
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RAFAEL BILLIG TONETTO

A Reliability- and Variation-Aware
Methodology for Improved Processor

Designs for the Edge Computing Domain

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Computer Science

Advisor: Prof. Dr. Gabriel Nazar
Co-advisor: Prof. Dr. Antonio Carlos Schneider
Beck Filho

Porto Alegre
September 2023

CIP — CATALOGING-IN-PUBLICATION

Billig Tonetto, Rafael

A Reliability- and Variation-Aware Methodology for Im-
proved Processor Designs for the Edge Computing Domain /
Rafael Billig Tonetto. – Porto Alegre: PPGC da UFRGS, 2023.

120 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2023. Advisor: Gabriel Nazar; Co-advisor: Antonio Carlos
Schneider Beck Filho.

1. Heterogeneous systems. 2. Reliability. 3. Near-threshold
voltage. 4. Process variation. I. Nazar, Gabriel. II. Schneider
Beck Filho, Antonio Carlos. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

AGRADECIMENTOS

Primeiramente, gostaria de agradecer a todos os membros da minha família, meus

pais Cláudio e Rejane, e meus irmãos André e Daniela, por todo o apoio oferecido, gra-

tuitamente, ao longo dos meus 1000002 anos de vida. Em especial, gostaria de agradecer

aos meus orientadores, Caco e Gabriel Nazar, pelo apoio, paciência e feedbacks providos

ao longo dos últimos sete anos de trabalho, desde o mestrado até o final deste programa

de doutorado. É sempre um privilégio trabalhar com pessoas que estão à nossa frente.

ABSTRACT

Technology scaling has been successfully improving the performance of current micro-

processors primarily due to the reduced node size that enables increased transistor inte-

gration, allowing for the design and widespread adoption of high-performance and highly

heterogeneous chips. However, despite the slowdown of Moore’s Law, the improved tran-

sistor integration is accompanied by complex technological challenges and trade-offs that

must be addressed. In particular, smaller technology nodes impose increased reliability,

power density, and process variation issues that penalize performance, energy efficiency,

and yield. Additionally, overcoming such challenges is especially tricky for devices op-

erating at the edge due to the limited power budgets and battery dependency. This the-

sis, then, proposes a set of methodologies to improve non-functional requirements for

heterogeneous chips targeting edge-based applications subject to power, reliability, and

process variation constraints. First, we leverage the application and microarchitectural

heterogeneity of cores and propose a low-cost learning method for reliability-oriented

mappings that provide near-to-optimal Mean Workload to Failure (MWTF) of heteroge-

neous chips. With the prediction-based mappings, we achieve MWTF as close as 5.6% to

the oracle in a low overhead and transparent fashion. Secondly, aiming to improve power-

constrained edge devices’ performance and energy efficiency, we propose a design-time

strategy for chip customization with Near-Threshold Voltage (NTV). Here, we develop

an efficient method to allocate NTV and conventional cores in the same die. In this

setup, only an optimal subset of the cores are set to operate at NTV, leaving the remaining

cores at conventional voltage settings, attenuating the frequency degradation overheads of

NTV. Finally, as NTV comes at the cost of exacerbated process variations, we propose a

two-step methodology to address delay and power variations on heterogeneous chips. At

design time, we augment our chip composition strategy with parameter variation models

and develop a statistical and variation-aware design space exploration for heterogeneous

chip composition. At the post-design phase, we propose an efficient frequency adaptation

mechanism to further cope with unseen parameter variations and improve either perfor-

mance or yield. We show that under strict power and process variation restrictions, our

proposal improves performance by an average of 3.4 times compared to standard NTV

approaches and 12% when compared to chips at conventional voltage levels.

Keywords: Heterogeneous systems. Reliability. Near-threshold voltage. Process varia-

tion.

Uma Metodologia Visando Melhoria de Confiabilidade e Variação de Processos em

Processadores no Domínio da Computação na Borda

RESUMO

A escalabilidade tecnológica tem melhorado com sucesso o desempenho dos micropro-

cessadores atuais, principalmente devido ao tamanho reduzido dos circuitos que permite

uma maior integração de transistores, possibilitando o projeto e a adoção generalizada de

chips altamente heterogêneos e de alto desempenho. No entanto, apesar da desaceleração

da Lei de Moore, a alta integração de transistores é acompanhada por desafios tecnológi-

cos e trade-offs difíceis de serem enfrentados. Em especial, transistores menores impõem

problemas de confiabilidade, densidade de potência e variabilidade de processo que pe-

nalizam o desempenho, a eficiência energética e o yield quando não são adequadamente

abordados. Superar esses desafios é especialmente difícil para dispositivos que operam

em ambientes de borda devido aos limites de potência e à dependência de baterias. Nesta

tese, propomos uma metodologia abrangente para melhorar os requisitos não funcionais

de chips heterogêneos destinados a aplicações de borda sujeitas a restrições de potência,

confiabilidade e variabilidade de processo. Primeiro, aproveitamos a heterogeneidade de

aplicações e de microarquitetura dos núcleos de processadores e propomos um método

de aprendizado de baixo custo para mapeamentos orientados à confiabilidade que forne-

cem um tempo médio de carga até a falha (MWTF, na sigla em inglês) próximo ao ideal

para chips heterogêneos. Com os mapeamentos baseados em previsão, alcançamos um

MWTF tão próximo quanto 5,6% do oráculo com baixo custo e de forma transparente.

Em segundo lugar, com o objetivo de melhorar o desempenho e a eficiência energética

de dispositivos de borda com restrição de potência, propomos uma estratégia de confi-

guração de chips em tempo de projeto com uso de Tensão Próxima do Limiar (NTV).

Desenvolvemos uma estratégia eficiente para alocar núcleos tanto NTV quanto conven-

cionais no mesmo chip. Nessa configuração, apenas um subconjunto ótimo dos núcleos

opera com NTV, deixando os demais núcleos com configurações convencionais de tensão,

reduzindo assim as perdas de frequência decorrentes do uso de NTV. Por fim, como o uso

de NTV acarreta variabilidades de processo exacerbadas, propomos uma metodologia em

duas etapas para lidar com variabilidades de frequência e potência em chips heterogêneos.

No momento do projeto, aprimoramos nossa estratégia anterior de composição de chips

com modelos de variabilidade de parâmetros e desenvolvemos uma exploração estatística

e ciente da variabilidade do espaço de design para a composição de chips heterogêneos.

Na fase pós-projeto, implementamos um mecanismo eficiente de adaptação de frequência

para lidar com variabilidade de parâmetros não previsíveis e melhorar o desempenho ou

o yield. Mostramos que, sob restrições estritas de potência e variabilidade de processo,

nossa proposta melhora o desempenho, em média, em 3,4 vezes em comparação com

abordagens padrão de NTV e em 12% em comparação com chips em níveis convencio-

nais de tensão.

Palavras-chave: Sistemas heterogêneos. Confiabilidade. Tensão próxima ao limiar. Va-

riabilidade de processos.

LIST OF FIGURES

Figure 1.1 Processor trend data up until the year of 2021. ...13
Figure 1.2 Thesis outline. The contributions of this thesis are highlighted in red..........18

Figure 2.1 The NMOS transistor...22
Figure 2.2 Potential reduction in the energy required per operation for different

supply voltage levels, and the corresponding impact in the transistor delay.26
Figure 2.3 Frequency spread (right axis) as a function of Vdd/Vth variation.27
Figure 2.4 An Alpha (single-ISA) heterogeneous chip...28
Figure 2.5 Evolution of the BOOM processor organization. ..32

Figure 3.1 The EnergySmart NTV optimization methodology.......................................38

Figure 4.1 MWTF obtained for two application sets for all possible mappings.............45
Figure 4.2 Assignment graph of application mappings aiming to maximize the

overall MWTF. ...46
Figure 4.3 The predicted AVF estimation by the neural network compared to the

expected values estimated with fault injection...48
Figure 4.4 The predicted AVF estimation by the neural network compared to the

expected values estimated with fault injection...52
Figure 4.5 Configuration 1S-1D-2Q ...53
Figure 4.6 Configuration 1S-2D-1Q ...54
Figure 4.7 Configuration 2S-1D-1Q ...54
Figure 4.8 Average MWTF gains for all application sets for the three mapping cases. .55
Figure 4.9 Comparison of the three different heterogeneous configurations (using

the predicted mappings) against two homogeneous ones.56
Figure 4.10 Comparison (average values) against two homogeneous architectures

(4D and 4Q). ..56
Figure 4.11 MWTF deviation from oracle for different ANN configurations (lower

is better)..58

Figure 5.1 Architecture-level view of the chip..59
Figure 5.2 Assignment graph of application mappings aiming to maximize the

overall MIPS. ...61
Figure 5.3 MIPS distribution for all random workloads when mapped to the het-

erogeneous chip configurations..65
Figure 5.4 MIPS distribution for the two workloads with the lowest (lowest var)

and highest (highest var) degree of MIPS variation across all mappings to
heterogeneous chips. ..66

Figure 5.5 MIPS comparison for the different MPSoC composition strategies..............68
Figure 5.6 Area efficiency (MIPS/mm2) comparison for the different MPSoC

composition strategies..69

Figure 6.1 Power distribution of a heterogeneous chip configuration (4 small + 4
big cores). The samples were generated as explained in section 6.5.1..................70

Figure 6.2 System layers explored in this thesis. ..72
Figure 6.3 Abstract workflow of this thesis. ...73
Figure 6.4 Architecture-level view of the chip subject to process variations.74
Figure 6.5 Design time chip exploration workflow...77
Figure 6.6 The goals of frequency scaling. ...80

Figure 6.7 MIPS comparison for the different MPSoC composition strategies..............86
Figure 6.8 MIPS and power samples for optimized chips aiming a power limit of

400mW, with and without FS...88
Figure 6.9 Average best achievable MIPS for the variation aware (VA-SNAP) and

unaware (SNAP) designs, with and without frequency scaling.88
Figure 6.10 Best attainable MIPS for various yield requirements for the variation-

aware VA-SNAP case...89
Figure 6.11 MIPS performance of all evaluated methods, normalized to the Full

NTV (No FS) case..90
Figure 6.12 Normalized MIPS per each scenario ...91

Figure A.1 SmallBoom configuration file (Chisel/Scala code).....................................106
Figure A.2 Medium configuration file (Chisel/Scala code). ...107
Figure A.3 LargeBoom configuration file (Chisel/Scala code).....................................108
Figure A.4 Per-core attainable MIPS for each scenario explored in Chapter 6 (Tab.

6.2). ..109
Figure A.5 Scenario 1. ..110
Figure A.6 Scenario 2. ..110
Figure A.7 Scenario 3. ..110
Figure A.8 Scenario 4. ..111
Figure A.9 Scenario 5. ..111
Figure A.10 Class diagram of the source code. ..112

Figure B.1 Visão geral desta tese. As contribuições principais estão marcadas em
vermelho...114

Figure B.2 Ganhos médios de MWTF para todos os conjuntos de aplicações nos
três casos de mapeamento. ...115

Figure B.3 Visão de nível de arquitetura do chip..116
Figure B.4 O mapeamento de aplicações visa maximizar o MIPS total (milhões de

instruções por segundo). ..117
Figure B.5 Comparação de MIPS para as diferentes estratégias de composição do

MPSoC. ..117
Figure B.6 Camadas do sistema exploradas nesta tese. ..118
Figure B.7 Comparação de MIPS para as diferentes estratégias de composição de

MPSoC. ..119

LIST OF TABLES

Table 1.1 The optimization requirements tackled in this work with the associated
hampering factors, and the proposed (combination) of solutions tackling each
constraint...15

Table 2.1 Some examples of popular commercial heterogeneous MPSoCs from
three leading smartphone companies. ...29

Table 3.1 Previews works on addressing varying optimization goals.............................40

Table 4.1 Explored core configurations. ...44
Table 4.2 Area (mm2) and approximate normalized flip-flop raw SER (based on

the number of flip-flops) of the explored chips...51
Table 4.3 Percentage of application sets that maximize a given metric when prediction-

based mapping is applied to each evaluated chip configuration. Example:
62.8% of the application sets achieve the highest MWTF with configuration
1S-2D1-Q..58

Table 5.1 Explored core configurations. The power and frequency shown are under
nominal conditions..63

Table 5.2 Suite of edge-applicable tasks adopted in this work.64
Table 5.3 The three evaluated chip cases. Four NTV rocket cores (4R) are consid-

ered in Config 3. All other cores are at STV...65
Table 5.4 Mapping distribution characterization, for each configuration, for the two

workloads with the lowest and highest variation across mappings...........................67

Table 6.1 Explored processor configurations. The power and frequency shown are
under nominal conditions..84

Table 6.2 Application scenarios explored in this work. ..85
Table 6.3 Best average achievable MIPS for varying yield requirements (average

across all power budgets). Gains are the geometric mean of all gains, across all
budgets, provided by frequency scaling..87

Table 6.4 MIPS gains of VA-SNAP (+FS), per scenario, against all other chip de-
sign cases. ...91

LIST OF ABBREVIATIONS AND ACRONYMS

ANN Artificial Neural Network

AVF Architectural Vulnerability Factor

DMR Dual Modular Redundancy

DSE Design Space Exploration

DSP Digital Signal Processor

DVFS Dynamic Voltage and Frequency Scaling

ECC Error Correcting Code

GPU Graphics Processing Unit

ILP Instruction-Level Parallelism

ISA Instruction Set Architecture

MPSoC Multiprocessor System on a Chip

MWTF Mean Workload to Failure

NTC Near-Threshold Computing

NTV Near-Threshold Voltage

RMT Redundant Multi-Threading

RTL Register-Transfer Level

SDC Silent Data Corruption

SER Soft Error Rate

SEU Single-Event Upset

STC Super-Threshold Computing

STV Super-Threshold Voltage

TDP Thermal Design Power

TMR Triple Modular Redundancy

VLSI Very Large-Scale Integration

CONTENTS

1 INTRODUCTION...13
1.1 Challenges Addressed in this Thesis ...14
1.2 Contributions of this Thesis ...17
1.2.1 Contribution 1: Reliability-Oriented Mapping Solutions17
1.2.2 Contribution 2: Efficient use of NTV for Improved Performance and Energy

Efficiency ..19
1.2.3 Contribution 3: Addressing Process Variations ...19
1.3 Structure of this Document ..20
2 BACKGROUND..21
2.1 Sources of Power Consumption and Optimization Methods21
2.2 Radiation-Induced Soft Errors and Fault Tolerance Concepts23
2.3 Near-Threshold Voltage Computing ...25
2.3.1 Timing Failures ..28
2.4 State-of-the-Art Heterogeneous Architectures...28
2.5 The Chipyard Framework ...30
2.5.1 The BOOM and Rocket Cores...31
3 RELATED WORK ...34
3.1 Related Works on Addressing Soft Errors Reliability...34
3.1.1 Redundancy-based Fault Tolerance Approaches ...34
3.1.2 Mapping-based Fault Tolerance Approaches...35
3.2 Related Works on Process Variation Mitigation ..37
3.3 Contextualizing this Thesis with Respect to Previous Works40
4 APPLICATION MAPPING APPROACHES TO IMPROVE RELIABILITY

AND PERFORMANCE OF HETEROGENEOUS SYSTEMS....................42
4.1 Improving MWTF with Application Mapping ..42
4.1.1 Motivation and Background...44
4.2 Adaptive Mapping ..46
4.2.1 Problem Definition...46
4.3 Experimental Methodology..50
4.4 Results on Reliability-Oriented Mappings ...53
4.4.1 AVF Prediction...53
4.4.2 Dynamic Mapping Evaluation ...55
4.4.3 Comparing Heterogeneous versus Homogeneous Configurations56
4.4.4 Distribution of best configurations...57
4.4.5 Exploiting Different ANNs..58
5 A POWER-EFFICIENT AND PERFORMANCE-ORIENTED EXPLORATION

METHODOLOGY WITH NTV CHIPS ..59
5.1 Introduction...59
5.2 Chip Architecture Exploration Scope ...60
5.3 Application Mapping with Heterogeneous Systems ..60
5.4 Architectural Search and Optimization Goal ..61
5.5 Results on Performance-Oriented Mappings ...63
5.5.1 Experimental Methodology ...63
5.5.2 Results..65
5.5.2.1 Evaluating Application Mappings on Heterogeneous Cores65
5.5.2.2 Performance Evaluation of SNAP ..67
5.5.2.3 Area Efficiency Evaluation ...69

6 A VARIATION-AWARE METHODOLOGY FOR IMPROVED PROCES-
SOR DESIGNS FOR THE EDGE COMPUTING DOMAIN70

6.1 Motivational Analysis ...70
6.2 Variation-Aware Proposal ..71
6.3 Approach Overview ..73
6.3.1 Proposed Flow of Optimization ...73
6.3.2 Chip Architecture Exploration Scope ..73
6.3.3 Modeling and Addressing Parameter Variations..74
6.4 Variation-Aware Design- and Post-Design time Optimization............................77
6.4.1 Design-time and Variation-Aware Chip Customization...77
6.4.2 Post-Design and Variation-Aware Frequency Scaling ...80
6.4.3 Putting It All Together: Variation-Aware Exploration Algorithm82
6.5 The Proposal’s Evaluation ...83
6.5.1 Experimental Methodology ...83
6.5.2 Results..86
6.5.2.1 Variation-Aware VA-SNAP Approach and Frequency Scaling86
6.5.2.2 Case Study ..87
6.5.2.3 Variation-aware versus Variation-unaware Approaches89
6.5.2.4 MIPS for Minimum Yield Requirements..89
6.5.2.5 Overall Gains Evaluation ..90
6.5.2.6 Per-Scenario Results ...91
7 CONCLUSIONS ...92
7.1 Addressing Reliability ..92
7.2 Improving Performance and Energy Efficiency with NTV Edge Devices93
7.3 Addressing Process Variations with NTV Edge Devices93
7.4 Future Work ..94
7.5 List of Published Papers...95
7.5.1 Main Publications ..96
7.5.2 Publications as a Collaborator ...96
REFERENCES...97
APPENDIX A — IMPLEMENTATION DETAILS AND PER-SCENARIO EVAL-

UATION ...106
A.1 Detailed Configurations of the Explored Cores...106
A.2 Per-Scenario VA-SNAP Evaluation ..109
A.3 Class Diagram of the Architecture ...112
APPENDIX B — UMA METODOLOGIA VISANDO O APRIMORAMENTO

DE PROCESSADORES RESTRITOS À VARIAÇÃO DE PROCES-
SOS E APLICÁVEIS À COMPUTAÇÃO DE BORDA...............................113

B.1 Parte 1: Otimização de Confiabilidade ..115
B.2 Parte 2: Otimização de Desempenho e Eficiência Energética..........................116
B.3 Parte 3: Abordando Variabilidade de Processos...118

13

1 INTRODUCTION

The progressive improvements in technology scaling and the associated increased

transistor integration have resulted in the emergence of a myriad of heterogeneous chip

designs to accommodate the performance demands of a diverse domain of complex appli-

cations. Such integration trends are shown in Fig. 1.1, which characterizes the evolution

of microprocessors up until the year 2021 (data obtained from (RUPP, 2021)). Despite

the slowdown of Moore’s Law, there has been continuous and exponential integration of

transistors over the decades. On the other hand, no significant frequency improvements

have been achieved since around 2005, which resulted in roughly the stagnation of single-

threaded performance and, as a consequence, the emergence of the multicore paradigm

and the urge for more hardware specialization in the form of domain-specific architectures

(HENNESSY; PATTERSON, 2019).

Specially, such technological progress has enabled the emergence of heteroge-

neous multicores applicable to the edge computing domain (Shi et al., 2016; Wu et al.,

2019). In this computing environment, applications are executed by edge devices that

operate near the network’s edge. In general, edge devices can be any form of processing

engine between the end user and the cloud (e.g., a device operating near a data sensor

Figure 1.1 – Processor trend data up until the year of 2021.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of

Logical Cores

Frequency (MHz)

Single-Thread

Performance

(SpecINT x 10
3
)

Transistors

(thousands)

TDP (Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2021 by K. Rupp

Year

Source: (RUPP, 2021)

14

that provides the input data to the device). Executing applications (or parts of them) at

the edge is compelling for latency-critical operations since it allows for improved per-

formance and even energy efficiency since edge-based execution avoids offloading input

data to remote servers that usually rely on unpredictable network latency, mainly due to

uncertain server-side performance caused by CPU load variance and queuing (Wang et

al., 2020; LI; ZHOU; CHEN, 2018; KANG et al., 2017).

In addition to the hardware-side amelioration of commodity microprocessors, the

growing commercial interests of both hardware and software industries have resulted in

the proliferation of many newer and more performance-demanding applications. Usually,

applications tend to be considerably heterogeneous due to the high number of different

domains they span. For example, up to July 2023, Google Play alone has over 2.6 million

published Android applications spanning across several distinct categories such as enter-

tainment, education, business, online shopping, and many others (STATISTICS, 2023).

This further paves the way for the adoption of heterogeneous systems, where state-of-the-

art power/performance optimization strategies often harness from software heterogene-

ity by adopting hardware heterogeneity across different layers of the system (e.g., from

circuit- to system-level), in which the combination of both hardware and software het-

erogeneity can be explored to improve key metrics (e.g., performance, power, energy,

reliability, etc.) by leveraging application-to-core affinities and mapping applications to

the most suitable core.

However, despite the progressive improvements in computing systems, many edge-

side optimization challenges are still associated with transistor downscaling. Among oth-

ers, some important and challenging constraints are (1) radiation-induced soft errors, (2)

the chip-specific power envelope and the associated power wall issues, and (3) transistor-

level process variation. When not addressed, such constraints hinder many (functional

and non-functional) essential requirements of microprocessors, such as reliability, perfor-

mance, energy efficiency, and yield. This thesis, then, aims at optimizing such require-

ments of heterogeneous chips subject to the three constraints mentioned above.

1.1 Challenges Addressed in this Thesis

We illustrate the optimization requirements addressed in this thesis, their associ-

ated hampering factors, and the proposed solutions in Tab. 1.1. We justify addressing the

considered hampering factors in the domain of heterogeneous multicores as follows:

15

Table 1.1 – The optimization requirements tackled in this work with the associated hampering
factors, and the proposed (combination) of solutions tackling each constraint.

Requirement Hampering factors Proposed solutions

Reliability Single-event upsets
Reliability-oriented
application mapping

Energy efficiency
Power wall

Efficient use of NTV +
Frequency adaptation

Process variation
DSE with heterogeneous cores +

Frequency adaptation

Performance

Power wall
Efficient use of NTV +
Frequency adaptation

Process variation
DSE with heterogeneous cores +

Frequency adaptation

Domain-specific
power limits

DSE with heterogeneous cores +
Efficient use of NTV +
Application mapping +
Frequency adaptation

Yield Process variation
DSE with heterogeneous cores +

Frequency adaptation

Radiation-induced faults. The diminishing sizes of transistors and the associated

reduced voltage of contemporary microprocessors historically pose reliability challenges

that arise from radiation-induced faults - frequently in the form of Single-Event Upsets

(or SEUs) - that can cause malfunction in mission-critical applications (MITRA et al.,

2014; HENKEL et al., 2013). Additionally, while past reliability research has focused

mostly on single cores or homogeneous multicore systems, the limitations in Instruction-

Level Parallelism (ILP) have led to the adoption of heterogeneous multicore architectures,

such as the big.LITTLE and DynamIQ (ARM, 2021) architectures to meet the demands

for more task-level throughput. We make the case that reliability research on heteroge-

neous multicores is mostly an unexplored topic, and we provide an efficient and low-cost

reliability-oriented application mapping optimization methodology for this domain.

Power Wall. The current transistor scaling approaches do not provide simultane-

ous improvements in feature size and voltage (Vdd) because the threshold voltage has not

been scaled at the same pace as the transistor’s dimension to keep the leakage current un-

der control (Borkar et al., 2003; Horowitz et al., 2005; Bohr, 2007). Hence, Vdd does not

scale linearly across different technology generations as it has been kept roughly constant

for over one decade and, consequently, power density tends to increase for smaller tech-

16

nology nodes (Bohr, 2007). This trend, then, introduces the phenomenon known as the

end of Dennard’s scaling (Esmaeilzadeh et al., 2011), which claims that voltage should

scale linearly with transistors’ dimensions and, consequently, power density would stay

roughly constant over the generations (Dennard et al., 1974). This contrasts with the ac-

tual observed trend of increased power density. In essence, this power wall phenomenon

implies that frequency cannot be further improved reliably due to the stagnation of Vdd,

leading single-core performance to stagnate. One approach to mitigate the power wall

issues is the adoption of low voltage designs based on Near-Threshold Voltage (NTV)

(Dreslinski et al., 2010), which consists in setting Vdd to a point close to the threshold

voltage. While this comes at the cost of frequency degradation and exacerbated process

variations, NTV can improve energy efficiency and throughput under a power envelope

when used smartly. We adopt power-aware and efficient use of NTV, reliably at low fre-

quency, to mitigate power wall issues.

Domain-specific power limits. In addition to the power wall issues imposed by

circuit-level constraints, executing compute-demanding applications on edge devices is

challenging to achieve at low power limits. Usually, system-level power envelopes are

imposed by Thermal Design Power (TDP) constraints (e.g., due to the limited cooling

capabilities) or battery dependence, which demands high energy efficiency. Thus, more

aggressive solutions for multicore optimization may be necessary to accommodate such

restrictive requirements if high performance is needed for this domain. We propose an

efficient Design Space Exploration (DSE) methodology in both the microarchitectural

and voltage settings layer and propose a special NTV optimization method to improve

performance with minimal power slacks under a power limit. Although NTV degrades

frequency, our strategy reclaims performance by efficiently increasing the number of cores

under a power envelope.

Process variation. Unfortunately, NTV optimization comes at the cost of exac-

erbated process variations (Kaul et al., 2012; Karpuzcu et al., 2012) that must be tackled

before chip deployment. Process variations are raised by fabrication effects (e.g., due to

lithography imperfections), which lead to delay and static power deviations from the in-

tended design goals (KARPUZCU; KIM; TORRELLAS, 2013; Kaul et al., 2012; PINCK-

NEY et al., 2012). If no countermeasures are taken, such unwanted parameter fluctuations

can hinder performance (e.g., if variation affects the critical path, effectively hampering

achievable frequency), power, and energy efficiency (PINCKNEY et al., 2012). Specially,

variation-induced power overheads beyond the required power limits can degrade yield,

17

as a fraction of the assembled chips will not comply with the application requirements,

possibly having to be discarded due to excessive leakage (Borkar et al., 2003). We aug-

ment our DSE methodology with process variation models and propose a combination

of design-time and post-design-time approaches to provide chip designs to mitigate the

discussed variation issues.

1.2 Contributions of this Thesis

An outline of this thesis’s workflow and contributions is shown in Fig. 1.2. The

thesis is divided into three phases addressing different concerns in the scope of hetero-

geneous multicores for the edge domain. First, in Chapter 4, we propose a transparent

mapping solution aiming at improving reliability in the context of heterogeneous multi-

cores. Secondly, in Chapter 5, we propose a design methodology to improve performance

and energy efficiency, under strict power limits, of heterogeneous multicores applicable

to low-power edge scenarios. Finally, in Chapter 6, we augment our chip design method-

ology to address process variations and propose a two-step approach (design- and post-

design time) that provides customized and more efficient chips that improve performance,

energy efficiency, and yield under a power envelope and process variation contexts. The

contributions are described in the following sections.

1.2.1 Contribution 1: Reliability-Oriented Mapping Solutions

In this part, we leverage core-level heterogeneity from microarchitectural resources

to perform proper workload mappings to the most suitable core type to maximize reliabil-

ity. This is shown in Fig. 1.2a (left block). Our proposal consists in adopting a learning-

based and automatic solution for efficient mappings to maximize the reliability of the

system in terms of Mean Workload to Failure (MWTF) on heterogeneous multicores.

Here, we perform runtime monitoring of application-dependent core pipeline utilization

with hardware counters and train an Artificial Neural Network (ANN) to estimate the

core’s Architectural Vulnerability Factors (or AVF) from the hardware counters’ data. We

then perform near-to-optimal AVF-oriented application mappings to heterogeneous cores

aiming at maximizing the chip-level system’s MWTF;

18

Figure 1.2 – Thesis outline. The contributions of this thesis are highlighted in red.

