

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE MEDICINA PROGRAMA DE PÓS-GRADUAÇÃO EM MEDICINA: CIRURGIA ÁREA DE CONCENTRAÇÃO: DEFEITOS DA PAREDE ABDOMINAL.

FIBRAS ELÁSTICAS DA PAREDE ABDOMINAL ANTERIOR EM PACIENTES COM HÉRNIA VENTRAL.

Tese apresentada à Faculdade de Medicina da Universidade Federal do Rio Grande do Sul para a obtenção do Título de Doutor em Medicina.

Orientador:

Prof. Dr. Manoel Roberto Maciel Trindade

PORTO ALEGRE

2010

F139f Fachinelli, Aldo

Fibras elásticas da parede abdominal anterior em pacientes com hérnia ventral / Aldo Fachinelli ; orient. Manoel Roberto Maciel Trindade. – 2010.

85 f. : il. color.

Tese (doutorado) – Universidade Federal do Rio Grande do Sul.

Faculdade de Medicina. Programa de Pós-Graduação em Medicina:

Ciências Cirúrgicas. Porto Alegre, BR-RS, 2010.

- 1. Hérnia ventral 2. Hérnia umbilical 3. Elastina 4. Parede abdominal
- 5. Tecido elástico I. Trindade, Manoel Roberto Maciel II. Título.

NLM: WI 955

Catalogação Biblioteca FAMED/HCPA

FIBRAS ELÁSTICAS DA PAREDE ABDOMINAL ANTERIOR EM PACIENTES COM HÉRNIA VENTRAL.

Esta Tese foi julgada adequada para a obtenção do grau de Doutor em Medicina pelo Programa de Pós-Graduação em Medicina: Cirurgia, da Universidade Federal do Rio Grande do Sul.

Orientador:

Prof. Dr. Manoel Roberto Maciel Trindade

Aprovada em 23 de agosto de 2010

BANCA EXAMINADORA

Profa. Dra. Lydia Masako Ferreira (UNIFESP)

Prof. Dr. Jorge Bins Ely (UFSC)

Prof. Dr. Pedro Bins Ely (UFCSPA)

Prof. Dr. Daniel de Carvalho Damin (UFRGS)

PORTO ALEGRE

2010

Aos meus pais
que me ensinaram desde cedo,
que não existem caminhos prontos a serem trilhados,
e que cabe a cada um abrir os seu,
por mais difícil que possa parecer.
A eles meu agradecimento
pela dedicação e esforço de sempre me ensinar que,
a educação constante, apesar de trabalhosa,
é a melhor maneira de conseguir sucesso profissional.

À minha esposa Maria Amélia e aos meus filhos Flávio e Bianca, que souberam compreender e me apoiaram em todas as etapas desta tarefa. "A ciência está longe de conhecer o mundo de uma maneira perfeita e adequeada; ela tem, no entanto, a pretensão legítima de descobrir para nós, em parte, a natureza e as suas leis."

Jovielt

AGRADECIMENTOS

Ao Professor Doutor MANOEL ROBERTO MACIEL TRINDADE

Professor Associado do Departamento de Cirurgia da Universidade Federal do Rio Grande do Sul, Chefe do Serviço de Cirurgia Digestiva do HCPA pela sua dedicação e constante orientação durante todo o período de elaboração desta Tese.

Ao Doutor EDUARDO PRETO SERAFINI

Patologista do Laboratório Diagnose de Caxias do Sul, que incansavelmente colaborou nas etapas iniciais do processo laboratorial.

À Doutora LUISE MEURER

Patologista do Laboratório Medicina Digital de Porto Alegre pelos trabalhos de laboratório e contagem computadorizada e coleta das imagens.

Ao Doutor FLAVIO AMORETTI FACHINELLI

Membro adjunto do Colégio Brasileiro de Cirurgiões que colaborou diretamente na coleta de material e na formatação das tabelas e gráficos bem como na revisão e diagramação desta tese.

À Professora Doutora ELIANA MARIA RESTUM ANTONIO

Chefe do Serviço de Cirurgia Geral da 17ª Enfermaria da Santa Casa de Misericórdia do Rio de Janeiro pelo inestimável apoio e pela oportunidade concedida para a realização deste trabalho.

À Professora Doutora GISELA MARIA VIEIRA RODRIGUES DE CARVALHO

Chefe de Clínica da 17^a Enfermaria do Hospital Geral da Santa Casa de Misericórdia do Rio de Janeiro, pela participação direta na coleta das amostras dos pacientes operados.

À MARILYN AGRANONIK

Estatística do Grupo de Pesquisa e Pós-Graduação do Hospital de Clínicas de Porto Alegre pelo auxílio e orientação na análise dos dados estatísticos e elaboração dos gráficos.

Ao Mestre e Doutorando em Engenharia **DANIEL AMORETTI GONÇALVES** pelo seu incansável trabalho na revisão dos gráficos e pela orientação nos trabalhos de estatística.

ABSTRACT

FACHINELLI, ALDO. Elastic fibers from the anterior abdominal wall in patients with ventral hérnias. Porto Alegre, 2010, 85p. Tese (Doutorado). Faculdade de Medicina da Universidade Federal do Rio Grande de Sul.

In the present study samples were collected from abdominal linea alba aponeurosis of 30 patients (15 males and 15 females) aged from twenty to sixty years [30-59], (Mean=44.9±SD=7.3), with hernia of the anterior abdominal wall to evaluate the immunohistochemistry expression and morphometry of the elastic fibers. Nine of the patients were submitted to surgery at the Hospital de Clínicas in Porto Alegre (HCPA), ten of then at the Santa Casa de Misericórdia do Rio de Janeiro (SCMRJ), seven of them at the author's private clinic (CA) in Caxias do Sul, and four of them at the Hospital Pompeia (HP) in Caxias do Sul. All patients had a hernia of the anterior abdominal wall. Fourteen of these cases were umbilical hernias, ten epigastric hernias and six incisional hernias. Specimens were collected from the midline three centimeters above the umbilical scar and from two centimeters below it. At the laboratory, the specimens were subdivided in two parts. One of these specimens was stained with orcein and the elastic fibers were counted by digital analysis using the applicative Image Pro Plus (Media Cybernetics, Silver Spring, USA). The other specimen was submitted to evaluation through immunohistochemistry analysis utilizing monoclonal anti-Emilin Antibody to EMILIN1 GP115 Elastin microfibril interface located protein TNF (Proteintech Group), in 1:100 dilution. Findings obtained from these patients were compared to findings obtained in a control group of non formolized cadavers from the Medical Examiner's Office of Caxias do Sul. In this cadaver control group without hernias, aged from twenty to sixty years [20-59] (Mean= 40.5±SD=11.8), the same studies were carried out as in the surgical group with hernias to evaluate the differences in quantity and morphometry of elastic fibers between the two groups. Results show that the total amount of elastic fibers was 35% higher in patients with hernia of the anterior wall of the abdomen than in the cadaver control group with no hernias (p<.05).

RESUMO

FACHINELLI, ALDO. **Fibras elásticas da parede abdominal anterior em pacientes com hérnia ventral.** Porto Alegre, 2010, 85p. Tese (Doutorado). Faculdade de Medicina da Universidade Federal do Rio Grande de Sul.

No presente trabalho foram colhidas amostras da aponeurose da linha Alba abdominal de 30 pacientes (15 homens e 15 mulheres) com idades entre vinte e sessenta anos [30-59], (Média=44,9±DP=7,3) e que eram portadores de hérnia da parede abdominal anterior para análise da expressão imuno-histoquímica e morfometria das fibras elásticas. Nove desses pacientes foram operados no Hospital de Clínicas de Porto Alegre (HCPA), 10 casos na Santa Casa de Misericórida do Rio de Janeiro (SCMRJ), 7 na Clínica Particular do autor (CA) em Caxias do Sul e guatro no Hospital Pompéia de Caxias do Sul (HP). Todos os pacientes eram portadores de hérnias da parede abdominal anterior, sendo 14 casos de hérnias umbilicais, 10 casos de hérnias epigástricas e 6 casos de hérnias incisionais. As amostras foram retiradas na linha média da linha alba, três centímetros acima da cicatriz umbilical e outra a dois centímetros abaixo dessa cicatriz. Uma vez no laboratório, as amostras foram subdivididas em duas. Uma delas foi submetida a coloração pela orceína e posterior contagem das fibras elásticas em microscópio, tendo sido utilizado o aplicativo Image Pro Plus (Media Cybernetics, Silver Spring, USA). A outra amostra foi processada por meio da imuno-histoquímica, com a utilização do anticorpo monoclonal anti-Emilin Antibody to EMILIN1 GP115 Elastin microfibril interface located protein TNF (Proteintech Group) na diluição de 1:100. Os achados obtidos nesses pacientes foram comparados com os achados obtidos em um grupo-controle de cadáveres não formolizados do Instituto Médico Legal de Caxias do Sul. No grupo-controle de cadáveres sem hérnias, com idades entre vinte e sessenta anos [20-59], (Media = $40.5 \pm DP = 11.8$), foram realizados os mesmos estudos dos pacientes cirúrgicos portadores de hérnias, para avaliar as diferenças das quantidades das fibras elásticas entre os dois grupos. Os resultados mostraram que as quantidades de fibras elástica eram 35% maiores nos pacientes com hérnias da parede anterior do abdome, quando comparados com o grupo controle de cadáveres sem hérnias (p<0,05).

LISTA DE FIGURAS

Figura 1: Local de obtenção das amostras	25
Figura 2: Abdominoplastia em paciente portadora de hérnia umbilical.	33
Figura 3: Hérnia epigástrica em paciente submetida à abdominoplastia.	34
Figura 4: Paciente portador de hérnica incisional.	35
Figura 5: Paciente nº 14, amostra superior. Fotomicrografia de amostra da aponeurose da linha alba. Imuno-histoquímica, imuno peroxidase; sistema avidina-biotina, 200 x. As fibras elásticas aparecem em tons marrons. Estão espessadas, torruosas e fragmentadas	36
Figura 6: Controle nº 9, amostra inferior. Fotomicrografia de amostra da aponeurose da linha alba. Imuno-histoquímica, imuno peroxidase; sistema avidina-biotina, 200 x. As fibras elásticas aparecem em tons marrons.	37
Figura 7: Paciente nº 17, amostra superior. Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200 x. As fibras elásticas aparecem na cor acastanhada ou marrom em dois feixes ao redor de fibras colágenas.	38
Figura 8: Controle nº 4, amostra superior. Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200 x. As fibras elásticas aparecem na cor acastanhada ou marrom.	39
Figura 9: Paciente nº 19, amostra inferior. Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200 x. As fibras elásticas aparecem na cor marrom escura. Apresentam-se bastante retorcidas e fragmentadas.	40
Figura 10: Controle nº 21, amostra superior. Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200 x. As fibras elásticas aparecem na cor marrom escura no canto superior esquerdo.	41
Figura 11: Paciente nº 3, amostra inferior. Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200 x. As fibras elásticas aparecem na cor marrom escura. Estão espessadas, tortuosas e fragmentadas.	42
Figura 12: Controle nº 28, amostra inferior. Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200 x. As fibras elásticas aparecem na cor acastanhada.	43
Figura 13: Tipos de hérnias por grupo etário.	47
Figura 14: Tipos de Hérnias segundo o sexo	48

Figura 15: Médias e intervalos de confiança (95%) dos teores de elastina na análise imuno-histoquímica nos controles e nos pacientes de acordo com o sexo.	49
Figura 16: Médias e intervalos de confiança (95%) dos teores de elastina na coloração pela orceína nos controles e nos pacientes de acordo com o sexo.	50
Figura 17: Médias dos teores de elastina e intervalos de confiança (95%) da imuno-histoquímica nos controles e nos pacientes por faixa etária.	51
Figura 18: Médias dos teores de elastina e intervalos de confiança (95%) na coloração pela orceína nos controles e nos pacientes por faixa etária.	52
Figura 19: Médias e intervalos de confiança (95%) dos teores de elastina na imuno-histoquímica e orceína nos controles e nos pacientes.	53

LISTA DE TABELAS

Tabela 1: Dados dos pacientes.	30
Tabela 2: Dados dos controles.	31
Tabela 3: Imuno-histoquímica dos controles, amostras inferiores. Número de pixels por campo amostral.	73
Tabela 4: Imuno-histoquímica dos controles, amostras superiores. Número de pixels por campo amostral.	74
Tabela 5: Imuno-histoquímica dos pacientes, amostras inferiores. Número de pixels por campo amostral.	75
Tabela 6: Imuno-histoquímica dos pacientes, amostras superiores. Número de pixels por campo amostral.	76
Tabela 7: Coloração pela orceína dos controles Número de pixels por campo amostral nas amostras inferiores.	77
Tabela 8: Coloração com orceína dos controles. Número de pixels por campo amostral nas amostras superiores.	78
Tabela 9: Coloração pela orceína dos pacientes. Número de pixels por campo amostral nas amostras inferiores.	79
Tabela 10: Coloração com orceína dos pacientes. Número de pixels por campo amostral nas amostras superiores.	80
Tabela 11: Imuno-histoquímica. Médias dos controles.	81
Tabela 12: Imuno-histoquímica. Médias dos pacientes.	82
Tabela 13: Orceína. Médias dos controles.	83
Tabela 14: Orceína. Médias dos pacientes	84

