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Abstract

Risk forecasting has played a major role in the risk management process, drawing the attention
of financial organizations, regulators, and the academic community over the past decades to
develop better tools to measure market risk. In this context, we slightly modified the definitions
of Expected Shortfall (ES) backtesting procedures based on exceedance residuals with the main
objective of making them effective for evaluating risk forecasts of Range Value at Risk (RVaR).
To assess the performance of all procedures, we conducted Monte Carlo simulations to evaluate
the size and power properties across different scenarios. In addition, we executed an empirical
exercise with different asset classes, rolling window estimations, and significance levels. Jointly
with each backtest, we applied the loss function of RVaR to assess the results and verify if they
remained following both methods. We identified that none of the proposed backtesting procedures
display significant superiority over the others in numerical and empirical analyses. Besides,
the size and power of the tests deteriorate as the out-of-sample size increases. Also, with the
increase of in-sample observations, we noted a degradation of sizes and improvement of powers
for data generated with normal distribution at the significance levels of @ = 1%, 8 = 2.5%. For
DGPs with third and fourth moments, the proposed procedures exhibit higher powers when the
predictions are conducted using the normal distribution. Regarding the empirical application,
we identified that the results closely follow both methods in the best-performing scenarios,

exhibiting the opposite in the worst-performing ones.

Keywords: Risk Forecasting; Risk Measures; Range Value at Risk (RVaR); Backtesting; Monte

Carlo simulation.



Resumo

Previsdes de risco desempenham um papel importante no processo de gerenciamento de risco,
atraindo a atencdo de organizagOes financeiras, reguladores e da comunidade académica nas
ultimas décadas para desenvolver ferramentas melhores para medir o risco de mercado. Nesse
contexto, modificamos ligeiramente as defini¢des dos procedimentos de backtesting do Expected
Shortfall (ES) com base em residuos de excedentes, com o principal objetivo de torni-los eficazes
na avaliacdo das previsdes de risco do Range Value at Risk (RVaR). Para avaliar o desempenho de
todos os procedimentos, conduzimos simulacdes de Monte Carlo para examinar as propriedades
de tamanho e poder em diferentes cenarios. Além disso, realizamos um exercicio empirico
com diferentes classes de ativos, janelas rolantes e niveis de significincia. Em conjunto com
cada backtest, aplicamos a func¢dao de perda do RVaR para avaliar os resultados e verificar se
eles se mantiveram seguindo ambos os métodos. Identificamos que nenhum dos procedimentos
de backtesting propostos exibe superioridade significativa sobre os outros tanto nas andlises
numéricas quanto na andlise empirica. Além disso, o tamanho e o poder dos testes se deterioram
a medida que o tamanho da amostra fora do periodo de amostragem aumenta. Além disso, com o
aumento das observacoes dentro da amostra, observamos uma degradagdo dos tamanhos e uma
melhoria dos poderes para dados gerados com distribuicdo normal nos niveis de significancia de
o = 1%,B = 2.5%. Para DGP’s com terceiro e quarto momentos, os procedimentos propostos
exibem maiores poderes quando as previsdes sdo realizadas usando a distribui¢do normal. Em
relacdo a aplicacdo empirica, identificamos que os resultados seguem de perto ambos os métodos

nos cendrios de melhor desempenho, exibindo o oposto naqueles de pior desempenho.

Palavras-Chave: Previsdo de Risco; Medidas de Risco; Range Value at Risk (RVaR); Backtest-

ing; Simulac¢do de Monte Carlo.
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1 Introduction

Risk management is a crucial competence of financial institutions such as banks, invest-
ment funds, and insurance industries and has drawn much attention in both the industry and
academic community over the past decades. Techniques for measuring risk play a major role in
the risk management process. Risk can be measured in terms of probability distributions, but
it is useful to express it with a number that can be interpreted as a capital amount. Informally,

quantitative tools that map random variables to capital amounts are called risk measures.

In 1996, the Basel Committee on Banking Supervision (BCBS) incorporated systematic
risk as a supplement to credit risk and sanctioned the risk measure called Value at Risk (VaR)
to be calculated for market risk capital requirement (TIAN et al., 2019). Since then, VaR has
been one of the most popular risk management tools. In short, this measure describes, at a
significance level, the maximum loss expected to occur by a financial position in a set time
period. Despite its simplicity and ease of implementation, VaR has been criticized for not having
important theoretical properties for measuring market risk. One of its deficiencies is the lack of
subadditivity, which implies that it is not a coherent measure of risk (ARTZNER et al., 1999).
Thus, the risk of a portfolio can be greater than the sum of individual asset risks, diverging
from the diversification principle. Another weakness of VaR is that it ignores the potential
losses beyond the quantile point of interest. In order to overcome these shortcomings, several
alternative risk measures have been presented in the literature, the most accepted being the
Expected Shortfall (ES), proposed by Acerbi and Tasche (2002). As stated by Danielsson (2011),
ES is the expected loss conditional on VaR being violated. By its definition, ES considers the

magnitude of losses in addition to being a coherent measure of risk.

Although ES appears to be a more suitable risk measure than VaR, these are essentially
theoretical properties. As stated by Miiller and Righi (2018), there is a need for reliable estimates
and forecasts under real applications. In this context, the literature has raised some statistical
disadvantages of ES concerning VaR. As Gneiting (2011) showed, VaR is an elicitable measure of
risk, while ES is not. A functional is called elicitable when it minimizes the expectation of some
score function (ZIEGEL, 2016; ACERBI; SZEKELY, 2017). This property is quite important
for risk management because it allows for assessing the quality of competing forecasting models
by a scoring rule. Although ES is not directly elicitable, Fissler and Ziegel (2016) demonstrated
that it could be joint elicitable with VaR. Also, Cont et al. (2010) point out the existence of a
conflict between subadditivity and robustness (in a sense proposed by Hampel (1971)). In short,
robustness can be understood as the stability of functional to small perturbations of the empirical
distribution from the theoretical distribution of the data (KRATSCHMER et al., 2014). Hence,

ES is not qualitatively robust, as it is a coherent risk measure.
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To withdraw the weakness of ES not having robust estimators, Cont et al. (2010) slightly
modified its definition and proposed the risk measure called Range Value at Risk (RVaR). This
measure is defined as the average of all VaR over an interval of probability levels a, 8 € [0, 1]
(FISSLER; ZIEGEL, 2021). RVaR is a conditional interquantile expectation since it lies in an
interval generated by the VaR at the levels a and 8 (BARENDSE, 2017). Also, RVaR is a robust
risk measure and comprises VaR and ES as limiting cases. Concerning elicitability, Wang and
Wei (2020) demonstrated that RVaR does not have convex level sets and, therefore, is not directly
elicitable. Fortunately, Fissler and Ziegel (2021) overcame this problem by showing that the
triplet (VaR?, VaRA, RVaR*#) is elicitable, which implies that RVaR is jointly elicitable. Such
features make RVaR a relevant measure of risk under real applications.

The key practical challenge for a given risk measure is to validate its estimates by
checking whether realized losses observed ex-post align with the ex-ante estimates or forecasts.
The statistical procedure by which realizations and forecasts can be compared is known as
backtesting. This procedure plays a major role in financial management, as it can prevent
underestimation of market risk and, hence, ensure that a financial agent carries sufficiently high
capital and, at the same time, can reduce the likelihood of overestimating market risk, which
can lead to excessive conservatism (DANIELSSON, 2011). Despite the importance of this tool
and the advantages presented by RVaR, there are still few studies on the subject, with particular
attention given to Biswas and Sen (2023), who conducted a backtesting exercise modifying the
Acerbi and Szekely (2014) approach for the RVaR measure and executed a simple simulation to

evaluate their performance.

In this context, we propose modifications to established backtesting procedures in the
literature to render them effective for evaluating Range Value at Risk forecasts. Over the last
few years, theoretical progress in risk management has made backtesting ES possible with a
sufficiently large variety of tests, each with its own particularity. Since ES is a special case of
RVaR, we have addressed some of its best-known procedures and modified its definitions to our
measure of interest. Against this background, we consider the violation residuals tests proposed
by McNeil and Frey (2000), Righi and Ceretta (2015), and McNeil et al. (2015), which obtain
the respective p-values from a nonparametric bootstrap test introduced by Efron and Tibshirani
(1993). Such methods were selected based on their ease of implementation, coupled with their
extensive utilization in the literature, with a particular emphasis on the former one (see, for
instance, Singh et al. (2011), Siu (2021) and Nilsen (2022)).

The performance evaluation of each RVaR backtesting was done using both empirical and
simulated data. We consider the Autoregressive (AR)-Generalized Autoregressive Score (GAS),
the Autoregressive (AR)-Generalized Autoregressive Conditional Heteroskedasticity (GARCH),
the Autoregressive (AR)-Exponential Generalized Autoregressive Conditional Heteroskedasticity
(EGARCH) and the Autoregressive (AR)-Glosten Jagannathan Runkle-Generalized Autoregres-
sive Conditional Heteroskedasticity (GJR-GARCH) models with different probability distribu-
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tions for the analyses. Garcia-Jorcano and Novales (2021) results indicate that the performance
of risk models is associated with the probability distribution of innovations, and the choice of
the models plays a secondary role. At first, we conducted Monte Carlo simulations to assess the
size and power of the backtesting procedures. Monte Carlo simulation can be understood as a
computational method that allows an experiment to be replicated enough times to the point that
the empirical distribution of certain statistics of interest approximates the underlying probability
measure (MCCRACKEN, 1955). So, with this finite samples method, we will investigate which
backtestings perform best across different scenarios and sample sizes. In the second step, we
performed an illustration using empirical financial data from distinct classes. Such a decision is
due to the particularities of each asset class, providing an analysis of the developed backtesting
behavior in diverse situations. Jointly with each backtest, we applied the loss function of RVaR
proposed by Fissler and Ziegel (2021) to assess the results and verify if they remain following
both methods. In accordance with what is commonly used in literature, we focus on the one-day-
ahead estimation. Also, we consider different significance levels and rolling estimation windows

for both numerical and empirical analysis.

The main contribution of our study lies in its pioneering exploration of different ES
backtesting procedures based on violation residuals, modified to evaluate the quality of RVaR
predictions, using Monte Carlo simulations to assess which proposed method presents the best
size and power results. Previous studies, such as Du and Escanciano (2017) and Deng and Qiu
(2021), considered the same approach but with the comparison of ES backtesting as the main
objective. Furthermore, the work of Biswas and Sen (2023) proposes a backtesting procedure for
RVaR employing only the Normal, Student-#, and Generalized Pareto distributions in conjunction
with the standard GARCH model in its simulations. Furthermore, it lacks size and power tests,
as well as an application with real financial data. On the other hand, our study aims to fill these
gaps, contributing to the existing literature by conducting broader analyses with a greater number
of parameters, models, and distributions, and thus, more rigorously evaluating the performance
of the proposed approach. Finally, this study provides financial institutions, regulators, managers,
and the academic community with a procedure that allows for evaluating risk forecasts from
a measure different from those commonly used (VaR and ES) but with empirically relevant

properties that make it an appropriate option in real situations.

The remainder of this project divides into the following contents: Chapter 2 addresses
the notations and basic definitions used throughout the study, as well as the presentation of RVaR
and descriptions of the ES backtesting; Chapter 3 addresses the proposed RVaR backtesting
procedures, the description of the employed estimation methods and the methodological aspects
of the numerical and empirical analysis; Chapter 4 presents the description of the size and power
properties’ results, as well as the empirical performance of the proposed backtesting procedures;
and Chapter 5 summarizes and concludes the study. Finally, the Bibliography addresses the
complete references cited throughout the text, and Appendix A gathers the additional tables

developed for the empirical exercise.
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2 Background

This chapter is divided into three sections. In section 2.1, we recall some of the most
important axioms in the literature on risk measures and define the two most used risk measures,
called Value at Risk (VaR) and Expected shortfall (ES). In section 2.2, we formally introduce the
Range Value at Risk (RVaR). In the last section, we take a look at some of the most important

backtesting procedures for the Expected Shortfall.

2.1 Notations and basic definitions

Consider the random result of any asset or portfolio X, where X > 0 is a profit and
X < 0 aloss, defined for the space of feasible financial positions 2" := L! (Q,.7,P), the space
of essentially bounded random variables. We denote E[X] = [ XdP, Fx(x) = P(X < x) and
Fy '(o0) = inf{x : Fx(x) > a}, respectively, the expected value, the cumulative distribution
function and the left quantile of X € 2" for the significance level a € (0, 1). Also, we represent
1(-) as the indicator function that takes value 1 when the argument is true and zero otherwise.
Furthermore, let X = max{X,0} and X~ = min{X,0}. A risk measure can be defined as the
map p : Z — R and is called monetary if, for any X,Y € 2, it satisfies:

» Monotonicity: If X <Y, then p(X) > p(Y);

¢ Translation Invariance: For any constant m € R, p(X +m) = p(X) —m.

If p fulfills both proprieties, it is monetary. A monetary risk measure is coherent in a sense

proposed by Artzner et al. (1999) if it also satisfies:
* Positive Homogeneity: For any A > 0, p(AX) = Ap(X);
* Subadditivity: p(X+Y) < p(X)+p(Y).

The wide majority of risk measures of practical interest in the academic literature also share the

following property:
» Law-Invariance: If Fx = Fy, then p(X) = p(Y);

Briefly, Monotonicity is the requirement that the risk measure appraises as less risky those assets
or portfolios with a lower loss. Translation Invariance means that adding an amount of cash m
reduces the risk of the portfolio by the same amount m. Positive Homogeneity says that the risk

of a position is directly proportional to its size. Subadditivity implies that the overall risk to
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which a portfolio is exposed cannot be worse than the sum of the individual risks of the positions
that compose that portfolio — a manifestation of the diversification principle. Law-Invariance
ensures that two positions with the same distribution function must have equal risks. For a
detailed discussion of the axioms above, see Artzner et al. (1999), Frittelli and Gianin (2002)
and Follmer and Weber (2015).

Two of the most commonly used monetary risk measures (which fulfill law-invariance)
are the Value at Risk (VaR) and Expected Shortfall (ES). Let X € 2" arbitrary with the distribution

function Fx. Given a significance level & € (0, 1), we can define the Value at Risk as:
VaR*(X) = —inf{x: Fx(x) > a} = —F '(a). 2.1

Based on this formulation, we can observe that the VaR ignores the potential losses beyond the
quantile point of interest. Furthermore, VaR has the drawback of not being coherent as it is not a

subadditive measure of risk. The Expected Shortfall is defined as

ES¥(X) = —é /0 an_l(s)ds, (2.2)

was proposed by Acerbi and Tasche (2002) to overcome these shortcomings, as it considers the

magnitude of losses, in addition to being a coherent risk measure.

For a number of competing forecasts or estimation procedures, we would like to compare
them and decide which one performs best. This can be done if the risk measure has the statistical
property called elicitability. To have a better understanding of this property, we must define a
scoring function. In order to do so, we follow the definition proposed by Bellini and Bignozzi
(2015), where, for any x,y € R, the function S: R x R — [0, o) is called scoring function if it

has the upcoming properties:
(i) S(x,y) =0if and only if x = y;
(ii) for any y, x — S(x,y) is increasing for x > y and decreasing for x < y;
(iii) for any y, S(x,y) is continuous in X.

With this result, we can define elicitability. Thus, a law-invariant risk measure p : 2~ — R is

called elicitable if there exists a scoring function SP : R x R — [0, ) such that:

p(X)=—argminE[SP(X,y)], VXe€Z. (2.3)
yeR

In this case, the scoring function S is strictly consistent with p.

As presented by Gneiting (2011), the VaR is elicitable and has the following consistent
scoring function:
SR (x,y) = a(x—y) T+ (1— ) (x—y) . 2.4)
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On the other hand, Fissler and Ziegel (2016) showed that ES is not elicitable, but joint elicitable
with Value-at-Risk and introduced a class of scoring functions that are strictly consistent with the
pair (VaR*(X),ES%(X)). The scoring function of ES for real values, considering the adaption
suggested by Gerlach et al. (2017), can be described by:

SES‘X (x,y, Z) = y(]l{x<y} - O{) _X]l{x<y}

1
T G T ) P (B N

where the function S5 receives as input the values of the triplet (X, VaR%(X),ES*(X)). For
more details regarding elicitability and scoring functions, see Gneiting (2011), Fissler and Ziegel
(2016) and Ziegel (2016).

Another important statistical property when estimating risk measures is robustness. The
notion of robustness adopted in this study is based on the concept of qualitative robustness,
introduced by Hampel (1971). Informally, qualitative robustness refers to the stability of a
statistical functional with respect to small perturbations of the empirical distribution from the
"true’ theoretical distribution. According to Kritschmer et al. (2014), this concept is essentially
equivalent to the weak continuity of the corresponding law-invariant risk measure at the true
distribution with respect to the weak topology. Therefore, based on such equivalence, a law-
invariant risk measure p : 2" — R is robust if:

lim d(F,,F) = 0 => lim |p(X,) — p(X)| =0, (2.6)

n—oo n—oo

where d is some metric, Fy,, n > 1, and F are probability distributions, X,, ~ F,,,n > 1,and X ~ F.
Usually, d is taken as the Prohorov or Lévy metrics (KRATSCHMER et al., 2014). For more
details, we suggest Cont et al. (2010), Kriatschmer et al. (2014) and Embrechts et al. (2015).

Cont et al. (2010) showed that the Value at Risk is a robust risk measure. More generally,
they proved that if the quantile of the (true) loss distribution is uniquely determined, then the
empirical quantile is a robust estimator. The authors also demonstrate the existence of a conflict
between subadditivity and robustness. Thus, a law-invariant measure of risk p cannot be both
coherent and robust. A direct implication of this result is that the ES is non-robust, as it is
a coherent risk measure. To remove this drawback, Cont et al. (2010) slightly modified the
definition of ES to be the average of VaR levels across a range of loss probabilities. In other
words, they proposed a new risk measure called Range Value at Risk (RVaR). This measure is

defined in the next subsection.
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2.2 Range Value at Risk

Let o and B be two significance levels such that 0 < o < 8 < 1, the Range Value at Risk
of X € 2", RVaR*# (X), can be defined as:

5 a VaRY(X)dy, if &< B,

RVaR*P (X) = 2.7)
VaR*(X), if o =p.
The equation in (2.7) and the fact that the map y — VaR"(X) is decreasing imply that:
VaR*(X) > RVaR*P (X) > vaRP (X), (2.8)

Thus, the RVaR lies in the closed interval generated by the VaR at the significance levels o, 3.

The RVaR, as well as VaR, has the drawback of not being coherent, as it does not respect
the axiom of subadditive. Moreover, Wang and Wei (2020) demonstrated that the RVaR, similarly
to ES, is not elicitable. To overcome this issue, Fissler and Ziegel (2021) showed that RVaR is
joint elicitable with Value-at-Risk and established a class of strictly consistent scoring functions
S:R x R? — R for the triplet (VaR*(X ), VaRP (X),RVaR*# (X)). A particular scoring function
for RVaR, can be formulated as follows (FISSLER; ZIEGEL, 2021):

SRVQROLB (x,y,z, W) = y<]l{x<y} - OC) _X]l{x<y} +Z(]l{x<z} - ﬁ) _X]l{x<z}
+ (B — o) tanh((B — at)w) |w+ ﬁ%a(SV"Rﬁ (x,2) — SVar® (x,y))
—In(cosh((a—B)w))+1—1log(1—a), (2.9)

where x, y, z, w denote the values of X, VaR%(X), VaRP (X) and RVaR*# (X), respectively. The
equation in (2.9) is also used by Miiller et al. (2022).

Although RVaR has the drawbacks mentioned above, it has some advantages over VaR
and ES, becoming a relevant risk measure in practice. Given its robustness, the RVaR has
more stability than ES with respect to small perturbations of an empirical distribution F' € ..
Differently from VaR, it (partially) considers the magnitude of losses by averaging returns over
an interval beyond a quantile point of interest. Also, as the RVaR provides the expectation over
an interval, it is not subject to problems related to extreme tail values.

2.3 Backtesting ES

In the next subsections, we describe some of the best-known backtesting procedures for
the Expected Shortfall. For a better understanding of the following procedures, it is necessary to
make some initial definitions. Given an out-of-sample or future period = 1,---, T, we consider
X; the return of some asset at time ¢ as well as ; and o; the conditional mean and standard

deviation that are measurable with respect to the information available up to t — 1 of the same
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asset. Besides, the measures VaR® and ES? denote the Value at Risk and Expected Shortfall
forecasts for possible losses of some asset return at time ¢, for a significance level o € (0, 1), also
measurable with respect to the information available up to # — 1. For the definition of backtesting,
we consider that the risk measures have their sign adjusted. We emphasize that this will be

maintained in all situations where the backtesting is mentioned.

McNeil and Frey (2000) propose a backtest based on the series r, called exceedance
residuals, which represents the size of the discrepancies between the observed returns and the
estimated ES in the event of VaR violations'. For the out-of-sample period = 1,---,T and a
given significance level «, the residuals can be defined as:
X, —ES?

O;

(2.10)

rt::

Thus, (2.10) gives us information about how many dispersion measures (here, standard devia-
tions) an observed return is apart from the estimated value of ES. In this way, the exceedance

residuals series r can be denoted by:
r:{rt: XI<VGR;X} (211)
The null and alternative hypotheses are given by:

HQIE[}’]:O
HllE[}”]<0.

Under the null hypothesis, the residuals should behave like an i.i.d. sample with a mean of zero,
against the alternative hypothesis that their mean is less than zero. Rejecting the null hypothesis
implies that the risk is underestimated. To test the hypothesis of mean zero, the authors suggest
using a standard non-parametric bootstrap test, introduced by Efron and Tibshirani (1993).
Briefly, in the nonparametric approach, the underlying data distribution is not known and the
resampling process is carried out based on the empirical distribution of the data. Thus, such
process is obtained through resampling, with replacement, of the original sample. To assess
forecasting results, this method is usually set with 1000 bootstrap replications; see Catania and
Grassi (2022).

Righi and Ceretta (2015) propose an reconfiguration of McNeil and Frey (2000) proce-
dure. Distinct from (2.10), the authors consider dispersion only in cases where violations occur.
To be precise, the dispersion measure suggested in this approach is called Shortfall Deviation
(SD), which is the truncated variance squared root for some quantile conditional to the probability

o. The following formulation defines the SD:

SD%(X) = (V[X|X < VaR*(X)])? = (é /Oa (VaR"(X) —ES“(X))Zdy> " (2.12)

I A violation occurs when an observed return is lower than the calculated VaR, for a certain period ¢.
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Such dispersion is a better estimate than the standard deviation of the full sample since when
extreme negative returns occur, the financial market agents are interested in the left tail risk
(RIGHI; CERETTA, 2013). So, this backtest is based on the violation residuals series 7/, which
differs from (2.10) by using the SD defined in (2.12) as the dispersion measure instead of the
standard deviation of the full sample. Thus, for the out-of-sample period r = 1,--- , T and a given
significance level «, the residuals can be defined by:
(04

= %. (2.13)
Similarly to the previous procedures, the equation (2.13) gives us information about how many
dispersion measures (here, shortfall deviations) an observed return is apart from the estimated

value of ES. In this way, the series of violation residuals 7 can be denoted by:
r'={r: X, <VaR}}. (2.14)
The null and alternative hypotheses for long positions can be formulated as:

HolE[rll]:O
]Hh:]E[r'I]<0,

and for short positions, they are given by:

H()ZE[I‘/]:O
HliE[l’/]>0.

So, under the null hypothesis, the residuals should behave like an i.i.d. sample with a mean of
zero, against the alternative hypothesis that the mean is negative for long positions and positive

for short positions?.

Another modification of McNeil and Frey (2000) procedure is suggested by McNeil et
al. (2015). This backtest is based on the violation residuals series 7/, which differs from (2.10)
by using the difference between the estimated value of ES and the conditional mean of the full
sample as the dispersion measure. Hence, for the out-of-sample period# = 1,---,T and a given

significance level «, the residuals can be defined by:
= X —ES ;ES a (2.15)

ES — 1

So, this last procedure gives us information similar to the past tests, but now with a third
dispersion measure, i.e., it provides how many differences between expected loss and conditional
mean an observed return is apart from the same expected loss. In this way, the series of violation

residuals 7/ can be denoted by:

' ={r: X, <VaR{}. (2.16)

2 Long position involves buying an asset with the hope of its value rising to make a profit, while a short position

entails selling an asset not owned, betting on its price drop, aiming to repurchase it at a lower price for profit.
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The null and alternative hypotheses are as follows:
H() . E[ I’” =0
H, :E[+"] <O0.

Under the null hypothesis, the residuals of 7’ should behave like an i.i.d. sample with a mean
of zero, against the alternative hypothesis that the mean is less than zero. Here, again, if we
reject Hy, the risk is underestimated. To test the zero mean hypothesis, the authors indicate two
different approaches: a standard 7-test, defined by:

VT 7'

Mgs = ; (2.17)
(o3

where 7' is the sample mean of the violation residuals of size T, and o denotes its standard

deviation; and the same nonparametric bootstrap method already discussed.

2.3.1 Acerbi and Szekely (2014) approach - Z;

For illustrative purposes, this subsection is dedicated to the definition of one of the
proposed backtesting procedures of Acerbi and Szekely (2014), which was used and modified by
Biswas and Sen (2023) for the case of the RVaR measure. More specifically, the former authors
proposed three different backtestings for ES, where the approach of our interest is based on the

conditional expectation of ES, which, given a significance level o and the out-of-sample period

t=1,---,T,is equivalent to:
ESY =E[X|X; < VaR]. (2.18)
Thus, after some normalizations, we have the following equality:
Xi
E {ES?‘ —11X < VaRt“} =0. (2.19)

If VaR¥ was successfully backtested, the number of expected violations correspond to the
theoretical level a. Thus, the authors suggest a test statistic based on (2.19) to evaluate only the
magnitude of the realized exceptions against the model predictions. Define 1; = 1y ~y,ze} and

X = {Xi}i=1,... 7. Thereby, the test statistic can be formulated as:

. 1 & X1,
Zi(X) = — _
1(X) Nl_ziES,“ :

(2.20)

if N = Z,T:1 1, > 0. The null hypothesis chosen for this test is given by:
Ho: F* = F¢, for all period ¢,

where F is the predictive distribution, Fx is the unknowable distribution of returns and F'* is the

distribution tail conditioned to returns beyond a-quantile. The alternative hypothesis is:

H, :ESg)ft < ESY, forall t and < for some ¢

VaRLY, = VaR®, for all 1,
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where ESg’f, and VaRg’ft are the values of the risk measures when X ~ Fy. The value of Z; is
expected to be zero, 1.e., the realized and the predicted left-tail are the same (ES is not rejected);
or positive, i.e., the predicted values of ES underestimate the risk of the observed returns (reject
the ES without rejecting VaR). As this test is subordinated to a preliminary VaR backtest, its

predictions remain correct under the alternative hypothesis.

To test the significance of Z;, independent simulations are performed using the distribu-

tion under the null hypothesis:

Simulate Independent X/ ~ F Vevi=1,2,--- M
Compute 7' =7(X")
Estimate p=Y" (Z'<Z()/M

where M is the number of scenarios for independent simulations. Given a significance level ¢,

the test is accepted or rejected if p < ¢.
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3 Methodology

In this chapter, we define the procedures considered in our proposed objective. The
chapter is divided into four sections. In section 3.1, we present the adaptions to RVaR of the
backtesting procedures described in the last chapter. In section 3.2, we describe the estimation
procedures, namely AR-GARCH-type and GAS models, that are used throughout the study. In
section 3.3, we present the procedures necessary to assess the size and power properties of the
backtesting procedures using Monte Carlo simulations. Lastly, in section 3.4, we describe the

methodological procedures of the empirical analysis.

3.1 Proposed Approach

In this section, we present the adaptions to Range Value-at-Risk of the backtesting
procedures for the Expected Shortfall described in Chapter 2. For a better understanding of the
following procedures, it is necessary to make some initial definitions. Giving an out-of-sample or
future period r = 1,---, T, we consider X; the return of some asset at time ¢ as well as y; and o;
the conditional mean and standard deviation that are measurable with respect to the information
available up to 7 — I of that asset. Besides, the measures VaRy* and RVaR P denote the Value at
Risk and Range Value at Risk forecasts for possible losses of some asset return at time ¢, for the
significance levels o, B € (0, 1), also measurable with respect to the information available up to
t — 1. For the presentation of the backtesting, we consider that the risk forecasts have their sign

adjusted.

Initially, we propose an modification of McNeil and Frey (2000) approach. As already
described, this backtest is based on the size of the discrepancies between the observed returns
and the estimated ES in the event of VaR violations. Using an analogous argument, we can
derive the series k, which represents the size of the discrepancies between the observed returns

and the estimated RVaR when the violation lies on an interval of two estimated VaRs. Thus, for

the out-of-sample period t = 1,---, T and the significance levels a and f3, the residuals can be
defined by:
X, — RVaR™P ) B
k,:%:zt—ﬂz[z,w Na)<z <F1(B)]. (3.1)
1

It is clear that the residuals are i.i.d.. Thus, (3.1) gives us information about how many standard
deviations an observed return is apart from the estimated value of RVaR. In this way, the series

of exceedance residuals k can be denoted by:

k= {k, . VaR® < X, < VaR? } . (3.2)
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The appropriate null and alternative hypotheses are given by:

Ho:E[k] =0
H, : E[k] < 0.

So, the residuals should behave like an i.i.d. sample with a mean of zero under the null hypothesis,
against the alternative hypothesis that the mean is less than zero. Following the original model,
we used a non-parametric bootstrap test of Efron and Tibshirani (1993) to test the zero mean
hypotheses. Also, 1000 bootstrap replications are considered to evaluate the results, following
Catania and Grassi (2022).

Regarding the Righi and Ceretta (2015) procedure, additional adjustments are necessary.
Different from (3.1), the authors consider dispersion only when violations occur and suggest the
SD as a dispersion measure. In the case of RVaR, the violations that are taken into account occur
in an interval of quantiles. Thus, we can modify the identity in (2.12) and use as a dispersion
measure the SD defined by the following formulation:

B 2 2
/ (VaRY (X) — RVaR®" (X)> dy) ,
¢ (3.3)
given the significance levels o and 3. Thus, we followed the arguments of the authors and

1

som10) = (v v < <) = (1

propose an equivalent backtest for RVaR based on the series of violation residuals k’. For the
out-of-sample period t = 1,---, T and the significance levels o and 3, the residuals can be
defined by:

K, = (3.4)

X, —RVaR*? 7, ~E[z|F (o) <Z <F'(B)]
= =
sof (VI @) <7 < F(B))?
It is clear that the residuals are i.i.d. and, similar to procedure (2.13), equation (3.4) gives us
information about how many shortfall deviations an observed return is distant from the estimated

value of RVaR. In this way, the violation residuals series K’ can be denoted by:
K= {k; . VaR® < X, < VaR? } . (3.5)

The appropriate null and alternative hypotheses for long positions can be formulated as follows:

]H[() . E[ k/ ] =0

H, :E[£'] <0,
and for short positions, they are given by:

Hy:E[k]]=0

H; : E[ kll ] > 0.

Under the null hypothesis, the residuals should behave like an 1.i.d. sample with a mean of zero,

against the alternative hypothesis that the mean is negative for long positions and positive for
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short positions. We used the same nonparametric bootstrap test of McNeil and Frey (2000) to

test the zero mean hypotheses.

As the McNeil et al. (2015) backtest diverges from (2.10) and (2.13) by using as dis-
persion the difference between the estimated value of ES and the mean of the full sample, we
suggest a series of violation residuals k” exactly as (3.1), except by the fact that the dispersion
measure considered is the difference between the estimated RVaR and the sample mean. Hence,
for the out-of-sample period t = 1,--- , T and the significance levels o and 3, the residuals can
be defined by:

(3.6)

o X —RVarR(P 7 -E[Z|F @) <7 <F'(B)]
" RVaR*P — E[Z|F~ o) <Z <F~1(B)]
It is clear that the residuals are i.i.d., and also, that this last procedure provides how many

differences between expected loss and conditional mean an observed return is apart from the

same expected loss (here, RVaR). In this way, the violation residuals series k” can be denoted by:
K = {k;/ . VaR* < X, < VaRf} . 3.7)
The null and alternative hypotheses are as follows:

HoiE[k”]:O
H, :E[£"] < 0.

The residuals k" are an i.i.d. sample with a mean of zero under the null hypothesis, against
the alternative hypothesis that the mean is less than zero. Due to the absence of a suitable
mathematical demonstration for a 7-test to assess the null hypothesis of a mean of zero, we once
again employed the non-parametric bootstrap test proposed by Efron and Tibshirani (1993) with
1000 replications. This method was selected because it is an alternative mentioned by the authors

within the same study.

3.1.1 Biswas and Sen (2023) approach - Z{‘

The modification proposed by Biswas and Sen (2023) is based on RVaR expressed as the
conditional expectation, which, for the out-of-sample periodt = 1,--- ,T and the significance

levels o and S, is given by:
RVaR™P = E[X,|VaR® < X, < VaRP). (3.8)
Thus, from (3.8), we can derive:

Xi

E w -
RVaR®

1

VaR* < X, < VaR?] = 0. (3.9)

If VaR* and VaRP were successfully backtested, we could suggest a test statistic based on

(3.9) to evaluate the magnitude of the realized exceptions against the model predictions. Define
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17 =1

(VaR% <X, <VaRP}" The test statistic Z; of Acerbi and Szekely (2014), modified to RVaR,
can be formulated by:
L 1L xadP
Z7X) =Y a1, (3.10)

N3 RVaR;x’ﬁ

if N = Z,T: 1 ]l;x P > 0. The hypothesis test chosen for this test is given by:

Hy :F*B :F;”B, for all ¢,

H, :RVaRZX B < RVaR;x P , for all ¢ and < for some ¢,
VaRg, = VaR{* and VaRjy, =VaR?, forallt,

where F,(X’B is the prediction distribution tail conditioned to returns between the ¢-quantile and
B-quantile, and RVaRZ’fﬁ , are the RVaR forecasts when X ~ Fx. The value of Zf is expected
to be zero, i.e., the realized and the predicted left-tail are the same (RVaR is not rejected), or
positive, i.e., the RVaR forecasts underestimate the risk (reject RVaR without rejecting VaR). As
a preliminary VaR backtest is performed, its forecasts remain correct even under H;. Finally, the

same process of independent simulations is applied to test the significance of Z‘l“.

3.2 Estimation Procedures

In this section, we briefly describe the Autoregressive (AR) model, the standard GARCH
model, and its two usual variations, namely Exponential Generalized Autoregressive Conditional
Heteroskedastic (EGARCH) and Glosten Jagannanthan Runkle-Generalized Autoregressive
Conditional Heteroskedastic (GIR-GARCH). Also, we describe an alternative model, which is
driven by the score of the conditional density function, called the Generalized Autoregressive
Score (GAS) model. Finally, we specify the parametric approach of risk forecasting and the

distribution functions considered to perform such predictions.

3.2.1 Autoregressive model

While not of primary interest, the specification and estimation of the conditional mean
are still important to construct consistent risk forecasts. A common model to estimate the
conditional mean of financial returns is the Autoregressive (AR) model; see Li et al. (2002).
Given a sequence of financial positions {X,},:lwr, the conditional mean can be estimated by

the following equations:
p
Xi =00+ Z 0iXi—i + &,
i=1
& = Oy, Z[NlldF(e), (311)

where & is the error term, oy is the conditional standard deviation, z; is a white noise process,

which can assume many distribution functions F(0), where 6 is a vector of parameters, including
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zero mean and unit variance in addition to additional parameters that vary as the distribution.

Also, ¢;, fori =0,1,..., p being p term autoregressive order, are parameters of the AR model.

3.2.2 GARCH model

One of the main features of financial time series, in particular returns of assets, is
volatility clustering. Informally, this means that returns exhibit highly volatile periods alternated
with calm periods. Thus, by incorporating this characteristic into their structure, statistical
models can more efficiently represent the stochastic behavior of financial returns. The majority
of models that forecast conditional volatility and, therefore, capture the volatility clustering
belong to the GARCH family of models. The first such model was the autoregressive conditional
heteroskedasticity (ARCH) model proposed by Engle (1982). However, the generalized ARCH
model (GARCH) of Bollerslev (1986) has become the most popular approach and the common

denominator for most volatility models.

The GARCH(qg, s) model can be defined as:

q s

6,2 =0p+ Z Oﬂjé}z_j + Z Bszzflw (3.12)
j=1 k=1

where 6,2 is the conditional variance, & is the error term in (3.11) and o, for j =1,...,q as well

as B, for k = 1,..., s are parameters of the GARCH model (with ¢ and s being the GARCH model

order). To ensure positive volatility forecasts, o > 0, j > 0, B > 0 and to ensure covariance

stationarity, Z;I.ZI o +Y;_ B <1 (BOLLERSLEV, 1986).

3.2.3 Leverage effect

An asymmetric volatility response to positive and negative past returns has been empiri-
cally noted. In particular, increases in volatility are larger when previous returns are negative than
when they have the same magnitude but are positive. Such behavior is known as the leverage
effect. Although the standard GARCH model manages to capture the existence of volatility
clustering, it cannot express the leverage effect since from (3.12) positive and negative error

terms have the same effect on volatility.

A straightforward way to incorporate leverage effects in the GARCH model is to use the
GJR-GARCH(g, s) model of Glosten et al. (1993). It can be described as:

q K
o7 = oo+ Y [0+ % Lig <o)l&” i+ ) Bl ), (3.13)
i=1 j=1
where 1(-) is the indicator function, o, fori =1,...,q as well as B, for j = 1,...,s are parameters
of the GJR-GARCH model (with g and s being the GIR-GARCH model order). This model
incorporates positive and negative shocks on the conditional variance asymmetrically via the use

of the indicator function, where the volatility effect of a unit negative shock is a; + 7 while the
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effect of a unit positive shock is ¢;. To ensure positivity, &g > 0, o;, Bj, % > 0 and to guarantee
covariance stationarity, Y7, % <2(1 - Y7 o — i=1Bj) (RODRIGUEZ; RUIZ, 2012).

Another widely used GARCH model allowing for leverage effects into its structure is the
exponential GARCH (EGARCH(g, s)) proposed by Nelson (1991). It can be written as:

s ~1
Inc? = o+ (1 + zq" a,-L") (1 -y Bij) gle_1), (3.14)
i=1 j=1
where L' denotes the back-shift operator, g(+) is a function on R, a;, fori = 1,...,q as well as
Bj, for j =1,...,s are parameters of the EGARCH model (with ¢ and s being the EGARCH
model order). To accommodate the asymmetric relation between returns and volatility, we need
to model g(& ) as a function of both the magnitude and the sign of &. As suggested by the author,
we can choose g(&) as a linear combination of & and |&| of the form:

g(&)=0&+v(le] —E(l&])). (3.15)

Thereby, the equation (3.15) gives rise to leverage effects. Furthermore, another advantage of
this model in relation to the standard GARCH is that by modeling log 6/ rather than 67, there is
no need for parameter constraints to ensure positive volatility predictions. Lastly, to guarantee
weak stationarity, all the roots of (1 — Zj’:l B ij ) should be outside the unit circle (NELSON,
1991).

3.2.4 GAS model

Creal et al. (2013) and Harvey (2013) propose an alternative framework to estimate
time-varying parameters, called GAS model. The main contribution of this approach is the
use of the score of the conditional density function as the main driver of time-variation in the
parameters of the time series process. Based on the score, the GAS model encompasses the
traditional approaches and exploits the complete density structure rather than only means and
higher moments (CREAL et al., 2013). A further advantage of using the conditional score as the
driver is that the estimation by maximum likelihood is straightforward (ARDIA et al., 2019).