(a) In the first part we explore mapping policies aiming at maximizing reliability and performance.

Performance (IPS) - Chapter 5

Mapping policies

Reliability (MWTF) - Chapter 4

Hardware
counters

NTV chip
exploration
algorithm

Reliability-aware
mapping

Custom
NTV design

Power-aware design customization with NTV +
Performance-aware mapping

Mapping
for IPS

Power
budget

Heterogeneous
applications

ANN-based
AVF

Mapping
for MWTF

NTV

STV

(b) The second part aims to compose energy efficient and variation-aware chip designs with NTV.

Variation-aware
chip exploration

algorithm

Variation-aware
frequency

scaling

Variation modeling

Custom NTV
designs

(C)

Variation-aware chip customization (Chapter 6)

Variation-aware
designs

(D - proposal)

Standard
Designs

(A)

Mapping for IPS
Power
budget

Standard NTV
designs

(B)

Variation-aware design-time architectural exploration + runtime frequency scaling

Optimized
chip

Post-design timeDesign time

19

1.2.2 Contribution 2: Efficient use of NTV for Improved Performance and Energy

Efficiency

In the second part, in Fig. 1.2a (right block), we propose an efficient DSE method-

ology for composing micro-architecturally heterogeneous multicores under a domain-

specific power envelope. We additionally propose a method for selective NTV, where

only an efficiently selected set of the cores that compose the chip operate at NTV. This

results in a chip comprising two voltage islands, accommodating both NTV and conven-

tional core designs in the same die, with improved energy efficiency and performance

under a power limit. At runtime, we combine the chip customization method with run-

time application mappings to increase task-level instruction throughput. This renders

chips with maximized Instructions Per Second (IPS) and minimal power slacks under the

power envelope.

1.2.3 Contribution 3: Addressing Process Variations

In this part of the thesis, we augment our DSE methodology for partial NTV and

propose a variation-aware chip exploration methodology to compose power-constrained

chips subject to process variation scenarios. This part is shown in Fig. 1.2b. First, we pro-

pose a sampling-based and variation-aware strategy during the design stage to select opti-

mized chip configurations with variation-aware and selective NTV. Secondly, we propose

a frequency adaptation mechanism in the post-design time to further cope with variations.

Combining both design- and post-design steps provides IPS-optimized and power-aware

configurations while maintaining minimum yield requirements.

Our procedure relies on exploring heterogeneous multicore designs with varying

microarchitecture cores. For example, a combination of performance-oriented cores plus

low-power cores results in improved chip-level energy efficiency. Four abstract hetero-

geneous chip design cases are shown in Fig. 1.2b (the A-D designs, bottom part). The

designs are (A) standard designs that rely on a single (conventional) and safe voltage

setting suitable for frequencies at the Giga-Hertz level; (B) conventional NTV designs

that allocate a single NTV voltage level to all cores in the chip, at low frequencies at the

Mega-Hertz level; (C) custom architectures that efficiently combines both STV and NTV

cores in the same chip; and (D), our proposed variation-aware chip composed of STV and

NTV cores.

20

This contribution consists of providing customized chip configurations following

the D paradigm, as it is suitable to improve performance and energy efficiency at low-

power scenarios while maintaining minimum yield requirements under process variations

constraints.

1.3 Structure of this Document

This work is structured as follows:

• Chapter 2: Provides background information on microprocessor reliability, Near-

Threshold Computing, and its associated process variation challenges. We also

briefly discuss the emergence and importance of heterogeneous systems and the

toolchain adopted to develop this work;

• Chapter 3: Highlights previous works on microprocessor reliability improvement

proposals, as well as previous approaches to mitigate process variations in the con-

text of NTV and conventional designs;

• Chapter 4: Details our proposal for improved reliability on heterogeneous systems;

• Chapter 5: Details our NTV proposal for improved performance and energy effi-

ciency of low-power heterogeneous systems applicable to the edge;

• Chapter 6: Details our approach for variation-aware and low-power chip designs

applicable to the edge;

• Chapter 7: Highlights the main conclusions of the chapters 4, 5, and 6;

• Appendix A: Provides details on the explored core configurations and the evaluated

application scenarios;

• Appendix B: Summarizes this work in Portuguese (required).

21

2 BACKGROUND

This chapter provides background information on key concepts such as basics on

transistor behavior and sources of power dissipation (Sec. 2.1), NTV and the associated

process variations and reliability issues (Sec. 2.3), current state-of-the-art heterogeneous

systems (Sec. 2.4) as well as a brief discussion on an open source framework (Chipyard)

we adopted to explore heterogeneous systems design (Sec. 2.5).

2.1 Sources of Power Consumption and Optimization Methods

The Complementary Metal Oxide Semiconductor (CMOS) technology is the build-

ing block for the implementation of digital logic. The CMOS logic relies on a specific

arrangement of Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) to con-

struct logic gates. Such transistors are considered the most widely manufactured device in

history (HANDY, 2014) mainly due to their low power consumption and scalability prop-

erties. As an example, Fig. 2.1 depicts the high-level view of an NMOS transistor, which

consists of three main terminals: source (S), gate (G), and drain (D). Different modes of

operation are achieved depending on the relationship between the voltages applied to the

terminals and the threshold voltage (Vth). Three regions of operation are possible:

• Sub-threshold region: when Vgs < Vth and hence there is no channel formed be-

tween source and drain. Even though the transistor is considered off in this re-

gion, there is drain-to-source leakage current (Ids) flowing according to Eq. 2.1

(RABAEY, 1995).

• Linear region: when Vgs > Vth and Vds < Vgs − Vth. A channel is formed between

the source and drain (depletion region). In this region, the Ids current depends on

the drain voltage, and the transistor behaves like a resistor that can be controlled by

Vgs.

• Saturation region: when Vgs > Vth and Vds > Vgs − Vth. A channel is formed

between the source and drain (depletion region), but the Ids current saturates and

does not depend on the drain voltage.

Notice in Eq. 2.1 that in the sub-threshold region, the leakage current depends

exponentially on Vds, Vgs, Vth and the thermal voltage (VT). The leakage current is also

sensitive to transistors’ parameters, such as the gate length (L), width (W), and tempera-

22

Figure 2.1 – The NMOS transistor

p-substrate

Source (S)
Gate (G)

n+ n+

Body (B)

← Channel length (L) →

 Drain (D)

Oxide (insulator)
Depletion region

ture.

Ids = I0
W

L
e

Vgs−Vth
nVT (1− e

−Vds
VT), VT ∝ Temp (2.1)

The gate delay can be modeled in high-level as shown in Eq. 2.2 (RABAEY,

1995), which is the time taken for a signal to propagate from the gate input to its output.

For a CMOS inverter, for example, the delay is defined as the time the output takes to

reach Vdd/2 (low to high - LH) after the input reaches Vdd/2 (high to low - HL).

tp,LH ≈ kC
Vdd

IPMOS
ds

, tp,HL ≈ kC
Vdd

INMOS
ds

(2.2)

In the equation, k is a fitting parameter, and C is the gate output capacitance. The

gate delay determines the maximum frequency (f) for the gate.

Logic gates dissipate static and dynamic power. Dynamic power dissipation is

caused by input transitions that lead the gate outputs to toggle, and is calculated as

Pdyn = CfαV 2
dd, where α is the application-dependent switching activity (i.e., probability

of state transition). Static power happens due to leakage current, which can be expressed

as Pleak = IleakVdd, where I leak is determined by Eq. 2.1. The total power consumption

for generic gates can then be expressed as P = Pdyn +Pleak, which influences the energy

and energy efficiency of the circuit for a given performance target.

Optimizing power consumption is essential to increase both energy and thermal

efficiency, which is relevant for cloud servers, desktop computers, and edge devices.

However, keeping low power consumption for edge devices is crucial due to 1) battery

dependence (needs energy efficiency) and 2) restricted temperature (needs thermal ef-

ficiency), which raises cooling challenges for portable devices, for instance. Over the

years, many low-power and/or energy efficiency optimization strategies have been pro-

posed across different layers, such as clock or power gating (PEDRAM, 1996), Dynamic

23

Voltage and Frequency Scaling (DVFS) (BURD et al., 2000; SEMERARO et al., 2002),

approximate computing at various distinct layers (MITTAL, 2016), aggressive voltage un-

derscaling with NTV (Kaul et al., 2012), and system-level strategies such as the adoption

of application-specific accelerators and heterogeneous cores such as the ARM’s DynamIQ

(ARM, 2021).

In this work, we explore optimization strategies by adopting NTV applied to het-

erogeneous systems. We justify the adoption of NTV due to its increased energy efficiency

improvements and also as an aggressive power capping method. When compared to con-

ventional STV designs, NTV provides improved energy efficiency as the most energy-

efficient voltage point is known to be close to the transistor’s threshold voltage (Dres-

linski et al., 2010; Markovic et al., 2010); thus, NTV provides more aggressive power

reduction and increased energy efficiency when compared to standard DVFS approaches

at conventional voltage levels, e.g., (Dighe et al., 2011; RAGHUNATHAN et al., 2013;

Teodorescu; Torrellas, 2008), mostly because NTV is suited to reduce both dynamic and

static power dissipation.

Moreover, given the widespread and firm adoption of heterogeneous systems in

commercial devices, we also consider NTV in conjunction with proper application map-

ping to better exploit the heterogeneity of cores and applications so that better application-

to-core affinities are exploited to increase performance further. The next section briefly

introduces NTV concepts and the associated design challenges.

2.2 Radiation-Induced Soft Errors and Fault Tolerance Concepts

Radiation-induced soft errors, mostly in the form of Single-Event Upset (SEU),

may occur when energized particles (e.g., from cosmic rays or alpha particles from de-

caying materials) hit a transistor and flips the value of the stored bit (flip-flops or SRAM

cells) (MITRA et al., 2014; HENKEL et al., 2013). The soft error rate is strongly de-

pendent on the transistor’s critical charge (the minimum charge required to invert the bit

state), which in turn depends on Vdd (JAHINUZZAMAN; SHARIFKHANI; SACHDEV,

2009).

To measure the susceptibility of application failures due to soft errors, the authors

in (MUKHERJEE et al., 2003) have introduced the concept of Architectural Vulnerability

Factor (AVF) as the conditional probability of system failure given that a bit-flip occurred

in the microprocessor. The AVF depends on the fraction of bits in the processor that are

24

required for the correct execution of the application, called Architectural Correct Execu-

tion bits (or ACE bits). The fraction of ACE bits is directly related to the degree of useful

occupancy of each internal structure in the processor’s pipeline, which is determined by

complex correlations between several microarchitectural factors and applications’ charac-

teristics that can change the residence times of useful bits in the structures (MUKHERJEE

et al., 2003; WALCOTT; HUMPHREYS; GURUMURTHI, 2007). For instance, a micro-

processor with good branch prediction accuracy and too much memory stalls due to cache

misses will tend to fill up the processor’s internal structures with useful data, increasing

the occupancy (or degree of utilization) of the structures and consequently making it more

vulnerable to bit-flips.

Standard resiliency analysis to investigate fault tolerance levels requires measur-

ing the processor’s AVF, which is determined by estimating the fraction of ACE bits in the

processor’s pipeline for distinct applications. A common approach to identify the fraction

of ACE bits in processors is termed ACE analysis, which consists in monitoring the appli-

cation’s instruction trace and gathering instruction-level metrics (such as ISA register uti-

lization) with high-level simulators. This method, however, is well-known for providing

overly pessimistic vulnerability factors (WANG; MAHESRI; PATEL, 2007; GEORGE

et al., 2010). In order to avoid the limitations of ACE analysis or the adoption of high-

level simulations that do not provide hardware details, we measure the AVF through fault

injections at RTL, gathering more realistic (and less conservative) AVF estimations.

The raw Soft Error Rate (SER) of a system is the rate of raw/total soft errors

experienced by the chip (e.g., how many bits are flipped per unit of time in the circuit), and

it is commonly expressed as the raw FIT rate (Failures in Time) - the number of raw errors

experienced in 1 billion hours of operation. This error rate depends on manufacturing

parameters (e.g., transistor sensitivity due to the critical charge and voltage of operation),

environmental conditions (e.g., radiation due to proximity to alpha-decaying materials or

space applications exposed to high levels of cosmic rays), and silicon area exposed to soft

errors. Therefore, SER is proportional to the core’s area and the circuit technology. Notice

that the raw SER does not determine the frequency of errors that lead to actual failures, as

most of such errors are masked at different layers such as circuit-level, microarchitectural-

level, or even application-level masking factors. The effective SER is the rate of errors

that actually lead to system failures, which is measured by derating the raw SER by the

AVF/derating factor (SEReffective = SERraw × AV F).

While the AVF is a satisfactory metric for estimating the probability of failures in

25

the presence of bit-flips in the processor, more than such a metric is needed to evaluate

the fault tolerance of heterogeneous systems in which application mapping strategies in-

fluence both AVF and performance. For example, larger cores may execute the workload

faster, but they also have higher SER (due to larger area) and application-dependent AVF.

The AVF metric does not capture all information on the effects of resilience across dif-

ferent application mappings because mappings affect both AVF and performance. Hence,

only considering the AVF as a vulnerability metric in the context of heterogeneous cores

with varying performance will likely be misleading in this scenario. To account for that,

the resilience metric we consider in this work is the Mean Workload to Failure (MWTF)

(REIS et al., 2005), defined in Eq. 2.3, because it accounts for both the AVF and work-

load execution time, which are affected by application mapping. Higher MWTF means

more computation is completed before the next system failure, which can be achieved by

adopting proper mapping solutions to heterogeneous cores.

MWTF =
amount of workloads computed

number of errors encountered

= (SERraw × AV F × execution time)−1
(2.3)

2.3 Near-Threshold Voltage Computing

Near-Threshold Voltage (NTV), in contrast to the conventional Super-Threshold

Voltage (STV), consists in operating the circuit at a voltage very close to the threshold

voltage level (Vth) to achieve aggressive power reduction at the cost of frequency degra-

dation (Dreslinski et al., 2010; Chang et al., 2010; Markovic et al., 2010). NTV provides

reduced dynamic power dissipation due to the quadratic dependence on Vdd and reduced

static power dissipation (linearly or exponentially, depending on the transistors’ region of

operation).

Ideally, the NTV power reduction is aggressive enough to cover the frequency

degradation, which is usually achieved by increasing the chip-level parallelism under a

power envelope. For instance, by increasing the number of cores, or processing elements

in general, NTV designs provide improved energy efficiency, as shown in Fig. 2.2. How-

ever, the energy efficiency gains stop at some point near the sub-threshold region because

at this point the drain-to-source current depends exponentially on Vdd, which brings about

orders of magnitude of frequency degradation due to the increased transistor delay.

26

Figure 2.2 – Potential reduction in the energy required per operation for different supply voltage
levels, and the corresponding impact in the transistor delay.

Source: (Dreslinski et al., 2010)

Unfortunately, a secondary and unwanted effect of NTV is the increased suscepti-

bility to parametric variations (i.e., deviations from the nominal values) that arises due to

Process Variations (PV). PV is already a known issue at STV (Bowman; Duvall; Meindl,

2002; Fu; Li; Fortes, 2009; Dighe et al., 2011). At NTV, however, PV effects become

more pronounced, up to 20 times higher when compared to conventional STV regime

(Markovic et al., 2010).

Process variations (die-to-die and within-die variations) manifest mostly through

deviations in the transistors’ Vth and effective channel length (Leff), which are mostly

attributed to design-time effects such as systematic effects (due to lithographic imperfec-

tions) and random effects (due to variable doping concentrations). At runtime, PV can

also be affected by aging, voltage, and temperature (Bowman; Duvall; Meindl, 2002; Fu;

Li; Fortes, 2009; Karpuzcu et al., 2012; Karpuzcu et al., 2013). Consequently, parametric

variations affect both transistor’s delay and leakage current, possibly shifting the optimal

voltage point, the voltage point that yields the best energy efficiency, to a value higher

than the ideal/PV-free circuit (PINCKNEY et al., 2012).

For a circuit operating at NTV, a small variation in the supply voltage results in a

large change in the transistor delay, hence influencing the frequency of operation. Fig. 2.3

depicts the relative frequency of operation and frequency variation (measured by dividing

27

Figure 2.3 – Frequency spread (right axis) as a function of Vdd/Vth variation.

Source: (Kaul et al., 2012)

the standard deviation of frequency by the average frequency of sampled circuits in a die,

or σ/µ) as a function of supply voltage. Near the NTV region, even a small variation in

supply voltage or Vth may result in up to 50%

To further elucidate why variation is accentuated at NTV, an accurate model for

current and delay near the threshold region is necessary. For that, current and delay for-

mulas for the NTV region are derived according to the EKV model (ENZ; KRUMME-

NACHER; VITTOZ, 1995; Markovic et al., 2010), according to the Eq. 2.4 and 2.5,

respectively, which cover all regions of operation.

I =
µ

Leff

× n× vt2 × ln2(e
Vgs−Vth
2×n×vt + 1) (2.4)

delaygate ∝
Vdd × Leff

µ× n× vt2 × ln2(e
Vgs−Vth
2×n×vt + 1)

(2.5)

In the equations above, µ represents the carrier mobility, vt is the thermal voltage,

and n is a process-dependent parameter that relies on sub-threshold characteristics.

The equations show the strong dependence of the gate delay on both Vth and Leff .

For a multicore setting with variations in such parameters, for example, if a given design

decision relies on the slowest core to determine the frequency of operation, which is a

conventional design strategy while not addressing the variation issues, then the core-to-

core delay variations translate into different Vopt points for different cores. Therefore,

corner-based optimizations, in which the slowest core determines the frequency, yield

a sub-optimal energy efficiency solution (Zhai et al., 2007; Karpuzcu et al., 2013) as

different cores have different optimal voltage settings. We elucidate other approaches to

28

address process variation in Sec. 3.2.

2.3.1 Timing Failures

Timing failures occur in both combinational and sequential circuits. If a combi-

national path is too slow to process the inputs for the designed clock frequency (due to

unaddressed variation issues), timing failures may arise in the output of the circuit due

to timing violations (i.e., the frequency of operation is too high for the combinational

(variation-afflicted) path) (Ernst et al., 2004). Secondly, sequential circuits with con-

ventional 6T SRAMs cells, for example, variations can cause both read, write and hold

failures due to the tight timing margins of operation because the access transistors of such

cells impose conflicting timing requirements (for read and write operations) as such cells

are designed to be small to achieve high bit density (Karpuzcu et al., 2012).

2.4 State-of-the-Art Heterogeneous Architectures

The need to improve compute performance under restricted power budgets has

raised many architectural challenges, and the emergence of heterogeneous systems is one

leading way to address such issues. Single-ISA heterogeneous (or asymmetric) systems

are any form of multi-core MPSoC composed of cores with varying microarchitectural

properties, but all implementing a unique Instruction Set Architecture (ISA) specifica-

tion. Fig. 2.4 depicts a high-level view of a multi-core processor comprising different

cores implementing the Alpha ISA. Such architectures were first proposed aiming at re-

duced power consumption (KUMAR et al., 2003), and later to improve multi-threaded or

Figure 2.4 – An Alpha (single-ISA) heterogeneous chip.

Source: (KUMAR et al., 2005)

29

Table 2.1 – Some examples of popular commercial heterogeneous MPSoCs from three leading
smartphone companies.

Apple
A14 Bionic

Qualcomm
Snapdragon 865

Samsung
Exynos 990

Cores

2x Firestorm
(Big cores)
4x Icestorm
(Little cores)

1x Cortex A77 @ 3.1GHz
3x Cortex-A77 @ 2.4GHz
4x Cortex-A55 @ 1.8GHz

2x Mongoose
2x Cortex-A76
4x Cortex-A55

GPU 4 core (Apple in-house design) Adreno 650
Mali-G77
11 cores

AI DSP 16-core Neural Engine
Hexagon 698 DSP +
Tensor Accelerator

Dual-core NPU +
DSP

Process 5nm 7nm EUV 7nm EUV

Source: (Triggs, Robert, 2021)

multi-program workload performance (KUMAR et al., 2004; KUMAR et al., 2005). The

critical insight of such architectures is that application heterogeneity can be leveraged by

providing the opportunity to effectively match application characteristics to the best core

for a given requirement (e.g., performance or power). An example is mapping high-ILP

applications to larger cores (with higher achievable IPC), and low-ILP applications to

smaller cores that provide better energy efficiency.

Such architectures’ effectiveness has led companies to move from the traditional

homogeneous multicore settings to heterogeneous multicores. Specifically, the most no-

table technology companies like Samsung, Qualcomm, and Apple rely on heterogeneous

MPSoCs to better accommodate application performance while keeping acceptable power

consumption. For example, Samsung and Qualcomm rely on the ARM’s DynamIQ tech-

nology (ARM, 2021) for the Exynos and Snapdragon MPSoCs series, respectively, which

represent most MPSoCs used in mobile phones. Tab. 2.1 showcases three examples

of commercial chipsets from Apple, Qualcomm, and Samsung. Most modern chips are

highly heterogeneous systems composed of a cluster of different core configurations,

Graphics Processing Unit (GPU), Digital Signal Processor (DSP), and a dedicated AI

engine for emerging ML applications (most commonly for neural networks).

The ARM’s big.LITTLE architecture was the first implemented in a commercial

mobile MPSoC, which later evolved to the more flexible and efficient DynamIQ technol-

ogy (ARM, 2021). Among others, DynamIQ incorporates key architectural innovations

such as:

• Flexible configurations of up to eight cores. Standard configurations include up

30

to three different cores (big, medium, and small cores) to meet both performance,

energy, and thermal efficiency goals of diverging applications;

• All cores reside in a single cluster with a coherent and shared memory. This facili-

tates task migration between cores through the shared memory and reduces memory

traffic of shared data between different cores, increasing the performance and en-

ergy efficiency;

• Independent voltage and frequency domains for each core to tune power/performance,

allowing for fine-grained DVFS to scale performance and power up or down, ac-

cording to the tasks’ needs;

• Enhanced power features that reduce the latency to transition between power states

(i.e., ON, OFF, and SLEEP states supported by the Cortex-A series);

• An Energy Aware Scheduler (EAS) that provides fast and efficient task migration

to facilitate the software-to-core mapping, providing more intelligent power and

performance management.

Despite the performance and energy efficiency improvements brought by hetero-

geneous systems, innovations in such architectural paradigms come with design chal-

lenges due to the extra chip complexity introduced by both general-purpose cores and

tailored architectures for domain-specific applications. Some of the main challenges as-

sociated with the emergence of heterogeneous designs are highlighted in the next section.

2.5 The Chipyard Framework

Continuous hardware improvement requires advanced and agile tools to design,

compile, simulate, verify, and validate new architectures. Specially, the high degree of

current hardware specialization and integration makes it difficult to keep up with the large

number of different architectural innovations because such projects demand significant

effort, time, and cost. To contextualize this claim, consider that past hardware design

approaches focused on simpler general-purpose chips for generic applications, which in

turn allowed for the Non-Recurring Engineering (NRE) costs (i.e., the one-time research

and engineering cost) to be amortized by selling a vast number of the same chip. Nowa-

days, however, application-specific demands require more hardware specialization and

heterogeneity that leads to increased NRE costs per chip due to the higher diversity of

chip designs, making it more challenging to amortize the costs.

31

Therefore, hardware designs to sustain the performance demands of varying ap-

plications require constant microarchitectural innovations supported by advanced Very

Large-Scale Integration (VLSI) toolchains to generate and validate new architectures.

Specially, agile hardware design has been gaining more attention over the last years to

alleviate the design efforts required for newer architectures.

In order to alleviate the complex VLSI design efforts and costs, the work of (Amid

et al., 2020) proposes the Chipyard framework, which is a generator-based agile de-

sign process for hardware that facilitates the VLSI flow from the high-level hardware

description to the final low-level circuit synthesis. Chipyard is a generator-based infras-

tructure that provides an integrated SoC with reusable hardware design (i.e., decreasing

the NRE costs). It provides open source, parameterizable and modular Register-Transfer

Level (RTL) designs of the Rocket Chip SoC generator (ASANOVIć et al., 2016). In

essence, Rocket Chip is a collection of modular hardware designs described in the Chisel

hardware construction language, which is a high-level and modular Domain-Specific

Language (DSL) for productive/software-like hardware implementation (Bachrach et al.,

2012). Among others, the Rocket Chip SoC generator provides reusable libraries that

integrate cores, caches (including coherence managers), peripherals, and accelerators that

can be tuned/parameterized and composed together to explore customized computing sys-

tems. As of the year 2023, Chipyard provides the following designs:

• the Berkeley Out-of-Order Machine (BOOM) core: An out-of-order (dynamically

dispatched) superscalar processor;

• the Rocket core: A 5-stage, single-issue in-order core (ASANOVIć et al., 2016);

• Cache memories: Split instruction and data first-level caches and a second-level

unified cache.

• Hardware accelerators: a vector architecture (Lee et al., 2014), a SHA3 accelerator

and the Gemmini systolic array (GENC et al., 2019).

2.5.1 The BOOM and Rocket Cores

This work experiments with the Rocket and BOOM cores provided by the Chip-

yard framework. Rocket and BOOM are open-source parameterizable cores developed

in the Chisel Hardware Construction Language (or HCL). Both cores implement the

RV64GC variation of the RISC-V ISA. The Rocket core is a simple 5-stage in-order

32

processor implementing the RV64GC variation of the RISC-V ISA. The Berkeley Out-of-

Order Machine (BOOM) is a superscalar processor relying on several microarchitectural

techniques to improve performance, such as out-of-order and speculative execution with

advanced branch prediction.

BOOM is continuously a work in progress and has been through several microar-

chitectural improvements during the development of this thesis. Across its development,

three branches of this processor exist: BOOMv1 (CELIO; PATTERSON; ASANOVIć,

2015), BOOMv2 (CELIO et al., 2017) and BOOMv3 (ZHAO et al., 2020). The evolution

of BOOM across all its branches is shown in Fig. 2.5.

Although BOOMv1 was functional at RTL simulation, it was not physically im-

plementable due to critical path issues as it had few pipeline stages. This issue led to

the transition from BOOMv1 to BOOMv2. BOOMv2 has split and increased number

of pipeline stages as well as separate instruction queues for integer, floating point, and

memory access instructions. Such improvements fixed the critical path issues and made

BOOMv2 physically synthesizable (the reference implementation can be found in (CE-

LIO et al., 2019)).

BOOMv3 improved upon BOOMv2 by introducing support for compressed RISC-

V instructions (RVC) and many improvements in the branch prediction and instruction

fetch capabilities. For instance, the simpler pattern-based global history predictor of

BOOMv2 was replaced by the more complex tagged geometric (TAGE) predictor, sup-

Figure 2.5 – Evolution of the BOOM processor organization.

Source: (ZHAO et al., 2020)

33

porting parallel prediction across multiple history lengths. BOOMv3 also introduced

support for the Rocket Custom Coprocessor (RoCC) interface, an extension to provide

support for core communication with custom hardware accelerators (some examples are

mentioned in Sec. 2.5).

34

3 RELATED WORK

The following sections overview related works proposing optimization strategies

for energy efficiency, reliability, and process variation. This chapter is divided into three

sections discussing related works that are orthogonal yet complementary to this thesis.

Section 3.1 discusses approaches aiming at increasing reliability. Section 3.2 discusses

approaches to mitigate process variation in the context of both conventional and NTV

designs. Lastly, section 3.3 contextualizes our work with respect to previous proposals.

3.1 Related Works on Addressing Soft Errors Reliability

This section highlights previous approaches to radiation-induced fault tolerance

mechanisms. The section is divided into replication-based and mapping-based method-

ologies.

3.1.1 Redundancy-based Fault Tolerance Approaches

Microprocessor fault tolerance techniques can be roughly classified into three cat-

egories: (1) software-implemented methods, (2) hardware-implemented techniques, and

(3) hybrid, which combine both aspects. Software-implemented techniques, such as (OH;

SHIRVANI; MCCLUSKEY, 2002; CARDOSO et al., 2019), rely on compile-time in-

struction replication in the program code. The advantage of resilience-aware software

implementations is their flexibility by not requiring hardware modifications.