ABREVIATURAS

IML Instituto Médico Legal

HCPA Hospital de Clínicas de Porto Alegre

UFRGS Universidade Federal do Rio Grande do Sul

SCMRJ Santa Casa de Misericórdia do Rio de Janeiro

HP Hospital Pompéia

CA Clínica do Autor

cm centímetros

μm micrômetro

nm nanômetro

HR hérnia

DV desvio padrão

SD standart deviation

MAGP microfibrilina associada à glicoproteína

mRNA ácido ribonucléico mensageiro

LOX lisil oxidase

LOXL lisil oxidase like

rbTE tropoelastina recombinante

C carbono

DNA ácido desoxirribonucléico

SUMÁRIO

Abstract

Resumo

Lista de figuras

Lista de tabelas

Abreviaturas

1 INTRODUÇÃO	01
2 JUSTIFICATIVA	08
3 OBJETIVOS	11
4 REFENCIAL TEÓRICO	13
5 MÉTODOS	22
5.1 Delineamento	26
5.2 População e amostra	27
5.3 Abrangência da amostra	28
5.4 Procedimentos	28
5.5 Análise estatística	44
5.6 Aspectos éticos	44
6 RESULTADOS	45
7 DISCUSSÃO	54
8 CONCLUSÕES	61
9 REFERÊNCIAS	64
10 ANEXOS	70

INTRODUÇÃO

1. INTRODUÇÃO

As hérnias da parede anterior do abdome, epigástricas, umbilicais e incisionais pela sua menor incidência, em comparação com hérnias inguinais, têm sido pouco estudadas até a presente data. As cirurgias utilizadas na reparação destas hérnias, em muitas ocasiões, não conseguem êxito quando ocorrem as recidivas, o que contribui, a longo prazo, com a morbidade das cirurgias convencionais. Mesmo estando bem estabelecidas as técnicas de tratamento das hérnias, o reparo cirúrgico destes defeitos ainda representa importante problema para o cirurgião abdominal¹.

As técnicas para correção das hérnias da parede anterior do abdome dependem de um perfeito entendimento da anatomia da região, especialmente das aponeuroses, e do direcionamento das fibras que as compõe². O entendimento da orientação das fibras conjuntivas na parede abdominal ocasionou o surgimento de novos conceitos sobre a etiologia e de novas técnicas para a sua correção cirúrgica³⁻⁶. Ainda se discute quais as melhores incisões no sentido de prevenir ou se evitar as hérnias incisionais que freqüentemente comprometem o resultado das cirurgias da parede anterior do abdome⁷.

Normalmente as hérnias da parede abdominal são vistas como um problema mecânico com um defeito localizado que deve ser reparado por medidas técnicas. Apesar da introdução de muitos aprimoramentos técnicos, as hérnias recidivantes ainda aparecem em 10-15% dos casos operados. Ainda se pensa que a recidiva depende principalmente da qualidade do reparo efetuado. Recentes achados biológicos e moleculares oferecem uma crescente evidência de alterações biomecânicas desconhecidas nos pacientes com hérnias recidivantes⁸.

Dentre os inúmeros fatores que podem determinar o fracasso na cicatrização nas cirurgias da parede abdominal estão incluídos os fatores que interferem na formação e na quantidade das fibras elásticas e colágenas^{9,10}, existindo assim uma possível relação entre as alterações do colágeno e da elastina na comparação de tecidos corporais normais com os patológicos¹¹.

Uma significativa diminuição da quantidade do colágeno e um aumento da quantidade de fibras elásticas foi encontrada na fáscia transversal de pacientes com hérnia inguinal direta em comparação com pacientes com hérnia inguinal indireta. A fáscia transversal obtida de pacientes com hérnia inguinal direta apresentava alterações estruturais das fibra elásticas podendo assim contribuir para o aparecimento das hérnias nesta região 12.

Pacientes sem hérnia inguinal apresentam um colágeno compacto e distribuído homogeneamente na derme profunda. Em contraste, os pacientes com hérnia apresentam zonas de colágeno fino e desagregado. O tecido conjuntivo mostra um aspecto frouxo nos pacientes com hérnia. A densidade das fibras colágenas se encontra 52% menor no grupo portador de hérnia inguinal. Com relação às fibras elásticas, não foram encontradas diferenças na densidade e na distribuição entre os dois grupos 13.

A densidade das fibras elásticas maduras e elaunínicas apresentam um aumento progressivo em relação à idade, mas há uma menor quantidade de fibras oxitalâmicas no diafragma, no músculo reto abdominal e na fáscia muscular. Estas alterações quantitativas e estruturais relacionadas com a idade podem reduzir as propriedades visco elásticas do músculo do diafragma e dos reto abdominais, o que pode afetar a força máxima total destes músculos¹⁴.

A análise histopatológica de espécimes cirúrgicos em pacientes submetidos a cirurgias estéticas das pálpebras (FES= floppy eyelid syndrome) mostra que além dos casos inespecíficos de inflamação crônica, havia uma

significativa diminuição do teor de elastina na placa tarsal e na pele das pálpebras em comparação com os controles operados de carcinoma basocelular das pálpebras. As fibras elásticas residuais nos pacientes com FES revelaram uma ultra-estrutura anormal com diminuição do núcleo da elastina 15.

O tecido elástico é composto por duas proteínas, a fibrilina e a elastina. Estas duas proteínas formam três tipos de fibras: as fibras oxitalâmicas, as fibras elaunínicas e as fibras elásticas maduras. As fibras oxitalâmicas, que são formadas por microfibrilas de fibrilina, caracterizam-se como um molde que. combinando-se com a elastina, formam as fibras elaunínicas. As fibras elaunínicas vão acumulando maiores quantidades de elastina até se transformarem nas fibras elásticas maduras. O principal componente das fibras elásticas é a elastina, material protéico insolúvel e mais resistente que o colágeno. A elastina é responsável pela elasticidade das fibras do tecido elástico, constituindo aproximadamente 5% do peso seco da pele. As fibras denominadas oxitalâmicas são consideradas pré-elásticas, imaturas, ou modificadas, por não apresentarem elastina e estão presentes em zonas submetidas a altas tensões, tais como ligamentos e tendões. Os fibroblastos sintetizam glicoproteinas microfibrilares carregadas negativamente, formando as fibras oxitalâmicas e a tropoelastina, carregada positivamente. A tropoelastina é a precursora solúvel da elastina, e é atraída por forças eletrostáticas negativas através do molde de micro fibrilas para formar as fibras elaunínicas. As fibras elásticas não são bem identificadas pela coloração com hematoxilina-eosina e se consegue um melhor resultado com a coloração pela orceína que resulta em uma cor vermelho acastanhada¹⁶.

A expressão imuno-histoquímica das fibras elásticas pode ser obtida pela utilização de anticorpo monoclonal específico para elastina ou pelo uso de anticorpo policional contra tropoelastina humana, que é a subunidade solúvel responsável pela formação da porção amorfa da elastina 17.

Muitos trabalhos foram realizados no intuito de mostrar a relação do desarranjo da estrutura fibrilar da elastina com as hérnias da parede abdominal e outras doenças dos tecidos corporais¹¹⁻¹⁵.

As fibras elásticas são responsáveis pela elasticidade e resiliência (capacidade de recuperar a forma inicial) nos tecidos de muitos vertebrados, e o arranjo inadequado das fibras elásticas implica em muitas doenças humanas. Alguns autores mostram que a formação das fibras elásticas interfere na correção da ação e na mobilidade de um grande número de células 18.

O arranjo das fibras elásticas com as isoformas da tropoelastina pode ser caracterizado em um modelo *in vitro* levando a muitas informações sobre a etiologia de doenças humanas como o enfisema e a aterosclerose¹⁹.

As proteínas da matriz extra-celular tem um papel importante na cicatrização das lesões dérmicas pela mediação das interações da matriz celular, restabelecendo a arquitetura da derme e também do ambiente próximo da lesão²⁰.

A ausência focal de fibras elásticas é uma característica bem definida de três raras e semelhantes condições clínicas: o nevus anelástico, a elastorrexe papular e o colagenoma eruptivo. Estas três doenças poderiam ser simplesmente referidas como elastorrexe papular devido a perda da elasticidade das fibras elásticas²¹.

Os componentes fibrosos da matriz extracelular são categorizados em dois sistemas: o sistema colágeno fibrilar, como uma rede de suporte dos tecidos e das células, e o sistema micro-fibro-elastina com a distribuição uniforme das forças para manter a resiliência adaptada as exigências dos tecidos locais²².

A utilização da orceína na coloração das fibras elásticas, seguida da oxidação por permanganato (modificação de SHIKATA) foi revisada em trabalho desenvolvido por HENWOOD. As variações de performance nas colorações dependem do tipo de banho e dos tempos de coloração. A coloração das fibras elásticas com orceína mais as modificações de SHIKATA produzem lâminas consistentes e com alta qualidade²³.

JUSTIFICATIVA

2. JUSTIFICATIVA

O impulso para se estudar a causa ou as causas das hérnias da parede abdominal e de outras deformidades como hérnias incisionais e deiscências de suturas, partiu da dúvida: qual a relação entre as variações das quantidades e o arranjo das fibras elásticas na linha alba com as hérnias da parede abdominal anterior?

Os defeitos da parede abdominal, congênitos ou adquiridos, muitas vezes determinam seqüelas de caráter fisiológico e também de caráter estético. Os tratamentos atuais para a correção dessas patologias exigem um conhecimento aprofundado da anatomia, especialmente da disposição das estruturas a serem

abordadas, com suas variações morfológicas, e também exigem conhecimentos de histologia como mecanismo de compreensão dos processos fisiológicos e da cicatrização.

Assim, poderiam ser formuladas algumas hipóteses, como: pacientes portadores de hérnias têm alteração na quantidade das fibras elásticas na linha alba. Ou ainda: existem diferenças nas quantidades, nos arranjos e na morfologia das fibras elásticas entre pacientes portadores de hérnias da parede abdominal anterior e em cadáveres sem hérnias.

A proposta de avaliação das fibras elásticas na linha alba, em pacientes com hérnias e em cadáveres sem hérnias, não foi encontrada na literatura consultada até o momento. Assim, essa linha de pesquisa poderá acrescentar dados novos à real compreensão da etiologia das hérnias abdominais.

OBJETIVOS

3. OBJETIVOS

Identificar as quantidades das fibras elásticas na aponeurose da linha Alba de pacientes portadores de hérnias da parede anterior (epigástricas, umbilicais e incisionais) comparando os achados com os de um grupo controle de cadáveres sem hérnias.

REFERENCIAL TEÓRICO

4. REFERENCIAL TEÓRICO

BOENTE e colaboradores²⁴ descreveram as alterações patológicas de um paciente portador da síndrome da pele enrugada com pouca elasticidade da pele do abdome, no dorso das mãos e pés, aumento das pregas da pele nas mãos e pés e um proeminente padrão venoso sobre o peito. Ao exame microscópico de amostras de pele, foi encontrada grande heterogeneidade na estrutura, nas quantidades e no padrão de deposição das fibras elásticas. As principais alterações estruturais eram a aglutinação e a fragmentação dos componentes micro fibrilares e uma grande diminuição da elastina como o principal fator.

OZDOGAN et al ²⁵ realizaram um estudo comparativo entre dois grupos: um grupo com vinte pacientes com hérnia inguinal (HR) sendo 11 diretas e 9 indiretas e um grupo controle de 9 pacientes operados de colecistectomia (CC) aberta. As amostras foram colhidas na pele, bainha dos reto abdominais, fascia transversal e peritônio. Eles utilizaram a coloração de *Masson's trichrome* para o colágeno e a coloração de *van Gieson* para as fibras elásticas que foram depois contadas em microscópio convencional. Nas amostras da bainha dos reto abdominais do grupo CC havia um maior teor de colágeno e fibras elásticas do que no grupo HR. Nas amostras do peritônio do grupo CC havia uma quantidade significativamente maior de colágeno. No entanto, não havia diferença estatisticamente significativas nos teores de colágeno e fibras elásticas nas amostras de pele, da bainha dos retos, da fáscia transversal e do peritônio, quando comparados os casos de hérnia direta e indireta. Sugeriam também estudos mais amplos para melhor confiabilidade dos resultados.

