELATED WORK

TTree and RNTuple as Data Formats for Scientific Analysis

Though not yet production–ready, ROOT RNTuple is already present in

the literature for HEP storage and analysis applications. The format has been

extensively shown to outperform its predecessor ROOT TTree in quantitative and

qualitative criteria. RNTuple boasts a compact representation of nested collections,

which has led to 15–25 % smaller LHC experiment files post–compression. It has

also demonstrated finer-grained parallelism and improved memory management and

I/O performance in SSDs, with over 500 MB/s/core throughput (BLOMER et al.,

2020; BLOMER, 2018; LOPEZ-GOMEZ; BLOMER, 2022).

In addition to promising metrics on local SSDs, claimed to be partly due to

forgoing spinning disk optimizations, RNTuple has been adapted for use in tandem

with remote storage solutions, such as Hypertext Transfer Protocol (HTTP) through

libdavix (DEVRESSE; FURANO, 2014), XRootD (DORIGO et al., 2005) and object

stores (NAUMANN et al., 2022; LOPEZ-GOMEZ; BLOMER, 2021).

In particular, Lopez-Gomez and Blomer (2021) introduced an experimental

DAOS backend for ROOT’s RNTuple as a probe towards first-class support of object

stores. The work extended RNTuple’s generic storage layer with a concrete imple-

mentation for DAOS without altering the user API. The authors defined a naïve data

mapping of one RNTuple data chunk per DAOS object. The native DAOS backend

was evaluated over sockets and compared against both a local POSIX filesystem

and a Filesystem In Userspace (FUSE) filesystem, accessible through a compatibil-

ity layer. Experimentally, the proposed backend outperformed FUSE in throughput

by wide margins, while falling short of RNTuple’s file backend on local SSDs. The

results suggested that a native solution with a more thoughtful data mapping was

needed to fully exploit DAOS.

As in-house solutions, TTree and RNTuple have both been subjected to com-

parisons against industry-standard data formats for analysis. In Blomer (2018),

TTree had overall better performance than a wide range of popular I/O libraries

like Parquet (The Apache Software Foundation, 2023b), HDF5 (SOUMAGNE et al.,

2022), and SQLite for the HEP use case, i.e., partial, columnar and repeated read-

ing of the dataset, at which columnar formats excel. In Lopez-Gomez and Blomer

(2022), RNTuple was similarly compared to Parquet and HDF5. A qualitative study

39

showed RNTuple’s efforts to cover features critical to HEP analysis, such as schema

evolution and creation from C++ classes. Furthermore, RNTuple dominated the

aforementioned formats throughput–wise when accessing from CephFS, HDD, and

particularly SSD.

With each upgrade cycle, the LHC experiments generate larger volumes of

data. For HEP analysis to cope with this increased data production, has been a

push to modernize HEP workflows and its specialized software to make full use

of cloud computing, HPC clusters and distributed data centers. There has been

considerable effort to adapt ROOT for distributed computing settings (SEHRISH;

KOWALKOWSKI; PATERNO, 2017). Particularly, its declarative analysis interface

RDataFrame has been adapted to leverage modern and scalable analytics engines

like Spark and Dask and enable distributed performance transparently to ROOT

end–users without the complexity of grid computing (PADULANO et al., 2020;

PADULANO et al., 2023; PADULANO, 2023).

To speed up RDataFrame analyses with repeated data access, Padulano et al.

(2022) proposed a caching system for RNTuple that exploits available fast storage

locations, e.g., SSDs and remote object stores, in a backend-agnostic way. While

compressed chunks are read from slow, mass storage, the mechanism writes a copy of

the data in parallel to the cache location, interleaving the I/O operations with CPU-

bound decompression and analysis. Subsequent workflows by any user can access

the cache directly. Using DAOS as cache over the conceptual backend introduced

in Lopez-Gomez and Blomer (2021), with transfer chunks of 4 MiB, the authors

evaluated the proposal on one and seven client nodes armed with an InfiniBand

interface and spawning 16 threads each. They observed processing throughputs of

8 GB/s and 37 GB/s, equivalent to 46% and 74% of the theoretical maximum reading

throughput, respectively.

Storage Models for High Performance Computing Applications

In recent literature, many data-intensive applications have turned to HPC-

targeted storage engines and experimented with object stores, e.g., in the context

of research and scientific analysis, seeking to avoid performance and scalability bot-

tlenecks associated with POSIX I/O.

Both in generic benchmarks and realistic contexts such as numerical weather

prediction, simulation and deep learning, the performance of object stores has been

40

stress-evaluated and compared with that of parallel filesystems geared toward HPC

applications, e.g., Lustre, OrangeFS and BeeFS. Through emulation, object stores

were shown to boost scalability for the HDF5 library in intensive HPC workloads

(CHIEN et al., 2018). For the past years, a plurality of the top-performing storage

stacks on the IO500 benchmark suite have utilized DAOS as their underlying sys-

tem (IO500 Foundation, 2022), including Argonne’s Aurora exascale supercomputer

(Argonne National Laboratory, 2023). In studies, DAOS was shown to handily out-

perform kernel-dependent storage stacks on small and average-sized clusters of up

to dozens of nodes equipped with persistent memory and NVMe devices. These

demonstrated DAOS as particularly performant for small I/O transfers of 10 MiB or

less, and an equivalent contender for bulk data to the order of several tens of MiB,

suggesting that it can better sustain a high throughput of metadata transactions. In

contrast, the same studies suggested limitations at larger scales having more complex

network topologies – i.e., hundreds or thousands of nodes –, especially with regards

to metadata bottlenecks for a high count of thousands of Message Passing Interface

(MPI) tasks. Furthermore, as big data clusters typically rely on HDDs as primary

storage, there are concerns that NVM-based storage systems like DAOS will be lim-

ited to mid-sized clusters or kept to caching layers at best (MANUBENS et al., 2022;

MANUBENS et al., 2023; LOGAN et al., 2023; HENNECKE, 2023). At the same

time, other object stores have been explored for HPC. Ceph is a versatile and popu-

lar storage system based on an underlying object store layer, RADOS (WEIL et al.,

2007). Jeong et al. (2019) revealed challenges in applying Ceph to HPC workloads

because large files are transcribed to small objects, throttling performance.

For existing parallel filesystem libraries with established interfaces and imple-

mentations built around POSIX I/O semantics that impair their scalability to larger

clusters, a common solution is to develop connectors to more scalable backends that

have been promoted for HPC, e.g., DAOS, OpenStack Swift, Ceph RADOS, Ceph

BlueStore. This approach, based on the concept of a Virtual Object Layer (VOL),

bypasses block storage backends and operates in users-space. Though performance

tends to lag in comparison to native backends, it avoids significant changes in middle-

ware and application codebases. Through evaluation, these VOLs have consistently

shown better scalability than parallel filesystems, though object stores still lack the

degree of optimization the former have attained in the past decades (SOUMAGNE

et al., 2022; DUWE; KUHN, 2021; LIU et al., 2018b).

41

Though less focused on performance, the use of HTTP-based managers can

bridge the gap between heavy data processing and object stores. One example is

CERN’s Davix, which offers a single interface to manage different object stores APIs

remotely over HTTP, e.g., Amazon S3, Google Cloud, Microsoft Azure and WebDAV

(DEVRESSE; FURANO, 2014). Despite optimizations such as range coalescing, as

a file manager, integration with object stores is limited to converting operations at

the POSIX I/O level rather than the application’s. Even so, integration of object

stores to grid computing infrastructure through Davix was proposed by Ayllon et al.

(2017), as a promising alternative to distribution of HEP data through FTS (FTS,

2023).

42

4 INTEGRATING OBJECT STORES INTO ROOT RNTUPLE

In this chapter, we propose the integration of two object store backends into

RNTuple. The first is a production–grade, DAOS–based I/O layer to allow HEP

analysis workflows to be efficiently deployed to HPC facilities. A proof–of–concept

was already in place before our work; therefore, we focus on the added features to the

framework. The second contribution is an experimental approach to cloud–based

object stores through an AWS S3 backend.

The chapter layout is as follows. Section 4.1 presents RNTuple as a data

format and introduces key terminology to understand the proposed approaches.

Section 4.2 verses on the challenges of adapting file–based ntuples to object storage.

Section 4.3 explains the added features to the RNTuple–DAOS backend. Section

4.4 introduces the experimental RNTuple–S3 backend, focusing on the differences

to the DAOS backend. Finally, section 4.5 describes the tools and technologies used

in the development of this project.

4.1 The RNTuple Data Format

In this section, we introduce RNTuple’s data organization as it is serialized

on disk and the modifications made toward interoperability with the object store

paradigm.

Layout and Serialization

The RNTuple binary format describes the layout of an ntuple in its serialized

and on-disk representation, i.e., in terms of its pages (with data) and envelopes (with

metadata). Figure 4.1 gives a complete example of a serialized ntuple.

Data Building Blocks

On disk, ntuples are stored in horizontal splits called clusters (“RCluster”),

equivalent to the TTree counterpart. These are self-contained blocks holding a range

of sequential entries (“REntry”) and its contents for the scheme’s features. Sized at

O(100 MB), the cluster is RNTuple’s unit for efficient I/O and serves as a recovery

43

checkpoint in the case of crashes while taking in data.

Each feature of an entry represents a homogeneously-typed field (“RField”)

that is internally mapped to one or more columns, depending on the complexity

of the type. For instance, to attend expectations of HEP analysis mentioned in

subsection 2.1.2, RNTuple supports arbitrarily-deep nested collections. These are

projected on disk as multiple columns: the offset column indexes the start of each

entry in the value column, which can be another collection.

This nested approach gives “ntuple” its name. Its benefits include random

access of each entry (after one indirection step to retrieve the index) and the fast

vertical merging of two datasets under the same schema. Data compression can also

be more efficient, as type-appropriate compression algorithms are applicable on a

per-column basis.

Each column (“RColumn”) has a fundamental type associated with it. For

data positioned in the same cluster, the contents of a column are serialized contigu-

ously on disk, as expected of a columnar system.

Columns are further broken into pages (“RPage”). Pages are the building

blocks of RNTuple and the smallest data unit in the subsystem, occupying sizes in

the order ofO(64 kB) before compression. Since pages are the compounds of columns

and thus share the same fundamental type, it is at this scale that compression

algorithms are applied. It is roughly equivalent to TTree’s basket.

Finally, a page group (“RPageGroup”) denotes the set of pages that belong

in the same column and cluster; their contents stem from nearby entries, share the

same fundamental type. Page groups can be seen as corresponding to the “unit of

analysis”, as their data is typically accessed together in such workflows.

Figure 4.1: RNTuple on-disk format.

… …

Header Page

Cluster

FooterPage List

Page Group

struct Event {
int fId;
vector<Particle> fPtcls;

};
struct Particle {

float fE;
vector<int> fIds;

};

Source: The Authors (adapted from Blomer et al. (2020)).

44

Metadata Envelopes

The point of entry for a serialized ntuple is the anchor envelope. It is a

minimal record that specifies the format version, total dataset size and location and

length of the remaining envelopes that describe how to read the ntuple.

The header envelope delineates the RNTuple schema. It contains the ntuple

name, along with identifiers and types for the data model, indicating how to interpret

the fields and columns.

The footer envelope is integral to traversing the data stored in the ntuple.

It is the point of entry for nested lists called pagelists, which indirectly stores the

location and size of the pages through double indirection. Each pagelist covers a

group of consecutive clusters, providing an on-disk descriptor for each cluster. These

descriptors contain the columns descriptors, which finally index the column’s pages

on disk.

RNTuple I/O

A well designed I/O subsystem must competently orchestrate computational

resources, e.g., CPUs, memory and storage, and minimize the impact of communica-

tion latency. I.e., efficiently storing and retrieving data from external devices should

consider the computer system holistically while operating on a bounded memory

budget.

RNTuple provides a mature interface that implements efficient techniques

for I/O operations at the page and cluster scale. The specific implementations for

writing and reading are known as the data sink and data source, respectively.

Data Sink

RNTuple’s data sink is the mechanism responsible for the writing of data (in

the form of pages) into storage. The functions of the data sink are to manage data

ingestion efficiently, apply suitable data compression according to type and scale,

and keep metadata updated through regular transactions.

As the granular data unit of compression and I/O access, pages can be com-

mitted individually or through a vector write mechanism. With vector writes, the

writing of pages is deferred until all belonging to the current cluster are ready for

45

I/O, i.e., have been compressed and buffered. The main advantage of vector writes

is the potential for asynchronous compression in parallel and throughput saturation

by increasing the volume of data being transferred.

When the option for vector writes, or “buffered writes”, is not available, e.g.,

when the backend does not support this ingestion mode or when only a partial

range of the column’s data is being committed, RNTuple defaults to synchronous,

individual commits for each page. This approach has been shown in the literature

to collapse performance in the face of large amounts of data, especially for backends

that might deal with significant network latency.

Data Source

RNTuple’s data source manages data retrieval from storage to the user ap-

plication. Since reading data is more common than updating it in data analysis,

a pattern reminiscent of the WORM storage paradigm, the efficiency of the data

source is seen as a more pressing concern than the sink’s.

Analogously to the sink, the source provides the functionality to fetch pages

individually or in bulk; unlike the sink, only pages from fields needed by ongoing

analyses are requested. When performing bulk fetching, the source is able to include

columns from clusters within a given read-ahead window (e.g., the current cluster

and the next two), provided enough memory is available. Reading ahead is useful

to increase throughput when the set of columns requested for analysis is sparse and

to engage the link layer while decompression utilizes the CPU.

Compression

RNTuple supports compression at the page level with various built-in algo-

rithms, including, in approximate increasing order of compression rate, zlib, lz4,

zstd and lzma. Because of RNTuple’s columnar format, different compression con-

figurations can be applied to each column according to its type. Furthermore, the

separation of composite fields, e.g., collections, into separate offset and value columns

leads to higher compression rates due to lower data entropy.

46

Task Scheduler

RNTuple relies on a thread pool model implemented through Threading

Building Blocks (TBB) (Intel Corporation, 2023) to schedule its I/O operations

and achieve task concurrency. Thread pools are a resource-bounded, efficient ap-

proach to concurrent programming, as they consist of a limited group of preallocated

worker threads that consume tasks submitted to a queue. To enable parallelism, the

implicit multi-threading option ROOT::EnableImplicitMT() must be signaled by

the user.

In RNTuple, this is applied at the cluster bunch level, i.e., a range of clus-

ters fetched at once for parallel decompression and analysis. The cluster pool

(“RClusterPool”) spawns an asynchronous thread responsible for preloading pages

whose columns are on demand by the analysis at hand. With parallelism, comes

the potential for optimizing the data source’s fetching pattern. Specifically, queued

requests can be merged, linearized or otherwise manipulated when supported by the

storage backend (BLOMER et al., 2020).

4.2 Adapting RNTuple for Object Stores

Emerging object store solutions provide invaluable capabilities for future

analysis. In particular, their relevance for HEP research stems from their ubiquity

in cloud topologies, horizontal scalability and cost-effectiveness (section 2.4).

Contrary to ROOT TTree’s tight integration with file systems (subsection

2.2.1), RNTuple imposes a separation between higher-level abstractions and the

lower-level storage layer. The process of extending support to object stores is sim-

plified as a result. RNTuple presence in object stores is envisioned as two-fold:

Cloud: massively distributed object storage as an intermediate and transient stage

between workflow extremities, leveraging existing global infrastructure to pro-

vide granular ntuple access to researchers worldwide. For this use case, we

chose AWS S3. S3 is among the most popular object stores in the industry

and its API has become the standard for other cloud providers. Therefore,

extending support to its API allows the future leveraging of multiple others,

e.g., Microsoft Azure.