Hybrid techniques combine aspects from software- and hardware-implemented

techniques. Usually, data-flow effects are mitigated with the former, while the latter pro-

vides more robust control flow fault tolerance. Examples of such approaches are (AZAM-

BUJA et al., 2013; LINDOSO et al., 2017; MARTíNEZ-ÁLVAREZ et al., 2016).

Hardware-implemented techniques may adopt error correction codes (ECC), par-

ity checking (CHENG et al., 2016b), or module replication, most often dual (DMR) or

triple modular redundancy (TMR) at different granularities (SARTOR et al., 2017; VAD-

LAMANI et al., 2010; Salehi et al., 2015; Kriebel et al., 2014). Such techniques can

be tailored and selectively applied to specific processors at the cost of extra area and, in

some cases, performance, leading to increased energy consumption (TONETTO et al.,

35

2019). DMR has also been adopted in a dynamic fashion (VADLAMANI et al., 2010),

where the DMRs of particular structures are enabled/disabled at runtime depending on

the current vulnerability of the structure, which is influenced by application behavior that

varies across different phases of execution. Lastly, the ReStore architecture (Wang; Patel,

2005) adopts a symptom-based error detection strategy, where exceptions, mispeculated

instructions, and cache misses are used as hints for fault detection. Error correction is

achieved with rollback recovery to a previous checkpoint.

Software-implemented approaches based on instruction replication have been pro-

posed specifically for superscalar processors (AUSTIN, 1999; SMOLENS et al., 2004;

VADLAMANI et al., 2010; Wang; Patel, 2005; CHENG et al., 2016a). The Dynamic

Implementation Verification Architecture (DIVA) (AUSTIN, 1999) implementation in-

troduces a checker after the out-of-order core to ensure proper computation. The SHared

REsource Checker (SHREC) (SMOLENS et al., 2004) reduces the hardware overhead by

sharing functional units for computation and instruction checking.

Our approach towards fault tolerance is orthogonal, yet complementary, to the

ones cited here. While most works on instruction and hardware replication approaches

are more suitable for safety-critical applications, we do not explore such high-overhead

design approaches. Instead, we propose a low-overhead strategy to improve the relia-

bility of non-safety-critical applications by exploring hardware resources that are already

present in most heterogeneous chips, i.e., provided that heterogeneous cores are available,

we take advantage of task-to-core affinities in favor of improved fault tolerance.

3.1.2 Mapping-based Fault Tolerance Approaches

Application mapping is a well-known problem in the many/multicore processors

optimization literature. Several approaches have been proposed to address this problem

subject to different constraints (e.g., to optimize latency, performance, energy, or fault

tolerance).

Considering the works that focus on reliability, the authors in (DUQUE; DIAZ;

YANG, 2015) propose a fault-tolerant approach to application task scheduling/mapping

that considers a reliability model capable of capturing the runtime system fault behav-

ior and their correlation in time, allocating critical and vulnerable tasks to reliable cores.

Aiming to minimize the number of faults occurring in the system and maximize applica-

tion performance, the work of (ROZO et al., 2018) proposes an adaptive reliability-aware

36

task scheduling that considers static and dynamic analysis. While the former uses a ge-

netic algorithm, the dynamic approach considers possible faults and their correlation with

the changes in task mapping. Another genetic algorithm was proposed by (DAS et al.,

2014) in the multi-objective perspective. The proposed algorithm aims to mitigate the

core’s aging and minimize the soft-error susceptibility. In that work, task mapping and

DVFS are exploited to improve the system reliability, meeting specific energy budget

constraints.

The work of (NAITHANI et al., 2017) proposes a dynamic mapping/scheduling

algorithm to improve the system reliability through a proposed System Soft Error Rate

(SSER) fault tolerance metric. The work considers heterogeneous systems composed

of small and large cores. The proposed fault tolerance approach adopts specific hard-

ware counters able to monitor the application reliability features, and proper application

mappings are performed accordingly, at runtime, to the most suitable cores aiming to

maximize the system reliability.

The authors in (Kriebel et al., 2014) assess the soft error reliability in single-ISA

homogeneous processors in the Dark Silicon context by proposing an Adaptive Soft Error

Resilience (ASER) approach. ASER works in both design time and runtime. At design

time, ASER explores heterogeneous core designs with respect to reliability mechanisms

(but homogeneous with respect to performance), such as adopting hardware redundancy

in the register files, caches, or pipeline structures. The goal is to maximize the system’s

reliability while not violating Thermal Design Power (TDP) constraints. At runtime,

considering different application vulnerabilities and the disposal of cores with custom

reliability mechanisms from hardware customization, ASER applies a TDP-constrained

allocation of applications to the appropriate cores aiming to address soft error resilience.

The work of (BISWAS; MUHURI; ROY, 2023) proposes energy-oriented map-

ping solutions on heterogeneous systems while also meeting reliability goals in the con-

text of DVFS. However, fault tolerance is explored in the context of timing-induced fail-

ures raised by voltage scaling, neglecting the application-dependent AVF parameters in

the proposed reliability model.

Our approach has the following contributions compared to the above-presented

works:

• Transparency: Our approach is transparent, thus not requiring source code refactor-

ing, code annotations, and recompilation. The work of (NAITHANI et al., 2017) is

transparent but relies on greedy mapping solutions based on “trial and error” core-

37

to-core task migration. Given the associated overheads, this would be unfeasible

for heterogeneous systems comprised of three or more core types;

• Adaptability: Different from (DUQUE; DIAZ; YANG, 2015), which proposed

application-specific optimization strategies, our work adopts a generic and run-

time reliability-oriented solution. Given a set of applications, our proposal uses

a trained Artificial Neural Network (ANN) to accurately estimate the application-

to-core reliability-oriented affinities at runtime;

• Heterogeneity: We expand the design space exploration when compared to related

works. For instance, the works of (DUQUE; DIAZ; YANG, 2015), (ROZO et al.,

2018), (DAS et al., 2014) and (RAHMANI et al., 2017) consider only homoge-

neous cores. The work of (Kriebel et al., 2014) targets heterogeneous resources

with respect to reliability based on hardware replication, but only performance-

homogeneous cores are considered. We take a different approach by leveraging mi-

croarchitectural heterogeneity already present in most modern multicore platforms

and propose a solution for reliability improvement solely based on appropriate ex-

ploration of task-to-core affinities.

3.2 Related Works on Process Variation Mitigation

Many previous works have proposed different methodologies to address process

variations in the context of NTV or conventional voltage designs. In both cases, the pro-

posals span across circuit-level mitigation strategies, e.g., static voltage level optimization

(STAMELAKOS et al., 2014), fine-grained DVFS (Karpuzcu et al., 2013; Dighe et al.,

2011), body biasing (ROSSI et al., 2017; GAMMIE et al., 2008), micro-architecture-level

core customization (Gopireddy et al., 2016; WU; CHEN; LIU, 2023), scheduler-level ap-

proaches such as variation-aware thread mapping strategies (RATHORE et al., 2019) in

conjunction with DVFS (MAITI; KAPADIA; PASRICHA, 2015; RAGHUNATHAN et

al., 2013; Teodorescu; Torrellas, 2008), or cross-layer approaches (GOLANBARI et al.,

2016). We provide a summary of some of such works in the next paragraphs.

In (Karpuzcu et al., 2013), the authors propose EnergySmart, a task assignment

methodology for NTV multicore systems composed of a single voltage domain to improve

area and power efficiency. EnergySmart is shown in Fig. 3.1. In this design, the chip is

divided into multiple clusters, and a single worst-case frequency is assigned per cluster

38

Figure 3.1 – The EnergySmart NTV optimization methodology.

Source: (Karpuzcu et al., 2013)

to handle variation while also providing per-cluster/multiple frequency settings (i.e., this

strategy reduces the frequency slack among cores in a cluster). The objective then consists

of properly devising DVFS allocation schemes globally to effectively explore NTV in the

whole chip while providing clusters with different frequency domains in which proper

core assignment is adopted to increase energy efficiency. Chips operating fully at NTV,

however, require a very high number of cores to sustain acceptable performance.

The work of (GOLANBARI et al., 2016) proposes a variation-aware and cross-

layer optimization approach targeting Arithmetic and Logic Units (ALUs) at NTV. The

key insight is that ALUs are designed to perform different types of instructions with wide

delay diversity across instruction types. The approach then relies on ALU re-design, with

increased clock frequency, to reduce ALU idle time of fast instructions while provid-

ing multi-cycle support for slow instructions. Fast instructions execute in a single cycle,

with reduced delay, thus reducing ALU leakage energy. Process variations are mitigated

by designating worst-case clock periods based on static timing analysis. The approach

strongly depends on ALU re-design and on compiler support for proper code generation

(e.g., by replacing slow instructions with fast ones) to better match instruction types to

the proposed ALU timing constraints.

In (STAMELAKOS et al., 2014), it is proposed a variation-aware voltage island

formation for NTV many cores, in which smart fine-grained voltage island configurations

(layouts) are formed aiming at the minimization of the impact of within-die variation. In

the work, the variation maps for a manycore are extracted from the VARIUS-NTV tool

(a framework to model process variation) by considering a frequency able to keep certain

performance restrictions at NTV. Then, the tool generates multiple voltage island shapes,

for the given frequency, with independent Vdd regulators to keep up with the variation-

related issues and reduce the power impact of multiple voltage domains while maintaining

performance constraints.

39

In (RAGHUNATHAN et al., 2013), core-to-core variation and dark silicon is-

sues in micro-architecturally homogeneous chips are considered at conventional volt-

age settings. An algorithm is proposed for optimal core selection, thread mapping, and

frequency assignment for multi-threaded applications to reduce core-to-core variation’s

power/performance impact. Under a power budget, the objective is to maximize perfor-

mance by exploiting process variation and cherry-picking the best subset of cores to map

applications while keeping the remaining idle cores dark (power gated).

In (Dighe et al., 2011), within-die frequency and leakage variation is measured

for a homogeneous 80-core processor at conventional voltage settings. A global energy

optimizer is proposed for the system. A runtime energy model is proposed by consid-

ering both chip characterization (with variation profiles) and application characteristics.

By monitoring application behavior (e.g., communications and compute activity), the op-

timum operating point for a workload is achieved by determining the number of active

cores, their locations on the die, and individual voltage/frequency values, which results

in better energy efficiency. A thread migration strategy is proposed in which threads with

long execution cycles can be migrated to faster cores to improve performance or energy

efficiency.

The work of (RATHORE et al., 2019) proposes Life Guard, a reinforcement

learning-based approach for aging-aware task mapping for variation-afflicted homoge-

neous manycore systems at conventional voltage settings. Power and temperature are

constraints for efficient online and adaptive mapping decisions aiming to maximize the

system’s reliability. Life Guard is dynamic and can adapt to different applications online.

The work of (Teodorescu; Torrellas, 2008) proposes variation-aware DVFS and

scheduling algorithms for power management for conventional homogeneous chips, in

which static power and frequency variations are considered. In order to maximize through-

put (under a given power budget), variation-aware application scheduling is combined

with a linear programming approach to find the best voltage and frequency pair levels for

each of the cores in the MPSoC. Also, combined with variation-aware DVFS algorithms,

the work evaluates several application mapping strategies that consider application be-

havior (e.g., IPC and dynamic power) for fine-tuning mapping algorithms to maximize

performance under a power budget.

While most of the referred works only explore micro-architecturally homogeneous

systems, edge architectures (e.g., mobile phones) are often highly heterogeneous chips

(e.g., with at least two diverging core micro-architectures). Still, variation-related re-

40

Table 3.1 – Previews works on addressing varying optimization goals.
Manuscript

reference Performance Energy
efficiency

SEU
reliability

PV
mitigation

NTV
designs

Hetero
archs

Martínez-Álvarez et al. (2016)
Oh, Shirvani and McCluskey (2002)
Biswas, Muhuri and Roy (2023)
Azambuja et al. (2013)
Lindoso et al. (2017)
Cheng et al. (2016b)
Sartor et al. (2017)
Smolens et al. (2004)
Vadlamani et al. (2010)
Wang and Patel (2005)
Duque, Diaz and Yang (2015)
Rozo et al. (2018)
Das et al. (2014)
Naithani et al. (2017)
Kriebel et al. (2014)
Rehman et al. (2014)
Rahmani et al. (2017)
Khdr et al. (2017)
Shafique et al. (2015)
Stamelakos et al. (2014)
Karpuzcu et al. (2013)
Rossi et al. (2017)
Maiti, Kapadia and Pasricha (2015)
Gammie et al. (2008)
Gopireddy et al. (2016)
Dighe et al. (2011)
Rathore et al. (2019)
Raghunathan et al. (2013)
Teodorescu and Torrellas (2008)
Tarsa et al. (2019)
Salehi et al. (2015)
Golanbari et al. (2016)
Haghbayan et al. (2014)
Stamelakos et al. (2019)
Wang et al. (2017)
Wu, Chen and Liu (2023)
This work

search for both NTV and STV settings remains a vastly unexplored topic in the scope of

heterogeneous architectures. Therefore, we complement previous works by considering

both micro-architectural heterogeneity among cores and circuit-level process variation.

We mitigate variations by proposing a composite strategy (i.e., at design- and post-design

time) to improve the performance and energy efficiency of heterogeneous systems while

also maintaining minimum yield requirements by properly harnessing process variation

of both NTV and STV cores.

3.3 Contextualizing this Thesis with Respect to Previous Works

We highlight the general optimization goals of related works in Tab. 3.1. Very few

works have explored heterogeneous chips in the context of process variations, NTV, or

SEU reliability. Additionally, not all works optimizing performance and energy efficiency

41

address process variations. Most importantly, despite the high number of publications on

variation-aware chip optimization, we observe that no previous work has proposed to op-

timize both NTV and conventional cores in conjunction in the same die while also provid-

ing performance-optimized architectures that are gauged towards design-specific power

limits while keeping yield under control. We propose that such a design strategy helps

to (1) relieve the NTV frequency degradation that can otherwise only be attenuated by

adopting a very high number of cores (e.g., 128 and 256 cores in (STAMELAKOS et al.,

2014) and (Karpuzcu et al., 2013), respectively), and (2) provide increased performance

even when compared to conventional designs due to better exploration of power slacks

under the power limit.

As a final remark, we do not, however, address both SEU reliability and PV miti-

gation holistically, i.e., we only explore SEU fault tolerance approaches in the context of

conventional designs. For NTV environments, on the other hand, reliability is addressed

in the context of process variations.

42

4 APPLICATION MAPPING APPROACHES TO IMPROVE RELIABILITY AND

PERFORMANCE OF HETEROGENEOUS SYSTEMS

In this chapter, we propose an approach to leverage application behavioral diver-

sity in conjunction with microarchitecture-level heterogeneity aiming at improving chip-

level reliability requirements. For that, we elaborate an effective learning-based method

for runtime application mappings with the aim of maximizing the system’s Mean Work-

load To Failure (MWTF). These contributions were published in (TONETTO et al., 2020).

4.1 Improving MWTF with Application Mapping

The current technology shrinking process and low-voltage operation of contem-

porary microprocessors pose new reliability challenges that arise from ionizing particles,

such as Single-Event Upsets (or SEUs), that cause malfunction in mission-critical and

non-critical applications (MITRA et al., 2014; HENKEL et al., 2013; SEEPERS; STRY-

DIS; GAYDADJIEV, 2012). While past reliability research has focused on single-core

processors (WANG et al., 2004), the limitations in ILP have led to the emergence of

heterogeneous multicore systems, such as the big.LITTLE and DynamIQ (ARM, 2021)

architectures to meet the demands for more workload throughput, raising the importance

of reliability improvement strategies for heterogeneous multicores.

Dealing with the adverse effects radiation-induced upsets for mission-critical ap-

plications frequently involves developing resource-consuming fault tolerance mechanisms

with hardware or software redundancy - such as Error Correcting Codes (ECC), or Redun-

dant Multi-Threading (RMT) (OZ; ARSLAN, 2019) - or hardware replication methods

- such as Dual/Triple Modular Redundancy (DMR/TMR) (VADLAMANI et al., 2010;

Salehi et al., 2015), or even entire processor replication such as in lockstep parallel exe-

cution manner (RODRIGUES et al., 2019). However, ECC is mainly adopted to protect

storage-based structures (e.g., register files, caches, and the main memory) and does not

apply to microprocessors’ combinational logic and internal pipeline structures. Most im-

portantly, the hardware replication approaches impose severe area, power, performance

(e.g., DMR with rollback recovery), and energy overheads.

While in many mission-critical application scenarios such full protection methods

are necessary, such approaches become less attractive for non-critical applications that

43

require performance and energy efficiency at restricted power envelopes. Like so, we do

not address reliability issues concerning safety-critical applications. We take a different

approach applicable to non-critical applications and do not propose resource-consuming

hardware replications. Instead, we postulate that multicore heterogeneous systems pro-

vide inherent opportunities for resilience improvement without incurring severe replica-

tion overheads. Namely, such systems provide opportunities to exploit the diversity in

application properties in favor of improved reliability with low cost.

Additionally, workload reliability is an issue that concerns both cloud-based and

edge-based applications. For instance, server-based infrastructures are prone to large-

scale Silent Data Corruptions (SDC) that are hard (and expensive) to trace and correct

(DIXIT et al., 2021; DIXIT et al., 2022). At the same time, edge computing devices

require low-overhead fault tolerance approaches due to stringent power and latency con-

straints (SEEPERS; STRYDIS; GAYDADJIEV, 2012; HOA et al., 2023; WAN et al.,

2023). In this way, maximizing the amount of correctly executed workloads per number

of failures encountered is attractive, especially because low-cost solutions are attainable,

for instance, by taking advantage of chip heterogeneity already present in many edge- and

cloud-based infrastructures.

In this part of the thesis, then, we investigate a low-overhead strategy to improve

a system’s MWTF, i.e., the mean computation workload that can be handled before the

system experiences its next failure. In a heterogeneous system running multiple appli-

cations concurrently, the main factors that affect the MWTF are: (1) the performance

of the system; (2) the Architectural Vulnerability Factor (AVF) of the cores; and (3) the

raw Soft Error Rate (SER) of each core. Considering that (1) and (2) are affected by the

application’s characteristics and workload mapping and (3) depends on the core’s area,

we propose a machine-learning-based runtime methodology that factors these three as-

pects altogether to obtain near-to-optimal application mappings in a transparent fashion,

aiming at increasing the system’s MWTF.

Previous works such as (Kriebel et al., 2014; DUQUE; DIAZ; YANG, 2015) rely

on design-time customization and static instruction-level reliability analysis for individual

applications. Other runtime strategies (e.g., (NAITHANI et al., 2017)) rely on sample-

based schedulers that require simulating every application in each core to estimate better

mappings. We take a different approach and propose a generic and runtime reliability-

oriented solution for heterogeneous multicores based on a fast ANN, which is capable

of estimating accurate affinities of application-to-core mappings and alleviates the need

44

to execute the application in each core type to predict better mappings. The ANN trans-

parently estimates realistic Register-Transfer Level (RTL) vulnerability factors based on

the runtime occupancy of some significant pipeline structures of a core. We then exploit

the benefits of heterogeneity in a case study with multiple configurations of the RISC-V

Berkeley Out-of-Order Machine (BOOM) superscalar processor (CELIO; PATTERSON;

ASANOVIć, 2015), considering multicore scenarios composed of Small (single-issue),

Medium (dual-issue), and Large (quad-issue) dynamically scheduled cores. The key con-

tributions of this part of the thesis are as follows:

• We propose a runtime and transparent method that finds close-to-optimal ap-

plication mappings in heterogeneous systems such that the resilience (and increase in

workloads per joule before the next failure) is maximized. It is adaptive and supports any

new incoming application without needing compile-time information about the applica-

tion characteristics;

• We experiment with heterogeneous multicores in a realistic scenario by per-

forming 2.4 million fault injections, gathering accurate (RTL) vulnerability factors, and

comparing the achieved resilience improvement against traditional homogeneous archi-

tectures.

4.1.1 Motivation and Background

The primary motivation behind the proposed work is based on the observation that

application reliability is affected not only across different heterogeneous configurations

but also across different application-to-core mappings. To support this claim, we explore

heterogeneous systems composed of different numbers of Small (single-issue), Medium

(dual-issue), and Large (quad-issue) cores, shown in Table 4.1. The Medium and Large

cores resemble the ARM Cortex-A9 and Cortex-A15, respectively. In contrast, the Small

Table 4.1 – Explored core configurations.

Small (S) Medium (D) Large (Q)

Fetch-/Issue-/Commit-width 1 2 4
Physical Register File 100 110 128
ROB entries 24 48 64
Issue Unit entries 10 20 28
Load/Store queue entries 4 16 32
Area (mm2) 0.08 0.12 0.20

45

core is adopted to increase design space exploration and heterogeneity as it can improve

area and energy efficiency. For the sake of generality, we evaluated all three possible het-

erogeneous multicore configurations composed of three different cores, which are: one

single-issue, one dual-issue, and two quad-issue (1S-1D-2Q); one single-issue, two dual-

issue, and one quad-issue (1S-2D-1Q); and, two single-issue, one dual-issue, and one

quad-issue (2S-1D-1Q). In the following sections, we also experiment with homogeneous

configurations composed of only Medium (4D) and only Large (4Q) cores. In all of the

obtained results, the reported data is normalized to the baseline homogeneous configura-

tion composed of only Small processors (4S).

For the configurations 1S-1D-2Q and 2S-1D-1Q, Fig. 4.1 depicts the normalized

MWTF, computed as detailed in section 2.2, for two sets of distinct applications. Each set

contains four applications (explained in section 4.3), and the results are depicted across

all 24 possible mappings (x-axis) of the four applications mapped to the four core types.

From the figure, we can conclude that the MWTF in a heterogeneous system varies signif-

icantly across different application mappings (e.g., up to 49.4% for the set of applications

1 in the configuration 1S-1D-2Q) and across different configurations. We then exploit the

fact that better MWTF can be achieved by using smart application mappings with low

cost.

Figure 4.1 – MWTF obtained for two application sets for all possible mappings.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

N
o
rm

a
liz

e
d

 M
W

T
F

Possible mappings

App. set 1 (1S-1D-2Q)
App. set 2 (1S-1D-2Q)

App. set 1 (2S-1D-1Q)
App. set 2 (2S-1D-1Q)

46

4.2 Adaptive Mapping

4.2.1 Problem Definition

This part of the work aims to propose a learning strategy to increase the chips’

MWTF. As described in section 2.2, and recalled in Eq. 4.1, the MWTF is the amount of

workload computed before a failure is experienced in the system.

MWTF = (SERraw × AV F × execution time)−1 ∝ IPC/(SERraw×AV F) (4.1)

To increase the MWTF in a heterogeneous system, we seek an application map-

ping that: (1) reduces the total execution time while not significantly increasing the AVF,

or (2) reduces the overall system’s AVF while not impacting too much in performance.

The third variable involved in optimizing MWTF is the raw SER. However, we assume

it to be constant for each core type since, as already discussed, it depends entirely on the

chip area, the manufacturing process, and the environment. Considering that, we leverage

the heterogeneity of the multicores to find application mappings that yield proper balance

between execution time and AVF such that the system’s MWTF increases.

In a heterogeneous multicore system, such a mapping task can be thought of as

the Assignment Problem (EDMONDS, 1965), in which the application-to-core mapping

is modeled as a weighted bipartite graph, as in shown Fig. 4.2. In this model, each set of

vertexes represents applications and cores, respectively, and the graph’s edges represent

the affinity of mapping each application to each core. As can be seen in Fig. 4.2, each

weight expresses the trade-off between Instructions Per Cycle (IPC) and the effective

Figure 4.2 – Assignment graph of application mappings aiming to maximize the overall MWTF.

App
1

App
2

App
3

App
n

Core
1

Core
2

Core
3

Core
n

W1,1 Wn,n

Wi,j = MWTF of core ‘i’ running application ‘j’

…

…

47

failure rate of the core, where the effective failure rate is estimated by the product of the

raw SER and the AVF (derating) factor.

Therefore, In the proposed model, an edge with a high weight value that maps an

application to a core means the application is likely to have a high MWTF. Our mapping

strategy, then, lies in estimating the values of each edge in the mapping graph and then

applying a proper algorithm to find the best set of edges that increases the overall affin-

ity of the system’s application mapping by solving maximum weighted perfect matching

problem, which is solvable in polynomial time (i.e., it is scalable for a higher number of

cores) as proposed in the work of (EDMONDS, 1965).

The methodological flow of our strategy is depicted in Fig. 4.3. Our approach

for fast runtime mapping relies upon executing the applications in the quad-issue (more

complex) core and then inferring how the same applications would perform, in terms

of AVF and IPC, in the simpler cores (single- and dual-issue types). To estimate the

values of the edges for each application in the assignment graph, we propose two ANN

designs to predict AVF and IPC of the given applications when mapped to a heterogeneous

design. The approach is divided into a design-time phase, where we train the ANNs, and

a runtime phase, where we perform ANN inference to build the assignment graph and run

the mapping algorithm.

To estimate the core’s AVF for a given application, we train an ANN based on

previous accurate AVF metrics estimated during design time with fault injection in RTL

models for each core (the fault injection process is further elaborated in section 4.3).

Additionally, the IPC of all applications for all core types is measured with performance

counters at the cycle-accurate level. We collect the IPCs of every application and train

another ANN that receives the quad-issue’s IPCs as input and outputs the IPC for the

other core types, as detailed next.

During deployment, for the online estimation of the AVF, the AVF neural network

receives as input the occupancy of the quad-issue core structures and outputs an inferred

core AVF for each core type. Similarly, the IPC estimation consists in measuring the

quad-issue’s IPC and feeding it to the ANN, which outputs the IPC estimation for the

same applications in the other core types. The process of monitoring the occupancy of

the structures, estimating the AVF and IPC, and then using it to perform the application

mapping is transparent, and no previous compile-time information about the application

characteristics needs to be informed to the mapping strategy.

The details of the design-time and runtime approaches, described in Figs. 4.3a

48

Figure 4.3 – The predicted AVF estimation by the neural network compared to the expected
values estimated with fault injection.

(a) Desing-time ANN training approach

Set of training apps

Real
AVFs

RTL fault
injection

Inferred
AVF

ANN training
phase

Design time
1 2

1i

2i

4i4i
Hw-

Counters Backprop
error

(b) Runtime ANN inference and mapping

Runtime

Incoming
apps

ANNs in SW

Build graph edges
 = IPC/(SERraw × AVF)

Perfect
matching
algorithm

Final mapping

First
execution

AVF and IPC
inference

AVFs
1,2,4-issue

IPC
1,2,4-issue

AVFs
1,2,4-issue

IPC
1,2-issue

3

6
5

4

4i
Hw-

Counters

IPC
4-issue 4i

and 4.3b, respectively, are as follows:

Design time: Consists of training the ANN, as shown in Fig. 4.3a, according to

the following steps:

Step 1: We first gather realistic AVF estimations for a set of training applications

by running them on each core type and performing statistical fault injection to simulate

soft errors (single bit-flips) at the RTL. We also simulate the quad-issue processor for

each training application in order to track the occupancy of four significant structures in

the pipeline: the Physical Register File (PRF), the Reorder Buffer (ROB), the Load/Store

Unit (LSU), and the Issue Unit (IU). The choice for monitoring such structures comes

from the fact that they hold most of the microprocessor state, such that their occupancy is

highly correlated with the core’s AVF.

Step 2: The data gathered in the previous step are used to train the ANN that re-

49

ceives the quad-issue’s structures’ occupancy as inputs. The outputs of the training neural

network are the AVF estimations for the single-, dual- and quad-issue cores. For each

application, we derive the AVF of the three core types based only on the occupancy of the

quad-issue processor so that a single ANN is required, and we avoid having to execute

each application in each core to take the final mapping decision. We empirically verified

that using the occupancy of the quad-issue processor provides better accuracy in estimat-

ing the AVF for all core types. We train a second ANN that receives the application’s IPC

in the quad-issue core and outputs the IPC for all other core types.

Runtime: During execution time, shown in Fig. 4.3b, the core assignment to a

new incoming application is transparently estimated in a process that consists in calculat-

ing the value of each possible edge (to the three core types), according to the formula in

Fig. 4.2, and then applying the maximum weighted perfect matching problem to find the

best possible mapping such that the sum of the selected weights is maximized. For that, it

is necessary to know the AVFs and IPCs of each application. The raw SER for each core

is constant and application-independent, so estimating it during runtime is unnecessary.