Let X; denote the returns of some asset or portfolio, y; a time-varying parameter vector,
0 a vector of static parameters and .%;_| the available information set of X; up to ¢t — 1. Consider
f(X:| yi,%—1;0) as the conditional density of X;. The GAS model is specified as follows:
p q
Yt:w+ZAi St71+ZBj Y1, (3.16)
i=1 j=1
where @ is a vector of constants, coefficient matrices A; and B; have appropriate dimensions for

i=1,...,pand j=1,...,q, while s; is the scaled score vector:

_ dlog f(Xi| y1,#1-1:0)

st = 8- Vi, \Z 8y
t

(3.17)
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The matrix S; is a positive-definite scale matrix that adjusts the shape of the score V; at the period

t. It is natural to consider a form of scale that depends on the variance of the score, i.e., on:
S; =E,_ [V;V;], (3.18)

where the expectation [, _; is taken with respect to the conditional density f(X;|y;,-%;—-1;0).

3.2.5 Risk forecasting

Consider that the random returns of an asset or portfolio X; have a fully parametric
location-scale specification based on the expectation, dispersion and random component, con-
forming to X; = U, + o;z;, where U, is the conditional mean (location), o; is the conditional
standard deviation (scale) and z; represents the i.i.d. innovations, which can assume differ-
ent probability distribution functions. Also, consider a risk measure p : 2~ — R. Thus, for
an out-of-sample day 7 € {1,---, T}, the risk forecasts can be obtained, in a parametric way,
by: p(X;) = p(U; + 6:2:) = — s + 0:p(z;)>. Under this specification, the Range Value at Risk

becomes:
B
RVaR*P = — lu, + o ((B — oc)l/ Fl(s)a’s>] : (3.19)

where 0 < o < B < 1 and F denote some distribution function. As all backtesting procedures
presented use VaR as an auxiliary measure and the adaptions of Righi and Ceretta (2013) and
Righi and Ceretta (2015) backtests use the adapted SD as a dispersion measure, it is reasonable

to illustrate them in their parametric form, as follows:

VaR* = — (w, +o,F (@), (3.20)
SDta’B - [GtZ(ﬁ —a)™! /aﬁ (F—l(s) — (([3 — a)—l /aﬁ F—l(s)ds>)2ds] 1/2, (3.21)

where, again, 0 < o < B < 1 and F represents some probability distribution. Thereby, in the
parametric approach, we first filter 1, and o; through some conditional location-scale time
series model and then calculate the measures defined above for period ¢ from the definition of
function F (for details, see McNeil et al. (2015)). In our illustrations, the conditional mean and
variance are predicted in two different ways. At first, we make use of AR models, described
in (3.11), for the conditional mean (u; = ¢o + Zle ¢;X;_;) forecasts. In relation to conditional
variance, we employed the GAS and GARCH-type models, specified in (3.12)-(3.16). The jointly
application of these approaches are denoted as AR-GARCH, AR-EGARCH, AR-GJR-GARCH,
and AR-GAS models. The first model is considered in our study because, in the risk forecasting

literature, it is widely used to fit financial data and previous studies show good performance

3 This result is obtained from the Translation Invariance and Positive Homogeneity properties.
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compared to competitive models; see Ardia and Hoogerheide (2014) and Miiller et al. (2022),
for example. The second and third models were selected since they capture the existence of
asymmetric volatility or the so-called leverage effect of financial data, and they are employed
by other studies in risk forecasting, as in Alberg et al. (2008) and Umar et al. (2021), among
others. Lastly, the fourth approach was selected because it shows competitive performances in
recent risk forecasting studies compared to traditional approaches. See, for instance, Bartels and
Ziegelmann (2016), Troster et al. (2019) and Xu and Lien (2021).

Table 1 — Parameters, support, and probability density function of the different used distributions

Probability distribution Parameters* Support Probability density function

! R L5
Norma u,o i
Skewed normal U,0,0 R 26 (’%) d (v (%)

(Y 2) )
Student-¢ n R N ey (1 +2

(1) 2\~ ()
Skewed Student-# n,v R b ) (1 n nT)
. B _Ljx—p P
Generalized error w,o,B R 21+ﬁ”cr(%) exp < 71— )
. —1 —d %]

Skewed generalized error  ,0, 60,0 R 9 (2T (§))  exp <— [lfsign(|);fd‘)v]96969>
Normal-inverse Gaussian ,0,3,0 R %5 ‘;’Ei:)) K[ q(x)]
Johnson SU ,LL,G,A,,(S R #ﬁ exXp <—%(7L—{—631nh_1 (Z)))z

*1, o represent the location and scale parameters. v is the skewness (asymmetry) parameter, ¢ and
denote the standard normal probability density function and cumulative distribution function, respectively.
n denotes the number of degrees of freedom and I'(p) = [ x"~'e~dx is the Gamma function.
Regarding the skewed student-t distribution, € = (bx+a)/(1 —v) if x < —a/bor € = (bx+a)/(1+v)
otherwise, and the constant terms are defined by: a = 4ve(n —2)/(n — 1), b*> = 1 +3v%> — a2,
with ¢ = T(™1)/\/m(n—2) T'(2). B represents the shape parameter. The parameter 6 controls
the height and fat-tail of the skewed generalized error distribution, ¢ = F(é)l/ 21“(%)‘” 2h(v)~!,
d = 1 — 80, where § = 20Ah(v) ™!, with h(v) = V1+3v2 —4A202 and A = ['(2)I(5)~1/20(3) V2
0 denotes the tail-heaviness parameter, K; is the Bessel function of the second kind with index 1,
p(x) = 0(8%*— B2+ B(x— ), and g(x) = (6% + (x — u)?)"/2. For the Johnson SU distribution, A

and 0 are the shape parameters and z = XT.

Regarding the distribution functions, we follow the results of Garcia-Jorcano and No-
vales (2021), which states that the important assumption for risk forecast performance is that
of the probability distribution of the innovations, with the choice of volatility model playing
a secondary role. For this reason, we consider different probability distribution functions for
the AR-GARCH-type models, including normal, skewed normal (AZZALINI, 1985), Student-¢
(GOSSET, 1908), skewed Student-r (FERNANDEZ; STEEL, 1998), generalized error (MC-
DONALD; NEWEY, 1988), skewed generalized error (THEODOSSIOU, 1988), normal-inverse
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Gaussian (BARNDORFF-NIELSEN, 1977), or Johnson SU (JOHNSON, 1949) distributions.
For the AR-GAS model, the assumed probability distributions are the normal, skewed normal,
Student-t and skewed Student-t*. We used the quasi-maximum likelihood (QML) method to
estimate the parameters of the models. In Table 1, we provide the underlying parameters, support,

and probability density function for the different specifications of the distribution function F.

3.3 Numerical Procedures

In this section, we describe the Monte Carlo simulations exercise conducted to investigate
the size and non-null rejection rates (power) of the three backtests defined in Equations (3.1) -
(3.7) from Section 3.1. Briefly, the size of a test is the probability of incorrectly rejecting the null
hypothesis if it is true (Type I error). In contrast, the power of a test is the probability of correctly
rejecting the null hypothesis if it is false (Type II error). All computational implementations
were performed using the R programming language (R Core Team, 2023), making use of the
rugarch (GALANOS, 2019) and GAS (CATANIA et al., 2019) packages for data simulations as

well as conditional mean and conditional variance predictions.

In our experiment, we decided to set the number of Monte Carlo replications at 1,000
since it can provide satisfactory results as observed, for example, by Escanciano and Velasco
(2010) and Du and Escanciano (2017). For the remaining parameters, we set the in-sample sizes
(n) at 250 and 1,000; the out-of-sample backtesting sample sizes (7') at 250 and 500; and the
number of bootstrap or Monte Carlo samples at 1000. Such values are commonly employed in
the literature; see Deng and Qiu (2021).

Figure 1 — Numerical Analysis Diagram

4 This difference is due to the limitations of the GAS package.
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We select three different models as data generating process (DGP) to generate the log-
returns: (i) AR(1)-GARCH(1,1), (ii)) AR(1)-EGARCH(1,1), and (iii) AR(1)-GAS(1,1). Following
the results of Garcia-Jorcano and Novales (2021), we consider different probability distributions
for prediction models and DGPs, assuming F' to be normal (norm), student-¢ (std) and skewed
student-¢ (sstd). Such distributions were considered because they are often applied in stock
market analysis; see Diaz et al. (2017). As the last step before simulating the data, we need the
parameters of the data generating processes to be well known. So, following Righi and Ceretta

(2015) and Miiller and Righi (2018), the chosen parameterization for (i) model is given by:

Xt — O.SX[fl + 8;,
& = 01y, r lldF(e),
67 =4x107°40.10e> | +0.8507 ;. (3.22)

With respect to the (ii) model, we choose the parameterization used by Du and Escanciano
(2017), which is as follows:

Xt - O.SXI_] +8[,
& = Oy, r lldF(@),
Inc? =0.014+0.9In6” | +0.3(|&_1| — /2/7) —0.8¢_1. (3.23)

For both models, we also consider parameters for skewness (v) and shape (1), equal
to 0.92 and 6, respectively. The 1 parameter was taken from Miiller and Righi (2018), once
this parameterization represents an equity portfolio return distribution, while the v parameter
represents a similar value to the one we obtained, estimating the S&P 500 returns with a
GARCH(1,1) model. To the best of our knowledge, no study still applies GAS models for
evaluating the size and power of a test. Therefore, to use our (iii) model, we applied a similar
procedure to that of Righi and Ceretta (2015) to determine the process that generates the data by
fitting it to daily S&P500 Index returns.

To assess the size and power of the tests, we applied a technique similar to that of
Escanciano and Velasco (2010), Du and Escanciano (2017) and Deng and Qiu (2021), considering
nine different hypothesis tests where, in each of them, a single DGP is assumed as the null
hypothesis. Consider, with some abuse of notation, Fg := {norm, std, sstd}. So, for any Fy € F,
Fi can be described as its complement, where F = Fy U F. To a better understanding of the
method, suppose the hypothesis test of the first row of Table 2, with Fyp = norm. Under the
specification of the null model, we simulate 1000 processes of length n+ T'. To evaluate the
size property, for each simulated sample, we estimate the RVaR, VaR, and SD conforming to
the explanation in subsection 3.2.5, employing the null forecasting model’. Thus, for each n,

significance level, and simulated process, 1000 estimates of these measures are obtained. For all

3> The null forecasting model is the same model and probability distribution Fy € Fg, that generates the data in the

null hypothesis. In the example, AR(1)-GARCH(1,1) model with normal distribution.
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Table 2 — Hypothesis tests of size and size-corrected power of the backtesting procedures

Null hypothesis Alternative hypothesis
H() :Xt = O.SXt,] + &, H] :Xt = O.Sthl + &,
& =0z, 2~ ko, & =0z, 2~ I,
o7 =4x107°+0.10¢2 | +0.8507 , o} =4x107°+0.10¢2 | +0.8507 ,

Xt — O.SXt_l + 81,
& =01z, 7z~ Fo,
Ino? =0.01+091Inc? |+

03(|81_1| —\/ 2/7[) — 0.88[_1

AR(1)-GAS(1,1) ~ Fq

Ho: X, = 0.5X,_; + &, H;: X, =0.5X,_1 +&,
& =0z, 2z~ ko, & =0z, 2z~ I,
Ino? =0.01+0.9Inc? |+ Ino? =0.01+0.9Inc? |+
0.3(|&-1] —/2/7) —0.8¢ 0.3(|&—1] —/2/7) —0.8&

Xl‘ - O.SXt_l + gt,
& =0z, u~Fo,
07 =4x107%+0.10e? | +0.8507 ,
AR(1)-GAS(1,1) ~ Fg
Hyo : AR(1)-GAS(1,1) ~ Fy H;: AR(1)-GAS(1,1) ~ Fy

X[ - O.SXt_l + 8[,
& =01z, u~ Fo,
o} =4x107°+0.10¢2 | +0.8507 ,

Xt = O.SX[_] + 8;,
& =01z, u~ Fo,
Ino? =0.01+0.91Inc? |+

0.3(|g-1| —+/2/m) —0.8¢_

of these sets, we perform all presented backtestings of RVaR, where the predictions are accepted
or (incorrectly) rejected according to the results of each backtesting. Thereby, we denote the
size of the backtestings as the null rejection rates of each procedure, considering all the different
parameter specifications. Similarly, to evaluate the power of the tests, we repeat the scheme,
but in this case, the null forecasting model is applied under the specification of each DGP and
distribution function of Hj, separately, resulting in eight distinct power property analyzes for

each RVaR backtesting. In this way, the power of the backtestings is represented by the non-null
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rejection rates of the procedures across each scenario and different parameter specifications. The
hypothesis tests are performed under all DGP models and all probability distribution functions
Fy € Fo.

The RVaR backtesting procedures are tested at 1%, 2.5%, 5% and 10% nominal levels.
Regarding significance levels of the measures RVaR, VaR and SD, we consider 1%, 2.5%,
and 5%. Such levels are employed since 1% and 5% are the most used values to forecast
risk measures (see, for instance, Kuester et al. (2006), Escanciano and Pei (2012) and Miiller
and Righi (2018)), and 1% and 2.5% are the levels recommended by the Basel Committee on
Banking Supervision (2013) for Value-at-Risk and Expected Shortfall predictions, respectively.
In the case of RVaR, we always respect the condition 0 < o < 8 < 1 for the assumed levels, that
is, B =2.5% or B = 5% when ot = 1%; or B = 5% when ot = 1% or ot = 2.5%.

3.4 Empirical Procedures

To evaluate the performance of the proposed backtesting procedures for the RVaR mea-
sure, we also executed, as a secondary step, an empirical analysis. We conducted computational
implementations using the R programming language (R Core Team, 2023), making use of the
quantmod (RYAN et al., 2008) and priceR (CONDYLIOS et al., 2019) packages to download

the databases, as well as the rugarch and GAS packages to estimate the model parameters.

We consider six factors of market risk: (i) equity, (ii) fixed income, (iii) exchange rates,
(iv) commodities, (v) cryptocurrencies, and (vi) green finance. The first four factors were also
considered by Righi and Ceretta (2015). We included cryptocurrencies because the studies
that focus on risk measures are more restricted and are limited, for the most part, to VaR and
ES measures; see, for instance, Trucios (2019) and Trucios et al. (2019). And also because
they have been under increased scrutiny by policymakers, investors and researchers. Regarding
green finance, we included this factor because of its rapid development and the ever-increasing
concerns surrounding global environmental sustainability; see Gilchrist et al. (2021). For equity,
we consider the data of the daily closing prices of the S&P500 and Ibovespa indices, representing
the American and Brazilian markets. For fixed income, we consider US Treasury bonds rates
3-Years and 10-Years yield. For exchange rates, we consider the ratio to the US Dollar of the Euro
and the Brazilian Real, contemplating both developed and emerging markets. For commodities,
we consider WTI crude oil and Gold. For cryptocurrencies, we consider the ratio to the US Dollar
of Bitcoin since it is the most popular and successful cryptocurrency to date, having a major
role in studies on risk forecasting; see Subramoney et al. (2021). For green finance, we consider
the STOXX Europe 600 and World Dow Jones Sustainability indexes due to its significant
importance in the financial and business landscape, assessing performance of companies in terms
of environmental sustainability, the increasing of temperature, and, at the same time, the scarcity

of studies on the risk of this class of assets in the literature; see Bulai et al. (2022). As these six
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asset classes have different characteristics, our illustration provides an analysis of the developed

backtesting procedure’s behavior in distinct situations.

We computed one-day-ahead forecasts for RVaR and VaR using their parametric ap-
proaches (3.19) and (3.20), defined in subsection 3.2.5. Our financial positions X refers to
log-returns of the considered assets, i.e., X; = (In P, —In P,_;), where P refers to the closing
price at time ¢ and ¢ — 1, standard procedure in the literature. The analyzed period comprises data
from January 2010 to December 2021. This span was chosen because it encompasses calm and

turbulent periods caused by, for example, the Eurozone crisis and the COVID-19 pandemic.

The risk forecast of returns were quantified using the same models of the numerical
illustration but with the addition of the AR(1)-GJR-GARCH(1,1) model. We consider all eight
probability distribution functions described in Table 1 for the innovations z; of the AR-GARCH-
type models, while for the GAS model, the assumed probability distributions are the normal,
skewed normal, student-t, and skewed student-t. These distributions were considered because
they have the advantage of taking into account stylized facts of financial assets, such as heavy
tails and/or negative skewness, which are common in financial data. The rolling estimation
windows considered for the predictions have the length of 250, 500, and 1000 observations®. As
significance levels, we consider the same values used in Section 3.3. Jointly with the backtesting,
we made use of realized loss for the out-of-sample RVaR forecasts, which are calculated by a
strictly consistent scoring function of RVaR. This method allows us to set up a contest of relative
quality between different models and scenarios through the performance criterion that takes the

following form:

- 1 I aR%:B
Swvar = 7= . S (xrsyi 2, wi), (3.24)
t=1

where T represents the number of out-of-sample terms and the scoring or loss function SRVaR*P
is defined in equation (2.9). The scoring functions are negatively oriented, that is, the smaller the
realized loss Sgyur, the better the model. Thus, through the application of the backtestings and
the loss function, we can assess the results and verify if they remain following both methods. In
this way, we evaluated whether the worst models, according to the loss function, were rejected

by the backtestings. To quantify realized loss, we consider the risk forecasts with signal adjusted.

6 250 is the minimum size recommended by the Basel Committee on Banking Supervision (2013), and 500 and

1,000 are the most common values used in the literature. See Kuester et al. (2006) and Righi and Ceretta (2015).
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4 Results

In this chapter, we present the results of the size and power properties of the proposed
backtesting procedures for the RVaR measure and those related to their empirical performance.
For a better understanding of these results, the chapter is divided into two sections. In section
4.1, we present the numerical analysis results, where the size and power properties of the three
proposed backtesting are described separately. In this way, we can more precisely highlight
the behavior of each property, in addition to not mixing two concepts that can lead to a certain

confusion. In section 4.2, we present the empirical performance of the proposed procedures.

4.1 Numerical Analysis

In this section we present a description of the numerical results.

4.1.1 Size of the tests

We organize the results from different perspectives to evaluate the size property of the
proposed backtesting procedures for the RVaR. Tables 4 and 5 show, respectively, the rejection
rate of the three tests under the null hypothesis for all previously defined models and distributions,
using 250 and 1000 in-sample sizes (n). In each table, the results are separated by the considered
nominal levels of 1%, 2.5%, 5% and 10%, where, in each of these levels, they are presented
according to the out-of-sample sizes (7') of 250 and 500 obtained for each considered significance
level. Tables 6, 7, and 8 show, respectively, the outcomes of the adapted approaches for RVaR
regarding the evolution of the null rejection rate (size) with a look at the change in the number
of in-sample observations. Figures 2 and 3 illustrate the behaviour of each null model over
the nominal levels regarding the adapted McNeil and Frey (2000) approach’. Lastly, Table 9
highlights the model along with the distribution that most closely matches the nominal rejection
levels for each backtesting and each scenario addressed. The McNeil and Frey (2000), Righi
and Ceretta (2015) and McNeil et al. (2015) procedures adapted for RVaR are named in each
table, respectively, by MFTest, RCTest, and MFETest. Given the computational burden, we
were unable to get the results for the GAS model with skewed Student-¢ distribution for 1000

in-sample observations.

Initially, observing the behavior of the results in Tables 4 and 5, we verified that all
backtesting procedures have similar test sizes for all scenarios under analysis. In other words,
there is no major superiority in the size test performance of any approach considered, either

being an option of equal or similar usefulness. By illustration, the models’ results in Table 4 for

7" The remaining models present very similar results and, for this reason, they were omitted from the analysis

without loss of generality.
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the nominal level of 1% and significance levels of o« = 1%, B = 5% vary by a maximum of 0.1%.
More specifically, for T = 250, the EGARCHgy,,, which exhibits the best performance in the
three tests, has a size of 0.9% for the MFTest, 0.8% for the MFETest, and 0.8% for the RCTest.
Similar results were observed in the other models and scenarios. Such a conclusion contrasts with
what is seen in the literature, where a better choice among candidates is commonly observed;
see, for instance, Deng and Qiu (2021). Another initial impression taken when analysing the
same tables is that when looking at the GARCH-type models and the GAS;;, the highest null
rejection rates are concentrated, with few exceptions, at 7 = 250. As the out-of-sample size
moves toward 500, these rates tend to reduce. The opposite situation is seen for the GAS,,,,, and
GAS;;4. Such behaviors of the proposed backtestings are commonly seen in the risk forecasting
literature, where depending on the procedure and null model, the rejection rates can either
escalate or diminish with the increase in the size of out-of-sample observations; see Du and
Escanciano (2017). Furthermore, the proposed procedures exhibit generally the best sizes at the
significance levels of @ = 1%, B = 2.5%, where for the nominal levels of 1% and 2.5%, these
are found at 7 = 500; and for the nominal level of 10%, at T = 250. However, at the nominal
level of 5%, the optimal size tests are observed at the significance levels of @ = 2.5%, B = 5%,

and T = 250. Such behaviour stands for both in-sample sizes.

Upon conducting the further examination of the outcomes presented in Table 4, it is
observed that the instances in which the null rejection rate is underestimated can be primarily
attributed to the implementation of GARCH-type models and GAS,; with T = 500, across
all significance levels and nominal levels considered. Notably, this pattern deviates at the
significance level of a@ = 1%, B = 2.5% for the nominal level of 1%. Furthermore, substantial
underestimations can also be observed for the same models when 7' = 250 and o = 1%, 8 = 5%.
On the other hand, the backtest results underestimate the null rejection rate when the predictions
are conducted by the GAS,,,;» and GAS;,; models at the nominal levels of 5% and 10%, and
significance levels of o« = 1%, B =2.5% and a = 2.5%, B = 5%, for T = 250. Concerning the
overestimation of the null rejection rate, the RVaR forecasts with GARCH-type models continue
to display notable size distortions. Specifically, such distortions are observed at the significance
level of @ = 1%, B = 2.5%, and nominal levels of 1%, 2.5%, and 5% for T = 250. Also, the
GARCH,,,;;», GARCH,;;, EGARCH,,,;;, and EGARCHy;; demonstrate overestimation at the
significance level of a = 2.5%, B = 5%, and nominal levels of 1% and 2.5%, again for 250
out-of-sample observations. When considering GAS,,,,,, and GAS,;, we observe the most
pronounced distortions among all candidates at the significance level of & = 1%, B = 5%, except
for the nominal level of 10% and 250 out-of-sample observations, where GAS,,,,,, exhibits a

size closer to the nominal level.

Observing the sizes for the three proposed backtesting procedures as the in-sample size
increases from 250 to 1000 observations, Table 5 shows a similar behavior of the null models to
the preceding scenario. More precisely, the proposed procedures underestimate and overestimate

the null rejection rate for the same models at the same significance levels and out-of-sample
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observations described in the previous analysis, where n equals 250. Tables 6-8 provide a more
comprehensive representation of the sizes of each model when the in-sample observations equal
250 and when they increase to 1000. Comparing each null model with its respective results
in the two scenarios reveals a certain degree of similarity, except for the significance level of
o = 1%, B =2.5%, and nominal levels of 1%, 2.5%, and 5%, coupled with 250 out-of-sample
observations. In this cases, there is an escalation in distortions whereby, at n = 1000, the sizes of
all null models become even further from the null rejection rate. By illustration, the size results
of GARCH,,,;;; in Table 6 demonstrate an increase from 3.1% to 5.4% at the nominal level of
1%; from 4.4% to 6.3% at the nominal level of 2.5%; and from 6% to 7.8% at the nominal level
of 5%. Such observation contradicts the literature, where what is actually seen is a considerable
improvement of the size tests as there is an increase in the in-sample observations (see, for

instance, Bayer and Dimitriadis (2020)).

Figure 2 — MF Test: Evolution of each null model for n = 250 and T € {250,500}, using the
significance levels of 1%, 2.5% and 5%
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Figures 2 and 3 provide a clearer visual representation of the information presented in
Tables 6-8 for the adapted McNeil and Frey (2000) approach among all scenarios and parameters
considered. By the graphs, it can be verified more evidently that, looking separately at each
significance level and out-of-sample size, the null models maintain a similar behaviour for both
in-sample observations. For both in-sample cases, when we analyse the GARCH-type models,

the evolution of their sizes over nominal levels shows similar growth. Looking closer at the
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significance levels of oo = 1% and B = 5%, the GARCH-type models show moderate increases
and very low rejection rates for both in-sample observations. At the significance levels of & = 1%,
B =2.5% and T = 250, the aforementioned models have the highest rejection rates of the null
hypothesis in addition to an average behavior about the other two when we look at o¢ =2.5%
and B = 5%. Furthermore, when the out-of-sample observations tend to 500, the sizes of the
GARCH-type models and GAS;y,; reduce; conversely, there is an increase in sizes for GAS;,p/m
and GAS;;4. Also, GAS, .o, and GAS;; show the highest rejection rates of the null hypothesis at
the significance levels o = 1% and B = 5% and T = 250 as well as for all cases where T = 500.
Lastly, although it was not possible to obtain results for the GAS;,,; model when n = 1000, we
should point out that its behavior is similar to those mentioned for the GARCH-type models

when looking at 250 in-sample observations (Figure 2).

Figure 3 — MF Test: Evolution of each null model for n = 1000 and T € {250,500}, using the
significance levels of 1%, 2.5% and 5%
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Continuing, Table 9 provides a clearer presentation of the models that have shown the
best size test performances for the proposed backtesting procedures. Overall, the procedures
tend to exhibit null rejection rates that align more closely with nominal levels when the data is
normally distributed, with emphasis on 1000 out-of-sample observations. Nevertheless, the tests
provide the best size results for the Skewed Student-¢ and Student- distributions, primarily at

the significance levels of: o = 1%, B = 2.5% and 250 out-of-sample observations for 5% and
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10% nominal levels; o = 2.5%, 8 = 5%, T = 250 for the nominal level of 2.5% and T = 500
for the nominal level of 10%; and o = 1%, 8 = 5% and 250 out-of-sample observations for
5% nominal level. Such relative superiority can be justified by the characteristics of the normal
distribution, which, when compared to the others, does not have heavy tails (Student-) and heavy
tails with skewness (Skewed Student-7). Although, the characteristics of financial data resemble
the Student-f and Skewed Student-¢ distributions more closely. In terms of the employed models,
what we generally observe is that more satisfactory sizes are achieved through the null models
EGARCH and GAS, with also excellent accomplishments for the GARCH model, mainly for
nominal levels of 1% and 2.5%. This result may be related to the aforementioned nature of each
model, where the GAS model encompasses the GARCH model and exploits the complete density
of the returns rather than only means and higher moments. In contrast, the EGARCH model
incorporates additional features such as asymmetry and leverage effect, allowing for a better
representation of time-varying volatility. Besides, the GARCH-type models show superiority to
the GAS model regarding the rejection rates at significance levels @ = 1% and 8 = 5%, except
at the nominal level of 10% and out-of-sample equal to 250, where the GAS,,,,, presents the
best results for all proposed procedures. Therefore, the introduced backtesting procedures seem
to better encompass the risk predictions of RVaR which are based on the intrinsic characteristics

of these models.

4.1.2 Power of the tests

We organize the results from different perspectives to evaluate the power property of the
proposed backtesting procedures for the RVaR. Tables 10-21 show the alternative hypothesis
rejection rate of the three tests, considering in the analysis the GARCH and EGARCH models,
along with the previously defined distributions, and using in-sample sizes (n) of 250 and 1000
observations. In each table, the results are separated by the considered nominal levels of 1%,
2.5%, 5%, and 10%, where, in each of these levels, they are presented according to the out-of-
sample sizes (T') of 250 and 500 obtained for each considered significance level. Tables 22-27
show, respectively, the outcomes of the proposed approaches for RVaR regarding the evolution
of the non-null rejection rate with a look at the change in the number of in-sample observations.
Lastly, Figures 4 and 5 illustrate the behaviour of each alternative model over the nominal levels
within the context of the adapted McNeil and Frey (2000) approach®. The EGARCH,,,,,,,, model
was considered the data generation process, given its robust performance in size tests, which
positions it as a compelling candidate for graphical representation. Anew, the McNeil and Frey
(2000), Righi and Ceretta (2015) and McNeil et al. (2015) procedures modified for RVaR are
named in each table, respectively, by MFTest, RCTest, and MFETest. Given the computational
burden, we could not get the results for the GAS model.

8 The remaining models present very similar results and, for this reason, they were omitted from the analysis

without loss of generality.
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Observing the behavior of the results in Tables 10-21, we verified that, like the prior
analysis, all backtesting procedures have similar test powers for all scenarios under analysis. In
short, no major superiority exists in the power test performance of any approach considered. By
illustration, the models’ results in Table 12 for the nominal level of 5% and significance levels of
o = 1%, B = 5% vary by a maximum of 0.2%. More specifically, for T = 500, the EGARCH,,,,,
which exhibits the best performance in the three tests, has a size of 4.1% for the MFTest, 4.0%
for the MFETest, and 4.2% for the RCTest. Similar results were observed in the other models
and scenarios. This conclusion differs from what is observed in the literature, where commonly
one method stands out among candidates, as evidenced, for example, in Bayer and Dimitriadis
(2020). Another initial impression when examining the same tables is that all non-null rejection
rates underestimate the nominal levels for all backtest and parameters considered, not exceeding
15%. Values of this magnitude are observed at the significance level of o = 1%, = 2.5%
and 7 = 250. In the same way, with few exceptions, the highest non-null rejection rates are
concentrated at 250 out-of-sample observations. As it increases to 500, these rates tend to reduce.
The former case is usual in risk forecasting studies that use Monte Carlo simulations, as seen in
Escanciano and Velasco (2010). Conversely, the latter case represents a divergence of what is
often seen in literature, where the increase of the out-of-sample observations leads to a larger

number of rejections regarding the alternative models; see, for instance, Deng and Qiu (2021).

From the results presented in Tables 10-15, we can observe which models exhibit the
best power test performances across the nominal levels for the three backtesting procedures,
considering 250 in-sample observations and distinct DGPs. To begin with, Table 10 shows
the non-null rejection rates of the tests when employing GARCH,,,,,,, as the data generating
process. In this scenario, the proposed approaches demonstrate the best performances across
the nominal levels when using the GARCHy,,; as the alternative model, with the exception
primarily at the significance levels of & = 1%, B = 5%, where the EGARCH models stand out.
When we generate the data using the GARCHg;; model (Table 11), the backtesting procedures
show the best performances when the GARCH,,,,,,, and EGARCH,,,,,, models are used for the
predictions. More precisely, at nominal levels of 1%, 2.5%, and 5%, the proposed procedures
yield better results for the former alternative model. Nonetheless, for significance levels of
o =2.5%,8 =5% and T = 500, and considering the nominal level of 1%, coupled with
significance levels of @ = 1%,3 = 2.5% and T = 250, the tests are more efficacious when
the latter model is used. As the nominal level tends to 10%, the highest non-null rejection
rates are observed when applying the EGARCH,,,,,,, model, especially for 500 out-of-sample
observations. Using GARCHy,,; as the DGP, we can observe from Table 12 that the highest
non-null rejection rates are once again found when conducting backtests with forecasts generated
by GARCH,,;;, and EGARCH,,,,,, models. In the first case, the most satisfactory results are
observed at significance levels of a = 1%, = 5%, and T = 250 for all nominal levels; at
significance levels of o = 2.5%,8 = 5%, and T = 250 for all nominal levels except 10%;
and finally, at significance levels of o = 1%,8 = 2.5%, and T = 500 for the 1% and 10%
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nominal levels. Conversely, the second case prevails in most of the remaining scenarios, with
greater prominence as n increases toward 10%. The exceptions are at significance levels of
o =1%,B =2.5%, and T = 250 for nominal levels of 1% and 2.5%. Applying the RVaR with
the EGARCHjgy,; model achieves the best rejection rates on the simulated data.

When the data is generated by the EGARCH,,,,,,, model, we can see from Table 13
that the highest powers are predominantly evidenced when employing the GARCH,,,,,,,, model
and, to a lesser extent, the EGARCHgy,; model in the RVaR predictions. More specifically, the
former case is observed primarily at the significance levels of o = 1%, 8 = 5% for all nominal
levels and out-of-sample observations and at the significance levels of oo = 1%, 8 = 2.5%, for
T =500 and all nominal levels except 5%. The latter case is noted at the significance levels of
o = 1%, = 2.5%, for all nominal levels and T = 250, and also for T = 500, when the nominal
level is 5%. In Table 14, we can observe that when the data is generated by the EGARCHj;; model,
the three backtesting procedures demonstrate their best performances when the EGARCH,,;,,
model is utilized as the alternative model, for all nominal levels and parameters considered, with
exceptions only at the significance levels of @ = 1%, B = 5%, 250 out-of-sample observations
and nominal levels of 5% and 10%; and at the significance levels of o = 2.5%, 8 = 5%, 500
out-of-sample observations and nominal level of 1%. Table 15 shows the power tests of the
three proposed procedures when using EGARCHy,; as the DGP. In this last scenario for 250
in-sample observations, the most satisfactory rejection rates are identified in the RVaR forecasts
using the EGARCH,,,,,,, model. In a few instances, the tests exhibit improved performance when
the GARCHj,,,,1, 1s employed as the alternative model. Such instances are found at 7' = 250, with
significance levels of o =2.5%, 8 = 5%, across all nominal levels, as well as significance levels
of & = 1%, 3 = 5%, for the 1% and 2.5% nominal levels.

When looking at the power tests using 1000 in-sample observations, which are presented
in Tables 16-21, we can observe differences in the performance of the three proposed backtesting
procedures when compared to the previous framework. Initially, Table 16 shows the non-null
rejection rates of the tests when employing GARCH,,,,,,, as the data generating process. The
proposed approaches demonstrate the best performances when utilizing the GARCHy,,; as
the alternative model, primarily at the significance levels of a = 1%,8 = 2.5% across the
nominal levels, and at the levels of & = 2.5%, B = 5% for nominal levels of 5% and 10%. For
the remaining cases, the EGARCH model stands out. When we generate the data using the
GARCHyg,; model (Table 17), the backtesting procedures show the best performances primarily
when the EGARCH,,,,,, and, to a lesser extent, GARCH,,,,,, models are used for the predictions.
Specifically, the proposed procedures provide the most effective rejection rates when the first
alternative model is utilized for calculating RVaR forecasts across all nominal levels. Although,
for significance levels of o« = 1%, = 5%, T = 250 and nominal levels of 1% and 10%;
o =2.5%,B = 5%, T =250 and nominal levels of 1% and 2.5%; and o = 1%, B = 5% jointly
with the nominal level of 5%, the tests are more efficacious when the latter model is used. By
simulating the data with the GARCH,,,; model, we can observe from Table 18 that the highest
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non-null rejection rates are once again found strictly when conducting backtests with forecasts
generated by GARCH,,,;,, and EGARCH,,,,;, models. In the former case, the most satisfactory
results are concentrated at significance levels of &« = 1%, = 5% and o = 2.5%, 8 = 5%, for
all nominal levels and out-of-sample observations. On the other hand, the latter case prevails
at significance levels of oo = 1%, B = 2.5% across all nominal levels and out-of-sample sizes

considered.

When the data is generated by the EGARCH,,,,;,,, model, we can observe from Table 19
that the highest power tests are predominantly evidenced when employing the EGARCHj,; and
EGARCHy,; models, and to a lesser extent, the GARCH,,,,,, model, in the RVaR predictions.
More specifically, the superior results of the backtesting procedures, primarily associated with
applying GARCH models when n = 250, now exhibit improved rejection rates for EGARCH
models. The prominence belongs to GARCH only for significance levels of o« = 1%, 3 =
2.5%, T = 250, and nominal levels of 2.5%, 5%, and 10%, as well as o = 1%, 8 = 5% for
the nominal level of 10%. For EGARCH, it is worth mentioning that the best backtesting
results for the @« = 1%, B = 5%, and oo = 2.5%, B = 5% levels are associated with the use of
EGARCHy,;; model with 7" = 250, except for 10% nominal level. Also, for the significance
levels of o =2.5%, B = 5%, these outcomes are achieved by applying the EGARCHj,; model
for 500 out-of-sample observations. In Table 20, we can observe that when the data is generated
by the EGARCHy,;; model, the three backtesting procedures demonstrate their best power test
performances at significance levels of 1% and 2.5% when the RVaR forecasts are computed
using the EGARCH,,,,,, as the alternative model, across all considered nominal levels. Moreover,
when the significance levels are o« =2.5%, B = 5%, the rejection rates are superior at the 1% and
2.5% nominal levels when the same model is employed. However, at the 5% nominal level with
T = 500 and the 10% nominal level with 7' = 250, the best rejection rates are given using the
GARCH,,,,,, model on the simulated data. Also, at significance levels of @ = 1% and 8 = 5%,
the tests more efficiently reject forecasts produced by the GARCH,,,,,, model, particularly at
the 1% and 10% nominal levels, as well as the 2.5% nominal level when 7" = 500. Lastly, Table
21 shows the power tests of the three proposed procedures when using EGARCHg,,; as the
DGP. The highest rejection rates for RVaR forecasts are achieved using the alternative models
GARCH,,,;, and EGARCH,,,,,,. For the former case, these are observed at significance levels of
o= 1%, =5%, and oo = 1%, 3 = 2.5%;. In contrast, for the latter case, they are seen at the
o =2.5%, 3 = 5% levels, across all nominal levels considered.

Looking at the aforementioned results, it is reasonable to assert that they are connected to
the employed distributions, wherein disparities in their respective characteristics contribute more
expressively to the increase in power than the utilized models. Such a conclusion is consistent
with similar studies that utilize Expected Shortfall, where non-null rejection rates are higher when
the distributions employed in the data generating process differ from those used in the alternative

model. See, for instance, Du and Escanciano (2017) and Bayer and Dimitriadis (2020).
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Figure 4 — MF Test: Evolution of each alternative model, using EGARCH,,,,,, as DGP, for
n =250, T € {250,500} and significance levels of 1%, 2.5% and 5%.
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Tables 22-27 provide a more comprehensive representation of the evolution of the non-
null rejection rates, referring to each proposed backtesting procedure, individually, when the
in-sample observations are equal to 250 and when they increase to 1000. Comparing each
alternative model with its respective results in the two scenarios reveals substantial increases in
test rejection rates as n tends to 1000 only in specific cases. Namely, these increases take place
using as DGP the GARCH,,,;,, and EGARCH,,,,,,, models at the significance level of @ = 1%,
B =2.5%, and 250 out-of-sample observations (Tables 22 and 25); the GARCH,;; model at
the significance level of a = 2.5%, B = 5%, along with 250 out-of-sample observations (Table
23); and the EGARCHj,;; model at the significance level of o = 1%, B = 2.5%, in conjunction
with 250 out-of-sample observations, only for the GARCH alternative models (Table 26). In the
remaining cases, it can be observed that the proposed procedures exhibit similarity or a reduction
in power tests. Such observation presents a partial departure from the literature, where what is
seen is a pronounced improvement in the efficacy of power tests in response to an increase of

in-sample observations. See, for instance, Deng and Qiu (2021).