As fibras elásticas são compostas pela proteína elastina e uma rede de microfibrilas de 10-12nm. As proteínas microfibrilares incluem, entre outras, as fibrilinas e microfibrilinas-associadas à glicoproteina-1 (MAGP-1) e glicoproteina-2 (MAGP-2). Muito pouco se sabe sobre como as proteínas microfibrilares interagem para suportar o feixe de fibras. A análise por eliminação dos clones parciais para fibrilina-1 e fibrilina-2 revelou a presença de um fator de crescimento epidermal cálcio-dependente que se repetia na região próxima ao terminal C, que é o responsável pela ligação interfibrilar. Os resultados

mostraram que a MAGP-2 interage especificamente com a fibrilina-1 e fibrilina-2 e sugere que a MAGP-2 pode ajudar na união do feixe de microfibrilas²⁶.

Os coágulos sanguíneos têm uma importante função mecânica nos processos cicatriciais, porém o comportamento mecânico das fibras de fibrina, que formam a rede estrutural do coágulo, ainda é pouco conhecido. Utilizando microscópio atômico com luz fluorescente, determinou-se os limites elásticos de extensibilidade das fibras de fibrina individualmente. As fibras de fibrina podem ser distendidas 180% sem permanecerem estiradas após a tração, sendo seu ponto de ruptura médio de 330% (máximo de 525%). É a maior distensibilidade observada em fibras de proteína. Estes dados indicam que os monômeros de fibrina são capazes de sofrer modificações reversíveis no seu tamanho e que estas deformações nos coágulos podem ser acomodadas pela distensão das fibras individualmente²⁷.

As moléculas de elastina se agregam no espaço extracelular, onde tem ligações cruzadas por pontes de desmosina estáveis. O polímero resultante está estruturalmente organizado como ramos de fibras e lamelas, as quais, na pele são mais largas na derme profunda e se tornam progressivamente mais finas na direção da derme papilar. Vários fatores locais ou gerais, parecem regular a expressão, deposição e degradação do gene da elastina. Na pele, a densidade do volume da rede de elastina aumenta desde o nascimento até a idade madura, quando elas representam cerca de 3-4% do tecido da pele. No entanto, a sua

quantidade e distribuição dependem da área da derme, que é diferente entre os indivíduos e se modifica com a idade²⁸.

As fibras elásticas da derme parecem ter uma função primária promovendo a distensão e retração da pele. Alguns autores compararam o arranjo estrutural das fibras elásticas da derme de pintos e de diferentes espécies animais. As fibras com maior elasticidade na pele de pintos derivam de células que estão junto do folículo das penas e/ou músculos lisos, que conectam as fibras dos músculos aos folículos das penas. As fibras elásticas na derme de animais com folículos primários únicos de pêlo, derivam de células que estão junto aos folículos, ou nas extremidades do músculo piloso. Folículos de animais com primários ou secundários folículos de pêlo (lã de ovinos), são também interligados por fibras elásticas. A pele humana, mas não a pele de outros primatas, é significativamente diferente da de outros animais com respeito a organização das fibras elásticas e da sua provável célula de origem. Este fato sugere que a principal função das fibras elásticas nos animais, com a possível exceção dos humanos, é o movimento e/ou a disposição das penas e dos pêlos²⁹.

As fibras elásticas da matriz extracelular são componentes integrantes dos tecidos conectivos da derme. A resiliência e elasticidade exigidas pela estrutura normal e pela função da pele podem ser atribuídas a rede de tecidos elásticos. Avanços no entendimento da fisiologia do tecido elástico proporcionam os fundamentos para estudar a patogênese das desordens dos tecidos elásticos.

Muitas doenças adquiridas são, contudo, pouco entendidas devido a pobreza de casos relatados na literatura. Diversas desordens adquiridas foram recentemente publicadas nas quais o acúmulo ou a degeneração elastótica das fibras elásticas da derme produz aspectos clínicos e histopatológicos importantes. Estas desordens incluem o elastoderma, a elastose linear focal e a elastose focal dermal de início tardio e podem ser diferenciadas de doenças bem conhecidas como o pseudoxantoma elástico, a elastose perfurante serpiginosa e a Síndrome de *Favré-Racouchot* (elastose nodular com cistos e comedões) ³⁰.

A produção de elastina insolúvel, o maior componente das fibras elásticas, pode ser modulada por numerosos fatores intrínsecos e exógenos. Pelo fato de que pacientes com doenças hemolíticas caracterizadas pela flutuação da concentração de ferro desenvolverem fibras elásticas defeituosas, especula-se que o ferro pode também modular a eslastogênese. O tratamento de fibroblastos de pele humana com baixas concentrações de ferro 2-20 mícron (amônio citrato férrico) induz a um aumento significativo na síntese da tropoelastina e na produção de elastina insolúvel. O tratamento com quelante do ferro intracelular desferrioxamina ocasiona uma diminuição significativa do mRNA da elastina, com consegüente inibição no depósito da mesma, concluindo-se, portanto, que o ferro facilita a expressão do gene da elastina. Um efeito oposto é obtido com altas concentrações de ferro (100-400 mícron) que resulta em uma diminuição significativa da mensagem de estabilidade da elastina. Especula-se o que poderia acontecer na produção de fibras elásticas com a utilização de concentrações extremas de ferro intracelular³¹.

A formação das fibras elásticas envolve a secreção de tropoelastina, que se converte em elastina insolúvel, por ligação cruzada (*cross-linking*) que se inicia pela desaminação oxidativa dos resíduos de lisina pela lisil-oxidase (LOX). Foram descobertos cinco genes da lisil-oxidase. Para isto, se analisa a expressão de duas isoformas, *LOX* e *LOX-like* (*LOXL*), no prepúcio humano e em um modelo de pele equivalente humano (SE) que permite a formação de fibras elásticas. Neste ensaio foram acrescentados queratinócitos na SE feita pelo crescimento de fibroblastos em uma matriz de *chitosan-cross-linked* de colágeno glicosamino-glicano (GAG). Foram detectados *LOX* e *LOXL* por imuno-histoquímica na derme e epiderme de pele normal e SE. Estes dados apóiam o papel da *LOXL* na formação de fibras elásticas, junto com a *LOX* e a epiderme onde estas duas enzimas poderão ter um papel na modificação póstranslacional de substratos ainda desconhecidos³².

O alinhamento das moléculas de tropoelastina no processo da elastogênese parece necessitar de microfibrilas que contenham fibrilina. Foi demonstrado que os domínios do terminal-amino de duas proteínas microfibrilares, a fibrilina-1 e fibrilina-2, interagem com a tropoelastina nas ligações da fase sólida. O sítio da tropoelastina-ligada é encontrado em um local que começa em uma região rica em glicina e rica em prolina da fibrilina-2 e fibrilina-1, respectivamente, e continuam através do segundo sítio da 8-cisteina. A ligação entre a tropoelastina e a fibrilina é mediada por interações iônicas envolvendo o lado lisina das cadeias de tropoelastina. Assim, sugere-se que a fibrilina tem um papel importante nos feixes de fibras elásticas ligando a

tropoelastina e talvez facilitando o alinhamento das cadeias laterais por uma eficiente ligação cruzada³³.

Os protocolos de purificação da elastina ocasionam grandes lesões nas fibras elásticas com grande influência na resposta biológica. Um novo protocolo foi proposto para o isolamento da elastina mantendo as fibras intactas e introduzindo o termo "fibra de elastina" para fibras elástica intactas tendo como seu único componente a elastina. Ao contrario das fibras elásticas, as fibras de elastina não contem nenhuma microfibrila ou moléculas associadas. As fibras de elastina foram isoladas do ligamento elástico de egüinos de acordo com vários protocolos e analisados por eletroforese pelo gel de sódio duodecil sulfato de poliacrilamida, quantificação de aminoácido, teste de imunoflorescência, transmissão/escaneamento por microscopia eletrônica e reatividade celular in vivo. O melhor protocolo incluía várias etapas de extração e digestão por tripsina. As fibras de elastina ficaram livres de contaminantes e tinham uma aparência lisa e regular. A resposta celular para as fibras de elastina purificadas e intactas é diferente em comparação com as fibras purificadas mas lesionadas ou contaminadas. As fibras intactas contendo unicamente elastina são importantes para pesquisas como engenharia tissular, que exige preparações bem definidas para o estudo do efeito biológico celular dos componentes do ser humano³⁴.

Investigou-se os passos iniciais dos agrupamentos de fibras elásticas, usando um modelo de agrupamentos *in vitro* com tropoelastina recombinante

purificada (rbTE) que foram adicionados em células mortas e vivas. A habilidade da tropoelastina de se associar com fibras elásticas pré-existentes ou microfibrilas na matriz extracelular foi investigada em microscopia imunofluorescência usando anticorpos com especificidade para tropoelastina. Os resultados mostram que rbTE pode se associar com componentes de fibra elástica na ausência de células vivas, através de um processo que não depende da formação de ligações cruzadas. O estudo mostrou a transformação das proteínas depositadas, de uma aparência inicial globular com início cedo na cultura, passando pela formato de uma estrutura mais fibrosa indo até a forma final de matrizes maduras. A deposição de proteínas necessita de uma região Cterminal de tropoelastina e uma correlação com a presença de fibras elásticas preexistentes, ou de micro fibrilas. A associação de tropelastina adicionada de maneira exógena à matriz extracelular foi inibida pela adição de açucares de sulfato de heparina, mas não com a adição de sulfato de condroitina. Estes resultados sugerem que a matriz elaborada pela célula é suficiente para a deposição inicial de tropoelastina no espaço extracelular e que o conjunto da elastina pode ser influenciado pela deposição de proteoglicanos sulfatados na matriz³⁵.

MÉTODOS

5. MÉTODOS

Foram avaliados trinta pacientes portadores de hérnias da parede anterior do abdome submetidos a cirurgias no hospital de Clínicas de Porto Alegre no serviço de Professor Dr. Manoel Roberto Maciel Trindade (nove casos), na 17ª Enfermaria da Santa Casa de Misericórdia do Rio de Janeiro, no serviço de Cirurgia Geral da Professora Eliana Maria Restum Antonio (dez casos), na Clínica do Autor (sete casos) e no Hospital Pompéia de Caxias do Sul (quatro casos). Destes pacientes, quatorze foram operados de hérnia umbilical, dez de hérnia epigástrica e seis de hérnias incisionais.

Em doze destes pacientes a cirurgia para correção das hérnias (oito epigástricas e quatro umbilicais) ocorreu por ocasião de uma abdominoplastia com plicatura dos reto abdominais sem utilização de telas aloplásticas. A cirurgia das hérnias em onze pacientes (seis incisionais e cinco umbilicais) foi realizada com a utilização de tela de polipropileno. As hénias incisionais apareceram entre dezoito meses e cinco anos após a cirurgia abdominal primária. Em sete casos de hérnia umbilical, a cirurgia foi realizada sem utilização de tela.

No grupo controle foram incluídos trinta cadáveres sem hérnias do Instituto Médico Legal de Caxias do Sul. Em ambos os grupos, quinze indivíduos eram do sexo masculino e quinze do sexo feminino.

Nos pacientes e nos controles, em um ponto situado a 3cm acima da margem superior e a 2cm abaixo da margem inferior da cicatriz umbilical, foi traçada uma linha horizontal em toda a largura da linha alba. (Figura 1).

Tem-se assim uma linha superior (LS) e uma linha inferior (LI). Acima da LS e abaixo da LI foi retirado um retalho de 0.5cm de largura por 1cm de altura na região média da linha alba, que foi utilizado para as avaliações laboratoriais.

As análises se desenvolveram no Laboratório de Medicina Digital LTDA de Porto Alegre, sob a supervisão da Dra. Luise Meurer segundo o seguinte protocolo: o material foi submetido ao processamento histológico de rotina, com banhos em soluções de concentração crescente de álcool, seguidos de banhos de xilol e embebição em parafina.

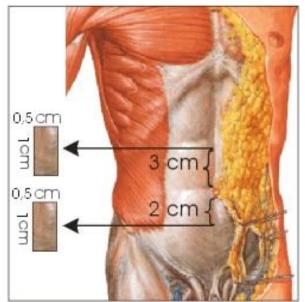


Figura 1: Local de obtenção das amostras.

De cada bloco foram obtidos dois cortes de 4micra de espessura cada. Um deles foi submetido à coloração com orceína na seguinte formulação: orceína sintética 1g, 100ml de álcool a 70% e 2ml de ácido clorídrico concentrado. O outro corte foi destinado à imuno-histoquímica com a utilização do anticorpo monoclonal anti-Emilin Antibody to EMILIN1 GP115 Elastin microfibril interface located protein TNF (Proteintech Group) na diluição de 1:100. Como controle positivo foi utilizado corte de pele, e o controle negativo foi obtido pela substituição do anticorpo primário por soro não-imune.

Para a avaliação morfométrica, os cortes foram digitalizados com a utilização de câmera modelo DC14 (Sony®, Japão) acoplada a um microscópio óptico da linha Axiostar (Karl Zeiss®, Alemanha) e conectada a um microcomputador, obtendo-se cinco imagens de cada lâmina, no aumento de

200 vezes, em formato TIFF (Tag Image File Format) e com resolução de 2560X 1920 *pixels*.