The value of each edge is estimated as follows.

Step 3: The AVF of each application in each core is estimated by the ANN solely

based on the current degree of occupancy of the quad-issue processor so that we avoid

executing each application in each core to estimate their AVFs. It is then necessary to

first execute each application in the quad-issue processor for a fixed number of cycles in

a sample phase and log the occupancy of each application. The choice for the number

of sample cycles to simulate is adjustable, and designers could extend such an approach

to capture desired phases of execution better. We experimented by simulating the whole

application to model a request-based scenario where the same set of applications is repet-

itively executed. That is to say, one workload corresponds to a complete execution of

a given application. Notice that for any given application that executes repetitively, the

ANN inference has to occur only once per application.

The occupancy of each structure is measured in a cycle-accurate fashion: for each

structure, we adopt a special counter register that counts the number of busy entries in

the structures during the sample phase. The PRF’s occupation is measured by monitoring

the physical register’s free-list, which informs the number of physical registers in the PRF

that are allocated to architectural registers (the BOOM core relies on register renaming

to resolve output dependencies (WAW) and anti-dependences (WAR)). The other struc-

tures are monitored by probing specific valid and busy signals in each entry. Each cycle,

50

the counter registers are incremented (or decremented) whether a new entry in the cor-

responding structure is allocated (or deallocated). After the sample phase finishes, the

calculation of occupancy of each structure is then performed by dividing the accumulated

number of allocated entries by the total number of entries in the structure multiplied by

the number of cycles executed in the sample phase, i.e., it calculates the average number

of busy entries over the whole application execution.

The IPC of an application in each core type is gathered during the sample phase

(i.e., the application running on the quad-issue) by monitoring the quad-issue’s IPC with

performance counters. Because IPC is affected by several micro-architectural factors, we

then use an ANN to estimate the IPC of the same application in the single- and dual-issue

cores.

Step 4: After the application ends its first execution and the occupancy for the

structures is gathered, the quad-issue core executes the software-implemented ANN to

estimate the AVF of the three processors. We experimentally evaluated several ANN

topologies and concluded that an ANN with three hidden layers, six neurons each, yielded

better AVF estimations (as shown in section 4.4.5). We then estimated that the overhead

of executing such software-based ANN in the quad-issue core is approximately 8k cycles

(estimated with the cycle-accurate simulator).

Steps 5 and 6: Finally, the scheduler is provided with the estimated AVFs and

IPCs of each application mapped to each core and builds the bipartite graph that is used

as input to the maximum weighted perfect matching algorithm to solve the assignment

problem and estimate the proper application mapping which maximizes the sum of the

assigned edges.

4.3 Experimental Methodology

Our experiments consist in first gathering information to train the ANN (design

time) with a set of training applications and then evaluate the results (runtime) with a set

of test applications. Because we want to completely separate test and training applications

to avoid a biased ANN (RUSSELL; NORVIG, 2009), we adopt K-fold cross validation

to train the ANN with all applications, excluding the test one. Each training set contains

seven applications, leaving one application for testing.

In order to train the ANN, we first perform statistical fault injection that simulates

SEU in the three configurations of the BOOM processor (Small, Medium, and Large).

51

Error injections can be masked during execution or cause application-level failures. Fail-

ures are classified into three categories: (1) Silent Data Corruptions (SDC), timeouts (due

to control faults), or (3) simulation crashes.

We adopt the statistical model in (LEVEUGLE et al., 2009) to obtain statistically

reliable AVF estimations for the three processors. Due to the time-consuming fault injec-

tion experiments at RTL, we consider eight small benchmarks taken from the MiBench

suite (GUTHAUS et al., 2001) (Median filter, Rijndael, String search, K-means, QSort,

Sobel, Susan, and Dijkstra). A total of 800k faults were injected in each processor (100k

per application, 2.4 million in total) at RTL to obtain statistical significance in our results,

leading to a confidence level of 99% with an error margin of 1%. The fault injection

campaign takes approximately three weeks. We estimated the area and power for each

core configuration by synthesizing BOOM with Cadence RTL Compiler with NanGate’s

15nm standard cell library (MARTINS et al., 2015) and a 2.1GHz synthesis target.

The fault injections were performed in all microarchitectural structures of the pro-

cessors at RTL. However, we do not perform fault injections in the caches because we

assume they can be protected with ECC. Also, the caches are not shared among the cores,

and we experiment with completely independent applications so that there is no interfer-

ence among them.

We evaluated our mapping strategy on the three heterogeneous multicore config-

urations composed of four cores with three core types, as shown in Tab. 4.2. We also

compare the prediction-based MWTF to the three homogeneous configurations shown in

the table. We consider a total of eight applications, which allow for a total of 70 combina-

tions of four different applications. Each combination is an application set, and each set of

four applications can be permuted (or mapped) in 24 possible ways, considering a system

with four cores. For simplicity, we disregard the fact that some of the permutations are

Table 4.2 – Area (mm2) and approximate normalized flip-flop raw SER (based on the number of
flip-flops) of the explored chips

Area
(cores only)

Area
(total)

Flip-flops
(cores only)

Normalized raw SER
(cores only)

4S (baseline) 0.032 0.17 172652 1.00
4D 0.48 0.62 276360 1.60
4Q 0.8 0.94 385196 2.23
1S-1D-2Q 0.528 0.69 304851 1.77
1S-2D-1Q 0.448 0.59 277642 1.61
2S-1D-1Q 0.336 0.47 251715 1.46

52

redundant since at least two cores in the evaluated heterogeneous systems are of the same

type.

For all multicore configurations, we first measured the MWTF for all different

permutations for each application set and exhaustively searched for the best-case (ora-

cle) and worst-case possible schedules that lead to the best and worst MWTF, energy,

and MWTF/energy, for each application set. Then, each set of applications is again sim-

ulated by mapping the applications according to the matching problem that takes into

consideration the ANN’s predicted AVFs and IPCs (predicted-case mapping). For each

application’s estimations, we consider an ANN that is trained without previous knowl-

edge on the application in order to model a scenario of unforeseen applications, i.e., we

evaluate a scenario that supports transparent adaptability to new incoming scenarios.

Figure 4.4 – The predicted AVF estimation by the neural network compared to the expected
values estimated with fault injection.

(a) Single-issue

A
V

F
(%

)

0

1

2

3

4

Median
Rijndael

Strin
g search

Kmeans
Qsort

Sobel
Susan

Dijkstra

Geo mean

Predicted Expected

(b) Dual-issue

A
V

F
(%

)

0

1

2

3

4

Median
Rijndael

Strin
g search

Kmeans
Qsort

Sobel
Susan

Dijkstra

Geo mean

Predicted Expected

(c) Quad-issue

A
V

F
(%

)

0

1

2

3

4

Median
Rijndael

Strin
g search

Kmeans
Qsort

Sobel
Susan

Dijkstra

Geo mean

Predicted Expected

53

4.4 Results on Reliability-Oriented Mappings

4.4.1 AVF Prediction

We first show the results for the predicted AVF estimations for the single-, dual-,

and quad-issue processors in Fig. 4.4. Notice that even though the geometric mean of

the predicted AVFs is very similar to the expected ones, there are notable deviations in

AVF estimation for some applications. However, because different applications are “com-

peting" to be mapped to a core, our scheduling policy only requires that the proportion

between the predicted and expected application AVF is kept roughly constant across dif-

ferent cores. For instance, consider the Median application. Even though its predicted

AVF is considerably smaller than the expected one, such prediction is also smaller for

all cores in a similar proportion, which has minor effects considering that we model the

scheduling police as a matching problem.

Figure 4.5 – Configuration 1S-1D-2Q

(a) MWTF (higher is better)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

N
o
rm

a
liz

e
d

 M
W

T
F

Set of applications

MWTF (Best)
MWTF (Worst)

MWTF (Predicted)

(b) Energy (lower is better)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

N
o
rm

a
liz

e
d

 E
n
e
rg

y

Set of applications

Energy (Best)
Energy (Worst)

Energy (Pred)

(c) MWTF/Energy (higher is better)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

N
o
rm

a
liz

e
d

 M
W

T
F/

J

Set of applications

MWTF/J (Best)
MWTF/J (Worst)

MWTF/J (Pred)

54

Figure 4.6 – Configuration 1S-2D-1Q

(a) MWTF (higher is better)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

N
o
rm

a
liz

e
d

 M
W

T
F

Set of applications

MWTF (Best)
MWTF (Worst)

MWTF (Predicted)

(b) Energy (lower is better)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

N
o
rm

a
liz

e
d

 E
n
e
rg

y

Set of applications

Energy (Best)
Energy (Worst)

Energy (Pred)

(c) MWTF/Energy (higher is better)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

N
o
rm

a
liz

e
d

 M
W

T
F/

J

Set of applications

MWTF/J (Best)
MWTF/J (Worst)

MWTF/J (Pred)

Figure 4.7 – Configuration 2S-1D-1Q

(a) MWTF (higher is better)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

N
o
rm

a
liz

e
d

 M
W

T
F

Set of applications

MWTF (Best)
MWTF (Worst)

MWTF (Predicted)

(b) Energy (lower is better)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

N
o
rm

a
liz

e
d

 E
n
e
rg

y

Set of applications

Energy (Best)
Energy (Worst)

Energy (Pred)

(c) MWTF/Energy (higher is better)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

N
o
rm

a
liz

e
d

 M
W

T
F/

J

Set of applications

MWTF/J (Best)
MWTF/J (Worst)

MWTF/J (Pred)

55

Figure 4.8 – Average MWTF gains for all application sets for the three mapping cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1S-1D-2Q

1S-2D-1Q

2S-1D-1Q

N
o
rm

a
liz

e
d
 M

W
T
F

Best schedule
Predicted schedule

Worst schedule

4.4.2 Dynamic Mapping Evaluation

In this section, we evaluate the efficacy of our proposed dynamic mapping ap-

proach (i.e., the prediction-based mappings) applied to heterogeneous systems. For that,

we evaluated the three heterogeneous architectures (i.e., 1S-1D-2Q, 1S-2D-1Q, and 2S-

1D-1Q) by measuring the MWTF, energy, and the tradeoff MWTF/energy for the three

mapping cases: best-case mapping (oracle), predicted-case mapping, and worst-case map-

ping. The metrics herein considered are normalized to the baseline configuration (only

single-issue cores - 4S). Our intent is to show that the predicted-case mappings achieve

chip-level MWTF very close to the oracle with small energy overheads.

The results for the three chip configurations are depicted in Figs. 4.5, 4.6, and

4.7, showing the achieved results for MWTF, energy, and MWTF per Joule (sub-figures

a, b, and c, respectively). From the figures, it is clear that the predicted mappings closely

match the best-case one. Because both MWTF and energy are directly correlated to ex-

ecution time, we can see that the predicted schedule that aims at increasing MWTF also

provides lower energy when compared to the worst-case energy schedule, as shown in

Figs. 4.5b, 4.6b, and 4.7b. As a consequence, the fraction of MWTF/Joule also tends

to be considerably better than the worst-case schedule, as shown in Figs.4.5c, 4.6c and

4.7c. The key observation from such results is that we can improve the MWTF without

imposing significant energy overheads.

The average MWTF results for all configurations for the three mapping cases is

depicted in Fig. 4.8 (i.e., the average MWTF gains for all application sets). For the con-

figurations 1S-1D-2Q, 1S-2D-1Q, and 2S-1D-1Q, the deviation of the predicted MWTF

from the oracle MWTF is around 4.9%, 6.6%, and 5.9%, respectively.

56

Figure 4.9 – Comparison of the three different heterogeneous configurations (using the predicted
mappings) against two homogeneous ones.

(a) Config 1S-1D-2Q vs homogeneous

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

N
o
rm

a
liz

e
d

 M
W

T
F

Set of applications

MWTF (1S-1D-2Q)
MWTF (4D)

MWTF (4Q)

(b) Config 1S-2D-1Q vs homogeneous

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

N
o
rm

a
liz

e
d

 M
W

T
F

Set of applications

MWTF (1S-2D-1Q)
MWTF (4D)

MWTF (4Q)

(c) Config 2S-1D-1Q vs homogeneous

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

N
o
rm

a
liz

e
d

 M
W

T
F

Set of applications

MWTF (2S-1D-1Q)
MWTF (4D)

MWTF (4Q)

4.4.3 Comparing Heterogeneous versus Homogeneous Configurations

In order to highlight how heterogeneity can improve MWTF (with prediction-

based mappings), we also compared the MWTF (and also energy) of the three hetero-

geneous architectures to two homogeneous ones: four dual-issue cores (4D) and four

quad-issue cores (4Q). For each heterogeneous configuration, we estimate the values by

considering the predicted mappings for all application sets and report the average normal-

Figure 4.10 – Comparison (average values) against two homogeneous architectures (4D and 4Q).

 0

 0.5

 1

 1.5

 2

 2.5

 3

1S-1D-2Q 1S-2D-1Q 2S-1D-1Q 4D 4Q

G
a
in

s

MWTF
MWTF/J
Energy improvement

Speedup
Raw SER

57

ized improvements for each set in Figs. 4.9 and 4.10, as follows:

MWTF: While the three heterogeneous architectures provide very similar MWTF,

on average, they all provide higher MWTF than the homogeneous configurations. That

happens mainly due to the lack of variability within the homogeneous configurations that

do not provide means for application-to-core mappings that better trade AVF for perfor-

mance. For instance, even though 1S-1D-2Q has a higher number of flip-flops subject

to errors when compared to 4D (a difference of 10.3% in raw SER), it better trades AVF

for performance due to the quad-issue core (higher performance and lower AVF). The

net result, in general, is higher MWTF for the heterogeneous configurations. The 2S-

1D-1Q configuration, however, has higher MWTF than the homogeneous configurations

due to its smaller area that compensates for its low performance due to the two Small

cores. For the homogeneous configurations, even though the 4Q configuration has better

performance than the 4D one, its MWTF is lower due to its larger area.

Energy and MWTF/energy: Only the configuration 1S-2D-1Q provides a better

tradeoff of MWTF/energy when compared to the 4D configuration. The configuration 2S-

1D-1Q has lower energy improvement due to the longer execution times caused by its two

Small processors, which in turn reduce the MWTF/energy. On average, heterogeneous

configurations provide 19.7% higher MWTF/J when compared to the 4Q (4 quad-issues)

configuration.

4.4.4 Distribution of best configurations

In this section, we highlight how hardware heterogeneity yields the best possible

MWTF for different application sets. For that, in Table 4.3, we show the distribution of the

best possible multicore configuration for each application set (by considering the ANN-

based mapping for the heterogeneous settings). The numbers show, for instance, that

62.8% of the application sets have higher MWTF with configuration 1S-2D-1Q. Also,

the importance of heterogeneity can be highlighted by the fact that when the ANN-based

application mapping is adopted, 87% of the application sets have higher MWTF in het-

erogeneous configurations.

58

Table 4.3 – Percentage of application sets that maximize a given metric when prediction-based
mapping is applied to each evaluated chip configuration. Example: 62.8% of the application sets

achieve the highest MWTF with configuration 1S-2D1-Q.

MWTF (highest) Energy (lowest) MWTF/energy (highest)
1S-1D-2Q 7.1% 0% 0%
1S-2D-1Q 62.8% 32.8% 48.5%
2S-1D-1Q 17.1% 10% 14.2%
4D 12.8% 55.7% 34.2%
4Q 0% 1.4% 2.8%

4.4.5 Exploiting Different ANNs

The correlation between pipeline occupancy and the overall core AVF is complex

and non-linear, making selecting a proper ANN topology challenging. This process is not

trivial (and often cumbersome), so the search for the proper ANN topology adopted in

the previous results was performed empirically. For that, we evaluated the effectiveness

of ten different ANN configurations by comparing their efficiency as measured in terms

of distance of achieved MWTF w.r.t the optimal mapping strategy. We also compare

the prediction-based mappings against random mappings. For the three heterogeneous

configurations, Fig. 4.11 shows the MWTF deviation from the optimal mapping for the

different ANNs and the result of the random mapping. Configuration 3-(6-6-6)-3 out-

performs all other topologies for the three heterogeneous configurations, with an average

deviation of 5.6% from the oracle while significantly outperforming the random mapping.

Figure 4.11 – MWTF deviation from oracle for different ANN configurations (lower is better).

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

3-(3-3)-3

3-(6-9-6)-3

3-(3-12-12)-3

3-(6-6)-3

3-(6-12-6)-3

3-(3-6-3)-3

3-(6-3-6)-3

3-(3-6-6)-3

3-(3-3-3)-3

3-(6-6-6)-3

Random

D
e
v
ia

ti
o
n
 f

ro
m

 o
ra

cl
e
 (

%
) 1S-1D-2Q 1S-2D-1Q 2S-1D-1Q

59

5 A POWER-EFFICIENT AND PERFORMANCE-ORIENTED EXPLORATION

METHODOLOGY WITH NTV CHIPS

5.1 Introduction

Edge computing systems are becoming increasingly popular due to their ability

to efficiently process data at the network edge, enabling faster response times and in-

creased security by reducing the need for data transmission to centralized servers (Shi et

al., 2016). However, these systems are often constrained by power budgets (e.g., due to

battery dependence or limited cooling capabilities) that limit achievable performance. As

computation is delegated to the edge side, improving microprocessor performance under

strict power limits is essential for this domain. We provide an efficient NTV-based chip

design approach to improve performance under such scenarios. A preliminary version of

the framework presented in this chapter was published in (TONETTO; BECK; NAZAR,

2022).

Figure 5.1 – Architecture-level view of the chip.

Shared
L2$

L1i$Core
STV 1
(InO)

STV island

Die

…

L1d$

L1i$Core
STV 2
(OoO) L1d$

T
L1i$Core

STV m
(OoO) L1d$

L1i$ Core
NTV 1
(InO)

NTV island

…

L1d$

L1i$ Core
NTV 2
(InO)L1d$

L1i$ Core
NTV n
(OoO)L1d$

Tile Tile

60

5.2 Chip Architecture Exploration Scope

In this part of the work, we consider architectural chip exploration with both

STV and NTV voltage operation points in the same chip. Fig. 5.1 shows an abstract

architectural-level view of a proposed chip. Notice that the chip shown in the figure is

abstract and generic. In practice, we explore several different heterogeneous architectures

with diverse numbers and types (microarchitectures) of cores.

Each chip is a die comprising two voltage islands (STV in red, NTV in gray). An

island is composed of multiple tiles (highlighted with blue borders), and each tile is com-

posed of a single core plus private first-level instruction (L1i$) and data (L1d$) caches.

The cores are heterogeneous, encompassing different organizations such as scalar in-order

execution (InO) or different parameterizations of superscalar out-of-order execution cores

(OoO). An inclusive (instructions and data) second-level cache (L2$) is shared among all

tiles in the chip.

Our proposal, termed Selective NTV Architectures for Power-efficient Edge com-

puting (or SNAP), consists in dividing the die into two voltage islands, one at STV, and

the other at NTV, and efficiently determining what core types (and number) are the most

suitable in each island. Each voltage island follows a Single-Voltage Multiple-Frequency

(SVMF) approach in which all tiles in an island operate at the same voltage. Other works

have adopted the chip-level SVMF approach in the context of STV (Dighe et al., 2011) or

NTV (Karpuzcu et al., 2013; TARSA et al., 2019) designs. We consider per-island SVMF,

with separate but unique Vdd settings per island (STV at 0.8V, NTV at 0.55V). However,

the cores operate at individual frequency levels that are the most suitable according to the

core type. The first-level caches operate at the same voltage level as their respective core.

The second-level cache operates at STV level unless all tiles in the die operate at NTV.

5.3 Application Mapping with Heterogeneous Systems

In this part of the thesis, we consider chips with heterogeneous cores that vary in

both Instructions per Cycle (IPC) and attainable frequency. The general optimization goal

of this thesis, then, consists of finding optimal sets of cores (types and voltage islands of

each core) that maximize the total chip’s instruction throughput under arbitrary and user-

defined power limits.

Because the chip is composed of heterogeneous cores that vary in both IPC and

61

Figure 5.2 – Assignment graph of application mappings aiming to maximize the overall MIPS.

App
1

App
2

App
3

App
n

Core
1

Core
2

Core
3

Core
n

W1,1 Wn,n

Wi,j = IPS of core ‘i’ running application ‘j’

…

…

frequency, a proper performance metric must be considered to encapsulate both parame-

ters. This way, we target chip designs with optimized Instruction per Second (IPS) (be-

cause IPS = IPC× frequency) while not violating the power limits. Secondly, we use

IPS as a figure of merit because we want to compare achievable multi-task throughput

across different chip designs that vary in the number of cores in the chips (besides IPC

and frequency), i.e., we want to compare chips with diverging numbers of cores. Thus,

IPS can be used as a global metric that encapsulates the effects of the proposed method-

ology on overall performance.

Our mapping solution models the mapping problem as a bipartite graph that maps

applications to heterogeneous cores, as shown in Fig. 5.2. In this model, applications and

cores are nodes that constitute a bipartite graph, with the edges representing the IPS of

each application when mapped to each core (nodes), as shown in the figure. The goal then

consists in finding the optimal mapping that maximizes the overall system’s throughput

(i.e., optimally maximizing the sum of the selected edges). The solution to this problem is

optimized by solving the maximum weighted perfect matching problem on the assignment

graph, optimally solvable in polynomial time (EDMONDS, 1965).

5.4 Architectural Search and Optimization Goal

The optimization goal is to find optimized chip configurations to meet the criteria

shown in Eq. 5.1. For the user-defined power budget (Pb) and a set of configurations

(configs), we seek the chip configuration (target_config) with the highest IPS under

the power limit.

62

TargetConfig(Pb) = argmax
conf∈configs

{IPSconf |Powerconf ≤ Pb} (5.1)

Our exploration space considers RISC-V heterogeneous chips with four core types,

as listed in Tab. 5.1. We consider architectures ranging from 2 to 16 cores while also con-

sidering both STV and NTV versions of each core, amounting to eight distinct core types

that can be chosen for the desired power limit.

For comparison purposes, our methodology considers three chip design cases,

in which the chips are built with 1) all cores at STV (Full STV chips), 2) all cores at

NTV (Full NTV chips), or 3) a blend of STV and NTV cores (SNAP chips). For the full

STV/NTV cases, we consider chips formed with all possible core combinations from 2

to 16 cores, so the number of MPSoC configurations is
∑16

i=2

(
i+4−1

4

)
= 48401, making

exhaustive search feasible. The SNAP/mixed configurations composed of both STV and

NTV cores, however, result in a much larger design space, with a total of
∑16

i=2

(
i+8−1

8

)
=

735, 462 possibilities.

We do not make exhaustive exploration across all SNAP possibilities. Rather,

we introduce an Integer Linear Programming (ILP) approach to efficiently compose opti-

mized MPSoC configurations. This approach prunes the exploration space of configura-

tions and avoids exhaustive searches while also providing efficient configurations for strict

power requirements. This is analogous to the 0-1 Knapsack Problem. Here, knapsack

items are core types. Item values and weights are the cores’ IPS and power dissipation,

respectively, and the knapsack capacity is the maximum allowed chip power dissipation

(power budget).

maximize
∀ core types c

∑
c

µIPS,c × Countc (5.2a)

subject to

µpwr,L2 +
∑
c

µpwr,c × Countc ≤ Pb , (5.2b)

2 ≤
∑
c

Countc ≤ 16 (5.2c)

The goal is to maximize the IPS performance (objective) under power budget lim-

its (constraint).

1The number of combinations of r items (number of cores in the chip) out of n item types (types of
cores, allowing repetition of core types) is expressed as

(
n+r−1

r

)

63

The objective and constraints are depicted in Eqs. 5.2a, 5.2b and 5.2c. The inputs

are the power budget limit (Pb), the average core IPS and power (µips,c, µpwr,c) of each

core type c, and the second-level cache average power (µpwr,L2). The ILP method aims

to select the optimal set of cores (outputs are the types and number of each core type -

Countc) to maximize the IPS performance while not violating the given power budget

(Pb), as is illustrated in Eq.5.2a (budget constraint in Eq. 5.2b). We also constrain the

number of cores to the range [2,16] (constraint in Eq. 5.2c).

5.5 Results on Performance-Oriented Mappings

5.5.1 Experimental Methodology

We conducted our experiments with the core implementations provided by the

Chipyard open-source framework (Amid et al., 2020). The adopted core configurations

are the RISC-V Rocket (in-order) core as well as three configurations of the RISC-V

Berkeley Out-of-Order Machine (BOOM) superscalar core, as listed in Tab. 5.1.

RTL-accurate performance is evaluated for each core configuration for both STV

and NTV setups. Power estimations are performed with the Genus Cadence tools by

using the 14nm standard cells provided by the FinCACTI library (Shafaei et al., 2014),

as it offers implementation designs optimized for both high-performance (STV at 0.8V)

and for energy efficiency (NTV at 0.55V). We also use FinCACTI for memory power

Table 5.1 – Explored core configurations. The power and frequency shown are under nominal
conditions.

Parameter Rocket SmallBoom MediumBoom LargeBoom

Fetch/Decode/Issue width 1 4/1/3 4/2/4 8/3/4
Issue unit entries n/a 3×8 3×16 3×24
Reorder buffer entries n/a 32 64 96
Load/store unit entries n/a 8/8 16/16 24/24
Integer register file 32 52 80 100
Floating point register file n/a 48 64 96

STV
Power (mW) 16.1 37.7 50.0 81.12
Frequency (GHz) 1.5 1.5 1.5 1.5
Area (mm2) 0.10 0.29 0.38 0.59

NTV
Power (mW) 5.5 11.9 15.88 24.5
Frequency (GHz) 0.22 0.31 0.27 0.22
Area (mm2) 0.11 0.3 0.39 0.61

64

Table 5.2 – Suite of edge-applicable tasks adopted in this work.

Benchmark suite Tasks

MiBench
(GUTHAUS et al., 2001)

AES (enc, dec), CRC32
SHA, Blowfish
Susan (corners, edges, smoothing)
Qsort, Dijkstra, String search

LOCUS IoT
(TAN et al., 2016)

Histogram, A*
2D Convolution
Dynamic Time Warping (DTW)
Support Vector Machine (SVM)

PolyBench
(POUCHET; YUKI, 2011)

Correlation, Covariance
Jacobi-1d, Seidel-2d,
Cholesky, Ludcmp
Gramschmidt, Trisolv, Durbin
Floyd-Warshall, Mvt, Gemm
2mm, 3mm
Atax, Bicg, Doitgen

estimation.

We use the applications listed in Tab. 5.2 to cover a significant scope of applica-

tions on the edge domain. The choice of applications spans across different domains taken

from the benchmark suites such as the IoT-domain LOCUS kernels (TAN et al., 2016), the

MiBench suite (GUTHAUS et al., 2001), and the PolyBench suite (POUCHET; YUKI,

2011).

To evaluate our approach, we perform chip design space exploration with the fol-

lowing MPSoC configuration cases:

1. Full STV/NTV case: All exhaustive chips options that operate fully at STV/NTV;

2. SNAP case: All SNAP chip cases are built with the methodology described previ-

ously, for each required power limit.

We perform IPS-oriented mappings (oracle mapping) for all cases listed above

and report the highest attainable IPS for the best configuration for each required power

limit. We assume power limits such that we can cover all possible chip configurations (of

lowest to highest power consumption) by varying the power limits in the range [25mW,

800mW], with steps of 10mW.

65

Table 5.3 – The three evaluated chip cases. Four NTV rocket cores (4R) are considered in Config
3. All other cores are at STV.

#Cores Configuration Vdd settings Possible mappings

Config 1 6 2R+2M+2L STV 90
Config 2 8 7R+1L STV 8
Config 3 6 4R+2L STV and NTV 15

5.5.2 Results

5.5.2.1 Evaluating Application Mappings on Heterogeneous Cores

This section evaluates the MIPS improvements achievable by varying application

mappings to heterogeneous cores.

To estimate the potential impacts of application mapping to chips with varying

degrees of heterogeneity, we consider the three chip cases shown in Tab. 5.3. For the

mapping evaluation procedure, we generate a thousand random workloads composed of

random tasks from Tab. 5.2. Each workload consists of as many tasks as the number

of cores in each configuration. We then exhaustively run all possible mappings of all

workloads in each chip considered.