HPC: cluster-local distributed object storage for HPC data centers as a stage for

47

Figure 4.2: The RNTuple-to-object mapping problem

Source: The Authors.

big data analysis. While object stores are still gaining a foothold into the

HPC space lately, their scalability has been successfully demonstrated (LIU

et al., 2018b). For the past several years, Intel DAOS has figured among the

best performing stores in the category; that, along with its open-source status,

made it a natural choice for ROOT.

Guiding Principles

The development of this project sought to adhere to the following design and

performance principles:

Principle 1 Efficient Resource Management. Sober memory allocation and mini-

mal use of system calls.

Principle 2 Bulk Transfer and Deferred Engagement of the Link Layer. Launch-

ing requests individually for small data chunks hinders transfer scalability and

negatively affects throughput. By waiting to issue data requests in bulk, ef-

fective I/O rates may increase; in parallel, the processing unit is freed from

interruptions to tackle other threads.

48

Principle 3 Minimal New Metadata. No additional descriptors unless strictly

necessary, minimizing format specification overhead and metadata latency.

Principle 4 Thoughtful Data Mapping. Preserve RNTuple’s column-based pat-

tern across storage paradigms. Exploit maximally the backend’s mapping in-

terface to achieve fine-tuned, backend-specific results. Also, HEP reading pat-

terns should be taken into account (“data read together is stored together”).

Principle 5 Granular Data Access. When possible, new backends should preserve

a reading granularity closer to RNTuple’s file backend, e.g., by supporting

byte range requests.

Principle 6 Artificial RNTuple Layout. When possible, object store data should

not be bound by an existing ntuple’s native layout boundaries, which may be

optimized for a different backend.

Principle 7 Coexistence of ntuples. Bucket-like namespaces should handle dis-

tinct ntuples that share the same underlying resources, but kept distinguished

via an implicit hierarchy or partitioning transparent to the user.

4.3 RNTuple-DAOS: Design and Implementation

In this section, we provide an overview of our proposed mechanisms and

strategies to redesign RNTuple’s DAOS backend into a high-performance alternative

for HEP analyses.

Operation Management

In order to saturate the bandwidth capacity, our approach hinges on DAOS’

support for scalable and non-blocking bulk transfer. For that, the I/O pipeline must

avoid superfluous system calls and simplify operation polling.

Operation Queue

Creating DAOS operation queues (“event queues”) incurs significant over-

head, as they are instantiated in tandem with a communication endpoint for data

49

transfer. In the case of RDMA-enabled interfaces, such as InfiniBand through

libfabric’s verbs API, spawning a fabric endpoint requires a prohibitively costly

system call.

Therefore, optimal I/O performance takes a persistent operation queue through-

out the program’s execution. Our approach ties the lifetime of the queue to that of

the programmatic container manager. When creating and tearing down the instance

of RNTuple’s class for DAOS containers, so is the queue constructed and destroyed.

With that, endpoint costs are paid only once while spinning up the backend, before

the first I/O request.

Asynchronous Calls

In RNTuple, I/O operations act as transactions at the cluster level: each

cluster is guaranteed to be committed before progressing to the next one. For

reading, a cluster bunch with multiple clusters may be optionally fetched at once,

provided the data volume fits the application’s memory budget.

In lockstep, the DAOS backend operates within this transaction window to

issue all calls to remote storage based on the cluster(s) at hand. Operations are

launched asynchronously until all pages requests in the cluster have been made; at

this point, the backend reaches a blocking barrier which waits for any pending oper-

ations. This asynchronous scheduling is especially useful for large enough clusters,

e.g., with 500 MiB or more in size, where the link might go underutilized for too

long as requests are processed and issued.

Grouping Operations

For each cluster, many DAOS requests may be issued asynchronously, con-

tingent on the pages needed by the analysis and on the mapping function selected

for RNTuple-to-DAOS data ingestion.

To avoid polling several operations on synchronization points, we instantiate

a symbolic parent operation corresponding to the batch of operations presently in-

flight and for whose completion the barrier should wait. In DAOS, this parent may

be launched after the actual operations, and its completion is subservient to that of

its children.

The uses of symbolic parents and the blocking barrier are demonstrated in

50

Algorithm 1; line 2 instantiates the parent “event” (in DAOS nomenclature), which

is conditioned to the success of all child operations instantiated in line 5. These child

operations are sent in-flight by the calls to FetchByObjDkey() or UpdateByObjDkey(),

lines 9 or 11 respectively, depending on the mode being reading or writing. Finally,

a blocking call waits only for the parent operation in line 13; this raises an opera-

tion barrier in DAOS that prevents new children from being instantiated until the

current batch is no longer in–flight. We return the success or failure of the parent

operation in line 14.

If parent operations were not used, the implementation would be more com-

plex; the blocking call would have to poll every child operation in the list, popping

them as they are concluded.

Pseudocode 1: RNTuple-DAOS Container Vector Read/Write Op-
erations

1 function Container::VectorReadWrite(batches : MultiObjectRWBatch,
mode : WRITE ∪ READ)1

2 parentOp ←daos_event_t{}, childOps ←List
3 . Iterate over coalesced batches, instantiate operation handles.
4 for 〈〈oid, dkey〉, batch : RWBatch 〉 in batches do
5 childOps.Append(daos_event_t{})
6 daosPool.queue.InitializeOperation(oid, parentOp)
7 . Launch fetch or update operation asynchronously. Tie IODs and

SGLs to child operation.
8 if mode is READ then
9 FetchByObjDkey(oid, dkey, batch.dataRequests.iods,

batch.dataRequests.sgls, childOps[-1])
10 else
11 UpdateByObjDkey(oid, dkey, batch.dataRequests.iods,

batch.dataRequests.sgls, childOps[-1])
12

13 . Blocking call waits for the symbolic operation.
daosPool.queue.Wait(parentOp)

14 return daosPool.queue.IsSuccess(parentOp)

4.3.1 Co-Locality Mapping Function

The typical access pattern of a HEP analysis is columnar, retrieving row-

sequential values for a feature of interest (subsection 2.1.2). However, migration to

1VectorReadWrite() on Github: RDaos.cxx#L231

https://github.com/root-project/root/blob/36e4f3e4c27579dc0f154d652e5b1a36d42313a0/tree/ntuple/v7/src/RDaos.cxx#L231

51

an object store dissolves the ntuple’s columnar schema by virtue of its key-value

paradigm (subsection 2.4.2).

From section 2.3, the co-locality of a DAOS object’s data blob in the server

is determined by the distribution key, i.e., an object’s data is stored together if

they share an identical dkey. This interface, uncommon in object stores, enables

the otherwise-unstructured key-value frame to be imbued with columnar semantics

through an especially-crafted function between RNTuple pages and DAOS values.

Below, we formally define two mappings, φobj−per−page and φco−locality, be-

tween RNTuple pages and DAOS objects. Both project the kth page in the jth col-

umn and ith cluster onto a unique object store locator of the form 〈oid, dkey, akey〉.

φ : 〈clusteri, columnj, pagek〉 → 〈oid, dkey, akey〉

φobj−per−page(clusteri, columnj, pagek) 7→ 〈pagek, αdkey, αakey〉 (4.1)

φco−locality(clusteri, columnj, pagek) 7→ 〈clusteri, columnj, pagek〉 (4.2)

Figure 4.3: A visualization of the RNTuple-to-DAOS mapping based on target co-
locality

Source: The Authors.

The proposed mapping function ensures that the pages of a page group re-

main associated throughout the data’s lifetime. Coupled with the request coalescing

pre-processing step introduced in 4.3.2, this mapping offers an opportunity to treat

52

a page group as a single transfer unit, speeding up an analysis’ reading stage.

4.3.2 Request Coalescing

The mapping based on co-locality, proposed in subsection 4.3.1, ensures a

page group’s physical coincidence in DAOS servers. This offers an opportunity to

write and read data from all pages in a page group in parallel, as if they were a

single transfer unit.

To benefit from this parallel optimization, pages belonging to the same

page group should be requested simultaneously, i.e., in the same call. From sub-

section 2.3.2, the DAOS API can issue multiple operations together through the

daos_obj_fetch and daos_obj_update calls. These operate on multiple attribute

keys for the same oid and dkey.

The DAOS calls above are represented in Algorithm 1 through the evocation

of FetchByObjDkey() and UpdateByObjDkey() in lines 9 and 11, respectively. In-

ternally, they conform to the DAOS API by specifying the open handle associated

with the object oid, the dkey, contiguous arrays with the I/O Descriptors (IODs),

SGLs and their total sizes in bytes.

The DAOS IOD contains a description of the element as it pertains to DAOS

storage, such as the akey, total size, and whether the element is a simple blob or

follows the array API (see background section 2.3). The SGL contains the actual

buffer pointers in size as they are disposed in application memory, i.e., the transfer

IOVs which will be copied to DAOS through scatter–gather I/O.

The fetch and update calls also specify a pointer to the child operation,

instantiated in line 5, so that its completion can be later polled, as introduced in

the above subsection.

Provided all page operations in a cluster are known ahead of time, we can

effectively coalesce requests by co-locality via a <oid, dkey> pair. With the appro-

priate redundancy levels, we attain parallel and bulk transfers for page groups.

Algorithms 2 and 3 present our approach to coalesce requests based on a

common root of the DAOS mapping that is aligned with the required arguments of

the provided DAOS API calls (the <oid, dkey>). This is evidenced by lines 12–14

and 23–24, respective to both algorithms. Note that the tuple – and hence the

coalescing potential – are sensitive to the mapping strategy (lines 13 or 23).

53

This tuple serves as index for the (requests) dictionary, passed to the

VectorReadWrite() call (in lines 21 and 25, respectively). The method, presented

in Algorithm 1, is part of our backend’s “RDaosContainer” class.

Batch I/O

Executing I/O operations in batches can amortize network fabric overhead

costs and exploit parallel transfer, thus maximizing bandwidth usage. Shortening

the data import and export stages is critical for HEP analyses on larger datasets.

Pseudocode 2: RNTuple-DAOS Vector Write (With Caging Sup-
port)

1 function Sink::CommitPages (ntupleId, clusterId, pageGroups:List) 2

2 requests ←Map[〈int, int〉 → List], locators ←List
3 . Coalesce requests by 〈oid, dkey〉
4 for 〈columnId, columnPages : List 〉 in pageGroups do
5 offset ← 0, itemCount ← 0, index ← itemCount++
6 for page : columnPages do
7 iov ←〈page.buffer, page.size〉
8 if offset + page.size > MAX_CAGE_SIZE then . New cage
9 offset ← 0, index ← itemCount++

10 . Advance cage index
11
12 . Map RNTuple page location to DAOS
13 〈oid, dkey, akey〉 ← RNTuple2DaosMapping(ntupleId,

clusterId, columnId, index)
14 requests[〈oid, dkey〉].Append(iov)
15 . Encode page location within DAOS cage
16 pageLocator.position ← EncodePosition(index, offset)
17 pageLocator.size ← page.size
18 locators.Append(pageLocator)
19 offset ← offset + page.size

20 . Issue sorted requests to backend in bulk
21 daosContainer.VectorReadWrite(requests, WRITE)
22 return locators

In order to speed up data transfer, RNTuple implements both vector reads

and vector writes. In ROOT analyses, the range of events and fields to be ac-

cessed, e.g., in a for-loop, triggers the fetching of their corresponding pages in stor-

age. When vector reads are enabled, multiple clusters are fetched at once (by the

2CommitSealedPageVImpl() on Github: RPageStorageDaos.cxx#L307.

https://github.com/root-project/root/blob/36e4f3e4c27579dc0f154d652e5b1a36d42313a0/tree/ntuple/v7/src/RPageStorageDaos.cxx#L307

54

LoadClusters() method in Algorithm 3), scheduled for decompression and eventu-

ally accessed.

Analogously, vector writes are available by means of the CommitSealedPages()

method in Algorithm 2. This method is activated by buffering event data after page

compression. If enough compressed pages have accumulated to fill one or more

clusters, including every column thereof, then the committing is done in bulk.

Pseudocode 3: RNTuple-DAOS Vector Read (With Caging Support)
1 function Source::LoadClusters(clusterDescriptors : List) 3

2 // Initialize collections.
3 requests ←MultiObjectRWBatch
4 clusterPages ←Map[int →〈PageType,int〉]
5 pagemaps ←List
6 for cluster : clusterDescriptors do . Clusters in read-ahead window
7 for column : cluster.columns do
8 for page : column.pages do
9 〈 cagePosition, cageOffset〉 ← DecodePosition(page)

10 . Collect page requests under their cages to prevent duplicate
requests.

11 clusterPages[cagePosition].Append(〈page, cageOffset〉)

12 Allocate clusterPayload ∀ cage s.t. cage ∈ cluster
13 . Pagemaps know the page metadata and own their data buffers
14 Instantiate cluster’s pagemap
15
16 . Coalesce IOVs under 〈oid, dkey〉
17 for 〈cagePosition, sortedPages〉 : clusterPages do
18 for page : sortedPages do
19 . Tie memory area to logical page
20 pagemap.RegisterPage(〈page.columnId,

page.indexInColumn〉, 〈clusterPayload +
page.payloadOffset, page.size〉)

21 pagemaps.Append(pagemap)
22
23 iov ← 〈clusterPayload, cageOffset, cage.size〉
24 〈oid, dkey, akey〉 ← RNTuple2DaosMapping(page.ntupleId,

page.clusterId, page.columnId, cagePosition)
25 requests[〈oid, dkey〉].Append(iov)

26 daosContainer.VectorReadWrite(requests, READ) . Request to read
from DAOS

27 return pagemaps

3LoadClusters() on Github: RPageStorageDaos.cxx#L688

https://github.com/root-project/root/blob/36e4f3e4c27579dc0f154d652e5b1a36d42313a0/tree/ntuple/v7/src/RPageStorageDaos.cxx#L688

55

4.3.3 Scatter-Gather Concatenation (Caging)

During (de-)compression and I/O, pages are stored in individual buffers man-

aged in a memory pool by RNTuple. In general, considering that page groups are

limited by the cluster barrier, and that the page size attribute applies ntuple-wide,

the page size attribute cannot be too large: this can regularly lead to wasteful

memory allocation for columns with types that have a small footprint (even byte-

packed, like booleans). Page sizes cannot be too small, either, as that can cripple a

compression algorithm’s effectiveness.

From inception, RNTuple was designed around the partitioning column data

in building blocks of around O(100 kB) in size, before compression. For the file

backend, keeping chunks at that scale showed a balanced compromise between data

granularity, memory consumption and compression rates. Therefore, RNTuple’s

default, uncompressed page size was set to 64 kB.

However, one page size is unlikely to fit all backends. With object stores

come considerations on remote communication, both in endpoint overhead costs

and network latency, e.g., over RDMA or sockets (FREY; ALONSO, 2009). It

remains to be seen if the scale used for the file backend is adequate for transfers over

the network, as throughput is sensitive to a number of often stochastic factors, the

size of transfer buffers especially.

Thus, in order to emancipate an ntuple file’s migration to object stores from

its native page size, we propose a mechanism that logically concatenates neighboring

pages in RNTuple’s data sink.