For illustrative purposes, Figures 4 and 5 provide a clearer visual representation of the
power tests of the alternative McNeil and Frey (2000) procedure based on data generated by the
EGARCH,,,,,, model. The choice of this scenario is merely due to its satisfactory performance in
size tests, making it a reasonable candidate for an analysis of its behavior in terms of alternative

models. When observing each graph individually, we can perceive that the rejection rates of
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Figure 5 — MF Test: Evolution of each alternative model, using EGARCH,,,,,, as DGP, for
n=1000, T € {250,500} and significance levels of 1%, 2.5% and 5%.
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alternative hypotheses exhibit a certain degree of homogeneity across the nominal levels. Also,
when comparing both in-sample sizes, it is possible to notice a similarity in the backtests results,
emphasizing the above statement that there are no substantial improvements in the power test with
increasing the size of n, with few exceptions. Looking closer at 7 = 250, we can more distinctly
observe that the higher power tests are located at the significance level of @ = 1% and 8 = 2.5%,
while the lower ones are at & = 1% and 8 = 5%. In addition, an average behavior compared to
the first two can be noted at the significance level of o« =2.5% and § = 5%. As the out-of-sample
observations approach 500, the power of the GARCH-type models decreases. Also, the proposed
backtesting procedures continue to show the highest rejection rates of alternative hypotheses at
the significance level of @ = 1% and B = 2.5%, but with reduced differences regarding the other
levels. Conversely, the proposed approaches demonstrate comparable powers for the remaining
significance levels, as indicated by the sharp decline in rejection rates at & = 2.5% and 8 = 5%.

The same conclusions are extended to the RCTest and MFETest approaches.

In summary, when the data is generated by processes with Student-f or Skewed Student-z
distribution, the proposed backtesting procedures exhibit higher non-null rejection rates when
RVaR predictions are conducted using the normal distribution. Such behavior is observed
for both 250 and 1000 in-sample observations. This can be justified by the capacity of the

method to capture the properties of the normal distribution, which, when compared to the
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others, does not have heavy tails (Student-7) and heavy tails with skewness (Skewed Student-¢).
Moreover, the characteristics of financial data closely resemble the Student—¢ and Skewed
Student-¢ distributions. As a result, the obtained powers demonstrate consistency with empirical
observations, as their rejection rates are higher when forecasts are made using a distribution
that lacks inherent properties of financial asset returns. On the other hand, when DGPs with
normal distribution are used, the proposed procedures exhibit some peculiarities. With data
simulated by the GARCH,,,,;,, model and 250 out-of-sample observations, the higher powers
are linked to the Student-z distribution; however, as T tends to 1000 observations, there is an
increase in the powers associated with the normal distribution. The opposite is observed when
the data is generated by the EGARCH,,,,,,, model, where for 250 out-of-sample observations,
the higher powers are found in the normal distribution, and with an increase to 1000 out-of-
sample observations, the higher rejection rates of the tests are related to the Student-# and
Skewed Student-¢ distributions. Therefore, the proposed backtesting procedures exhibit greater
consistency for normally distributed data for 7" equals 250 when generated by the former model

and T equals 1000 when generated by the latter.

Our numerical analysis has focused on the aspects of size and power of the proposed
backtesting procedures for the RVaR measure across different models and sample sizes. We can

encapsulate the main results as follows:

* None of the proposed backtesting methods demonstrates significant superiority over the
others: in both size and power tests, the variations between the backtestings hover around
0.2%. This result is of great significance, as it deviates from what is observed in the

literature for other risk measures such as VaR and ES;

» With some exceptions, the size and power of the tests deteriorate as 7 increases: The
highest powers are observed at 7" = 250, with particular emphasis on the significance
levels of o = 1%, B = 2.5%. The best sizes are also found at 7 = 250 but at the levels
o = 2.5%, B = 5% for the nominal level of 5%, and at the levels o = 1%, B = 2.5%
for the nominal level of 10%. However, best sizes are also observed at 7 = 500 for the

nominal levels of 1% and 2.5%, together with the significance level of o« = 1%, B = 2.5%;

* As n increases to 1000, the proposed procedures demonstrate notable modifications in
their power and size tests, particularly at the significance levels of & = 1%, 8 = 2.5%, and
T = 250. For such parameters, in general, the sizes deteriorate across the nominal levels,

and the powers improve more prominently for data generated with the normal distribution;

* The proposed methodologies exhibit, in general, the best size tests primarily from null
models with the normal distribution, with particular emphasis on 1000 in-sample observa-

tions;
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* When the data is generated by processes that capture the properties of the financial assets
(skewness or heavy tails), the proposed procedures exhibit higher powers when RVaR

predictions are conducted using the normal distribution.

The best performing backtesting scenario depends on the interaction between the size and
power properties. As aforementioned, coherence is evident in the size and power tests when the
backtesting is executed using 250 out-of-sample observations. However, upon closer examination
of the in-sample observations, a size worsening is noticeable, accompanied by an enhancement in
power, particularly at the 1% and 2.5% significance levels. Notably, these power improvements
apply solely to scenarios characterized by a normal distribution in the DGP, which does not hold
for financial assets. Consequently, the optimal configuration can be identified at n = 250 and
T =250, where, although smaller than what is seen in the ES studies, it aligns with the minimum
rolling estimation window size of 250 observations recommended by the Basel Committee on

Banking Supervision (2013).
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4.2 Empirical Analysis

In this section, we present the results of the three proposed backtesting procedures for
RVaR, assessing their behaviors for the assets above in conjunction with their respective realized
losses. To begin with, Table 3 displays the descriptive statistics of the daily returns of S&P 500,
Ibovespa (IBOV), U.S. Treasury Bonds rates for 3 years (DGS3) and 10 years (DGS10), WTI
Crude Oil, Gold, Real/U.S. Dollar and Euro/U.S. Dollar exchange rates, DJSI World, STOXX
Europe 600, and Bitcoin spanning from January 2010 to December 2021°.

Table 3 — Descriptive statistics of the daily returns of S&P 500, Ibovespa, 3-Years and 10-Years
U.S. Treasury Bonds, WTI Crude Oil, Gold, Real/U.S. Dollar and Euro/U.S. Dollar
exchange rates, DJSI World, STOXX Europe 600 and Bitcoin from January 2010 to

December 2021.
Asset Mean Minimum Maximum  Standard Deviation = Skewness E.Kurtosis
S&P500 0.0005 —0.1276 0.0897 0.0108 —0.8561 16.2092
Ibovespa 0.0001 —0.1599 0.1302 0.0157 —0.8295 11.7415
Treasure 3-Years —0.0003 —0.3101 0.3716 0.0503 0.0992 7.1422
Treasure 10-Years —0.0002  —0.3151 0.3417 0.0291 0.0920 23.7933
WTI Crude Oil 0.0003 —0.2814 0.4258 0.0284 1.3551 45.9848
Gold 0.0002 —0.0982 0.0578 0.0103 —0.6438 6.5696
Real —0.0004  —0.0725 0.0638 0.0111 —0.0523 3.5798
Euro —0.0001 —0.0281 0.0313 0.0054 —0.0952 2.3674
DJSI World —0.0003 —0.0834 0.1039 0.0094 1.0747 15.0287
STOXX Europe 600 0.0002 —0.1219 0.0807 0.0108 —0.8350 10.1350
Bitcoin 0.0023 —0.4647 0.2251 0.0393 —0.7999 11.2393

Note: E.Kurtosis refers to the excess kurtosis of asset returns.

We observe that the highest average returns in the period belong to Bitcoin (0.0023) and
the lowest ratio to the U.S. Dollar of Real (-0.0004). In general, the mean of the assets is close to
zero, as expected. Bitcoin also has the lowest minimum (-0.4647), while the highest maximum
belongs to WTI Crude Oil (0.4258) returns. The highest volatility (0.0503) can be seen by the
3-year U.S. Treasury Bonds yield, as illustrated in the Standard Deviation column. Considering
the assets’ results, we expected that the 3 and 10-year U.S. Treasury Bonds yield, WTI Crude
Oil, and Bitcoin would have the highest overall risk measure values. On the other hand, although
Real had the lowest average returns, the lowest volatility belongs to the Euro (0.0054). The S&P
500, Ibovespa, and Dow Jones Sustainability indexes also exhibited lower volatility than Bitcoin
(0.0393), likely due to the benefit of diversification. Notably, the series demonstrates higher
kurtosis than expected for series that follow a normal distribution (kurtosis = 3), indicating that
all of them are leptokurtic series, which is a standard behavior of return series. Nevertheless,
certain series display positive skewness, which deviates from the stylized facts of financial asset
returns. See Cont (2001) for details. Moreover, the high values of excess kurtosis among most
assets can be attributed to the impact of the COVID-19 pandemic. Figure 6 presents the plots of

the temporal evolution of each asset from January 2010 to December 2021 and elucidates the

°  Except for Bitcoin returns, which start in September 2014 due to the availability of data for this asset
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presence of turbulent periods, especially in a more recent range of the data, corroborating with
our previous COVID-19 statement. Also, it provides a clearer depiction of the high dispersion of
returns for 3 and 10-year U.S. Treasury Bonds yield, WTI Crude Oil, and Bitcoin, as well as the
low dispersion of returns for the ratio to the U.S. Dollar of Euro.

We organized the results from two different perspectives. At first, we commence by
presenting the best results obtained by the proposed backtesting procedures, i.e., the scenarios
where the p-values are closer to one, considering the different rolling estimation window and out-
of-sample observation sizes, separated by significance level. In this way, we analyse these best-
case scenarios and compare them with their respective outcomes obtained from the designated
loss function SRV“Ra'ﬁ, as defined in equation (2.9). The same procedure was performed for the
instances with the most unfavorable p-values, i.e., the tests that showed p-values closer to zero.
In a second moment, we examine the finest and poorest outcomes through the lens of the same
loss function SRV“Ra’ﬁ, contrasting them with the corresponding p-values yielded by the proposed
approaches. As described earlier, this exercise allows us to evaluate the outcomes and ascertain

if they remain true under both methods. The complete tables can be found in Appendix A.

Initially, Tables 28, 29, and 30 present the models with the best calculated p-values (closer
to 1) of the proposed backtesting, along with the corresponding financial returns and loss function
results, using rolling estimation windows of 250, 500, and 1000 observations. In each table, the
results are separated by the significance levels of 1%, 2.5%, and 5%, wherein in each of these
levels, the p-values are presented in descending order. Observing the results in such tables, we
verified that there is a similar behavior of the backtesting procedures regarding the best scenarios
under analysis. In other words, there is no relevant difference in the performance of the tests
for any considered approach since they have similar best-performing scenarios. By illustration,
the results in Table 28 for significance levels of & = 1%, B = 5% exhibit similarities in the MF
Test, RC Test, and MFE Test, given that the GARCHg.y, GARCH,.s and GARCHy;; performed
better for Real, GAS;y; for Euro and gjrGARCHj,; for DGS10 in the three approaches. Similar
results were observed in the other significance levels and rolling windows. Such a conclusion
contrasts with what is commonly observed in the literature, where some backtesting procedure
tends to outperform the other candidates; see, for example, Deng and Qiu (2021). Another initial
impression taken when analysing the same tables is the prominence of GARCH-type models
and, despite the aforementioned qualities, the absence of GAS models. Nevertheless, there is a
greater emphasis on models with distributions that exhibit asymmetry or heavy tails, aligning
with characteristics observed in financial assets. Furthermore, such results are consistent with
studies of the same nature conducted with risk measures like VaR and ES, where models that
perform better in empirical tests are associated with distributions that share characteristics related
to stylized facts of stock returns. See, for instance, Mighri et al. (2010) and Nilsen (2022).



Figure 6 — Daily returns of S&P 500, Ibovespa, 3-Years and 10-Years U.S. Treasury Bonds, WTI Crude Oil, Gold, Real/U.S. Dollar and Euro/U.S.

Dollar exchange rates, DJSI World, STOXX Europe 600 and Bitcoin from January 2010 to December 2021.
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Upon further examination of the results presented in Table 28, it can be observed that at
significance levels of o = 1%, B = 5%, the majority of the best-performing models are related to
exchange rate assets, with GARCH,.y, GARCH,;4, and GARCHj,.s models presenting p-values
greater than 0.97 when applied to the returns of Real/U.S. Dollar, as well as the GAS;;; model
when employed to the returns of Euro/U.S. Dollar. When examining the significance levels
of @ = 1%, = 2.5%, most of the best-performing models are associated with commodity
assets. For instance, in the RC Test, the girGARCH,;;¢, girGARCHyy;4, and EGARCHg,4 models
demonstrate p-values close to one when applied to WTI Crude Oil, while the EGARCH,;;, model
shows a high p-value for Gold returns. Lastly, no particular market risk factor is predominant at
o =2.5% and B = 5%. However, the GARCH-type models demonstrate the best results in the
tests, with special attention to the GARCH models with distributions that capture the stylized
facts (std, ged, and nig) of financial returns. Table 29 shows the differences in the test outcomes
as the in-sample size increases to 500 observations compared to the preceding framework. With
the increase of n, what is now observed for the significance levels of o = 1%, B = 5% is a higher
number of models related to commodity returns and a decrease in those applied to the interest
rate. Furthermore, the girGARCH and EGARCH models gain greater prominence, particularly
in conjunction with the Skewed Generalized Error and Generalized Error distributions. For the
significance levels of o« = 1%, B = 2.5%, the models with the best p-values are related to the
Euro/U.S. Dollar returns. By illustration, in the MFE Test, the girGARCH 0rm, gIrfGARCHgq,
gjtGARCHy,4, GAS;0rm and GAS,; demonstrate notable results for the returns of such asset.
When looking at o = 2.5%, B = 5%, the best-performing models are associated with WTI Crude
Oil and DGS10 returns. In these scenarios, we emphasize the performance of the GARCH-
type models with Skewed Generalized Error and Generalized Error distributions. Finally, the
behavior of the backtesting results as the rolling window increases to 1000 can be observed
from Table 30. More specifically, at significance levels of o = 1%, 3 = 5%, the dominance
of GARCH models can be observed when applied to exchange rate assets (Real and Euro).
There is no specific dominance of any distribution. At & = 1% and 8 = 2.5%, the best p-values
are found in GARCH-type models related to the WTI Crude Oil returns. More precisely, the
GARCHjg, girGARCH,;,, girGARCH 5, GARCH,;;,, GARCH,,4 show noteworthy p-values
when applied to such asset across all proposed backtesting procedures. At last, when considering
the significance levels of o = 2.5%, B = 5%, the GARCH-type models showed test results closer
to one when applied to Euro/USD Dollar returns, contrasting with what is seen when n equals
500 (Table 29). There is no predominance of any specific model or distribution, with no need to

further comments.

Additional conclusions can be drawn with the addition of the RVaR loss function. When
observing the corresponding results of Sgy,x for the models with superior performance regarding
the backtesting procedures for the rolling estimation window of size 250 (Table 28), it is
noticeable that these exhibit reasonably small realized losses for the significance level of & = 1%

and B = 5%, where a substantial portion of the values remains below 1.05. There is a higher
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incidence of intermediate scores for the other levels, around 1.10. When the rolling window
tends to 500 observations (Table 29), we observe that the best predictions, according to the
proposed backtesting procedures, exhibit a combination of small and medium realized losses
at the significance levels of o = 1%, B = 5%; low values (around 1.026) across the majority of
scores for o = 1%, B = 2.5%; and moderate values (around 1.098) at the significance levels of
o =2.5%, B = 5%. Finally, with a rolling window of 1000 observations (Table 30), it can be seen
that the best-case scenarios show small Sgy.r results at the significance levels of @ = 1%, 8 = 5%
and o0 = 2.5%, B = 5%, except for the EGARCHj,.; model for Bitcoin in the former case
(1.191133), and the GAS;;,,,;»» model for Bitcoin in the latter case (1.146886). Furthermore, the
highest realized losses are observed at @ = 1%, B = 2.5%, reflected by GARCH-type models
applied to WTI Crude Oil returns. Therefore, based on the forecasts with the best-calculated
p-values from the proposed procedures, there exists a reasonable association with the RVaR loss
function, as the realized losses are predominantly small, with the remaining ones falling within

an intermediate range among those calculated in the study, with few exceptions.

Continuing, Tables 31, 32, and 33 present the models with the poorest calculated p-values
of the proposed backtesting, along with the corresponding financial returns and loss function
results, using rolling estimation windows of 250, 500, and 1000 observations. The structure of
each table is the same as in the former case. Looking at the test results, we can observe that
the backtesting procedures exhibited similar behavior compared to the previous analysis, i.e.,
concerning the worst scenarios, there was no meaningful distinction between any approach, as
they have similar performance. By illustration, the results in Table 32 for significance levels of
o = 1%, B = 5% are nearby for the MF Test, RC Test and MFE Test, given that the GARCHy,,
GARCHg.q, GARCH 9y, EGARCH;; and EGARCHo,, performed better for STOXX Euro
600 index, and girGARCH,,,,,, for S&P 500 index in the three approaches. Analogous findings are
observed in the other significance levels and rolling windows. Concluding the initial impressions,
we can verify anew the prominence of GARCH-type models in the tables under analysis, as well
as distributions with properties of asymmetry or heavy tails. However, it is worth mentioning
that there is a relative increase in scenarios where the normal distribution occurs in conjunction
with GARCH and gjrGARCH models.

Upon conducting a more detailed examination of the results from Table 31, we can
observe that at significance levels of a = 1%, B = 5%, the scenarios exhibiting p-values close
to zero are predominantly associated with the STOXX Euro 600 index in conjunction with the
GARCH model, and to a lesser extent, the girGARCH model. Looking at the significance levels
of & = 1%, = 2.5%, most of the worst-performing models are associated with fixed-income
assets. For instance, in the MF Test, the girGARCHyy,,,,, and EGARCH,,,,,,,, models demonstrate
p-values close to zero when applied to DGS3 returns, while the GARCHj,; and GARCH,,4,
models show a low p-value for DGS10 returns. Finally, no particular market risk factor is
predominant at & = 2.5% and 8 = 5%. Nevertheless, the girGARCH model shows most of the

worst results in the tests, emphasizing the Normal and Skewed Student-¢ distributions. With



Chapter 4. Results 51

the increase of the rolling window to 500 observations (Table 32), it can be noticed that for the
significance levels of o = 1%, B = 5%, the models with the poorest performances remain related
to the STOXX Euro 600 index in conjunction with the GARCH model, presenting p-values
smaller than 0.004 in the three approaches. For the significance levels of o = 1%, B = 2.5%, the
lower p-values are associated with the GARCH model in conjunction with the Skewed Normal
distribution across all proposed approaches. When looking to o = 2.5%, B = 5%, the gjrGARCH
models with distributions that capture the stylized facts (nig, jsu, and sged) of financial returns,
applied to S&P 500 index, must be mentioned, as they encompass half of the worst p-values for
the reference significance levels. Finally, the behavior of the backtesting results as the rolling
window increases to 1000 can be observed from Table 33. More specifically, at significance levels
of a = 1%, B = 5%, the dominance of gjrGARCH and EGARCH models can be observed when
applied to DGS3 returns. There is no specific dominance of any distribution. When noticing
o = 1% and B = 2.5%, the poorest p-values are found in GARCH-type model predictions
related to STOXX Europe 600 and gold returns. More precisely, across all proposed backtesting
procedures, the GARCHyy,/n, GARCH,,4,, and GARCHg,; show p-values close to zero when
applied to the former asset, and the EGARCHz.s and EGARCHj s models exhibit the same
behavior when applied to the lesser. At last, when considering the significance levels of & =2.5%
and 3 = 5%, we can observe the predominance of EGARCH models, unlike when 7 is equal to
500, where girGARCH models gain more prominence. There is no prominent return series to
which the models demonstrate the worst results, except for the MFE Test, where DGS3 appears

in half of the occurrences. Also, there is no predominance of any specific distribution.

Analysing the data from the perspective of the RVaR loss function, we can observe that a
substantial part of the predictions do not remain consistent in both methods. Specifically, with a
rolling window size of 250 (Table 31), it is noticeable that the worst performing models regarding
each backtesting procedure exhibit small and medium realized losses at the significance levels of
o =1%,B =5% and oo = 2.5%, 3 = 5%. More precisely, in the former level, the scores have
values around 1.043, whereas for the latter one, these values range from 1.029186 to 1.088937.
In contrast, for the significance levels @ = 1% and B = 2.5%, some high values of SRrVar
were obtained, being related to the forecasts of the girGARCHy,,y,,, and EGARCH,,,,,,, models
applied to the returns of DGS3 (around 1.194) and the GARCHjy,,,,, model applied to Bitcoin
(1.156860). When the rolling window tends to 500 observations (Table 29), we verify that the
worst predictions according to the proposed backtesting procedures exhibit small values for the
realized losses at the three significance levels, with exceptions for the GAS;;/, and GARCHjgeq
models for Bitcoin (1.21689 and 1.18714, respectively) at the levels of a = 1%, = 5%;
and the GARCHj,, for Bitcoin at & = 2.5%, B = 5%. Finally, with a rolling window of 1000
observations (Table 30), it can be observed a higher consistency of forecasts in both applied
methods, especially at the significance levels of o« = 1%, 3 = 5%, and &t = 2.5%,3 = 5%. In
the first case, the scores are around 1.173, being reflected by the GARCH-type models applied
to the returns of DGS3. In the second case, half of the scores show high values, identified by
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the GARCH-type models applied to the returns of Bitcoin and DGS3. At the significance levels
of ¢ = 1%, B = 5%, the expected losses remain at low values, in contrast to when 7 is equal to
250, where the results were more satisfactory at the same levels. Therefore, the forecasts with
the worst-calculated p-values by the proposed procedures exhibit a considerable proportion of
small scores, with the greater agreement between the methods in specific situations, namely, for
a rolling window of 250 observations and significance levels of o« = 1%, B = 2.5%; and a rolling
window of 1000 observations and significance levels of @ = 1%, 8 =5% and o« = 1%, 3 =2.5%,
driven by GARCH-type models applied to DGS3 and, to a lesser extent, Bitcoin returns.

Moving to the second moment, Tables 34-36 present the models with the best predictions
from the perspective of the realized loss Sgy.r, along with the corresponding asset return series
and the p-values calculated by the three proposed backtesting procedures, using 250, 500,
and 1000 in-sample sizes. The results are arranged in each table based on the significance
levels of 1%, 2.5%, and 5%, wherein the realized losses are presented in descending order
for each level combination. Analysing such tables shows that the GARCH-type models with
Normal, Skewed Normal, and Student-¢ distributions applied to the Euro/US Dollar returns
demonstrate the lowest scores among the candidates for all considered significance levels and
rolling windows. Also, the girGARCH model performs better, especially at the significance
levels of o = 2.5% and B = 5%. By illustration, for a rolling window of 500 observations,
gitGARCH, 1o, girGARCHy, gitGARCH0,m and gjrGARCH,,, are the best performing
models, along with GARCHg,; and GARCHj;,,,,, for the mentioned levels. Compared with
the proposed backtesting procedures, the scenarios with the best performance according to the
realized loss exhibit p-values greater than 0.05 in all backtesting results. They thus cannot be
rejected for a significance level of 5%. Thereby, scenarios with lower scores exhibit satisfactory

p-values from the proposed approaches, demonstrating consistency with both methods.

Continuing, Tables 37-39 present the models with the poorest predictions from the
perspective of the realized loss Sgy.r, along with the corresponding asset return series and the
p-values calculated by the three proposed backtesting procedures, using 250, 500, and 1000
in-sample sizes. The structure of each table is the same as the previous ones. When observing
such tables, we can identify the predominance of DGS3 returns across all significance levels
in conjunction with EGARCH and GAS models for a rolling window of 250 observations. By
illustration, at the three considered levels, the EGARCH.y, EGARCH ey, EGARCH,;, and
EGARCH 5, models exhibit the worst realized losses, alongside the GAS;;,, and GAS,4. For
the rolling window of 500 observations, DGS3 returns still remain prominent, but the EGARCH
models are replaced by GARCH and gjrGARCH models in conjunction with Generalized
error and Skeweed Generalized error distributions. It is worth noting that the poorest realized
losses are similar for the significance levels of o = 1%, 8 = 5%, as well as @ = 1%, 3 = 2.5%,
i.e., the highest Sgy.r values are observed when applying the GASy,,,» models to DGS3 and
Bitcoin returns, and gjrGARCH,4, girGARCHj,.q, GARCHg,y, and GARCHj,.s models to
DGS3 returns. The significance levels of a = 2.5%, B = 5% show slight differences among the
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others, with the worst outcomes observed when applying the GAS;0rm, GASg4, 2iITGARCH 404,
gjrtGARCH,;¢, and GARCH,;;, models to DGS3, and the GASj;,,,» model to Bitcoin returns. As
we transition to a rolling window of 1000 observations, the EGARCH models regain prominence
alongside the GAS models, with greater prominence given to Bitcoin returns. With the addition
of the proposed backtesting procedures, most scenarios with the poorest performance, according
to the realized loss, exhibit p-values greater than 0.05 in all backtesting results, similar to what
was identified in the previous framework. Exceptions are observed at the significance levels
of & = 1%,B = 2.5% for the three backtesting when the EGARCH j;, model is applied to
DGS3 returns; and for the RC Test, when the EGARCH .y model is employed to DGS3 returns
(p = 0.025). Consequently, scenarios with higher scores present unsatisfactory p-values in the

proposed approaches, indicating a disparity between both methods.

When analysing the results with regard only to the assets considered, it becomes evident
that the proposed backtesting procedure demonstrates exceptional performance for the exchange
rate returns, without any pronounced bias toward a specific distribution. However, the approaches
overestimate tests carried out with commodity assets, especially WTI crude oil, mainly at the
significance levels of & = 1% and B = 2.5%. On the other hand, the proposed methods fail
to provide non-rejection forecasts related to green finance, especially those linked to STOXX
Europe 600, with some amelioration when considering a sample size of n = 1000. Such behavior
occurs in a more expressive way at the significance levels @ = 1%, 8 = 5% and is related to the

use of GARCH models, but without calling attention to any specific distribution.

In conclusion, when we assess both moments jointly, we can assert that there is a
greater agreement between the methods when looking at the best results. Thereby, we observe
predominantly small realized losses among those calculated when analysing the data from the
perspective of the p-values closer to one obtained from each backtesting procedure. Similarly,
from the perspective of realized losses, the best predictions exhibit high p-values at 5%. Such
symmetry is absent when analysing the worst scenarios. In this latter case, we predominantly
observe small scores from the perspective of the p-values obtained through each backtesting
procedure. Similarly, from the perspective of realized losses, the worst predictions showed high p-
values at 5%, with few exceptions. Hence, the methods exhibit inconsistency in evaluating models
with poorer performance, whereas the opposite pattern is observed for those that performed
better. Thus, the similarities between the processes are limited, with an inclination towards the
best results. As with numerical analysis, none of the proposed backtesting methods stand out

over the others.



Table 4 — Scenario 1 - Size of the three backtesting procedures in percentage using n =250 and 7 € {250,500}

1% 2.5% 5% 10%
Backtesting | Model | a=1% B=5%|a—1% P=125%]0—25% B=5% | a—1% B—5%|a—1% B=25%]a=25% P—5%|a=1% B=—>5%]a—1% B=25%]a=25% P=3%|a=1% P=5%a=1% B—25%]a=25% B=5%

250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500

GARCH,prn | 04%  01% | 3.1%  04% 16%  05% | 12%  02% | 44% 1.0% 31%  L1% | 24%  07% | 60% 1% 44%  20% | 5A%  40% | 87%  40% 71%  52%

GARCH,g 01%  0.1% | 34% 15% 24%  05% | 50%  04% | 49%  2.6% 3.2% 10% | 11%  13% | 64%  32% 45% 17% | 38%  31% | 84%  59% 7% 52%

GARCH,yy | 02%  0.1% | 43% 13% 09%  03% | 05%  0.1% | 54%  2.0% 14%  07% | 13% 1% | 70%  27% 26%  16% | 40%  38% | 8.1%  6.1% 47%  5.0%
EGARCH,om | 0.6%  02% | 53% 14% 27%  04% | 09%  05% | 72%  2.1% 38%  08% | 25% 17% | 83%  3.1% 48%  23% | 56%  42% | 115%  58% 73%  6.0%

MFTest | EGARCHy, | 07%  04% | 43% 12% 13%  06% | 1.0% 03% | 53%  17% 25%  09% | 18%  11% | 65%  34% 3.7% 18% | 46%  38% | 91%  62% 68%  4.1%
EGARCHqy | 09%  02% | 35%  11% 25%  03% | 16%  06% | 44%  17% 37%  11% | 33%  16% | 64%  3.0% 47%  23% | 62%  58% | 86%  59% 7% 53%

GAS o 70%  97% | 19%  53% 14%  43% | 79% 11.6% | 25%  62% 15%  5.10% | 87% 144% | 28%  69% 16%  59% | 103% 17.0% | 37%  81% 19%  6.6%

GASyq 8.6%  13.8% | 40%  8.6% 21%  56% | 96% 159% | 46%  9.9% 23%  65% | 114% 199% | 50%  11.5% 30%  78% | 134% 248% | 5%  13.5% 34%  9.0%

GAS,ya 05%  0.1% | 52% 1.4% 37%  07% | 07% 0% | 63%  19% 45%  11% | 1.6%  13% | 74%  3.1% 62%  22% | 34%  35% | 84%  52% 87%  53%
GARCH,prn | 04%  01% | 32%  05% 17%  06% | 11%  02% | 43%  1.1% 32%  L1% | 23% 11% | 6.0% 1.5% 45%  20% | 5A%  44% | 85%  39% 73%  52%

GARCH, 01%  0.1% | 34% 1.6% 24%  04% | 04%  04% | 47%  27% 34%  09% | 14%  10% | 63%  34% 45%  16% | 36%  31% | 85%  55% 69%  53%

GARCHyyy | 02%  01% | 44% 13% 1.0%  02% | 06%  02% | 54%  18% 13%  06% | 14%  12% | 70%  2.6% 26%  18% | 42%  37% | 80%  62% 50%  53%
EGARCH,om | 0.6%  02% | 54% 14% 27%  04% | 09%  05% | 72%  2.1% 38%  08% | 22% 1% | 84%  32% 49%  20% | 56%  41% | 115%  60% 73%  6.1%

MFETest | EGARCHyy | 07%  03% | 44% 12% 14% 0% | 10%  07% | 52%  18% 25%  09% | 17%  10% | 65%  3.6% 37%  18% | 43%  36% | 89%  65% 6.8%  3.8%
EGARCHqy | 08%  02% | 34%  11% 23%  03% | 18%  06% | 45%  1.6% 36%  L1% | 30%  16% | 63%  28% 48%  20% | 61%  61% | 84%  56% 72%  5.1%

GASpom 70%  97% | 20%  55% 14%  43% | 79% 115% | 25%  61% 15%  5.1% | 88% 144% | 28%  6.9% 16%  59% | 102% 17.0% | 37%  81% 19%  6.6%

GASyq 8.6% 138% | 41%  8.6% 21%  56% | 96% 160% | 46%  9.8% 23%  65% | 113% 20.1% | 50%  11.5% 30%  18% | 134% 248% | 56%  134% 34%  9.1%

GAS,yq 05%  0.1% | 52% 1.4% 39%  07% | 07% 0% | 63%  19% 43%  11% | 15%  13% | 13% = 29% 64%  25% | 35% 37% | 85%  5.1% 87%  5.5%
GARCH,prm | 04%  01% | 32%  0.6% 17%  06% | 12%  02% | 43%  11% 3%  12% | 24%  13% | 59%  1.5% 45%  20% | 52%  43% | 83%  42% 69%  52%

GARCH,g 01%  0.1% | 34% 1.6% 24%  05% | 05%  05% | 47%  2.4% 3.3% 1% | 13%  15% | 62%  3.6% 4.4% 17% | 39%  36% | 85%  6.1% 69%  53%

GARCH,yq | 03%  01% | 42% 13% 10%  02% | 06%  02% | 53%  19% 16%  07% | 14%  11% | 70%  27% 2.5% 17% | 40%  39% | 83%  63% 46%  5.0%
EGARCH,o, | 06%  02% | 53% 14% 27%  04% | 09%  05% | 73%  21% 39%  08% | 24% 1% | 84%  32% 46%  20% | SA%  41% | 115%  6.0% 74%  6.0%

RCTest |EGARCHyy | 0.6%  0.3% | 45% 12% 13%  07% | 10% 03% | 52%  18% 22%  09% | 21%  10% | 65%  3.6% 36%  18% | 49%  36% | 89%  65% 6.7%  3.8%
EGARCHq | 08%  02% | 35%  11% 26%  03% | 17%  06% | 47%  1.6% 34% 1% | 32%  1.6% | 65%  28% 50%  20% | 67% 61% | 83%  56% 71%  5.1%

GASpom 7% 97% | 19%  55% 14%  43% | 79% 115% | 25%  6.1% 15%  5.1% | 88% 144% | 29%  69% 16%  59% | 103% 17.0% | 37%  81% 19%  6.6%

GASyq 8.6%  138% | 42%  8.6% 21%  56% | 96% 160% | 46%  9.8% 23%  65% | 113% 201% | 50%  11.5% 31%  78% | 135% 248% | 5%  134% 34%  9.1%

GAS,ya 05%  0.1% | 52% 1.4% 36%  07% | 07% 0% | 63%  19% 44%  11% | 1% 13% | 74%  29% 63%  25% | 34%  37% | 83%  5.1% 87%  5.5%
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Table 5 — Scenario 2 - Size of the three backtesting procedures in percentage using n = 1000 and 7 € {250,500}

1% 2.5% 5% 10%
Backtesting | Model | a=1% B=5%|a—1% P=125%]0—25% B=5% | a—1% B—5%|a—1% B=25%]a=25% P—5%|a=1% B=—>5%]a—1% B=25%]a=25% P=3%|a=1% P=5%a=1% B—25%]a=25% B=5%
250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500
GARCH,prn | 03%  02% | 54%  0.9% 23%  08% | 06% 0.6% | 63% 1.5% 33%  13% | 20% 12% | 18%  2.6% 47%  30% | 40%  38% | 97%  44% 82%  57%
GARCH,g 02%  00% | 53%  11% 22%  03% | 1.0% 01% | 71%  18% 32%  07% | 27%  04% | 89%  3.8% 4.4% 17% | 53%  30% | 114%  6.1% 7%  41%
GARCH,y | 05%  00% | 47% 14% 20% 0% | 11%  01% | 62%  23% 29%  1.0% | 20%  08% | 70%  39% 43%  25% | S3%  30% | 92%  69% 6.7% 4%
EGARCH,om | 0.5%  03% | 53%  22% 24%  04% | 11%  04% | 64%  32% 35%  07% | 22% 19% | 7.6% = 43% 4.6% 17% | 57%  41% | 95%  69% 75%  50%
MFTest | EGARCHyy | 03%  00% | 46%  11% 23%  02% | 1.0%  02% | 59%  19% 34%  10% | 21%  14% | 15%  37% 49%  19% | 50%  40% | 98%  66% 69%  41%
EGARCHuy | 02%  0.1% | 38%  11% 29%  04% | 08% 0.6% | 50%  18% 39%  09% | 22% 1% | 61%  2.5% 46%  21% | 48%  32% | 8.1%  46% 69%  48%
GAS o 53%  93% | 23%  54% 13%  42% | 69% 111% | 28%  6.6% 15%  48% | 7.6% 132% | 29%  7.1% 17%  54% | 87% 172% | 3.1%  80% 22%  63%
GASyq 9.6% 12.1% | 62%  103% 22% 5% | 113%  167% | 12%  11.5% 3%  72% | 138% 203% | 74%  13.6% 32% 7% | 160% 250% | 79%  14.5% 41%  9.1%
GAS,ya - - - - - - - - - - - - - - - - - - - - - - - -
GARCH,prm | 03%  02% | 54%  0.9% 23%  08% | 07% 0.6% | 64% 1% 32%  13% | 20% 13% | 17%  2.6% 47% 2% | 42%  39% | 96%  45% 79%  5.6%
GARCH, 02%  00% | 55%  11% 22%  03% | 1.0% 01% | 68% 1% 32%  08% | 27%  05% | 90%  3.6% 45%  18% | S1%  29% | 114%  63% 73%  41%
GARCHyy | 05%  00% | 48% 14% 20% 0% | 12%  01% | 62%  2.4% 29%  10% | 20%  08% | 70%  37% 43%  25% | S2%  31% | 94%  68% 64%  4.6%
EGARCH,om | 0.5%  03% | 55%  22% 24%  04% | 1.0%  04% | 63%  32% 35%  08% | 22% 18% | 7.6% = 42% 45% 16% | 57%  41% | 95%  69% 74%  4.6%
MFE Test | EGARCHyy | 03%  00% | 46%  11% 23%  02% | 08%  0.1% | 58%  2.0% 34%  10% | 23%  12% | 7.6%  3.6% 50%  18% | 47%  42% | 98%  64% 72%  39%
EGARCHuy | 02%  0.1% | 3.9% 12% 29%  04% | 10%  0.6% | 52%  18% 38%  09% | 19%  L1% | 63%  2.6% 48%  22% | 46%  30% | 82%  48% 65% 4%
GASpom 56%  92% | 23%  54% 13%  42% | 68% 111% | 28%  6.7% 15%  48% | 7.6% 131% | 29% = 7.1% 17%  54% | 87% 172% | 3.1%  80% 22%  63%
GASyq 9.6% 12.1% | 63%  104% 22% 5% | 112%  165% | 12%  11.5% 3%  69% | 138% 204% | 74%  13.6% 32% 1% | 159% 24.6% | 19%  14.5% 41%  9.3%
GARCH,prm | 04%  02% | 54%  09% 23%  09% | 07% 0% | 63%  1.5% 33%  13% | 21%  12% | 77%  2.6% 47%  31% | 40%  39% | 96%  45% 79%  5.7%
GARCH,g 02%  00% | 54%  1.0% 22%  03% | 08%  01% | 70% 1% 32%  07% | 27%  05% | 90%  3.6% 45% 17% | 5A%  29% | 114%  63% 76%  3.9%
GARCH,yq | 04%  00% | 47% 14% 20% 0% | 11%  02% | 62%  23% 29%  10% | 20%  08% | 70%  38% 42%  25% | 55%  30% | 92%  71.0% 6.7% 4%
EGARCH,o | 05%  03% | 52%  21% 22%  04% | L1%  05% | 64%  32% 34% 0% | 21%  18% | 8%  43% 46%  18% | 57% 41% | 98%  69% 73% 4%
RCTest |EGARCHyy | 03%  00% | 47% 12% 23%  02% | 10%  02% | 58%  2.1% 34%  09% | 22% 1% | 1%  3.6% 50%  21% | 50%  40% | 99%  61% 12%  41%
EGARCHy | 02%  0.1% | 3.9% 1.1% 27%  04% | 10%  06% | 52%  18% 39%  10% | 21%  L1% | 62% 2% 47%  20% | 48%  31% | 83%  5.0% 6.6%  4.5%
GASporm 56%  95% | 23%  54% 13%  42% | 69% 112% | 28%  6.6% 15%  48% | 7.6% 129% | 29%  7.1% 17%  54% | 88% 17.0% | 3.1%  19% 22%  63%
GASq 9.6%  12.1% | 62%  102% 22% 5% | 114% 165% | 71%  11.5% 3%  69% | 138% 200% | 74%  13.6% 32%  77% | 158% 249% | 8.0%  14.6% 41%  9.3%
GASgy1a - - - - - - - - - - - - - - - - - - - - - - - -
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Table 6 — Proposed McNeil and Frey (2000) backtesting size results, using a significance level of 1%, 2.5% and 5% with 250 and 1000 observations.