Figure 5.3 – MIPS distribution for all random workloads when mapped to the heterogeneous chip
configurations.

(a) Config 1 (2R+2M+2L)

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Workload

Standard deviation
Average across all mappings

(b) Config 2 (7R+1L)

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Workload

Standard deviation
Average across all mappings

(c) Config 3 (4R+2L)

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Workload

Standard deviation
Average across all mappings

66

Figure 5.4 – MIPS distribution for the two workloads with the lowest (lowest var) and highest
(highest var) degree of MIPS variation across all mappings to heterogeneous chips.

(a) Config 1 (2R+2M+2L) - lowest var (2.7% var)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 8700 8800 8900 9000 9100 9200 9300 9400 9500 9600 9700 9800

N
u
m

b
e
r

o
f

m
a
p
p
in

g
s

MIPS

(b) Config 1 (2R+2M+2L) - highest var (13.7% var)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 4000 4500 5000 5500 6000 6500 7000 7500

N
u
m

b
e
r

o
f

m
a
p
p
in

g
s

MIPS

(c) Config 2 (7R+1L) - lowest var (2.1%)

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 10000 10100 10200 10300 10400 10500 10600

N
u
m

b
e
r

o
f

m
a
p
p
in

g
s

MIPS

(d) Config 2 (7R+1L) - highest var (10.8%)

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 5600 5800 6000 6200 6400 6600 6800 7000 7200 7400 7600

N
u
m

b
e
r

o
f

m
a
p
p
in

g
s

MIPS

(e) Config 3 (4R+2L) - lowest var (3.7%)

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 3450 3500 3550 3600 3650 3700 3750 3800 3850

N
u
m

b
e
r

o
f

m
a
p
p
in

g
s

MIPS

(f) Config 3 (4R+2L) - highest var (53.6%)

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 500 1000 1500 2000 2500 3000 3500 4000 4500

N
u
m

b
e
r

o
f

m
a
p
p
in

g
s

MIPS

Fig. 5.3 depicts, for each configuration, the average achievable MIPS (in black

lines), as well as the MIPS variation (in shaded yellow color) across all mappings for

each workload (x-axis). We sort the plots by ascending order of MIPS for each workload

for better clarity. All workloads present a significant degree of variation across mappings,

and this effect is more pronounced for more heterogeneous architectures (configurations

1 and 3), as explained next.

To characterize the mapping variations for each configuration, we selected the two

workloads with the lowest and highest degree of variation across mappings and plotted

their corresponding mapping histograms in Fig. 5.4. For both workloads, the plots show

that mappings to heterogeneous architectures result in a wider MIPS spread for the most

67

Table 5.4 – Mapping distribution characterization, for each configuration, for the two workloads
with the lowest and highest variation across mappings.

Config Workload
Average

(µ)

Standard
Deviation

(σ)

Var (%)
(σ/µ)

Mapping
min

Mapping
max

Max/Min

Config 1
(2R+2M+2L)

Lowest 9391.7 255.6 2.7% 8797.9 9807.2 1.11
Highest 5475.8 748.5 13.7% 3982.6 7110.6 1.79

Config 2
(7R+1L)

Lowest 10339.5 214.0 2.1% 10014.8 10576.2 1.06
Highest 6253.5 673.2 10.8% 5651.9 7569.2 1.34

Config 3
(4R+2L)

Lowest 3659.2 136.4 3.7% 3468.4 3949.9 1.14
Highest 2390.9 1346.0 56.3% 864.6 4758.8 5.50

heterogeneous configuration, as seen in Figs. 5.4a and 5.4b. Notice that we run all work-

load permutation cases for each chip. For example, configuration 3 has 6! = 720 possible

mappings, among which only 15 of such mappings are effectively different due to repeat-

ing core types. As such, many mappings are placed in the same bin, resulting in a smaller

number of larger bins, as shown in the plots.

The MIPS distribution characterization for each chip is shown in Tab. 5.4. The

table shows the characterization for the two workloads with the lowest and highest degree

of variation. The average and standard deviation of MIPS are shown, as well as the

coefficient of variation and the mappings with minimum and maximum MIPS.

Notice that the ratio of best to worst case mappings (in the last column) is signif-

icant even for the workloads with the lowest degree of variation, so the potential MIPS

improvements that can be achieved by adequately exploring the mappings by smartly

matching application characteristics to the most appropriate cores are very compelling.

In particular, application mapping plays a more critical role for Config 3. Due to the two

voltage islands, this case presents more aggressive mapping-related MIPS variation. The

worst-to-best mapping ratio is at least 14% (lowest variation workload) and up to 5.5×

(highest variation workload), thus further justifying the importance of proper application

mappings when heterogeneous cores are available.

5.5.2.2 Performance Evaluation of SNAP

This section evaluates the achievable MIPS improvements of the SNAP over the

best possible Full STV/NTV architectures.

For the evaluation, we consider power budgets ranging from 25mW up to 800mW

and obtain the most performant chip architecture for each design evaluation case (Full

68

Figure 5.5 – MIPS comparison for the different MPSoC composition strategies.

(a) Best average attainable MIPS per budget.

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700 800

M
IP

S

Power budget (mW)

Full NTV
Full STV
SNAP

(b) Average across all power budgets.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

M
IP

S

Full NTV
Full STV
SNAP

NTV, Full STV, and SNAP). We then generate one hundred random workloads composed

of varying tasks listed in Tab. 5.2, for each chip case and report average results (across all

workloads) for the most performant architectures.

Fig. 5.5 shows the obtained MIPS results for all evaluated cases: Full STV (in red),

Full NTV (in black), and SNAP (in blue). We ran our framework for each point in the X-

axis (power budget) to determine the best architectures for the three chip pools. As we can

observe, for each power budget, the best chip is frequently the SNAP-generated partial-

NTV, outperforming both Full NTV and Full STV cases, except at the extremes of low

and high power budgets. For the Full NTV version, the most performant configuration is

achievable at a budget of around 150mW, so the curve for the Full NTV case becomes flat

and does not change for higher budgets. For the Full STV version, no valid configuration

can be achieved for power budgets lower than 100mW.

When the power limit is high enough, the SNAP case will optimize all cores to

operate at STV. This causes the intersection of the red and blue curves, where the same

chip configuration is provided for both STV and SNAP. In between the extremes, a mix

of STV and NTV cores provides improved performances, evidencing the advantages of

SNAP.

In Fig. 5.5b, we report the average performance across all power limits. Perfor-

mance improvement of SNAP is achieved due to the extra throughput that is enabled by

the higher number of cores that fit in the power budget when only an efficient subset of

NTV cores is employed. On average (i.e., across all power budgets), SNAP improves

performance upon the best Full STV cases on 13.3 percent (up to 83 percent). When

compared to the Full NTV case, SNAP can improve performance up to 6.3× (average of

3.4×).

69

Figure 5.6 – Area efficiency (MIPS/mm2) comparison for the different MPSoC composition
strategies.

(a) Best average attainable area efficiency per budget.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600 700 800

A
re

a
 e
ffi

ci
e
n
cy

Power budget (mW)

Full NTV
Full STV
SNAP

(b) Average across all power budgets.

 0

 1000

 2000

 3000

 4000

 5000

A
re

a
 e
ffi

ci
e
n
cy

Full NTV
Full STV
SNAP

5.5.2.3 Area Efficiency Evaluation

NTV designs tend to suffer from poor area efficiency, as operating with high

throughput at low voltage settings requires extra hardware resources (e.g., more NTV

cores) to compensate for the low frequency of NTV, increasing the chip area. However,

SNAP can alleviate such overhead by setting only the necessary portion of the chip to

operate at NTV, leaving the remaining cores at STV with higher frequency. Thus, under

the same power budget, we can optimize the chip with the partial NTV setting, yielding

a more performant system in a smaller area compared to a Full NTV chip. Conversely,

Full STV configurations provide improved performance per area but reduced overall per-

formance within each power budget due to lower instruction throughput offered by the

smaller number of available cores compared to SNAP.

The area efficiency results are shown in Fig. 5.6, in terms of MIPS per square

millimeter (MIPS/mm2), for the three strategies explored (Full NTV/STV and SNAP).

These results were obtained with the same methodology as in the previous section. As

expected, NTV cannot improve area efficiency over the Full STV version, as it would

require operating with higher performance in the same area and power (or with lower

performance with less area), which is unattainable with NTV. However, as shown in Fig.

5.6b, the average area efficiency of SNAP (i.e., across all power budgets and for each

scenario) is improved over the Full NTV case. The gains range from 16 percent and

up to 5.2× (average improvement of 3.9×). Thus, under a power limit, although SNAP

has poorer efficiency when compared to the Full STV designs, we can alleviate the poor

efficiency of traditional Full NTV designs.

70

6 A VARIATION-AWARE METHODOLOGY FOR IMPROVED PROCESSOR DE-

SIGNS FOR THE EDGE COMPUTING DOMAIN

This chapter provides details on our proposed methodology for variation-aware

chip optimization. The general optimization goal is to provide efficient chip configu-

rations that (1) maximize the system’s instruction throughput under a power limit

while also (2) maintaining minimum yield requirements of chips subject to process

variation scenarios.

In the following section, We provide a case study to justify our effort to tackle vari-

ations. The following sections then provide the implementation details of our proposed

methodology.

6.1 Motivational Analysis

NTV-induced process variations can lead to increased delay and leakage, causing

frequency fluctuations and unwanted additional power dissipation, thus limiting overall

energy efficiency. This issue is particularly problematic for low-power edge devices, such

as battery-powered processors, that must adhere to strict power dissipation limits. To

address such challenges, it is crucial to properly explore design margins in the low-power

domain to achieve high performance and energy efficiency while maintaining acceptable

yield levels under the constraints of process variation.

As an example of a variation-afflicted design, Fig. 6.1 depicts the power distribu-

tion for several samples of a heterogeneous chip. Notice the distribution is normal, so we

plot its histogram closely resembling a Probability Density Function (PDF) (Fig. 6.1a)

Figure 6.1 – Power distribution of a heterogeneous chip configuration (4 small + 4 big cores).
The samples were generated as explained in section 6.5.1.

(a) PDF of the power samples.

 0

 5

 10

 15

 20

 25

 250 300 350 400 450 500 550 600 650

S
a
m

p
le

s

Power (mW)

(b) CDF of the power samples.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 250 300 350 400 450 500 550 600 650

C
D

F
(%

)

Power (mW)

71

and its associated Cumulative Distribution Function (CDF) (Fig. 6.1b).

The chip in Fig. 6.1 is composed of 4 little + 4 big cores, a configuration resem-

bling the Arm’s DynamIQ setups (ARM, 2021) such as the Snapdragon 865 and Exynos

990 (Triggs, Robert, 2021). The chip’s ideal/nominal peak power dissipation (i.e., with

no variation effects) is ≈ 308mW . However, variation shifts power according to the

Probability Density Function (PDF) distribution in Fig. 6.1a. The power samples’ Cu-

mulative Distribution Function (CDF) is shown in Fig. 6.1b. If the chip’s peak power

constraint is 400mW, for example, then ≈ 32% of the chips will exceed the power limit

(cdfpower(400mW) ≈ 68%). This issue can severely degrade yield for battery-powered

processors with strict power budgets.

6.2 Variation-Aware Proposal

Our approach comprises optimization methodologies starting in the design stage,

followed by a post-design and variation-aware frequency adaptation proposal. The op-

timization goal is to maximize chip-level instruction throughput under two restrictions:

(1) a user-defined power limit; and (2) the process variation constraints that affect perfor-

mance and power. Additionally, notice that variation-induced power overheads affect the

yield because such variations may result in power dissipation beyond the desired power

limit. Consequently, to assure minimum yield maintenance while maximizing perfor-

mance in a variation scenario, we propose a methodological workflow comprising steps

at varying system layers that allows for better exploration of the predicted process varia-

tion margins.

The whole approach spans multiple layers of the chip design, from the circuit level

up to the level of application mapping. An abstract view of this work is shown in Fig. 6.2.

Each optimization layer (as shown in the figure) can be resumed as follows:

1. Circuit level: Here, we propose implementations of chips with two voltage set-

tings to accommodate both high Vdd (STV) and low Vdd (NTV) cores in the same

die. Additionally, we perform post-design per-core frequency adaptation to address

variation-induced delay and power variations;

2. Micro-architecture level: We propose an efficient chip composition algorithm that

provides optimized heterogeneous systems considering four different core micro-

architectures, including scalar in-order and more complex superscalar out-of-order

72

(OoO) cores. The core designs are taken from the Chipyard framework (Amid et

al., 2020). Chipyard provides customized core designs suitable for this research.

This stage results in efficient chip compositions with mixes of different core micro-

architectures as well as the proper voltage settings of each core;

3. Scheduler level: After chip design, we perform proper application mappings to

heterogeneous cores aiming to maximize overall/chip-level instruction throughput

by better matching application properties to the most suitable core. We model the

mapping problem as a maximum weighted perfect matching assignment problem to

provide mappings with maximized chip-level instruction throughput;

4. System level: The optimizations across all layers provide optimized chip configu-

rations with improved system-wide instruction throughput under restricted power

limits and process variation scenarios. Moreover, by carefully selecting the most

suitable chip architectures under the power and variation constraints and perform-

ing proper post-design frequency adaptation, we meet minimum yield constraints

that can otherwise be violated if the variation margins are not efficiently harnessed

during the design and post-design stages.

Figure 6.2 – System layers explored in this thesis.

Micro-architectural level:
Heterogeneous cores

In-Order
0.2 GHz

Circuit-level:
+ Voltage settings (STV/NTV)
+ Frequency adaptation

Scheduler-level: Application mapping

In-Order
0.3 GHz

System-level: Variation-aware chip customization

Low Vdd
(NTV)

Workload

High Vdd
(STV)

In-Order OoO

● Chipyard framework:
○ Rocket
○ SmallBoom
○ MediumBoom
○ LargeBoom

● VARIUS-NTV:
○ Delay variation
○ Power variation

● FinCACTI cell library:
○ STV at 0.8V
○ NTV at 0.55V

Process
variation model

Chip sample

Explore

73

6.3 Approach Overview

This section provides preliminary background information on the scope of this

work. We start by highlighting the overall flow of our optimization proposal (Sec. 6.3.1)

and provide background information on (1) the abstract chip architectural model (Sec.

6.3.2); (2) how we model and address process variation (Sec. 6.3.3), and (3) the adopted

application mapping methodology to explore heterogeneity during runtime (Sec. 5.3).

6.3.1 Proposed Flow of Optimization

An abstract view of our workflow is shown in Fig. 6.3. We start by performing

logic synthesis of each core design. We then apply process variation statistical models in

the designs and perform chip configuration exploration under the assumption of variation

that maximizes performance under power limits. In the post-design phase (test phase), we

perform workload mapping and apply an efficient variation-aware frequency scaling to

further improve the power/performance of the configurations selected during the design

stage. The design-time chip customization approach and the proposal for post-design

frequency scaling will be further detailed in Secs. 6.4.1 and 6.4.2.

6.3.2 Chip Architecture Exploration Scope

In this work, we consider variation-aware architectural chip exploration with both

STV and NTV voltage operation points in the same chip. An abstract architectural-level

Figure 6.3 – Abstract workflow of this thesis.

Post-design time

Design time

Workload
mapping

Core synthesis
(Sec. 6.3.2)

Variation-aware
chip composition

(Sec. 6.4.1)

Variation
modeling

(Sec. 6.3.3)

Frequency scaling
(Sec. 6.4.2)

Requirements
estimation

(Sec. 6.4.3)

74

view of the proposed chip is shown in Fig. 6.4. This approach is similar to the one pre-

sented in the last chapter. However, we complement and improve the previous approach

in the following ways: 1) we introduce parameter variations models in the cores, 2) at de-

sign time, we augment the SNAP exploration with extra variation information to improve

the chip composition methodology, and 3) at post-design time, we propose a frequency

adaptation mechanism to improve performance and/or yield in a power limit and variation

scope. The approach is termed Variation-Aware SNAP (or VA-SNAP).

6.3.3 Modeling and Addressing Parameter Variations

Parameter variations caused by (mostly uncontrollable) chip production irregu-

larities, such as from lithography imperfections (systematic) and random effects, result in

physical mismatches from the intended and nominal goals. Among other parameters, vari-

ations can affect the transistor’s threshold voltage (Vth) and the effective channel length

(Leff), according to Eq. 6.1. Vth0 and Leff0 denote nominal values, which are shifted

by random (rand) and systematic (sys) variation components.

Such variations cause transistor delay variation as well as leakage current varia-

Figure 6.4 – Architecture-level view of the chip subject to process variations.

Shared
L2$

L1i$Core
STV 1
(InO)

STV island

Die

…

L1d$

L1i$Core
STV 2
(OoO) L1d$

T

L1i$Core
STV m
(OoO) L1d$

L1i$ Core
NTV 1
(InO)

NTV island

L1d$

L1i$ Core
NTV 2
(InO)L1d$

L1i$ Core
NTV n
(OoO)L1d$

Tile Tile

Vddmin = 0.70V

Vddmin = 0.75V

Vddmin = 0.80V

Vdd = 0.80V

…

Vddmin = 0.50V

…
Vddmin = 0.52V

Vddmin = 0.55V

Vdd = 0.55V

75

tion. The former manifests in the form of variability in attainable frequency (if the critical

path is affected by variation), and the latter manifests in the form of excessive static power

dissipation due to variation-induced extra leakage current.

Leff = Leff0 + ∆Leff = Leff0 + ∆Leff,rand +∆Leff,sys

Vth = Vth0 + ∆Vth = Vth0 + ∆Vth,rand +∆Vth,sys

(6.1)

In this work, we model variations in both STV and NTV designs. However, the

same amount of Vth and Leff variations translate in a more pronounced delay and leakage

variation at NTV than STV. This can be seen, for instance, by inspecting Eq. 2.5. The

term Vgs − Vth suggests that at low Vgs, variations in Vth have a more pronounced effect

in the delaygate distribution. If not effectively addressed, both types of variations, delay,

and leakage, affect microprocessor design in at least the three following ways:

1. Timing failures due to delay variation: Timing failures (and memory access tim-

ing failures) arise when delay variation affects a logic path making it slower than

the microprocessor’s clock period (Ernst et al., 2004).

2. SRAM stability: Variation can cause hold and write SRAM failures if not ad-

dressed. Achieving proper SRAM operation at NTV is more difficult because

SRAMs usually rely on very meticulous and precise sizing of transistors. As a

consequence, SRAMs tend to be more sensitive to variation, and assuring the read

and write stability of such designs is more challenging than other logic types;

3. Degraded yield due to excessive power dissipation: Excessive leakage current

can occur due to variations in the channel length (Borkar et al., 2003). This is

a conundrum as microprocessors must adhere to a particular power envelope due

to the design-specific TDP or, for instance, to improve battery-powered devices’

lifetime reliability or energy efficiency. If not addressed, devices that consume

excessive power must be discarded, thus degrading yield.

This work adopts the parameter variation models taken from the VARIUS-NTV

framework, described in (Karpuzcu et al., 2012). VARIUS-NTV models both Vth and

Leff variations that affect transistor delay and static power dissipation. Both spatially

correlated systematic and non-correlated random variations are modeled.

Our methodology consists in first performing logic synthesis of all explored core

types. We then extract the delay and static power variation maps provided by VARIUS-

76

NTV with standard floorplanning provided by VARIUS-NTV. Lastly, we generate the

power and delay distributions for each core by scaling the obtained synthesis data accord-

ing to the variation maps provided by VARIUS-NTV.

Recall that we adopt no more than two voltage islands in our design. This provides

higher energy efficiency when compared to multiple voltage settings, primarily due to the

limited power efficiency of having multiple voltage regulators (Karpuzcu et al., 2013).

This way, we do not address delay variation by performing per-core Vdd adaptation. In-

stead, variation is addressed by (1) adopting 8-transistor SRAM cells for improved access

stability; (2) assuring a single safe voltage level (per voltage island) that sustains safe

functionality of all tiles in each island, and (3) performing per-core frequency adaptation

for the given voltage levels and delay variation constraints. These three steps are detailed

as follows:

1. Adopting 8-transistor SRAM cells: We consider 8-transistor SRAM cells for the

NTV designs. This is the variation model implemented by VARIUS-NTV, and

works more reliably at low voltage operation because it protects against read upsets

by decoupling the read and write access transistors. This contrasts with the more

traditional 6-transistor SRAM designs that are more sensitive to variation. For NTV

designs, we estimate power and area for this cell model from the FinCACTI model

and use VARIUS-NTV to estimate parameter variations;

2. Determining the safe voltage level: This step is delegated to the VARIUS-NTV

framework and is not a contribution of this thesis. However, we explain this step

to improve text clarity. VARIUS-NTV computes safe voltage levels to avoid hold

and write stability failures. This step is performed analytically by evaluating each

SRAM block in the chip and choosing the highest minimum voltage level among

all blocks. Assuring proper SRAM functionality at NTV guarantees the safe oper-

ation of the other logic types (combinational and flip-flop-based sequential logic),

because SRAMs are the bottleneck logic type to optimize at NTV;

3. Determining the frequency: After the minimum voltage level is computed, VARIUS-

NTV proceeds to perform static timing analysis in the logic distribution to estimate

transistor delays with the voltage computed in the previous step. This step provides

delay variation maps and the per-core (variation-afflicted) critical path.

We address timing failures by applying proper frequency adaptation, after the chip

design, by plugging the delay variation maps provided by VARIUS-NTV into each of the

77

Figure 6.5 – Design time chip exploration workflow.

Generate
variation maps
(VARIUS-NTV)

ILP solver
(GLPK)

Record chip
configuration

Cores’ HDLs
(.v)

 STV NTV
(Chisel)

Logic
synthesis
(Genus)

STV
cells
(.lib)

NTV
cells
(.lib)

Power budget

(1)

Delay and power PDF

μdelay/σdelay
μpower/σpower

(2)

(3)

(4)

chip configurations we evaluate. The frequency adaptation is made statically after the

chip design. This work part is detailed in Sec. 6.4.2.

6.4 Variation-Aware Design- and Post-Design time Optimization

This section provides details on the elaboration of our methodology. We start

by explaining the design-time chip customization strategy (Sec. 6.4.1), followed by the

elaboration on the post-design frequency scaling mechanism (Sec. 6.4.2). Lastly, we

elaborate on the high-level algorithm encompassing both design- and post-design phases

(Sec. 6.4.3). The design-time and post-design-time workflows are outlined in Figs. 6.5

and 6.6, respectively. We will refer to the figures in more detail in the next sections.

6.4.1 Design-time and Variation-Aware Chip Customization

The overview of the design time optimization workflow is shown in Fig. 6.5.

The optimization goal is to find optimized configurations to meet the criteria shown in

Eq. 6.2. For the user-defined power budget (Pb) and a set of configurations (configs),

we seek the MPSoC configuration (target_config) with the highest IPS that provides at

least the minimum required yield Y ieldmin. For instance, for a minimum yield of 95%,

78

we require configurations with cdfpower(Pb) ≥ 95%. Notice that 1 − cdfpower(Pb) repre-

sents the fraction of chip samples that exceed the power limit. Our goal is to identify the

heterogeneous configuration with the highest performance and lowest probability of vio-

lating the power budget, considering the distributions of performance and power resulting

from variation phenomena.

TargetConfig(Pb, Y ieldmin) = argmax
conf∈configs

{IPSconf |Powerconf ≤ Pb,

cdfpower(Pb, conf) ≥ Y ieldmin}

(6.2)

Recall that our exploration space considers RISC-V heterogeneous cores with∑16
i=2

(
i+4−1

4

)
= 4840 full STV and full NTV chips. The VA-SNAP/mixed configurations,

however, result in a much larger design space, with a total of
∑16

i=2

(
i+8−1

8

)
= 735, 462

possibilities. In our sampling-based exploration, we generate 288 chip samples per con-

figuration (the variation maps provided by the VARIUS-NTV framework), amounting to

over 735, 462 × 288 ≈ 211 million chip variation samples in total, making exhaustive

optimization unfeasible (especially due to the frequency scaling solver presented in the

next section).

To make the VA-SNAP approach feasible, we improve our ILP approach to effi-

ciently compose optimized MPSoC configurations under the assumption of process vari-

ation.

maximize
∀ core types c

∑
c

[(µIPS,c + η1 × σIPS,c)× Countc] ,∀η1 ∈ [−3, 3] (6.3a)

subject to

µpwr,L2 +
∑
c

[(µpwr,c + η2 × σpwr,c)× Countc] ≤ Pb, ∀η2 ∈ [−3, 3], (6.3b)

2 ≤
∑
c

Countc ≤ 16 (6.3c)

The goal is to maximize the IPS performance (objective) under power budget lim-

its (constraint). The objective and constraints are depicted in Eqs. 6.3a, 6.3b and 6.3c.

The inputs are the power budget limit (Pb), the average core IPS and power (µips,c, µpwr,c)

of each core type c, the second-level cache average power (µpwr,L2), as well as the standard

deviation information that captures both core IPS and power of chips subject to variations

79

(σips,c, σpwr,c) of each core type c. The ILP method aims to select the optimal set of

cores (outputs are the types and number of each core type - Countc) to maximize the IPS

performance while not violating the given power budget (Pb), as is illustrated in Eq.6.3a

(budget constraint in Eq. 6.3b). We also constrain the number of cores to the range [2,16]

(constraint in Eq. 6.3c).

Our exploration starts by performing logic synthesis for each core type (step 1

in Fig. 6.5) and generating delay and power distributions (variation maps) for each core

configuration (step 2). As power and delay variations are normally distributed, we explore

variation margins by conservatively assuming that delay and power vary in the range

[µ− 3σ, µ+ 3σ]. This interval accounts for over 99% of all samples in the distribution.

To find optimized configurations for a required and fixed power limit, we iterate a

nested loop over a range of different variation margins (the multipliers η1, η2 ∈ [−3, 3] at

steps of 0.5), shown in Alg. 1. For each loop iteration (lines 5-6), we run the ILP approach

(line 7) with the inputs η1/η2 variation factors, the power budget and per-core delay, and

power µ/σ variation parameters from their respective PDFs (Probability Density Func-

tion), and record the solver’s optimized configuration for the required power limit (line

8). This results in no more than 169 configurations per budget (we exclude possible con-

figuration repetitions generated by the solver). The ILP phase is shown in Fig. 6.5, step

4.

We repeat the previous step (4) over a range of varying power budgets in the inter-

val [50mW, 1000mW], with steps of 10mW. In the end, the ILP process results in a pool

of VA-SNAP MPSoC configurations for all required power limits. In total, this approach

selects around 15K candidate configurations in the explored power budget range (exclud-

Algorithm 1: ILP algorithm for MPSoC composition
Input: Pb - the power budget
Input: PDFdelay - Per core delay Probability Density Function
Input: PDFpower - Per core power Probability Density Function
Output: VA-SNAP MPSoC configuration

1 µIPS ← ExtractAverage(PDFdelay);
2 σIPS ← ExtractStandardDeviation(PDFdelay);
3 µpower ← ExtractAverage(PDFpower);
4 σpower ← ExtractStandardDeviation(PDFpower);
5 foreach η1 in range[-3,3] do
6 foreach η2 in range[-3,3] do
7 Run ILP in Eq. 6.3a with inputs η1, η2, Pb, µIPS , σIPS , µpower, σpower;
8 Record the solved configuration (each Countc);

80

Figure 6.6 – The goals of frequency scaling.

Power budget

Frequency scaling
(power capping)

~500mW

Frequency scaling
(perf. boost)

Workload

~400mW

~600mW

…

Chip configurations

Chip samples

ing any repetitions). Finally, the configuration pool is fed to the sampling strategy that

iterates over each MPSoC configuration in the pool. In this phase, while optimizing for

each fixed budget Pb, multiple variation samples are generated for each configuration. The

frequency scaling strategy (presented next) is applied to each sample to meet the power

limit. We then record each of the configurations’ IPS performance and cdfpower(Pb) for

the target power limit (step 5). In the end, we search for the highest-performing config-

uration that guarantees a minimum required yield for the desired power limit (extracted

from cdfpower(Pb)).