The term cage is a portmanteau of concatenated page. It underlines that the

constituting pages are written and read back together, always sharing the same I/O

request throughout their lifetime. Note that grouping is incidental and driven by

workflow efficiency, as values in sequential rows are statistically independent in an

ntuple. In other words, there is no semantic meaning behind which event’ data are

caged together.

All pages in the same cage share the DAOS identifiers, i.e., oid, dkey and

akey. In effect, a cage is a single, contiguous blob in the DAOS namespace.

Sequential pages from the same page groups are concatenated into a cage

until (a) no more pages fit within a given maximum cage size; or (b) there are no

additional pages in the page group to commit. The maximum cage size is user-

56

Figure 4.4: Scheme for scatter-gather concatenation (caging). An update request
contains a scatter-gather list of IOVs. Each IOV describes the memory region of a
buffered page. I/O descriptors denote that the memory regions are to be stored as
a blob.

Source: The Authors.

defined with an empirically–adequate default value of 1 MiB, as seen in subsection

5.3.3. Algorithms 2 and 3 present our caging–supported implementation.

In Alg. 2, pages from the same page group are sequentially assigned the

same akey in DAOS until the limit in MAX_CAGE_SIZE in line 8 is reached. If that

happens, a new cage is inaugurated by progressing the index that serves as the

akey. In other words, pages from the same cage are filed under the same ?? in the

update call from Algorithm 1, even though data is located in separate buffers and

thus separate IOVs of the corresponding SGL. Caging can be disabled by simply

assigning MAX_CAGE_SIZE a value of zero, such that every page will be its own cage

with an independent blob.

As for Alg. 3, the potential multiple requests to pages belonging to the

same cage unit is an issue to circumvent if we are to avoid the same blob being

fetched repeatedly by RNTuple. We tackle this with a dictionary structure, which

is populated in lines 8–11: the indexing value is the same cagePosition later used

as the akey to perform a single fetch operation to object storage.

We note that page location metadata is kept minimal at 64-bit values; to

accurately retrieve the page data, we pack together into those bits both the cage

position and the offset within the cage, in bytes, where the data for that specific

page starts. Thus, the backend needs to EncodePosition and DecodePosition in

lines 16 (CommitPages()) and 9 (LoadClusters()), respectively.

57

Once written, DAOS blobs are only opaquely–accessible to the user, i.e.,

without support for partial and byte–range read (subsection 2.3.2). Thus, regardless

of how many pages are requested in the page group, the cage is read back from

storage as a whole – though only the requested pages within it are decompressed.

At worst, any request for a single page forcefully requires the backend to request

dozens to hundreds of pages, depending on the cage size and compression factor.

While this is a clear limitation of the caging mechanism for analysis, HEP use

cases are unlikely to subscribe to such a reading pattern. Instead, sequential ntuple

field ranges are requested in bulk for analysis over the statistically–independent

events (i.e., rows).

In light of this, the interface for page requests is disabled for reading ntuples

stored as cages, i.e., the ‘cluster caching’ option must remain activated. This simpli-

fies the implementation and prevents users from misguidedly and silently executing

inefficient analyses.

Multiple NTuples per Container

From subsection 2.3.2, a DAOS pool can host hundreds of containers, each

with billions of objects. A one-ntuple-per-container approach is likely to (a) waste

the mapping image, and (b) be impractical, as the container limit would saturate

quickly, as dozens of sibling datasets can spawn from the same raw experiment data.

We tackle that by enabling multiple (billions of) ntuples to populate the same

container, assigning segments of the addressable object space to separate datasets

without an explicit hierarchy.

For that, we designate the 32 most-significant, non-reserved bits of the object

ID to specify the dataset. This 32-bit value is derived from the ntuple’s name as

outputted by the std::hash function implementation for std::strings. With the

zeroth ntuple reserved, this allows for 232 − 1 = 4294967295 different ntuples per

user namespace, which is likely sufficient for most projects and experiments.

There are no plans to support the handling of hashing collisions for differently-

named ntuples, as empirical tests with randomized inputs exhibited a 0.244% ntuple

name collision rate. This decision simplifies RNTuple index resolution by eschewing

linked lists of RNTuple headers or an index table. More importantly, it keeps the

solution metadata-less, observing Principle 3 in 4.2.

58

Figure 4.5: Composition of the DAOS object ID with support for multiple ntuples.

Source: The Authors.

Table 4.1: Differences and similarities between DAOS and S3 w.r.t. properties
relevant to RNTuple.

Property DAOS S3

Storage Structure Flat

Namespace Access 〈server:string, id:string〉 7→ namespace

Namespace Terminology Container Bucket

Blob Access N3 7→ blob string 7→ blob

Data Locality Control Explicit (dkey) Induced by Naming

Object Structure array or KVS blob

Buffer Management IOV IOV/Stream

Latency Very Low Average to High

Protection, Acceleration Custom (Object
Classes)

Service Tier
(Region, Batch)

4.4 RNTuple-S3: Backend for the Cloud

Developing RNTuple’s DAOS backend to a mature and production-ready

state provided knowledge applicable to other object stores. We sought to leverage

it toward supporting a new use case: the cloud.

Whereas HPC exploits distributed processing by spreading data cluster-

59

locally, cloud-based solutions bring data to the users at the edge of a global topology.

This comes with the cost of dealing with high latency from, e.g., the TCP/IP pro-

tocols, as well as heterogeneous service depending on the facility’s support of S3

features and infrastructure.

For a first RNTuple backend for the cloud use case, AWS S3 was our provider

of choice. S3 has become ubiquitous to the point that its API can be considered the

de facto standard for the industry. By adhering to its interface and modus operandi,

we intend to more easily adapt to other cloud providers, such as Microsoft Azure

and Google Cloud.

The cloud standard, however, is dissimilar to DAOS. On the one hand, S3

its data organization relatively black–boxed to ensure cloud storage remains simple

and scalable. On the other hand, this approach limits our ability to propose an

informed mapping like the one in section 4.3. We refer to Table 4.1 for a summary

of the differences - and similarities - between S3 and DAOS.

Cloud Development Concerns

Based on our past experience, we identified the following main concerns when

developing an I/O approach targeting cloud storage:

Network latency: Provider-side, a multi-tier topology of data centers and edge

locations may be available to reduce network latency, which is a known liability

of solutions based on cloud storage. To counteract the impact of latency on the

user side, the framework can adapt its I/O behavior and schedule operations in

a cloud-optimized manner. Examples of such strategies include larger transfer

buffers, asynchronous scheduling of operations and R/W models that do not

require forthwith consistency among replica nodes.

Non-standardized coverage of features: Different S3 servers offer a distinct sub-

set of the features. Some features, like byte-range requests, impact the data

scale at which objects are concocted.

Choice of API: There exist several interfaces used to communicate with S3 ser-

vices due to HTTP request support. Examples include the AWS C++ SDK

and HTTP managers like Davix. The choice of interface has impact on per-

formance, feature support, maintenance effort and library dependencies.

60

4.4.1 Mapping Function

Compared to DAOS, S3 offers a more opaque mapping interface. Firstly,

the flat hierarchy in the namespace (“bucket”) means that its objects are simple

blobs, as seen in Table 4.1. Secondly, its storage model does not explicitly allow

for user input on data co-locality, though it is known that an object’s label plays a

deterministic part in mapping objects or their shards to specific hardware targets

(Amazon, Inc., 2023).

The mapping φblob−per−page between RNTuple pages and S3 object blobs is

defined below. It casts the kth page in the jth column and ith cluster onto a unique

string label in the S3 bucket namespace, which displays this information separated

by slashes (“/”).

φ : 〈clusteri, columnj, pagek〉 → object_identifier : string

φblob−per−page(clusteri, columnj, pagek) 7→ string(clusteri/columnj/pagek) (4.3)

More elaborate mappings can be considered based on efficiency concerns in

lieu of an apparent loss of access granularity; one such example is pictured in Figure

4.6, storing entire page groups together, as these are expected to be fetched together

under normal HEP workflows.

4.4.2 Davix–based Implementation

Multiple interfaces are available to enable interoperability between RNTuple

and AWS S3, including several APIs provided by Amazon, e.g., the AWS C++

SDK. 4 For this work, we chose to leverage CERN’s own Davix. 5 Davix is already

a ROOT dependency for supporting file transfers with FTS. Furthermore, Davix

provides support for byte–range requests, which the evaluation in section 5.4 will

prove to be a crucial feature for a mature, cloud backend for RNTuple. Finally,

Davix implements the same IOV–based interface for its transfer buffers, making the

development of a connecting layer straightforward.

4Documentation on AWS: https://aws.amazon.com/sdk-for-cpp.
5Repository on Github: cern-fts/davix.

https://aws.amazon.com/sdk-for-cpp/
https://github.com/cern-fts/davix

61

Figure 4.6: A visualization of a proposed RNTuple-to-S3 mapping (page groups as
S3 objects) retaining columnar access and projected to amortize latency concerns.

Source: The Authors.

Our S3 backend does not include any request coalescing in its sink or source

layers, once again differing from the DAOS backend. While it still processes read

and write requests in batches on a cluster bunch basis for similarity with the DAOS

backend, there is no support for vector writes in our connector to Davix.

Pseudocode 4: RNTuple-S3 (Davix) Iterated Write
1 function Bucket::VectorWrite(operation : MultiObjectRWBatch)6

2 . Iterate over single–buffer operations
3 for operation : RWBatch in operations do
4 davixURI ← GetDavixLocator(bucket, operation.akey)
5 davixObjects ← Davix::DavFile(davixUri)
6 . Blocking call to write a single object

davixObjects.put(operation.buffer, operation.size)
7 return

Algorithm 4 presents a simple implementation that writes RNTuple pages as

S3 objects through Davix API calls. We reuse the MultiObjectRWBatch structure

for managing cage requests, though the simpler mapping interface limited us from

exploiting it fully. The procedure iterates over each (unique) identifier, generating a

string label from the RNTuple locators (i.e., the cluster, column and page identifiers),

62

as defined by the mapping φblob−per−page in this section.

Pseudocode 5: RNTuple-S3 (Davix) Vector Read
1 function Bucket::VectorRead(batches : MultiObjectRWBatch)7

2 . Iterate over batches (cages) sequentially, instantiating lightweight Davix
object handles based on the derived URIs.

3 for batch : RWBatch in batches do
4 davixURI ← GetDavixLocator(bucket, batch.akey)
5 davixObject ← Davix::DavFile(davixUri)
6 . Blocking call to read batch under the same cage index.

davixObject.readPartialBufferVec(batch.iov, batch.sgls,
batch.sizes)

7 return

The implementation of vector reads in RNTuple–S3 is detailed in Algorithm

5. While Davix provides the means to request multiple blobs through the DavFile

interface, these are meant to stitch together different remote objects as a file unit

in memory. Due to the single writes limitation discussed above, we do not exploit

this capability in the current proof–of–concept, though we retain the structures that

would support it in the future. In particular, we envisage this interface for partially

reading segments of much larger blobs using byte–range requests. This is discussed

in detail in the evaluation section 5.4.

4.5 Tools and Technologies

ROOT is mostly written in the C++ and Python programming languages.

As such, C++ was the language used in the development of our approaches. Given

C++20 support limitations in ROOT, our particular flavor of C++ consists of mod-

ern programming practices based on the C++17 standard’s feature set, with the

inclusion of back-ported libraries only standardized in C++20, such as std::span.

Being an open source framework hosted on Github, some of the technical

contributions in this work have made their way to the main branch (ROOT Project,

2023b), leveraging Git version control, a continuous integration pipeline and code

review. Other tools used throughout development include gdb (debugging), valgrind

(memory management) and perf (statistical profiling).

6VectorWrite() on Github: RS3Davix.cxx#L156
7VectorRead() on Github: RS3Davix.cxx#L196

https://github.com/glmiotto/root/blob/s3/davix/tree/ntuple/v7/src/RS3Davix.cxx#L156
https://github.com/glmiotto/root/blob/s3/davix/tree/ntuple/v7/src/RS3Davix.cxx#L196

63

5 EVALUATION

With the proposed contributions introduced in chapter 4, we evaluate our

approach and the hypotheses in section 1.1.

This chapter is organized as follows: first, in section 5.1, we set out our evalua-

tion objectives. In section 5.2, we describe the hardware and software configurations

and explain our chosen benchmark. Section 5.3 presents our results and analyses

on the proposed DAOS backend, including the concatenation feature. Section 5.4

shows preliminary results obtained with the experimental S3 backend.

5.1 Evaluation Objectives

In this evaluation, we seek to:

1. Validate DAOS as a high throughput object store for HEP.

1a. Compare the features presented in chapter 4 with the experimental base-

line.

1b. Investigate the impact of user-defined parameters in RNTuple and DAOS.

1c. Understand which features bring the most significant improvements.

2. Confirm the viability of the proposed, experimental S3 backend.

3. Compare the two object store backends in RNTuple.

3a. Identify key differences between the Cloud and HPC use cases for HEP.

3b. Extract common patterns as a blueprint for a future, generic object store

layer for RNTuple.

Our evaluation methodology is based on the effective I/O throughput as

measured in both the writing and reading stages. We consider throughput as a

metric of I/O-boundness and saturation of the link layer to be maximize, under

the assumption that CPU workload can be parallelized around it in future. As

such, this evaluation will guide future developments in RNTuple. In our throughput

measurement, we include any and all preparation steps introduced by our proposal

in Chapter 4, such as request coalescing.

64

5.2 Experimental Setup

The evaluations were conducted on two different platforms, named DAOS-

Setup and S3-Setup, which are specified below. The former includes a modest

HPC cluster meant to benchmark production-grade software. The latter is an ad-

hoc setting for the purpose of testing software under development.

5.2.1 Platforms

The DAOS-Setup Platform:

Hardware. We were granted access to Hewlett-Packard Enterprise’s Delphi clus-

ter, consisting of two servers and six client nodes interconnected by an InfiniBand

fabric. This is how the nodes were configured:

Server nodes. 4× Intel Xeon Gold 6240M CPU sockets, each with 18

physical cores, running at 2.60 GHz. Hyper-threading SMT enabled. Each server

was equipped with 24.75 MB of level 3 (L3) cache, 185 GB of DDR4 RAM and a

Mellanox MT28908 ConnectX-6 InfiniBand network adapter.

Client nodes. 2× Intel Xeon E5-2640 v3 CPU sockets, each with 8 phys-

ical cores, running at 2.60 GHz. Hyper-threading SMT enabled. Each client node

had 20 MB of L3 cache and 131 GB of DDR4 RAM. High-speed interconnection

was available through a Mellanox MT27800 ConnectX-5 InfiniBand adapter. Each

client had two Non-Uniform Memory Access (NUMA) topologies, one of which was

associated with the adapter; thus, we pinned the experiment jobs with taskset to

the range of logical CPUs local to the interface for optimal RDMA transfer.

IOR Benchmark. Interleaved or Random (IOR) is an I/O benchmark suite de-

signed to measure the performance of parallel storage systems in various access

patterns. For this reason, IOR tests are frequently used to arrive at a practical

throughput limit against which to compare I/O applications.

We ran the benchmark on the Delphi cluster to measure the working band-

width as a reference point for our results. For the SX DAOS object class, default

65

Table 5.1: Results, IOR Benchmark, HPE Delphi cluster.