A análise das imagens foi realizada com a utilização do programa *Image Pro Plus 3.1 (Media Cybernetics, Silver Spring, U.S.A.).* Cada imagem foi segmentada com a seleção semi-automatizada da área de coloração de interesse e quantificação automática desta área. Obteve-se assim, a quantidade de *pixels* por imagem. Os dados foram exportados para uma planilha do programa *Excel (Microsoft®)*. Foram avaliadas 240 lâminas, sendo feitas, aleatóriamente, tomadas de imagens de cinco campos amostrais para cada lâmina. Foram digitalizadas e arquivadas 1.200 imagens para as contagens do número de *pixels* e para análise morfométrica.

5.1 DELINEAMENTO

Trata-se de um estudo de caso-controle, onde foram analisadas amostras de tecido obtido da aponeurose da linha alba em um ponto acima e em um ponto abaixo da cicatriz umbilical. A identificação das amostras foi feita por letras e números, ocorrendo cegamento do pesquisador que realizou as avaliações laboratoriais, sendo que o mesmo não teve acesso aos dados dos pacientes e dos cadáveres.

5.2 POPULAÇÃO E AMOSTRA

A população alvo foi a de pacientes que se submeteram a cirurgias da parede abdominal anterior e que eram portadores de hérnias umbilicais, epigástricas ou incisionais. Foram pesquisados trinta pacientes, quinze do sexo masculino e quinze do sexo feminino, com idades entre 20 e 60 anos. Os pacientes, previamente foram informados sobre a pesquisa e os que concordaram assinaram Termo de Consentimento (Anexo 1). Para o grupo controle de cadáveres, em parecer do Comitê de Ética em pesquisa do Hospital de Clínicas de Porto Alegre (Projeto 03121), as biópsias foram obtidas sem a assinatura de termo de consentimento familiar, tendo em vista que elas não causariam nenhuma mudança de procedimento durante a necropsia e também nenhum dano ao cadáver. Além disso, não seria feita uma ficha de identificação, mas somente anotados os dados da hora do óbito, idade e o sexo do cadáver. Também a preservação da privacidade do falecido não foi quebrada por não se realizar no trabalho em questão exames biológicos como identificação do DNA, mas somente análise das fibras elásticas da linha alba. A Resolução 196/96 do Conselho Nacional de Saúde, Capítulo IV.3 letra "C" prevê que, "... nos casos em que seja impossível registrar o consentimento livre e esclarecido...", deve ser comunicado ao Comitê de Ética em Pesquisa para que emita o seu parecer.

Nos critérios de exclusão estavam: os pacientes com menos de 20 e mais de 60 anos, os diabéticos³⁶, asmáticos³⁷ e aqueles que utilizaram corticosteróide^{38,39} nos 365 dias anteriores à cirurgia. Para o grupo controle de

cadáveres incluiu-se trinta indivíduos, quinze do sexo masculino e quinze do sexo feminino, que foram a óbito até 12 horas antes⁴⁰ e que não apresentavam cicatrizes, hérnias ou traumatismos na parede abdominal.

5.3 ABRANGÊNCIA DA AMOSTRA

Partindo-se de uma diferença de médias dos teores de elastina de 0,15 entre os grupos em estudo, com desvio padrão comum de 0,15, α =0,05 e β =0,10 estimou-se o tamanho amostral mínimo de vinte e três pacientes por grupo.

Visando aumentar o poder para eventuais ajustes, devido aos potenciais fatores de confusão como idade e sexo, optou-se por aumentar o tamanho amostral em ambos os grupos para trinta indivíduos, sendo quinze do sexo feminino e quinze do sexo masculino.

5.4 PROCEDIMENTOS

Foram estudados trinta pacientes, sendo quinze do sexo masculino e quinze do sexo feminino, portadores de hérnia da parede abdominal anterior que atendiam os critérios de inclusão e que se submeteram a cirurgias no período de abril de 2004 a maio de 2009. Este grupo incluía pacientes com idades entre 20 e 60 anos [30-59], com média de 44,9 e desvio padrão de ±7,3 anos.

A retirada das amostras foi feita por membro da equipe cirúrgica no momento da intervenção na parede anterior do abdome, sendo retirado um

fragmento longitudinal de 0,5cm de largura por 1,0cm de altura. A cirurgia transcorreu de acordo com os passos indicados para cada paciente, não havendo modificação significativa nos procedimentos pré-programados. As amostras foram acondicionadas em frascos com formaldeído líquido e posteriormente enviadas ao laboratório, onde foram realizados todos os procedimentos de fixação, coloração e cortes das lâminas.

Os frascos foram identificados por número, sendo dois para cada paciente e dois para cada cadáver, identificados como P 30 S (superior) e P 30 I (inferior), respectivamente, para as amostras acima e abaixo da cicatriz umbilical do paciente de número 30. O mesmo procedimento foi utilizado para o grupo controle (dos cadáveres) onde utilizou-se a letra C ao invés da letra P.

Na Tabela 1 encontram-se os dados obtidos na coleta das amostras dos pacientes por ordem de inclusão.

N°	Data	Paciente	Tipo de hérnia	Idade	Sexo
01	05/04/04	MP	EPIGÁSTRICA	48	F
02	12/04/04	NDM	EPIGÁSTRICA	51	F
03	22/04/04	MFRA	UMBILICAL	31	F
04	18/06/04	CVGR	EPIGÁSTRICA	31	F
05	02/07/04	LFAM	UMBILICAL	43	F
06	02/07/04	ASZ	EPIGÁSTRICA	35	F
07	09/07/04	MTB	UMBILICAL	42	F
80	14/07/04	JNS	UMBILICAL	43	M
09	11/08/04	PPL	INCISIONAL	59	M
10	06/09/04	IW	EPIGÁSTRICA	47	F
11	13/09/04	MMS	EPIGÁSTRICA	30	F
12	24/09/04	NOC	EPIGÁSTRICA	47	F
13	18/10/04	LSP	INCISIONAL	46	F
14	01/12/04	RJ	INCISIONAL	43	F
15	08/12/04	IMBB	EPIGÁSTRICA	53	F
16	20/01/05	MLLS	INCISIONAL	46	F
17	27/01/05	ICF	INCISIONAL	43	F
18	04/02/05	EDS	INCISIONAL	47	М
19	05/10/06	VPDM	EPIGASTRICA	34	М
20	16/01/07	MSA	EPIGASTRICA	53	M
21	09/12/08	GNO	UMBILICAL	38	M
22	27/01/09	ECR	UMBILICAL	55	M
23	02/02/09	JBBP	UMBILICAL	54	M
24	10/03/09	ESS	UMBILICAL	46	M
25	17/03/09	GUNO	UMBILICAL	50	M
26	07/04/09	JSMF	UMBILICAL	49	M
27	05/05/09	SFSF	UMBILICAL	44	M
28	19/05/09	JNN	UMBILICAL	50	M
29	26/05/09	FCS	UMBILICAL	45	M
30	26/05/09	SRF	UMBILICAL	43	M

Tabela 1. Dados dos pacientes.

Na tabela 2 estão indicados a data de inclusão dos controles, idade e sexo por ordem de inclusão.

Número	Data	Idade	Sexo
1	13/01/04	38	M
2	13/01/04	34	М
3	21/01/04	38	M
4	28/01/04	40	M
5	28/01/04	57	М
6	29/03/04	58	M
7	24/07/04	34	M
8	04/08/04	21	M
9	04/08/04	57	F
10	05/08/04	59	M
11	10/08/04	53	М
12	10/08/04	27	M F
13	13/08/04	58	F
14	23/08/04	46	М
15	19/10/04	49	M
16	19/10/04	40	F
17	22/10/04	29	М
18	22/10/04	39	F F
19	12/11/04	25	F
20	13/11/04	34	М
21	16/11/04	48	F
22	16/11/04	49	M
23	22/11/04	50	F
24	27/12/04	46	F
25	10/01/05	20	F
26	21/12/06	41	F
27	23/02/07	43	F
28	30/04/07	29	F
29	10/06/07	31	M F F F F F
30	05/09/07	23	F

Tabela 2. Dados dos controles.

No grupo-controle, foram colhidas amostras em trinta cadáveres sem hérnia e não formolizados do Instituto Médico Legal da cidade de Caxias do Sul. Nesse grupo, quinze sujeitos eram do sexo masculino e quinze do feminino, com

idades entre 20 e 60 anos [20-59], com média de 40,5 anos e com desvio padrão de ±11,8.

O período de inclusão desses controles se estendeu de janeiro de 2004 a setembro de 2007.

A retirada do material no grupo-controle, para a obtenção das peças anatômicas, foi feita com a seguinte rotina: com o auxílio de uma pinça anatômica e bisturi de lâmina 20 foi feita uma incisão mediana na pele abdominal que se estendia de 5cm acima do umbigo até 5cm abaixo do mesmo, desviando a incisão lateralmente ao umbigo, a fim de preservar sua integridade. A incisão da pele se aprofundava cortando toda a espessura do panículo adiposo até alcançar a aponeurose da linha alba. Nesse nível, procedeu-se ao descolamento do panículo adiposo da aponeurose da linha alba, dois a três centímetros para cada lado da linha média, expondo-se assim toda a largura da linha alba e marcava-se um ponto situado a 3cm acima da margem superior do umbigo e outro a 2cm da margem inferior, de onde foram retirados os fragmentos de 0,5cm de largura por 1,0cm de altura.

As figuras de número 2, 3 e 4 mostram pacientes portadores de hérnias da parede anterior do abdome.

As figuras de número 5 e 6 são de lâminas submetidas à técnica da imuno-histoquímica, e as lâminas das figuras de numero 7 a 12 são as que foram coradas pela orceína.

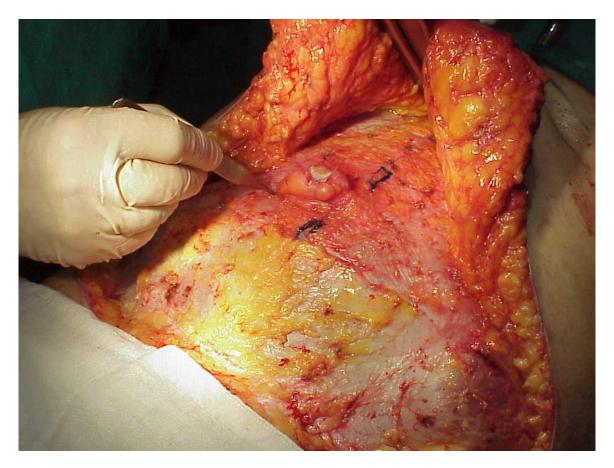


Figura 2. Abdominoplastia em paciente portadora de hérnia umbilical.

Figura 3. Hérnia epigástrica em paciente submetida à abdominoplastia.

Figura 4. Paciente portadora de hérnia incisional.

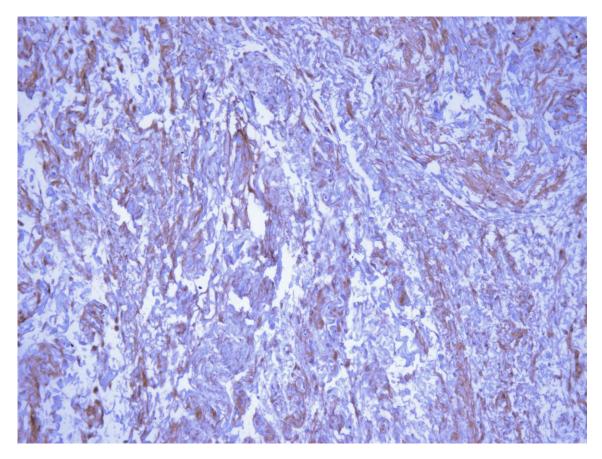


Figura 5. Paciente nº 14, amostra superior. Fotomicrografia de amostra da aponeurose da linha alba. Imuno-histoquímica, imuno peroxidase; sistema avidina-biotina, 200x. As fibras elásticas aparecem em tons marrons. Estão espessadas, tortuosas e fragmentadas.

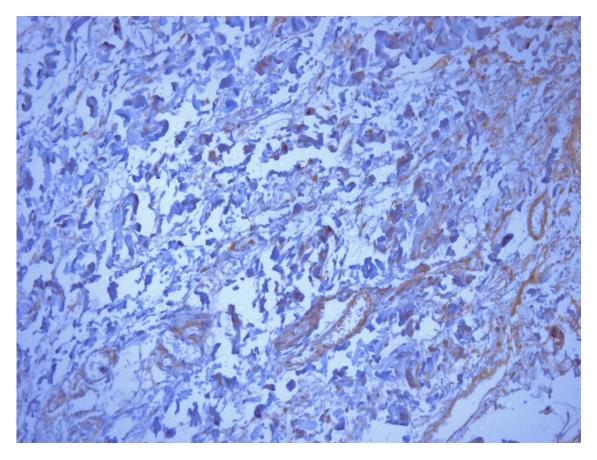


Figura 6. Controle n^{o} 9, amostra inferior. Fotomicrografia de amostra da aponeurose da linha alba. Imuno-histoquímica, imuno peroxidase; sistema avidina-biotina, 200x. As fibras elásticas aparecem em tons marrons.