1% 2.5% 5% 10%
Size Modll [0=1% P=5%[a=1% B=25%]0=25% B=5% | a=1% P=5%|a=1% B=—25%]a=25% P=—5% | a=1% B=5%|0—1% P=25%a=25% P=5%|a=1% B=—5%|a—1% P=25%]a=25% B=5%
250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500 250 500 | 250 50 | 250 500 750 500 | 250 50 | 250 500
GARCH,p | 04%  0.1% | 31%  04% 6%  05% | 12%  02% | 44%  1.0% 3%  L1% | 24% 0% | 60%  1.7% 44%  20% | 54%  40% | 87%  4.0% 70%  52%
GARCHyg 01%  0.1% | 34%  15% 24%  05% | 50%  04% | 49%  2.6% 32%  10% | L1%  13% | 64%  32% 45%  17% | 38%  3.1% | 84%  59% 71%  52%
GARCHyy | 02%  0.1% | 43%  13% 09%  03% | 05% 0.1% | 54%  2.0% 14%  07% | 13% 1% | 70%  27% 26%  16% | 40%  38% | 81%  6.1% 47%  5.0%
250 EGARCH,o | 06%  02% | 53%  14% 27%  04% | 09%  05% | 72%  21% 38%  08% | 25% 17% | 83%  3.1% 48%  23% | 56%  42% | 115%  58% 73%  6.0%
Observations | EGARCHgg | 07%  04% | 43%  12% 13%  06% | 10% 07% | 53%  17% 25%  09% | 18%  11% | 65%  3.4% 37%  18% | 46%  38% | 91%  62% 68%  41%
EGARCHyy | 09%  02% | 35%  11% 25%  03% | 1.6%  06% | 44%  17% 39%  11% | 33%  16% | 64%  3.0% 47%  23% | 62% 58% | 86%  59% 71%  53%
GASporm 70% 9% | 19%  53% 14%  43% | 19% 116% | 25%  62% 15%  51% | 87%  144% | 28%  69% 1.6%  59% | 103% 17.0% | 37%  81% 19%  66%
GASyq 8.6%  138% | 40%  8.6% 21%  56% | 96%  159% | 46%  9.9% 23%  65% | 114% 199% | 50%  11.5% 30% 8% | 134% 248% | 57%  13.5% 34%  9.0%
GAS,ya 05%  0.1% | 52%  14% 37%  01% | 07%  07% | 63%  19% 45%  11% | 1.6% 13% | 74%  3.1% 62%  22% | 34%  35% | 84%  52% 87%  53%
GARCH,prm | 03%  02% | 54%  09% 23%  08% | 06% 0.6% | 63%  15% 33%  13% | 20%  12% | 78%  2.6% 47%  30% | 40%  38% | 97%  44% 82%  57%
GARCH, 02%  00% | 53%  11% 22%  03% | 10%  01% | 71%  18% 32%  07% | 27%  04% | 89%  3.8% 44% 1% | 53%  30% | 114%  6.1% 17%  41%
GARCHyy | 05%  00% | 47%  14% 20% 0% | L1%  01% | 62%  23% 29%  1.0% | 20%  08% | 70%  39% 43%  25% | 53%  30% | 92%  69% 6.1%  47%
1000 EGARCH,pm | 0.5%  03% | 53%  22% 24%  04% | L1%  04% | 64%  32% 35% 0% | 22% 19% | 7.6%  4.3% 4.6% 17% | 57% 41% | 95%  69% 5%  50%
Observations | EGARCHua | 03%  00% | 46%  11% 23%  02% | 10%  02% | 59%  19% 34%  10% | 21%  14% | 75%  37% 49%  19% | 50%  40% | 98%  6.6% 69%  41%
EGARCHyy | 02%  0.1% | 38%  11% 29%  04% | 08%  0.6% | 50%  18% 39%  09% | 22%  11% | 61%  25% 46%  21% | 48%  32% | 81%  4.6% 6.9%  48%
GASyorm 53%  93% | 23%  54% 13%  42% | 69% 111% | 28%  66% 15%  48% | 76%  132% | 29%  71.1% 17%  54% | 87% 172% | 3.1%  80% 22%  63%
GASyq 9.6% 121% | 62%  10.3% 22% 5% | 113%  167% | 72%  11.5% 3%  72% | 138% 203% | 74%  13.6% 32%  717% | 160% 250% | 79%  145% 4% 9.1%
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Table 7 — Proposed Righi and Ceretta (2015) backtesting size results, using a significance level of 1%, 2.5% and 5% with 250 and 1000 observations.

1% 2.5% 5% 10%

Size Modll [0=1% P=5%[a=1% B=25%]0=25% B=5% | a=1% P=5%|a=1% B=—25%]a=25% P=—5% | a=1% B=5%|0—1% P=25%a=25% P=5%|a=1% B=—5%|a—1% P=25%]a=25% B=5%
250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500 250 500 | 250 50 | 250 500 750 500 | 250 50 | 250 500
GARCH,om | 04%  0.1% | 32%  06% 17%  06% | 12%  02% | 43%  11% 3%  12% | 24%  13% | 59%  1.5% 45%  20% | 52%  43% | 83%  42% 69%  52%
GARCHyg 01%  0.1% | 34%  1.6% 24%  05% | 05% 05% | 47% = 24% 33%  11% | 13%  15% | 62%  3.6% 44% 1% | 39%  36% | 85%  61% 69%  53%
GARCHyy | 03%  0.1% | 42%  13% 10%  02% | 06% 02% | 53%  19% 16%  07% | 14%  11% | 70%  27% 25% 1% | 40%  39% | 83%  63% 46%  5.0%
250 EGARCH,o, | 06%  02% | 53%  14% 27%  04% | 09%  05% | 73%  21% 39%  08% | 24% 17% | 84%  32% 46%  20% | 54%  41% | 115%  6.0% T4%  6.0%
Observations | ECARCHgg | 06%  03% | 45%  12% 13%  07% | 10%  07% | 52%  18% 22%  09% | 21%  10% | 65%  3.6% 36%  1.8% | 49%  36% | 89%  65% 6.1%  3.8%
EGARCHy, | 08%  02% | 35%  11% 26%  03% | 17%  06% | 47%  16% 34%  11% | 32%  16% | 65%  28% 50%  20% | 67%  61% | 83%  56% 71%  5.1%
GASporm 71% 9% | 19%  55% 14%  43% | 19% 115% | 25%  6.1% 15%  5.1% | 88%  144% | 29%  69% 1.6%  59% | 103% 17.0% | 37%  81% 19%  66%
GASyq 8.6%  138% | 42%  8.6% 21%  56% | 96%  160% | 46%  9.8% 23%  65% | 113% 201% | 50%  11.5% 30%  78% | 135% 248% | 57%  13.4% 34%  91%
GAS,ya 05%  0.1% | 52%  14% 36%  07% | 07%  07% | 63%  19% 44%  11% | 17%  13% | 74%  2.9% 63%  25% | 34% 3% | 83%  5.1% 87%  5.5%
GARCH,orm | 04%  02% | 54%  09% 23%  09% | 07% 07% | 63%  15% 33%  13% | 21%  12% | 17%  2.6% 47%  31% | 40%  39% | 9.6%  4.5% 9%  57%
GARCH, 02%  00% | 54%  1.0% 22%  03% | 08%  01% | 7.0%  17% 32%  07% | 27%  05% | 9.0%  3.6% 45% 1% | 54% @ 29% | 114%  63% 76%  3.9%
GARCHyy | 04%  00% | 47%  14% 20% 0% | L1%  02% | 62%  23% 29%  1.0% | 20%  08% | 70%  38% 42%  25% | 55%  3.0% | 92%  1.0% 6.7%  47%
1000 EGARCH,pm | 0.5%  03% | 52%  2.1% 22%  04% | L1%  05% | 64%  32% 34% 0% | 21%  18% | 78%  4.3% 4.6% 18% | 57% 41% | 98%  69% 3% 4%
Observations | EGARCHua | 03%  00% | 47%  12% 23%  02% | 10%  02% | 58%  2.1% 34%  09% | 22%  1L1% | 77%  3.6% 50%  21% | 50%  40% | 99%  6.1% 72%  41%
EGARCHyy | 02%  01% | 39%  11% 27%  04% | 10%  06% | 52%  18% 39%  1.0% | 21%  11% | 62%  27% 47%  20% | 48%  3.1% | 83%  50% 6.6%  4.5%
GASyorm 56%  95% | 23%  54% 13%  42% | 69% 112% | 28%  66% 15%  48% | 76%  129% | 29%  71.1% 17%  54% | 88%  17.0% | 3.1%  7.9% 22%  63%
GASyq 9.6% 121% | 62%  102% 22% 5% | 114%  165% | 7.1%  115% 31%  69% | 138% 200% | 74%  13.6% 32%  717% | 158% 249% | 80%  14.6% 41%  93%

synsay 't 123dvy)

LS



Table 8 — Proposed McNeil et al. (2015) backtesting size results, using a significance level of 1%, 2.5% and 5% with 250 and 1000 observations.

1% 2.5% 5% 10%
Size Modll [0=1% P=5%[a=1% B=25%]0=25% B=5% | a=1% P=5%|a=1% B=—25%]a=25% P=—5% | a=1% B=5%|0—1% P=25%a=25% P=5%|a=1% B=—5%|a—1% P=25%]a=25% B=5%
250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500 250 500 | 250 50 | 250 500 750 500 | 250 50 | 250 500
GARCH,pm | 04%  0.1% | 32%  05% 17%  06% | L1%  02% | 43%  11% 32%  L1% | 23% 11% | 60%  1.5% 45%  20% | 54%  44% | 85%  39% 73%  52%
GARCHyg 01%  0.1% | 34%  1.6% 24%  04% | 04%  04% | 47%  27% 34%  09% | 14%  10% | 63%  3.4% 45%  16% | 36%  3.1% | 85%  55% 69%  53%
GARCHyy | 02%  0.1% | 44%  13% 10%  02% | 06% 02% | 54%  18% 13%  06% | 14%  12% | 70%  2.6% 26%  18% | 42%  37% | 80%  62% 50%  53%
250 EGARCH,oy | 06%  02% | 54%  14% 27%  04% | 09%  05% | 72%  21% 38%  08% | 22% 17% | 84%  32% 49%  20% | 56%  41% | 115%  6.0% 73%  61%
Observations | EGARCHgg | 07%  03% | 44%  12% 14%  07% | 10%  07% | 52%  18% 25%  09% | 17%  10% | 65%  3.6% 37%  18% | 43%  36% | 89%  65% 68%  3.8%
EGARCHy | 08%  02% | 34%  11% 23%  03% | 18%  06% | 45%  16% 36%  11% | 3.0%  16% | 63%  28% 48%  20% | 61% 61% | 84%  56% 72%  5.1%
GASporm 70% 9% | 20%  55% 14%  43% | 19% 115% | 25%  6.1% 15%  5.1% | 88%  144% | 28%  69% 1.6%  59% | 102% 17.0% | 37%  81% 19%  66%
GASyq 8.6% 138% | 41%  8.6% 21%  56% | 96%  160% | 46%  9.8% 23%  65% | 113% 201% | 50%  11.5% 30% 8% | 134% 248% | 56%  13.4% 34%  91%
GAS,ya 05%  0.1% | 52%  14% 39%  07% | 07%  07% | 63%  19% 43%  11% | 15%  13% | 73%  2.9% 64%  2.5% | 35% 3% | 85%  5.1% 87%  5.5%
GARCH,prm | 03%  02% | 54%  09% 23%  08% | 07%  0.6% | 64%  17% 32%  13% | 20%  13% | 17%  2.6% 47% 2% | 42%  39% | 96%  4.5% 19%  5.6%
GARCH, 02%  00% | 55%  11% 22%  03% | 10%  01% | 68%  17% 32%  08% | 27%  05% | 9.0%  3.6% 45%  18% | 5.1%  29% | 114%  63% 73%  41%
GARCHyy | 05%  00% | 48%  14% 20% 0% | 12%  0.1% | 62%  2.4% 29%  1.0% | 20%  08% | 70% 3% 43%  25% | 52%  3.1% | 94%  6.8% 64%  46%
1000 EGARCH,pm | 0.5%  03% | 55%  22% 24%  04% | 10%  04% | 63%  32% 35%  08% | 22%  18% | 7.6%  4.2% 45% 16% | 57%  41% | 95%  69% 74%  4.6%
Observations | EGARCHua | 03%  00% | 46%  1.1% 23%  02% | 08%  0.1% | 58%  2.0% 34%  10% | 23%  12% | 76%  3.6% 50%  1.8% | 47%  42% | 98%  64% 72%  3.9%
EGARCHyy | 02%  0.1% | 39%  12% 29%  04% | 10%  0.6% | 52%  18% 38%  09% | 19%  11% | 63%  2.6% 48%  22% | 46%  3.0% | 82%  4.8% 65%  47%
GASyorm 56%  92% | 23%  54% 13%  42% | 68% 111% | 28%  67% 15%  48% | 76%  131% | 29%  7.1% 17%  54% | 87% 172% | 3.1%  80% 22%  63%
GASyq 9.6% 121% | 63%  10.4% 22% 5% | 112%  165% | 72%  115% 31%  69% | 138% 204% | 74%  13.6% 32%  717% | 159% 24.6% | 79%  145% 4% 9.3%
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Table 9 — Summary of the best performing models for all approaches, n € {250,1000} and T € {250,500}, using significance levels of 1%, 2.5%, 5%

1% 2.5%
Backtesting Size a=1% B=5% a=1% B =25% o =25% B=5% a=1% B=5% a=1% B=25% | a=25% B=5%
250 500 250 500 250 500 250 500 250 500 250 500
250 EGARCH,, GARCH,orm
Observations | EGARCHwa  EGARCHyg | GASuom  EGARCHuia | GARCHyg GASya EGARCH,,y GAS.y GASnorm ~ GARCH,; | EGARCH,; EGARCH,y
GASg5ra
MF Test GARCH,0rm
1000 GARCH;gy GARCHgy GARCH;gq GARCH,rm
Observations | EGARCH, oy, D0t RCHnorm | GASuorm o aRep,,, | GASworm — GARCHuom | 56 ARCH,,,,  EGARCH,yq | GASworm  GARCHwa | GARCHuwa  GARCHorm
EGARCH,yy
GARCHI‘[{)”H
Obsezrig tions | EGARCHyq  EGARCHyg | GASuom  EGARCHya | GARCHyuqg EGG‘ZRSC?“’ EGARCH,yy EGG’?:ZC}?“’ GASnomm ~ GARCHyy | EGARCH,; EGARCH,;,
S5t S5t GAS&W({
MFE Test GARCH,,
1000 GARCH norm GARCH
Observations EGARCHSﬂd EGARCHnorm GASnarrn GARCHStd GASnarm GARCHnorm GARCHsstd EGARC;IU”" GASnorm GARCHs.rtd GARCHsstd GARCHnorm
non EGARCH,;y sstd
Obseiig tions | EGARCHyq  EGARCHyy | GASuom  EGARCHyug | GARCHyug E%TSCHW EGARCH,y E%’ZRSCH“" GASnomm  GARCHyy | GASgs  GARCHuomm
RC Test 1000 sstd GARCH sstd
Observations EGARCH)wrm EGARCHnorm GASnarm GARCHStd GASnarm GARCHnorm EGARCH:!C(l)i'm GARCHnurm GASnorm GARCHs.rtd GARCHsstd GARCHnorm
5% 10%
Backtesting Size a=1% B=5% a=1% B =25% o =25% B=5% a=1% B=5% a=1% B=25% | a=25% B=5%
250 500 250 500 250 500 250 500 250 500 250 500
250
Observations EGARCHmnl EGARCH, 0/ GASstd EGARCthd EGARCH, 9/ GASorm GASuorm EGARCHsstd EGARCHJMI GASuorm GASsstd GASstd
MF Test
1000
Observations GARCHgq EGARCH,;pym | EGARCH ¢ EGARCH,01m EGARCH g GASorm GASorm EGARCH,,;,,, | EGARCHy,y GAS,.orm GARCH,,,;1n GASq4
250
Obserations | EGARCHya  EGARCHuomm | GASgy EGARCH,; | EGARCHuomm  GASnomm GAS orm EGARCH,;,; | EGARCHyy  GASnom GAS,yra GAS,u
MFE Test
1000
Observations | GARCHua  EGARCH,or | EGARCHyyq  EGARCHuom | EGARCHus  GASuomm GASnom EGARCH,; | EGARCHyy GAS,om | GARCHupmm  GASg4
250 GARCH,,
Observations EGARCHs.rtd EGARCH,pm GASstd EG ARCHstd EGARCH.rsrd GASorm GASorm EGARCHsst(i EGARCHstd GASorm GASsstd GASstd
RC Test
1000
Observations | C/RCHwa  EGARCHuorm | EGARCHya EGARCHuorm | EGARCHgg  GASnorm GASorm EGARCH,,p | EGARCHyy  GASuorm | GARCH o1 GASgy
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Table 10 — Scenario 1 - Power of the three backtesting procedures in percentage, using GARCH,,,,, as null hypothesis, n = 250 and T € {250,500}

1% 25% 5% 10%

Backtesting Model 0=1% P=5%|a=1% P=25%]0a=25% P=5% | a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%]a=1% B=25%]a=25% Pp=>5%
250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCHyy 0.6% 0.0% | 47% 1.9% 30%  20% | 1.1%  03% | 58%  34% 3.6% 1.0% | 28% 15% | 17%  4.6% 51%  23% | 52%  37% | 9.7% 6.9% 83%  6.1%
GARCH,yy 0.6%  00% | 4.0% 1.2% 2.3% 03% | 13% 05% | 5.1% 2.0% 3.4% 0.6% | 21% 1.6% | 7.5% 3.0% 4.4% 1.8% | 49%  41% | 102%  58% 7.1% 5.2%
MFTest | EGARCH,pmm | 04%  03% | 4.3% 1.7% 2.3% 03% | 09%  07% | 5.0% 2.4% 3.2% 08% | 2.0% 15% | 64% 3.9% 4.3% 1.9% | 53%  43% | 8.6% 6.7% 7.1% 4.6%
EGARCH,y | 0.5%  02% | 3.8% 1.6% 3.0% 04% | 14%  04% | 5.1% 2.0% 37% 09% | 21% 13% | 6.6% 2.8% 4.7% 21% | 53% 37% | 85% 6.8% 7.8% 5.1%
EGARCHy | 02%  00% | 4.6% 1.6% 2.7% 04% | 1.0%  04% | 5.6% 2.2% 3.5% 08% | 2.0% 14% | 6.6% 3.4% 4.5% 1.5% | 49%  50% | 9.5% 6.1% 7.7% 4.7%
GARCHj, 07%  00% | 47% 1.9% 30%  20% | 1.1%  03% | 58%  34% 35%  09% | 28% 16% | 77% = 45% 51%  24% | 54%  38% | 98%  7.1% 84%  6.0%
GARCH,y1g 0.5%  00% | 3.9% 1.2% 2.3% 0.1% | 13%  05% | 5.0% 2.0% 3.4% 05% | 21% 1.6% | 7.4% 3.0% 4.5% 18% | 47%  37% | 101%  6.0% 7.2% 5.0%
MFE Test | EGARCH,pp | 05%  03% | 4.3% 1.7% 23% 03% | 09% 07% | 50% 2.5% 3.3% 07% | 21%  14% | 6.7% 3.8% 43% 19% | 55%  44% | 84% 6.7% 6.9% 4.6%
EGARCH,, | 04%  02% | 3.9% 1.5% 3.0% 04% | 1.5%  04% | 5.1% 2.0% 37%  09% | 2.0%  13% | 64% 3.0% 4.7% 20% | 53% 35% | 88% 6.6% 7.7% 5.0%
EGARCHy | 02%  00% | 4.6% 1.5% 2.7% 04% | 08%  04% | 5.6% 2.3% 3.5% 08% | 21% 14% | 67% 3.2% 4.6% 15% | 52% 48% | 9.6% 6.5% 7.6% 4.4%
GARCH,, 0.6% 00% | 4.6% 1.8% 29%  20% | 11%  02% | 58%  3.3% 3.5% 10% | 28% 16% | 77%  4.6% 50%  25% | 54%  37% | 96%  7.1% $5%  62%
GARCH,yy 0.6% 00% | 39% 1.2% 2.3% 02% | 13%  05% | 52% 2.0% 3.3% 07% | 22% 17% | 73% 2.9% 4.5% 1.6% | 4.6%  38% | 101%  6.0% 7.3% 5.1%
RCTest | EGARCH,ppy | 05%  03% | 4.3% 1.8% 2.2% 03% | 08% 07% | 5.0% 2.3% 3.1% 09% | 19% 15% | 65% 3.9% 4.4% 18% | 55%  43% | 8.7% 6.8% 7.2% 4.5%
EGARCHy, | 04%  03% | 3.8% 1.5% 3.0% 04% | 15%  04% | 52% 2.0% 3.8% 09% | 1.8% 12% | 6.6% 2.9% 47% 20% | 54%  37% | 85% 6.9% 7.7% 4.8%
EGARCH | 02%  00% | 45% 1.5% 2.7% 05% | 1.0% 04% | 5.6% 2.4% 3.5% 1.0% | 22%  14% | 6.7% 3.6% 4.4% 15% | 50% 49% | 9.7% 6.7% 7.7% 4.8%

synsay 't 123dvy)

09



Table 11 — Scenario 1 - Power of the three backtesting procedures in percentage, using GARCHj;, as null hypothesis, n =250 and T € {250,500}

1% 25% 5% 10%

Backtesting Model 0=1% P=5%|a=1% P=25%]0a=25% P=5% | a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%]a=1% B=25%]a=25% Pp=>5%
250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,prm | 22%  0.6% | 63%  29% 3.9% 05% | 31% 15% | 81%  4.1% 54% 1.0% | 50% 35% | 97%  57% 7.1% 1.9% | 84%  68% | 120%  85% 9.3% 5.8%
GARCH,yy 0.5%  0.1% | 4.6% 1.2% 2.6% 00% | 07%  02% | 58% 1.8% 3.6% 05% | 1.6% 16% | 7.1% 2.7% 4.5% 13% | 48%  45% | 9.7% 5.8% 7.3% 4.3%
METest | EGARCH,pm | 1.1%  02% | 7.0% 2.2% 34%  0.6% | 21%  1.0% | 8.1% 3.6% 4.5% 17% | 37%  26% | 9.6% 5.2% 71%  31% | 72% 1% | 11.7%  93% 99%  65%
EGARCH,y | 0.6%  02% | 43% 0.6% 2.4% 04% | 1.1%  07% | 57% 1.2% 3.4% 09% | 1.8%  20% | 6.9% 1.9% 4.5% 21% | 53%  58% | 8.6% 4.9% 7.0% 5.8%
EGARCHy | 0.0%  02% | 32% 0.7% 2.3% 05% | 07%  04% | 43% 1.7% 2.9% 1.0% | 13%  1.1% | 52% 2.7% 4.4% 23% | 42%  35% | 83% 5.1% 8.0% 4.4%
GARCH,or | 22%  0.6% | 63%  29% 41% 04% | 32% 14% | 81%  4.1% 54% 10% | 50% 35% | 97%  58% 7.1% 20% | 85%  69% | 122%  8.7% 9.3% 5.8%
GARCH,y1g 0.5%  0.1% | 47% 1.3% 2.6% 00% | 07%  05% | 5.7% 1.9% 3.7% 04% | 17%  15% | 6.9% 2.7% 4.6% 14% | 53%  44% | 9.7% 5.6% 7.5% 4.4%
MFE Test | EGARCH,pp | 1.1%  02% | 6.8% 22% 35%  09% | 23% 12% | 8.1% 3.5% 4.4% 1.6% | 3.6% 28% | 9.7% 5.4% 70%  31% | 72% 19% | 11.7%  9.1% 9.9%  6.6%
EGARCH,, | 0.6%  03% | 4.4% 0.7% 2.4% 05% | 1.1%  07% | 5% 13% 3.4% 09% | 18% 19% | 7.1% 2.0% 4.4% 20% | 54%  59% | 8.7% 5.2% 7.0% 6.2%
EGARCH | 00%  02% | 32% 0.7% 2.3% 05% | 08%  05% | 42% 1.8% 3.0% 1% | 11%  1.1% | 51% 2.9% 4.3% 21% | 38%  33% | 82% 5.0% 8.0% 4.5%
GARCH,or | 22%  0.6% | 63%  29% 4.0% 05% | 32% 13% | 81%  4.4% 54% 1.0% | 50% 34% | 98%  6.1% 7.1% 20% | 83%  67% | 120%  8.5% 9.4% 5.8%
GARCH, g 05%  0.1% | 5.0% 1.2% 2.7% 00% | 07%  06% | 58% 2.0% 3.8% 04% | 2.0%  14% | 7.0% 2.9% 4.5% 17% | 55%  4.5% | 9.8% 5.9% 7.4% 4.1%
RCTest | EGARCH,opy | 1.1%  02% | 7.0% 2.2% 34%  07% | 22%  11% | 8.0% 3.4% 4.6% 16% | 35%  25% | 9.7% 5.3% 71%  33% | 72% 80% | 118%  8.7% 100%  6.5%
EGARCHy, | 0.5%  02% | 43% 0.8% 2.4% 04% | 12%  08% | 54% 1.2% 3.4% 09% | 1.8%  20% | 69% 2.2% 4.5% 23% | 54%  59% | 8.8% 5.7% 7.1% 5.9%
EGARCHyy | 0.1%  02% | 3.0% 0.7% 2.3% 05% | 07%  05% | 4.0% 1.7% 3.0% 09% | 1.6% 1.1% | 53% 2.8% 4.6% 22% | 44%  40% | 8.0% 5.1% 7.7% 4.2%
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Table 12 — Scenario 1 - Power of the three backtesting procedures in percentage, using GARCH,, as null hypothesis, n = 250 and T € {250,500}

1% 25% 5% 10%

Backtesting Model 0=1% P=5%|a=1% P=25%]0a=25% P=5% | a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%]a=1% B=25%]a=25% Pp=>5%
250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,prm | 22%  02% | 45%  2.0% 4.0% 02% | 29% 1.1% | 58% 2.9% 5.1% 1.0% | 52%  25% | 7.6% 4.6% 6.0% 19% | 98%  82% | 10.1%  85% 9.6% 5.3%
GARCHyy 0.5%  03% | 45% 1.7% 2.1% 05% | 1.1%  05% | 57% 2.3% 3.7% 09% | 21% 17% | 7.1% 4.0% 4.7% 25% | 60%  61% | 8% 6.3% 7.4% 5.6%
MF Test | EGARCH,ppm | 0.8%  04% | 52% 1.8% 3.8% 10% | 1.7% 15% | 69%  3.2% 4.6% 15% | 44% 41% | 94%  52% 6.0% 28% | 94%  89% | 11.0%  7.6% 97%  65%
EGARCH,y | 08%  05% | 2.9% 1.2% 1.5% 07% | 12%  09% | 42% 2.0% 2.3% L1% | 23%  20% | 59% 3.1% 3.4% 23% | 59%  58% | 85% 6.5% 6.2% 4.7%
EGARCHy | 03%  02% | 62% 1.9% 2.1% 05% | 1.0%  09% | 7.2% 2.5% 3.1% 13% | 22%  19% | 9.2% 4.0% 4.7% 1.9% | 54%  54% | 105%  7.1% 7.1% 5.4%
GARCH,or | 22%  03% | 45%  2.0% 4.0% 02% | 27% 1.1% | 58%  3.0% 5.1% 08% | 52% 25% | 7.6% 4.5% 6.2% 19% | 98%  8.1% | 103%  8.8% 9.6% 5.2%
GARCH,y 0.5%  03% | 4.6% 1.7% 2.1% 05% | 12%  07% | 57% 2.3% 3.7% 11% | 22% 18% | 7.1% 3.7% 4.7% 25% | 62%  61% | 8.5% 6.6% 7% 5.4%
MFE Test | EGARCH,pp | 0.8%  03% | 5.2% 1.8% 3.8% 10% | 17% 15% | 69%  3.0% 4.7% 15% | 46% 40% | 95%  51% 6.1%  28% | 97% 92% | 112%  7.9% 9.7%  6.4%
EGARCH,, | 08%  0.5% | 2.8% 12% 1.5% 08% | 12% 1.1% | 42% 2.1% 22% 11% | 22%  20% | 59% 3.0% 3.5% 24% | 59%  57% | 83% 6.4% 6.3% 4.8%
EGARCHy | 04%  03% | 63% 1.9% 2.0% 05% | 1.0% 07% | 72% 2.6% 3.1% 13% | 22%  21% | 9.1% 3.8% 4.6% 17% | 55%  54% | 106%  72% 6.9% 5.7%
GARCH,opy | 21%  03% | 45%  21% 4.0% 02% | 29% 10% | 58%  3.1% 5.1% 09% | 52% 25% | 7.7% 4.8% 6.1% 18% | 97%  85% | 102%  85% 9.5% 5.4%
GARCH, 0.6%  02% | 45% 1.6% 2.3% 06% | 1.1% 08% | 5.6% 2.2% 3.6% 1% | 24%  21% | 7.1% 3.9% 4.8% 24% | 59%  6.1% | 8.6% 6.7% 7.5% 5.3%
RCTest | EGARCH,p, | 0.8%  04% | 52% 1.8% 38%  09% | 17% 13% | 69% 3.1% 4.6% 15% | 44%  42% | 95%  49% 59%  28% | 93% 89% | 1L.0%  7.8% 9.6%  6.6%
EGARCH,, | 08%  04% | 32% 1.3% 1.6% 06% | 12%  10% | 42% 2.2% 2.2% 12% | 21%  19% | 5.8% 2.9% 3.6% 22% | 55%  60% | 83% 6.6% 6.4% 4.8%
EGARCHy,y | 04%  03% | 62% 1.8% 2.0% 05% | 1.1% 08% | 7.3% 2.7% 3.4% 13% | 20%  21% | 92% 4.0% 4.4% 1.9% | 54%  54% | 105%  7.0% 7.0% 5.3%
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Table 13 — Scenario 1 - Power of the three backtesting procedures in percentage, using EGARCH, ., as null hypothesis, n = 250 and T € {250,500}

1% 25% 5% 10%

Backtesting | Model |a=1% P=5% |0=1% Pp=25%|a=25% P=5%|a=1% P=5%]a=1% P=25%|0=25% P=5% | a=1% PB=5%]a=1% P=25%]a=25% P=5%| a=1% P=5%|a=1% P=25%]a=25% P=5%
250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,oy | 0.8%  03% | 3.2% 1.3% 2.1% 04% | 14% 09% | 44%  25% 3.5% 08% | 29%  22% | 5.9% 3.2% 56%  24% | 68% 63% | 8.6%  713% 92%  64%
GARCHyy 02%  03% | 3.5% 0.4% 1%  06% | 09% 09% | 44% 1.3% 2.4% 08% | 2.8% 25% | 53% 2.4% 5.1% 1.9% | 64%  58% | 8.1% 4.8% 9.6% 6.1%
MFTest | GARCHyyq | 0.1%  02% | 3.7% 0.6% 3.0% 04% | 08%  09% | 52% 1.4% 41%  09% | 25% 1.6% | 6.7% 2.6% 5.3% 22% | 5.1%  43% | 8% 5.2% 8.3% 5.3%
EGARCH,y | 02%  00% | 2.8% 1.3% 1.7% 03% | 09%  05% | 45% 1.7% 2.4% 07% | 1.6% 15% | 6.6% 2.7% 4.0% 1.8% | 3.8%  48% | 9.0% 5.6% 6.5% 4.7%
EGARCHy | 05%  0.1% | 4.3% 1.0% 2.4% 01% | 09%  04% | 58% 1.4% 3.2% 06% | 17% 13% | 78%  3.4% 4.6% 24% | 52%  45% | 102%  6.9% 7.4% 5.3%
GARCH,o | 0.8%  03% | 3.1% 1.3% 2.1% 04% | 14%  09% | 44%  2.4% 3.5% 10% | 29%  21% | 59% 3.2% 57%  24% | 70%  62% | 8.7% 7.2% 93%  64%
GARCH,y 02%  02% | 3.4% 0.5% 1%  06% | 1.0% 08% | 44% 1.2% 2.5% 08% | 2.8%  26% | 53% 2.6% 5.2% 18% | 66%  60% | 8.1% 4.9% 9.5% 6.0%
MFETest | GARCHyyy | 0.1%  02% | 3.7% 0.6% 2.9% 03% | 1.0% 09% | 5.1% 1.4% 4.1% 10% | 27% 17% | 68% 2.6% 5.4% 23% | 52%  43% | 8.7% 5.4% 8.3% 5.7%
EGARCH,; | 02%  00% | 2.8% 12% 1.7% 03% | 09%  0.6% | 44% 1.7% 2.5% 07% | 18%  15% | 6.6% 2.8% 3.9% 19% | 41%  47% | 88% 5.8% 6.5% 4.7%
EGARCHy | 0.5%  0.1% | 4.4% 1.0% 2.4% 02% | 09%  05% | 59% 1.5% 3.3% 0.5% | 17%  14% | 80%  3.4% 4.4% 24% | 49%  44% | 103%  6.8% 7.5% 5.4%
GARCH,oy | 0.8%  03% | 3.2% 1.3% 2.1% 04% | 13% 11% | 43%  23% 3.5% 1.0% | 31%  19% | 58% 3.2% 57%  24% | 71%  62% | 8.7% 7.4% 9.1%  64%
GARCH, 02%  02% | 3.4% 0.5% 13%  05% | 11%  1.0% | 4.3% 1.2% 2.6% 08% | 3.0% 24% | 54% 2.4% 5.4% 21% | 7.0%  6.1% | 8.0% 5.0% 9.6% 5.8%
RCTest | GARCHyy | 0.1%  02% | 4.0% 0.6% 2.9% 04% | 09%  1.0% | 52% 1.3% 4.1% 11% | 2.6% 17% | 6.6% 2.7% 5.4% 21% | 52%  48% | 8.5% 5.4% 8.0% 5.2%
EGARCHy, | 02%  0.0% | 2.9% 1.3% 1.7% 02% | 09%  05% | 44% 1.8% 2.5% 07% | 1.8% 13% | 65% 2.6% 4.0% 17% | 38%  46% | 8.8% 5.9% 6.7% 4.4%
EGARCH | 0.5%  0.0% | 4.5% 1.0% 2.5% 02% | 08%  06% | 60% 1.6% 3.1% 06% | 1.6%  13% | 80%  35% 4.5% 23% | 48%  43% | 103%  6.8% 7.7% 5.1%
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Table 14 — Scenario 1 - Power of the three backtesting procedures in percentage, using EGARCHy;, as null hypothesis, n = 250 and T € {250,500}

1% 25% 5% 10%
Backtesting Model 0=1% P=5%|a=1% P=25%]0a=25% P=5% | a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%]a=1% B=25%]a=25% Pp=>5%

250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500

GARCH,opy | 1.0%  03% | 4.8% 2.0% 30%  07% | 17%  1.0% | 6.0% 3.1% 4.2% 14% | 3.6% 28% | 6.8% 3.9% 57% 23% | 17%  59% | 9.0% 7.2% 7.6% 5.4%

GARCHyy 02%  0.1% | 33% 1.3% 2.3% 04% | 05%  07% | 44% 1.7% 3.4% 1% | 1.6%  14% | 6.1% 2.6% 4.8% 21% | 47%  47% | 8.9% 4.6% 7.3% 5.2%

MFTest | GARCHyq 03%  0.1% | 2.8% 1.1% 2.6% 02% | 1.0%  04% | 45% 1.5% 3.6% 09% | 21% 1.1% | 6.1% 2.5% 5.1% 1.8% | 53%  43% | 8.2% 5.2% 8.5% 5.8%
EGARCH,pmm | 13%  04% | 62%  3.0% 3.2% 05% | 22% 11% | 84%  4.0% 4.2% 14% | 33%  3.0% | 105%  59% 57%  27% | 12% 12% | 127%  83% 89%  6.0%
EGARCHy | 03%  03% | 3.7% 1.3% 2.6% 05% | 06% 08% | 49% 2.9% 3.7% 1% | 1.8%  15% | 6.9% 4.3% 5.1% 20% | 34%  42% | 8.8% 7.4% 6.9% 5.2%

GARCH,ory | 1.0%  03% | 4.8% 1.9% 31%  07% | 17% 11% | 6.0% 3.0% 4.2% 14% | 3.6%  26% | 6.8% 3.9% 5.6% 23% | 16%  58% | 9.0% 7.4% 7.6% 5.6%

GARCH,y 0.1%  0.1% | 33% 1.2% 2.4% 04% | 06%  07% | 44% 1.7% 3.4% 1.1% | 14%  16% | 6.1% 2.6% 4.9% 21% | 45%  46% | 9.1% 47% 7.7% 5.5%

MFE Test | GARCHyg 03%  0.1% | 2.8% 12% 27% 01% | 1.1%  04% | 4.6% 1.5% 3.6% 09% | 22% 11% | 6.1% 2.7% 4.9% 1.8% | 5.6%  45% | 8.0% 5.5% 8.5% 5.9%
EGARCH,pm | 12%  04% | 60%  3.0% 33% 05% | 22% 1.0% | 84%  4.1% 43% 12% | 32% 27% | 108%  5.8% 57%  27% | 74% 11% | 127%  84% 86%  62%
EGARCHyy | 03%  03% | 3.8% 1.5% 2.5% 06% | 05% 07% | 46% 2.9% 3.7% 1.0% | 1.6%  1.7% | 6.9% 4.3% 5.0% 21% | 40%  43% | 89% 7.1% 6.7% 5.3%

GARCH,opy | 1.1%  03% | 4.8% 2.0% 32%  07% | 1.6%  11% | 59% 3.2% 4.3% 14% | 37%  25% | 6.9% 3.8% 5.6% 23% | 74%  58% | 8.9% 7.1% 7.6% 5.2%

GARCH, 0.1%  02% | 33% 1.2% 2.2% 05% | 05% 07% | 43% 1.7% 3.4% 1.0% | 17%  1.6% | 6.0% 2.5% 4.6% 21% | 5.0% 48% | 9.1% 5.1% 7.5% 5.4%

RCTest | GARCH,yy 02%  0.1% | 2.9% 1.2% 2.5% 02% | 09%  04% | 45% 1.5% 3.3% 09% | 23% 11% | 6.0% 3.0% 5.0% 14% | 53%  43% | 8.3% 5.6% 8.7% 5.9%
EGARCH,,,, | 13%  04% | 62%  3.0% 33% 05% | 22% 11% | 84%  4.1% 4.3% 13% | 32%  29% | 105%  6.0% 56%  28% | 13% 12% | 13.0% = 85% $8%  62%
EGARCHyy | 03%  02% | 3.7% 1.2% 2.7% 06% | 06% 08% | 4.6% 2.8% 3.7% 10% | 17%  18% | 6.7% 4.2% 5.1% 17% | 43%  4.1% | 8.9% 7.2% 6.9% 5.2%
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Table 15 — Scenario 1 - Power of the three backtesting procedures in percentage, using EGARCHj g, as null hypothesis, n = 250 and T € {250,500}