Transfer
Size (bytes)

Mean Tput,
Write (GB/s)

Std. Tput,
Write

Mean Tput,
Read (GB/s)

Std. Tput,
Read

65536 0.695 0.003 0.462 0.006

131072 1.012 0.009 0.780 0.005

262144 1.311 0.21 1.191 0.003

524288 1.601 0.046 1.260 0.008

1048576 1.755 0.034 1.428 0.023

2097152 2.789 0.115 2.316 0.002

SCM-SSD ratio of 6 / 94 % through the DFS interface, 100 GiB block size and buffer

sizes ranging from 64 kB to 2 MiB, the measured bandwidth values over InfiniBand

interconnect are presented in Table 5.1. IOR reached a throughput of 2.8 GB/s

(write) and 2.3 GB/s (read) with 2 MiB transfer buffer size on our single client,

two-server DAOS-Setup running DAOS 2.2.

Software. The operating system was Red Hat Enterprise Linux 8.4 (kernel 4.18.0-

305). The DAOS deployment was based on daos-2.2.0 (ofi+verbs provider) and

libfabric 1.15.1. The project was compiled with g++ 8.5.0 and O2-optimization.

Project Versions. Below, we specify the versions of ROOT we evaluated, along

with their short-hand and covered features introduced in chapter 4. The revisions

are taken from the main branch of ROOT Project’s repository on Github 1, at points

in time that coincide with ROOT release versions v6.26 and v6.28, with a minor

patch that moves atomic timers to the start of each request function, in order to

cover the entire request preparation:

v0-BASE: ROOT revision #d8de5d0, containing a basal implementation of a DAOS

backend with synchronous, single-page requests and a flat data mapping (one

page per KVS object).

v1-PERS: ROOT revision #cda2281. Incorporates a persistent operation queue and

symbolic operations to simplify operation polling (see subsection 4.3).

v2-COAL: ROOT revision #2e38273. Adds support for vector writes (”Batch I/O”

1ROOT Project on Github, main branch: https://github.com/root-project/root/tree/master

https://github.com/root-project/root/commit/d8de5d0
https://github.com/root-project/root/commit/cda2281
https://github.com/root-project/root/commit/2e38273
https://github.com/root-project/root/tree/master

66

Table 5.2: Feature matrix for named versions of RNTuple-DAOS under evaluation.

Feature v0-BASE v1-PERS v2-COAL v3-COLO v4-CAGE

Persistent Queues 7 3 3 3 3

Batch I/O 7 7 3 3 3

Request Coalescing 7 7 3 3 3

Co-Locality Mapping 7 7 7 3 3

Page Concatenation 7 7 7 7 3

in subsection 4.1) and request coalescing. With kDefaultDaosMapping :=

kOidPerPage.

v3-COLO: ROOT revision #2e38273. Adds the proposed mapping based on target

co-locality, i.e., kDefaultDaosMapping := kOidPerCluster.

v4-CAGE: ROOT revision #eee4c8e. Atop previous features, enables page concate-

nation from subsection 4.3.3, given a positive concatenation target size, in

bytes. For the purposes of this evaluation, we fix MAX_CAGE_SIZE := 1048576.

The S3-Setup Platform:

In order to evaluate the RNTuple-S3 backend, we sought to observe the

framework’s behavior in a controlled scenario. This avoids sources of latency and

instability typical to realistic I/O over network, e.g., channel and server-side resource

contention, inconsistent routing or replication delays. From observing I/O patterns

in idealized circumstances, we hope to extract insights specific to the RNTuple-S3

integration for further development of the backend.

Simulated S3 Server. MinIO (MinIO, Inc., 2023) is an open-source object stor-

age solution whose client-facing components are compatible with S3’s APIs. MinIO

can be used as a validating tool for object store middleware development, as it

simplifies the management of locally set-up servers.

Hardware. For a preliminary setup, we instantiated a MinIO server on our bench-

marking node ntpl-perf-01, while the client executed on a node from CERN open-

https://github.com/root-project/root/commit/2e38273
https://github.com/root-project/root/commit/eee4c8e

67

lab’s olsky-03 cluster.

Server node. 1× AMD EPYC 7702P CPU socket with 64 physical cores,

running at 2.1 GHz Hyper-threading SMT enabled. 16 MB of L3 cache. 125 GB of

RAM. Mellanox MT27800 ConnectX-5 Ethernet interface at 33 MHz with 40Gbit/s

capacity, 64-bit width.

Client node. 2× Intel Xeon Platinum 8160 CPU sockets, each with 24

physical cores, running at 2.10 GHz. Hyper-threading SMT enabled. 33.7 MB of L3

cache. 187 GB of RAM. Intel Ethernet Controller X550 interface at 33 MHz with

10 Gbit/s capacity, 64-bit width.

Software. The operating system was Red Hat Enterprise Linux 8.5 (kernel 4.18.0-

425). The MinIO version was RELEASE.2023-04-20T17-56-55Z. The project was

compiled with g++ 8.5.0 and O2 optimization.

5.2.2 LHCb Benchmark

Table 5.3: Excerpt of the “B meson decays to 3 hadrons” (B2HHH) dataset, from
CERN OpenData Run 1 for the LHCb experiment (LHCb collaboration (2017),
2017).

Entry B Meson Data Hadron 1 Data …

FlightDist VertexX 2 PX … Prob π Charge IsMuon? …

0 25.3 1.497 375.3 … 0.89 -1 false …

1 94.7 1.38 -4985.13 … 0.04 -1 true …

… … …

42 21.2 3.48 673.34 … 0.95 +1 false …

… … …

The LHC beauty (LHCb) experiment investigates primarily the matter–

antimatter asymmetry of the universe by observing interactions between B hadrons.

For our evaluation, we use one of their findings from LHC’s Run 1, the “B-meson

decays to three hadrons” (B2HHH) dataset, which estimates the mass of the short-

lived B-meson by tracking its decay to hadron particles. It has been made public

68

through CERN OpenData (LHCb collaboration (2017), 2017). The dataset has no

nested collections, spans 26 columns and contains over 8.5 million events (i.e., en-

tries), for a total uncompressed file size of 1.5 GB. Table 5.3 shows a partial excerpt

of a few entries in the dataset.

The analysis of the B2HHH data is conducted by the benchmark program

lhcb.cxx in Blomer et al. (2022). This benchmark is realistic, yet simple and

well-understood. From the 26 existing columns, the analysis program iterates over

all entries and 18 of the columns in B2HHH to build a histogram of the B mass

spectrum, as demonstrated in Algorithm 6.

Pseudocode 6: LHCb Analysis Benchmark (B2HHH Dataset)
1 function LHCb(ntuple)2

2 . Iterate over entries (i.e., LHC events with collision data).
3 for entry : ntuple.GetEntries() do
4 . Filter out event unlikely to contain B meson.
5 if IsMuon in entry.Hadron{1,2,3} then
6 continue
7 if ProbK in entry.Hadron{1,2,3} < 0.5 then
8 continue
9 if ProbPi in entry.Hadron{1,2,3} > 0.5 then

10 continue
11 . Compute mass of event’s B meson.
12 b_E ← 0
13 for h in entry.Hadron{1,2,3} do
14 b_E ← b_E + GetKaonEnergy(h.PX, h.PY, h.PZ)

15 px← ∑3
i=1entry.Hadroni.PX

16 py← ∑3
i=1entry.Hadroni.PY

17 pz← ∑3
i=1entry.Hadroni.PZ

18 b_mass ←
√

b_E2 − ‖p‖)2
19 FillHistogram(b_mass)

20 return

The flatness of the ntuple and relatively high proportion of columns be-

ing read during the analysis make this end-to-end analysis especially I/O-intensive.

Thus, it constitutes a natural candidate for the evaluation of new I/O features in

RNTuple.

To simulate a high-volume data analysis, such as those typical on HPC clus-

ters, we artificially extended the dataset through vertical concatenation. The final
2LHCb Analysis Benchmark on Github: lhcb.cxx#L275

https://github.com/jblomer/iotools/blob/master/lhcb.cxx#L275

69

content is equivalent to 10 identical copies of the original data, resulting in a 15 GB

uncompressed dataset with over 85 million events.

Experiment Combinations

We break down the total number of runs conducted for this evaluation:

On DAOS-Setup, we used the following parameters for RNTuple-DAOS, for

a total of 1224 combinations before repetitions:

Versions. 5×. v0-BASE, v1-PERS, v2-COAL, v3-COLO, v4-CAGE (with 1 MiB cages);

Cluster Size. 2×. 50 MB, 100 MB;

Page Size. 7×. 32 kB, 64 kB, 128 kB, 256 kB, 512 kB, 1 MiB, 2 MiB, the latter

excepted from version v4-CAGE);

Compression Algorithm. 3×. none, zstd, lz4;

Object Class. 6×. OC_SX, OC_TINY, OC_MAX, OC_XSF, OC_RP_TINY, OC_RP_MAX;

Repetitions. 5×.

Due to the number of combinations and relative lack of diversity in the results,

not all are presented in this document.

On S3-Setup, because of the proof–of–concept nature of the RNTuple-S3

evaluation, we only executed our experiment on six page sizes (64 kB, 1 MiB, 2 MiB,

4 MiB, 8 MiB, 16 MiB), with a 500 MB cluster size and no compression algorithm or

replication options. The experiment was repeated five times, for a total of 30 runs.

5.3 Evaluation of the RNTuple-DAOS Backend

In this section, we present the findings from our evaluation of the RNTuple–

DAOS backend proposed in section 4.3 on the DAOS-Setup platform described in

section 5.2.

The DAOS object class is one of the parameters we studied in this evaluation.

It regulates replication and sharding for blobs under DAOS KVS objects. A descrip-

tion of these properties for the studied object classes is present in the background

section 2.3.

First, we compare all named versions of the backend (see Table 5.2) with a

70

fixed cluster size of 100 MiB and no compression, ranging over all page sizes, in order

to establish which of the proposed improvements had the most impact on write and

read throughput. Version v4-CAGE, with the caging mechanism toggled, is excluded

from this study.

Then, we present the entire gamut of results for three versions: v0-BASE

(baseline prior to our modifications), v3-COLO (proposed version with co-locality

mapping, but no caging) and v4-CAGE with 1 MiB cages. Due to the cutoff at

1 MiB, the experiments for the latter version were not run for 2 MiB page size.

Lastly, we discuss observations and limitations of the backend through a

statistical performance analysis on CPU utilization.

5.3.1 Version Comparison

We begin by fixing the cluster size at 100 MB and using no compression

in order to investigate precisely which versions introduce the greatest performance

gains (or losses) among the following: v0-BASE, v1-PERS, v2-COAL and v3-COLO.

From the baseline backend to the co-locality mapping proposal, each version builds

on top of the previous one, as already specified in Table 5.2.

We allowed both the page size and object class parameters to vary to identify

any residual effects w.r.t. the different request pipelines and mappings throughout

the implementations. The results are plotted in Figures 5.1 and 5.2

From the get–go, considering the results across object classes, three key take-

aways are evident:

1. Performance asymmetry w.r.t. implemented features. The results suggest

an asymmetry between request preparation efforts for writing and reading.

Taking for example subfigure 5.1a, the entire feature pipeline is needed to

achieve mensurable improvements in write throughput. Like a centerfold rest-

ing on top of the previous structures, it is only when the proposed mapping is

toggled that we see performance gains with high peaks of 10 GB/s. The anal-

ysis, on the other hand, benefits immediately from a more sensible operation

management that retains the persistent operation queue, achieving peaks of

4+ GB/s read speed. These results suggest that, depending on the use case –

e.g., “write–once–read–thousands” –, the proposed mechanisms of request co-

71

Figure 5.1: RNTuple-DAOS Version Comparison, OC_{SX, TINY, MAX}.

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)
R

ea
d

(G
B

/s
)

(a) 100 MB cluster size, no compression, OC_SX objects.

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)

R
ea

d
(G

B
/s

)

(b) 100 MB cluster size, no compression, OC_TINY objects.

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)

R
ea

d
(G

B
/s

)

(c) 100 MB cluster size, no compression, OC_MAX objects.

v0-BASE v1-PERS v2-COAL v3-COLO

Source: The Authors.

72

Figure 5.2: RNTuple-DAOS Version Comparison, OC_{XSF, RP_TINY, RP_MAX}.

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)
R

ea
d

(G
B

/s
)

(a) 100 MB cluster size, no compression, OC_XSF objects.

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)

R
ea

d
(G

B
/s

)

(b) 100 MB cluster size, no compression, OC_RP_TINY objects.

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)

R
ea

d
(G

B
/s

)

(c) 100 MB cluster size, no compression, OC_RP_MAX objects.

v0-BASE v1-PERS v2-COAL v3-COLO

Source: The Authors.

73

alescing, vector I/O and co-locality mapping may only introduce unnecessary

complexity and buffering overhead without clear benefits. On the other hand,

if fast population of the object store is a priority, the entire “feature ladder”

is required for best results.

2. Impact of replication factor for the setup. Some object classes show differences

of over 10 % in write throughput, e.g., the cases of 256–512 kB pages in sub-

figures 5.2b, 5.2c, 5.1a and 5.2a. It makes sense that the classes OC_RP_TINY

and OC_SX on one side, and OC_RP_MAX, OC_XSF on the other, have the biggest

throughput discrepancy on write, as they are on opposite extremes of the

replication factor.

3. Unusually high write/read throughput discrepancy. We make note of the sub-

stantial discrepancy between the peak write and read speed, respectively

around 10 GB/s and 4.5 GB/s. Usually, the write speed is lower than the

read’s, as exemplified in the same setup with the IOR benchmark (see results

in Table 5.1). A possible explanation is that DAOS reports an update proce-

dure as completed before data has finished moving, due to uncertainty by the

application on when an RDMA transfer is done. Alternatively, the high speed

on update is related to DAOS caching the update in PMem storage, so that

later, the contents can be committed into slower, SSD storage (see 2.5) at the

same target location.

4. Faster throughput than the IOR benchmark. From section 5.2 and Table 5.1),

the results shown here trump those obtained in the IOR benchmark. This

can be explained by the fact that operations go through DFS in IOR to mea-

sure DAOS performance, as it is designed to benchmark POSIX I/O systems.

However, IOR may present inferior performance simply due to access patterns

and circumstances of the experiment.

5. Higher variance for v3-COLO. As the highest performing curve, the version

v3-COLO is the most noticeably reactive to latency variance (see error bars)

and to the chosen object class. Particularly, we note the almost ritual steep

decline in write throughput at the 2 MiB page size, wherein some object classes

are more affected than others. It may be the case that the small cluster is

causing contention, which impact more strongly classes with high replication

factors, such as OC_RP_MAX, when dealing with large blobs.

74

5.3.2 Analysis of Native Parameters

We continue our evaluation by analyzing parameters native to RNTuple (page

size, cluster size, compression algorithm) and DAOS (object classes governing repli-

cation and sharding strategies).

RNTuple Page Size

From subsection 4.1, pages are the basic unit of storage in RNTuple, and our

background research indicates that a page size of 64 kB offers sound performance

for file-based backends.

Our evaluation extensively suggests that the above assumption is not appli-

cable for object stores, and that the appropriate transfer buffer size for fast data

ingestion is orders of magnitude higher.

RNTuple Cluster Size

The cluster is a size-bound partition of sequential entries in an ntuple that

serves as a checkpoint for I/O. Changing the size of the cluster impacts the average

amount of data from pages accessible for transfer at any point of writing or analysis,

which has ramifications on throughput.