6.4.2 Post-Design and Variation-Aware Frequency Scaling

We complement our design-time approach with an efficient post-design frequency

scaling mechanism to cope with unwanted power variations after the chip design. Fig. 6.6

outlines the goals of our proposed frequency scaling strategy. The frequency adaptation

is applicable individually, per chip sample, aiming to either (1) reduce dynamic power

dissipation (power capping) if the chip’s peak power dissipation is higher than the required

budget or otherwise (2) improve performance, if possible. The two goals are described as

follows:

1. Frequency scaling for power capping: After fabrication, the individual cores vary

in delay and power dissipation. If the core’s peak power exceeds the desired power

81

limits, we perform frequency scaling to reduce the core’s dynamic power. In this

sense, the frequency scaling strategy allows the designer to relax the prefabrication

estimated power variation margins. For a given power limit, relaxing the design-

time predicted power variation allows the fabrication of more aggressive MPSoC

configurations, with higher performance, for the desired power limits;

2. Frequency scaling to improve performance: If the chip’s peak power dissipation

is below the desired power limit, we can efficiently increase the core’s frequency

in the cases where we can take advantage of (beneficial) delay variation that allows

individual cores to operate faster than the designer’s target frequency goal. Notice

that delay variation follows a normal distribution, where variation samples fluctuate

around the intended frequency goal. This essentially means that around 50% of the

chip sample designs in the delay distribution have delay below the intended goal,

thus allowing for performance boost of such cases.

maximize
N∑

core=1

(IPCcore × Fcore) (6.4a)

subject to

PL2 +
N∑

core=1

Pstacore +
N∑

core=1

Pdyncore ≤ PB, (6.4b)

50MHz ≤ Fcore ≤ Fmax,variation,∀cores ∈ [1, N] (6.4c)

For each chip sample, the total power dissipation includes the cores’ dynamic

(Pdyncore) and static (Pstacore) powers as well as the second-level cache total power

(PL2). Namely, the chip’s total power is modeled as Pchip = PL2+
∑

(Pstacore + Pdyncore),

where Pdyncore ∝ Fcore; so scaling the frequency brings associated changes the cores’

dynamic power dissipation.

The proposed frequency scaling methodology is implemented as a Linear Pro-

gramming (LP) approach, shown in Eq. 6.4a, which aims to keep total power dissipa-

tion under the budget PB while maximizing the system’s overall IPS as much as possi-

ble. For that, the LP aims at finding the optimal set of core frequencies (Fcore, for all

N cores in the MPSoC) such that the overall MPSoCs IPS is maximized (notice that

IPScore = IPCcore × Fcore) while not exceeding the desired power limit (Eq. 6.4b).

Neither PL2 nor Pstacore are affected by frequency scaling. Also, to keep the

82

Algorithm 2: Variation-aware exploration algorithm
Input: Pb - the power budget
Input: Y ieldmin - the minimum required yield
Input: workload - a set of applications
Output: Best MPSoC configuration for the power restriction and minimum yield
/* Generates the list of MPSoC configurations. Two cases: */
/* 1) Full STV/NTV configurations are created exhaustively. */
/* 2) SNAP configurations are created with the method in

brownSec. 6.4.1, Alg. 1 */

1 ConfigPool← GenerateConfigsList(Pb, Full STV/NTV or SNAP);
2 currentConfig ← 0;
3 ipsBest← 0;
/* Iterates over each MPSoC configuration */

4 foreach configuration config in ConfigPool do
5 chipSamples← GenerateV ariationSamples(config);
6 countPass← 0;
7 µips ← 0;
8 foreach MPSoC varSample in chipSamples do
9 varSample.mapWorkload(workload);

/* Scale frequency with the method in Sec. 6.4.2, Eq. 6.4a */

10 if varSample.LpTuneFrequencyOpt(Pb) == TRUE then
11 countPass← countPass+ 1;
12 µips ← µips + varSample.ips;
13 end
14 else

/* Sample failed to meet the power budget. */
15 end
16 end
17 µips ← µips/countPass;
18 yield← countPass/chipSamples.items;
19 if yield ≥ Y ieldmin then

/* Keeps the best configuration for this budget */
20 if µips > ipsBest then
21 ipsBest← µips;
22 configBest← currentConfig;
23 end
24 end
25 else

/* Configuration cannot meet the minimum required yield for this
budget. */

26 end
27 currentConfig ← currentConfig + 1;
28 end
29 return configBest;

design exploration feasible, we assume that the IPC is not affected by frequency. While

frequency could affect IPC to some extent, this simplification makes the maximization

problem linear and reduces the complexity of our design space while still providing ef-

ficient frequency solutions. Finally, notice that in the restriction in Eq. 6.4c, the core’s

frequency is allowed to be boosted up to the maximum frequency allowed by variation

(Fmax,variation), which can be either below or above the designer’s target frequency goal.

6.4.3 Putting It All Together: Variation-Aware Exploration Algorithm

The complete variation-aware exploration algorithm is shown in Alg. 2. The

algorithm works in a per-workload fashion. Workloads are defined as sets of tasks, as

83

described in section 6.5.1.

First (line 1), we generate the pool of MPSoC configurations we want to explore.

For the full STV and full NTV versions (4840 configurations each), we exhaustively list

all possible configurations. For the VA-SNAP MPSoCs with mixes of STV and NTV

cores, however, we use the ILP method described in subsection 6.4.1 to list the candidate

configurations we want to explore (around 15k configurations). Secondly, we generate the

variation samples for each configuration (line 5) and map the desired workload to each

sample (line 9), determining the cores’ IPCs and power dissipation used in the frequency

scaling phase. We then perform the frequency scaling optimization for the sample target-

ing a power limit Pb (line 10), which returns TRUE in case there is a set of possible valid

frequencies such that the current MPSoC sample consumes no more than the required

power limit pb; otherwise the optimization fails, and the sample is discarded.

We keep a sample counter countPass to count the number of samples that con-

sume power less than or equal to the power limit, i.e., the ones that are not discarded (line

11). This counter determines the average IPS of all such samples (line 17), as well as the

yield (line 18) for the required power limit, which determines cdfpower(pb). Next, if the

yield is at least equal to the minimum required (line 19), we select the highest-performing

configuration, i.e., the configuration of maximum IPS such that cdfpower(pb, config) ≥

Y ieldmin (lines 20-22), achieving the optimization goal of Eq. 6.2.

6.5 The Proposal’s Evaluation

This section presents the results of our variation-aware chip composition and the

proposed frequency scaling methodology.

6.5.1 Experimental Methodology

We conducted our experiments with the core implementations provided by the

Chipyard open-source framework (Amid et al., 2020). The adopted core configurations

are the RISC-V Rocket (in-order) core as well as three configurations of the RISC-V

Berkeley Out-of-Order Machine (BOOM) superscalar core, as listed in Tab. 6.1.

RTL-accurate performance is evaluated for each core configuration for both STV

and NTV setups. Power estimations are performed with the Genus Cadence tools by

84

Table 6.1 – Explored processor configurations. The power and frequency shown are under
nominal conditions.

Parameter Rocket SmallBoom MediumBoom LargeBoom

Fetch/Decode/Issue width 1 4/1/3 4/2/4 8/3/4
Issue unit entries n/a 3×8 3×16 3×24
Reorder buffer entries n/a 32 64 96
Load/store unit entries n/a 8/8 16/16 24/24
Integer register file 32 52 80 100
Floating point register file n/a 48 64 96

STV
Power (mW) 16.1 37.7 50.0 81.12
Frequency (GHz) 1.5 1.5 1.5 1.5
Area (mm2) 0.10 0.29 0.38 0.59

NTV
Power (mW) 5.5 11.9 15.88 24.5
Frequency (GHz) 0.22 0.31 0.27 0.22
Area (mm2) 0.11 0.3 0.39 0.61

using the 14nm standard cells provided by the FinCACTI library (Shafaei et al., 2014),

as it offers implementation designs optimized for both high-performance (STV at 0.8V)

and for energy efficiency (NTV at 0.55V). We also use FinCACTI for memory power

estimation.

To cover a significant scope of applications on the edge domain, we use the ap-

plications listed in Tab. 6.2. We categorize the applications spanning across different

domains, as listed in the table. The applications Support Vector Machine (SVM), A*,

Dynamic Time Wrapping (DTW), AES, and Histogram are taken from the IoT-domain

LOCUS kernels (TAN et al., 2016). Dijkstra, SHA, CRC32, and Susan are taken from the

MiBench suite (GUTHAUS et al., 2001), and the linear algebra and data mining applica-

tions are taken from the PolyBench suite (POUCHET; YUKI, 2011).

To evaluate our approach, we extract within-die variation samples from the VARIUS-

NTV framework and perform the exploration algorithm with the following MPSoC con-

figuration cases:

1. Full STV/NTV case: The variation-aware methodology is applied in the two design

pools consisting of MPSoCs operating fully at STV/NTV. Notice that both Full

STV/NTV cases are always “variation-aware” as we explore all possible configura-

tions for both cases;

2. SNAP (variation unaware) case: This is the case where variation is not considered

in the SNAP methodology (Chapter 5), i.e., the ILP method for MPSoC formation

considers only nominal IPS and power, with no variation margin assumptions;

85

3. VA-SNAP (variation aware) case: The VA-SNAP methodology as described in sec-

tion 6.4.

For all cases listed above, we perform the sampling-based search both with fre-

quency scaling (+FS) and without it (no FS) and report the average attainable IPS (i.e.,

average across all samples) for the best configuration (i.e, of highest average IPS) pro-

vided by the sampling method, assuring minimum yield requirement of 95% for each

required power limit. We assume power limits such that we can cover all possible chip

configurations (of average lowest to average highest power consumption, assuming pro-

cess variation) by varying the power limits in the range [25mW, 1000mW], with steps

of 10mW. We consider all scenarios in Tab. 6.2, providing a wide distribution in terms

of MIPS across cores and tasks (see Fig. A.4 in appendix A.2). The results report the

average optimized IPS across all application scenarios.

In this section, we present the obtained performance results for the optimized

configurations for the three MPSoC configuration cases listed in section 6.5.1. For each

power budget Pb, we search for the best configuration with a minimum yield of 95% (i.e.,

with cdfpower(Pb) ≥ 95%). However, we evaluate achievable performance for different

yield requirements in subsection 6.5.2.4.

Table 6.2 – Application scenarios explored in this work.

Scenario App domains Applications

1
Image processing
Machine learning

Graphs
Signal processing

Susan corners
SVM

A*, Dijkstra, Floyd–Warshal
DTW

2
Security

Data mining
Data integrity

Blowfish
Correlation, Covariance

SHA, CRC32

3
Misc

Algebra
Graphs

String search
LU, Cholesky, Gramschmidt
A*, Dijkstra, Floyd–Warshal

4
Misc

Image processing
Security

Qsort
Susan smoothing, Histogram

AES (enc,dec)

5
Image processing
Signal processing

Security
Data integrity

Susan edges
DTW

AES (enc,dec)
SHA, CRC32

86

6.5.2 Results

6.5.2.1 Variation-Aware VA-SNAP Approach and Frequency Scaling

Fig. 6.7a reports the average optimized Millions of Instructions Per Second (MIPS,

y-axis) for the range of power budgets (x axis). We plot the results for all chip compo-

sition strategy cases shown in the plot labels, with (+FS) and without (no FS) frequency

scaling (FS). As can be observed in the plot, for all cases, the MIPS grows proportionally

to the budget until the point in which the highest-performing configuration is achieved

(i.e., around 1000mW). The Full NTV case has a lower IPS performance across all bud-

gets, as the highest-performing NTV configuration (with 16 low-frequency NTV cores)

is achievable for small power limits; hence IPS stagnates around 125mW. On the other

hand, notice that no Full STV configurations are possible with less than 200mW for the

required minimum yield of 95%, as they are more power-consuming voltage cases.

As shown by the average results in Fig. 6.7b, the VA-SNAP configurations (com-

posed of a blend of STV and NTV cores), combined with frequency scaling, outperform

all other cases due to the availability of more core options that allows exploring power

margins with finer granularity. On average, VA-SNAP improves performance over the

Full STV + FS in 12% and around 3.4× over the Full NTV+FS case (geometric mean of

gains across all power budgets).

Secondly, post-design frequency scaling improves performance for all chip design

approaches. For various minimum yield requirements, the average improvements are

shown in Tab. 6.3. More demanding yield levels require smaller chip designs if no FS

is adopted. On the other hand, by applying FS, the variation margin assumptions can

Figure 6.7 – MIPS comparison for the different MPSoC composition strategies.

(a) Best average attainable MIPS per budget.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Power budget (mW)

Full NTV (no FS)
Full NTV (+FS)
Full STV (no FS)
Full STV (+FS)
VA-SNAP (no FS)
VA-SNAP (+FS)

(b) Average across all power budgets.

 0

 5000

 10000

 15000

 20000

 25000

No FS With FS

M
IP

S

Full NTV
Full STV
VA-SNAP

87

Table 6.3 – Best average achievable MIPS for varying yield requirements (average across all
power budgets). Gains are the geometric mean of all gains, across all budgets, provided by

frequency scaling.

Min yield 85% Min yield 90% Min yield 95% Min yield 99%

Full STV
No FS 13470 13377 12049 11232

With FS 16392 16763 15968 16041

Gain 21.7% 25.3% 32.5% 42.8%

Full NTV
No FS 4043 4015 3974 3853

With FS 4431 4431 4427 4249

Gain 11.7% 13.7% 16.5% 19.4%

VA-SNAP
No FS 16221 15476 15098 14780

With FS 18091 17759 17849 18459

Gain 11.5% 14.6% 17.7% 22.4%

be relaxed, allowing for the composition and selection of larger configurations under the

power limit. This effect is shown in Tab. 6.3 - as the minimum yield requirement grows,

the benefits of the frequency scaling become more pronounced.

Finally, notice that the frequency scaling is not as effective for Full NTV and VA-

SNAP as it is for Full STV. This is due to the presence NTV cores in both cases. Variation

is more aggressive at NTV, and variation-afflicted cores with low Vth tend to consume

more variation-induced additional leakage power than the high Vth ones save. In other

words, under variation, the average static power tends to be higher than the variation-free

counterpart. Additionally, the share of the dynamic power of NTV cores is smaller than

the static one (both due to low Vdd and Vth variation). As a result, the post-design FS tends

to be more aggressive for the NTV cores when power capping is needed.

6.5.2.2 Case Study

Fig. 6.8 shows an evaluation case optimized for scenario 1 (in Tab. 6.2) for a re-

quired power limit of 400mW. For this power limit, we search for the highest-performing

configuration for the three chip configuration cases (shown in the plot labels), assuring a

minimum yield of 95%. We generate the variation distribution for each configuration and

plot the MIPS and power for each sample in Fig 6.8. We evaluate the cases with and with-

out frequency scaling. In Fig. 6.8b, notice that VA-SNAP (+FS) consistently provides

higher performance than the conventional Full STV (+FS) case, with an average MIPS

improvement of 16.5% with only 1.6% increase in average power dissipation, measured

from the power distribution in Fig. 6.8d.

88

Figure 6.8 – MIPS and power samples for optimized chips aiming a power limit of 400mW, with
and without FS.

(a) MIPS of chip samples (no FS).

 5000

 10000

 15000

 20000

 0 50 100 150 200 250 300

M
IP

S

Chip samples

Full NTV (no FS)
Full STV (no FS)
VA-SNAP (no FS)

(b) MIPS of chip samples (+FS)

 5000

 10000

 15000

 20000

 0 50 100 150 200 250 300

M
IP

S

Chip samples

Full NTV (+FS)
Full STV (+FS)
VA-SNAP (+FS)

(c) Power of chip samples (no FS).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300

Po
w

e
r

(m
W

)

Chip samples

Full NTV (no FS)
Full STV (no FS)
VA-SNAP (no FS)
Power limit

(d) Power of chip samples (+FS).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300

Po
w

e
r

(m
W

)

Chip samples

Full NTV (+FS)
Full STV (+FS)
VA-SNAP (+FS)
Power limit

Notice that when frequency scaling is not adopted (Figs. 6.8a and 6.8c), achiev-

ing a high minimum yield of 95% requires relying on overly conservative designs, i.e., by

adopting low power consuming configurations such that even under the presence of vari-

ation most chip samples will not exceed the power limit. This can be seen in the power

curves of Fig. 6.8c, which show a high power margin below the power limit. This comes

at the cost of performance degradation. Conversely, in Fig. 6.8d, notice that the Full STV

(+FS) and VA-SNAP (+FS) chips have power dissipation very close to the power limit

Figure 6.9 – Average best achievable MIPS for the variation aware (VA-SNAP) and unaware
(SNAP) designs, with and without frequency scaling.

(a) Best MIPS for the SNAP and VA-SNAP cases.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Power budget (mW)

SNAP (no FS)
SNAP (+FS)
VA-SNAP (no FS)
VA-SNAP (+FS)

(b) Average across all power budgets
shown in Fig. 6.9a.

 0

 5000

 10000

 15000

 20000

 25000

No FS With FS

M
IP

S

SNAP
VA-SNAP

89

due to optimized frequency scaling calibration. This efficient power margin exploration

effectively comes with an associated increase in performance, as shown in Fig. 6.8b.

6.5.2.3 Variation-aware versus Variation-unaware Approaches

Fig. 6.9 compares the performances of variation-aware (VA-SNAP) and variation-

unaware (SNAP) cases with and without FS. On average, if variation is properly har-

nessed, MIPS improvements of around 51.9% with FS (70.3% without FS) can be achieved

compared to the variation-unaware counterparts (geometric mean of gains across all bud-

gets).

6.5.2.4 MIPS for Minimum Yield Requirements

In Fig. 6.10, we report the average best case MIPS for VA-SNAP for a set of min-

imum yield requirements (shown in the plot labels). The critical observation is that as

the yield constraint is relaxed, more extensive design choices (with higher power dissipa-

tion) are possible for the required budgets, showing a noticeable tradeoff between perfor-

Figure 6.10 – Best attainable MIPS for various yield requirements for the variation-aware
VA-SNAP case.

(a) VA-SNAP average best MIPS (no FS)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Power budget (mW)

Min yield 85%
Min yield 90%
Min yield 95%
Min yield 99%

(b) VA-SNAP average best MIPS (with FS)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Power budget (mW)

Min yield 85%
Min yield 90%
Min yield 95%
Min yield 99%

(c) Average across all power budgets.

 10000

 12000

 14000

 16000

 18000

 20000

 22000

No FS With FS

M
IP

S

Min yield 85%
Min yield 90%
Min yield 95%
Min yield 99%

90

Figure 6.11 – MIPS performance of all evaluated methods, normalized to the Full NTV (No FS)
case.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

No FS With FS

N
o
rm

a
liz

e
d
 M

IP
S

Full NTV
Full STV

SNAP
VA-SNAP

mance/power and yield. For example, the average MIPS increases +27% if the minimum

yield is relaxed from 99% to 85% (No FS case) and +15% for the case with FS. Notice

that the frequency scaling increases performance for all minimum yield cases, as seen in

Fig. 6.10b, since it allows for additional relaxation of power margins during chip design,

enabling larger (and with higher performance) configurations for the required yield.

6.5.2.5 Overall Gains Evaluation

The overall optimized (average) MIPS for all evaluated chip design cases is shown

in Fig. 6.11, normalized to the Full NTV (No FS) (worst) case. Each case renders config-

urations of maximum performance and a minimum yield of 95%. As it can be observed,

performance is progressively improved if a combination of both design-time variation-

aware MPSoC composition and careful post-design frequency scaling is adopted.

The results show that a combination of variation-aware designs with a blend of

STV and NTV cores (VA-SNAP) has enhanced performance over conventional cases in

which architectures operate either entirely at STV or NTV. The variation-aware ILP pro-

posal for the VA-SNAP case, combined with frequency scaling, improves performance,

on average, around +12% (against Full STV+FS), +52% (against SNAP+FS), and 3.4×

(against Full NTV+FS) cases when subject to the same variation constraints and limited

to the same power budgets. A minimum yield of 95% is satisfied for the provided config-

urations in all cases.

91

Figure 6.12 – Normalized MIPS per each scenario

 0

 1

 2

 3

 4

 5

 6

Scen 1 Scen 2 Scen 3 Scen 4 Scen 5

N
o
rm

a
liz

e
d

 M
IP

S

Full NTV (no FS)
Full NTV (+FS)
Full STV (no FS)

Full STV (+FS)
VA-SNAP (no FS)
VA-SNAP (+FS)

6.5.2.6 Per-Scenario Results

Fig. 6.12 shows the achievable obtained MIPS (normalized to the Full NTV (No

FS) case. The gains range from 3.9 up to 4.7 times. Finally, Tab. 6.4 shows the per-

scenario MIPS improvements of SNAP+FS compared to all explored architectures. In

essence, the achievable improvements depend on application-dependent factors such as

IPC and mapping solution. Together with the process variation parameters, the power

envelope, and yield requirements, such application-dependent aspects influence the effi-

ciency of frequency scaling for the given chips.

Table 6.4 – MIPS gains of VA-SNAP (+FS), per scenario, against all other chip design cases.

Vs Full NTV
(no FS)

Vs Full NTV
(+FS)

Vs Full STV
(no FS)

Vs Full STV
(+FS)

Vs VA-SNAP
(no FS)

Scenario 1 4.4× 3.9× +55.1% +13.3% +17.3%
Scenario 2 4.7× 4.3× +23.6% +7.9% +11.9%
Scenario 3 4.6× 4.2× +36.5% +11.1% +16.4%
Scenario 4 3.9× 3.5× +41.8% +12.0% +16.5%
Scenario 5 4.3× 3.8× +48.3% +13.7% +17.2%

92

7 CONCLUSIONS

This work proposes optimization methods to improve key requirements for het-

erogeneous systems, such as reliability, performance, and energy and efficiency. We also

propose a methodology to mitigate process variations constraints on heterogeneous chips

aiming to improve performance and energy efficiency while also maintaining yield re-

quirements.

7.1 Addressing Reliability

In the first part of the work, we leverage application and hardware heterogene-

ity (at the level of core microarchitecture) and propose a mapping strategy that improves

the system’s resilience to soft errors, measured in terms of Mean Workload To Failure

(MWTF). We propose a learning method (by adopting an Artificial Neural Network) that

learns application-dependent Architectural Vulnerability Factor (AVF) from core pipeline

utilization. We then use the learned AVF outputs to guide the application mapping de-

cisions (during runtime) that provide application-to-core mappings that are very close to

the optimal mapping in terms of MWTF.

To evaluate our strategy, we experiment with different configurations of heteroge-

neous RISC-V cores and compare the achievable MWTF of prediction-based mappings

against the optimal oracle. We resume this part of the thesis by highlighting the following

conclusions:

1. We propose an ANN-based AVF estimation methodology to infer per-core AVF

from application-dependent hardware counters. The ANN runs at software-level

and imposes small performance overheads of around 8 K cycles per inference;

2. With the given ANN, we perform MWTF-oriented application mappings to het-

erogeneous cores. When compared to the oracle mappings, our prediction-based

mappings offer MWTF as close as 4.9 percent (max of 6.6 percent) to the oracle

solutions on heterogeneous systems;

3. The proposed prediction-based mappings, combined with heterogeneous chip com-

positions, provide improved MWTF compared to homogeneous systems (average

improvement of 14 percent) while also increasing the MWTF/energy tradeoff (av-

erage improvement of 6.7 percent).

93

7.2 Improving Performance and Energy Efficiency with NTV Edge Devices

Aiming at improving performance and energy efficiency under power-constrained

scenarios, we provide a methodology (SNAP) that performs performance-oriented map-

pings to heterogeneous and efficient chip designs. The chips are effectively designed by

considering selective and efficient use of Near-Threshold Voltage (NTV).

Our approach consists in effectively combining both NTV and STV/conventional

cores in the same chip. To achieve very efficient designs under a power limit, we adopt

knapsack-like design space exploration to achieve solutions that provide efficient core

compositions. By restricting the chip design space to a power limit, we propose an Integer

Linear Programming (ILP) approach to maximize the chip-level instruction throughput by

exploring heterogeneous cores. The solved solutions provide the most performance- and

energy-efficient chips (with an optimized number of each core type and voltage settings)

under the required power limit.

We then perform experiments with heterogeneous RISC-V chips and show that

designs composed of mixes of NTV and STV cores (SNAP) outperform conventional

designs that operate fully at STV (or fully at NTV) in terms of chip-level instruction

throughput (IPS) and area efficiency (IPS/area). We conclude this part of the thesis as

follows:

1. Designs that operate fully at NTV levels have very poor area efficiency due to the

low-frequency cores. Our approach mitigates such issue and provides designs with

3.9 times better area efficiency (up to 5.2 times) when compared to standard ap-

proaches that operate entirely at NTV;

2. We evaluate the achievable performance in terms of chip-level instruction through-

put (IPS). We show that our approach provides +13.3 percent (average) IPS im-

provements over conventional (full STV) architectures (up to 83 percent). Com-

pared to standard approaches operating fully at NTV, average IPS gains of 3.4 times

are achieved (up to 6.3 times).

7.3 Addressing Process Variations with NTV Edge Devices

We augment our previously proposed chip design approach with process varia-

tion models and provide a two-step design approach to improve edge-based processors’

94

performance and energy efficiency restricted to power limits and process variation con-

straints while maintaining minimum yield requirements (VA-SNAP). First, we populate

our previous ILP method for chip composition with process variation information. Sec-

ondly, we propose an efficient post-design frequency scaling mechanism to either cope

with unwanted delay and power variations unseen during fabrication (power capping) or,

if possible, to perform variation-enabled frequency boosting to improve performance. Un-

der restricted power limits, the VA-SNAP methodology guides towards proper chip con-

figurations that maximize the system’s multi-task instruction throughput under process

variation scenarios.

We experiment with RISC-V heterogeneous chips by performing performance-

oriented mappings to evaluate how VA-SNAP performs when compared to standard (Full

STV/NTV) designs. The following conclusions can be drawn from our experiments:

1. Our frequency scaling approach improves IPS of all explored chip configuration

cases (Full STV/NTV and VA-SNAP). For example, improvements of 32.5 percent

(16.5 percent) are achieved for Full STV (Full NTV) architectures and 17.7 percent

for VA-SNAP. Secondly, frequency scaling assures minimum yield requirements (95

percent for the previous example);

2. Chip design should effectively consider process variation models both during design-

and post-design time. If a minimum required yield must be kept under a variation

scenario, our approach can improve performance, on average, by 51.9 percent (if

combined with frequency scaling) when compared to variation-agnostic designs;

3. We show that the efficient use of selective NTV, combined with frequency scaling,

allows for fine-grain exploration of power slacks under a power limit. When com-

pared to standard Full STV (Full NTV) architectures (all using frequency scaling),

VA-SNAP provides, on average, +12 percent (3.4 times) IPS improvements under

the same power limit while also maintaining similar yield levels.

7.4 Future Work

Future proposals could address the limitations of the current work. For example,

applications comprise multiple heterogeneous tasks that vary in minimum performance

requirements and task-depended reliability criticality. This issue may become a conun-

drum in a chip design composed of mixed STV/NTV cores with varying system-level raw

95

soft error rates and increased parametric variations. Thus, a more holistic chip design and

mapping approach could be considered according to the following insights:

1. Chip design requirements could rely on multi-objective optimization criteria to bal-

ance both performance and reliability, thus providing a more holistic approach to

address both SEU reliability and process variations of NTV chips;

2. Secondly, as NTV cores have increased radiation-induced raw error rates, mapping

approaches considering chips with both NTV and STV cores could take advantage

of such design space to improve reliability. For instance, applications could be

classified into varying degrees of criticality, and more robust applications (with a

higher degree of fault masking) could be mapped to NTV cores.

Additionally, other proposals could expand the design space by exploring other

hardware accelerators available in the Chipyard framework. For example, open-source

hardware accelerators for machine learning workloads are already available, such as sys-

tolic arrays (GENC et al., 2021). Both SEU reliability and NTV-induced process varia-

tions could be explored in the scope of systolic arrays. However, two main issues must be

considered.

First, the RTL models of such complex designs tend to suffer from very slow

simulation performance, making fault injection campaigns unfeasible for deep machine

learning workloads. For that, faster fault injection mechanisms could be proposed at the

expense of diminished accuracy.