1% 25% 5% 10%
Backtesting Model 0=1% P=5%|a=1% P=25%]0a=25% P=5% | a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%]a=1% B=25%]a=25% Pp=>5%
250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,opy | 1.0%  02% | 5.0% 1.8% 3.8% 08% | 21% 09% | 69% 2.8% 4.9% 1% | 37%  3.0% | 8.7% 4.2% 6.9% 23% | 7.6%  84% | 11.9%  8.6% 9.6% 4.8%
GARCHyy 03%  0.1% | 2.8% 0.9% 2.0% 01% | 1.1%  04% | 34% 1.3% 2.9% 07% | 23%  24% | 5.0% 2.6% 4.4% 20% | 64%  50% | 82% 5.8% 6.9% 4.7%
MF Test | GARCH,yq 03%  01% | 25% 0.9% 1.6% 02% | 09%  02% | 3.6% 1.5% 2.2% 1.0% | 1.5%  1.5% | 4.8% 2.5% 3.1% 1.6% | 40%  3.8% | 71.3% 5.0% 6.0% 4.0%
EGARCH,pm | 09%  05% | 77%  3.8% 3.2% 12% | 15% 16% | 101%  4.9% 4.2% 17% | 43% 33% | 127%  64% 56%  32% | 84%  8.6% | 147%  10.0% 85%  6.7%
EGARCH,y | 07%  03% | 3.6% 1.1% 2.9% 06% | 1.1%  10% | 52% 1.7% 3.6% 13% | 29%  21% | 6.1% 2.7% 4.8% 27% | 63%  55% | 8.4% 6.0% 7.4% 5.9%
GARCH,pry | 09%  02% | 5.0% 1.8% 38% 08% | 21% 10% | 69% 3.0% 5.0% 11% | 36%  29% | 8.7% 3.9% 6.9% 23% | 7.6% 8.1% | 11.5%  8.7% 9.7% 4.6%
GARCH,y 03%  0.1% | 2.8% 0.8% 2.0% 0.1% | 1.0% 04% | 3.6% 1.5% 2.8% 07% | 23%  24% | 52% 2.6% 4.4% 20% | 62%  48% | 8.0% 6.0% 6.7% 4.8%
MFE Test | GARCHyg 03%  0.1% | 2.5% 0.9% 1.6% 01% | 08%  03% | 3.5% 1.4% 2.4% 09% | 1.5%  15% | 5.0% 2.5% 3.0% 13% | 41%  37% | 73% 4.9% 6.5% 41%
EGARCH,pm | 09%  05% | 75%  3.7% 3.2% 12% | 14% 17% | 10.1%  5.0% 4.2% 18% | 39% 34% | 125%  64% 56%  33% | 84%  86% | 150%  10.1% 87%  1.0%
EGARCH,; | 0.7%  03% | 3.7% 1.0% 2.9% 06% | 1.1%  1.1% | 52% 1.6% 3.4% 12% | 2.6%  21% | 6.1% 2.6% 4.7% 26% | 62%  57% | 83% 5.9% 7.3% 5.6%
GARCH,oy | 09%  03% | 5.1% 1.8% 38% 08% | 21% 1.1% | 69% 2.9% 4.9% 1% | 35%  3.0% | 8.6% 4.3% 6.8% 22% | 73%  717% | 119%  8.8% 9.4% 4.8%
GARCH, 03%  0.1% | 2.9% 0.9% 1.9% 01% | 1.1%  07% | 3.7% 1.4% 2.6% 04% | 22%  26% | 4.9% 2.6% 4.6% 17% | 60%  5.0% | 7.9% 6.0% 6.6% 4.5%
RCTest | GARCH,yy 04%  00% | 25% 0.8% 1.6% 02% | 08% 03% | 34% 1.4% 2.3% 08% | 1.6% 15% | 5.1% 2.6% 3.1% 1.5% | 4.6%  44% | 1.7% 5.1% 6.7% 4.3%
EGARCH,y, | 1.0%  05% | 7.6%  3.7% 3.1% 11% | 1.6% 16% | 101%  4.9% 4.2% 18% | 42%  34% | 126%  64% 55%  33% | 19%  84% | 149% = 9.9% 87%  69%
EGARCHy; | 08%  03% | 4.0% 1.1% 2.9% 05% | 14%  12% | 5.1% 1.5% 3.5% 11% | 28%  23% | 6.1% 2.7% 4.8% 27% | 67%  57% | 8.3% 5.8% 7.3% 5.7%
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Table 16 — Scenario 2 - Power of the three backtesting procedures in percentage, using GARCH,;,,,,, as null hypothesis, n = 1000 and T € {250,500}

1% 25% 5% 10%
Backtesting Model 0=1% P=5%|a=1% P=25%]0a=25% P=5% | a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%]a=1% B=25%]a=25% Pp=>5%

250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500

GARCHyy 0.6%  00% | 59%  23% 2.3% 02% | 08% 0.1% | 82%  2.8% 3.2% 1.0% | 1.6%  1.0% | 101%  3.6% 54%  25% | 42% @ 44% | 11.7%  6.6% 75%  53%

GARCH,yg 08%  0.1% | 4.7% 1.3% 2.6% 03% | 12%  0.1% | 59% 2.4% 3.6% 0.5% | 21% 12% | 82% 3.7% 4.8% 12% | 43%  39% | 108%  6.0% 7.8% 3.9%

MFTest | EGARCH,pm | 10%  0.1% | 5.7% 1.1% 23%  08% | 17%  03% | 6.7% 2.4% 3.5% 14% | 25% 18% | 7.8% 3.9% 4.4% 22% | 47%  45% | 104%  1.3% 7.4% 4.7%
EGARCH,y | 08% 0.1% | 61% 1.5% 2.4% 06% | 1.6%  04% | 74% 2.2% 4.0% 1.0% | 23%  15% | 84%  41% 5.1% 24% | 49%  38% | 103%  7.3% 7.6% 4.8%
EGARCHy | 0.6%  02% | 5.1% 1.1% 2.2% 07% | 1.1%  08% | 63% 1.9% 3.0% 15% | 2.0% 17% | 8.0% 3.5% 4.4% 23% | 48%  4.1% | 104%  6.2% 8.0% 5.2%

GARCHj, 06%  00% | 60%  23% 2.4% 02% | 08%  00% | 82%  2.8% 3.3% 1.0% | 1.6%  1.0% | 101%  3.6% 53%  26% | 41% 46% | 11.7%  68% 76%  55%

GARCH,y1g 07%  00% | 47% 1.3% 2.5% 03% | 1.1%  01% | 6.0% 2.4% 3.6% 05% | 21% 10% | 84% 3.7% 4.5% 13% | 46%  37% | 110%  60% 7.9% 3.9%

MFE Test | EGARCH,pp | 08%  0.1% | 5.8% 12% 23%  08% | 17%  04% | 6.7% 2.5% 3.7% 12% | 26% 16% | 7.8% 4.1% 43% 20% | 46%  44% | 105%  13% 7.2% 4.6%
EGARCH,; | 08% 0.1% | 6.1% 1.4% 2.4% 05% | 1.6% 03% | 74% 22% 4.1% 10% | 23% 16% | 85%  42% 5.1% 24% | 44%  37% | 104%  1.5% 7.9% 4.9%
EGARCHyy | 07%  02% | 5.0% 1.1% 2.2% 07% | 1.1%  08% | 63% 1.9% 3.1% 14% | 19% 17% | 8.0% 3.6% 4.5% 24% | 48%  41% | 105%  6.3% 8.2% 5.4%

GARCH,, 0.6%  00% | 60%  23% 2.3% 02% | 08% 00% | 82%  27% 3.3% 1.0% | 1.6%  1.0% | 100%  3.8% 54%  25% | 4.0% 43% | 119%  69% 7.3% 5.5%

GARCH,yy 07%  0.1% | 4.6% 1.3% 2.4% 03% | 12%  01% | 59% 2.4% 3.6% 05% | 21%  12% | 83% 3.7% 4.5% 13% | 48%  39% | 11.0%  6.0% 7.5% 4.0%

RCTest | EGARCH,opy | 09%  0.1% | 5.7% 1.1% 21%  08% | 19%  03% | 6.7% 2.5% 3.5% 12% | 25% 1.6% | 7.8% 4.1% 4.4% 1.9% | 48%  43% | 103%  7.1% 7.3% 4.7%
EGARCHy, | 08%  0.1% | 61% 1.2% 25% 06% | 1.6% 03% | 75% 2.0% 4.1% 1.0% | 25%  14% | 84%  42% 5.2% 24% | 48%  39% | 100%  7.5% 7.7% 4.8%
EGARCHyyy | 0.6%  02% | 5.0% 1.1% 2.1% 07% | 1.1% 07% | 65% 1.8% 3.1% 14% | 19% 1.6% | 8.0% 3.6% 4.5% 23% | 52%  40% | 104%  6.4% 7.9% 5.3%
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Table 17 — Scenario 2 - Power of the three backtesting procedures in percentage, using GARCHg; as null hypothesis, n = 1000 and T € {250,500}

1% 25% 5% 10%

Backtesting Model 0=1% P=5%|a=1% P=25%]0a=25% P=5% | a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%]a=1% B=25%]a=25% Pp=>5%
250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,oy | 1.6%  00% | 5.0% 2.6% 4.4% 08% | 23% 08% | 63% 3.3% 5.8% 13% | 39% 21% | 7.8% 3.5% 7.6% 32% | 19%  5.1% | 9.4% 6.7% 108%  5.9%
GARCH,yy 0.5%  0.1% | 3.6% 1.0% 3.6% 07% | 09%  06% | 48% 1.7% 4.6% 1% | 2.0%  12% | 6.6% 2.4% 5.2% 1.9% | 45%  3.5% | 9.5% 4.1% 8.1% 5.3%
MFTest | EGARCH,om | 12%  02% | 54%  29% 4.2% 12% | 24% 11% | 69%  3.6% 57%  20% | 35%  20% | 85% = 55% 83%  33% | 65% 52% | 113%  7.1% 109%  65%
EGARCH,y | 03%  00% | 4.1% 0.7% 2.7% 05% | 06% 03% | 55% 1.4% 3.8% 14% | 1.8%  1.0% | 7.1% 2.6% 5.5% 26% | 45%  30% | 9.5% 5.6% 8.5% 5.6%
EGARCHy | 02%  0.1% | 4.8% 1.0% 2.8% 02% | 09%  02% | 5.6% 1.8% 4.2% 0.5% | 14%  09% | 72% 3.1% 5.9% 12% | 40%  3.5% | 8.8% 6.0% 8.5% 4.8%
GARCH,ory | 16%  00% | 52% 2.6% 45% 08% | 23% 07% | 62% 3.3% 5.9% 13% | 40%  20% | 7.8% 3.6% 7.6% 32% | 1%  52% | 9.6% 6.7% 108%  5.9%
GARCH,y1g 0.5%  00% | 3.6% 1.0% 3.6% 09% | 1.0%  06% | 4.9% 1.8% 4.6% 11% | 21%  12% | 67% 2.5% 5.2% 18% | 4.6%  3.5% | 9.4% 4.2% 8.0% 5.1%
MFE Test | EGARCH,pp | 12%  02% | 55%  29% 4.2% 11% | 23% 1.0% | 68%  3.5% 59%  20% | 37% 20% | 85%  5.1% 85%  34% | 69% 53% | 11.0%  712% 108%  62%
EGARCHyy | 03%  00% | 42% 0.7% 2.6% 05% | 05% 03% | 5.6% 1.6% 3.8% 13% | 1.8%  09% | 7.0% 2.5% 5.3% 24% | 43%  30% | 9.5% 5.6% 8.7% 6.0%
EGARCHy | 02%  0.1% | 4.9% 1.0% 2.9% 02% | 09%  02% | 5.7% 1.8% 4.3% 05% | 1.5% 09% | 7.4% 3.3% 5.8% 13% | 39%  3.6% | 9.2% 6.1% 8.4% 5.0%
GARCH,ory | 14%  00% | 52%  27% 4.4% 08% | 23% 06% | 61% 3.3% 57% 13% | 39%  21% | 7.8% 3.5% 7.4% 32% | 17%  50% | 9.6% 6.7% 111%  57%
GARCH, g 0.5%  00% | 3.7% 1.0% 3.7% 08% | 09%  06% | 4.8% 1.8% 4.6% 1% | 22%  1.1% | 6.6% 2.5% 5.1% 1.9% | 45%  3.6% | 9.1% 4.1% 8.1% 4.9%
RCTest | EGARCH,op | 12%  02% | 55%  27% 4.2% 12% | 23% 11% | 69%  3.6% 5.6% 19% | 36% 23% | 86%  52% 85%  34% | 68% 53% | 1L1%  712% 108%  62%
EGARCHy; | 03%  00% | 4.1% 0.6% 2.5% 04% | 06%  04% | 55% 1.4% 3.7% 12% | 18%  09% | 7.1% 2.4% 5.5% 26% | 4.6%  3.0% | 93% 5.7% 8.4% 5.9%
EGARCH,y | 02%  0.1% | 4.9% 1.0% 2.8% 02% | 08%  02% | 5.7% 1.8% 4.2% 05% | 14%  08% | 7.3% 2.9% 5.8% 13% | 42%  34% | 9.2% 6.0% 8.2% 5.1%
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Table 18 — Scenario 2 - Power of the three backtesting procedures in percentage, using GARCHyy,; as null hypothesis, n = 1000 and T € {250,500}

1% 25% 5% 10%

Backtesting Model 0=1% P=5%|a=1% P=25%]0a=25% P=5% | a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%]a=1% B=25%]a=25% Pp=>5%
250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,or | 12%  04% | 55% 2.2% 3.9% 10% | 22% 11% | 7.0% 3.7% 53%  20% | 33% 27% | 85%  54% 72%  36% | 71% 70% | 112%  83% 101%  7.1%
GARCHyy 0.5%  00% | 4.1% 1.4% 1.7% 02% | 09%  05% | 53% 2.5% 2.0% 07% | 24% 17% | 73% 3.9% 4.2% 18% | 57%  54% | 100%  63% 6.6% 5.7%
MFTest | EGARCH,om | 12%  0.0% | 64%  2.6% 4.1% 05% | 23% 04% | 76%  42% 5.1% 15% | 33%  20% | 93% 5.3% 6.3% 25% | 62% 63% | 119%  85% 8.7% 5.8%
EGARCH,y | 0.6%  0.1% | 4.4% 0.8% 1.9% 05% | 1.0% 03% | 57% 1.4% 3.1% 09% | 27%  1.6% | 7.6% 3.0% 4.8% 21% | 57%  50% | 10.6%  5.7% 7.7% 3.6%
EGARCH | 0.5%  02% | 42% 1.4% 1.7% 01% | 1.1%  04% | 55% 2.0% 2.5% 05% | 1.6% 1.0% | 6.8% 3.2% 3.5% 14% | 51%  33% | 8.7% 6.3% 5.9% 3.9%
GARCH,ory | 12%  04% | 55% 2.3% 4.0% 11% | 23% 11% | 7.0% 3.8% 53%  20% | 31% 29% | 8.5% 5.3% 72%  3.6% | 70% 66% | 11.1%  84% 101%  7.3%
GARCH,y 0.5%  00% | 4.1% 1.3% 1.7% 02% | 09%  05% | 54% 2.4% 2.1% 07% | 24%  16% | 73% 4.0% 4.1% 18% | 56%  54% | 102%  64% 6.8% 5.7%
MFE Test | EGARCH,pp | 12%  0.0% | 64%  2.5% 41% 05% | 23% 03% | 76%  4.1% 5.1% 1.5% | 33% 20% | 93%  54% 6.4% 26% | 63% 61% | 11.8%  87% 9.0% 5.7%
EGARCH,;, | 0.6%  01% | 4.6% 0.8% 1.8% 05% | 12%  02% | 57% 13% 2.9% 09% | 27% 1.6% | 7.7% 2.9% 4.8% 19% | 58%  53% | 107%  5.7% 7% 4.0%
EGARCH,,y | 0.6%  02% | 4.2% 1.4% 1.7% 01% | 12%  05% | 5.6% 2.0% 2.5% 05% | 1.8% 1.1% | 6.6% 3.3% 3.5% 13% | 46%  34% | 8.7% 6.5% 6.0% 3.7%
GARCH,ory | 12%  04% | 55% 2.3% 4.0% 11% | 24% 1.0% | 7.1% 3.8% 53%  21% | 34% 28% | 85%  55% 72% 3% | 71%  69% | 113%  83% 98%  7.2%
GARCH, 0.5%  00% | 3.8% 1.2% 1.7% 02% | 08%  06% | 53% 2.2% 2.1% 07% | 23%  18% | 73% 4.0% 4.3% 17% | 58%  52% | 103%  63% 6.6% 5.8%
RCTest | EGARCH,op | 1.1%  0.0% | 64%  2.5% 41% 05% | 23% 05% | 7.6%  4.1% 5.0% 14% | 32%  2.0% | 9.3% 5.4% 6.4% 25% | 62%  63% | 11.7%  8.7% 8.8% 5.8%
EGARCHy, | 0.6%  0.1% | 4.6% 0.8% 1.8% 05% | 13% 03% | 57% 1.4% 2.8% 1.0% | 2%  17% | 71.6% 3.0% 4.8% 22% | 59%  54% | 108%  5.7% 7.7% 3.9%
EGARCHy | 0.6%  02% | 4.0% 1.4% 1.7% 0.1% | 12%  02% | 5.6% 2.0% 2.6% 06% | 1.8%  09% | 6.7% 33% 3.3% 12% | 47%  3.8% | 8.6% 6.7% 6.1% 3.8%
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Table 19 — Scenario 2 - Power of the three backtesting procedures in percentage, using EGARCH,,,,, as null hypothesis, n = 1000 and T € {250,500}

1% 25% 5% 10%

Backtesting | Model |a=1% P=5% |0=1% Pp=25%|a=25% P=5%|a=1% P=5%]a=1% P=25%|0=25% P=5% | a=1% PB=5%]a=1% P=25%]a=25% P=5%| a=1% P=5%|a=1% P=25%]a=25% P=5%
250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,opy | 0.7%  02% | 4.2% 1.3% 1.6%  06% | 12% 05% | 64% 2.0% 2.6% 1% | 23% 19% | 8.6% 3.9% 4.0% 21% | 68% 63% | 1L1%  6.6% 6.0% 5.4%
GARCHjy 0.5%  02% | 4.0% 1.5% 1.4% 04% | 1.0%  06% | 54% 2.8% 2.3% 1% | 17%  19% | 7.5% 3.9% 3.5% 20% | 51%  57% | 99%  72% 5.6% 5.8%
MFTest | GARCHyy | 0.5%  04% | 4.2% 1.4% 2.0% 05% | 13% 10% | 53% 2.3% 2.4% 09% | 21% 19% | 7.4% 3.7% 3.2% 1.8% | 59%  51% | 105%  6.7% 6.3% 4.6%
EGARCH,y | 04%  0.1% | 51% 1.9% 20%  0.6% | 12%  04% | 6.1% 3.2% 3.2% 12% | 21%  13% | 85%  45% 4.5% 22% | 46%  41% | 106%  6.6% 7.6%  63%
EGARCH | 09%  0.1% | 4.9% 1.9% 2.5% 03% | 1.6% 03% | 59%  3.3% 35% 09% | 24%  1.6% | 74% 4.3% 52% 20% | 47%  44% | 9.8% 7.0% 9.0% 5.5%
GARCH,opy | 0.7%  03% | 4.3% 1.2% 1.6%  07% | 12%  05% | 65% 1.9% 2.6% 12% | 24%  20% | 8.5% 3.9% 4.2% 19% | 65%  66% | 112%  6.5% 6.1% 5.2%
GARCH,y 0.5%  02% | 4.0% 1.4% 1.5% 04% | 1.1%  05% | 55% 2.7% 2.2% 13% | 17% 20% | 7.6% 4.0% 3.9% 20% | 52%  55% | 9.6% 7.5% 5.6% 5.6%
MFETest | GARCHyyy | 05%  05% | 4.2% 13% 2.0% 05% | 14% 10% | 5.5% 2.4% 2.5% 09% | 21% 18% | 7.4% 3.7% 3.3% 1.8% | 58%  52% | 105%  65% 6.1% 4.9%
EGARCH,; | 04%  01% | 50%  2.1% 2.0% 06% | 12%  04% | 63% 3.1% 3.2% 1.0% | 19%  14% | 86%  44% 42%  22% | 45%  41% | 105% = 6.8% 75%  60%
EGARCH, | 0.8%  0.1% | 4.8% 1.9% 2.6% 03% | 1.5% 0.1% | 60%  32% 3.6% 1.0% | 23%  12% | 74% 4.0% 53% 20% | 48%  41% | 9.7% 6.8% 8.7% 5.5%
GARCH,opy | 0.7%  02% | 4.4% 1.3% 16% 0% | 12% 04% | 6.6% 2.0% 2.5% 11% | 23% 19% | 8.5% 3.7% 4.1% 20% | 64%  66% | 112%  62% 5.9% 5.1%
GARCH, 0.5%  02% | 4.0% 1.5% 1.5% 04% | 1.1%  05% | 55% 3.0% 2.2% 12% | 1.6% 19% | 7.5% 3.9% 3.7% 21% | 51%  56% | 9.7% 7.3% 5.7% 5.8%
RCTest | GARCHyy | 05%  04% | 4.1% 1.3% 2.0% 05% | 13% 10% | 55% 2.1% 2.4% 09% | 22% 18% | 7.4% 3.6% 3.2% 1.9% | 5%  52% | 105%  65% 6.1% 4.7%
EGARCH,, | 05%  0.1% | 51%  2.0% 20%  07% | 12%  02% | 6.1% 3.0% 3.4% 1.0% | 21%  15% | 87%  43% 44%  22% | 46%  40% | 105% = 67% 7.6%  61%
EGARCH | 09%  0.1% | 5.0% 2.0% 2.5% 04% | 1.6%  02% | 60%  32% 3.6% 1.1% | 22% 13% | 75% 4.1% 52% 20% | 50%  44% | 9.7% 6.9% $.8% 5.6%
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Table 20 — Scenario 2 - Power of the three backtesting procedures in percentage, using EGARCH,,, as null hypothesis, n = 1000 and T € {250,500}

1% 25% 5% 10%
Backtesting Model 0=1% P=5%|a=1% P=25%]0a=25% P=5% | a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%]a=1% B=25%]a=25% Pp=>5%

250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500

GARCH,op | 1.0%  03% | 4.6% 2.2% 2.9% 10% | 1.6% 07% | 6.3% 2.8% 4.3% 17% | 29% 18% | 7.6% 4.6% 55%  29% | 66%  61% | 102%  7.6% 7.6% 5.1%

GARCHyy 04%  02% | 4.7% 0.5% 1.5% 04% | 1.1%  03% | 65% 1.4% 2.8% 07% | 19%  09% | 7.8% 2.1% 4.2% 24% | 48%  3.6% | 104%  4.9% 7.6%  5.4%

MF Test | GARCH,yq 0.5%  0.1% | 4.6% 0.9% 1.6% 03% | 1.1% 03% | 6.0% 1.8% 2.6% 0.8% | 2.8% 12% | 7.5% 3.4% 4.3% 17% | 59%  39% | 10.1%  6.6% 75%  54%
EGARCH,pm | 08%  0.1% | 60%  3.4% 3.8% 12% | 17%  06% | 7.9%  4.2% 4.7% 17% | 26% 18% | 91%  65% 6.0% 27% | 57%  50% | 113%  10.3% 7.4% 4.9%
EGARCHy | 02%  0.1% | 4.0% 1.3% 2.5% 08% | 06% 05% | 5.1% 2.1% 2.9% 1.0% | 1.5%  17% | 64% 3.3% 4.5% 23% | 55%  36% | 8.8% 6.2% 6.5% 4.8%

GARCH,ory | 10%  03% | 47% 2.2% 3.0% 11% | 1.6% 08% | 6.4% 2.8% 4.3% 18% | 29% 18% | 7.6% 4.6% 53%  29% | 64%  60% | 101%  712% 7.6% 5.2%

GARCH,y 04%  02% | 47% 0.5% 1.5% 04% | 1.0% 03% | 65% 1.3% 2.9% 08% | 19% 08% | 7.7% 2.1% 4.4% 24% | 46%  38% | 101%  54% 7.2% 5.3%

MFE Test | GARCHyg 05%  0.1% | 47% 0.9% 1.5% 03% | 1.0% 02% | 6.1% 1.8% 2.6% 08% | 26% 12% | 74% 3.4% 4.4% 17% | 55%  39% | 9.9% 6.7% 75%  55%
EGARCH,pm | 08%  0.1% | 61%  3.4% 3.8% 12% | 17% 06% | 78%  43% 4.7% 17% | 2.5% 17% | 91%  6.8% 6.1% 25% | 58%  50% | 113%  10.3% 7.4% 4.7%
EGARCH,yy | 02%  03% | 4.2% 1.1% 2.4% 09% | 05% 06% | 5.1% 1.7% 3.1% 1.0% | 13%  1.6% | 65% 3.2% 4.6% 22% | 52%  36% | 9.3% 5.8% 6.5% 4.8%

GARCH,ory | 11%  03% | 47% 2.2% 3.0% 1% | 1.6% 08% | 6.4% 2.8% 4.3% 19% | 28% 17% | 7.6% 4.5% 55%  28% | 62%  64% | 100%  7.1% 7.6% 5.4%

GARCH, 04%  02% | 4.8% 0.5% 1.5% 05% | 1.1% 03% | 65% 1.3% 3.0% 08% | 1.8%  07% | 7.7% 2.1% 4.3% 23% | 48%  37% | 100%  5.0% 7.4% 5.2%

RCTest | GARCH,yy 05%  0.1% | 47% 0.9% 1.5% 03% | 1.0% 02% | 61% 1.8% 2.6% 07% | 25% 1.1% | 7.6% 32% 4.4% 1.9% | 56%  4.0% | 9.9% 7.1% 74%  57%
EGARCH,,,,, | 08%  02% | 60%  3.3% 38% 12% | 17%  06% | 78%  42% 47% 17% | 25% 1% | 90%  61% 6.1% 26% | 57%  49% | 113%  10.7% 7.5% 4.9%
EGARCHyy | 02%  02% | 4.0% 1.3% 2.4% 09% | 04%  06% | 5.0% 1.8% 2.9% 10% | 18%  15% | 6.6% 33% 4.6% 21% | 54%  36% | 9.3% 5.9% 6.6% 4.8%
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Table 21 — Scenario 2 - Power of the three backtesting procedures in percentage, using EGARCH, as null hypothesis, n = 1000 and T € {250,500}

1% 25% 5% 10%
Backtesting Model 0=1% P=5%|a=1% P=25%]0a=25% P=5% | a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%|a=1% P=5%]a=1% B=25%]a=25% Pp=>5%
250 500 | 250 500 | 250 500 250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,p | 14%  0.6% | 60%  2.8% 4.6% 08% | 22% 17% | 72%  39% 5.5% 14% | 39% 35% | 96%  57% 6.7% 27% | 19%  82% | 121%  9.1% 8.7% 6.2%
GARCHyy 03%  00% | 25% 1.1% 1.8% 06% | 12%  07% | 3.7% 1.6% 2.2% 1% | 2.0%  1.9% | 4.9% 2.7% 3.5% 25% | 51%  60% | 7.6% 5.8% 6.2% 4.8%
MF Test | GARCH,yq 04%  00% | 3.4% 0.9% 2.3% 02% | 1.0%  02% | 42% 1.8% 3.1% 03% | 23% 17% | 53% 2.4% 4.6% 13% | 59%  48% | 74% 5.3% 7.0% 5.0%
EGARCH,pm | 0.6%  03% | 63% 2.7% 4.8% 11% | 13%  06% | 74% 3.4% 62%  22% | 2.6%  21% | 9.0% 4.7% 75%  31% | 56%  57% | 11.0%  69% 93%  6.6%
EGARCH,y | 04%  0.1% | 4.6% 1.0% 2.8% 03% | 07%  06% | 59% 1.9% 3.7% 09% | 23% 15% | 73% 3.0% 5.6% 22% | 58%  59% | 9.2% 5.7% 8.8% 4.9%
GARCH,or | 14%  06% | 60%  27% 4.6% 08% | 23% 17% | 73%  4.0% 5.5% 15% | 38% 36% | 96%  58% 6.6% 29% | 84%  8.0% | 121%  9.2% 8.8% 6.1%
GARCH,y 03%  00% | 25% 1.1% 1.8% 06% | 1.1%  05% | 3.6% 1.8% 2.2% 1.1% | 22%  20% | 45% 2.8% 3.7% 21% | 49%  59% | 7.6% 5.8% 6.5% 4.8%
MFE Test | GARCHyg 04%  0.0% | 34% 0.9% 23% 02% | 1.0%  02% | 4.1% 1.8% 3.0% 04% | 22%  19% | 53% 2.2% 4.6% 1.6% | 57%  49% | 72% 5.3% 7.0% 4.9%
EGARCH,pm | 0.6%  03% | 63% 2.5% 4.7% 11% | 13% 05% | 74% 3.4% 61%  21% | 24%  23% | 9.1% 4.7% 74%  30% | 58%  57% | 11.0%  7.0% 9.1%  65%
EGARCHyy | 04%  0.1% | 4.6% 0.9% 2.8% 03% | 08% 05% | 6.0% 1.8% 3.7% 1.0% | 25% 15% | 7.1% 3.0% 5.7% 22% | 60%  56% | 9.1% 5.2% 8.9% 4.9%
GARCH,ory | 14%  06% | 6.1%  2.8% 4.6% 08% | 22% 1.6% | 73%  39% 5.5% 14% | 38% 3.6% | 96%  5.6% 6.8% 30% | 17%  19% | 124%  9.0% 8.6% 6.0%
GARCH, 03%  00% | 25% 1.0% 1.9% 05% | 12%  06% | 3.6% 1.6% 2.2% 12% | 21%  20% | 47% 2.7% 3.6% 24% | 5.0%  62% | 71.5% 5.9% 6.3% 4.7%
RCTest | GARCH,yy 04%  00% | 33% 0.9% 2.3% 02% | 1.0% 03% | 42% 1.5% 3.1% 04% | 23%  18% | 53% 2.4% 4.6% 14% | 55%  49% | 1.2% 5.4% 6.9% 5.2%
EGARCH,, | 0.6%  03% | 63% 2.6% 47% 11% | 13%  06% | 74% 3.4% 62%  21% | 25%  19% | 9.0% 4.5% 75%  31% | 60%  55% | 109%  7.0% 92%  65%
EGARCHy; | 04%  0.1% | 4.6% 1.0% 2.7% 03% | 08%  05% | 59% 1.8% 3.7% 09% | 25% 15% | 6.9% 2.9% 5.5% 22% | 55%  59% | 9.0% 6.0% 8.7% 4.6%
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Table 22 — Proposed McNeil and Frey (2000), Righi and Ceretta (2015) and McNeil et al. (2015) backtesting size results, using GARCH,,,,,, as null

hypothesis with 250 and 1000 in-sample observations and significance level of 1%, 2.5% and 5% .

1% 25% 5% 10%
Backtesting Size Model 0=1% P=5%|a=1% P=25%|0=25% P=5%|a=1% P=5%|a=1% P=25%] 0a=25% P=5%|a=1% P=5%|a=1% P=25%]0=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%
250 500 | 250 500 | 250 500 250 500 | 250 50 | 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,y 0.6%  0.0% | 47% 1.9% 30%  20% | 11%  03% | 58%  34% 3.6% 10% | 28% 15% | 77%  4.6% 51%  23% | 52% 37% | 97%  69% 83%  6.1%
250 GARCH,yy 0.6%  0.0% | 4.0% 1.2% 2.3% 03% | 13%  05% | 5.1% 2.0% 3.4% 0.6% | 21% 1.6% | 7.5% 3.0% 4.4% 1.8% | 49%  4.1% | 102%  5.8% 7.1% 5.2%
Observations | EGARCHor | 04%  03% | 43% 1.7% 2.3% 03% | 09% 07% | 5.0% 2.4% 32% 08% | 20% 15% | 64% 3.9% 4.3% 19% | 53%  43% | 8.6% 6.7% 7.1% 4.6%
Vatlons | EGARCHyy | 05%  02% | 3.8% 1.6% 3.0% 04% | 14%  04% | 5.1% 2.0% 37% 09% | 21%  13% | 6.6% 2.8% 4.7% 21% | 53%  37% | 8.5% 6.8% 7.8% 5.1%
ME Test EGARCH,yy | 02%  00% | 4.6% 1.6% 2.7% 04% | 1.0%  04% | 5.6% 2.2% 3.5% 0.8% | 20% 14% | 6.6% 3.4% 4.5% 15% | 49% 50% | 95% 6.1% 7.7% 4.7%
GARCHyy 0.6%  00% | 59%  23% 2.3% 02% | 08% 0.1% | 82%  2.8% 3.2% 0% | 1.6% 1.0% | 10.01%  3.6% 54%  25% | 42% 44% | 110%  6.6% 75%  53%
1000 GARCH,yy 08%  0.1% | 47% 1.3% 2.6% 03% | 12%  0.1% | 59% 2.4% 3.6% 05% | 21%  12% | 82% 3.7% 4.8% 12% | 43%  39% | 108%  6.0% 7.8% 3.9%
Observations | EGARCHuwm | 10%  01% | 57% 1.1% 23%  08% | 17%  03% | 67% 2.4% 3.5% 14% | 25% 18% | 7.8% 3.9% 4.4% 22% | 47%  45% | 104%  13% 7.4% 4.7%
EGARCH,;, | 08%  0.1% | 6.1% 1.5% 2.4% 0.6% | 1.6%  04% | 7.4% 2.2% 4.0% 1.0% | 23% 15% | 84%  41% 5.1% 24% | 49%  38% | 103%  713% 7.6% 4.8%
EGARCHy | 06%  02% | 5.1% 1.1% 2.2% 07% | 1.1%  08% | 63% 1.9% 3.0% 15% | 2.0% 17% | 8.0% 3.5% 4.4% 23% | 48%  41% | 104%  62% 8.0% 5.2%
GARCHyy 0.6%  0.0% | 4.6% 1.8% 29%  20% | 1.1%  02% | 58%  33% 3.5% 10% | 28% 1.6% | 17%  4.6% 50%  25% | 54% 37% | 96% = 11% 85%  62%
250 GARCH,yy 0.6%  0.0% | 3.9% 1.2% 2.3% 02% | 13%  05% | 52% 2.0% 3.3% 07% | 22% 17% | 7.3% 2.9% 4.5% 1.6% | 4.6%  38% | 101%  6.0% 7.3% 5.1%
Observations | EGARCHor | 0.5%  03% | 43% 1.8% 2.2% 03% | 08%  07% | 5.0% 2.3% 3.1% 09% | 19%  15% | 6.5% 3.9% 4.4% 18% | 55% 43% | 87% 6.8% 7.2% 4.5%
EGARCHy, | 04%  03% | 3.8% 1.5% 3.0% 04% | 15%  04% | 52% 2.0% 3.8% 09% | 18%  12% | 6.6% 2.9% 4.7% 20% | 54%  37% | 8.5% 6.9% 7.7% 4.8%
RC Test EGARCH,y | 02%  0.0% | 4.5% 1.5% 2.7% 0.5% | 1.0% 04% | 5.6% 2.4% 3.5% 1.0% | 22% 14% | 6.1% 3.6% 4.4% 15% | 50% 49% | 9.7% 6.7% 7.7% 4.8%
i GARCH,y, 06%  00% | 60%  23% 2.3% 02% | 08% 00% | 82%  27% 33% 0% | 1.6% 1.0% | 100%  338% 54%  25% | 40% 43% | 119%  6.9% 73%  55%
1000 GARCH,yy 0.7%  0.1% | 4.6% 1.3% 2.4% 03% | 12%  0.1% | 59% 2.4% 3.6% 0.5% | 21%  12% | 83% 3.7% 4.5% 13% | 48%  39% | 11.0%  6.0% 7.5% 4.0%
Observations | EGARCHom | 09%  0.1% | 5.7% 1.1% 21%  08% | 19%  03% | 6.7% 25% 3.5% 12% | 25% 16% | 78% 41% 4.4% 19% | 48% 43% | 103%  7.1% 7.3% 47%
EGARCH,; | 08%  0.1% | 6.1% 1.2% 2.5% 0.6% | 1.6% 03% | 7.5% 2.0% 4.1% 1.0% | 2.5%  14% | 84%  42% 5.2% 24% | 48%  39% | 100%  15% 7.7% 4.8%
EGARCHyy | 0.6%  02% | 5.0% 1.1% 2.1% 07% | 11% 07% | 65% 1.8% 3.1% 14% | 19% 16% | 8.0% 3.6% 4.5% 23% | 52%  40% | 104%  6.4% 7.9% 5.3%
GARCHyy 0.7%  0.0% | 47% 1.9% 30%  20% | 11% 03% | 58% = 34% 35%  09% | 28% 1.6% | 77%  45% 51%  24% | 54% 38% | 98%  71% 84%  6.0%
250 GARCH,yy 0.5%  00% | 3.9% 1.2% 2.3% 0.1% | 13%  05% | 5.0% 2.0% 3.4% 0.5% | 21%  1.6% | 7.4% 3.0% 4.5% 18% | 47%  37% | 101%  6.0% 7.2% 5.0%
Observations | EGARCHum | 0.5%  03% | 43% 1.7% 2.3% 03% | 09%  07% | 5.0% 2.5% 3.3% 07% | 21%  14% | 6.7% 3.8% 4.3% 1.9% | 55%  44% | 84% 6.7% 6.9% 4.6%
EGARCH,, | 04%  02% | 3.9% 1.5% 3.0% 04% | 1.5%  04% | 5.1% 2.0% 37%  09% | 20% 13% | 64% 3.0% 4.7% 20% | 53%  35% | 8.8% 6.6% 7.7% 5.0%
MEE Test EGARCH,y | 02%  0.0% | 4.6% 1.5% 2.7% 04% | 08% 04% | 5.6% 2.3% 3.5% 0.8% | 21%  14% | 6.7% 3.2% 4.6% 15% | 52% 48% | 9.6% 6.5% 7.6% 4.4%
GARCH,y 0.6%  00% | 60%  23% 2.4% 02% | 08% 00% | 82%  2.8% 33% 0% | 1.6% 1.0% | 10.1%  3.6% 53%  26% | 41% 46% | 11.7%  68% 76%  55%
1000 GARCH,yy 0.7%  00% | 47% 1.3% 2.5% 03% | 1.1%  0.1% | 6.0% 2.4% 3.6% 05% | 21%  1.0% | 8.4% 3.7% 4.5% 13% | 46%  37% | 11.0%  6.0% 7.9% 3.9%
Observations | EGARCHorm | 08%  0.1% | 5.8% 1.2% 23%  08% | 17%  04% | 6.7% 2.5% 3.7% 12% | 26%  1.6% | 7.8% 4.1% 4.3% 20% | 46%  44% | 105%  13% 7.2% 4.6%
’ EGARCHy; | 08%  0.1% | 6.1% 1.4% 2.4% 0.5% | 1.6%  03% | 7.4% 2.2% 4.1% 1.0% | 23% 16% | 85%  42% 5.1% 24% | 44% 3% | 104%  15% 7.9% 4.9%
EGARCH.y | 07%  02% | 5.0% 1.1% 2.2% 07% | 1.1%  08% | 63% 1.9% 3.1% 14% | 19% 17% | 8.0% 3.6% 4.5% 24% | 48%  41% | 105%  63% 8.2% 5.4%
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Table 23 — Proposed McNeil and Frey (2000), Righi and Ceretta (2015) and McNeil et al. (2015) backtesting size results, using GARCHg; as null

hypothesis with 250 and 1000 in-sample observations and significance level of 1%, 2.5% and 5%.