Figure 5.3 demonstrates that a larger cluster directly, albeit marginally, im-

pacts write throughput when requests are coalesced and committed using the pro-

posed co-locality mapping. We estimate this is due to the higher amount of pages

that can be requested at once when operating with larger clusters.

RNTuple Compression Algorithm

In general, as the analyses in section 5.3.2 indicate, the size of the transfer

buffer has an indubitable effect on performance for our setup. Doubling the page

size can have as much as a 180% improvement on write throughput and 100% gain

on read speed (e.g., from 64 kB to 128 kB in Figure 5.2b). Given that, one could

assume the use of compression algorithms at the page level would degrade transfer

speed in accordance with their compression rates.

Some experiments demonstrated this performance degradation when com-

pression was toggled. For example, Figure 5.4 shows a stark decrease in write

75

Figure 5.3: RNTuple-DAOS Cluster Size Impact.

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)

R
ea

d
(G

B
/s

)

(a) 50 MB cluster size, no compression, OC_SX objects.

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)

R
ea

d
(G

B
/s

)

(b) 100 MB cluster size, no compression, OC_SX objects.

v0-BASE v1-PERS v2-COAL v3-COLO

Source: The Authors.

76

Figure 5.4: RNTuple-DAOS Compression Impact {none, zstd, lz4}.

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)
R

ea
d

(G
B

/s
)

(a) 50 MB cluster size, no compression, OC_TINY objects.

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)

R
ea

d
(G

B
/s

)

(b) 50 MB cluster size, zstd compression, OC_TINY objects.

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)

R
ea

d
(G

B
/s

)

(c) 50 MB cluster size, lz4 compression, OC_TINY objects.

v0-BASE v1-PERS v2-COAL v3-COLO

Source: The Authors.

77

throughput for the cases of zstd and lz4 compression in comparison to no com-

pression. This trend is however less clear on reading. The impact of compression

on throughput should be investigated further.

5.3.3 Artificial Page Size (Caging)

As described in chapter 4, the caging mechanism was conceptualized after

observing the impact of RNTuple’s native page size on throughput seen in subsection

5.3.2, which confirm that the traditional page size of 64 kB for the file backend does

not port well to object stores.

However, this insight does not affect any preexisting ntuples that were created

with optimal configurations for file-based systems. To speed up HPC cluster data

ingestion, the entire ntuple would first need to be reprocessed with the refactored

layout before the analysis pipeline can properly start.

Subsection 4.3.3 explained that the proposed concatenation mechanism seeks

to avoid the aforementioned ntuple refactor with an approach based on scatter-

gather I/O. Our intent was to benefit from server-side concatenation of buffers by

tuning the mapping function and submitting batched-up requests.

From our experiment in Figure 5.3.3, the method had the expected effects on

fetching efficiency, with reading throughput reaching the artificial target throughput

of the larger chunk (in our tests, 1 MiB). In short, we validated that:

a. Separate, user-side buffers are mapped to the same blob in object storage,

despite being relayed through different IOV descriptors in an update request;

b. Data fetching achieves the read throughput of the targeted chunk size, i.e.,

the speed observed in the evaluation for the corresponding native page size,

even though the request comprised multiple pages.

The fact that fetching achieves the target throughput is not surprising. Once

in server storage, cages are no different than any contiguous, unitary blob, and so

should trivially match the throughput of native page sizes at the cage size targeted.

The same cannot be said for data ingestion with the caging mechanism, as the

writing throughput did not match the targeted estimates. Still, there is a tangible

improvement compared to non-concatenated native pages, when looking at page

sizes smaller than 1 MiB when setting the maximum cage size to that value. As

78

Figure 5.5: RNTuple-DAOS Caging Throughput, OC_{SX, TINY, MAX}

32

64

128

256

512

1,024

2,048
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)

R
ea

d
(G

B
/s

)
(a) 100 MB RNTuple cluster size, no compression, OC_SX objects.

32

64

128

256

512

1,024

2,048
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)

R
ea

d
(G

B
/s

)

(b) 100 MB RNTuple cluster size, no compression, OC_TINY objects.

32

64

128

256

512

1,024

2,048
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5

Page size (KiB)

W
ri

te
(G

B
/s

)

32

64

128

256

512

1,024

2,048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Page size (KiB)

R
ea

d
(G

B
/s

)

(c) 100 MB RNTuple cluster size, no compression, OC_MAX objects.

v0-BASE v3-COLO v4-CAGE

Source: The Authors.

79

Figure 5.6: Throughput comparison for native 64 KiB pages and 1 MiB concatena-
tion under different RNTuple-DAOS versions.

Write Read
0

1

2

3

4

5

6

7

8

9

10

11

G
B

/s
OC_SX, 50 MiB clusters, no compression

Write Read
0

1

2

3

4

5

6

7

8

9

10

11

G
B

/s

OC_SX, 50 MiB clusters, zstd compression

v0-BASE 64 kB pages (native) v3-COLO 64 kB pages (native)
v4-CAGE 64 kB pages (1 MiB cages) v3-COLO 1 MiB pages (native, target)

Source: The Authors.

visualized in Figure 5.6, the performance of 64 kB pages concatenated into 1 MiB

cages is over twice that of 64 kB pages in the native evaluation (subsection 5.3.2).

As the page buffers increase, this advantage starts to saturate until it plateaus for

pages sized 256 kB or bigger.

We now consider possible explanations for the observed bounded write per-

formance which prevents the set of smaller, scattered buffers from achieving write

throughput much closer to the target:

1. Throttled scalability in RDMA, inherent or caused by buffer mismanagement.

This packs two possibilities. The more unlikely one is that the noncontiguous

set of page buffers from the still–scattered cage prevents the transfer imple-

mentation by OFI verbs from scaling to the expected throughput in scatter–

gather I/O. More likely and more insidiously, the higher number of buffers

incurs inordinate overhead costs directly associated with RDMA transfer, and

this overhead is not being amortized throughout execution; i.e., there are pro-

cessing costs repeatedly paid for each buffer and for each cage sink procedure.

In this case, the higher number of buffers once again would explain how smaller

pages are hit more heavily.

2. DAOS server contention or limitations on the number of IOVs that DAOS

80

servers can withstand at once. In this case, the high number of individual

buffers could be causing causing server–side contention, either by implemen-

tation or due to a partitioning of the NIC’s available bandwidth. If this were

the case, our experimental setup with two servers should show at least alle-

viated effects thereof when subscribing to object classes with high replication

factors. However, no such mitigation was seen.

Due to the high impact of memory registration costs on RDMA–based trans-

fer (see the following subsection) and due to general efficiency concerns, this evalu-

ation has guided our development focus primarily toward improving memory buffer

reuse in RNTuple, which is a work in progress.

5.3.4 Performance Analysis

In addition to the above benchmarks, we collected performance statistics of

our backend’s CPU usage with the help of perf3, a statistical profiler for Linux

systems, and the FlameGraph visualization tool4, which agglutinates the collected

stack frames in perf in a visually–comprehensive way.

A stack trace profiler collects snapshots, or frames, of the stack trace at a

uniform sampling rate during the execution of a program. It is thus a statistical

tool to measure which function calls have demanded the most CPU resources in a

program. Flame graphs summarize these stack traces in colorful piles; the widest

the slab, the more frames contain a certain function call in its trace. Note that pile

height holds no importance with regards to resource usage, and that piles are not

organized in chronological order.

In Figure 5.7, we present two flame graphs which exemplify the CPU engage-

ment during data ingestion and retrieval in the RNTuple–DAOS backend.

Figure 5.7a contains both the writing and reading stages of a simples stan-

dalone development tool built by us and nicknamed “RNTuple Backend Zoo”. This

tool generates random data to populate a given object storage location and subse-

quently retrieves the data, confirming its validity via a hash function. Thus, the

Backend Zoo is a useful tool to debug backend behavior without the obfuscating

complexity of ROOT.

3Online documentation: perf official wiki.
4Repository available on Github: brendangregg/FlameGraph.

https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/brendangregg/FlameGraph

81

Figure 5.7: Stack flame graphs, CPU usage, RNTuple–DAOS backend.

(a) Standalone tool, write/read for 64 kB buffers (31 billion frame samples).

(b) LHCb analysis with decompression, 64 kB buffers (494 billion frame samples).

Source: The Authors.

82

Lastly, Figure 5.7b documents a complete LHCb analysis for 64 kB pages

with compression, which calls the real ROOT RNTuple. As expected, the majority

of the CPU effort is spent on decompression during the actual analysis of HEP

events, represented there by the call to UnsealPage() under the NTupleDirect()

function in the LHCb analysis script.

Most prominently, these graphs reveal the expensive effects of memory reg-

istration in RDMA–enabled clusters. RDMA depends on given ranges of the appli-

cation memory to be made visible to the adapter endpoint before remote transfer

can begin. This requires a system call to register the memory region, which is a

significant part of the overhead associated with such transfer methods. To amortize

these costs, memory regions that will be reused for transfer buffers should remain

registered throughout execution, or kept in a cache to be lazily de-registered once

idle (MIETKE et al., 2006).

These steps are identifiable in the graphs by the verbs calls ibv_cmd_reg_mr()

and ibv_cmd_dereg_mr(), implemented by libfabric for the Mellanox InfiniBand

interface. These calls clearly dominate the performance analysis in Figure 5.7a,

where the standalone procedure is simple enough and does not engage in expensive

compression and decompression.

But even the LHCb analysis in Figure 5.7b suffers from memory registration

almost as much as it is impacted by decompression, which should be the biggest

source of CPU–boundness. This presents a problem: in the same analysis run,

memory regions which should already be registered and available for the next batch

of pages are incurring additional overhead costs before data is transferred. Since

calls to ibv_cmd_dereg_mr() are not visible in the flame graph, the regions are not

being forcefully de-registered before they are no longer needed. Instead, the graph

suggests that memory regions that do not entirely overlap with existing ones could

be undergoing memory registration because transfer buffers are not being efficiently

reused by RNTuple.

RNTuple–DAOS Evaluation Summary

In this evaluation, we systematically measured the real RW throughput of

multiple versions of the RNTuple-DAOS backend across the RNTuple and DAOS

parameter spaces, in order to understand their impact on performance for realistic

83

HEP analyses. We found that the introduction of the co-locality mapping function is

the cornerstone for high write throughput, whereas it is inconsequential for reading

in the LHCb analysis workflow; for the latter, scalability is achieved with a persis-

tent operation queue that does not invoke system calls throughout execution, unlike

the baseline. The throughput sensitivity to transfer buffer size was solidified across

all scenarios; in particular, we were able to validate the caging approach as a viable

way to achieve higher throughput in spite of smaller native page sizes (and thus,

transfer buffers), both for reading and, to a lesser degree, for writing. We observed

minimal effect of compression algorithms on throughput, even though that directly

affects buffer size at the sink and source level. The evaluation revealed that bigger

clusters work in the favor of the backend when using the co-locality mapping. The

different DAOS object classes have a definite effect on performance; however, the

limited scope of the setup, with one single client and two servers in a modest HPC

cluster, hinder our ability to draw conclusions on the impact of the replication factor

and sharding on analyses. For that, distributed tests should be conducted on a more

powerful HPC cluster. Finally, a statistical analysis showed CPU bottlenecks asso-

ciated with memory registration in RDMA–interconnected nodes, which indicates

that better buffer management in RNTuple might lead to improved performance on

these interfaces.

5.4 Evaluation of the RNTuple-S3 Backend

For an evaluation of our experimental RNTuple backend for cloud-based ob-

ject stores, we designed a test similar to the one in subsection 5.3.2. Due to latency

and scalability concerns, the test uses abnormally larger pages (natively, i.e., con-

tiguously). For that, we fixed the cluster size at 500 MiB so that each cluster can

support at least one page for each of the 26 columns in the LHCb dataset.

With that in mind, we varied the native page size and measure the resulting

I/O throughput for the usual LHCb analysis without data compression. Note that

page sizes at this scale are not expected to be recommended for the RNTuple Cloud

use case due to loss of data granularity and a steeper page size imbalance between

different data types in the same cluster.

84

Figure 5.8: RNTuple–S3 throughput and cost estimate for 500 MiB clusters, no com-
pression, varying page sizes, evaluated with a simulated server in idealized network
settings.

64k
1M

2M
4M

8M
16M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Page size

Tr
an

sf
er

ra
te

(G
B

/s
)

Write throughput, single page per blob

64k
1M

2M
4M

8M
16M

Page size

Read throughput, single page per blob

Projected AWS storage and PUT costs, eu-west-3 region

0

0.5

1

1.5

2

2.5

3

E
st

im
at

ed
co

st
(U

S
D

ol
la

rs
)

Projected AWS transfer and GET costs, eu-west-3 region

Source: The Authors.

Throughput × Native Page Size

The leftmost y-axis in Figure 5.8 records the throughput, in GB/s, as mea-

sured for the LHCb-based end-to-end analysis across page sizes ranging from 32 KiB

to 16 MiB.

The curves observed for both the writing and reading stages are not much

differently-shaped than the ones presented in the previous section for DAOS.

In both cases, there is a positive relation between throughput and page size,

i.e., larger transfer buffers again lead to faster transfer rates. The curves for writing

and reading are both monotonically increasing throughout the x-axis. In this exper-

iment, we identify a turning point at MiB scales, which starts off a plateau trend.

We did not evaluate page sizes above 16 MiB.

The key difference between this backend evaluation and the one in subsec-

tion 5.3.2 is the start of the plateau at a larger page size. Whereas the DAOS

backend indicated a sensible trade-off around 512 KiB–2 MiB-sized pages, a similar

plateau pattern places our desirable transfer buffer size around the 8 MiB mark here.

Applying the same reasoning, we arrive at a 4-16× higher target.

85

Discussion on Latency-Curbing Strategies

Informed by the above results, we discuss the viability of the caging mecha-

nism in a matured RNTuple-S3 backend.

The results suggest that the caging mechanism might not be enough for a

performant RNTuple backend for the cloud. In the DAOS backend (see 5.3.3),

caging is limited to pages from the same page group up to 1 MiB in uncompressed

size. This can be a significant amount of data for a given page group, since the

cluster size (50 MiB by default) is the limiting factor across all columns. With a

reasonable data distribution, clusters with hundreds of columns are unable to scale

up to the 2–8 MiB cages suggested by Figure 5.8.

Option 1: Large Clusters and Page Group → Object Mapping. For large enough

clusters (e.g., 100-500 MB in size), an alternative to consistently reach higher through-

puts is to map entire page groups as S3 objects. Effectively, this is what happens

already through caging for large enough target sizes. However, its feasibility depends

on the memory budget, as RNTuple would become more memory-hungry due to ad-

ditional allocation quotas for page compression and decompression. Also, buffering

data would strain memory budget constraints. As with any WORM application, the

most frequent I/O operation between RNTuple and object stores is assumed to be a

fetch operation. When reading data during analyses, the recommended read-ahead

window (3), which pre-fetches subsequent compressed clusters in advance, by itself

triples the memory budget needed to process clusters.

Option 2: Cluster → Object Mapping. Going farther, a more drastic possibility is

to map each RNTuple cluster as its own S3 object. Cloud services are often adver-

tised for large files (e.g., movies, datasets) as the higher latencies can greatly affect

performance at smaller scales of transfer. Thus, a cluster-to-object mapping could

potentially leverage a much higher throughput. At such volumes, certain S3 imple-

mentations automatically trigger multipart uploading – a feature for writing large

S3 objects in parallel despite data being stored in a contiguous buffer, something

likely to be beneficial to performance only at the scale of 100+ MB objects. This is

conditioned on the hosting bucket having the feature enabled and belonging to an

S3 region that supports it.