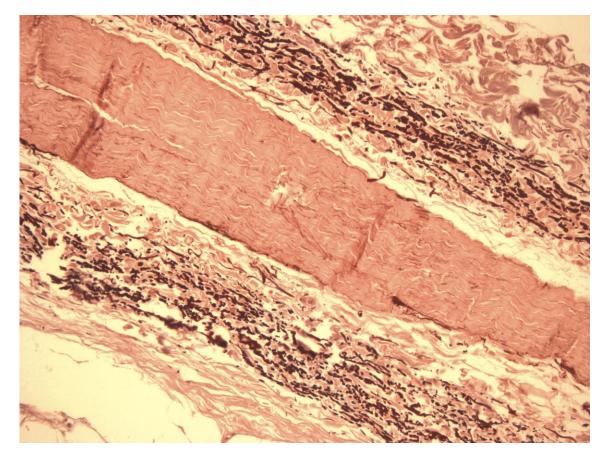


Figura 7. Paciente nº 17, amostra superior. Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200x. As fibras elásticas aparecem na cor acastanhada ou marrom em dois feixes ao redor de fibras colágenas.

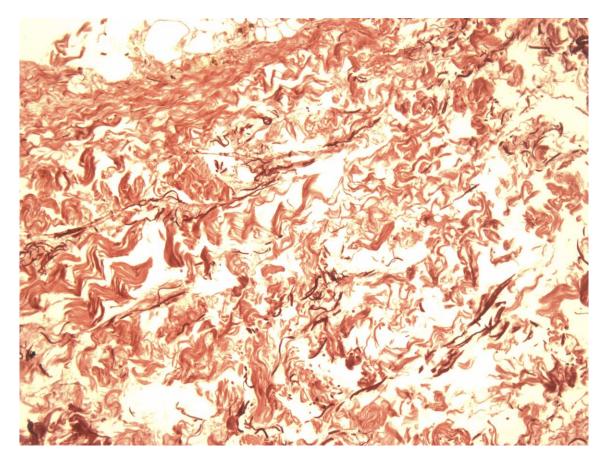


Figura 8. Controle nº 4, amostra superior. Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200x. As fibras elásticas aparecem na cor acastanhada.

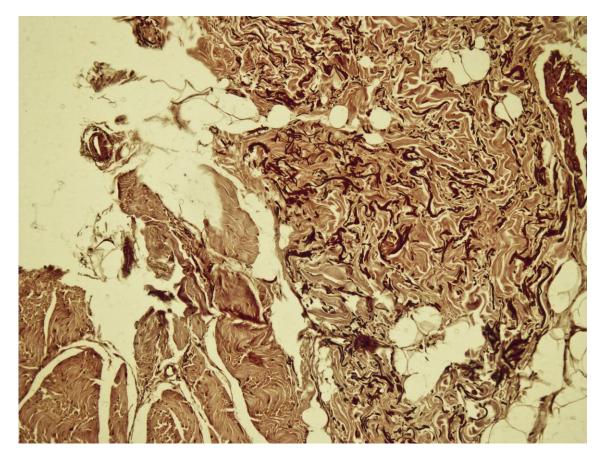


Figura 9. Paciente nº 19 amostra inferior, Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200 x. As fibras elásticas aparecem na cor marrom escura. Apresentam-se bastante retorcidas e fragmentadas.

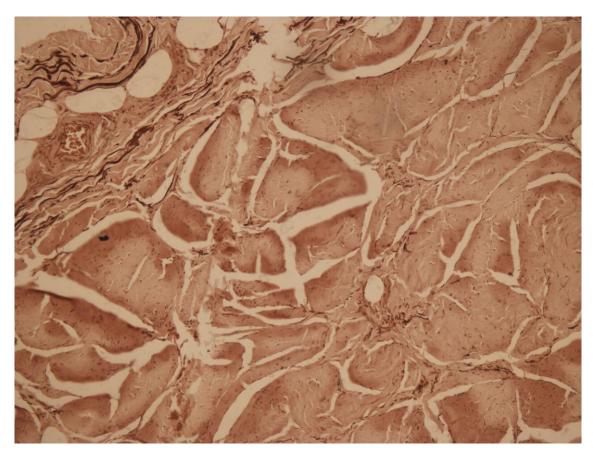


Figura 10. Controle nº 21, amostra superior Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200x. As fibras elásticas aparecem na cor marrom escura no canto superior esquerdo.

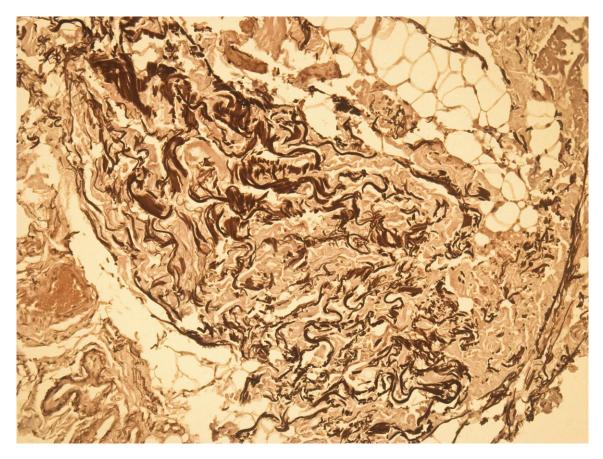


Figura 11. Paciente nº 3, amostra inferior. Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200x. As fibras elásticas aparecem na cor marrom escura. Estão espessadas, tortuosas e fragmentadas.

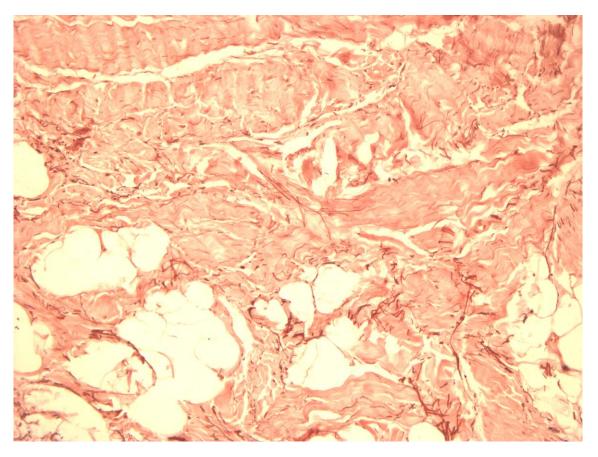


Figura 12. Controle nº 28, amostra inferior Fotomicrografia de amostra da aponeurose da linha alba. Coloração pela orceína. 200x. As fibras elásticas aparecem na cor acastanhada.

5.5 ANÁLISE ESTATÍSTICA

Para a análise estatística, foram aplicados os seguintes testes:

- Teste t de Student pareado, para comparar o logaritmo das médias dos retalhos superiores com os inferiores ao umbigo;
- Teste Qui-quadrado para avaliar associação entre sexos e idade com tipo de hérnia;
- Duas análises de variância (Anova) de dois fatores: 1 para os dois grupos segundo idade e 2 - os dois grupos segundo o sexo;
- Análise de Variância de medidas repetidas para avaliar diferença entre imuno-histoquímica e orceína.

Os dados foram processados e analisados com o auxílio do programa SPSS®, versão 16, no serviço de Estatística do Grupo de Pesquisa e Pós Graduação da Universidade Federal do Rio Grande do Sul (UFRGS). O nível de significância adotado foi de 5%.

5.6 ASPECTOS ÉTICOS

O presente estudo teve seu delineamento aprovado pelo Grupo de Pesquisa e Pós-Graduação da Faculdade de Medicina da UFRGS e pela Comissão de Ética do Hospital de Clínicas de Porto Alegre. Também foi aprovada a sua realização pelo Departamento Médico Legal de Porto Alegre e pelo Instituto Médico Legal de Caxias do Sul. Os pacientes que participaram deste trabalho assinaram Termo de Consentimento Informado (anexo A).

RESULTADOS

6. RESULTADOS

Quatorze pacientes incluídos no estudo apresentavam hérnias umbilicais, dez hérnias epigástricas e seis hérnias incisionais. A figura 13 mostra os tipos de hérnias nos grupos de idades entre 20 a 40 anos e de 41 até 60 anos. A figura 14 mostra os tipos de hérnias com relação aos sexos.

Nas tabelas de número 3 a 14 (Anexo C) temos os resultados das contagens das quantidades de *pixels* nos cinco campos amostrais das lâminas coloridas pela orceína, das processadas pela imuno-histoquímica e as suas médias.

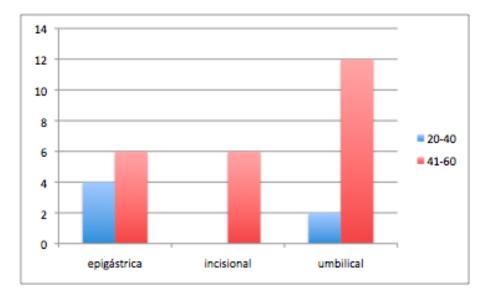


Figura 13. Tipos de hérnias por grupo etário.

Na figura 13 as hérnias estão distribuídas nas duas faixas etárias. As hérnias epigástricas aparecem mais na faixa de idades entre 20 e 40 anos, e as hérnias umbilicais foram mais encontradas na faixa de idades entre os 41 e 60 anos. As hérnias incisionais somente foram encontradas na faixa dos 41 a 60 anos.

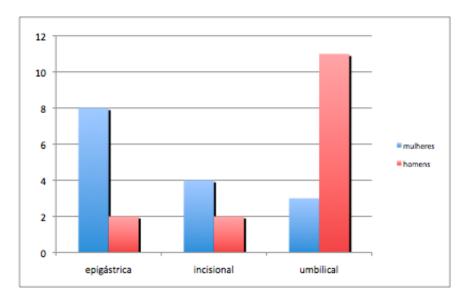


Figura 14. Tipos de hérnia segundo o sexo.

Na figura 14 as hérnias foram distribuídas em dois subgrupos segundo o sexo.

As figuras de número 15 a 19 mostram as quantidades de elastina expressas pelas médias e intervalos de confiança de 95% do logaritmo das lâminas coloridas pela orceína e das lâminas processadas pela imunohistoquímica.

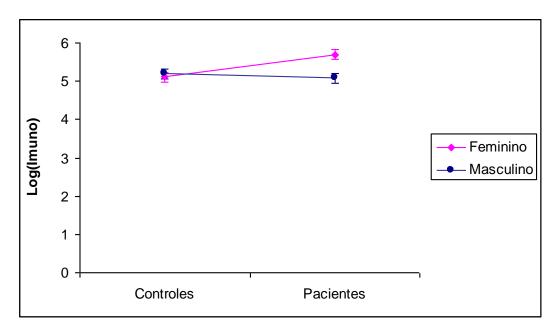


Figura 15. Médias e intervalos de confiança (95%) dos teores de elastina na análise imunohistoquímica nos controles e nos pacientes de acordo com o sexo.

Na figura 15, na análise dos teores da elastina pelo método da imunohistoquímica, existe uma maior quantidade de elastina no sexo feminino no grupo dos pacientes (p <0,001). No grupo dos controles não ocorreu diferença estatisticamente significativa entre os dois sexos (p=0,755). Juntando-se ambos os sexos, os teores de elastina foram maiores nos pacientes (p=0,001).

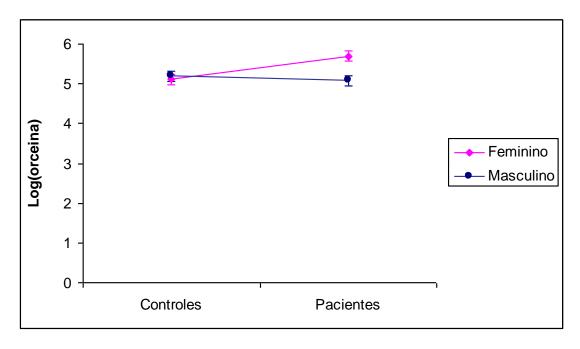


Figura 16. Médias e intervalos de confiança (95%) dos teores de elastina na coloração pela orceína nos controles e nos pacientes de acordo com o sexo.

Na figura 16, na análise dos teores de elastina na coloração pela orceína, existe uma maior quantidade de elastina nos pacientes em relação aos controles (p<0,001). Os pacientes femininos apresentaram valores superiores aos masculinos (p<0,001) e nos controles não ocorreu diferença estatisticamente significativa entre os dois sexos (p=814).