1% 25% 5% 10%

Backtesting Size Model 0=1% P=5%|a=1% P=25%|0=25% P=5%|a=1% P=5%|a=1% P=25%] 0a=25% P=5%|a=1% P=5%|a=1% P=25%]0=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%
250 500 | 250 500 | 250 500 250 500 | 250 50 | 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,orm | 22%  0.6% | 63%  2.9% 3.9% 05% | 31% 15% | 81%  4.1% 5.4% 10% | 50% 35% | 97% 5% 7.1% 19% | 84%  68% | 120%  8.5% 9.3% 5.8%
250 GARCH,yy 0.5%  0.1% | 4.6% 1.2% 2.6% 0.0% | 07%  02% | 58% 1.8% 3.6% 05% | 1.6% 1.6% | 7.1% 2.7% 4.5% 13% | 48%  45% | 97% 5.8% 7.3% 4.3%
Observations | EGARCHom | 1% 02% | 7.0% 2.2% 34%  0.6% | 21%  1.0% | 8.1% 3.6% 4.5% 17% | 37%  2.6% | 9.6% 5.2% 71%  31% | 12%  17% | 117%  93% 9.9%  65%
EGARCHy, | 06%  02% | 4.3% 0.6% 2.4% 04% | 1.1%  07% | 5% 1.2% 3.4% 09% | 18%  20% | 6.9% 1.9% 4.5% 21% | 53%  58% | 8.6% 4.9% 7.0% 5.8%
ME Test EGARCH,yy | 00%  02% | 32% 0.7% 2.3% 0.5% | 07% 04% | 43% 1.7% 2.9% 10% | 13%  11% | 52% 2.7% 4.4% 23% | 42%  35% | 8.3% 5.1% 8.0% 4.4%
GARCH,py | 1.6%  0.0% | 5.0% 2.6% 1.4% 08% | 23% 08% | 63% 33% 58% 3% | 39% 2.1% | 78% 35% 7.6% 32% | 79%  51% | 94% 6.7% 108%  59%
1000 GARCH,yy 0.5%  0.1% | 3.6% 1.0% 3.6% 07% | 09%  0.6% | 4.8% 1.7% 4.6% 11% | 20%  12% | 6.6% 2.4% 5.2% 19% | 45%  35% | 9.5% 4.1% 8.1% 5.3%
Observations | EGARCHuwm | 12%  02% | 54%  29% 4.2% 12% | 24% 11% | 69%  3.6% 57%  20% | 35% 2.0% | 85%  55% 83%  33% | 65% 52% | 113%  71% 109%  65%
EGARCH,, | 03%  0.0% | 4.1% 0.7% 2.7% 0.5% | 06% 03% | 55% 1.4% 3.8% 14% | 18%  10% | 7.1% 2.6% 5.5% 26% | 45%  3.0% | 95% 5.6% 8.5% 5.6%
EGARCH,y | 02%  0.1% | 4.8% 1.0% 2.8% 02% | 09%  02% | 5.6% 1.8% 4.2% 0.5% | 14%  09% | 7.2% 3.1% 5.9% 12% | 40%  35% | 8.8% 6.0% 8.5% 4.8%
GARCH,pr | 22%  06% | 63%  29% 4.0% 0.5% | 32% 13% | 8.1%  44% 54% 1.0% | 50% 34% | 98%  61% 71% 20% | 83%  67% | 120%  85% 9.4% 5.8%
250 GARCH,yy 0.5%  0.1% | 5.0% 1.2% 2.7% 0.0% | 07%  0.6% | 58% 2.0% 3.8% 04% | 20%  14% | 7.0% 2.9% 4.5% 17% | 55%  45% | 9.8% 5.9% 7.4% 4.1%
Observations | EGARCHo | 11%  02% | 7.0% 2.2% 34%  07% | 22% 1.1% | 8.0% 3.4% 4.6% 16% | 35% 25% | 9.7% 5.3% 71%  33% | 72% 80% | 118%  87% 100%  65%
EGARCHyy | 05%  02% | 4.3% 0.8% 2.4% 04% | 12%  08% | 54% 1.2% 3.4% 09% | 18%  20% | 6.9% 2.2% 4.5% 23% | 54%  59% | 8.8% 5.7% 7.1% 5.9%
RC Test EGARCH,y | 0.1%  02% | 3.0% 0.7% 2.3% 0.5% | 07% 05% | 4.0% 1.7% 3.0% 09% | 16% 1.1% | 53% 2.8% 4.6% 22% | 44%  4.0% | 8.0% 5.1% 7.7% 4.2%
i GARCH,,rm | 14%  00% | 52%  20% 14% 08% | 23% 06% | 61% 33% 57% 3% | 39% 2.1% | 18% 35% 7.4% 32% | 7%  50% | 9.6% 6.7% 1% 5%
1000 GARCH,yy 0.5%  00% | 3.7% 1.0% 3.7% 0.8% | 09%  0.6% | 48% 1.8% 4.6% 1% | 22%  1.1% | 6.6% 2.5% 5.1% 19% | 45%  3.6% | 9.1% 4.1% 8.1% 4.9%
Observations | EGARCHuorm | 12%  02% | 55%  27% 4.2% 12% | 23% 11% | 69%  3.6% 5.6% 19% | 36% 23% | 86%  52% 85%  34% | 68% 53% | 1L1%  72% 108%  62%
EGARCHy;, | 03%  0.0% | 4.1% 0.6% 2.5% 04% | 06%  04% | 55% 1.4% 3.7% 12% | 18%  09% | 7.1% 2.4% 5.5% 26% | 46%  3.0% | 9.3% 5.7% 8.4% 5.9%
EGARCH,y | 02%  0.1% | 4.9% 1.0% 2.8% 02% | 08%  02% | 5.7% 1.8% 4.2% 05% | 14% 08% | 7.3% 2.9% 5.8% 13% | 42%  34% | 9.2% 6.0% 8.2% 5.1%
GARCH,orm | 22%  0.6% | 63%  29% 4.1% 04% | 32% 14% | 81%  41% 54% 1.0% | 50% 35% | 97%  58% 71% 20% | 85%  69% | 122%  8.7% 9.3% 5.8%
250 GARCH,yy 0.5%  0.1% | 47% 1.3% 2.6% 0.0% | 07%  05% | 5.7% 1.9% 3.7% 04% | 17%  15% | 6.9% 2.7% 4.6% 14% | 53%  44% | 9.7% 5.6% 7.5% 4.4%
Observations | EGARCHum: | 11%  02% | 68% 2.2% 35%  07% | 23% 12% | 81% 3.5% 4.4% 16% | 3.6% 28% | 9.7% 5.4% 7.0%  31% | 72%  19% | 11.7%  9.1% 99%  6.6%
EGARCH,; | 0.6%  03% | 4.4% 0.7% 2.4% 0.5% | 1.1%  07% | 5.7% 1.3% 3.4% 09% | 18%  19% | 7.1% 2.0% 4.4% 20% | 54%  59% | 8.71% 5.2% 7.0% 6.2%
MEE Test EGARCH,y | 00%  02% | 3.2% 0.7% 2.3% 0.5% | 08% 05% | 42% 1.8% 3.0% 1% | 1.1%  11% | 5.1% 2.9% 4.3% 21% | 38%  33% | 8.2% 5.0% 8.0% 4.5%
GARCH,py | 1.6%  00% | 52% 2.6% 15% 08% | 23% 01% | 62% 33% 59% 3% | 40% 2.0% | 78% 3.6% 7.6% 32% | 7%  52% | 9.6% 6.7% 108%  59%
1000 GARCH,yy 0.5%  00% | 3.6% 1.0% 3.6% 0.9% | 1.0%  0.6% | 4.9% 1.8% 4.6% 1% | 21%  12% | 6.7% 2.5% 5.2% 1.8% | 4.6%  35% | 9.4% 4.2% 8.0% 5.1%
Observations | EGARCHorm | 12%  02% | 55%  29% 4.2% 11% | 23% 10% | 68%  3.5% 59%  20% | 37% 20% | 85% = 51% 85%  34% | 69% 53% | 110%  72% 108%  62%
EGARCHyy | 03%  0.0% | 4.2% 0.7% 2.6% 0.5% | 05%  03% | 5.6% 1.6% 3.8% 13% | 18%  09% | 7.0% 2.5% 5.3% 24% | 43%  3.0% | 9.5% 5.6% 8.7% 6.0%
EGARCHy | 02%  0.1% | 4.9% 1.0% 2.9% 02% | 09%  02% | 5% 1.8% 4.3% 0.5% | 15%  09% | 7.4% 3.3% 5.8% 13% | 39%  3.6% | 9.2% 6.1% 8.4% 5.0%
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Table 24 — Proposed McNeil and Frey (2000), Righi and Ceretta (2015) and McNeil et al. (2015) backtesting size results, using GARCH,; as null

hypothesis with 250 and 1000 in-sample observations and significance level of 1%, 2.5% and 5%.

1% 25% 5% 10%

Backtesting Size Model 0=1% P=5%|a=1% P=25%|0=25% P=5%|a=1% P=5%|a=1% P=25%] 0a=25% P=5%|a=1% P=5%|a=1% P=25%]0=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%
250 500 | 250 500 | 250 500 250 500 | 250 50 | 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,orm | 22%  02% | 45%  20% 4.0% 02% | 29% 1.1% | 58% 2.9% 5.1% 10% | 52%  25% | 7.6% 4.6% 6.0% 19% | 98%  82% | 101%  85% 9.6% 5.3%
250 GARCHyy 0.5%  03% | 45% 1.7% 2.1% 0.5% | 1.1%  05% | 5.7% 2.3% 3.7% 09% | 21%  17% | 7.1% 4.0% 4.7% 25% | 60%  61% | 8.7% 6.3% 7.4% 5.6%
Observations | EGARCHor | 0.8%  04% | 52% 1.8% 3.8% 10% | 17% 15% | 69%  3.2% 4.6% 15% | 44% 41% | 94%  52% 60%  28% | 94% 89% | 110%  7.6% 97%  65%
EGARCHy; | 08%  05% | 2.9% 1.2% 1.5% 07% | 12%  09% | 42% 2.0% 2.3% 1% | 23%  20% | 59% 3.1% 3.4% 23% | 59%  58% | 8.5% 6.5% 6.2% 4.7%
ME Test EGARCH,yy | 03% 02% | 62% 1.9% 2.1% 0.5% | 1.0% 09% | 72% 2.5% 3.1% 13% | 22%  19% | 9.2% 4.0% 4.7% 19% | 54%  54% | 105%  1.1% 7.1% 5.4%
GARCH,pry | 12%  04% | 55% 2.2% 3.9% 0% | 22% 11% | 70% 37% 53%  20% | 33% 27% | 85%  54% 72%  3.6% | 71% 70% | 112%  83% 101%  7.1%
1000 GARCHyy 0.5%  00% | 4.1% 1.4% 1.7% 02% | 09%  05% | 53% 2.5% 2.0% 07% | 24%  1.7% | 7.3% 3.9% 4.2% 18% | 57%  54% | 10.0%  6.3% 6.6% 5.7%
Observations | EGARCHuwm | 12%  00% | 64%  2.6% 4.1% 0.5% | 23% 04% | 7.6%  42% 5.1% 1.5% | 33% 20% | 93% 5.3% 6.3% 25% | 62%  63% | 119%  85% 8.7% 5.8%
EGARCH,, | 06%  0.1% | 4.4% 0.8% 1.9% 0.5% | 1.0% 03% | 5.7% 1.4% 3.1% 09% | 27%  1.6% | 7.6% 3.0% 4.8% 21% | 57%  50% | 106%  5.7% 7.7% 3.6%
EGARCHy | 05%  02% | 4.2% 1.4% 1.7% 0.1% | 1.1%  04% | 55% 2.0% 2.5% 05% | 1.6% 10% | 6.8% 3.2% 3.5% 14% | 51%  33% | 87% 6.3% 5.9% 3.9%
GARCH,pry | 21%  03% | 45%  21% 4.0% 02% | 29% 1.0% | 58%  31% 5.1% 09% | 52% 25% | 7.7% 4.8% 6.1% 18% | 97% 85% | 102%  85% 9.5% 5.4%
250 GARCHyy 0.6%  02% | 45% 1.6% 2.3% 0.6% | 1.1%  08% | 5.6% 2.2% 3.6% 11% | 24%  21% | 7.1% 3.9% 4.8% 24% | 59%  6.1% | 8.6% 6.7% 7.5% 5.3%
Observations | EGARCHo | 0.8%  04% | 52% 1.8% 38%  09% | 17% 13% | 6.9% 3.1% 4.6% 15% | 44% 42% | 95%  49% 59%  28% | 93% 89% | 11.0%  7.8% 9.6%  6.6%
EGARCHy; | 08%  04% | 3.2% 1.3% 1.6% 0.6% | 12%  1.0% | 42% 2.2% 2.2% 12% | 21%  19% | 5.8% 2.9% 3.6% 22% | 55%  60% | 8.3% 6.6% 6.4% 4.8%
RC Test EGARCH,y | 04%  03% | 62% 1.8% 2.0% 05% | 1.1% 08% | 7.3% 2.7% 3.4% 13% | 20%  21% | 9.2% 4.0% 4.4% 19% | 54%  54% | 105%  1.0% 7.0% 5.3%
GARCH,or | 12%  04% | 5.5% 23% 0% 1% | 24% 10% | 7.1% 38% 53%  21% | 34% 28% | 85%  55% 72%  37% | 71%  69% | 113%  83% 98%  12%
1000 GARCHyy 0.5%  00% | 3.8% 1.2% 1.7% 02% | 08%  0.6% | 53% 2.2% 2.1% 07% | 23%  18% | 7.3% 4.0% 4.3% 17% | 58%  52% | 103%  6.3% 6.6% 5.8%
Observations | EGARCHuorm | 11%  0.0% | 64%  25% 4.1% 05% | 23% 05% | 7.6%  4.1% 5.0% 14% | 32%  20% | 93% 5.4% 6.4% 25% | 62%  63% | 117%  87% 8.8% 5.8%
EGARCH,; | 06%  0.1% | 4.6% 0.8% 1.8% 0.5% | 13%  03% | 5% 1.4% 2.8% 1.0% | 27%  17% | 7.6% 3.0% 4.8% 22% | 59%  54% | 108%  5.7% 7.7% 3.9%
EGARCH,y | 0.6%  02% | 4.0% 1.4% 1.7% 01% | 12%  02% | 5.6% 2.0% 2.6% 06% | 18% 09% | 6.7% 3.3% 33% 12% | 47%  38% | 8.6% 6.7% 6.1% 3.8%
GARCH,orm | 22%  03% | 45%  20% 4.0% 02% | 27% 1.1% | 58%  3.0% 5.1% 08% | 52%  25% | 7.6% 4.5% 6.2% 1.9% | 98%  8.1% | 103%  88% 9.6% 5.2%
250 GARCHy,y 0.5%  03% | 4.6% 1.7% 2.1% 0.5% | 12%  07% | 5.7% 2.3% 3.7% 1% | 22%  18% | 7.1% 3.7% 4.7% 25% | 62%  61% | 8.5% 6.6% 7.7% 5.4%
Observations | EGARCHom | 08%  03% | 52% 1.8% 3.8% 10% | 17% 15% | 69%  3.0% 4.7% 15% | 46% 40% | 95%  51% 6.1%  28% | 97%  92% | 112%  7.9% 97%  6.4%
EGARCH,, | 08%  05% | 2.8% 1.2% 1.5% 0.8% | 12%  1.1% | 42% 2.1% 2.2% 1% | 22%  20% | 59% 3.0% 3.5% 24% | 59% 5% | 8.3% 6.4% 6.3% 4.8%
MEE Test EGARCH,y | 04%  03% | 63% 1.9% 2.0% 0.5% | 1.0% 07% | 12% 2.6% 3.1% 13% | 22% 21% | 9.1% 3.8% 4.6% 17% | 55%  54% | 106%  7.2% 6.9% 5.7%
GARCH,p | 12%  04% | 55% 23% 0% 1% | 23% 11% | 70% 38% 53%  20% | 3.1% 29% | 85% 53% 72%  3.6% | 0% 66% | 11.1%  84% 101%  7.3%
1000 GARCHyy 0.5%  00% | 4.1% 1.3% 1.7% 02% | 09%  05% | 54% 2.4% 2.1% 07% | 24%  1.6% | 7.3% 4.0% 4.1% 1.8% | 5.6%  54% | 102%  6.4% 6.8% 5.7%
Observations | EGARCHorm | 12%  0.0% | 64%  2.5% 4.1% 0.5% | 23% 03% | 7.6%  41% 5.1% 1.5% | 33% 20% | 93%  54% 6.4% 26% | 63%  61% | 11.8%  87% 9.0% 5.7%
EGARCHyy | 06%  0.1% | 4.6% 0.8% 1.8% 0.5% | 12%  02% | 5% 1.3% 2.9% 09% | 27%  1.6% | 7.7% 2.9% 4.8% 1.9% | 58%  53% | 107%  5.7% 7.7% 4.0%
EGARCHy | 06%  02% | 4.2% 1.4% 1.7% 0.1% | 12%  05% | 5.6% 2.0% 2.5% 05% | 18%  1.1% | 6.6% 3.3% 3.5% 13% | 46%  34% | 8.7% 6.5% 6.0% 3.7%
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Table 25 — Proposed McNeil and Frey (2000), Righi and Ceretta (2015) and McNeil et al. (2015) backtesting size results, using EGARCH,,,,,, as null
hypothesis with 250 and 1000 in-sample observations and significance level of 1%, 2.5% and 5%.

1% 2.5% 5% 10%

Backtesting Size Model [a=1% P=5%]a=1% P=25%|0=25% B=5% | a—1% P=5%]a—1% B=25%]a—25% B=5% | a—1% P=5%]a=1% P=25%]a=25% P=5%| a=1% B=5%|a=1% P=25%|a=25% B=5%
250 500 | 250 500 250 500 250 500 | 250 500 | 250 500 250 500 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,r | 08%  03% | 32%  13% 21%  04% | 14%  09% | 44%  25% 35%  08% | 29%  22% | 59%  3.2% 56%  24% | 68%  63% | 86%  13% 92%  6.4%
250 GARCHy;, | 02% 03% | 35%  04% 1% 06% | 09% 09% | 44% 1.3% 24%  08% | 28% 25% | 53%  24% 5.1% 19% | 64%  58% | 81%  48% 9.6%  6.1%
Observations | GARCHa | 0.1%  02% | 37%  06% 30%  04% | 08%  09% | 52% 1.4% 41%  09% | 25% 16% | 6%  2.6% 53%  22% | 5.1%  43% | 8%  52% 83%  53%
EGARCHy, | 02%  00% | 2.8%  13% 17%  03% | 09%  0.5% | 45% 1.7% 24%  07% | 16%  1.5% | 66%  2.7% 4.0% 18% | 38%  48% | 9.0%  5.6% 65% 4%
MEF Test EGARCH,y, | 05%  0.1% | 43% 1.0% 24%  01% | 09%  04% | 58% 1.4% 32%  06% | 17% 13% | 18%  34% 46%  24% | 52%  45% | 102%  69% 74%  53%
GARCH,,ry | 07%  02% | 42% 13% 6%  06% | 12% 05% | 64%  2.0% 2.6% 1% | 23% 19% | 86%  3.9% T0%  21% | 68% 63% | 1L1%  66% 60%  54%
1000 GARCHyy | 0.5%  02% | 4.0% 1.5% 14%  04% | 1.0% 0.6% | 54%  2.8% 23% 1% | 17% 19% | 75%  3.9% 35%  20% | 51%  57% | 99% = 12% 56%  5.8%
Observations | GARCHa | 0% 0.4% | 4.2% 1.4% 20%  05% | 13%  10% | 53%  2.3% 24%  09% | 21% 19% | 74% 3.7% 32% 18% | 59% 51% | 105%  6.7% 63%  4.6%
EGARCHy, | 04%  01% | 51%  19% 20%  0.6% | 12%  04% | 61%  32% 32%  12% | 21%  13% | 85%  45% 45%  22% | 46%  41% | 106%  6.6% 76%  63%
EGARCHy,y | 09%  0.1% | 49%  19% 25%  03% | 1.6% 03% | 59%  33% 35%  09% | 24%  16% | T4% = 43% 52%  20% | 47%  44% | 98%  1.0% 9.0%  5.5%
GARCH,,., | 08% 03% | 32%  13% 21%  04% | 13% 11% | 43%  23% 3.5% 10% | 31%  19% | 58%  32% 57%  24% | 71%  62% | 87%  14% 9.1%  64%
250 GARCHyy | 02%  02% | 34%  05% 13%  05% | 1.1%  1.0% | 43% 12% 26%  08% | 3.0% 24% | 54%  24% 54%  21% | 10%  6.1% | 80%  50% 9.6%  5.8%
Observations | CARCHsa | 0.1%  02% | 40%  0.6% 29%  04% | 09%  10% | 52% 1.3% 41%  11% | 26% 17% | 66%  27% 54%  21% | 52%  48% | 8.5%  54% 80%  52%
EGARCHy, | 02%  00% | 2.9% 1.3% 7%  02% | 09%  05% | 44% 1.8% 25%  07% | 18%  13% | 65%  2.6% 4.0% 17% | 38%  46% | 88%  59% 67%  4.4%
RC Test EGARCH,y, | 05%  00% | 45% 1.0% 25%  02% | 08%  06% | 60% 1.6% 30%  06% | 16% 13% | 80%  35% 45%  23% | 48%  43% | 103%  68% 77%  5.1%
GARCH,,.,, | 0.7%  02% | 44% 13% 6% 0% | 12% 04% | 66%  2.0% 25% 1% | 23% 19% | 85%  31% 71%  20% | 64%  66% | 112%  62% 590%  51%
1000 GARCH,; | 05%  02% | 4.0% 1.5% 15%  04% | 1.1% 05% | 55%  3.0% 22%  12% | 1.6% 19% | 15% = 3.9% 37%  21% | 51%  56% | 97%  13% 57%  5.8%
Observations | CARCHsu | 05%  04% | 4.1% 1.3% 20%  05% | 13%  10% | 55% = 2.1% 24%  09% | 22%  18% | 74%  3.6% 32% 19% | 57%  52% | 105%  65% 6.1% 4%
EGARCHy, | 05% 01% | 51%  2.0% 20%  07% | 12%  02% | 61%  3.0% 3.4% 10% | 21%  15% | 87%  43% 44%  22% | 46%  40% | 105%  6.7% 76%  6.1%
EGARCH,yy | 09%  0.1% | 50%  2.0% 25%  04% | 16%  02% | 60%  32% 3.6% 1% | 22%  13% | 15%  4.1% 52%  20% | 50% 44% | 97%  69% 88%  5.6%
GARCH,r | 08%  03% | 3.1%  13% 21%  04% | 14%  09% | 44%  24% 35%  10% | 29%  2.1% | 5.9% 3.2% 57%  24% | 70%  62% | 87%  12% 93%  6.4%
250 GARCHy, | 02%  02% | 34%  05% 1% 06% | 1.0% 08% | 44% 12% 25%  08% | 28%  2.6% | 53%  2.6% 52% 18% | 66% 60% | 81%  4.9% 95%  6.0%
Observations | GARCHa | 0.1%  02% | 37%  06% 29%  03% | 10%  09% | 5.1% 1.4% 41%  10% | 27% 17% | 68%  2.6% 54%  23% | 52%  43% | 87%  54% 83% 5%
EGARCHy, | 02%  00% | 2.8% 1.2% 17%  03% | 09%  0.6% | 4.4% 1.7% 25%  07% | 18%  1.5% | 66%  2.8% 3.9% 19% | 41%  47% | 88%  58% 65% 4%
MFE Test EGARCHy, | 0.5%  0.1% | 44% 1.0% 24%  02% | 09%  05% | 59% 1.5% 33%  05% | 17%  14% | 80%  34% 44%  24% | 49%  44% | 103%  6.8% 75%  54%
GARCH,,,,, | 07%  03% | 43% 12% 16%  07% | 12% 05% | 65% 1.9% 2.6% 12% | 24% 20% | 85%  39% 12% 19% | 65%  66% | 11.2%  65% 61%  52%
1000 GARCHy, | 0.5%  02% | 4.0% 1.4% 15%  04% | 11%  05% | 55%  27% 22%  13% | 17%  20% | 76%  4.0% 39%  20% | 52% 55% | 9.6%  15% 56%  5.6%
Observations | GARCHa | 0% 05% | 42% 13% 20%  05% | 14%  10% | 55% = 24% 25%  09% | 21% 18% | 74%  37% 3.3% 18% | 58%  52% | 105%  65% 61%  4.9%
EGARCH,, | 04%  01% | 50%  21% 20%  06% | 12%  04% | 63%  3.1% 32% 10% | 19%  14% | 86%  44% 42%  22% | 45%  41% | 105% = 6.8% 75%  6.0%
EGARCHy, | 0.8%  0.1% | 4.8% 1.9% 26%  03% | 15% 0.1% | 60%  32% 3.6% 10% | 23%  12% | 74%  4.0% 53%  20% | 48%  41% | 97%  6.8% 87%  5.5%
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Table 26 — Proposed McNeil and Frey (2000), Righi and Ceretta (2015) and McNeil et al. (2015) backtesting size results, using EGARCHy,; as null

hypothesis with 250 and 1000 in-sample observations and significance level of 1%, 2.5% and 5%.

1% 25% 5% 10%

Backtesting Size Model 0=1% P=5%|a=1% P=25%|0=25% P=5%|a=1% P=5%|a=1% P=25%] 0a=25% P=5%|a=1% P=5%|a=1% P=25%]0=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%
250 500 | 250 500 | 250 500 250 500 | 250 50 | 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,orm | 1.0%  03% | 4.8% 2.0% 30%  07% | 1.7%  1.0% | 6.0% 3.1% 42% 14% | 3.6% 28% | 68% 3.9% 5.7% 23% | 77%  59% | 9.0% 7.2% 7.6% 5.4%
250 GARCHyy 02%  0.1% | 33% 1.3% 2.3% 04% | 05%  07% | 4.4% 1.7% 3.4% 1% | 1.6%  14% | 6.1% 2.6% 4.8% 21% | 47%  47% | 8.9% 4.6% 7.3% 5.2%
Observations | GARCHs 03%  0.1% | 2.8% 1.1% 2.6% 02% | 1.0%  04% | 4.5% 1.5% 3.6% 09% | 21% 1.1% | 6.1% 2.5% 5.1% 18% | 53%  43% | 82% 5.2% 8.5% 5.8%
EGARCH,pm | 1.3%  04% | 62%  3.0% 3.2% 0.5% | 22% 1.1% | 84%  40% 4.2% 14% | 33%  30% | 105%  59% 57% 2% | 12% 12% | 127%  83% 89%  6.0%
ME Test EGARCH,yy | 03% 03% | 3.7% 1.3% 2.6% 05% | 06% 08% | 49% 2.9% 3.7% 11% | 18%  15% | 6.9% 4.3% 5.1% 20% | 34%  42% | 8.8% 7.4% 6.9% 5.20%
GARCH,pry | 10%  03% | 4.6% 2.2% 2.9% 0% | 1.6% 07% | 63% 2.8% 3% 17% | 29% 18% | 71.6% 4.6% 55%  29% | 66% 61% | 102%  1.6% 7.6% 5.1%
1000 GARCHyy 04%  02% | 47% 0.5% 1.5% 04% | 1.1%  03% | 65% 1.4% 2.8% 07% | 19%  09% | 7.8% 2.1% 4.2% 24% | 48%  3.6% | 104%  4.9% 7.6%  5.4%
Observations | GARCHssa 0.5%  0.1% | 4.6% 0.9% 1.6% 03% | 1.1%  03% | 6.0% 1.8% 2.6% 0.8% | 28%  12% | 7.5% 3.4% 4.3% 17% | 59%  39% | 10.1%  6.6% 75%  54%
EGARCH,prm | 0.8%  0.1% | 60%  34% 3.8% 12% | 17% 06% | 79%  42% 47% 17% | 2.6% 18% | 91%  65% 6.0% 27% | 57%  50% | 113%  103% 7.4% 4.9%
EGARCH,yy | 02%  0.1% | 4.0% 1.3% 2.5% 0.8% | 06% 05% | 5.1% 2.1% 2.9% 1.0% | 15% 17% | 6.4% 3.3% 4.5% 23% | 55%  3.6% | 8.8% 6.2% 6.5% 4.8%
GARCH,pry | 1.1%  03% | 4.8% 2.0% 32%  07% | 1.6% 1.1% | 59% 3.2% 4.3% 14% | 37% 25% | 6.9% 3.8% 5.6% 23% | 74%  58% | 8.9% 7.1% 7.6% 5.2%
250 GARCHyy 0.1%  02% | 33% 1.2% 2.2% 0.5% | 05%  07% | 43% 1.7% 3.4% 1.0% | 17%  1.6% | 6.0% 2.5% 4.6% 21% | 50%  48% | 9.1% 5.1% 7.5% 5.4%
Observations | GARCHs 02%  0.1% | 2.9% 1.2% 2.5% 02% | 09%  04% | 4.5% 1.5% 3.3% 09% | 23% 1.1% | 6.0% 3.0% 5.0% 14% | 53%  43% | 83% 5.6% 8.7% 5.9%
EGARCH,om | 1.3%  04% | 62%  3.0% 3.3% 0.5% | 22% 11% | 84%  41% 43% 13% | 32% 29% | 105%  6.0% 56%  28% | 73% 12% | 130%  85% 88%  62%
RC Test EGARCH,yy | 03%  02% | 3.7% 1.2% 2.7% 0.6% | 06% 08% | 4.6% 2.8% 3.7% 1.0% | 17% 18% | 6.1% 4.2% 5.1% 17% | 43%  41% | 8.9% 7.2% 6.9% 5.2%
GARCH,p | 11%  03% | 47% 22% 3.0% 1% | 1.6% 08% | 64% 28% 3% 9% | 28% 1% | 1.6% 5% 55%  28% | 62% 64% | 100%  7.1% 7.6% 54%
1000 GARCHyy 04%  02% | 48% 0.5% 1.5% 0.5% | 1.1%  03% | 65% 1.3% 3.0% 08% | 18%  07% | 7.7% 2.1% 4.3% 23% | 48%  37% | 100%  5.0% 7.4% 5.2%
Observations | GARCHss 05% 0.1% | 47% 0.9% 1.5% 03% | 1.0% 02% | 6.1% 1.8% 2.6% 07% | 25% 1.1% | 1.6% 3.2% 4.4% 1.9% | 56%  40% | 9.9% 7.1% 74%  59%
EGARCH,pm | 08%  02% | 60%  33% 3.8% 12% | 17% 0.6% | 78%  42% 47% 17% | 25% 17% | 90%  61% 6.1% 26% | 57%  49% | 113%  10.7% 7.5% 4.9%
EGARCH,yy | 02%  02% | 4.0% 1.3% 2.4% 09% | 04%  06% | 50% 1.8% 2.9% 10% | 18%  15% | 6.6% 3.3% 4.6% 21% | 54%  3.6% | 93% 5.9% 6.6% 4.8%
GARCH,pr | 10%  03% | 4.8% 1.9% 31%  07% | 17% 11% | 6.0% 3.0% 4.2% 14% | 3.6% 26% | 6.8% 3.9% 5.6% 23% | 7.6%  58% | 9.0% 7.4% 7.6% 5.6%
250 GARCHy,y 0.1%  0.1% | 33% 1.2% 2.4% 04% | 06%  07% | 4.4% 1.7% 3.4% 1% | 14%  16% | 6.1% 2.6% 4.9% 21% | 45%  46% | 9.1% 4.7% 7.7% 5.5%
Observations | GARCHsa 03%  0.1% | 2.8% 1.2% 2.7% 0.1% | 1.1%  04% | 4.6% 1.5% 3.6% 09% | 22% 1.1% | 6.1% 2.7% 4.9% 1.8% | 5.6%  45% | 8.0% 5.5% 8.5% 5.9%
EGARCH,pm | 12%  04% | 60%  3.0% 3.3% 0.5% | 22% 1.0% | 84%  41% 4.3% 12% | 32%  27% | 108%  58% 57% 2% | 14%  11% | 127% = 84% 8.6%  62%
MEE Test EGARCH,y | 03%  03% | 3.8% 1.5% 2.5% 0.6% | 05% 07% | 4.6% 2.9% 3.7% 1.0% | 16% 17% | 69% 4.3% 5.0% 21% | 40%  43% | 8.9% 7.1% 6.7% 5.3%
GARCH,py | 1.0%  03% | 4.7% 2.2% 3.0% 1% | 16% 08% | 64% 28% 3% 18% | 29% 18% | 71.6% T.6% 53%  29% | 64% 60% | 10.1%  72% 7.6% 52%
1000 GARCHyy 04%  02% | 47% 0.5% 1.5% 04% | 1.0%  03% | 65% 1.3% 2.9% 08% | 19%  08% | 7.7% 2.1% 4.4% 24% | 46%  38% | 101% = 54% 7.2% 5.3%
Observations | GARCHs 0.5%  0.1% | 47% 0.9% 1.5% 03% | 1.0% 02% | 6.1% 1.8% 2.6% 0.8% | 26% 12% | 7.4% 3.4% 4.4% 17% | 55%  39% | 9.9% 6.7% 7.5%  55%
EGARCH,pm | 08%  0.1% | 61%  34% 3.8% 12% | 17% 0.6% | 78%  43% 47% 17% | 25% 17% | 91%  6.8% 6.1% 25% | 58%  50% | 113%  103% 7.4% 4.7%
EGARCHy | 02%  03% | 4.2% 1.1% 2.4% 09% | 05%  0.6% | 5.1% 1.7% 3.1% 1.0% | 13%  16% | 65% 3.2% 4.6% 22% | 52%  3.6% | 9.3% 5.8% 6.5% 4.8%
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Table 27 — Proposed McNeil and Frey (2000), Righi and Ceretta (2015) and McNeil et al. (2015) backtesting size results, using EGARCHy,; as null

hypothesis with 250 and 1000 in-sample observations and significance level of 1%, 2.5% and 5%.

1% 25% 5% 10%

Backtesting Size Model 0=1% P=5%|a=1% P=25%|0=25% P=5%|a=1% P=5%|a=1% P=25%] 0a=25% P=5%|a=1% P=5%|a=1% P=25%]0=25% P=5%|a=1% P=5%|a=1% P=25%]a=25% P=5%
250 500 | 250 500 | 250 500 250 500 | 250 50 | 250 500 250 500 | 250 500 | 250 500 250 500 | 250 500 | 250 500
GARCH,orm | 10%  02% | 5.0% 1.8% 3.8% 08% | 21% 09% | 6.9% 2.8% 4.9% 11% | 37%  30% | 8.7% 42% 6.9% 23% | 1.6%  84% | 11.9%  8.6% 9.6% 4.8%
250 GARCHyy 03%  0.1% | 2.8% 0.9% 2.0% 0.1% | 1.1%  04% | 3.4% 1.3% 2.9% 07% | 23%  24% | 50% 2.6% 4.4% 20% | 64%  50% | 8.2% 5.8% 6.9% 4.7%
Observations | GARCHs 03%  0.1% | 25% 0.9% 1.6% 02% | 09%  02% | 3.6% 1.5% 22% 10% | 15%  15% | 4.8% 2.5% 3.1% 1.6% | 40% 38% | 73% 5.0% 6.0% 4.0%
EGARCH,pm | 09%  05% | 77%  38% 3.2% 12% | 15% 1.6% | 101%  49% 4.2% 17% | 43% 33% | 127%  64% 56%  32% | 84% 8.6% | 147%  10.0% 85%  6.7%
ME Test EGARCH,, | 07%  03% | 3.6% 1.1% 2.9% 0.6% | 1.1% 10% | 52% 1.7% 3.6% 13% | 29%  21% | 6.1% 2.7% 4.8% 27% | 63%  55% | 84% 6.0% 7.4% 5.9%
GARCH,,,, | 14%  06% | 60%  2.8% 6% 08% | 22% 10% | 72%  39% 5.5% 4% | 39% 35% | 96%  51% 6.7% 27% | 19%  82% | 121%  9.1% 8.7% 6.2%
1000 GARCHyy 03%  00% | 25% 1.1% 1.8% 0.6% | 12%  07% | 3% 1.6% 2.2% 11% | 20%  19% | 4.9% 2.7% 3.5% 25% | 5.1%  60% | 7.6% 5.8% 6.2% 4.8%
Observations | GARCHssa 04%  00% | 34% 0.9% 2.3% 02% | 1.0%  02% | 42% 1.8% 3.1% 03% | 23% 17% | 53% 2.4% 4.6% 13% | 59% 48% | 74% 5.3% 7.0% 5.0%
EGARCH,pm | 0.6%  03% | 6.3% 2.7% 4.8% 11% | 13% 06% | 74% 3.4% 62%  22% | 26%  2.1% | 9.0% 47% 75%  31% | 56%  57% | 11.0%  6.9% 93%  6.6%
EGARCHyy | 04%  0.1% | 4.6% 1.0% 2.8% 03% | 07%  0.6% | 59% 1.9% 3.7% 09% | 23%  15% | 7.3% 3.0% 5.6% 22% | 58%  59% | 9.2% 5.7% 8.8% 4.9%
GARCH,pry | 09%  03% | 5.1% 1.8% 3.8% 08% | 21% 1.1% | 69% 2.9% 4.9% 11% | 35% 30% | 8.6% 4.3% 6.8% 22% | 73%  19% | 119%  8.8% 9.4% 4.8%
250 GARCHyy 03%  0.1% | 2.9% 0.9% 1.9% 0.1% | 1.1%  07% | 3% 1.4% 2.6% 04% | 22%  26% | 4.9% 2.6% 4.6% 17% | 6.0%  50% | 7.9% 6.0% 6.6% 4.5%
Observations | GARCHs 04%  00% | 25% 0.8% 1.6% 02% | 08%  03% | 3.4% 1.4% 2.3% 08% | 1.6% 15% | 5.1% 2.6% 3.1% 1.5% | 46%  44% | 17% 5.1% 6.7% 4.3%
EGARCH,pm | 10%  05% | 7.6%  37% 3.1% 11% | 1.6% 1.6% | 101%  49% 4.2% 18% | 42% 34% | 126%  64% 55%  33% | 19%  84% | 149% = 9.9% 87%  69%
RC Test EGARCH,; | 08%  03% | 4.0% 1.1% 2.9% 0.5% | 14% 12% | 51% 1.5% 3.5% 1% | 28% 23% | 6.1% 2.7% 4.8% 27% | 67% 5% | 8.3% 5.8% 7.3% 5.7%
GARCH,or | 14%  06% | 61%  28% 4.6% 08% | 22% 1.6% | 73%  39% 55% 14% | 38% 3.6% | 96%  5.6% 6.8% 30% | 77% 19% | 124%  90% 8.6% 6.0%
1000 GARCHyy 03%  00% | 25% 1.0% 1.9% 0.5% | 12%  0.6% | 3.6% 1.6% 2.2% 12% | 21%  20% | 4.7% 2.7% 3.6% 24% | 50%  62% | 7.5% 5.9% 6.3% 4.7%
Observations | GARCHss 04%  00% | 33% 0.9% 2.3% 02% | 1.0% 03% | 42% 1.5% 3.1% 04% | 23% 18% | 53% 2.4% 4.6% 14% | 55%  49% | 7.2% 5.4% 6.9% 5.2%
EGARCH,prm | 0.6%  03% | 63% 2.6% 4.7% 11% | 13% 06% | 7.4% 3.4% 62%  21% | 25%  19% | 9.0% 4.5% 75%  31% | 60%  55% | 109%  7.0% 92%  65%
EGARCHyy | 04%  0.1% | 4.6% 1.0% 2.7% 03% | 08% 05% | 59% 1.8% 3.7% 09% | 25% 15% | 69% 2.9% 5.5% 22% | 55%  59% | 9.0% 6.0% 8.7% 4.6%
GARCH,or | 09%  02% | 5.0% 1.8% 3.8% 0.8% | 21% 1.0% | 69% 3.0% 5.0% 11% | 3.6% 29% | 87% 3.9% 6.9% 23% | 7.6% 81% | 11.5%  87% 9.7% 4.6%
250 GARCHy,y 03%  0.1% | 2.8% 0.8% 2.0% 0.1% | 1.0%  04% | 3.6% 1.5% 2.8% 07% | 23%  24% | 52% 2.6% 4.4% 20% | 62%  48% | 8.0% 6.0% 6.7% 4.8%
Observations | GARCHsa 03%  0.1% | 25% 0.9% 1.6% 0.1% | 08%  03% | 35% 1.4% 2.4% 09% | 15%  15% | 5.0% 2.5% 3.0% 13% | 41%  37% | 73% 4.9% 6.5% 4.1%
EGARCH,pm | 09%  05% | 75%  37% 3.2% 12% | 14% 17% | 101%  50% 4.2% 18% | 39% 34% | 125%  6.4% 56%  33% | 84% 86% | 150% 101% 87%  1.0%
MEE Test EGARCH,, | 07%  03% | 3.7% 1.0% 2.9% 0.6% | 1.1% 1.1% | 52% 1.6% 3.4% 12% | 26% 21% | 6.1% 2.6% 4.7% 26% | 62% 5% | 8.3% 5.9% 7.3% 5.6%
GARCH,,,y | 14%  06% | 60%  27% 6% 08% | 23% 17% | 13%  40% 5.5% 5% | 38% 36% | 96%  58% 6.6% 29% | 84% 80% | 121%  92% 8.8% 6.1%
1000 GARCHyy 03%  00% | 25% 1.1% 1.8% 0.6% | 1.1%  05% | 3.6% 1.8% 2.2% 1% | 22%  20% | 4.5% 2.8% 3.7% 21% | 49%  59% | 7.6% 5.8% 6.5% 4.8%
Observations | GARCHs 04%  00% | 34% 0.9% 2.3% 02% | 1.0%  02% | 4.1% 1.8% 3.0% 04% | 22%  19% | 53% 2.2% 4.6% 1.6% | 57%  49% | 7.2% 5.3% 7.0% 4.9%
EGARCH,prm | 0.6%  03% | 6.3% 2.5% 4.7% 11% | 13% 05% | 74% 3.4% 61%  21% | 24%  23% | 9.1% 4.7% 74%  30% | 58%  57% | 11.0%  7.0% 91%  65%
EGARCH,, | 04%  0.1% | 4.6% 0.9% 2.8% 03% | 08%  05% | 6.0% 1.8% 3.7% 1.0% | 25%  15% | 7.1% 3.0% 5.7% 22% | 60%  56% | 9.1% 5.2% 8.9% 4.9%
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Table 28 — Best p-values of the proposed backtesting procedures covering all considered scenarios, using significance levels of 1%, 2.5%, and 5%,
with a rolling window of 250 observations, along with their respective loss function results.