While this approach maximizes potential ingestion speed, it complicates the

86

fetching procedure considerably. From background sections 2.1.2 and 2.2, the HEP

use case follows a selectively columnar reading pattern. Thus, pages from only

a handful of columns may be requested for a given cluster. Storing clusters as

a single, indivisible unit in object storage negates R/W throughput gains for any

reading pattern that is not very dense (i.e., a majority of columns requested in each

cluster).

For this reason, mapping clusters to S3 objects is strongly conditioned on

another feature: byte-range requests. Byte-range requests break away from the

simple GET and PUT object requests, traditional to cloud-based object stores like S3,

in order to support partial fetch requests (and, less commonly, update requests) for

an arbitrarily long and contiguous segment of one of its blobs. The S3 API does

support this feature, backed by an underlying HTTP request with the Range header

from RFC-2616 (NIELSEN et al., 1999).

Partial reads would enable a cluster-to-object mapping likely to perform ide-

ally for writing and for sparse reading of ntuple fields. However, it is still unclear

if such a solution would be as performant for column-dense analyses; instead, this

scenario could lead to socket contention caused by the multiple Range requests is-

sued at once, one per column. Should this problem arise, the common strategy of

concatenating any contiguous range requests for neighboring columns in the same

cluster would be advised.

Request Density × Page Size

Commercial cloud providers like AWS S3 and Microsoft Azure have a pricing

model that charges, among others, for storage and network utilization.

The rightmost y-axis in Figure 5.8 presents an estimation of the aggregate

cost associated with storing and accessing data in an S3 bucket with standard plan

rates.

Cost Estimate Calculation

We based our estimate of the financial investment of each data ingestion and

analysis step on AWS S3’s basic pricing information (Amazon Web Services, 2023),

which lists the costs to store and retrieve data across several of their service tiers.

87

We assumed the subscription to the “S3 Standard” service tier based on an

European location (Paris region, server “eu-west-3”). In this tier, there are fixed

monthly costs for storage per GB, as well as fees for each individual GET and PUT

request issued, among others. Our calculations are as follows:

Cwrite(D) = qPUTDp + qsd10−9Dsizee [i.e., PUT requests + storage volume] (5.1)

Cfetch(AD) = qGETAp + qtd10−9Asizee [i.e., GET requests + transfer volume] (5.2)

where:

D = ntuple dataset.

AD = analysis based on a given ntuple D.

Dp = number of data and metadata pages in dataset (thus, single object

requests).

Ap = number of pages requested in a given analysis AD.

Dsize = sum of all page sizes in dataset, in bytes

Asize = sum of all page volume requested during analysis, in bytes.

qPUT = S3 cost, in United States Dollars (USD), per single PUT object request

(i.e. write).

qGET = S3 cost, in USD, per single GET object request (i.e., fetch).

qs = S3 storage cost per GB under first rate (i.e., first 50 TB in bucket,

Standard), in USD.

qt = S3 outbound transfer costs per GB under first rate (i.e., first

10 TB/month, Standard), in USD.
From Amazon Web Services (2023), the costs quoted in our evaluation for

the named server were qPUT = 0.0053, qs = 0.024, qGET = 0.00042, qt = 0.09, all in

USD.

S3 offers more elaborate storage tiers that could prove useful in future anal-

yses. Tiers are approximately classified by the expected demand for object access,

with packages for frequent, infrequent and very infrequent (“S3 Glacier”) access, all

88

of which regulate availability via data replication, edge caching or long-term stor-

age on hdd. An “Intelligent Tiering” option promises to adapt this tiering for each

object based on recent access patterns.

However, these are commercial subscriptions which may not reflect the reality

of a real-world leveraging of S3 infrastructure for LHC data analysis. In particular,

the specification and deployment of a federated storage solution for HEP research

falls outside the scope of this thesis and of RNTuple as a project.

Discussion on the Cost of Cloud-Based Analysis

The results demonstrate the impact of native page size on total storage and

transfer costs for the writing and analysis fetching stages. Since the dataset size does

not change, as the maximum uncompressed page size increases, the fewer pages

are stored as S3 objects and requested via PUT or GET calls. This leads to a 6×

cheaper writing stage when comparing 64 kB pages to 4–16 MiB ones, accompanied

by a decrease of 3̃0% in the analysis. Note that, as a WORM pattern dataset, the

writing stage is expected to take place between once and a handful of times, while

the same data may be read thousands of times by different users, analysis workflows

or experiments.

This cost simulation exercise is meant to highlight and quantify the financial

incentive in having a smaller number of pages, each larger in size on average. First,

it shaves off costs for repeated analyses due to lesser volume of S3 object requests,

e.g., by 25% from 64 kB to 2 MiB sizes for the LHCb dataset artificially extended

tenfold. Second, with higher compression potential for bigger data chunks, the long-

term maintenance and storage costs are also likely to be reduced, as these are based

on the total stored content in a user’s bucket.

Ultimately, the impact of compression on throughput and storage costs was

not studied in this experiment due to scope and the minimal differences observed

in the DAOS backend evaluation already presented beforehand. Likewise, the sim-

ulated setup dissuaded a realistic evaluation that considered replication on real S3

server nodes and edge locations; as a proof-of-concept, we expect our current results

to lead to testbed access opportunities for the continued development of RNTuple’s

cloud backends.

89

5.5 Design Considerations for a Generic Object Store Backend

We concerted our development of RNTuple–DAOS and RNTuple–S3 to max-

imize the similarity between the backends. This common approach stems naturally

from the task of adapting RNTuple to an object-centric data model, converging to-

ward concepts and patterns likely to appear in the implementation of other object

store backends for RNTuple in the future.

Given the proven potential of object stores for HEP analysis, and as a step

toward widespread coverage of existing scalable storage infrastructure for LHC ex-

periments, we expect an extraction of these common concepts into a generic object

storage layer to follow. This layer would connect RNTuple’s sink and source mod-

ules to concrete API implementations for myriad object storage providers. Thus,

we identify below the key considerations for the design of such a generic backend.

→ Layered design. RNTuple’s sink and source already offer interfaces that can

be specialized by backends; notably, the file and DAOS backends override

their virtual methods. An additional inheriting layer that inserts a blueprint

for granular object store interoperability and management is recommended to

hide backend details behind generic, opaque structures and templates.

→ User-level namespaces. Private namespaces are archetypal in the context of

scalable, shared hardware resources such as data centers, serving as a par-

titioned directory for user data. Examples from this work include DAOS

containers and S3 buckets. Their programmatic counterparts act as a bridge

between RNTuple sink and source data structures and the underlying backend

APIs.

In a generic backend, an “RBucket” manager structure should be encumbered

with:

3 Connection management: establishing the connection with remote stor-

age, instantiating fabric endpoints and managing read and write creden-

tials securely. For certain services, this entails parsing a server region as

part of the namespace URI.

3 ntuple-wide management: mapping an ntuple to an index and resolv-

ing it (when applicable), preventing mapping collisions in the process;

keeping track of all ntuples in the namespace; listing and transforming

90

all of an ntuple’s objects in storage (e.g., changing permissions and repli-

cation, dropping or duplicating data), etc.

3 Storage health and access patterns: collecting statistics, at the level

of either object, ntuple or namespace, potentially optimizing redundancy

and thus availability at more impactful granularities.

3 Generalized operations: providing a flexible interface for bulk opera-

tions that can be exploited by the underlying storage implementation,

depending on support by the API and the chosen server. This interface

would assume native support for either dedicated vector write and read

operations or multiple, simple ones in parallel, as well as for partial, byte-

range requests in fetch operations; the concrete implementation may then

leverage the appropriate API calls or, if absent, implement an equivalent

or simplified approach, depending on performance requirements. This

interface must make as few limiting assumptions as possible, as opti-

mizations such as request coalescing are not available before mapping is

applied.

→ Permissive mapping: determining the exact mapping between units of RN-

Tuple data (e.g., pages, cages, page groups, clusters or cluster bunches) and

the various potential storage units (e.g., object, distribution, array element,

region edge) is to be kept close to the implementation details of the backend.

The generic layer should expose a virtual interface that enables rich mapping

strategies, passing all of the above information for the concrete backend to

exploit them.

→ IOV-based buffer management. The implementations of RNTuple’s sink

and source are based on page chunks defined by contiguous memory segments

directly representable as IOV structures. Some cloud object store APIs utilize

streams for relaying content, most notably in fetch operations; to circumvent

that, custom stream structures can be implemented to still rely on a pre-

existing buffer corresponding to the sealed page content and described by the

IOV; going further, these custom implementations can take multiple IOVs in

order to enable caging-type concatenation in backends that do not present the

scatter-gather interface exploited for the DAOS backend in section 4.3.

→ Redundancy shorthands. A set of desirable configurations specifying de-

91

grees of replication, sharding and data protection should be generically de-

fined by RNTuple and translated to the closest available alternative by the

concrete backend layer, thus transparently to the user. This may be useful

when transferring ntuples from one object store to another, or even to regu-

late data redundancy at the (generic) namespace level in an automatic fashion,

based on access pattern metrics collected by that entity.

→ Generalized number of namespaces. A generic layer allows enough lati-

tude to explore a generalization on the number of namespaces simultaneously

connected. Applications for this are limited: examples would include writ-

ing out data to different services in parallel, under the assumption that the

adapter interface would not be saturated due to network latency, or writing

out to the same service, but different server regions, as these imply a different

namespace for certain providers like S3. This is similar to the related work

in (PADULANO et al., 2022), which leverages DAOS as a fast cache option

for HPC clusters during fetching procedures by the traditional file backend.

A generic layer could, then, retain several “bucket” namespaces open, submit-

ting write requests to all at once; during analyses, different backends could be

queried for data in parallel, avoiding network delays and bottlenecks for more

reliable fetching.

The aforementioned building blocks form a blueprint for a connector layer

between the logical ntuples and their practical counterparts responsible for interop-

erability with remote object stores. As exemplified, this generic object store layer

could take up a majority of the duties and strategies for efficient throughput, elim-

inating redundant work when expanding this work to the myriad alternative object

stores not yet explored for RNTuple.

The proposed functionality could enable RNTuple to exploit, with minimal

effort, virtually every major existing cloud facility, as well as an expanding number

of object-store-based HPC clusters, in service of the HEP community and LHC

research.

92

6 CONCLUSION AND OUTLOOK

The higher luminosity from the HL-LHC is projected to increase the event

data generation by 10–20×before the 2030s, compared to current runs at the LHC.

Tools in HEP data analysis and storage must be adequated for this influx of data

in order for the HEP field to benefit from this feat of engineering. In order to do

so, it becomes critical to leverage modern storage technologies, e.g., NVMe devices,

persistent memory and object stores, toward fast and scalable storage and I/O,

enabling efficient and high–throughput analyses for the next generation of LHC

experiments at CERN.

In this work, we proposed two backends that integrate object stores into

RNTuple, ROOT’s new I/O subsystem for the next generation of HEP analyses

ushered by the HL-LHC. Each backend takes up an approach fit for its own use case

in HEP analysis: DAOS, Intel’s open–source object store, leveraging the power of

HPC supercomputers and clusters for intensive analyses; and AWS S3, the dominant

interface for cloud storage, as a transient stage meant to exploit existing cloud

infrastructure and distribute HL-LHC data to thousands of researchers worldwide.

DAOS has risen to prominence in the last half decade as a high–performing

object store for HPC. Our goal with RNTuple’s DAOS backend, which predated this

work in an experimental capacity, was to rework it to implement accepted techniques

in the field, as seen in section 4.3. These techniques include request coalescing,

supported by vector reads and writes, as well as more efficient scheduling queue

management and reduced use of system calls, all of which enabled the proposal of

a new data mapping between RNTuple and DAOS driven by physical target co-

locality, φco−locality (defined in equation 4.2).

As the evaluation in section 5.3 shows, our implementation significantly im-

proved I/O performance in comparison to the existing, proof–of–concept baseline.

The particular reason for the improvement is unveiled in our “feature ladder” eval-

uation, where each partial version of the framework is benchmarked to identify the

most impactful changes. For reading, the reduced use of system calls by keeping a

persistent endpoint queue is necessary and sufficient for scalable fetches over RDMA.

For writing, we found the opposite: only after all features are factored in, including

the new data mapping, does write speed achieve high throughput. This finding un-

locks a great potential for RNTuple to defer its writes by coalescing requests while,

93

in parallel, engaging in compression of the next batch of pages, as these are the two

biggest sources of CPU utilization according to our performance analysis in section

5.3. Given the above, we consider that this work has met the Objective 1a set out

in section 1.1.

A subsequent evaluation of the RNTuple and DAOS parameter space revealed

useful information for future deployment in HPC clusters. Regarding RNTuple pa-

rameters, the weight of the page size on scalable throughput is confirmed, while

the evaluation suggests that bigger RNTuple clusters favor writing speed due to

larger request volumes. In spite of that, the impact of compression was negligi-

ble on the LHCb analysis and B2HHH dataset; results might differ for different

datasets. Though our setup was too simplistic to extract insights on distributed

analyses, we found native and caged pages to peak at around 10 GB/s for writing

and 4.2 GB/s for reading. As expected, replication often caused decreases in write

speed, particularly for large blobs at MiB scales. However, we cannot claim with

confidence that higher replication always leads to lower write throughput and higher

readbacks, or that increased sharding has benefits on performance. Given this, we

estimate that Objective 1b was only partially satisfied; a systematic evaluation in

a distributed setting, with different datasets and on a larger HPC cluster is necessary

to understand the impact of the above parameters in realistic scenarios.

In light of the results, we proposed a concatenation feature (“caging”) to

allow ntuples with smaller data blobs to be spliced together server–side, without

any additional copying. While this scatter–gather approach provided faster reading

of the concatenated blobs, it did not attain the targeted throughput for writing,

though an increase is observed for natively smaller pages. After further investigation,

we observed a significant CPU effort tied to memory registration in our RDMA–

enabled experimental setup for DAOS. Ultimately, this suggests RNTuple’s sink

mechanism is not optimally reusing IOV buffers. For sinking processes with many

small blobs, such as when caging is toggled, the cost of memory registration is more

significant. We deem Objective 1c reached by this method, showing promising

results for the use cases that most need it and emancipating the sink layer from native

parameters that are detrimental to network transfer: for data ingestion, we measured

up to 2–3×better throughput when comparing 32–64 kB pages being spliced together

as 1 MiB cages, whereas reading is improved 7–4×for the same parameters. As

native pages grow larger, the gains in transfer rate become negligible, suggesting this

94

mechanism to be particularly beneficial for transfers from RNTuple’s file backend,

which sees default page sizes of 64 kB, to DAOS.

In order to benefit from the existing cloud infrastructure, our cloud backend

approach targets the S3 service and API, which has become the unofficial standard

for cloud interfacing among cloud providers. Our proposal is a proof-of-concept

based on the foundations acquired with DAOS, seeking to understand the service’s

performance and limitatins. We began by identifying the characteristic differences

and similarities between the two models (Table 4.1), such as S3’s more opaque

mapping interface and higher latency compared to DAOS, which we were able to

counteract by increasing the transfer buffer sizes on the integration’s data mapping,

satisfying Objective 2 in section 1.1.