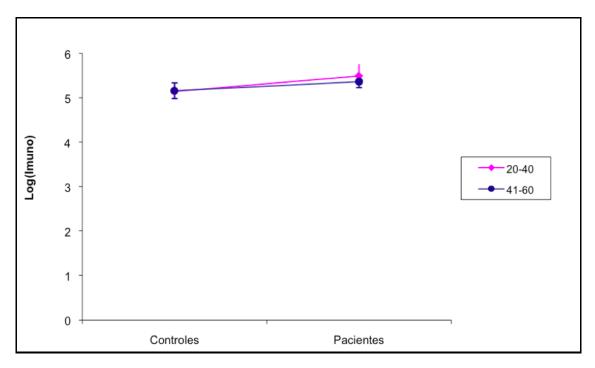


Figura 17. Médias dos teores de elastina e intervalos de confiança (95%) da imunohistoquímica nos controles e nos pacientes por faixa etária.

Na figura 17, das médias dos teores de elastina da imuno-histoquímica, ocorreu uma diferença estatisticamente significativa entre as quantidades de elastina nos pacientes (p=0,005). Com relação às duas faixa etárias, não ocorreu uma diferença estatisticamente significativa entre elas, tanto nos controles (p=0,563) quanto nos pacientes (p=0,448).

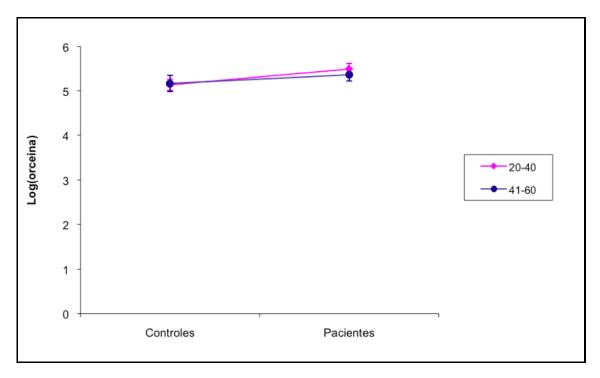


Figura 18. Médias dos teores de elastina e intervalos de confiança (95%) na coloração pela orceína nos controles e nos pacientes por faixa etária.

Na figura 18, na análise dos teores de elastina com a coloração pela orceína, existe uma maior quantidade de elastina no grupo dos pacientes (p=0,007). Com relação às faixa etárias, não ocorreu diferença estatisticamente significativa entre elas, tanto nos controles (p=0,615) quanto nos pacientes (p=0,418).

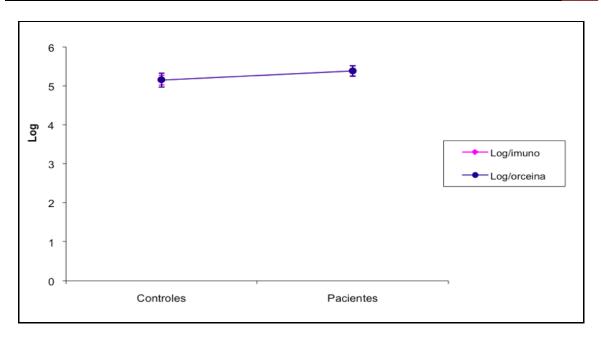


Figura 19. Médias e intervalos de confiança (95%) dos teores de elastina na imunohistoquímica e orceína nos controles e nos pacientes.

Na figura 19, comparando-se os teores de elastina nos dois métodos de análise, imuno-histoquímica e orceína, não houve diferenças estatisticamente significativas entre elas, tanto nos controles (p=0,452) quanto nos pacientes (p=0,481).

DISCUSSÃO

7. DISCUSSÃO

As alterações tróficas e morfológicas dos colágenos^{9,10} e da elastina^{11,19-21,24} determinam alterações fisiológicas e conseqüentemente, deformidades em diversos órgãos da economia corporal e contribuem por isso com a envelhecimento do indivíduo. As causas destas alterações podem ser as mais variadas possíveis podendo ser individuais como também associadas.

Um dos fatores responsáveis pela diminuição do colágeno e da elastina tem a ver com a diminuição da produção hormonal que são os fatores determinantes do envelhecimento dos tecidos corporais. Neste sentido, vem acontecendo uma nova corrente de tratamentos médicos que visam reequilibrar

os níveis hormonais humanos com a chamada modulação hormonal utilizando hormônios bioidênticos humanos e não mais os hormônios sintéticos ou os bioidênticos de animais como o do cavalo. Assim sendo, as pesquisas mostraram que a reposição de GH (hormônio do Crescimento) em adultos saudáveis poderia reverter o envelhecimento⁴¹.

Diferentemente da microscopia eletrônica (ME), que identifica as estruturas por revelar a forma geométrica dos diversos componentes do tecido estudado, a imuno-histoquímica o faz por meio da capacidade que o anticorpo tem de se ligar à estrutura para a qual foi formado. As estruturas que porventura não tenham as mesmas características moleculares, com as quais o anticorpo reage, não serão coradas e por isso não serão identificadas. Essa grande especificidade permite que o tecido estudado por meio da imuno-histoquímica seja submetido a mensurações colorimétricas não realizáveis pela ME⁴².

No exame de lâminas coradas pela orceína, a morfologia das fibras elásticas da cartilagem auricular de pessoas jovens se mostrou homogênea em diâmetro e elas circundavam a lacuna cartilaginosa da orelha com feixes de fibras unidas entre si. Em pacientes mais velhos, acima dos 85 anos as fibras elásticas eram heterogêneas e mais finas e tinham muitos fragmentos na matriz extracelular, denotando ruptura e conseqüente perda da capacidade elástica. Esta alteração das fibras elásticas determinava um aumento do tamanho das orelhas nas pessoas idosas⁴³.

A elastina é a principal proteína das fibras elásticas e fornece a propriedade do recolhimento elástico aos tecidos como artérias, pulmões, cartilagem elástica, pele e tecidos conjuntivos. A síntese da elastina atravessa varias etapas: transcrição do gene, junção alternativa da pre-mRNA, translação do mRNA, hidroxilação de alguns resíduos de prolina da recém sintetizada proteína tropoelastina, associação com a proteína acompanhante 67kDa, secreção de moléculas de tropoelastina no espaço extracelular, e sua deposição no molde microfibrilar que contém fibrilina-1, fibrilina-2, MAGP1 e MAGP2. Depois da síntese da "cross-links-lysinonorleucine", desmosina e isodesmosina, a elastina se torna insolúvel e elástica. O caminho da elastogênese é regulado em vários níveis. O mais recente mecanismo regulador da síntese de elastina é o controle da estabilidade da elastina mRNA. A elastogênese é bem controlada no desenvolvimento e envelhecimento, mas permanece suscetível a fatores externos como vitaminas, hormônios e estresse hemodinâmico⁴⁴.

Um método que pode ser potencialmente utilizado para uma rápida identificação de fibras elásticas anormais ou fragmentadas em uma amostra muito pequena de biópsia de pele de pacientes afetados pelo pseudoxantoma elástico (PXE) consiste no uso de uma cápsula selada para elétrons que permite a rápida e eficaz localização de áreas mineralizadas nos pacientes portadores de PXE e sua composição pela micro análise por Raios X. Esta metodologia pode ser de grande auxílio em qualquer desordem tissular, especialmente as alterações do tecido conectivo, caracterizadas por alterações estruturais associadas a precipitação de íons⁴⁵.

As fibras elásticas na matriz extracelular são componentes integrantes do tecido conectivo da derme. A elasticidade e a resiliência necessárias para a normal estrutura e função da pele é um atributo da rede de tecidos elásticos. Avanços no conhecimento da fisiologia dos tecidos elásticos oferecem os fundamentos para se entender a patogênese das desordens do tecido elástico. Muitas desordens adquiridas são ainda hoje pouco compreendidas devido a pobreza de trabalhos publicados. Algumas destas desordens são: elastolise meiodermal (middermal), elastorrexe papular, elastolise papilar dermal tipo pseudoxantoma, o anetoderma, a cútis laxa adquirida e a acrocerato elastoidose⁴⁶.

As fibras elásticas são componentes da matriz extracelular e conferem resiliência a um grande número de tecidos humanos. Uma vez em repouso elas permanecem estáveis, exceto no trato uterino onde ocorrem ciclos de remodelação ativa. A perda de fibras elásticas determina o envelhecimento do tecido conectivo e o aparecimento de importantes doenças incluindo o enfisema. Estudos em ratos mostram que a carência da proteína *lysyl oxidade-like* (LOXL1) determina a não deposição de fibras elásticas normais no trato uterino pós parto e conseqüente prolápso. A incapacidade de manutenção das fibras elásticas é explicada pela teoria do desequilíbrio da antielastase-elastase, mas muito pouco se conhece sobre a renovação das fibras elásticas.

As fibras elásticas são formadas pelas microfibrilas e pela tropoelastina. No desenvolvimento do indivíduo, as microfibrilas agem como um molde onde se deposita a tropoelastina. A microfibrilina-associada glicoproteina-1 (MAGP1) e a fibrilina-2, os maiores componentes das microfibrilas, fornecem um molde-tipo para a deposição da tropoelastina. Utilizando dois anticorpos específicos para a MAGP1 e para a fibrilina-2 pode-se comprovar que a MAGP1 e a fibrilina-2 agem diretamente na deposição da tropoelastina, durante o processo de formação das fibras elásticas⁴⁸.

Na última década, na procura pela etiologia das hérnias, passou-se a prestar atenção nas alterações da ultra estrutura do tecido conectivo e ao provável fator biológico. Este fator pode ocasionar um enfraquecimento dos tecidos conectivos, que por seu lado abre terreno para a formação das hérnias. Visando investigar com profundidade esta hipótese comparou-se a ultra estrutura do tecido conectivo de pacientes com hérnia e um grupo controle. O grupo em estudo consistia em cinco pacientes portadores de hérnia inguinal e um grupo controle de cinco pacientes submetidos a apendicectomia. As amostras retiradas da bainha do músculo reto abdominal, foram fixadas em glutaraldeido a 4% e coradas pelos métodos de Mason, hematoxilina eosina e azul de metileno examinadas em microscópio tradicional com escaneamento eletrônico. Os achados mostraram grandes diferenças na ultra estrutura da bainha dos retos entre os grupos estudados. No grupo com hérnia havia um arranjo caótico das fibras colágenas, elas eram mais finas e havia uma diminuição das fibras colágenas e elásticas com relação ao grupo controle⁴⁹.

RODRIGUES JR e colaboradores¹² encontraram uma relação inversa entre o colágeno e a elastina. A possível causa desta relação inversa pode estar ligada as funções diferentes dos colágenos com relação a as fibras elásticas. Os colágenos conferem resistência ao estiramento e, de maneira inversa, as fibras elásticas conferem elasticidade e resiliência. Assim quando as quantidades de colágeno começam a diminuir aumentam as funções e as quantidades das fibras elásticas. Mas sabe-se que em idades mais avançadas ocorre uma nova relação entre fibras colágenas e elásticas quando as quantidades de ambas a fibras diminuem significativamente.

No presente trabalho os achados das quantidades de elastina que se mostraram maiores (35% maiores) nos pacientes com hérnia do que nos cadáveres sem hérnias parecem indicar esta relação inversa nas funções entre os colágenos e as fibras elásticas. Outro achado neste trabalho é de que nos pacientes com hérnias, as fibras elásticas eram mais espessas, com certo grau de desfiamento das suas fibras e rupturas além de um aumento da tortuosidade e fragmentação.

Maiores estudos devem ser realizados no intuito de se entender as relações entre as funções dos colágenos e elastina o que poderá levar ao conhecimento da etiologia de inúmeras doenças humanas ainda pouco explicadas.

CONCLUSÕES

8. CONCLUSÕES

- A metodologia utilizada no presente estudo permitiu avaliar as quantidades e a morfologia das fibras elásticas na linha alba de pacientes portadores de hérnias epigástricas, incisionais e umbilicais;
- 2. Em ambos os métodos de análise (orceína e imuno-histoquímica), comparando-se o grupo controle com o dos pacientes, havia uma maior quantidade de elastina nos pacientes femininos e aproximadamente as mesmas quantidades em ambos os sexos nos controles;
- 3. Com relação as duas faixas etárias (de 20 a 40 e de 41 a 60 anos), as quantidades de elastina foram maiores nos pacientes do que nos controles em ambos os métodos de pesquisa (imuno-histoquímica e

- orceína), mas comparando-se as faixas etárias entre si, não foram encontradas diferenças estatisticamente significativas entre elas tanto nos pacientes quando nos controles;
- 4. Os dois métodos de pesquisa utilizados neste trabalho, a imunohistoquímica e a coloração pela orceína, apresentaram resultados superponíveis o que sugere que os dois métodos são igualmente confiáveis na identificação das fibras elásticas.
- Nos pacientes, as fibras elásticas se mostraram espessadas, tortuosas e fragmentadas.