) a=1%,B=5% | a=1%,8=2.5% | o=25%,B=5%

Backtesting Asset-Model p-value Srvar | Asset-Model p-value Srvar | Asset-Model p-value Srvar
Real—GARCngd 0.994912  1.048683 | STOXX-GAS4 0.994358 1.049042 | Euro-GARCHgy,, 0.996699  1.028896
Real-GARCHy,, 0.992822  1.048213 | Gold-EGARCH,;, 0.991265 1.052917 | BTC-GARCHg,4 0.994227 1.135862

MTF Test Real-GARCHg.q 0.989912  1.048607 | WTI-gjrGARCH,; 0.988251 1.109245 | DGS10-GARCH,,y;m 0.991646  1.099078
Euro-GAS 4 0.987852  1.026580 | DGS3-GARCHjgq 0.983950  1.208165 | S&P500-gjrGARCH,;, 0.987662  1.044073
DGS10-girGARCH;;, 0.976534  1.103012 | WTI-gjrGARCH,y, 0.981309 1.107457 | Real-EGARCHg,, 0.983552  1.048477
WTI-gjrGARCH; 4 0.965680  1.097319 | WTI-GARCHj,eq 0.974093  1.108865 | DGS10-GARCHg,4 0.981585 1.100609
Real-GARCH,, 0.992554  1.048213 | STOXX-GAS4 0.991441 1.049042 | Euro-GARCHg, 0.995418 1.028896
Real-GARCHgy 0.992183 1.048683 | WTI-gjrGARCH,;, 0.990377  1.109245 | BTC-GARCHg,4 0.995341 1.135862

RC Test Euro-GAS4 0.984260 1.026580 | Gold-EGARCH,;, 0.988590 1.052917 | DGS10-GARCH,,,; 0.990915 1.099078
Real-GARCHgeq 0.973521 1.048607 | WTI-gjrGARCHyy,y 0.986116  1.107457 | S&P500gjrGARCH,;, 0.990540  1.044073
IBOV-GARCH,; 0.961731 1.062213 | IBOV-GARCH,;, 0.970609 1.069022 | Real-EGARCHy,, 0.985444  1.048477
DGS10-gjrGARCHg;  0.959928 1.103012 | WTI-EGARCHg,q 0.969665 1.100800 | DGS10-GARCHg,4 0.979334  1.100609
Real-GARCHg,, 0.994178 1.048683 | STOXX-GAS4 0.994926  1.049042 | Euro-GARCHg, 0.997209 1.028896
Real-GARCHy,, 0.993102  1.048213 | Gold-EGARCH,;, 0.992109 1.052917 BTC-GARCHg,4 0.992142 1.135862

MFE Test Euro-GAS4 0.986131 1.026580 | WTI-gjrGARCH,;, 0.989505 1.109245 | Real-EGARCHg,, 0.991846  1.048477
DGS3-GARCHygeq 0.985343  1.186516 | DGS3-GARCHjgq 0.982139 1.208165 | DSG10-GARCH,,,; 0.991591 1.099078
Real—GARCHSged 0.983798 1.048607 | WTI-gjrGARCHgyy 0.981278 1.107457 | IBOV-gjrGARCH,;, 0.989622  1.044073
DGS10-gjrGARCHyy  0.973880  1.103012 | S&P500-GARCHjy,,  0.969397  1.047101 S&P500-gjrGARCH, e 0.983659  1.044011
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Table 29 — Best p-values of the proposed backtesting procedures covering all considered scenarios, using significance levels of 1%, 2.5%, and 5%,
with a rolling window of 500 observations, along with their respective loss function results.

) a=1%,=5% | a=1%,8=2.5% | a=2.5%,B=5%

Backtesting Asset-Model p-value Srvar | Asset-Model p-value Srvar | Asset-Model p-value SrVar
WTI-gjrGARCH,;¢ 0.997197 1.102357 | Euro-gjrGARCHy,pry,  0.998385  1.025718 | DGS 10-gerARCngd 0.997912  1.098865
DGS3-GARCHygeq 0.996858  1.199320 | WTI-EGARCH g4 0.996465 1.109912 | WTI-EGARCH g4 0.990889  1.093509

MF Test WTI-gjrGARCH,g.q  0.995940  1.100861 | Euro-GASgurm 0.995137  1.026936 | WTI-gjrGARCH gy 0.988470  1.094535
Gold-EGARCH g 0.995329  1.045076 | Euro-gjrGARCHg,, 0.986423  1.026535 | DGS10-GARCHy, 0.987254  1.098261
Euro-GAS,, 0.994302  1.026649 | Euro-GAS,yy 0.985931  1.028950 | DGS10-GARCH,pq 0984253  1.098772
Real-EGARCHy 0994253  1.048529 | WTI-girtGARCH,,q 0971124 1.111306 | DGSI0-EGARCH,,; 0983306  1.097478
Gold-EGARCHjg,q 0.996589  1.045076 | Euro-gjyrGARCHgporm  0.997842  1.025718 | DGS10-gjrGARCH,y  0.997617  1.098865
Euro-GAS,,; 0.994696  1.026649 | Euro-GAS,uom 0.995469  1.026936 | WTI-grtGARCH,y  0.992872  1.094535
RC Test WTI-gjrGARCH,;¢ 0.992168  1.102357 | WTI-EGARCH gy 0.994979  1.109912 | DGS10-EGARCHy,, 0.983813  1.097478
WTIL-gitGARCH, gy 0.990046  1.100861 | Euro-GASyyg 0.994127  1.028950 | WTI-EGARCH, ey 0.976183  1.093509
Real-EGARCH,ey 0.986029  1.048529 | Euro-gjrGARCHg,, 0.982122  1.026535 | DGS10-GARCHjgq 0.975361  1.098772
Real-GARCHjgeq 0.984979  1.049354 | DGS3-EGARCH,;, 0.961192  1.203656 | DGS10-GARCH g, 0.974569  1.098261
DGS3-GARCHg,q 0.996681  1.218456 | Euro-gjrGARCHgporm  0.998375  1.025718 | WTI-gjrGARCH,g.q 0.988968  1.094535
WTI-gjrGARCH,;¢ 0.996413  1.102357 | WTI-EGARCH g4 0.996799  1.109912 | WTI-EGARCH g4 0.988962  1.093509

MFE Test Gold-EGARCHg.q 0.995833  1.045076 | Euro-GASg,orm 0.995459  1.026936 | DGS10-GARCH g, 0.987773  1.098261
WTILgitGARCH, gy 0.994483  1.100861 | Euro-GASyyg 0.990266  1.028950 | DGS10-GARCH,p,q  0.983804  1.098772
Euro-GAS ;4 0.993720  1.026649 | Euro-gjrGARCHg,, 0.980605 1.026535 | DGS10-EGARCHg;, 0.982679  1.097478
Real-EGARCH,ey 0.993346  1.048529 | Euro-girGARCHyy, 0.967705  1.026332 | DGS3-gjrGARCH,ey 0.976260 1.165772
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Table 30 — Best p-values of the proposed backtesting procedures covering all considered scenarios, using significance levels of 1%, 2.5%, and 5%,
with a rolling window of 1000 observations, along with their respective loss function results.

oa=1%,B=5% o=1%,=2.5% \ o=2.5%,8=5%

Backtesting = - -
Asset-Model p-value SRVaR Asset-Model p-value SRVaR \ Asset-Model p-value SRVaR
Real-GARCH,,;¢ 0.987727  1.051332 | WTI-GARCH y, 0.998240  1.120787 | Euro-EGARCH,y 0.999560 1.028379
Euro-GARCHj g 0.986382  1.024533 | WTI-gjrGARCH,;, 0.989027 1.119710 | Euro-gjrGARCH,,r,  0.997933  1.027822

MF Test Euro-GARCH,, 0.982394  1.024291 | WTI-gjrGARCH jy, 0.987740  1.119243 | Euro-GARCH;gy 0.996424  1.028644
Real-EGARCH,;;, 0.982321  1.051935 | WTI-GARCH,;, 0.980899  1.121421 | IBOV-gjrGARCH,;, 0.996327 1.062147
Real-GARCHg,,; 0.979671 1.049853 | WTI-GARCHg;, 0.966973 1.119111 | BTC-GAS;,0rm 0.994905 1.146886
BTC-EGARCH;,ey  0.974195  1.191133 | DGS3-GARCHggey 0.961193  1.196993 | S&P500-GARCHje.q  0.994626  1.042434
Euro-GARCHj ey 0.989693  1.024533 | WTI-GARCH g, 0.997037  1.120787 | Euro-EGARCH,y 0.999628  1.028379
Euro-GARCHy,, 0.986760  1.024291 | WTI-gjrGARCH,;, 0.976977 1.119710 | Euro-gjrtGARCH,,;,  0.998126  1.027822

RC Test Real-GARCH,,;, 0.984122  1.051332 | WTI-GARCH,;, 0.969150  1.121421 | Euro-GARCHg.q 0.996660 1.028644
Real-GARCHg,,; 0.979806  1.049853 | WTI-gjrGARCH j, 0.966831 1.119243 | Euro-EGARCHyy,,/n 0.995474  1.028348
Real-EGARCH,;;, 0.978313  1.051935 | S&P500-gjrGARCHg.y  0.965934  1.043700 | BTC-GASy0rm 0.995140 1.146886
BTC-GARCHjgeq 0.977901 1.182580 | WTI-GARCHg;, 0.950826  1.119111 | Euro-EGARCH,;, 0.994139  1.028519
Euro-GARCHj ey 0.987668  1.024533 | WTI-GARCH jy, 0.997337  1.120787 | Euro-EGARCH,y 0.999572  1.028379
Real-GARCH,;;¢ 0.986329  1.051332 | WTI-gjrGARCH,;, 0.987547  1.119710 | Euro-GARCHg.q 0.996414 1.028644

MFE Test Euro-GARCHy,, 0.984490  1.024291 | WTI-gjrGARCHj, 0.986181  1.119243 | Euro-gjtGARCH,,,  0.996404  1.027822
Real-EGARCH,;, 0.982565  1.051935 | WTI-GARCH,;, 0.977493  1.121421 | IBOV-gjrGARCH,;, 0.994993  1.062147
Real-GARCHg,,; 0.978176  1.049853 | WTI-GARCHg;, 0.968841 1.119111 | BTC-GAS;0rm 0.994887 1.146886
BTC-EGARCH;gey 0976720  1.191133 | IBOV-gjrGARCHg, 0.959197 1.043700 | Euro-EGARCHyy,0/m 0.994610 1.028348
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Table 31 — Worst p-values of the proposed backtesting procedures covering all considered scenarios, using significance levels of 1%, 2.5%, and 5%,
with a rolling window of 250 observations, along with their respective loss function results.

_ o=1%, =5% | o0=1%,8=2.5% | o =2.5%,B=5%

Backtesting Asset-Model p-value Srvar ‘ Asset-Model p-value Srvar ‘ Asset-Model p-value Srvar
STOXX-GARCH,; 0.000314  1.042327 | DGS3-girGARCHgppr,  0.000017  1.195756 | STOXX-gjrGARCHg,, 0.007389  1.043794
STOXX-gjrGARCH,, 0.000400 1.042537 | DGS3-EGARCH,, ;1 0.000322 1.193886 | WTI-EGARCHg,,0/m 0.008059  1.088937

MF Test STOXX-GARCHg,;y 0.000460  1.045074 | DGS10-GARCH,,, 0.000732  1.111982 | WTI-gjrGARCH,,,;, 0.011475 1.086169
STOXX-GARCHjy, 0.000726  1.045836 | Gold-gjrGARCHypy1n 0.002045 1.045423 | Euro-gjrGARCH, 0.018616 1.029186
STOXX-GARCHg,01m 0.001698  1.042984 | BTC-GARCHy,0rm 0.002374  1.156860 | S&P500-GASsq 0.020563 1.042341
STOXX—gerARCngd 0.004019 1.042722 | DGS10-GARCH,,);n 0.007205 1.110485 | STOXX-gjrGARCH,,,,,, 0.021224  1.044012
STOXX-GARCHg,; 0.000235 1.045074 | DGS3-girGARCHgppr,  0.000033  1.195756 | STOXX-gjrGARCHg,, 0.007709  1.043794
STOXX-GARCH jy, 0.000239  1.045836 | DGS3-EGARCH,, ;1 0.000206  1.193886 | WTI-EGARCHg,,0/m 0.009385 1.088937

RC Test STOXX-GARCHg,;4 0.000345 1.042327 | DGS10-GARCH,,, 0.000375 1.111982 | WTI-gjrGARCH,,p;, 0.011009 1.086169
STOXX-gjrGARCH,, 0.000504  1.042537 | BTC-GARCH,prm 0.001145 1.156860 | Euro-gjrGARCH,y, 0.020036  1.029186
DGS3—gerARCngd 0.000959  1.190563 | Gold-gjrGARCHyyps1n 0.002523 1.045423 | STOXX-gjrGARCH,,,,,  0.021498 1.044012
STOXX-GARCHy;,p1m 0.001307  1.042984 | DGS10-GARCH,;, 0.008614 1.113341 S&P500-GAS 4 0.022842  1.042341
DGS3-gjrGARCHq 0.000089  1.190563 | DGS3-gjrGARCHgypr,  0.000022  1.195756 | WTI-EGARCHg0rm 0.006389  1.088937
STOXX-GARCH,; 0.000323  1.042327 | DGS3-EGARCH,,,; 0.000281  1.193886 | STOXX-gjrGARCH, 0.008131  1.043794

MFE Test STOXX-gjrGARCH,, 0.000328  1.042537 | DGS10-GARCH,,, 0.000663  1.111982 | WTI-gjrGARCH,,,;, 0.011587 1.086169
STOXX-GARCHjy, 0.000466  1.045836 | BTC-GARCH,,prm 0.001344  1.156860 | Euro-gjrGARCH, 0.015802 1.029186
STOXX-GARCHgyy 0.000495 1.045074 | Gold-gjrGARCHy,o/1s 0.002115 1.045423 STOXX—GARCngd 0.023498 1.044228
STOXX-GARCHynppm ~ 0.001325  1.042984 | DGS10-GARCH,om ~ 0.007636  1.110485 | STOXX-gitGARCH,ppm  0.023619  1.044012
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Table 32 — Worst p-values of the proposed backtesting procedures covering all considered scenarios, using significance levels of 1%, 2.5%, and 5%,
with a rolling window of 500 observations, along with their respective loss function results.

a=1%,8=5% | a=1%,=2.5% | a=25%,B=>5%

Backtesting = — —
Asset-Model p-value SRVaR ‘ Asset-Model p-value SRVaR ‘ Asset-Model p-value SRVaR
STOXX-GARCH,,, 0.000288  1.041233 | STOXX-GARCH,ey 0.001872  1.045576 | STOXX-EGARCHy;, 0.000386  1.041377
S&P500-gjrGARCH,,p;,,  0.000910 1.036180 | STOXX-GARCHgp,  0.005508  1.044743 | BTC-GARCHg,y 0.004796  1.125754

MF Test STOXX-GARCHygq 0.000948  1.041517 | S&P500-GARCHg;pr,,  0.005546  1.041456 | S&P500-gjrGARCH,;;, 0.016072  1.042734
STOXX-GARCH,,,;m 0.002037  1.039374 | BTC-GARCHjgq 0.009416  1.187140 | S&P500-gjrGARCH g, 0.018078  1.042389
STOXX-EGARCH;;, 0.002976  1.039797 | BTC-GASg0rm 0.010326  1.216890 | S&P500-gjrGARCH,g,y  0.024758  1.042689
STOXX-GARCHg,0rm 0.003733  1.040949 | DGS10-GARCHy,,prm 0.011210  1.108962 | Gold-GASg.0rm 0.027538  1.046495
STOXX-GARCH,,, 0.000343  1.041233 | STOXX-GARCHg,q 0.002357 1.045576 | STOXX-EGARCH;;, 0.000211  1.041377
S&P500-gjrGARCH,,p,,,  0.000897  1.036180 | STOXX-GARCHy,pr,  0.005882  1.044743 | BTC-GARCHgy 0.004950 1.125754

RC Test STOXX-GARCHq 0.001016  1.041517 | S&P500-GARCHgyor,  0.005953  1.041456 | S&P500-gjrGARCH,;;, 0.016596  1.042734
STOXX-GARCH,,,; 0.002224  1.039374 | BTC-GASg0rm 0.006762  1.216890 | S&P500-gjrGARCH g, 0.018241  1.042389
STOXX-EGARCHy;, 0.003183  1.039797 | S&P500-GARCH,,,;1, 0.015304 1.038382 | Gold-GAS,0rm 0.019106  1.046495
STOXX-GARCHy,,0/m 0.003695 1.041260 | DGS10-EGARCHgy, 0.015532  1.109013 | S&P500-gjrGARCHeey  0.024612  1.042689
STOXX-GARCH,,, 0.000289  1.041233 | STOXX-GARCH,.y 0.001966  1.045576 | STOXX-EGARCH;;, 0.000468  1.041377
STOXX-GARCHygq 0.000841 1.041517 | S&P500-GARCHg,rm  0.005271  1.041456 | BTC-GARCHg,, 0.008124  1.125754

MFE Test S&P500-gjrGARCH,,,,,  0.001249  1.036180 | STOXX-GARCHgpprn  0.005808  1.044743 | S&P500-gjrGARCH,;;, 0.018165 1.042734
STOXX-GARCH,,p;m 0.001742  1.039374 | BTC-GASg0rm 0.009663  1.216890 | Gold-GAS,orm 0.020438  1.046495
STOXX-EGARCH;;, 0.002716  1.039797 | BTC-GARCHgq 0.010058  1.187140 | S&P500-gjrGARCH g, 0.024158  1.042389
STOXX-GARCHy,0rm 0.003445 1.041260 | DGS10-GARCHy,,01m 0.015850  1.108962 | S&P500-gjrGARCH .y  0.026828  1.042689
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Table 33 — Worst p-values of the proposed backtesting procedures covering all considered scenarios, using significance levels of 1%, 2.5%, and 5%,
with a rolling window of 1000 observations, along with their respective loss function results.

a=1%,8=5% | a=1%,=2.5% | a=25%,B=5%

Backtesting = = =
Asset-Model p-value SRVaR ‘ Asset-Model p-value SRVar ‘ Asset-Model p-value SRVaR
DGS3-EGARCH g, 0.000464  1.170530 | STOXX-GARCHyuorm  0.000180  1.044632 | STOXX-EGARCH,z; 0.010335  1.046058
DGS3-gjrGARCHgpeq  0.000490  1.175926 | STOXX-GARCH,0rm 0.001360  1.042774 | DGS3-EGARCH y, 0.011882 1.154663

MF Test STOXX-GARCHg, 0.000923 1.041703 | STOXX-GARCHg, 0.002859  1.045829 | BTC-GARCHyy, 0.011969  1.134720
DGS3-gjrGARCHy,q 0.001609  1.173311 | Gold-EGARCH,g.q 0.005524  1.046503 | DGS3-EGARCH,y 0.028897 1.153976
DGS3-gjrGARCH,,;,  0.002645  1.173192 | Gold-EGARCHy, 0.006808  1.046625 | Gold-gjrGARCH,,,;1 0.035604  1.042204
DGS3-EGARCH,y;, 0.003337  1.169723 | DGS3-gjrGARCH,;or,,  0.007600  1.177150 | S&P500-EGARCHg,;  0.048357  1.040433
DGS3-EGARCH g, 0.000369 1.170530 | STOXX-GARCHy,0n  0.000435  1.044632 | BTC-GARCH,;y 0.009697  1.134720
DGS3-gjrGARCHyg¢  0.000671  1.175926 | STOXX-GARCH,1/m 0.002493  1.042774 | STOXX-EGARCHgey 0.010684  1.046058

RC Test STOXX-GARCHg, 0.000917 1.041703 | STOXX-GARCHg, 0.002829  1.045829 | DGS3-EGARCHj, 0.013013  1.154663
DGS3-gjrGARCHy,q 0.002279  1.173311 | Gold-EGARCH,, 0.005553  1.046625 | DGS3-EGARCH, 0.032641 1.153976
DGS3-EGARCH,g;, 0.002857 1.169723 | DGS3-gjrGARCH,,p;;,  0.005934  1.177150 | Gold-gjrGARCH,,p1m 0.034479  1.042204
DGS3-EGARCH,;, 0.002893  1.171012 | Gold-EGARCH,eq 0.006137  1.046503 | S&P500-EGARCH,;  0.049389  1.040433
DGS3-EGARCHy, 0.000435  1.170530 | STOXX-GARCHgorm  0.000205  1.044632 | STOXX-EGARCHgg.q  0.009748  1.046058
DGS3-gjrGARCH,g.¢  0.000550  1.175926 | STOXX-GARCH,;0m 0.001389  1.042774 | DGS3-EGARCHj, 0.012081  1.154663

MFE Test STOXX-GARCHg, 0.000863 1.041703 | STOXX-GARCHg, 0.002611 1.045829 | BTC-GARCHy, 0.012658  1.134720
DGS3-gjrGARCH, ey 0.001776  1.173311 | DGS3-gjrGARCH,,p;;,  0.005290 1.177150 | DGS3-EGARCH,y, 0.029601 1.153976
DGS3-EGARCH,;¢ 0.002975 1.171012 | Gold-EGARCH,, 0.005751  1.046625 | Gold-gjrGARCH,,,,1, 0.034621  1.042204
DGS3-gjrGARCHgyy  0.002993  1.173192 | Gold-EGARCH,eyq 0.007499  1.046503 | DGS3-EGARCH,;, 0.047433  1.155403
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Chapter 4. Results 84

Table 34 — Best Realized Loss Function results covering all considered scenarios, using signifi-
cance levels of 1%, 2.5%, and 5%, with a rolling window of 250 observations, along
with their respective p-value of each backtesting procedure.

Significance Levels  Asset-Model SRvar MF Test RC Test MFE Test
Euro-gjrGARCH,,4,, 1.024131 0.105323 0.115929  0.106181

Euro-GARCH,,;+; 1.024370 0.422968 0.436443  0.412557

a=1%, Euro-gjrtGARCHy,,p,,  1.024539  0.137396  0.142310  0.143310
B=5% Euro-EGARCH,, ), 1.024652 0.364193 0.368746  0.356006

Euro-gjrGARCH,y4 1.024653  0.596078  0.542636  0.588725
Euro-GARCHgypm 1.024666  0.360389  0.390833  0.363055

Euro-gjrGARCH,,pm 1.025826  0.162740 0.166042  0.168426

Euro-GARCH 4/, 1.026093  0.146990 0.139264  0.144885
o = 1%, Euro-EGARCH,,4/, 1.026241  0.348310 0.367677  0.358519
B=2.5% Euro-gjrGARCHorm ~ 1.026297  0.370449  0.409324  0.400820

Euro-GARCHgyprm 1.026437  0.320144  0.337450  0.331225
Euro-gjrGARCH4 1.026626  0.547332  0.500613  0.539028

Euro-gjrGARCHy 1.028744  0.631398  0.651058  0.657625
Euro-gjrGARCH;,,, 1.028834  0.815259  0.822597  0.795260

o =2.5%, Euro-GARCHg 4 1.028896  0.996699  0.995418  0.997209
B=5% Euro-GARCH ;4 1.029041 0.975553 0.971635  0.974135
Euro-gjrGARCH,¢y 1.029084 0.401631  0.393558  0.383353
Euro-gjrGARCHgy0rn -~ 1.029164  0.395253  0.379948  0.377244
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Table 35 — Best Realized Loss Function results covering all considered scenarios, using signifi-
cance levels of 1%, 2.5%, and 5%, with a rolling window of 500 observations, along
with their respective p-value of each backtesting procedure.

Significance Levels  Asset-Model SRvar MF Test RC Test MFE Test
Euro-gjrtGARCH,,4,, 1.023634  0.789215 0.794361 0.801092

Euro-GARCH,,;+; 1.023888  0.570622  0.588460  0.577438

a=1%, Euro-gjrGARCHy,,p,y, ~ 1.024006  0.822765  0.837727  0.821482
B=5% Euro-GARCHy,,0,m 1.024144  0.870880 0.850353  0.860041

Euro-EGARCH,;/, 1.024265 0.805168  0.786452  0.805482
Euro-gjrGARCHgy 1.024350  0.975598  0.974507  0.977615

Euro-gjrGARCH,,pm 1.025290  0.926155 0.929077  0.913350

Euro-GARCH 4/, 1.025571  0.730437 0.744358  0.733113
o = 1%, Euro-gjrGARCHgpr,~ 1.025718  0.998385  0.997842  0.998375
B=2.5% Euro-GARCHgorm 1.025868 0.907404 0.911305 0.907216

Euro-EGARCH,;/, 1.025967  0.526315  0.545410  0.538132
Euro-gjrGARCH 4 1.026332  0.968617 0.960620  0.967705

Euro-gjrGARCH,,pm 1.028384  0.932210 0.932441  0.932104
Euro-gjrGARCHg 1.028397 0.901131 0.886554  0.910248

o =2.5%, Euro-GARCHg 4 1.028523  0.462666  0.447107  0.465827
B=5% Euro-GARCH 4/, 1.028609  0.304998  0.292563  0.296404
Euro-gjrGARCHyprn -~ 1.028689  0.757926  0.777557  0.768007
Euro-gjrGARCHy 1.028764  0.495054 0.514839  0.484067
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Table 36 — Best Realized Loss Function results covering all considered scenarios, using signifi-
cance levels of 1%, 2.5%, and 5%, with a rolling window of 1000 observations, along
with their respective p-value of each backtesting procedure.

Significance Levels  Asset-Model SRvar MF Test RC Test MFE Test
Euro-gjrGARCH,,4,, 1.023006  0.894992  0.900674  0.899034

Euro-GARCH,,;+; 1.023100  0.900609  0.899867  0.904369

a=1%, Euro-gjrGARCHy,,p,y, ~ 1.023200 0.799032  0.798814  0.800213
B=5% Euro-GARCHy,,0,m 1.023278 0.776501 0.796130  0.788328

Euro-EGARCH,;/, 1.023366  0.715503  0.717262  0.717277
Euro-EGARCHgj,0rm 1.023606  0.905177  0.916939  0.911763

Euro-gjrGARCH,,4, 1.024603  0.422164 0.434688  0.454335

Euro-GARCH 4/, 1.024711  0.206571  0.215677  0.193978
o = 1%, Euro-gjrGARCHypr,~ 1.024827  0.700478  0.711163  0.731492
B=2.5% Euro-GARCHgorm 1.024916  0.085339  0.095393  0.085889

Euro-EGARCH,;/, 1.024989 0.311603  0.313382  0.301997
Euro-EGARCHg01m 1.025265 0.416269 0.397115  0.417132

Euro-gjrGARCHy 1.027768  0.966830 0.974930  0.973489
Euro-gjrGARCH;,,, 1.027822  0.997933  0.998126  0.996404

o =2.5%, Euro-GARCHg 4 1.027894  0.906204 0.910668  0.906476
B=5% Euro-GARCH ;4 1.027902  0.905508  0.922058  0.915681
Euro-gjrGARCHgpr, -~ 1.027981  0.979597  0.980007  0.980305
Euro-EGARCHy 1.027984  0.984940 0.984656  0.982652
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Table 37 — Worst Realized Loss Function results covering all considered scenarios, using signifi-
cance levels of 1%, 2.5%, and 5%, with a rolling window of 250 observations, along
with their respective p-value of each backtesting procedure.

Significance Levels  Asset-Model SRVar MF Test RC Test MFE Test
DGS3-EGARCHgy 1.354467 0.545578  0.384094 0.769160
DGS3-EGARCHgq.y  1.283317 0.523261 0.346309 0.644720

a=1%, DGS3-GAS.0rm 1.203957 0.204287 0.241465 0.210415
B =5% DGS3-GAS 4 1.197593  0.083869  0.092539 0.088637
DGS3-EGARCH,;¢ 1.196467 0.348463 0.288606 0.312758

DGS3-EGARCH j, 1.195017 0.362548 0.212281 0.340578
DGS3-EGARCHgy 1.410225 0.456770 0.177518 0.727437
DGS3-EGARCH,,.y  1.321809  0.789078  0.517742 0.914337

o= 1%, DGS3-GAS.0rm 1.221539  0.632737  0.625489 0.616218
B=2.5% DGS3-GAS 4 1.217467  0.356457 0.302720 0.323365
DGS3-EGARCH,;¢ 1.216766  0.132185 0.094864 0.116333

DGS3-EGARCH j, 1.215048 0.045318 0.021880 0.034684
DGS3-EGARCH,oqy  1.225902  0.317300 0. 176904 0.082316
DGS3-EGARCHgy 1.225097 0.463228  0.526023 0.315251

o =2.5%, DGS3-GAS.0rm 1.190727 0.714482 0.739216 0.723941
B=5% DGS3-GAS 4 1.178171 0913312 0.917897 0.916855
DGS3-EGARCH,;¢ 1.177035 0.637423  0.636802 0.630993

DGS3-EGARCH j, 1.175405 0.766182  0.739760 0.761662
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Table 38 — Worst Realized Loss Function results covering all considered scenarios, using signifi-
cance levels of 1%, 2.5%, and 5%, with a rolling window of 500 observations, along
with their respective p-value of each backtesting procedure.

Significance Levels  Asset-Model Srvar MF Test RC Test MFE Test
DGS3-GAS;0rm 1.336191 0.071252 0.071646  0.064070
DGS3-gjrGARCH,,q 1.220345 0.872335 0.823333  0.971878

a=1%, DGS3-GARCHyg,q 1.218456  0.979656 0.961419  0.996681
B=5% DGS3-gjrGARCHy,.q  1.204826  0.558940  0.270783  0.804726
BTC-GAS0rm 1.199337  0.174759 0.131810  0.134096
DGS3-GARCHygeq 1.199320 0.996858 0.940017  0.993068

DGS3-GAS;0rm 1.366414  0.321229  0.284377  0.300956
DGS3-gjrGARCHyg,q 1.250801 0.385836  0.353005  0.420337

a=1%, DGS3-GARCHy 1.248819  0.490798 0.378036  0.717896
B=25% DGS3-gjrGARCH,g,q  1.230787  0.629786  0.454263  0.815528
DGS3-GARCHyg,q 1.225228 0.070354  0.024984  0.087643

BTC-GAS0rm 1.216890  0.010326  0.006762  0.009663

DGS3-GAS0rm 1.308299  0.424804 0.443116  0.418772

BTC-GAS0rm 1.185938  0.424664  0.449693  0.457230

a=25%, DGS3-GAS 4 1.173423  0.282658 0.303105  0.299611
B=5% DGS3-gjrGARCHy,y  1.168969  0.054298  0.090789  0.070095

DGS3-gjrGARCH,;;¢ 1.167734  0.107154  0.125922  0.127943
DGS3-GARCH,;¢ 1.166746  0.917215 0.904864  0.909213
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Table 39 — Worst Realized Loss Function results covering all considered scenarios, using sig-
nificance levels of 1%, 2.5%, and 5%, with a rolling window of 1000 observations,
along with their respective p-value of each backtesting procedure.

Significance Levels  Asset-Model SRVar MF Test RC Test MFE Test
DGS3-GAS0rm 1.589034  0.509870 0.515721 0.526070
BTC-EGARCH,;¢ 1.205403 0.938455 0.933415 0.927145

a=1%, BTC-EGARCH,;, 1.201824  0.781007 0.786422 0.758332
B =5% BTC-EGARCHjy, 1.201473  0.935242 0.931138 0.933506
DGS3-GAS 4 1.195233  0.591042 0.530939 0.590893
DGS3-EGARCH,goy  1.194968  0.229714  0.140618 0.367403

DGS3-GAS.0rm 1.644496 0.453476  0.468582 0.454358
BTC-EGARCH,;, 1.234562 0.080551 0.072913 0.073077

o= 1%, BTC-EGARCH,;, 1.229478  0.625803  0.692924 0.667126
B=2.5% BTC-EGARCH jy, 1.229409  0.452150 0.442200 0.452997

DGS3-EGARCH,,oy  1.217861  0.559012  0.458387  0.543303
BTC-EGARCHg, 1.216277  0.556259  0.588511  0.601626

DGS3-GAS0rm 1.532448  0.622948  0.648268  0.662384

DGS3-GAS4 1.174773  0.414432  0.401065  0.415722

a=2.5%, BTC-EGARCH,;, 1.167796  0.592546  0.585741  0.563358
B=5% DGS3-EGARCH,,,y  1.166402  0.381381  0.290747  0.423106

BTC-EGARCHgeq 1.164232  0.904336  0.896048  0.900017
BTC-EGARCHy, 1.162938  0.366324  0.337173  0.352220
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5 Conclusions

Risk measures constitute pivotal quantitative tools for financial agents, such as portfolio
managers, investors, banks, and insurance industries. In recent years, risk measurement tech-
niques have gained significant prominence, driven by the increasing complexity of financial
markets and the need to comprehend and manage associated risks. By quantifying and forecasting
risk, companies reduce uncertainty, enabling, for instance, a more efficient allocation of resources
and the development of risk mitigation strategies. After all, the goal of measurement is to aim
for decision-making. In our study, we modified the definitions of Expected Shortfall backtesting
procedures based on exceedance residuals to make them effective for RVaR, a relatively new risk
measure with pleasing theoretical and statistical properties. To assess the extent of the adequacy
of these modifications, we conducted both numerical and empirical analyses. For the first, we
employed rolling window sizes of 250 and 1000 observations and out-of-sample sizes of 250
and 500 observations. In contrast, for the second, an extension of the rolling window to 500

observations was introduced. We used significance levels of 1%, 2.5%, and 5% for both.

Initially, we present the main conclusions about the numerical analysis. Firstly, we can
observe from the size and power tests that none of the proposed backtesting procedures display
significant superiority over the others, either being an option of equal or similar usefulness. Also,
the size and power of the tests deteriorate as 7' increases, with some exceptions. The highest
powers are observed at T = 250, emphasizing the significance levels of o« = 1%, f = 2.5%. Some
of the best sizes are also found at 7 = 250 but at the levels o = 2.5%, B = 5% for the nominal
level of 5%, and at the levels a = 1%, B = 2.5% for the nominal level of 10%. As n increases to
1000, the sizes deteriorate, and the powers improve across the nominal levels for data generated
with the Normal distribution. Both behaviours are particularly evident at the significance levels
of &« =1%,B =2.5%, and T = 250. Furthermore, the proposed methodologies generally exhibit
the best size tests primarily from null models with the normal distribution, emphasizing 1000
in-sample observations. When the data is generated by processes that capture the properties of
the financial assets (skewness or heavy tails), the proposed procedures exhibit higher powers

when RVaR predictions are conducted using the normal distribution.

In the empirical study, we note that, as the numerical analysis, none of the proposed
backtesting methods stand out over the others. Also, when we assess the resulting p-values of
the backtesting procedures jointly with the respective values obtained via the RVaR loss function,
we can assert that there is a greater agreement between the methods when looking at the best
scenarios. More precisely, when analyzing the data from the perspective of the p-values closer to
one, we observe predominantly small realized losses among those calculated. Similarly, from the
perspective of realized losses, the smaller scores exhibit significant p-values at a 5% significance

level. On the other hand, from the perspective of the p-values closer to zero, we predominantly
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observe small scores. From the perspective of realized losses, the worst predictions showed
significant p-values at 5%, with few exceptions. Hence, it becomes evident that the forecasts
attained exhibit a higher degree of alignment with the two methods when scrutinized within the
context of best-case scenarios while manifesting more pronounced divergences for the worst

cases, thus presenting limited relations between the processes.