Specifically, we were able to demonstrate that page sizes associated with a

performant S3 backend should be bigger than those of the DAOS counterpart by a

significant factor (4–16×). This goes hand–in–hand with our service cost estimates

for ingestion and analysis, wherein larger pages directly lead to fewer requests and

cost savings of up to 6-fold for writing and 30 % for reading. Note that under

our WORM access pattern, the latter metric should be prioritized, and its savings

are quickly the dominating factor after two dozen analyses. Given the results, we

formulated two additional approaches for the S3 backend, whose implementation

depends on the underlying provider’s support for byte–range requests.

Through this work, as envisaged in the introductory section 1.1, RNTuple

made headway into first–class support for object stores, with a production–grade

DAOS backend that efficiently populates HPC data centers and a clear path to a

performant S3 backend for fast HEP data distribution throughout the cloud.

Contributions

The object of this thesis has generated multiple contributions in HEP–related

scientific events with dedicated computing sessions. This section lists appearances of

this work in HEP conferences and a workshop organized by CERN openlab (CERN,

2023). 1

In HEP conferences, authors customarily present their works before an arti-

1A public-private initiative coordinated at CERN to accelerate the development of computing
technologies that present practical benefits to HEP research and test them in real-world scenarios.

95

cle is produced, much less peer reviewed. Such an approach stimulates discussion

in a field guided by deductive reasoning and whose experiments typically require

significant funding and time to conduct. The conferences that showcased our work

have followed this formula. Thus, we include submissions to their corresponding

proceedings, though their peer review processes are still ongoing or have not begun

at the present time of writing.

ACAT 2022 (poster): RNTuple: Towards First-Class Support for HPC data cen-

ters (MIOTTO; LOPEZ-GOMEZ, 2022).

CERN openlab Workshop (talk): Mapping ROOT RNTuple I/O data structures

to DAOS objects (LOPEZ-GOMEZ; MIOTTO, 2023).

CHEP 2023 (talk): Storing LHC Data in DAOS and S3 through RNTuple (MIOTTO;

LOPEZ-GOMEZ, 2023).

There are two proposed publications about this work. The first is pending

review; the second is being submitted in September 2023:

ACAT 2022 Proceedings: MIOTTO, G. L.; LOPEZ-GOMEZ, J. RNTuple: To-

wards First-Class Support for HPC data centers. 2023. Pending peer review.

CHEP 2023 Proceedings: MIOTTO, G. L.; LOPEZ-GOMEZ, J.; GEYER, C.

R. RNTuple: Efficient HEP Data I/O for Object Stores. 2023. Submission

imminent.

Outlook

The findings in this work have and will continue to guide object store sup-

port strategies for RNTuple. In this section, we list some of the directions for the

backends, going forward.

This work has identified an important bottleneck in memory registration

overhead costs over RDMA interconnects, as mentioned in 5.3.3. Approaches for

the reuse of allocated transfer buffers in RNTuple are being considered.

The evaluation of the DAOS backend in a distributed setting was kept out

of this thesis’ scope; in exploratory experiments, scalability constraints prevented

the link layer saturation during multi–node analysis over RDMA. In the future, this

should be revisited in a larger HPC cluster, after RNTuple leaves the experimental

96

stage.

In its current state, the AWS S3 backend is a proof–of–concept. Its path

toward production goes through the implementation of byte–range read request

support, so that TCP/IP latency can be circumvented in the sink by coalescing

page groups or clusters into single blobs, as described in section 5.4.

Going further, the AWS S3 backend can springboard compatibility with other

object storage providers sharing similar APIs and feature sets, e.g., Microsoft Azure,

Google Cloud Platform, IBM Cloud and Oracle Cloud. More generally, this hints

at the implementation of a provider–agnostic connector between RNTuple’s stor-

age layer and a plethora of concrete cloud backends. The insights of this work,

which identify common structures, request patterns and mappings between the two

proposed backends, can be used to inform that endeavor.

97

REFERENCES

AAD, G. et al. Observation of a new particle in the search for the standard
model higgs boson with the ATLAS detector at the LHC. Physics Letters
B, Elsevier BV, v. 716, n. 1, p. 1–29, sep 2012. Available from Internet:
<https://doi.org/10.1016%2Fj.physletb.2012.08.020>.

ABADI, D. J.; BONCZ, P. A.; HARIZOPOULOS, S. Column-Oriented
Database Systems. Proc. VLDB Endow., VLDB Endowment, v. 2,
n. 2, p. 1664–1665, aug 2009. ISSN 2150-8097. Available from Internet:
<https://doi.org/10.14778/1687553.1687625>.

ABADI, D. J.; MADDEN, S. R.; HACHEM, N. Column-stores vs. row-
stores: How different are they really? In: Proceedings of the 2008
ACM SIGMOD International Conference on Management of
Data. New York, NY, USA: Association for Computing Machinery, 2008.
(SIGMOD ’08), p. 967–980. ISBN 9781605581026. Available from Internet:
<https://doi.org/10.1145/1376616.1376712>.

AGOSTINELLI, S. et al. Geant4—a simulation toolkit. Nuclear instruments
and methods in physics research section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, Elsevier, v. 506, n. 3, p. 250–303, 2003.

Amazon, Inc. Best practices design patterns: optimizing Amazon
S3 performance. Amazon, Inc., 2023. Accessed: 2023-07-24. Available
from Internet: <https://docs.aws.amazon.com/AmazonS3/latest/userguide/
optimizing-performance.html>.

Amazon Web Services. Amazon S3 Pricing. Amazon Web Services, Inc., 2023.
Accessed: 2023-05-03. Available from Internet: <https://aws.amazon.com/s3/
pricing/>.

ANTCHEVA, I. et al. ROOT - A C++ framework for petabyte data storage,
statistical analysis and visualization. Comput. Phys. Commun., v. 180, p.
2499–2512, 2009.

ARDINO, R. et al. A 40 mhz level-1 trigger scouting system for the cms
phase-2 upgrade. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, v. 1047, p. 167805, 2023. ISSN 0168-9002. Available from Internet:
<https://www.sciencedirect.com/science/article/pii/S016890022201097X>.

Argonne National Laboratory. Aurora Exascale Supercomputer. 2023.
Accessed: 2023-07-27. Available from Internet: <{https://www.anl.gov/auror}.>

ATLAS Collaboration. ATLAS Software and Computing HL-LHC Roadmap.
Geneva, 2022. Available from Internet: <https://cds.cern.ch/record/2802918>.

AYLLON, A. A. et al. Making the most of cloud storage - a toolkit for exploitation
by wlcg experiments. Journal of Physics: Conference Series, v. 898, 2017.
Available from Internet: <https://api.semanticscholar.org/CorpusID:67176643>.

https://doi.org/10.1016%2Fj.physletb.2012.08.020
https://doi.org/10.14778/1687553.1687625
https://doi.org/10.1145/1376616.1376712
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://www.sciencedirect.com/science/article/pii/S016890022201097X
{https://www.anl.gov/auror}.
https://cds.cern.ch/record/2802918
https://api.semanticscholar.org/CorpusID:67176643

98

BERGHöFER, T. et al. Towards a Model for Computing in European
Astroparticle Physics. 2015.

BLOMER, J. A quantitative review of data formats for hep analyses. Journal of
Physics: Conference Series, IOP Publishing, v. 1085, n. 3, p. 032020, sep 2018.
Available from Internet: <https://dx.doi.org/10.1088/1742-6596/1085/3/032020>.

BLOMER, J. et al. Evolution of the ROOT Tree I/O. ArXiv, abs/2003.07669,
2020.

BLOMER, J. et al. ROOT RNTuple Virtual Probe Station. 2022. Accessed:
2023-06-23. Available from Internet: <https://github.com/jblomer/iotools/tree/
acat22>.

BOCKELMAN, B.; ELMER, P.; WATTS, G. IRIS-HEP Strategic Plan for
the Next Phase of Software Upgrades for HL-LHC Physics. 2023.

BOITO, F. Z. et al. A Checkpoint of Research on Parallel I/O for High-Performance
Computing. ACM Computing Surveys, v. 51, p. 1–35, 03 2018.

BRAAM, P. The Lustre Storage Architecture. 2019.

BRUN, R.; RADEMAKERS, F. ROOT—An object oriented data analysis
framework. Nuclear instruments and methods in physics research section
A: accelerators, spectrometers, detectors and associated equipment,
Elsevier, v. 389, n. 1-2, p. 81–86, 1997.

CERN. CERN openlab. 2023. Accessed: 2023-07-12. Available from Internet:
<https://openlab.cern>.

CERN. Storage: what data to record? CERN, 2023. Accessed: 2023-05-22.
Available from Internet: <https://home.cern/science/computing/storage>.

CHIEN, S. W. der et al. Exploring scientific application performance using
large scale object storage. In: Lecture Notes in Computer Science.
Springer International Publishing, 2018. p. 117–130. Available from Internet:
<https://doi.org/10.1007%2F978-3-030-02465-9_8>.

CLISSA, L. Survey of Big Data sizes in 2021. arXiv, arXiv, 2022.

CMS Offline Software and Computing. CMS Phase-2 Computing Model:
Update Document. Geneva, 2022. Available from Internet: <https:
//cds.cern.ch/record/2815292>.

DAOS Project. DAOS Overview. 2023. Accessed: 2023-04-25. Available from
Internet: <https://docs.daos.io/v2.2/overview/architecture/>.

DAOS Project. DAOS Overview: Storage Model. 2023. Accessed: 2023-04-25.
Available from Internet: <{https://docs.daos.io/v2.2/overview/storag}.>

DAOS Project. daos-stack/daos: DAOS Storage Stack (client libraries,
storage engine, control pane). Github, 2023. Accessed: 2023-04-25. Available
from Internet: <https://github.com/daos-stack/daos>.

https://dx.doi.org/10.1088/1742-6596/1085/3/032020
https://github.com/jblomer/iotools/tree/acat22
https://github.com/jblomer/iotools/tree/acat22
https://openlab.cern
https://home.cern/science/computing/storage
https://doi.org/10.1007%2F978-3-030-02465-9_8
https://cds.cern.ch/record/2815292
https://cds.cern.ch/record/2815292
https://docs.daos.io/v2.2/overview/architecture/
{https://docs.daos.io/v2.2/overview/storag}.
https://github.com/daos-stack/daos

99

DAOS Project. Hardware Requirements. 2023. Accessed: 2023-04-25. Available
from Internet: <{https://docs.daos.io/v2.2/admin/hardware}.>

DEVRESSE, A.; FURANO, F. Efficient HTTP based I/O on very large
datasets for high performance computing with the libdavix library. 2014.

DORIGO, A. et al. Xrootd - a highly scalable architecture for data access. WSEAS
Transactions on Computers, v. 4, p. 348–353, 04 2005.

DUWE, K.; KUHN, M. Using ceph’s bluestore as object storage in hpc storage
framework. Proceedings of the Workshop on Challenges and Opportunities
of Efficient and Performant Storage Systems, 2021. Available from Internet:
<https://api.semanticscholar.org/CorpusID:233384677>.

FOSTER, I. T.; KESSELMAN, C.; TUECKE, S. The Anatomy of the Grid -
Enabling Scalable Virtual Organizations. CoRR, cs.AR/0103025, 2001. Available
from Internet: <{https://arxiv.org/abs/cs/010302}.>

FREY, P. W.; ALONSO, G. Minimizing the hidden cost of rdma. In: IEEE. 2009
29th IEEE International Conference on Distributed Computing Systems.
[S.l.], 2009. p. 553–560.

FTS. FTS Website. 2023. Accessed: 2023-08-12. Available from Internet:
<{https://fts.web.cern.ch/fts}.>

GADBAN, F.; KUNKEL, J. Analyzing the Performance of the S3 Object Storage
API for HPC Workloads. Applied Sciences, v. 11, n. 18, 2021. ISSN 2076-3417.
Available from Internet: <https://www.mdpi.com/2076-3417/11/18/8540>.

GIANNUZZI, G. et al. Analysis of high-identity segmental duplications in the
grapevine genome. BMC Genomics, v. 12, p. 436 – 436, 2011.

GIBNEY, E. How the revamped Large Hadron Collider will hunt for new physics.
Nature Research, v. 605, n. 7911, p. 604–607, May 2022. Available from Internet:
<{https://www.nature.com/articles/d41586-022-01388-}.>

GREVILLOT, L. et al. A monte carlo pencil beam scanning model for proton
treatment plan simulation using gate/geant4. Physics in Medicine & Biology,
v. 56, p. 5203 – 5219, 2011.

HADY, F. T. et al. Platform storage performance with 3d xpoint technology.
Proceedings of the IEEE, v. 105, n. 9, p. 1822–1833, Sep. 2017. ISSN 1558-2256.

HARTMANN, N.; ELMSHEUSER, J.; DUCKECK, G. Columnar data analysis
with atlas analysis formats. In: EDP SCIENCES. EPJ Web of Conferences.
[S.l.], 2021. v. 251, p. 03001.

HENNECKE, M. Understanding daos storage performance scalability.
In: Proceedings of the HPC Asia 2023 Workshops. New York,
NY, USA: Association for Computing Machinery, 2023. (HPC Asia ’23
Workshops), p. 1–14. ISBN 9781450399890. Available from Internet: <https:
//doi.org/10.1145/3581576.3581577>.

{https://docs.daos.io/v2.2/admin/hardware}.
https://api.semanticscholar.org/CorpusID:233384677
{https://arxiv.org/abs/cs/010302}.
{https://fts.web.cern.ch/fts}.
https://www.mdpi.com/2076-3417/11/18/8540
{https://www.nature.com/articles/d41586-022-01388-}.
https://doi.org/10.1145/3581576.3581577
https://doi.org/10.1145/3581576.3581577

100

High Luminosity LHC Project. LS3 schedule change. CERN, 2022. Accessed:
2023-03-07. Available from Internet: <https://hilumilhc.web.cern.ch/article/
ls3-schedule-change>.

InfiniBand Trade Association. InfiniBand Roadmap. 2023. Accessed: 2023-03-05.
Available from Internet: <{https://www.infinibandta.org/infiniband-roadmap}.>

Intel Corporation. Intel® oneAPI Threading Building Blocks. 2023. Accessed:
2023-08-12. Available from Internet: <https://www.intel.com/content/www/us/
en/developer/tools/oneapi/onetbb.html>.

IO500 Foundation. IO500 SC22 List. 2022. Accessed: 2023-03-17. Available from
Internet: <https://io500.org/list/sc22/io500>.

JEONG, K. et al. Optimizing the ceph distributed file system for high performance
computing. In: 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP). [S.l.: s.n.], 2019. p.
446–451.

KHACHATRYAN, V. et al. Search for the associated production of the higgs boson
with a top-quark pair. Journal of High Energy Physics, v. 2014, p. 1–64, 2014.

KOGGE, P. et al. ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems. Defense Advanced Research Projects Agency
Information Processing Techniques Office (DARPA IPTO), Techinal
Representative, v. 15, 01 2008.

LHCb collaboration (2017). Matter Antimatter Differences (B meson decays
to three hadrons) - Data Files. CERN Open Data Portal, 2017. Available from
Internet: <http://opendata.cern.ch/record/4900>.

LIANG, Z. et al. DAOS: A Scale-Out High Performance Storage Stack for Storage
Class Memory. In: . [S.l.: s.n.], 2020. p. 40–54. ISBN 978-3-030-48841-3.