REFERÊNCIAS

9. REFERÊNCIAS

- Heniford BT, Park A, Ramshaw BJ, Voeller G. Laparoscopic Repair of Ventral Hernias. Nine Years. Experience With 850 Consecutive Hernias. Ann Surg 238(3):391-400, 2003. © 2003 Lippincott Williams & Wilkins.
- 2. Askar OM. Surgical anatomy of the aponeurotic expansions of the anterior abdominal wall. Ann R Coll Sur Engl 1977 Jul; 59(4): 313-21.
- 3. Askar OM. A new concept of the aetiology and surgical repair of paraumbilical and epigastric hernias. Ann R Col Surg Engl 1978; (60): 42-8.
- 4. Askar OM. Aponeurotic hernias. Recent observations upon paraumbilical and epigastric hernias. Surg Cli Nor Am Vol.64, No.2, April 1984.
- 5. Lang B, Lau H, Lee F. Epigastric hernia and its etiology. Hernia 2002; 06(03): 148-5.

- 6. Paes TR, Stoken DL, NG T, Morecroft J. Circumumbilibal versus transumbilical abdominal incision. Br J Surg 1987 Sep; 74(9): 822-4.
- 7. Cassar K, Munro A. Surgical treatment of incisional hernia. Br J Surg 2002 May; 89(5): 534-45.
- 8. Klinge U, Binnebosel M, Raphael R, Mertens P. Hernia recurrence as a problem of biology and collagen. JAMA. 2002; 288(3):321-333.
- 9. Casanova AB, Trindade EN, Trindade MRM. Collagen in the transversalis fascia of patients with indirect inguinal hernia: a case-control study. American Journal of Surgery Volume 198, Issue 1 (July 2009).
- 10. Fachinelli A, Trindade MRM. Qualitative evaluation of total types I and III collagens in patients with ventral hernias. Langenbechs Arch Surg 2007 Jul 392 (4): 459-464.
- 11. Borges LF, Taboga SR, Gutierrez PS. Simultaneous observation of collagen and elastin in normal and pathological tissues: analysis of Siriusred-stained sections by fluorescence microscopy. Cell Tissue Res. 2005; 320(3):551-2.
- 12. Rodrigues Junior AJ, Rodrigues CJ, da Cunha AC, Jin Y. Quantitative analysis of collagen and elastic fibers in the transversalis fascia in direct and indirect inguinal hernia. Rev Hosp Clin Fac Med Sao Paulo. 2002; 57(6):265-70.
- 13. Bórquez P, Garrido L, Manterola C, Peña P, Schlageter C, Orellana JJ, Ulloa H, Peña JL. Study of collagen and elastic fibers of connective tissue in patients with and without primary inguinal hernia. Rev Med Chil. 2003; 131(11):1273-9.
- 14. Rodrigues CJ, Rodrigues Junior AJ. A comparative study of aging of the elastic fiber system of the diaphragm and the rectus abdominis muscles in rats. Braz J Med Biol Res. 2000; 33(12):1449-54.
- 15. Schlatzer-Schrehardt U, Stojkovic M, Hofmann-Rummelt C, Cursiefen C, Kruse FE, Holbach LM. The Pathogenesis of floppy eyelid syndrome: involvement of matrix metalloproteinases in elastic fiber degradation. Ophthalmology. 2005; 112(4):694-704.
- 16. Stevens A,Lowe JS. Human Histology (2005) Third Edition; Elsevier Limited; Nottingham, UK. 464p.
- 17. Midwood KS, Schwarzbauer JE. Elastic fibers: building bridges between cells and their matrix. Curr Biol. 2002; 12(8):R279-81.

- 18. Czirok A, Zach J, Kozel BA, Mecham RP, Davis EC, Rongish BJ. Elastic fiber macro-assembly is a hierarchical, cell motion-mediated process. J Cell Physiol. 2006; 207(1):97-106.
- 19. Sato F, Wachi H, Starcher BC, Murata H, Amano S, Tajima S, Seyama Y. The characteristics of elastic fiber assembled with recombinant tropoelastin isoform. Clin Biochem, 2006; 39(7):746-53.
- 20. Zheng Q, Choi J, Rouleau L, Leask RL, Richardson JA, Davis EC, Yanagisawa H. Normal wound healing in mice deficient for fibulin-5, an elastin binding protein essential for dermal elastic fiber assembly. J Invest Dermatol. 2006; 126(12):2707-14.
- 21. Ryder HF, Antaya RJ. Nevus anelasticus, papular elastorrhexis, and eruptive collagenoma: clinically similar entities with focal absence of elastic fibers in childhood. Pediatr Dermatol. 2005; 22(2):153-7.
- 22. Ushiki T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol. 2002; 65(2):109-26.
- 23. Henwood A. Current applications of orcein in histochemistry. A brief review with some new observations concerning influence of dye batch variation and aging of dye solutions on staining. Biotech Histochem. 2003; 78(6):303-8.
- 24. Boente MC, Winik BC, Asial RA. Wrinkly skin syndrome: ultrastructural alterations of the elastic fibers. Pediatr Dermatol. 1999; 16(2):113-7.
- 25. Ozdogan M, Yildiz F, Gurer A, Orhun S, Kulacoglu H, Aydin R. Changes in collagen and elastic fiber contents of the skin, rectus sheath, transversalis fascia and peritoneum in primary inguinal hernia patients. Bratisl Lek Listy, 2006; 107(6-7):235-8.
- 26. Penner AS, Rock MJ, Kielty CM, Shipley JM. Microfibril-associated glycoprotein-2 interacts with fibrillin-1 and fibrillin-2 suggesting a role for MAGP-2 in elastic fiber assembly. J Biol Chem. 2002; 277(38): 35044-9.
- 27. Liu W, Jawerth LM, Sparks EA, Falvo MR, Hantgan RR, Superfine R, Lord ST. Guthold M. Fibrin fibers have extraordinary extensibility and elasticity. Science. 2006; 313(5787): 634.
- 28. Pasquali-Ronchetti I, Baccarani-Contri M. Elastic fiber during development and aging. Microsc Res Tech. 1997; 38(4):428-35.

- 29. Starcher B, Aycock RL, Hill CH. Multiple roles for elastic fibers in the skin. J Histochem Cytochem. 2005; 53(4):431-43.
- 30. Lewis KG, Bercovitch L, Dill SW, Robinson-Bostom L. Acquired disorders of elastic tissue: part I. Increased elastic tissue and solar elastotic syndromes. J Am Acad Dermatol. 2004; 51(1):1-21.4.
- 31. Bunda S, Kaviani N, Hinek A. Fluctuations of intracellular iron modulate elastin production. J Biol Chem. 2005; 280(3): 2341-51.
- 32. Noblesse E, Cenizo V, Bouez C, Borel A, Gleyzal C, Peyrol S, Jacob MP, Sommer P, Damour O. Lysyl oxidase-like and lysyl oxidase are present in the dermis and epidermis of a skin equivalent and in human skin and are associated to elastic fibers. J Invest Dermatol. 2004; 122(3):621-30.
- 33. Trask TM, Trask BC, Ritty TM, Abrams WR, Rosenbloom J, Mecham RP. Interaction of tropoelastin with the amino-terminal domains of fibrillin-1 and fibrillin-2 suggests a role for the fibrillins in elastic fiber assembly. J Biol Chem. 2000; 275(32): 24400-6.
- 34. Daamen WF; Hafmans T; Veerkamp JH; van Kuppevelt TH. Isolation of intact elastin fibers devoid of microfibrils. Tissue Eng. 2005; 11(7-8): 1168-76.
- 35. Kozel BA; Ciliberto CH; Mecham RP. Deposition of tropoelastin into the extracellular matrix requires a competent elastic fiber scaffold but not live cells. Matrix Biol. 2004; 23(1):23-34.
- 36. Togo S, Nagano Y, Masumoto C, Takakura H, Matsuo K, Takeda K, Endo I, Shimada H. Outcome of and Risk Factors for Incisional Hernia After Partial Hepatectomy. J Gastrointest Surg (2008) 12:1115–1120.
- 37. Matar ZS. Open surgical menagement of incisional hérnia. Internet J Surg. 2008 Vol 15(2).
- 38. Sugerman HJ, Kellum JM Jr, Reines HD, DeMaria EJ, Newsome HH, Lowry JW. Greater risk of incisional hernia with morbidly obese than steroid-dependent patients and low recurrence with prefascial polypropylene mesh. Am J Surg. 1996 Jan;171(1):80-4.
- 39. Sauerland S, Korenkov M, Kleinen T, Arndt M, Paul A. Obesity is a risk factor for recurrence after incisional hernia repair. Hernia (2004) 8: 42–46.
- 40. Maleszewski J, Lu J, Fox-Talbot K, et al. Robust immunohistochemical staining of several classes of proteins in tissues subjected to autolysis. J Histochem Cytochem 2007;55:597–606.

- 41. Rudman D. Growth hormone, body composition and aging. J Am Geriatr Soc. 1985; 33(11):800-7.
- 42. Ramos HVL, Simões MJ, Pontes PAL, Neves LR, Barbosa LHF, De Biase NG, Oshima CTS. Imunohistoquímica como método de estudo das fibras elásticas em prega vocal humana. Rev Bras Otorrinolaringol. vol.71(4): 486-91. São Paulo July/Aug. 2005.
- 43. Ito I, Imada M, Ikeda M, Sueno K, Arikuni T, Kida A. A morphological study of age changes in adult human auricular cartilage with special emphasis on elastic fibers. Laryngoscope. 2001; 111(5):881-6.
- 44. Jacob MP, Sauvage M, Osborne-Pellegrin M. Regulation of elastin synthesis. J Soc Biol. 2001; 195(2):131-41.
- 45. Boraldi F, Tonelli M, Gheduzzi D, Ronchetti IP, Quaglino D. Identification of mineralized elastic fibers on wet samples by SEM. Microsc Res Tech. 2005; 67(6):296-9.
- 46. Lewis KG, Bercovitch L, Dill SW, Robinson-Bostom L. Acquired disorders of elastic tissue: Part II. decreased elastic tissue. J Am Acad Dermatol. 2004; 51(2):165-85.
- 47. Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 2004; 36(2):178-82.
- 48. Tsuruga E, Yajima T, Irie K. Microfibril-associated glycoprotein-1 and fibrillin-2 are associated with tropoelastin deposition in vitro. Int J Biochem Cell Biol. 2005; 37(1):120-9.
- 49. Szczesny W, Cerkaska K, Tretyn A, Dabrowiecki S. Etiology of inguinal hernia: ultrastructure of rectus sheath revisited. Hernia. 2006; 10(3): 266-71.

ANEXOS

ANEXO A

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM MEDICINA: CIRURGIA ÁREA DE CONCENTRAÇÃO: DEFORMIDADES DA PAREDE ABDOMINAL PROTOCOLO DE TESE DE DOUTORADO

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

N°	
Eu	, registrado no
conforme prontuário, fui equipe onde se constatou a presença de patologia e sobre seu tratamento, que incinformado da existência de um protocolo ELÁSTICAS DA PAREDE ABDOMINAL HÉRNIA VENTRAL". Essa pesquisa foi-meseus métodos, quanto aos riscos, ber destacando principalmente os seguintes por	e hérnia. Fui orientado sobre essa lui a execução de uma cirurgia. Fu de pesquisa denominado "FIBRAS ANTERIOR EM PACIENTES COM e explicada nos seus objetivos e em nefícios e como posso participar
O objetivo da pesquisa é examinar a le verificando se a mesma é diferente da de per No momento da cirurgia, os médicos retira média da parede abdominal (linha alba) para Entendo que tal procedimento não acarre necessária à correção cirúrgica, nem reperaterial analisado ficará protegido, e o ar será mantido. Fui orientado ainda que, se não desejar para meu tratamento será realizado, se for este o Após esses esclarecimentos, minha decisão Aceito livremente participar da pesquisa.	essoas sem hérnia. rão um (1) grama de tecido da linha a exame. etará qualquer mudança na técnica resenta qualquer risco adicional. Cononimato dos meus dados pessoais ticipar dessa pesquisa, ainda assim o meu desejo e sem qualquer ônus.
Porto Alegre/	Assinatura
Dr. Manoel Roberto Maciel Trindade Orientador F (051) 9981 5996	Dr.Aldo Fachinelli Doutorando

ANEXO B

IDENTIFICAÇÃO DO PACIENTE

N°	Registro N°	
Nome:		
Endereço:		
Profissão:		
Tel.Residencial:T	rabalho:	Cel:
Data de Nascimento//	.Estado Civil:	Sexo:
Peso: Altura:	Etnia:	N° de filhos
Motivo da cirurgia:		
Hérnia localizada em:		
Cirurgião:		
Hospital:	Da	ıta/ Hora:
Paciente portador de: (anotar doen	ças crônicas e med	dicamentos utilizados)

Critérios de Exclusão: Idades abaixo de 20 anos e acima de 60 anos

Uso de corticóides nos últimos 365 dias.

Asmáticos. Diabéticos.

