

XXXV SALÃO de INICIAÇÃO CIENTÍFICA

6 a 10 de novembro

Evento	Salão UFRGS 2023: SIC - XXXV SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2023
Local	Campus Centro - UFRGS
Título	Fotocatálise de nanoparticulas metálicas suportadas por TiO2
Autor	MELLANYE FRANCYNNE GRAF
Orientador	MARCELO PRIEBE GIL

INTRODUÇÃO

O CO2 é um dos principais gases de efeito estufa, aquecendo o planeta e causando mudanças climáticas. Reduzir CO2 é crucial para limitar emissões e gerar combustíveis limpos. A fotocatálise, usando luz solar e catalisadores metálicos, é promissora na redução do CO2. Estudamos síntese e taxa de conversão do catalisador AuNb@TiO2, com ouro e nióbio em dióxido de titânio. Esse catalisador é ativo na redução de CO2 sob luz solar simulada. Investiga-se o efeito da composição e morfologia das nanopartículas. O líquido iônico (IL), composto orgânico líquido à temperatura ambiente, é usado como co-catalisador na redução de CO2. Hipótese: IL aumenta a seletividade e taxa de conversão do CO2 para ácido oxálico e fórmico, promovendo outras reações, como produção de hidrogênio e metano. O estudo contribui para novos materiais e processos de redução de CO2.

OBJETIVO

Comparar eficiência da redução de CO2 entre catalisador AuNb@TiO2 e IL@AuNb@TiO2, irradiados por lâmpada Xe300w por 4 horas. Objetivos específicos: sintetizar catalisadores por Sputtering, realizar reações em reator fechado com análise por GC e HPLC para medição de conversão, e investigar mecanismos por experimentos e cálculos teóricos.

ATIVIDADES DESENVOLVIDAS

Catalisadores AuNb@TiO2 e IL@AuNb@TiO2 sintetizados por Sputtering, técnica de deposição de materiais para recobrir superfícies. Reações ocorreram em reator de vidro com 10 mg de catalisador e 10 mL de água destilada, irradiados por 4 horas com lâmpada Xe300w. Conversão de CO2 e seletividade dos produtos analisadas por GC e HPLC. Confirmação da fixação de nanopartículas ao semicondutor por microscopia eletrônica.

CONCLUSÕES

Nanopartículas demonstraram alta atividade fotocatalítica na redução de CO2 em líquido iônico. Mecanismo envolve transferência de elétrons do Au para o Nb sob irradiação solar, gerando sítios ativos para a adsorção e redução do CO2. Além das conclusões experimentais, foi aprendido sobre funcionamento de laboratório, tratamento de dados e manuseio de equipamentos essenciais para pesquisadores na área de química, incluindo a calibração de cromatógrafos e o uso de HPLC.