LIU, J. et al. Evaluation of HPC Application I/O on Object Storage Systems. In:
2018 IEEE/ACM 3rd International Workshop on Parallel Data Storage
‘I&’ Data Intensive Scalable Computing Systems (PDSW-DISCS). [S.l.:
s.n.], 2018. p. 24–34.

LIU, J. et al. Evaluation of hpc application i/o on object storage systems. 2018
IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems (PDSW-DISCS), p. 24–34, 2018.
Available from Internet: <https://api.semanticscholar.org/CorpusID:59453124>.

LOGAN, L. et al. An evaluation of daos for simulation and deep learning
hpc workloads. Proceedings of the 3rd Workshop on Challenges and
Opportunities of Efficient and Performant Storage Systems, 2023.
Available from Internet: <https://api.semanticscholar.org/CorpusID:258486751>.

LOPEZ-GOMEZ, J.; BLOMER, J. Exploring object stores for high-energy physics
data storage. EPJ Web Conf., v. 251, p. 02066, 2021. Available from Internet:
<https://doi.org/10.1051/epjconf/202125102066>.

https://hilumilhc.web.cern.ch/article/ls3-schedule-change
https://hilumilhc.web.cern.ch/article/ls3-schedule-change
{https://www.infinibandta.org/infiniband-roadmap}.
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://io500.org/list/sc22/io500
http://opendata.cern.ch/record/4900
https://api.semanticscholar.org/CorpusID:59453124
https://api.semanticscholar.org/CorpusID:258486751
https://doi.org/10.1051/epjconf/202125102066

101

LOPEZ-GOMEZ, J.; BLOMER, J. RNTuple performance: Status and Outlook.
arXiv, 2022. Available from Internet: <{https://arxiv.org/abs/2204.0904}.>

LOPEZ-GOMEZ, J.; MIOTTO, G. L. Mapping ROOT RNTuple I/O data
structures to DAOS objects. 2023. Accessed: 2023-07-21. Available from
Internet: <{https://indico.cern.ch/event/1225408/contributions/524384}.>

LüTTGAU, J. et al. Survey of storage systems for high-performance computing.
Supercomputing Frontiers and Innovations, v. 5, n. 1, p. 31–58, Apr. 2018.
Available from Internet: <https://superfri.org/index.php/superfri/article/view/
162>.

MANUBENS, N. et al. Daos as hpc storage: a view from numerical weather
prediction. In: 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). [S.l.: s.n.], 2023. p. 1029–1040.

MANUBENS, N. et al. Performance comparison of daos and lustre for object
data storage approaches. 2022 IEEE/ACM International Parallel Data
Systems Workshop (PDSW), p. 7–12, 2022. Available from Internet:
<https://api.semanticscholar.org/CorpusID:253581225>.

MIETKE, F. et al. Analysis of the memory registration process in the mellanox
infiniband software stack. In: . [S.l.: s.n.], 2006. v. 4128, p. 124–133. ISBN
978-3-540-37783-2.

MinIO, Inc. MinIO. MinIO, Inc., 2023. Accessed: 2023-05-03. Available from
Internet: <https://min.io/docs/minio/linux/index.html>.

MIOTTO, G. L.; LOPEZ-GOMEZ, J. RNTuple: Towards First-Class Support
for HPC data centers. 2022. Accessed: 2023-07-21. Available from Internet:
<{https://indico.cern.ch/event/1106990/contributions/499135}.>

MIOTTO, G. L.; LOPEZ-GOMEZ, J. Storing LHC Data in DAOS and
S3 through RNTuple. 2023. Accessed: 2023-07-21. Available from Internet:
<{https://indico.jlab.org/event/459/contributions/1132}.>

MUñOZ-ESCOí, F. D. et al. CAP Theorem: Revision of Its Related Consistency
Models. The Computer Journal, v. 62, n. 6, p. 943–960, 03 2019. ISSN
0010-4620. Available from Internet: <https://doi.org/10.1093/comjnl/bxy142>.

NAUMANN, A. et al. ROOT for the HL-LHC: data format. arXiv, 2022.
Available from Internet: <https://arxiv.org/abs/2204.04557>.

NIELSEN, H. et al. Hypertext Transfer Protocol – HTTP/1.1. RFC
Editor, 1999. RFC 2616. (Request for Comments, 2616). Available from Internet:
<https://www.rfc-editor.org/info/rfc2616>.

Nvidia, Inc. Benefits of Remote Direct Memory Access Over Routed
Fabrics. Nvidia, Inc., 2023. Accessed: 2023-06-05. Available from Internet: <https:
//network.nvidia.com/pdf/solutions/benefits-of-RDMA-over-routed-fabrics.pdf>.

OFIWG. Libfabric. OFIWG, 2023. Accessed: 2023-07-01. Available from Internet:
<https://ofiwg.github.io/libfabric/>.

{https://arxiv.org/abs/2204.0904}.
{https://indico.cern.ch/event/1225408/contributions/524384}.
https://superfri.org/index.php/superfri/article/view/162
https://superfri.org/index.php/superfri/article/view/162
https://api.semanticscholar.org/CorpusID:253581225
https://min.io/docs/minio/linux/index.html
{https://indico.cern.ch/event/1106990/contributions/499135}.
{https://indico.jlab.org/event/459/contributions/1132}.
https://doi.org/10.1093/comjnl/bxy142
https://arxiv.org/abs/2204.04557
https://www.rfc-editor.org/info/rfc2616
https://network.nvidia.com/pdf/solutions/benefits-of-RDMA-over-routed-fabrics.pdf
https://network.nvidia.com/pdf/solutions/benefits-of-RDMA-over-routed-fabrics.pdf
https://ofiwg.github.io/libfabric/

102

PADULANO, V. E. Distributed Computing Solutions for High Energy
Physics Interactive Data Analysis. Thesis (PhD) — Valencia, Polytechnic U.,
2023.

PADULANO, V. E. et al. Leveraging state-of-the-art engines for large-scale data
analysis in high energy physics. Journal of Grid Computing, v. 21, p. 1–21, 2023.
Available from Internet: <https://api.semanticscholar.org/CorpusID:256702277>.

PADULANO, V. E. et al. A caching mechanism to exploit object store speed in
high energy physics analysis. Cluster Computing, p. 1–16, 10 2022.

PADULANO, V. E. et al. Distributed data analysis with root rdataframe.
EPJ Web Conf., v. 245, p. 03009, 2020. Available from Internet: <https:
//doi.org/10.1051/epjconf/202024503009>.

PERUZZI, M. et al. The nanoaod event data format in cms. Journal of Physics:
Conference Series, IOP Publishing, v. 1525, n. 1, p. 012038, apr 2020. Available
from Internet: <https://dx.doi.org/10.1088/1742-6596/1525/1/012038>.

ROOT Project. ROOT - Analyzing petabytes of data, scientifically. CERN,
2023. Accessed: 2023-03-29. Available from Internet: <https://root.cern.ch>.

ROOT Project. root-project/root: the official repository for ROOT.
Master branch. Github, 2023. Available from Internet: <https://github.com/
root-project/root/tree/master>.

SEHRISH, S.; KOWALKOWSKI, J.; PATERNO, M. F. Spark and hpc for
high energy physics data analyses. 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), p. 1048–1057,
2017. Available from Internet: <https://api.semanticscholar.org/CorpusID:
2357766>.

SOUMAGNE, J. et al. Accelerating HDF5 I/O for Exascale Using DAOS. IEEE
Transactions on Parallel and Distributed Systems, v. 33, n. 4, p. 903–914,
2022.

The Apache Software Foundation. Apache Arrow. 2023. Accessed: 2023-08-20.
Available from Internet: <{https://arrow.apache.or}.>

The Apache Software Foundation. Apache Parquet. 2023. Accessed: 2023-08-20.
Available from Internet: <{https://parquet.apache.org}.>

THOMASIAN, A. Chapter 2 - storage technologies and their data. In:
THOMASIAN, A. (Ed.). Storage Systems. Morgan Kaufmann, 2022.
p. 89–196. ISBN 978-0-323-90796-5. Available from Internet: <https:
//www.sciencedirect.com/science/article/pii/B9780323907965000115>.

WEIL, S. A. et al. Rados: A scalable, reliable storage service for petabyte-scale
storage clusters. In: Proceedings of the 2nd International Workshop on
Petascale Data Storage: Held in Conjunction with Supercomputing
’07. New York, NY, USA: Association for Computing Machinery, 2007.
(PDSW ’07), p. 35–44. ISBN 9781595938992. Available from Internet:
<https://doi.org/10.1145/1374596.1374606>.

https://api.semanticscholar.org/CorpusID:256702277
https://doi.org/10.1051/epjconf/202024503009
https://doi.org/10.1051/epjconf/202024503009
https://dx.doi.org/10.1088/1742-6596/1525/1/012038
https://root.cern.ch
https://github.com/root-project/root/tree/master
https://github.com/root-project/root/tree/master
https://api.semanticscholar.org/CorpusID:2357766
https://api.semanticscholar.org/CorpusID:2357766
{https://arrow.apache.or}.
{https://parquet.apache.org}.
https://www.sciencedirect.com/science/article/pii/B9780323907965000115
https://www.sciencedirect.com/science/article/pii/B9780323907965000115
https://doi.org/10.1145/1374596.1374606

103

WLCG. Worldwide LHC Computing Grid. CERN, 2023. Accessed: 2023-07-22.
Available from Internet: <{https://wlcg-public.web.cern.ch}.>

{https://wlcg-public.web.cern.ch}.

104

GLOSSARY

akey Attribute key. In DAOS, it is a 64-bit value that complements the dkey to

comprise the blob key within the DAOS object using the KVS interface. 27,

28, 51, 52, 55, 56

dkey Distribution key. In DAOS, it is a 64-bit value that complements the akey

to comprise the blob key within the DAOS object using the KVS interface.

This key impacts target co-locality; within the same container and object, two

blobs under the same dkey are guaranteed to be stored in the same target

nodes on the DAOS server. 27, 28, 51, 52, 55

oid Object ID. In DAOS, it is a 128-bit value mapping to an object within the

DAOS container. The first 32 are reserved to DAOS, e.g., to encode object

class. The remaining 96 bits are freely describable by the user. 28, 51, 52, 55

blob Binary Large Object, a usually immutable entity stored as raw, binary data.

28, 51, 55–58, 60, 69, 77, 86, 93

bucket Private namespace in Cloud-based object stores, such as AWS S3, where

S3 objects are allocated. 85, 89

cage Portmanteau for concatenated page. The result of RNTuple’s caging in its

DAOS backend. 55–57, 69, 70, 77, 79, 85, 90

caging RNTuple’s scatter-gather concatenation mechanism, which combines neigh-

boring pages from the same page group into a single blob server-side. 56, 57,

85, 90

cluster A horizontal split of an RNTuple dataset, roughly O(100) MB in size. RN-

Tuple’s unit of writing. 17, 42, 44, 46, 49, 52, 55, 60, 70–72, 74–76, 78, 83, 85,

86, 90

cluster bunch A typically small (1–5) range of consecutive clusters in RNTuple

fetched together for parallel decompression in multi-threaded contexts. RN-

Tuple’s unit of reading. 46, 49, 61, 90

column A subset of fundamentally-typed data in RNTuple; internal component of

the external-facing field. Multiple columns can be part of a field, e.g. vectors,

which have an offset column and one or more columns for the comprising data.

45, 46, 60, 68

container Private namespace within pools in DAOS, where DAOS objects are al-

105

located. 49, 89

event The set of particle collisions resulting from a proton bunch crossing. 19, 20,

23, 53–55, 57, 69, 82

exascale Term associated with a selective but growing group of the best performing

HPC clusters and supercomputers, able to achieve at least 1018 IEEE754 64-

bit operations per second. 16, 17, 24, 36, 37

IOV Basic unit for scatter-gather I/O. It denotes a structure with a memory buffer

address and its corresponding length, in bytes. 28, 52, 56, 58, 60, 77, 79, 90,

93

ntuple A ROOT dataset 18, 23, 42–44, 46, 48, 51, 55, 57, 68, 74, 77, 86, 87, 89–91,

93

object In DAOS, entities with the capacity to store multiple data chunks according

to a given data model, which can be array-like or akin to a key-value store. 85

page A partition of column data in RNTuple, roughly O(100) kB in size. It is the

unit of compression and smallest scale at which I/O is performed. 17, 43–46,

49, 51, 52, 55–57, 60, 66, 70, 74, 77, 79, 82, 83, 85–88, 90, 93, 94

page group Consists of all pages sharing a given cluster and column in RNTuple.

Can be described as the predominant unit of analysis. 43, 51, 52, 55, 57, 60,

85, 90

POSIX I/O Standard in the POSIX family 25, 30, 34, 37, 39–41, 73

proton bunch A batch of protons launched together in the same direction at the

Large Hadron Collider. 19, 20

Request For Comments A document by the Internet Engineering Task Force

(IETF) containing specifications, standards or technical memoranda on Internet-

related topics. 86

SGL Scatter-Gather Lists, a flat collection of IOVs used for scatter-gather I/O. 28,

52, 56

shard A partition of a database integral to sharding, a technique for load balancing

that spreads different logical data across available server targets to reduce

contention for physical resources. 26

106

TCP/IP Transmission Control Protocol/Internet Protocol, a set of communication

protocols between the nodes participating in the Internet. 59, 96

TTree ROOT’s long-established row and columnar data format and I/O subsytem

for HEP analysis. The predecessor to ROOT RNTuple. 14, 16, 22, 23, 38, 42,

43, 46

vector write Data transfer in bulk through data vectors that concentrate refer-

ences to multiple content buffers for different objects. 44, 45

	
	Acknowledgments
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Hypotheses
	1.2 Objectives and Methodology
	1.3 Structure

	2 Background
	2.1 High Energy Physics and its Analysis Patterns
	2.1.1 Large Hadron Collider Data
	2.1.2 Data Analysis for High Energy Physics

	2.2 The ROOT Framework
	2.2.1 ROOT I/O
	2.2.2 RNTuple Architecture

	2.3 DAOS
	2.3.1 System Architecture
	2.3.2 Storage and Data Models

	2.4 Data Storage Paradigms
	2.4.1 Traditional Approaches
	2.4.2 Modern and Distributed Storage Systems

	2.5 High Performance Computing
	2.5.1 Persistent Storage Technologies
	2.5.2 Communication Technologies
	2.5.3 HPC Clusters and Exascale Computing

	3 Related Work
	4 Integrating Object Stores into ROOT RNTuple
	4.1 The RNTuple Data Format
	4.2 Adapting RNTuple for Object Stores
	4.3 RNTuple-DAOS: Design and Implementation
	4.3.1 Co-Locality Mapping Function
	4.3.2 Request Coalescing
	4.3.3 Scatter-Gather Concatenation (Caging)

	4.4 RNTuple-S3: Backend for the Cloud
	4.4.1 Mapping Function
	4.4.2 Davix–based Implementation

	4.5 Tools and Technologies

	5 Evaluation
	5.1 Evaluation Objectives
	5.2 Experimental Setup
	5.2.1 Platforms
	5.2.2 LHCb Benchmark

	5.3 Evaluation of the RNTuple-DAOS Backend
	5.3.1 Version Comparison
	5.3.2 Analysis of Native Parameters
	5.3.3 Artificial Page Size (Caging)
	5.3.4 Performance Analysis

	5.4 Evaluation of the RNTuple-S3 Backend
	5.5 Design Considerations for a Generic Object Store Backend

	6 Conclusion and Outlook
	References
	Glossary