Secondly, when exploring process variations, it was already shown that variation-

induced timing violations on systolic array operations significantly lower neural network

accuracy (JIAO et al., 2017). Even under low timing error rates on multiply-accumulate

(MAC) operations, there is a significant accuracy drop for both simpler fully connected

and more complex deep convolutional networks. Thus, low-cost approaches to tackle

timing violations in such designs are an attractive alternative for future works.

7.5 List of Published Papers

The following is a list of published papers over the course of this thesis.

96

7.5.1 Main Publications

• R. B. Tonetto et al., “A Knapsack Methodology for Hardware-based DMR Protec-

tion against Soft Errors in Superscalar Out-of-Order Processors,” 2019 IFIP/IEEE

27th International Conference on Very Large Scale Integration (VLSI-SoC), 2019;

• R. B. Tonetto, H. M. G. de A. Rocha, B. Zatt, A. C. S. Beck and G. L. Nazar, “A

Reliability-Oriented Machine Learning Strategy for Heterogeneous Multicore Ap-

plication Mapping,” 2020 IEEE International Symposium on Circuits and Systems

(ISCAS), 2020;

• R. B. Tonetto, H. M. G. de A. Rocha, G. L. Nazar and A. C. S. Beck, “A Machine

Learning Approach for Reliability-Aware Application Mapping for Heterogeneous

Multicores,” 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020;

• R. B. Tonetto, A. C. S. Beck and G. L. Nazar, “SNAP: Selective NTV Heteroge-

neous Architectures for Power-Efficient Edge Computing,” 2022 25th Euromicro

Conference on Digital System Design (DSD), Maspalomas, Spain, 2022, pp. 357-

364, doi: 10.1109/DSD57027.2022.00055;

• R. B. Tonetto, G. L. Nazar and A. C. S. Beck, “A Variation-Aware Methodology for

Improved Processor Designs for the Edge Computing Domain,” , Design Automa-

tion for Embedded Systems (DAES), 2023 - (under review);

7.5.2 Publications as a Collaborator

• D. M. Cardoso et al., “Improving Software-based Techniques for Soft Error Miti-

gation in OoO Superscalar Processors,” 2019 26th IEEE International Conference

on Electronics, Circuits and Systems (ICECS), 2019;

• D.M. Cardoso, R. Tonetto, M. Brandalero, G. Nazar, A.C. Beck, J.R. Azambuja.

“Exploring the limitations of dataflow SIHFT techniques in out-of-order super-

scalar processors”, Microelectronics Reliability, Volumes 2019.

97

REFERENCES

Amid, A. et al. Chipyard: Integrated design, simulation, and implementation framework
for custom socs. IEEE Micro, v. 40, n. 4, p. 10–21, 2020.

ARM, C. The Future of Compute, Re-imagined. Arm corp, 2021. Avail-
able from Internet: <https://community.arm.com/developer/ip-products/processors/
b/processors-ip-blog/posts/arm-dynamiq-technology-for-the-next-era-of-compute>. Ac-
cessed in: Apr. 2021.

ASANOVIć, K. et al. The Rocket Chip Generator. [S.l.], 2016. Available from Internet:
<http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html>.

AUSTIN, T. M. Diva: a reliable substrate for deep submicron microarchitecture design.
In: MICRO-32’99. [S.l.: s.n.], 1999. p. 196–207. ISSN 1072-4451.

AZAMBUJA, J. R. et al. Heta: Hybrid error-detection technique using assertions. IEEE
Transactions on Nuclear Science, v. 60, n. 4, p. 2805–2812, 2013.

Bachrach, J. et al. Chisel: Constructing hardware in a scala embedded language. In: DAC
Design Automation Conference 2012. [S.l.: s.n.], 2012. p. 1212–1221.

BISWAS, S. K.; MUHURI, P. K.; ROY, U. K. Binary search-based fast scheduling al-
gorithms for reliability-aware energy-efficient task graph scheduling with fault tolerance.
IEEE Transactions on Sustainable Computing, p. 1–18, 2023.

Bohr, M. A 30 year retrospective on dennard’s mosfet scaling paper. IEEE Solid-State
Circuits Society Newsletter, v. 12, n. 1, p. 11–13, 2007.

Borkar, S. et al. Parameter variations and impact on circuits and microarchitecture. In:
Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451). [S.l.:
s.n.], 2003. p. 338–342.

Bowman, K. A.; Duvall, S. G.; Meindl, J. D. Impact of die-to-die and within-die param-
eter fluctuations on the maximum clock frequency distribution for gigascale integration.
IEEE Journal of Solid-State Circuits, v. 37, n. 2, p. 183–190, 2002.

BURD, T. et al. A dynamic voltage scaled microprocessor system. IEEE Journal of
Solid-State Circuits, v. 35, n. 11, p. 1571–1580, 2000.

CARDOSO, D. et al. Exploring the limitations of dataflow sihft techniques in out-of-
order superscalar processors. Microelectronics Reliability, v. 100-101, p. 113406, 2019.
ISSN 0026-2714. 30th European Symposium on Reliability of Electron Devices, Failure
Physics and Analysis. Available from Internet: <https://www.sciencedirect.com/science/
article/pii/S0026271419304767>.

CELIO, C. et al. Broom: An open-source out-of-order processor with resilient low-
voltage operation in 28-nm cmos. IEEE Micro, v. 39, n. 2, p. 52–60, 2019.

CELIO, C. et al. BOOM v2: an open-source out-of-order RISC-V core. [S.l.],
2017. Available from Internet: <http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/
EECS-2017-157.html>.

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-dynamiq-technology-for-the-next-era-of-compute
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-dynamiq-technology-for-the-next-era-of-compute
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www.sciencedirect.com/science/article/pii/S0026271419304767
https://www.sciencedirect.com/science/article/pii/S0026271419304767
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html

98

CELIO, C.; PATTERSON, D. A.; ASANOVIć, K. The Berkeley Out-of-Order Machine
(BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Proces-
sor. [S.l.], 2015.

Chang, L. et al. Practical strategies for power-efficient computing technologies. Proceed-
ings of the IEEE, v. 98, n. 2, p. 215–236, 2010.

CHENG, E. et al. Clear: Cross-layer exploration for architecting resilience - combining
hardware and software techniques to tolerate soft errors in processor cores. In: Proceed-
ings of the 53rd Annual Design Automation Conference. New York, NY, USA: As-
sociation for Computing Machinery, 2016. (DAC ’16). ISBN 9781450342360. Available
from Internet: <https://doi.org/10.1145/2897937.2897996>.

CHENG, E. et al. Clear: Cross-layer exploration for architecting resilience: Combining
hardware and software techniques to tolerate soft errors in processor cores. In: DAC’16).
[S.l.: s.n.], 2016. p. 1–6.

DAS, A. et al. Combined dvfs and mapping exploration for lifetime and soft-error sus-
ceptibility improvement in mpsocs. In: 2014 Design, Automation & Test in Europe
Conference Exhibition (DATE). [S.l.: s.n.], 2014. p. 1–6.

Dennard, R. H. et al. Design of ion-implanted mosfet’s with very small physical dimen-
sions. IEEE Journal of Solid-State Circuits, v. 9, n. 5, p. 256–268, 1974.

Dighe, S. et al. Within-die variation-aware dynamic-voltage-frequency-scaling with opti-
mal core allocation and thread hopping for the 80-core teraflops processor. IEEE Journal
of Solid-State Circuits, v. 46, n. 1, p. 184–193, 2011.

DIXIT, H. D. et al. Detecting silent data corruptions in the wild. 2022.

DIXIT, H. D. et al. Silent Data Corruptions at Scale. 2021.

Dreslinski, R. G. et al. Near-threshold computing: Reclaiming moore’s law through en-
ergy efficient integrated circuits. Proceedings of the IEEE, v. 98, n. 2, p. 253–266, 2010.

DUQUE, L. A. R.; DIAZ, J. M. M.; YANG, C. Improving mpsoc reliability through
adapting runtime task schedule based on time-correlated fault behavior. In: 2015 Design,
Automation & Test in Europe Conference Exhibition (DATE). [S.l.: s.n.], 2015. p.
818–823.

EDMONDS, J. Paths, trees, and flowers. Canadian Journal of Mathematics, Cambridge
University Press, v. 17, p. 449–467, 1965.

ENZ, C. C.; KRUMMENACHER, F.; VITTOZ, E. A. An analytical mos transistor model
valid in all regions of operation and dedicated to low-voltage and low-current applications.
Analog Integr. Circuits Signal Process., Kluwer Academic Publishers, USA, v. 8, n. 1,
p. 83–114, jul. 1995. ISSN 0925-1030. Available from Internet: <https://doi.org/10.1007/
BF01239381>.

Ernst, D. et al. Razor: circuit-level correction of timing errors for low-power operation.
IEEE Micro, v. 24, n. 6, p. 10–20, 2004.

https://doi.org/10.1145/2897937.2897996
https://doi.org/10.1007/BF01239381
https://doi.org/10.1007/BF01239381

99

Esmaeilzadeh, H. et al. Dark silicon and the end of multicore scaling. In: 2011 38th An-
nual International Symposium on Computer Architecture (ISCA). [S.l.: s.n.], 2011.
p. 365–376.

Fu, X.; Li, T.; Fortes, J. A. B. Soft error vulnerability aware process variation mitiga-
tion. In: 2009 IEEE 15th International Symposium on High Performance Computer
Architecture. [S.l.: s.n.], 2009. p. 93–104.

GAMMIE, G. et al. A 45nm 3.5g baseband-and-multimedia application processor using
adaptive body-bias and ultra-low-power techniques. In: 2008 IEEE International Solid-
State Circuits Conference - Digest of Technical Papers. [S.l.: s.n.], 2008. p. 258–611.

GENC, H. et al. Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration. In: 2021 58th ACM/IEEE Design Automation Conference
(DAC). [S.l.: s.n.], 2021. p. 769–774.

GENC, H. et al. Gemmini: An Agile Systolic Array Generator Enabling Systematic
Evaluations of Deep-Learning Architectures. 2019.

GEORGE, N. J. et al. Transient fault models and avf estimation revisited. In: 2010
IEEE/IFIP International Conference on Dependable Systems Networks (DSN). [S.l.:
s.n.], 2010. p. 477–486.

GOLANBARI, M. S. et al. A cross-layer approach for resiliency and energy effi-
ciency in near threshold computing. In: 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). [S.l.: s.n.], 2016. p. 1–8.

Gopireddy, B. et al. Scalcore: Designing a core for voltage scalability. In: HPCA’2016.
[S.l.: s.n.], 2016. p. 681–693.

GUTHAUS, M. et al. Mibench: A free, commercially representative embedded bench-
mark suite. In: Proceedings of the Fourth Annual IEEE International Workshop on
Workload Characterization. WWC-4 (Cat. No.01EX538). [S.l.: s.n.], 2001. p. 3–14.

HAGHBAYAN, M.-H. et al. Dark silicon aware power management for manycore systems
under dynamic workloads. In: 2014 IEEE 32nd International Conference on Com-
puter Design (ICCD). [S.l.: s.n.], 2014. p. 509–512.

HANDY, J. How Many Transistors Have Ever Shipped? 2014. Avail-
able from Internet: <https://www.forbes.com/sites/jimhandy/2014/05/26/
how-many-transistors-have-ever-shipped/>. Accessed in: Apr. 2021.

HENKEL, J. et al. Reliable on-chip systems in the nano-era: Lessons learnt and future
trends. In: 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.:
s.n.], 2013. p. 1–10.

HENNESSY, J. L.; PATTERSON, D. A. A new golden age for computer architecture.
Commun. ACM, Association for Computing Machinery, New York, NY, USA, v. 62,
n. 2, p. 48–60, jan 2019. ISSN 0001-0782. Available from Internet: <https://doi.org/10.
1145/3282307>.

HOA, N. T. et al. Deep reinforcement learning for multi-hop offloading in uav-assisted
edge computing. IEEE Transactions on Vehicular Technology, p. 1–6, 2023.

https://www.forbes.com/sites/jimhandy/2014/05/26/how-many-transistors-have-ever-shipped/
https://www.forbes.com/sites/jimhandy/2014/05/26/how-many-transistors-have-ever-shipped/
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307

100

Horowitz, M. et al. Scaling, power, and the future of cmos. In: IEEE InternationalElec-
tron Devices Meeting, 2005. IEDM Technical Digest. [S.l.: s.n.], 2005. p. 7 pp.–15.

JAHINUZZAMAN, S. M.; SHARIFKHANI, M.; SACHDEV, M. An analytical model for
soft error critical charge of nanometric srams. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, v. 17, n. 9, p. 1187–1195, 2009.

JIAO, X. et al. An assessment of vulnerability of hardware neural networks to dynamic
voltage and temperature variations. In: 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). [S.l.: s.n.], 2017. p. 945–950.

KANG, Y. et al. Neurosurgeon: Collaborative intelligence between the cloud and mobile
edge. SIGARCH Comput. Archit. News, Association for Computing Machinery, New
York, NY, USA, v. 45, n. 1, p. 615–629, apr 2017. ISSN 0163-5964. Available from
Internet: <https://doi.org/10.1145/3093337.3037698>.

KARPUZCU, U. R.; KIM, N. S.; TORRELLAS, J. Coping with parametric variation at
near-threshold voltages. IEEE Micro, v. 33, n. 4, p. 6–14, 2013.

Karpuzcu, U. R. et al. Varius-ntv: A microarchitectural model to capture the increased
sensitivity of manycores to process variations at near-threshold voltages. In: DSN’2012.
[S.l.: s.n.], 2012. p. 1–11.

Karpuzcu, U. R. et al. Energysmart: Toward energy-efficient manycores for near-
threshold computing. In: 2013 IEEE 19th International Symposium on High Perfor-
mance Computer Architecture (HPCA). [S.l.: s.n.], 2013. p. 542–553.

Kaul, H. et al. Near-threshold voltage (ntv) design — opportunities and challenges. In:
DAC Design Automation Conference 2012. [S.l.: s.n.], 2012. p. 1149–1154.

Khdr, H. et al. Power density-aware resource management for heterogeneous tiled mul-
ticores. IEEE Transactions on Computers, v. 66, n. 3, p. 488–501, March 2017. ISSN
2326-3814.

Kriebel, F. et al. Aser: Adaptive soft error resilience for reliability-heterogeneous pro-
cessors in the dark silicon era. In: 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC). [S.l.: s.n.], 2014. p. 1–6.

KUMAR, R. et al. Single-isa heterogeneous multi-core architectures: the potential for
processor power reduction. In: Proceedings. 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003. MICRO-36. [S.l.: s.n.], 2003. p. 81–92.

KUMAR, R. et al. Heterogeneous chip multiprocessors. Computer, v. 38, n. 11, p. 32–38,
2005.

KUMAR, R. et al. Single-isa heterogeneous multi-core architectures for multithreaded
workload performance. In: Proceedings. 31st Annual International Symposium on
Computer Architecture, 2004. [S.l.: s.n.], 2004. p. 64–75.

Lee, Y. et al. A 45nm 1.3ghz 16.7 double-precision gflops/w risc-v processor with vector
accelerators. In: ESSCIRC 2014 - 40th European Solid State Circuits Conference
(ESSCIRC). [S.l.: s.n.], 2014. p. 199–202.

https://doi.org/10.1145/3093337.3037698

101

LEVEUGLE, R. et al. Statistical fault injection: Quantified error and confidence. In: 2009
Design, Automation & Test in Europe Conference Exhibition. [S.l.: s.n.], 2009. p.
502–506.

LI, E.; ZHOU, Z.; CHEN, X. Edge intelligence: On-demand deep learning model co-
inference with device-edge synergy. In: Proceedings of the 2018 Workshop on Mobile
Edge Communications. New York, NY, USA: Association for Computing Machinery,
2018. (MECOMM’18), p. 31–36. ISBN 9781450359061. Available from Internet: <https:
//doi.org/10.1145/3229556.3229562>.

LINDOSO, A. et al. A hybrid fault-tolerant leon3 soft core processor implemented in
low-end sram fpga. TNS’17, v. 64, n. 1, p. 374–381, Jan 2017. ISSN 0018-9499.

MAITI, S.; KAPADIA, N.; PASRICHA, S. Process variation aware dynamic power man-
agement in multicore systems with extended range voltage/frequency scaling. In: 2015
IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS).
[S.l.: s.n.], 2015. p. 1–4.

Markovic, D. et al. Ultralow-power design in near-threshold region. Proceedings of the
IEEE, v. 98, n. 2, p. 237–252, 2010.

MARTINS, M. et al. Open cell library in 15nm freepdk technology. In: Proceedings of
the 2015 Symposium on International Symposium on Physical Design. New York,
NY, USA: Association for Computing Machinery, 2015. (ISPD ’15), p. 171–178. ISBN
9781450333993. Available from Internet: <https://doi.org/10.1145/2717764.2717783>.

MARTíNEZ-ÁLVAREZ, A. et al. A hardware-software approach for on-line soft error
mitigation in interrupt-driven applications. IEEE Transactions on Dependable and Se-
cure Computing, v. 13, n. 4, p. 502–508, 2016.

MITRA, S. et al. The resilience wall: Cross-layer solution strategies. In: Proceedings of
Technical Program - 2014 International Symposium on VLSI Technology, Systems
and Application (VLSI-TSA). [S.l.: s.n.], 2014. p. 1–11.

MITTAL, S. A survey of techniques for approximate computing. ACM Comput. Surv.,
Association for Computing Machinery, New York, NY, USA, v. 48, n. 4, mar. 2016. ISSN
0360-0300. Available from Internet: <https://doi.org/10.1145/2893356>.

MUKHERJEE, S. et al. A systematic methodology to compute the architectural vulner-
ability factors for a high-performance microprocessor. In: Proceedings. 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36. [S.l.:
s.n.], 2003. p. 29–40.

NAITHANI, A. et al. Reliability-aware scheduling on heterogeneous multicore proces-
sors. In: 2017 IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA). [S.l.: s.n.], 2017. p. 397–408.

OH, N.; SHIRVANI, P. P.; MCCLUSKEY, E. J. Error detection by duplicated instructions
in super-scalar processors. IEEE Trans. on Reliability, v. 51, n. 1, p. 63–75, Mar 2002.
ISSN 0018-9529.

https://doi.org/10.1145/3229556.3229562
https://doi.org/10.1145/3229556.3229562
https://doi.org/10.1145/2717764.2717783
https://doi.org/10.1145/2893356

102

OZ, I.; ARSLAN, S. A survey on multithreading alternatives for soft error fault toler-
ance. ACM Comput. Surv., Association for Computing Machinery, New York, NY, USA,
v. 52, n. 2, mar 2019. ISSN 0360-0300. Available from Internet: <https://doi.org/10.1145/
3302255>.

PEDRAM, M. Power minimization in ic design: Principles and applications. ACM
Trans. Des. Autom. Electron. Syst., Association for Computing Machinery, New York,
NY, USA, v. 1, n. 1, p. 3–56, jan. 1996. ISSN 1084-4309. Available from Internet:
<https://doi.org/10.1145/225871.225877>.

PINCKNEY, N. et al. Assessing the performance limits of parallelized near-threshold
computing. In: DAC Design Automation Conference 2012. [S.l.: s.n.], 2012. p. 1143–
1148.

POUCHET, L.-N.; YUKI, T. PolyBench/C. 2011. Available from Internet: <https:
//sourceforge.net/projects/polybench/>.

RABAEY, J. M. Digital Integrated Circuits: A Design Perspective. [S.l.]: Pearson,
1995.

RAGHUNATHAN, B. et al. Cherry-picking: Exploiting process variations in dark-silicon
homogeneous chip multi-processors. In: 2013 Design, Automation & Test in Europe
Conference Exhibition (DATE). [S.l.: s.n.], 2013. p. 39–44.

RAHMANI, A. M. et al. Reliability-aware runtime power management for many-core
systems in the dark silicon era. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, v. 25, n. 2, p. 427–440, 2017.

RATHORE, V. et al. Life guard: A reinforcement learning-based task mapping strategy
for performance-centric aging management. In: 2019 56th ACM/IEEE Design Automa-
tion Conference (DAC). [S.l.: s.n.], 2019. p. 1–6.

REHMAN, S. et al. dtune: Leveraging reliable code generation for adaptive de-
pendability tuning under process variation and aging-induced effects. In: 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.: s.n.], 2014. p. 1–6.

REIS, G. et al. Design and evaluation of hybrid fault-detection systems. In: 32nd In-
ternational Symposium on Computer Architecture (ISCA’05). [S.l.: s.n.], 2005. p.
148–159.

RODRIGUES, C. et al. Towards a heterogeneous fault-tolerance architecture based on
arm and risc-v processors. In: IECON 2019 - 45th Annual Conference of the IEEE
Industrial Electronics Society. [S.l.: s.n.], 2019. v. 1, p. 3112–3117.

ROSSI, D. et al. A self-aware architecture for pvt compensation and power nap in near
threshold processors. IEEE Design & Test, v. 34, n. 6, p. 46–53, 2017.

ROZO, L. et al. Reliability-aware runtime adaption through a statically generated task
schedule. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 26,
n. 1, p. 11–22, 2018.

RUPP, K. 48 Years of Microprocessor Trend Data. 2021. Available from Internet:
<https://github.com/karlrupp/microprocessor-trend-data>. Accessed in: Apr. 2021.

https://doi.org/10.1145/3302255
https://doi.org/10.1145/3302255
https://doi.org/10.1145/225871.225877
https://sourceforge.net/projects/polybench/
https://sourceforge.net/projects/polybench/
https://github.com/karlrupp/microprocessor-trend-data

103

RUSSELL, S.; NORVIG, P. Artificial Intelligence: A Modern Approach. 3rd.
ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009. ISBN 0136042597,
9780136042594.

Salehi, M. et al. Drvs: Power-efficient reliability management through dynamic redun-
dancy and voltage scaling under variations. In: ISLPED’15. [S.l.: s.n.], 2015. p. 225–
230.

SARTOR, A. L. et al. Exploiting idle hardware to provide low overhead fault tolerance for
vliw processors. J. Emerg. Technol. Comput. Syst., ACM, New York, NY, USA, v. 13,
n. 2, jan. 2017.

SEEPERS, R. M.; STRYDIS, C.; GAYDADJIEV, G. N. Architecture-level fault-tolerance
for biomedical implants. In: SAMOS’12. [S.l.: s.n.], 2012.

SEMERARO, G. et al. Energy-efficient processor design using multiple clock domains
with dynamic voltage and frequency scaling. In: Proceedings Eighth International
Symposium on High Performance Computer Architecture. [S.l.: s.n.], 2002. p. 29–
40.

Shafaei, A. et al. Fincacti: Architectural analysis and modeling of caches with deeply-
scaled finfet devices. In: 2014 IEEE Computer Society Annual Symposium on VLSI.
[S.l.: s.n.], 2014. p. 290–295.

SHAFIQUE, M. et al. Variability-aware dark silicon management in on-chip many-core
systems. In: 2015 Design, Automation & Test in Europe Conference Exhibition
(DATE). [S.l.: s.n.], 2015. p. 387–392.

Shi, W. et al. Edge computing: Vision and challenges. IEEE Internet of Things Journal,
v. 3, n. 5, p. 637–646, 2016.

SMOLENS, J. C. et al. Efficient resource sharing in concurrent error detecting superscalar
microarchitectures. In: MICRO-37’04. [S.l.: s.n.], 2004. p. 257–268. ISSN 1072-4451.

STAMELAKOS, I. et al. Variation-aware voltage island formation for power efficient
near-threshold manycore architectures. In: 2014 19th Asia and South Pacific Design
Automation Conference (ASP-DAC). [S.l.: s.n.], 2014. p. 304–310.

STAMELAKOS, I. et al. Workload- and process-variation aware voltage/frequency tuning
for energy efficient performance sustainability of ntc manycores. Integration, v. 65, p.
252–262, 2019. ISSN 0167-9260. Available from Internet: <https://www.sciencedirect.
com/science/article/pii/S0167926016301626>.

STATISTICS, A. Android and Google Play statistics. AppBrain Statistics, 2023. Avail-
able from Internet: <https://www.appbrain.com/stats>. Accessed in: Jul. 2023.

TAN, C. et al. Locus: Low-power customizable many-core architecture for wearables. In:
2016 International Conference on Compliers, Architectures, and Sythesis of Embed-
ded Systems (CASES). [S.l.: s.n.], 2016. p. 1–10.

TARSA, S. J. et al. Post-silicon cpu adaptation made practical using machine learning. In:
2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA). [S.l.: s.n.], 2019. p. 14–26.

https://www.sciencedirect.com/science/article/pii/S0167926016301626
https://www.sciencedirect.com/science/article/pii/S0167926016301626
https://www.appbrain.com/stats

104

Teodorescu, R.; Torrellas, J. Variation-aware application scheduling and power manage-
ment for chip multiprocessors. In: 2008 International Symposium on Computer Ar-
chitecture. [S.l.: s.n.], 2008. p. 363–374.

TONETTO, R. B.; BECK, A. C. S.; NAZAR, G. L. Snap: Selective ntv heterogeneous
architectures for power-efficient edge computing. In: 2022 25th Euromicro Conference
on Digital System Design (DSD). [S.l.: s.n.], 2022. p. 357–364.

TONETTO, R. B. et al. A knapsack methodology for hardware-based dmr protection
against soft errors in superscalar out-of-order processors. In: 2019 IFIP/IEEE 27th
International Conference on Very Large Scale Integration (VLSI-SoC). [S.l.: s.n.],
2019. p. 287–292.

TONETTO, R. B. et al. A machine learning approach for reliability-aware application
mapping for heterogeneous multicores. In: 2020 57th ACM/IEEE Design Automation
Conference (DAC). [S.l.: s.n.], 2020. p. 1–6.

Triggs, Robert. Apple Bionic SoC. 2021. Available from Internet: <https:
//www.androidauthority.com/apple-iphone-a14-bionic-benchmark-1173400/>. Accessed
in: Mar. 2022.

VADLAMANI, R. et al. Multicore soft error rate stabilization using adaptive dual modular
redundancy. In: 2010 Design, Automation & Test in Europe Conference & Exhibition
(DATE 2010). [S.l.: s.n.], 2010. p. 27–32.

WALCOTT, K. R.; HUMPHREYS, G.; GURUMURTHI, S. Dynamic prediction of archi-
tectural vulnerability from microarchitectural state. SIGARCH Comput. Archit. News,
Association for Computing Machinery, New York, NY, USA, v. 35, n. 2, p. 516–527,
jun 2007. ISSN 0163-5964. Available from Internet: <https://doi.org/10.1145/1273440.
1250726>.

WAN, Z. et al. Berry: Bit error robustness for energy-efficient reinforcement learning-
based autonomous systems. arXiv preprint arXiv:2307.10041, 2023.

WANG, J. et al. On the implication of ntc versus dark silicon on emerging scale-out
workloads: The multi-core architecture perspective. IEEE Transactions on Parallel and
Distributed Systems, v. 28, n. 8, p. 2314–2327, 2017.

WANG, N. et al. Characterizing the effects of transient faults on a high-performance pro-
cessor pipeline. In: International Conference on Dependable Systems and Networks,
2004. [S.l.: s.n.], 2004. p. 61–70.

WANG, N. J.; MAHESRI, A.; PATEL, S. J. Examining ace analysis reliability estimates
using fault-injection. In: Proceedings of the 34th Annual International Symposium on
Computer Architecture. New York, NY, USA: Association for Computing Machinery,
2007. (ISCA ’07), p. 460–469. ISBN 9781595937063. Available from Internet: <https:
//doi.org/10.1145/1250662.1250719>.

Wang, N. J.; Patel, S. J. Restore: symptom based soft error detection in microprocessors.
In: DSN’05. [S.l.: s.n.], 2005. p. 30–39. ISSN 1530-0889.

Wang, X. et al. Convergence of edge computing and deep learning: A comprehensive
survey. IEEE Communications Surveys Tutorials, v. 22, n. 2, p. 869–904, 2020.

https://www.androidauthority.com/apple-iphone-a14-bionic-benchmark-1173400/
https://www.androidauthority.com/apple-iphone-a14-bionic-benchmark-1173400/
https://doi.org/10.1145/1273440.1250726
https://doi.org/10.1145/1273440.1250726
https://doi.org/10.1145/1250662.1250719
https://doi.org/10.1145/1250662.1250719

105

WU, B.-C.; CHEN, W.-T.; LIU, T.-T. An error-resilient risc-v microprocessor with a fully
integrated dc–dc voltage regulator for near-threshold operation in 28-nm cmos. IEEE
Journal of Solid-State Circuits, p. 1–11, 2023.