Although we carried out comprehensive analyzes to evaluate the proposed methods, it is
essential to address the inherent limitations within the scope of this research. Due to technical
and time constraints, the GAS models could not be implemented in their entirety, serving as
the primary limiting factor of the Monte Carlo simulations applied in the study. Furthermore,
the construction of the p-value was approached numerically, not proposing an analytical form
and, therefore, a more robust backtesting procedure. For future research, we suggest advances
in the mentioned limitations, expanding the scope of the scenarios considered in the numerical
analysis, as well as the development of a more elaborate backtesting procedure, making use of a
more sophisticated statistical theory and, therefore, making it more efficient for the evaluation of

the risk predictions of the RVaR measure.
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APPENDIX A — Tables

Table 40 — Loss function results of Real/US Dollar using significance levels of 1%, 2.5%, and 5%; with 250, 500, and 1,000 rolling window observation

sizes.
n =250 \ n =500 \ n = 1000
Model a=1%B=5% a=1%B=25% a=25%B=5%| a=1%B=5% a=1%=25% a=25%B=5%| a=1%B=5% oa=1%p=25% o=2.5%p=>5%
GARCH,0m 1.045891 1.049365 1.048576 1.045998 1.049484 1.048672 1.047541 1.051173 1.050045
GARCH,,y 1.048213 1.052663 1.048711 1.048319 1.052820 1.048722 1.049853 1.054534 1.050000
GARCH, g 1.048002 1.052398 1.048582 1.048857 1.053446 1.049145 1.050670 1.055489 1.050621
GARCH,0rm 1.045754 1.049207 1.048468 1.046360 1.049909 1.048960 1.048120 1.051848 1.050509
GARCH,q 1.048683 1.053184 1.049716 1.048515 1.053029 1.049515 1.050499 1.055268 1.051167
GARCH,eg 1.048607 1.053066 1.049703 1.049354 1.053984 1.050209 1.051453 1.056358 1.051954
GARCHj, 1.047902 1.052273 1.048696 1.048969 1.053604 1.049315 1.050996 1.055912 1.050924
GARCH, ; 1.048147 1.052595 1.048969 1.049312 1.054023 1.049714 1.051332 1.056326 1.051322
EGARCH, 0 1.045359 1.048768 1.048114 1.045197 1.048609 1.047957 1.047005 1.050593 1.049563
EGARCH,; 1.047893 1.052266 1.048477 1.047833 1.052251 1.048350 1.050114 1.054828 1.050230
EGARCH,1g 1.048214 1.052646 1.048690 1.048638 1.053186 1.048968 1.051137 1.056020 1.051002
EGARCHj0mm 1.045435 1.048854 1.048182 1.045554 1.049023 1.048240 1.047576 1.051257 1.050022
EGARCH,,, 1.047694 1.051986 1.049004 1.048529 1.053052 1.049389 1.050174 1.054887 1.050909
EGARCH, 1.047982 1.052291 1.049296 1.048821 1.054367 1.049681 1.051578 1.056491 1.052071
EGARCH, 1.050445 1.054990 1.051010 1.048543 1.053104 1.049010 1.051530 1.056520 1.051375
EGARCH, ;, 1.048195 1.052656 1.048983 1.048871 1.053515 1.049376 1.051935 1.057009 1.051832
2itGARCH,,p 1.047217 1.051137 1.048237 1.045696 1.049144 1.048411 1.047460 1.051079 1.049980
girGARCH, 1.047977 1.052297 1.048075 1.048017 1.052460 1.048528 1.049658 1.054303 1.049870
2itGARCH,y, 1.047586 1.051831 1.047800 1.048580 1.053113 1.048974 1.050527 1.055315 1.050532
2itGARCH,yorm 1.047228 1.051143 1.048261 1.046147 1.049667 1.048778 1.048119 1.051845 1.050512
gitGARCH g 1.048079 1.052395 1.048452 1.048154 1.052609 1.049238 1.050279 1.055012 1.050999
girGARCH,geq 1.047889 1.052154 1.048335 1.049088 1.053676 1.050008 1.051324 1.056204 1.051861
girGARCH j,, 1.047744 1.052017 1.047998 1.048636 1.053205 1.049088 1.050915 1.055812 1.050876
gitGARCH,,;; 1.047756 1.052038 1.048051 1.048885 1.053524 1.049395 1.051200 1.056167 1.051229
GAS;ya 1.049672 1.054171 1.050308 1.048938 1.053345 1.049695 1.051694 1.056428 1.052016
GASnorm 1.048482 1.052178 1.050911 1.048501 1.052218 1.050914 1.047756 1.051383 1.050263
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Table 41 — Loss function results of Bitcoin using significance levels of 1%, 2.5%, and 5%; with 250, 500, and 1,000 rolling window observation sizes.

n =250 \ n =500 \ n = 1000
Model 0=1%B=5% o=1%P=25% a=25%Pp=5%| a=1%=5% a=1%F=25% a=25%L=5%| a=1%Pp=5% a=1%p=25% a=2.5%p=5%
GARCH,0n 1.139853 1.152148 1.132512 1.148147 1.161289 1.139878 1.158762 1.172726 1.149580
GARCHy;y 1.145191 1.162839 1.123219 1.149141 1.167484 1.125754 1.159041 1.178265 1.134720
GARCHjyg 1.146328 1.164118 1.124259 1.151452 1.170173 1.127564 1.162609 1.182449 1.137354
GARCH;orm 1.144006 1.156860 1.135997 1.153204 1.167006 1.144142 1.164464 1.179217 1.154349
GARCHgey 1.155464 1.174712 1.135862 1.162318 1.182850 1.140879 1.176099 1.198269 1.152543
GARCHjgeq 1.157633 1.177208 1.137545 1.166040 1.187140 1.143812 1.182580 1.205728 1.157717
GARCHjy, 1.154777 1.174606 1.130295 1.161164 1.182269 1.134425 1.173570 1.196086 1.144951
GARCH,;i 1.161950 1.183427 1.136412 1.168936 1.191871 1.141107 1.182608 1.207271 1.152482
EGARCH,,0m 1.149889 1.163061 1.141597 1.147374 1.160367 1.139238 1.158133 1.171966 1.149070
EGARCHy;q 1.157186 1.177067 1.130474 1.172447 1.195279 1.139285 1.190750 1.216277 1.152255
EGARCHjyq 1.160069 1.180439 1.132534 1.180633 1.205025 1.144505 1.201824 1.229478 1.159364
EGARCH0/m 1.151869 1.165341 1.143207 1.151959 1.165587 1.143073 1.163579 1.178169 1.153633
EGARCH,y 1.156325 1.175591 1.136948 1.166115 1.187266 1.143799 1.180824 1.203735 1.156128
EGARCHjgey 1.161353 1.181490 1.140539 1.173356 1.195683 1.149383 1.191133 1.215686 1.164232
EGARCH;j, 1.165485 1.187319 1.137420 1.182440 1.207613 1.148315 1.201473 1.229409 1.162938
EGARCH,;;, 1.170094 1.193124 1.141917 1.186137 1.212464 1.152672 1.205403 1.234562 1.167796
ZrGARCH 10 1.137505 1.149620 1.130387 1.146268 1.159177 1.138270 1.158554 1.172457 1.149466
grGARCH,;4 1.148458 1.166576 1.125682 1.148591 1.166774 1.125724 1.158250 1.177304 1.134257
girGARCH,4 1.150188 1.168569 1.127054 1.150544 1.169040 1.127258 1.161675 1.181308 1.136789
girGARCH 0 1.141212 1.153789 1.133554 1.150487 1.163975 1.141782 1.163888 1.178546 1.153885
girGARCH,q 1.155110 1.174229 1.135852 1.161260 1.181594 1.140107 1.175908 1.198011 1.152368
grGARCH,e 1.156463 1.175753 1.136901 1.164788 1.185657 1.142915 1.182744 1.205878 1.157842
grGARCH 1.155645 1.175521 1.131297 1.159766 1.180550 1.133692 1.172545 1.194823 1.144290
grGARCH, ;i 1.161602 1.182843 1.136682 1.167371 1.189964 1.140143 1.182016 1.206528 1.152049
GASgyq 1.149992 1.166244 1.133922 1.155052 1.172033 1.137764 1.169115 1.187538 1.149743
GASnorm 1.156511 1.170450 1.147281 1.199337 1.216890 1.185938 1.155732 1.169340 1.146886
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Table 42 — Loss function results of DGS3 using significance levels of 1%, 2.5%, and 5%; with 250, 500, and 1,000 rolling window observation sizes.

n =250 \ n =500 \ n = 1000
Model 0=1%B=5% o=1%P=25% a=25%Pp=5%| a=1%=5% a=1%F=25% a=25%L=5%| a=1%Pp=5% a=1%p=25% a=2.5%p=5%
GARCH,yorm 1.178484 1.193585 1.167983 1.171708 1.186282 1.161805 1.163817 1.177750 1.154599
GARCHy;y 1.186166 1.204851 1.167700 1.178467 1.196463 1.160999 1.170974 1.188009 1.155055
GARCHyyy 1.189424 1.208595 1.170373 1.182830 1.201601 1.164376 1.174718 1.192436 1.157923
GARCH;orm 1.180329 1.195731 1.169450 1.175269 1.190504 1.164589 1.167558 1.182159 1.157536
GARCHgey 1.183204 1.204621 1.152365 1.218456 1.248819 1.163904 1.174902 1.192715 1.159510
GARCHjgeq 1.186516 1.208165 1.159596 1.199320 1.225228 1.162857 1.178609 1.196993 1.162604
GARCHj, 1.190079 1.209531 1.170981 1.184355 1.203569 1.165552 1.175675 1.193678 1.158686
GARCH,y;, 1.190307 1.209898 1.171519 1.185358 1.204800 1.166746 1.176179 1.194286 1.159447
EGARCH,y0rm 1.178840 1.193886 1.168505 1.170431 1.184817 1.160785 1.162343 1.176129 1.153339
EGARCHy;q 1.188671 1.207524 1.170216 1.179299 1.197296 1.161924 1.166847 1.183304 1.151833
EGARCHjyq 1.194155 1.213994 1.174242 1.183793 1.202632 1.165272 1.169723 1.186754 1.153976
EGARCH0/m 1.182421 1.198034 1.171401 1.172775 1.187655 1.162528 1.164749 1.178999 1.155170
EGARCH,y 1.354467 1.410225 1.225097 1.344821 1.399846 1.216224 1.181164 1.200659 1.160181
EGARCHjgey 1.283317 1.321809 1.225902 1.273671 1.311429 1.217029 1.194968 1.217861 1.166402
EGARCHjy, 1.195017 1.215048 1.175405 1.184126 1.203172 1.165644 1.170530 1.187787 1.154663
EGARCH 1.196467 1.216766 1.177035 1.184513 1.203656 1.166406 1.171012 1.188348 1.155403
ZrGARCH 10 1.177781 1.192761 1.167452 1.171425 1.185966 1.161556 1.163301 1.177150 1.154139
grGARCH,;4 1.184953 1.203259 1.167279 1.178764 1.196575 1.161820 1.169688 1.186391 1.154410
grGARCH g 1.188305 1.207197 1.169953 1.183710 1.202406 1.165600 1.173192 1.190573 1.157084
girGARCH 0 1.180345 1.195756 1.169521 1.175046 1.190241 1.164403 1.166672 1.181136 1.156797
girGARCH,q 1.190563 1.213120 1.156505 1.220345 1.250801 1.165772 1.173311 1.190736 1.158503
grGARCH ey 1.190378 1.211869 1.164566 1.204826 1.230787 1.168969 1.175926 1.193777 1.160699
grGARCH 1.189558 1.208834 1.171229 1.185087 1.204171 1.166690 1.173953 1.191574 1.157682
grGARCH, ;i 1.189921 1.209306 1.171936 1.185945 1.205222 1.167734 1.174258 1.191942 1.158259
GASyy14 1.197593 1.217467 1.178171 1.192693 1.212318 1.173423 1.195233 1.215547 1.174773
GASnorm 1.203957 1.221539 1.190727 1.336191 1.366414 1.308299 1.589034 1.644496 1.532448
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Table 43 — Loss function results of Dow Jones Sustainability Index World using significance levels of 1%, 2.5%, and 5%; with 250, 500, and 1,000
rolling window observation sizes.

n =250 \ n =500 \ n = 1000
Model 0=1%B=5% o=1%P=25% a=25%Pp=5%| a=1%B=5% a=1%B=25% a=25%PL=5%| a=1%p=5% a=1%p=25% a=2.5%p=5%
GARCH,yorm 1.037366 1.040083 1.040899 1.035340 1.037888 1.039061 1.036137 1.038757 1.039766
GARCH,yy 1.039341 1.042840 1.041077 1.037660 1.041029 1.039575 1.038071 1.041450 1.040025
GARCHyyg 1.038704 1.042092 1.040627 1.037865 1.041270 1.039738 1.038531 1.041990 1.040371
GARCH;orm 1.036760 1.039383 1.040408 1.035274 1.037813 1.039010 1.036275 1.038915 1.039881
GARCHgqy 1.039444 1.042928 1.041723 1.037743 1.041094 1.040175 1.038284 1.041678 1.040670
GARCHjgeq 1.039232 1.042670 1.041574 1.038262 1.041698 1.040594 1.038956 1.042455 1.041209
GARCHj, 1.038629 1.042014 1.040678 1.037886 1.041320 1.039811 1.038639 1.042149 1.040477
GARCH,y;, 1.038669 1.042082 1.040780 1.038019 1.041493 1.040010 1.038794 1.042351 1.040677
EGARCH 101 1.036625 1.039209 1.040312 1.035514 1.038039 1.039278 1.036885 1.039551 1.040490
EGARCH,y 1.038334 1.041567 1.040577 1.036823 1.039957 1.039238 1.038019 1.041250 1.040399
EGARCHjyq 1.040243 1.043803 1.041940 1.038263 1.041651 1.040287 1.039314 1.042763 1.041375
EGARCHno/m 1.036717 1.039315 1.040388 1.035744 1.038305 1.039467 1.037225 1.039943 1.040770
EGARCHg,, 1.037901 1.041023 1.040704 1.036852 1.039968 1.039658 1.038268 1.041536 1.040911
EGARCHjg.y 1.039241 1.042561 1.041790 1.038358 1.041706 1.040872 1.039739 1.043233 1.042095
EGARCH 1.039505 1.042945 1.041544 1.038227 1.041636 1.040297 1.039455 1.042968 1.041454
EGARCH,;; 1.039415 1.042853 1.041560 1.038224 1.041641 1.040389 1.039576 1.043125 1.041602
ZrGARCH 10 1.036608 1.039223 1.040258 1.034769 1.037245 1.038583 1.035692 1.038259 1.039406
grGARCH,;4 1.037877 1.041058 1.040261 1.036063 1.039119 1.038588 1.036952 1.040084 1.039440
grGARCH 1 1.038384 1.041649 1.040656 1.036875 1.040073 1.039199 1.037874 1.041163 1.040138
girGARCH orm 1.036519 1.039126 1.040183 1.034971 1.037478 1.038750 1.035994 1.038606 1.039654
grGARCH¢y 1.038135 1.041358 1.040795 1.036380 1.039482 1.039186 1.037335 1.040532 1.040043
2jrGARCH ey 1.038926 1.042266 1.041440 1.037447 1.040717 1.040046 1.038484 1.041860 1.040964
grGARCH 1.038277 1.041552 1.040618 1.036996 1.040246 1.039295 1.038016 1.041366 1.040219
grGARCH, ;i 1.038562 1.041899 1.040832 1.037132 1.040419 1.039463 1.038186 1.041583 1.040395
GASyy14 1.039252 1.042574 1.041490 1.038032 1.041272 1.040376 1.038691 1.042024 1.040897
GAS norm 1.037627 1.040299 1.041221 1.036441 1.039005 1.040179 1.036245 1.038779 1.040012
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Table 44 — Loss function results of Euro/US Dollar using significance levels of 1%, 2.5%, and 5%; with 250, 500, and 1,000 rolling window
observation sizes.

n =250 \ n =500 \ n = 1000
Model 0=1%B=5% o=1%P=25% a=25%Pp=5%| a=1%B=5% a=1%B=25% a=25%PL=5%| a=1%p=5% a=1%p=25% a=2.5%p=5%
GARCH,yorm 1.024370 1.026093 1.029041 1.023888 1.025571 1.028609 1.023100 1.024711 1.027902
GARCHy;y 1.024813 1.026802 1.028896 1.024520 1.026529 1.028523 1.023904 1.025888 1.027894
GARCHyyg 1.025318 1.027387 1.029294 1.024953 1.027035 1.028856 1.024291 1.026340 1.028184
GARCH;orm 1.024666 1.026437 1.029279 1.024144 1.025868 1.028816 1.023278 1.024916 1.028048
GARCHgqy 1.025055 1.027065 1.029273 1.024757 1.026787 1.028927 1.024107 1.026103 1.028299
GARCHjgeq 1.025520 1.027599 1.029647 1.025250 1.027356 1.029320 1.024533 1.026593 1.028644
GARCHj, 1.025406 1.027506 1.029359 1.025044 1.027158 1.028922 1.024341 1.026415 1.028235
GARCH,;j 1.025489 1.027612 1.029440 1.025107 1.027239 1.029006 1.024443 1.026538 1.028357
EGARCH 101 1.024652 1.026241 1.029210 1.024265 1.025967 1.028963 1.023366 1.024989 1.028151
EGARCH,y 1.025253 1.027062 1.029361 1.025112 1.027166 1.029072 1.023934 1.025893 1.027984
EGARCHjyq 1.026092 1.028040 1.030001 1.025785 1.027947 1.029588 1.024447 1.026489 1.028375
EGARCHno/m 1.025272 1.026949 1.029724 1.024706 1.026471 1.029328 1.023606 1.025265 1.028348
EGARCH,y 1.025529 1.027374 1.029602 1.024989 1.027004 1.029189 1.024131 1.026094 1.028379
EGARCHjq 1.025869 1.027743 1.030013 1.025754 1.027882 1.029811 1.024641 1.026679 1.028792
EGARCH 1.026045 1.028001 1.029962 1.025832 1.028017 1.029634 1.024506 1.026571 1.028428
EGARCH 1.026088 1.028056 1.030013 1.025872 1.028067 1.029702 1.024562 1.026638 1.028519
ZrGARCH 10 1.024131 1.025826 1.028834 1.023634 1.025290 1.028384 1.023006 1.024603 1.027822
grGARCH,;4 1.024653 1.026626 1.028744 1.024350 1.026332 1.028397 1.023696 1.025636 1.027768
girGARCH,4 1.025209 1.027265 1.029186 1.024879 1.026945 1.028808 1.024099 1.026106 1.028073
girGARCH orm 1.024539 1.026297 1.029164 1.024006 1.025718 1.028689 1.023200 1.024827 1.027981
girGARCH,,q 1.024828 1.026803 1.029084 1.024544 1.026535 1.028764 1.023927 1.025881 1.028178
2jrGARCH ey 1.025369 1.027425 1.029524 1.025127 1.027208 1.029233 1.024382 1.026404 1.028546
grGARCH 1.025325 1.027383 1.029367 1.024982 1.027067 1.028900 1.024163 1.026195 1.028127
grGARCH, ;i 1.025692 1.027777 1.029731 1.025155 1.027248 1.029055 1.024250 1.026299 1.028236
GASyy14 1.026580 1.028823 1.030269 1.026649 1.028950 1.030185 1.026742 1.029057 1.030237
GAS norm 1.025356 1.027176 1.029917 1.025132 1.026936 1.029713 1.025284 1.027094 1.029862
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Table 45 — Loss function results of DGS10 using significance levels of 1%, 2.5%, and 5%; with 250, 500, and 1,000 rolling window observation sizes.

n =250 \ n =500 \ n = 1000
Model 0=1%B=5% o=1%P=25% a=25%Pp=5%| a=1%=5% a=1%F=25% a=25%L=5%| a=1%Pp=5% a=1%p=25% a=2.5%p=5%
GARCH,0n 1.102041 1.110485 1.099078 1.101044 1.109390 1.098160 1.102639 1111140 1.099582
GARCHy;y 1.104860 1.114494 1.099365 1.103981 1.113518 1.098589 1.105732 1.115456 1.100139
GARCHyyy 1.102726 1.111982 1.097678 1.102657 1.111943 1.097613 1.104249 1.113730 1.098961
GARCH;orm 1.101594 1.109943 1.098752 1.100682 1.108962 1.097880 1.102036 1.110435 1.099105
GARCHgey 1.105075 1.114468 1.100609 1.104196 1.113561 1.099720 1.106125 1.115729 1.101358
GARCHjgeq 1.103517 1.112678 1.099327 1.103030 1.112210 1.098772 1.104438 1.113782 1.099981
GARCHjy, 1.103549 1.112904 1.098577 1.103281 1.112649 1.098261 1.105047 1.114648 1.099716
GARCH,y;, 1.103908 1.113341 1.098939 1.103462 1.112869 1.098497 1.105147 1.114753 1.099920
EGARCH,,0m 1.101669 1.109991 1.098831 1.100020 1.108168 1.097340 1.100426 1.108658 1.097690
EGARCH,y 1.104333 1.113613 1.099479 1.102063 1111110 1.097478 1.102204 1.111333 1.097562
EGARCHjyq 1.102315 1.111262 1.097876 1.100252 1.109013 1.096017 1.100143 1.108931 1.095933
EGARCH0/m 1.100589 1.108718 1.097979 1.098504 1.106423 1.096091 1.098747 1.106700 1.096353
EGARCH,y 1.103384 1.112296 1.099610 1.101687 1.110520 1.097906 1.102558 1.111599 1.098556
EGARCHjgey 1.101934 1.110621 1.098425 1.101429 1.110106 1.097837 1.100677 1.109425 1.097026
EGARCHjy, 1.102759 1111718 1.098483 1.100545 1.109324 1.096413 1.100601 1.109436 1.096433
EGARCH 1.104035 1.113260 1.099411 1.100780 1.109610 1.096645 1.100635 1.109474 1.096536
ZrGARCH 10 1.100438 1.108689 1.097684 1.100557 1.108825 1.097758 1.102223 1.110643 1.099262
grGARCH,;4 1.103012 1.112343 1.098154 1.102859 1.112101 1.098003 1.104591 1.113997 1.099576
girGARCH,4 1.101350 1.110311 1.096885 1.101367 1.110336 1.096872 1.102923 1.112052 1.098259
girGARCH 0 1.099801 1.107925 1.097198 1.099681 1.107807 1.097059 1.101099 1.109329 1.098372
girGARCH,q 1.102798 1111795 1.098871 1.102908 1.111966 1.098865 1.104947 1.114273 1.100585
grGARCH ey 1.101545 1.110347 1.097851 1.101717 1.110605 1.097872 1.103198 1.112257 1.099150
grGARCH 1.102123 1.111157 1.097726 1.101728 1.110733 1.097304 1.103570 1.112788 1.098883
grGARCH, ;i 1.102310 1.111389 1.097946 1.100762 1.109704 1.096296 1.103628 1.112848 1.099021
GASgyq 1.111588 1.122272 1.104350 1.114440 1.125603 1.106413 1.117037 1.128465 1.108612
GASnorm 1.107138 1.116022 1.103706 1.143048 1.155292 1.135625 1.125852 1.136385 1.120595
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Table 46 — Loss function results of Gold using significance levels of 1%, 2.5%, and 5%; with 250, 500, and 1,000 rolling window observation sizes.

n =250 \ n =500 \ n = 1000
Model 0=1%B=5% o=1%P=25% a=25%Pp=5%| a=1%=5% a=1%F=25% a=25%L=5%| a=1%Pp=5% a=1%p=25% a=2.5%p=5%
GARCH,0n 1.041999 1.045294 1.044882 1.041501 1.044738 1.044448 1.039338 1.042395 1.042489
GARCH,yy 1.044908 1.049647 1.044293 1.044696 1.049408 1.044132 1.041783 1.046111 1.041871
GARCHyyy 1.046661 1.051669 1.045684 1.045782 1.050657 1.045001 1.042338 1.046758 1.042293
GARCH;orm 1.042998 1.046471 1.045661 1.042369 1.045748 1.045137 1.040125 1.043302 1.043129
GARCHgey 1.044683 1.049256 1.045400 1.044579 1.049128 1.045317 1.042058 1.046302 1.043209
GARCHjgeq 1.046479 1.051299 1.046899 1.045271 1.049894 1.045939 1.042417 1.046708 1.043515
GARCHjy, 1.047121 1.052270 1.046238 1.046297 1.051305 1.045610 1.042909 1.047467 1.042900
GARCH,y;, 1.047390 1.052619 1.046701 1.046610 1.051700 1.046106 1.043274 1.047914 1.043411
EGARCH,,0m 1.041823 1.045089 1.044721 1.041666 1.044920 1.044591 1.039302 1.042355 1.042455
EGARCHy;q 1.045558 1.050378 1.044791 1.044698 1.049373 1.044237 1.041616 1.045922 1.041748
EGARCHjyq 1.047112 1.052172 1.046022 1.045995 1.050865 1.045263 1.042220 1.046625 1.042205
EGARCH0/m 1.042765 1.046179 1.045476 1.042486 1.045866 1.045256 1.040075 1.043244 1.043090
EGARCH,y 1.044739 1.049263 1.045436 1.044235 1.048684 1.045138 1.041848 1.046059 1.043052
EGARCHjgey 1.045784 1.050413 1.046483 1.045076 1.049622 1.045874 1.042240 1.046503 1.043386
EGARCHjy, 1.047692 1.052885 1.046723 1.046296 1.051262 1.045716 1.042762 1.047300 1.042793
EGARCH,;;, 1.047700 1.052917 1.047010 1.046399 1.051407 1.046052 1.043093 1.047708 1.043278
ZrGARCH 10 1.041170 1.044372 1.044145 1.041316 1.044532 1.044281 1.039016 1.042041 1.042204
grGARCH,;4 1.044612 1.049297 1.044084 1.044500 1.049161 1.044024 1.041551 1.045848 1.041697
grGARCH g 1.046569 1.051555 1.045630 1.045541 1.050359 1.044856 1.042038 1.046412 1.042071
girGARCH 0 1.042068 1.045423 1.044851 1.042055 1.045395 1.044868 1.039704 1.042833 1.042762
girGARCH,q 1.043746 1.048159 1.044679 1.044095 1.048558 1.044947 1.041649 1.045834 1.042878
grGARCH,e 1.045699 1.050386 1.046230 1.044782 1.049319 1.045562 1.041944 1.046165 1.043132
grGARCH 1.046840 1.051917 1.046023 1.045977 1.050944 1.045421 1.042576 1.047082 1.042648
grGARCH, ;i 1.047277 1.052442 1.046567 1.046637 1.051788 1.046092 1.042902 1.047486 1.043122
GASyy14 1.045506 1.049913 1.046074 1.045840 1.050335 1.046184 1.044017 1.048379 1.044467
GASnorm 1.043087 1.046517 1.045808 1.043898 1.047438 1.046495 1.042450 1.045832 1.045233
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Table 47 — Loss function results of Ibovespa using significance levels of 1%, 2.5%, and 5%; with 250, 500, and 1,000 rolling window observation

sizes.
n =250 \ n =500 \ n = 1000
Model 0=1%B=5% o=1%P=25% a=25%Pp=5%| a=1%B=5% a=1%B=25% a=25%PL=5%| a=1%p=5% a=1%p=25% a=2.5%p=5%
GARCH,0m 1.060055 1.064984 1.061062 1.059841 1.064766 1.060863 1.060465 1.065481 1.061387
GARCH,yy 1.060857 1.066427 1.060396 1.061010 1.066639 1.060454 1.061821 1.067577 1.061097
GARCHyyg 1.062213 1.067989 1.061568 1.062129 1.067924 1.061389 1.062355 1.068196 1.061527
GARCHgnorm 1.061271 1.066434 1.061991 1.061275 1.066438 1.061997 1.061572 1.066777 1.062265
GARCHgqy 1.061400 1.066991 1.061324 1.061623 1.067310 1.061405 1.062673 1.068547 1.062220
GARCHjgeq 1.062874 1.068667 1.062585 1.063261 1.069168 1.062792 1.063612 1.069620 1.063007
GARCHjy, 1.062661 1.068534 1.061944 1.062934 1.068881 1.062034 1.062953 1.068918 1.062013
GARCH,;j 1.063072 1.069022 1.062318 1.063250 1.069258 1.062345 1.063271 1.069300 1.062326
EGARCH,,/ 1.060167 1.065072 1.061220 1.059500 1.064336 1.060625 1.059677 1.064554 1.060741
EGARCH,y 1.061477 1.067016 1.061147 1.060225 1.065676 1.059959 1.060868 1.066445 1.060380
EGARCHjyq 1.063238 1.069027 1.062616 1.061617 1.067275 1.061102 1.061475 1.067156 1.060858
EGARCHno/m 1.061594 1.066740 1.062357 1.060635 1.065670 1.061521 1.060527 1.065563 1.061405
EGARCHg,, 1.061575 1.067023 1.061663 1.060747 1.066202 1.060873 1.061542 1.067191 1.061368
EGARCHjg.y 1.062723 1.068303 1.062792 1.062340 1.068026 1.062200 1.062450 1.068240 1.062116
EGARCH 1.063640 1.069523 1.062954 1.062127 1.067899 1.061515 1.061880 1.067657 1.061186
EGARCH 1.064072 1.070048 1.063294 1.062361 1.068181 1.061750 1.062136 1.067967 1.061448
ZrGARCH 10 1.060116 1.065007 1.061172 1.059937 1.064825 1.060998 1.060454 1.065429 1.061424
grGARCH,;4 1.060804 1.066259 1.060600 1.060926 1.066456 1.060584 1.061593 1.067271 1.061024
girGARCH,4 1.062641 1.068388 1.062123 1.062303 1.068070 1.061737 1.062111 1.067879 1.061432
girGARCH orm 1.061521 1.066707 1.062277 1.061344 1.066469 1.062128 1.061203 1.066321 1.062000
girGARCH,,q 1.061113 1.066536 1.061315 1.061477 1.067043 1.061458 1.062349 1.068118 1.062058
2jrGARCH ey 1.062983 1.068702 1.062915 1.063050 1.068860 1.062788 1.063278 1.069183 1.062823
grGARCH 1.063253 1.069105 1.062699 1.062530 1.068370 1.061989 1.062630 1.068506 1.061851
grGARCH, ;i 1.063475 1.069366 1.062911 1.062517 1.068384 1.062041 1.062933 1.068870 1.062147
GASyy14 1.065239 1.071491 1.063689 1.065384 1.071690 1.063719 1.066949 1.073525 1.064859
GAS norm 1.063122 1.068365 1.063765 1.063978 1.069319 1.064519 1.064050 1.069398 1.064591
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Table 48 — Loss function results of S&P500 using significance levels of 1%, 2.5%, and 5%; with 250, 500, and 1,000 rolling window observation sizes.

n =250 \ n =500 \ n = 1000
Model 0=1%B=5% o=1%P=25% a=25%Pp=5%| a=1%=5% a=1%F=25% a=25%L=5%| a=1%Pp=5% a=1%p=25% a=2.5%p=5%
GARCH,yorm 1.036811 1.039817 1.039982 1.035479 1.038382 1.038770 1.036329 1.039300 1.039541
GARCH,yy 1.038924 1.042893 1.039892 1.037538 1.041380 1.038682 1.038778 1.042786 1.039646
GARCHyyy 1.041615 1.045981 1.042194 1.040056 1.044284 1.040784 1.040990 1.045343 1.041463
GARCH;orm 1.039591 1.043076 1.042182 1.038102 1.041456 1.040844 1.038549 1.041917 1.041279
GARCHgey 1.039627 1.043654 1.041129 1.038259 1.042157 1.039928 1.039395 1.043435 1.040872
GARCHjgeq 1.041999 1.046346 1.043165 1.040528 1.044734 1.041868 1.041212 1.045493 1.042434
GARCHjy, 1.042514 1.047101 1.042860 1.040973 1.045418 1.041485 1.041879 1.046442 1.042180
GARCH,;i 1.042835 1.047492 1.043226 1.041369 1.045901 1.041900 1.042269 1.046927 1.042591
EGARCH,y0rm 1.036752 1.039708 1.040002 1.035431 1.038291 1.038791 1.036195 1.039107 1.039489
EGARCH,y 1.038375 1.042124 1.039805 1.037002 1.040631 1.038613 1.038209 1.041999 1.039552
EGARCHjyq 1.041800 1.046092 1.042583 1.040432 1.044604 1.041385 1.041450 1.045758 1.042148
EGARCH0/m 1.039306 1.042707 1.042011 1.038083 1.041390 1.040900 1.038606 1.041933 1.041395
EGARCH,, 1.038477 1.042169 1.040499 1.037301 1.040931 1.039405 1.038580 1.042383 1.040433
EGARCHjgey 1.041472 1.045576 1.043064 1.040452 1.044517 1.042062 1.041354 1.045534 1.042791
EGARCHjy, 1.042490 1.046973 1.043089 1.041249 1.045635 1.041964 1.042279 1.046807 1.042740
EGARCH,;;, 1.042746 1.047282 1.043400 1.041491 1.045928 1.042262 1.042552 1.047142 1.043065
ZrGARCH 10 1.037488 1.040537 1.040633 1.036180 1.039121 1.039442 1.037111 1.040130 1.040290
grGARCH,;4 1.039283 1.043184 1.040508 1.037801 1.041579 1.039157 1.039128 1.043083 1.040208
girGARCH,4 1.042495 1.046892 1.043128 1.041008 1.045286 1.041784 1.042120 1.046548 1.042621
2irGARCHju0rm 1.040325 1.043856 1.042878 1.038906 1.042315 1.041603 1.039567 1.043014 1.042219
girGARCH,q 1.039754 1.043679 1.041480 1.038313 1.042117 1.040165 1.039708 1.043700 1.041308
grGARCH ey 1.042729 1.047055 1.044011 1.041279 1.045489 1.042689 1.042326 1.046668 1.043546
grGARCH 1.043336 1.047960 1.043730 1.041857 1.046356 1.042389 1.043012 1.047666 1.043286
grGARCH, ;i 1.043622 1.048296 1.044073 1.042152 1.046712 1.042734 1.043395 1.048132 1.043698
GASgyq 1.041152 1.045213 1.042341 1.039855 1.043798 1.041191 1.040580 1.044656 1.041687
GASnorm 1.043594 1.047299 1.045968 1.043722 1.047483 1.046033 1.044776 1.048596 1.047026
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Table 49 — Loss function results of STOXX Europe 600 using significance levels of 1%, 2.5%, and 5%; with 250, 500, and 1,000 rolling window
observation sizes.

n =250 \ n =500 \ n = 1000
Model 0=1%B=5% o=1%P=25% a=25%Pp=5%| a=1%B=5% a=1%B=25% a=25%PL=5%| a=1%p=5% a=1%p=25% a=2.5%p=5%
GARCH,yorm 1.040715 1.043968 1.043620 1.039374 1.042540 1.042384 1.039603 1.042774 1.042599
GARCHy;y 1.042327 1.046428 1.043291 1.041233 1.045317 1.042165 1.041703 1.045829 1.042582
GARCHyyg 1.045074 1.049612 1.045482 1.043675 1.048151 1.044114 1.044028 1.048532 1.044415
GARCH;orm 1.042984 1.046606 1.045443 1.041260 1.044743 1.043887 1.041188 1.044632 1.043850
GARCHgqy 1.042731 1.046842 1.044228 1.041517 1.045576 1.043078 1.041875 1.045959 1.043396
GARCHjgeq 1.045627 1.050172 1.046610 1.044039 1.048463 1.045166 1.044342 1.048793 1.045414
GARCHj, 1.045836 1.050566 1.046061 1.044345 1.048999 1.044612 1.044586 1.049255 1.044807
GARCH,y;, 1.046081 1.050885 1.046339 1.044612 1.049334 1.044928 1.044786 1.049510 1.045076
EGARCH 101 1.040196 1.043346 1.043233 1.038493 1.041514 1.041685 1.039761 1.042890 1.042829
EGARCH,;q 1.041600 1.045455 1.043028 1.039797 1.043543 1.041377 1.040950 1.044820 1.042381
EGARCHjyq 1.046375 1.051029 1.046589 1.043374 1.047677 1.044227 1.044399 1.048817 1.045093
EGARCHno/m 1.042577 1.046122 1.045132 1.040949 1.044362 1.043663 1.042104 1.045613 1.044703
EGARCH,y 1.041101 1.044781 1.043261 1.039821 1.043513 1.041925 1.041252 1.045126 1.043117
EGARCHjg.y 1.044960 1.049217 1.046416 1.043572 1.047795 1.045035 1.044830 1.049217 1.046058
EGARCH 1.045798 1.050374 1.046375 1.043972 1.048431 1.044668 1.045060 1.049659 1.045529
EGARCH 1.046330 1.051018 1.046867 1.044222 1.048731 1.044963 1.045246 1.049886 1.045776
ZrGARCH 10 1.041104 1.044361 1.044012 1.039518 1.042654 1.042569 1.040596 1.043832 1.043541
grGARCH,;4 1.042537 1.046540 1.043794 1.041004 1.044921 1.042320 1.042090 1.046127 1.043270
girGARCH,4 1.045733 1.050262 1.046301 1.044141 1.048558 1.044803 1.045133 1.049665 1.045654
girGARCH orm 1.043441 1.047085 1.045886 1.041839 1.045352 1.044436 1.042732 1.046320 1.045250
girGARCH,,q 1.042722 1.046695 1.044475 1.041162 1.045045 1.043005 1.042373 1.046406 1.044036
2jrGARCH ey 1.046082 1.050559 1.047225 1.044478 1.048843 1.045742 1.045644 1.050161 1.046719
grGARCH 1.046354 1.051038 1.046776 1.044776 1.049359 1.045272 1.045724 1.050423 1.046056
grGARCH, ;i 1.046612 1.051348 1.047073 1.044989 1.049620 1.045539 1.045948 1.050698 1.046333
GASgya 1.044724 1.049042 1.045544 1.042975 1.047151 1.043982 1.044124 1.048513 1.044781
GAS norm 1.044896 1.048569 1.047313 1.045261 1.049038 1.047572 1.054241 1.058920 1.055500
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Table 50 — Loss function results of WTI Crude Oil using significance levels of 1%, 2.5%, and 5%; with 250, 500, and 1,000 rolling window observation

sizes.
n =250 \ n =500 \ n = 1000
Model 0=1%B=5% o=1%P=25% a=25%Pp=5%| a=1%B=5% a=1%B=25% a=25%PL=5%| a=1%p=5% a=1%p=25% a=2.5%p=5%
GARCH,yorm 1.090657 1.098283 1.088639 1.093644 1.101559 1.091299 1.099629 1.108056 1.096694
GARCHy;y 1.093352 1.102958 1.086614 1.096713 1.106716 1.089404 1.102546 1.112947 1.095078
GARCHyyg 1.097808 1.108122 1.090052 1.101613 1.112430 1.093135 1.107837 1119111 1.099178
GARCHgnorm 1.092563 1.100493 1.090163 1.096094 1.104400 1.093276 1.103198 1.112187 1.099594
GARCHgqy 1.094970 1.104683 1.089500 1.097858 1.107914 1.091976 1.103968 1.114485 1.097634
GARCHjgeq 1.098631 1.108865 1.092499 1.102264 1.112978 1.095563 1.109838 1.121248 1.102402
GARCHj, 1.098979 1.109592 1.091108 1.102853 1.114002 1.094237 1.109155 1.120787 1.100174
GARCH,;j 1.099322 1.110034 1.091712 1.103129 1.114371 1.094793 1.109670 1.121421 1.100868
EGARCH 101 1.088125 1.095401 1.086489 1.089831 1.097295 1.087996 1.095298 1.103226 1.092905
EGARCH,y 1.095771 1.105776 1.087658 1.095520 1.105386 1.088111 1.098634 1.108405 1.092043
EGARCHjyq 1.105133 1.116756 1.094429 1.102931 1.114059 1.093526 1.104592 1.115359 1.096664
EGARCHno/m 1.091164 1.098915 1.088937 1.093106 1.101077 1.090661 1.099166 1.107714 1.096047
EGARCHg,, 1.091739 1.100800 1.087155 1.093901 1.103327 1.088829 1.099346 1.109148 1.093910
EGARCHjg.y 1.096964 1.106783 1.091442 1.099639 1.109912 1.093509 1.105877 1.116684 1.099220
EGARCH 1.101714 1.112737 1.093212 1.102180 1.113257 1.093561 1.105873 1.117006 1.097588
EGARCH 1.101508 1.112513 1.093487 1.101989 1.113078 1.093823 1.106204 1.117428 1.098115
ZrGARCH 10 1.087805 1.095068 1.086169 1.091437 1.099067 1.089420 1.097985 1.106191 1.095305
grGARCH,;4 1.091217 1.100369 1.085165 1.094629 1.104275 1.087889 1.100628 1.110657 1.093803
girGARCH,4 1.097319 1.107457 1.089834 1.100895 1.111593 1.092608 1.106567 1.117576 1.098401
girGARCH orm 1.090728 1.098432 1.088542 1.094420 1.102523 1.091840 1.101709 1.110510 1.098329
girGARCH,,q 1.091482 1.100560 1.086838 1.095067 1.104661 1.089802 1.101765 1.111882 1.095983
2jrGARCH ey 1.096748 1.106589 1.091156 1.100861 1.111306 1.094535 1.108363 1.119484 1.101333
grGARCH 1.098689 1.109188 1.091038 1.102213 1.113265 1.093759 1.107870 1.119243 1.099328
grGARCH, ;i 1.098698 1.109245 1.091277 1.102357 1.113471 1.094226 1.108245 1.119710 1.099887
GASyy14 1.097873 1.107705 1.091392 1.101457 1.111816 1.094109 1.111545 1.123126 1.102423
GAS norm 1.098416 1.106549 1.095849 1.105899 1.114702 1.102575 1.118494 1.128341 1.113967
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