Wu, C.-J. et al. Machine learning at facebook: Understanding inference at the edge. In:
HPCA’2019. [S.l.: s.n.], 2019. p. 331–344.

Zhai, B. et al. Energy efficient near-threshold chip multi-processing. In: Proceedings of
the 2007 international symposium on Low power electronics and design (ISLPED
’07). [S.l.: s.n.], 2007. p. 32–37.

ZHAO, J. et al. Sonicboom: The 3rd generation berkeley out-of-order machine. May
2020.

106

APPENDIX A — IMPLEMENTATION DETAILS AND PER-SCENARIO

EVALUATION

A.1 Detailed Configurations of the Explored Cores

The configuration files for the three explored BOOM microarchitectures are shown

in Figures A.1 (SmallBoom), A.2 (MediumBoom), and A.3 (LargeBoom). The code snip-

pets provide high-level description of the micro-architectural parameters, written in the

Chisel Hardware Construction Language (or HCL). The parameters include the pipeline

structure sizes (as shown in Tab. 6.1 of Sec. 6.5.1), the instruction and data cache con-

figurations, as well as the branch prediction structure (e.g., global history size, BTB size

and associativity, with the TAGE predictor disabled).

Figure A.1 – SmallBoom configuration file (Chisel/Scala code).

class WithSmallBooms extends Config((site, here, up) => {
case BoomTilesKey => up(BoomTilesKey, site) map { b => b.copy(

core = b.core.copy(
fetchWidth = 4,
useCompressed = true,
decodeWidth = 1,
numRobEntries = 32,
issueParams = Seq(

IssueParams(issueWidth=1, numEntries=8, iqType=IQT_MEM.litValue, dispatchWidth=1),
IssueParams(issueWidth=1, numEntries=8, iqType=IQT_INT.litValue, dispatchWidth=1),
IssueParams(issueWidth=1, numEntries=8, iqType=IQT_FP.litValue , dispatchWidth=1)),

numIntPhysRegisters = 52,
numFpPhysRegisters = 48,
numLdqEntries = 8,
numStqEntries = 8,
maxBrCount = 4,
numFetchBufferEntries = 8,
ftq = FtqParameters(nEntries=16),
btb = BoomBTBParameters(btbsa=true, densebtb=false, nSets=64, nWays=2,

nRAS=8, tagSz=20, bypassCalls=false, rasCheckForEmpty=false),
bpdBaseOnly = None,
gshare = Some(GShareParameters(historyLength=11, numSets=2048)),
tage = None,
bpdRandom = None,
nPerfCounters = 2,
fpu = Some(freechips.rocketchip.tile.FPUParams(sfmaLatency=4, dfmaLatency=4, divSqrt=true))),

dcache = Some(DCacheParams(rowBits = site(SystemBusKey).beatBits,
nSets=64, nWays=4, nMSHRs=2, nTLBEntries=8)),

icache = Some(ICacheParams(rowBits = site(SystemBusKey).beatBits, nSets=64, nWays=4,
fetchBytes=2*4))

)}
case SystemBusKey => up(SystemBusKey, site).copy(beatBytes = 8)
case XLen => 64
case MaxHartIdBits => log2Up(site(BoomTilesKey).size)

})

107

Figure A.2 – Medium configuration file (Chisel/Scala code).

class WithMediumBooms extends Config((site, here, up) => {
case BoomTilesKey => up(BoomTilesKey, site) map { b => b.copy(

core = b.core.copy(
fetchWidth = 4,
useCompressed = true,
decodeWidth = 2,
numRobEntries = 64,
issueParams = Seq(

IssueParams(issueWidth=1, numEntries=16, iqType=IQT_MEM.litValue, dispatchWidth=2),
IssueParams(issueWidth=2, numEntries=16, iqType=IQT_INT.litValue, dispatchWidth=2),
IssueParams(issueWidth=1, numEntries=16, iqType=IQT_FP.litValue , dispatchWidth=2)),

numIntPhysRegisters = 80,
numFpPhysRegisters = 64,
numLdqEntries = 16,
numStqEntries = 16,
maxBrCount = 8,
numFetchBufferEntries = 16,
ftq = FtqParameters(nEntries=32),
btb = BoomBTBParameters(btbsa=true, densebtb=false, nSets=64, nWays=2,

nRAS=8, tagSz=20, bypassCalls=false, rasCheckForEmpty=false),
bpdBaseOnly = None,
gshare = Some(GShareParameters(historyLength=23, numSets=4096)),
tage = None,
bpdRandom = None,
nPerfCounters = 6,
fpu = Some(freechips.rocketchip.tile.FPUParams(sfmaLatency=4, dfmaLatency=4, divSqrt=true))),

dcache = Some(DCacheParams(rowBits = site(SystemBusKey).beatBits,
nSets=64, nWays=4, nMSHRs=2, nTLBEntries=8)),

icache = Some(ICacheParams(rowBits = site(SystemBusKey).beatBits, nSets=64, nWays=4,
fetchBytes=2*4))

)}
case SystemBusKey => up(SystemBusKey, site).copy(beatBytes = 8)
case XLen => 64
case MaxHartIdBits => log2Up(site(BoomTilesKey).size)

})

108

Figure A.3 – LargeBoom configuration file (Chisel/Scala code).

class WithLargeBooms extends Config((site, here, up) => {
case BoomTilesKey => up(BoomTilesKey, site) map { b => b.copy(

core = b.core.copy(
fetchWidth = 8,
useCompressed = true,
decodeWidth = 3,
numRobEntries = 96,
issueParams = Seq(

IssueParams(issueWidth=1, numEntries=24, iqType=IQT_MEM.litValue, dispatchWidth=3),
IssueParams(issueWidth=2, numEntries=24, iqType=IQT_INT.litValue, dispatchWidth=3),
IssueParams(issueWidth=1, numEntries=24, iqType=IQT_FP.litValue , dispatchWidth=3)),

numIntPhysRegisters = 100,
numFpPhysRegisters = 96,
numLdqEntries = 24,
numStqEntries = 24,
maxBrCount = 12,
numFetchBufferEntries = 24,
ftq = FtqParameters(nEntries=32),
btb = BoomBTBParameters(btbsa=true, densebtb=false, nSets=512, nWays=4, nRAS=16, tagSz=20),
bpdBaseOnly = None,
gshare = Some(GShareParameters(historyLength=23, numSets=4096)),
tage = None,
bpdRandom = None,
fpu = Some(freechips.rocketchip.tile.FPUParams(sfmaLatency=4, dfmaLatency=4, divSqrt=true))),

dcache = Some(DCacheParams(rowBits = site(SystemBusKey).beatBytes*8,
nSets=64, nWays=8, nMSHRs=4, nTLBEntries=16)),

icache = Some(ICacheParams(fetchBytes = 4*4, rowBits = site(SystemBusKey).beatBytes*8,
nSets=64, nWays=8))

)}
case SystemBusKey => up(SystemBusKey, site).copy(beatBytes = 16)
case XLen => 64
case MaxHartIdBits => log2Up(site(BoomTilesKey).size)

})

109

A.2 Per-Scenario VA-SNAP Evaluation

For each core configuration, Fig. A.4 depicts the achievable MIPS for each appli-

cation scenario explored in Chapter 6, in Tab. 6.2. The per-scenario VA-SNAP evaluation

is shown in Figs.A.5 to A.9.

Figure A.4 – Per-core attainable MIPS for each scenario explored in Chapter 6 (Tab. 6.2).
(a) STV cores at nominal conditions

 500

 1000

 1500

 2000

 2500

 3000

Rocket SmallBoom MediumBoom LargeBoom

M
IP

S

Scenario 1
Scenario 2
Scenario 3

Scenario 4
Scenario 5

(b) NTV cores at nominal conditions

 100

 150

 200

 250

 300

 350

 400

 450

 500

Rocket SmallBoom MediumBoom LargeBoom

M
IP

S

Scenario 1
Scenario 2
Scenario 3

Scenario 4
Scenario 5

110

Figure A.5 – Scenario 1.

(a) Best average attainable MIPS per budget.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Power budget (mW)

Full NTV (no FS)
Full NTV (+FS)
Full STV (no FS)
Full STV (+FS)
VA-SNAP (no FS)
VA-SNAP (+FS)

(b) Average across all power budgets.

 0

 5000

 10000

 15000

 20000

 25000

 30000

No FS With FS

M
IP

S

Full NTV
Full STV
VA-SNAP

Figure A.6 – Scenario 2.

(a) Best average attainable MIPS per budget.

 0

 5000

 10000

 15000

 20000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Power budget (mW)

Full NTV (no FS)
Full NTV (+FS)
Full STV (no FS)
Full STV (+FS)
VA-SNAP (no FS)
VA-SNAP (+FS)

(b) Average across all power budgets.

 0

 5000

 10000

 15000

 20000

No FS With FS

M
IP

S

Full NTV
Full STV
VA-SNAP

Figure A.7 – Scenario 3.

(a) Best average attainable MIPS per budget.

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Power budget (mW)

Full NTV (no FS)
Full NTV (+FS)
Full STV (no FS)
Full STV (+FS)
VA-SNAP (no FS)
VA-SNAP (+FS)

(b) Average across all power budgets.

 0

 5000

 10000

 15000

 20000

No FS With FS

M
IP

S

Full NTV
Full STV
VA-SNAP

111

Figure A.8 – Scenario 4.

(a) Best average attainable MIPS per budget.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Power budget (mW)

Full NTV (no FS)
Full NTV (+FS)
Full STV (no FS)
Full STV (+FS)
VA-SNAP (no FS)
VA-SNAP (+FS)

(b) Average across all power budgets.

 0

 5000

 10000

 15000

 20000

 25000

 30000

No FS With FS

M
IP

S

Full NTV
Full STV
VA-SNAP

Figure A.9 – Scenario 5.

(a) Best average attainable MIPS per budget.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Power budget (mW)

Full NTV (no FS)
Full NTV (+FS)
Full STV (no FS)
Full STV (+FS)
VA-SNAP (no FS)
VA-SNAP (+FS)

(b) Average across all power budgets.

 0

 5000

 10000

 15000

 20000

 25000

 30000

No FS With FS

M
IP

S

Full NTV
Full STV
VA-SNAP

112

A.3 Class Diagram of the Architecture

Fig. A.10 shows the (simplified) class diagram of the C++ source code developed

over the course of this thesis. The diagram describes the structure of a die in the follow-

ing hierarchical order: Die → Island → Soc(tile) → Core → Device. Chip (Soc)

configurations are defined in the SocConfig class. The cores’ properties such as area

and power (extracted from the Genus reports) are modeled in the Device class. Each core

has also first-level instruction and data cache parameters (class MemoryCacti). Appli-

cations (class Application) are sets of tasks (class Task). All tasks and their properties

are stored in a XML file (loaded and parsed by the class XmlTaskData). The properties

include the number of cycles, instructions taken, switching activity, and the number of

memory accesses for each memory type when mapped to each core type.

Process variation is simulated by mapping the VARIUS-NTV variation maps to

each Die chip instance. The Soc :: Distrib class attribute holds the MIPS and power

distribution samples.

Figure A.10 – Class diagram of the source code.

Die

Island

 island

Soc

 tile

 savedInstance

SocConfig

 config
snapVersionConfig

GemmConfig

 gemmConf

_MappingMetrics

 metricsAverage
metricsBestMips
metricsCurrent

_MappingMetrics::Bag

 energy
power

MemoryCacti

 l2Cacti
scpadCacti Core

 l1dCacti
l1iCacti

Soc::Distrib< float >

 eneEfficiencyPdf
mipsPdf
powerPdf

Metrics_

 memGemmAccumulator
memGemmScratchpad

memL2Cache

 core
gemm

memL1d
memL1i

Metrics_::Bag

 energy
powerMetrics

 energy
power

 blCore

Task

 taskCurrentApplication

 taskPool_

XmlTaskData

 taskInfo

 workload

Device

 hwCoreDevice
hwGemmDevice

113

APPENDIX B — UMA METODOLOGIA VISANDO O APRIMORAMENTO DE

PROCESSADORES RESTRITOS À VARIAÇÃO DE PROCESSOS E

APLICÁVEIS À COMPUTAÇÃO DE BORDA

Este trabalho propõe métodos de otimização para melhorar requisitos-chave de

sistemas heterogêneos, como confiabilidade, desempenho, eficiência energética. Também

propomos uma metodologia para mitigar as restrições de variações de processo em chips

heterogêneos, visando melhorar o desempenho e a eficiência energética, ao mesmo tempo

em que se mantêm os requisitos mínimos de yield. Uma visão geral do escopo deste

trabalho é mostrada na Fig. B.1.

114

Figure B.1 – Visão geral desta tese. As contribuições principais estão marcadas em vermelho.

(a) Na primeira parte, exploramos políticas de mapeamento com o objetivo de maximizar a confiabilidade
e o desempenho.

Performance (IPS) - Chapter 5

Mapping policies

Reliability (MWTF) - Chapter 4

Hardware
counters

NTV chip
exploration
algorithm

Reliability-aware
mapping

Custom
NTV design

Power-aware design customization with NTV +
Performance-aware mapping

Mapping
for IPS

Power
budget

Heterogeneous
applications

ANN-based
AVF

Mapping
for MWTF

NTV

STV

(b) A segunda parte tem como objetivo compor designs de chips eficientes em energia e cientes do
problema de variações de processo devido ao NTV.

Variation-aware
chip exploration

algorithm

Variation-aware
frequency

scaling

Variation modeling

Custom NTV
designs

(C)

Variation-aware chip customization (Chapter 6)

Variation-aware
designs

(D - proposal)

Standard
Designs

(A)

Mapping for IPS
Power
budget

Standard NTV
designs

(B)

Variation-aware design-time architectural exploration + runtime frequency scaling

Optimized
chip

Post-design timeDesign time

115

Figure B.2 – Ganhos médios de MWTF para todos os conjuntos de aplicações nos três casos de
mapeamento.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1S-1D-2Q

1S-2D-1Q

2S-1D-1Q

N
o
rm

a
liz

e
d

 M
W

T
F

Best schedule
Predicted schedule

Worst schedule

B.1 Parte 1: Otimização de Confiabilidade

Na primeira parte do trabalho, aproveitamos a heterogeneidade de aplicativos e

hardware (no nível da microarquitetura do núcleo do processador) e propomos uma es-

tratégia de mapeamento que melhora a confiabilidade do sistema em termos de erros tran-

sitórios causados por radiação. A métrica considerada é Média de Carga de Trabalho até

a Falha (MWTF, do inglês Mean Workload to Failure). Propomos um método de apren-

dizado (adotando uma Rede Neural Artificial) que aprende o Fator de Vulnerabilidade

Arquitetural (AVF) dependente do aplicativo a partir da utilização do pipeline do núcleo.

Em seguida, utilizamos as saídas do AVF aprendido para orientar as decisões de mapea-

mento do aplicativo (durante a execução) que fornecem mapeamentos de aplicativos para

núcleos que estão muito próximos do mapeamento ideal em termos de MWTF.

Para avaliar nossa estratégia, experimentamos diferentes configurações de núcleos

RISC-V heterogêneos e comparamos a MWTF alcançável dos mapeamentos baseados

em previsão com o oráculo ideal. Os principais resultados, em termos de MWTF, são

mostrados na Fig. B.2. Em resumo, nesta parte do trabalho, mostramo que:

1. Propomos uma metodologia de estimativa de AVF baseada em ANN para inferir o

AVF por núcleo a partir de contadores de hardware dependentes do aplicativo. A

ANN é executada em nível de software e impõe pequenos custos de desempenho

de cerca de 8 mil ciclos por inferência.

2. Com a ANN treinada, realizamos mapeamentos de aplicativos orientados à MWTF

em núcleos heterogêneos. Em comparação com os mapeamentos do oráculo, nossos

mapeamentos baseados em previsão oferecem MWTF tão próxima quanto 4,9 por

116

cento (máximo de 6,6 por cento) em relação às soluções do oráculo em sistemas

heterogêneos.

3. Os mapeamentos baseados em previsão propostos, combinados com composições

de chips heterogêneos, proporcionam uma melhoria na MWTF em comparação com

sistemas homogêneos (melhoria média de 14 por cento), ao mesmo tempo em que

aumentam a relação MWTF/energia (melhoria média de 6,7 por cento).

B.2 Parte 2: Otimização de Desempenho e Eficiência Energética

Visando melhorar o desempenho e a eficiência energética em cenários de restrição

de energia, fornecemos uma metodologia (SNAP) que realiza mapeamentos orientados

ao desempenho em designs de chips heterogêneos e eficientes. Os chips são projetados

considerando o uso seletivo e eficiente da Tensão Próxima do Limiar (NTV, do inglês

Near-Threshold Voltage).

Nossa abordagem, mostrada na Fig. B.3, consiste em combinar efetivamente tanto

os núcleos NTV quanto os núcleos STV/conventionais no mesmo chip. Para obter designs

muito eficientes sob um limite de potência, adotamos uma exploração do espaço de de-

sign semelhante a uma mochila para alcançar soluções que proporcionem composições

eficientes de núcleos. Ao restringir o espaço de design do chip a um limite de potência,

Figure B.3 – Visão de nível de arquitetura do chip.

Shared
L2$

L1i$Core
STV 1
(InO)

STV island

Die

…

L1d$

L1i$Core
STV 2
(OoO) L1d$

T
L1i$Core

STV m
(OoO) L1d$

L1i$ Core
NTV 1
(InO)

NTV island

…

L1d$

L1i$ Core
NTV 2
(InO)L1d$

L1i$ Core
NTV n
(OoO)L1d$

Tile Tile

117

Figure B.4 – O mapeamento de aplicações visa maximizar o MIPS total (milhões de instruções
por segundo).

App
1

App
2

App
3

App
n

Core
1

Core
2

Core
3

Core
n

W1,1 Wn,n

Wi,j = IPS of core ‘i’ running application ‘j’

…

…

propomos uma abordagem de Programação Linear Inteira (ILP, do inglês Integer Linear

Programming) para maximizar o rendimento de instruções em nível de chip, explorando

núcleos heterogêneos. As soluções encontradas fornecem os chips mais eficientes em

termos de desempenho e energia (com número otimizado de cada tipo de núcleo e config-

urações de tensão) sob o limite de potência requerido.

Em seguida, realizamos experimentos com chips heterogêneos RISC-V utilizando

mapeamentos visando aumento de desempenho, conforme mostrado na Fig. B.4, e mostramos

que os designs compostos por combinações de núcleos NTV e STV (SNAP) superam

os designs convencionais que operam completamente em STV (ou completamente em

NTV) em termos de rendimento de instruções em nível de chip (IPS) e eficiência de área

(IPS/área). Conforme os resultados mostrados na Fig. B.5, concluímos esta parte da tese

da seguinte maneira:

Figure B.5 – Comparação de MIPS para as diferentes estratégias de composição do MPSoC.

(a) Melhor MIPS médio alcançável por limite de potência.

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700 800

M
IP

S

Power budget (mW)

Full NTV
Full STV
SNAP

(b) Média entre todos os limites de
potência.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

M
IP

S

Full NTV
Full STV
SNAP

118

1. Os designs que operam totalmente em níveis NTV apresentam uma eficiência de

área muito baixa devido aos núcleos de baixa frequência. Nossa abordagem mitiga

esse problema e fornece designs com uma eficiência de área 3,9 vezes melhor (até

5,2 vezes) em comparação com abordagens convencionais que operam totalmente

em NTV.

2. Avaliamos o desempenho alcançável em termos de rendimento de instruções em

nível de chip (IPS). Mostramos que nossa abordagem proporciona melhorias de

IPS de +13,3 por cento em média em relação às arquiteturas convencionais (STV

completo) (até 83 por cento). Em comparação com abordagens padrão que operam

totalmente em NTV, são obtidos ganhos médios de IPS de 3,4 vezes (até 6,3 vezes).

B.3 Parte 3: Abordando Variabilidade de Processos

Aprimoramos nossa abordagem de design de chips proposta anteriormente com

modelos de variação de processo e apresentamos uma abordagem de projeto de proces-

sadores em duas etapas para melhorar o desempenho e a eficiência energética aplicáveis

Figure B.6 – Camadas do sistema exploradas nesta tese.

Micro-architectural level:
Heterogeneous cores

In-Order
0.2 GHz

Circuit-level:
+ Voltage settings (STV/NTV)
+ Frequency adaptation

Scheduler-level: Application mapping

In-Order
0.3 GHz

System-level: Variation-aware chip customization

Low Vdd
(NTV)

Workload

High Vdd
(STV)

In-Order OoO

● Chipyard framework:
○ Rocket
○ SmallBoom
○ MediumBoom
○ LargeBoom

● VARIUS-NTV:
○ Delay variation
○ Power variation

● FinCACTI cell library:
○ STV at 0.8V
○ NTV at 0.55V

Process
variation model

Chip sample

Explore

119

Figure B.7 – Comparação de MIPS para as diferentes estratégias de composição de MPSoC.

(a) Melhor MIPS médio alcançável por limite de potência.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700 800 900 1000

M
IP

S

Power budget (mW)

Full NTV (no FS)
Full NTV (+FS)
Full STV (no FS)
Full STV (+FS)
VA-SNAP (no FS)
VA-SNAP (+FS)

(b) Média entre todos os limites de
potência na Fig. B.7a.

 0

 5000

 10000

 15000

 20000

 25000

No FS With FS

M
IP

S

Full NTV
Full STV
VA-SNAP

ao domínio de borda, restritos a limites de potência e restrições de variação de processo,

ao mesmo tempo em que mantemos os requisitos mínimos de rendimento.

A abordagem proposta (VA-SNAP) opera em várias camadas do sistema, conforme

mostra a Fig. B.6. Primeiro, incorporamos informações de variação de processo ao nosso

método ILP anterior para composição de chips. Em segundo lugar, propomos um mecan-

ismo eficiente de ajuste de frequência pós-design para lidar com variações indesejadas

de atraso e potência que não são vistas durante a fabricação (limite de potência) ou, se

possível, realizar aumento de frequência habilitado para variação para melhorar o desem-

penho. Sob limites de potência restritos, a metodologia VA-SNAP orienta em direção a

configurações adequadas de chips que maximizam o rendimento de instruções multitarefa

do sistema em cenários de variação de processo.

Realizamos experimentos com chips heterogêneos RISC-V, aplicando mapeamen-

tos orientados ao desempenho para avaliar como o VA-SNAP se compara a designs padrão

(Full STV/NTV). Os principais resultados são mostrados na Fig. B.7. As seguintes con-

clusões podem ser tiradas de nossos experimentos:

1. Nossa abordagem de ajuste de frequência melhora o rendimento de instruções em

todos os casos de configuração de chips explorados (Full STV/NTV e VA-SNAP).

Por exemplo, melhorias de 32,5 por cento (16,5 por cento) são alcançadas para

arquiteturas Full STV (Full NTV), e 17,7 por cento para VA-SNAP. Em segundo

lugar, o ajuste de frequência assegura os requisitos mínimos de rendimento (95 por

cento para o exemplo anterior).

2. O design do chip deve considerar efetivamente modelos de variação de processo

tanto durante o tempo de design quanto após o design. Se um rendimento mínimo

120

exigido deve ser mantido em um cenário de variação, nossa abordagem pode mel-

horar o desempenho, em média, em 51,9 por cento (se combinada com ajuste de

frequência) em comparação com designs que não consideram a variação.

3. Mostramos que o uso eficiente da NTV seletiva, combinado com o ajuste de fre-

quência, permite a exploração granular dos recursos de potência sob um limite de

potência. Em comparação com arquiteturas padrão Full STV (Full NTV) (todas us-

ando ajuste de frequência), VA-SNAP oferece, em média, melhorias de IPS de +12

por cento (3,4 vezes) sob o mesmo limite de potência, mantendo níveis de rendi-

mento semelhantes.

	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Challenges Addressed in this Thesis
	1.2 Contributions of this Thesis
	1.2.1 Contribution 1: Reliability-Oriented Mapping Solutions
	1.2.2 Contribution 2: Efficient use of NTV for Improved Performance and Energy Efficiency
	1.2.3 Contribution 3: Addressing Process Variations

	1.3 Structure of this Document

	2 Background
	2.1 Sources of Power Consumption and Optimization Methods
	2.2 Radiation-Induced Soft Errors and Fault Tolerance Concepts
	2.3 Near-Threshold Voltage Computing
	2.3.1 Timing Failures

	2.4 State-of-the-Art Heterogeneous Architectures
	2.5 The Chipyard Framework
	2.5.1 The BOOM and Rocket Cores

	3 Related Work
	3.1 Related Works on Addressing Soft Errors Reliability
	3.1.1 Redundancy-based Fault Tolerance Approaches
	3.1.2 Mapping-based Fault Tolerance Approaches

	3.2 Related Works on Process Variation Mitigation
	3.3 Contextualizing this Thesis with Respect to Previous Works

	4 Application Mapping Approaches to Improve Reliability and Performance of Heterogeneous Systems
	4.1 Improving MWTF with Application Mapping
	4.1.1 Motivation and Background

	4.2 Adaptive Mapping
	4.2.1 Problem Definition

	4.3 Experimental Methodology
	4.4 Results on Reliability-Oriented Mappings
	4.4.1 AVF Prediction
	4.4.2 Dynamic Mapping Evaluation
	4.4.3 Comparing Heterogeneous versus Homogeneous Configurations
	4.4.4 Distribution of best configurations
	4.4.5 Exploiting Different ANNs

	5 A Power-Efficient and Performance-Oriented Exploration Methodology with NTV Chips
	5.1 Introduction
	5.2 Chip Architecture Exploration Scope
	5.3 Application Mapping with Heterogeneous Systems
	5.4 Architectural Search and Optimization Goal
	5.5 Results on Performance-Oriented Mappings
	5.5.1 Experimental Methodology
	5.5.2 Results
	5.5.2.1 Evaluating Application Mappings on Heterogeneous Cores
	5.5.2.2 Performance Evaluation of SNAP
	5.5.2.3 Area Efficiency Evaluation

	6 A Variation-Aware Methodology for Improved Processor Designs for the Edge Computing Domain
	6.1 Motivational Analysis
	6.2 Variation-Aware Proposal
	6.3 Approach Overview
	6.3.1 Proposed Flow of Optimization
	6.3.2 Chip Architecture Exploration Scope
	6.3.3 Modeling and Addressing Parameter Variations

	6.4 Variation-Aware Design- and Post-Design time Optimization
	6.4.1 Design-time and Variation-Aware Chip Customization
	6.4.2 Post-Design and Variation-Aware Frequency Scaling
	6.4.3 Putting It All Together: Variation-Aware Exploration Algorithm

	6.5 The Proposal's Evaluation
	6.5.1 Experimental Methodology
	6.5.2 Results
	6.5.2.1 Variation-Aware VA-SNAP Approach and Frequency Scaling
	6.5.2.2 Case Study
	6.5.2.3 Variation-aware versus Variation-unaware Approaches
	6.5.2.4 MIPS for Minimum Yield Requirements
	6.5.2.5 Overall Gains Evaluation
	6.5.2.6 Per-Scenario Results

	7 Conclusions
	7.1 Addressing Reliability
	7.2 Improving Performance and Energy Efficiency with NTV Edge Devices
	7.3 Addressing Process Variations with NTV Edge Devices
	7.4 Future Work
	7.5 List of Published Papers
	7.5.1 Main Publications
	7.5.2 Publications as a Collaborator

	References
	Appendix A — Implementation Details and Per-Scenario Evaluation
	A.1 Detailed Configurations of the Explored Cores
	A.2 Per-Scenario VA-SNAP Evaluation
	A.3 Class Diagram of the Architecture

	Appendix B — Uma Metodologia Visando o Aprimoramento de Processadores Restritos à Variação de Processos e Aplicáveis à Computação de Borda
	B.1 Parte 1: Otimização de Confiabilidade
	B.2 Parte 2: Otimização de Desempenho e Eficiência Energética
	B.3 Parte 3: Abordando Variabilidade de Processos