ANEXO C

TABELAS

caso	campo 1	campo 2	campo 3	campo 4	campo 5	média
inf c1	104796	120706	73212	328983	197691	165077,6
inf c2	81096	162629	10525	238182	2083	98903
inf c3	20364	5791	10465	32257	88826	31540,6
inf c4	6657	153013	60329	121365	25099	73292,6
inf c5	138836	45516	191729	327627	20035	144748,6
inf c6	16066	33107	130979	91410	46885	63689,4
inf c7	2134	23514	9353	11949	83323	26054,6
inf c8	64861	23560	104195	305641	69167	113484,8
inf c9	124926	15379	65550	27933	35014	53760,4
inf c10	172160	186574	70268	37646	45591	102447,8
inf c11	135746	84712	194975	130759	115770	132392,4
inf c12	3619	43608	41139	43342	30188	32379,2
inf c13	298448	259100	301568	89165	80286	205713,4
inf c14	110958	47929	24548	20594	73324	55470,6
inf c15	40060	10311	43043	15411	12343	24233,6
inf c16	29308	84788	9447	31966	79864	47074,6
inf c17	8116	38360	20113	68269	52440	37459,6
inf c18	3970	48783	6351	9699	7666	15293,8
inf c19	50188	23393	129405	143287	160582	101371
inf c20	57740	142968	165613	25864	102846	99006,2
inf c21	9005	34028	150292	1208	122182	63343
inf c22	11569	692	18951	6474	48079	17153
inf c23	287209	266764	105715	55536	235918	190228,4
inf c25	98453	38650	102409	98543	56723	78955,6
inf c25	105670	85610	56101	213075	29185	97928,2
inf c26	95625	90984	75174	92610	101526	91183,8
inf c27	46028	34279	97468	94448	54258	65296,2
inf c28	66732	84387	38702	23110	44067	51399,6
inf c29	98530	67309	84851	84849	123512	91810,2
inf c30	108943	27865	92107	21569	58114	61719,6

Tabela 3. Imuno-histoquímica dos controles, amostras inferiores. Número de *pixels* por campo amostral.

caso	campo 1	campo 2	campo 3	campo 4	campo 5	média
sup c1	352289	249851	129248	474111	307249	302549,6
sup c2	367422	254496	485923	337013	392133	367397,4
sup c3	325985	295840	291223	74455	796072	356715
sup c4	303582	140280	536680	95248	154850	246128
sup c5	184879	240797	353907	251900	491540	304604,6
sup c6	401582	151147	232432	444812	267049	299404,4
sup c7	239382	512	283045	214755	287080	204954,8
sup c8	49450	135582	3984	84137	189869	92604,4
sup c9	297255	286743	264435	336624	542575	345526,4
sup c10	98412	204410	184494	522231	228276	247564,6
sup c11	291468	87022	204448	131645	231245	189165,6
sup c12	82147	74325	299190	180044	86568	144454,8
sup c13	139868	117659	205076	256891	393219	222542,6
sup c14	169729	315889	116163	123004	94422	163841,4
sup c15	69075	254491	170254	329190	248424	214286,8
sup c16	229144	330773	200455	237092	233060	246104,8
sup c17	617631	327907	250430	195469	267216	331730,6
sup c18	301881	265465	344724	344765	130603	277487,6
sup c19	197077	194024	123003	197453	253199	192951,2
sup c20	149108	274985	201845	105087	245728	195350,6
sup c21	109458	120985	102409	98567	208732	128030,2
sup c22	73749	337403	279830	131056	129336	190274,8
sup c23	135912	193673	219322	187146	201197	187450
sup c24	153268	187902	105634	208103	195480	170077,4
sup c25	101757	189569	193747	165795	134971	157167,8
sup c26	193251	275609	170353	91529	108296	167807,6
sup c27	247118	80482	76950	80521	107400	118494,2
sup c28	35980	159318	87426	109367	56731	89764,4
sup 29c	302548	209350	150347	98245	82673	168632,6
sup c30	109114	82850	117953	309030	175212	158831,8

Tabela 4. Imuno-histoquímica dos controles, amostras superiores. Número de *pixels* por campo amostral.

caso	campo 1	campo 2	campo 3	campo 4	campo 5	média
inf p1	505863	588935	317635	332085	634738	475851,2
inf p2	400617	600453	563962	306720	551321	484614,6
inf p3	153241	574264	335119	388048	272905	344715,4
inf p4	378806	321767	256212	218686	3152229	865540
inf p5	143120	393310	559470	651272	323488	414132
inf p6	122454	385454	632412	543908	359875	408820,6
inf p7	290678	541980	309565	603344	250798	399273
inf p8	198532	247871	290342	245664	87878	214057,4
inf p9	459341	567390	235842	587090	433768	456686,2
inf p10	239876	323989	603412	453890	561051	436443,6
inf p11	190873	439512	598345	687569	871254	557510,6
inf p12	990542	526473	606104	851705	565303	708025,4
inf p13	416692	594184	905548	350226	985789	650487,8
inf p14	728429	1218560	856460	685678	798604	857546,2
inf p15	461775	551775	1094623	690085	334470	626545,6
inf p16	743025	959658	856830	962874	395440	783565,4
inf p17	1146354	1386978	1170643	1300335	1449880	1290838
inf p18	510786	390458	303832	219964	180131	321034,2
inf p19	580720	845380	706359	625682	421593	635946,8
inf p20	409196	604374	704336	298475	302459	463768
inf p21	28340	36195	33170	34501	30144	32470
inf p22	52985	48559	49176	51856	49824	50480
inf p23	122790	131842	123569	126429	131380	127202
inf p24	21458	22694	27344	28154	26150	25160
inf p25	67093	63785	71329	60384	67389	65996
inf p26	103437	104832	101583	103824	98414	102418
inf p27	98136	101157	103659	97740	98048	99748
inf p28	35917	38901	39673	39703	39036	38646
inf p29	33947	28522	29470	32781	30280	31000
inf p30	126901	130629	128236	126794	124960	127504

Tabela 5. Imuno-histoquímica dos pacientes, amostras inferiores. Número de *pixels* por campo amostral.

caso	campo 1	campo 2	campo 3	campo 4	campo 5	média
sup p1	150513	556283	394650	727707	481201	462070,8
sup p2	534186	348524	645399	268845	196564	398703,6
sup p3	inadequado	355644	345688	471345	190853	340882,5
sup p4	inadequado	423859	119432	532196	459670	383789,25
sup p5	620181	456987	788667	393795	397446	531415,2
sup p6	358026	414173	379445	567145	506714	445100,6
sup p7	504311	160768	593099	355767	325048	387798,6
sup p8	348085	147059	391185	167444	340001	278754,8
sup p9	318590	382494	873862	726361	435466	547354,6
sup p10	299091	379982	293298	460427	380420	362643,6
sup c11	524666	648181	573370	306810	511896	512984,6
sup p12	345979	253068	127725	274545	188340	237931,4
sup p13	330539	754020	187459	348875	241070	372392,6
sup p14	494312	330572	442496	723312	143874	426913,2
sup p15	557416	139648	341075	369532	123176	306169,4
sup p16	856472	272045	277125	513678	304897	444843,4
sup p17	165813	110649	505989	699698	332425	362914,8
sup p18	461400	508968	512052	311309	419317	442609,2
sup p19	305782	475212	895809	231672	209703	423635,6
sup p20	897349	298075	158997	653465	308469	463271
sup p21	37984	34409	38024	33832	37841	36418
sup p22	42133	39870	41569	44236	44242	42410
sup p23	157187	157859	171214	169116	161554	163386
sup p24	69358	73249	68656	71324	70533	70624
sup p25	96093	104347	101533	92170	96937	98216
sup p26	78841	67210	69175	67091	71963	70856
sup p27	13561	17928	14640	16823	20608	16712
sup p28	50690	53546	52612	47792	49240	50776
sup p29	160024	161843	165390	162671	160092	162004
sup p30	21390	22451	19543	20070	22446	21180

Tabela 6. Imuno-histoquímica dos pacientes, amostras superiores. Número de *pixels* por campo amostral.

caso	campo 1	campo 2	campo 3	campo 4	campo 5	média
inf c1	132980	103083	190650	180745	160132	153518
inf c2	76430	120455	150933	98430	70834	103416,4
inf c3	25679	20873	43241	57960	30356	35621,8
inf c4	68134	129858	23270	53212	95493	73993,4
inf c5	165781	140835	164237	146521	153366	154148
inf c6	58024	98151	97349	31843	20852	61243,8
inf c7	81267	35713	1090	8975	5457	26500,4
inf c8	50533	23890	98327	78650	290538	108387,6
inf c9	40780	159856	40278	70654	23879	67089,4
inf c10	58693	84754	208975	190587	123261	133254
inf c11	63397	58743	180351	256849	140972	140062,4
inf c12	20154	58413	15489	32591	27954	30920,2
inf c13	302547	234486	254723	121547	126328	207926,2
inf c14	15853	50689	90875	80643	50121	57636,2
inf c15	52763	24519	12098	9065	32146	26118,2
inf c16	32768	15439	53995	54732	53874	42161,6
inf c17	41723	42376	53429	34591	19027	38229,2
inf c18	11714	23451	9848	10512	21127	15330,4
inf c19	79847	52169	91154	135028	137653	99170,2
inf c20	98452	145398	53765	76981	109786	96876,4
inf c21	21012	14538	9858	135672	129750	62166
inf c22	1017	12458	17541	32157	23453	17325,2
inf c23	241674	285437	32564	198431	209332	193487,6
inf c24	105673	91237	81406	59871	82347	84106,8
inf c25	138320	98423	122347	50312	87593	99399
inf c26	83520	73451	112353	98526	92651	92100,2
inf c27	75112	92119	32415	92158	51267	68614,2
inf c28	83209	32076	53341	49740	41237	51920,6
inf c29	119683	89223	90672	53095	98512	90237
inf c30	72812	83908	22190	63876	30114	54580

Tabela 7. Coloração pela orceína dos controles. Número de *pixels* por campo amostral nas amostras inferiores.

caso	campo 1	campo 2	campo 3	campo 4	campo 5	média
sup c1	428921	468723	245289	198571	150322	298365,2
sup c2	368229	269563	231546	552147	385795	361456
sup c3	175438	598423	356866	397522	308062	367262,2
sup c4	159308	245280	323285	158541	259448	229172,4
sup c5	198487	247977	532709	521095	287879	357629,4
sup c6	249704	481242	237155	182465	198423	269797,8
sup c7	240547	102532	230452	145557	208870	185591,6
sup c8	98234	97208	87413	108971	112877	100940,6
sup c9	308426	426325	185974	265123	512255	339620,6
sup c10	284940	168253	603251	187132	128756	274466,4
sup c11	231214	102982	185327	209873	152332	176345,6
sup c12	109025	117482	184025	186652	159637	151364,2
sup c13	179321	327251	208753	201792	206211	224665,6
sup c14	108957	99873	253762	212636	159324	166910,4
sup c15	136750	145194	235216	215545	319861	210513,2
sup c16	248002	199268	237896	311371	239173	247142
sup c17	543887	367508	211395	187911	342876	330715,4
sup c18	124008	319864	390701	308774	293372	287343,8
sup c19	213157	193728	291765	112098	145442	191238
sup c20	98870	153048	115712	278653	225072	174271
sup c21	103327	109098	181531	192237	117735	140785,6
sup c22	311845	130943	119017	128792	217023	181524
sup c23	193012	173571	174259	208219	97035	169219,2
sup c24	154148	219173	192437	129028	163997	171756,6
sup c25	165547	203471	99078	156512	177428	160407,2
sup c26	115128	229775	115712	193259	207836	172342
sup c27	101935	89054	93826	125682	140997	110298,8
sup c28	69952	136137	109813	90013	45720	90327
sup c29	235681	225769	193429	108634	90332	170769
sup c30	129873	210531	98765	145786	155792	148149,4

Tabela 8. Coloração com orceína dos controles. Número de *pixels* por campo amostral nas amostras superiores.

Caso	campo 1	campo 2	campo 3	campo 4	campo 5	média
inf p1	358982	387521	603256	543987	499932	478735,6
inf p2	583478	398216	587111	297521	532478	479760,8
inf p3	495217	394569	319547	198699	283142	338234,8
inf p4	788602	526167	856581	976218	995828	828679,2
inf p5	454312	580543	224887	317489	388423	393130,8
inf p6	389578	345890	715883	423117	238424	422578,4
inf p7	338237	289752	622890	442306	270639	392764,8
inf p8	99525	238604	309291	179352	237178	212790
inf p9	278546	485133	399017	632194	422862	443550,4
inf p10	354890	615214	309588	405814	483667	433834,6
inf p11	480384	394215	688230	774965	518524	571263,6
inf p12	1018442	612370	718326	693723	721566	752885,4
inf p13	722876	815797	535656	554316	712169	668162,8
inf p14	907884	897411	586104	900837	912191	840885,4
inf p15	716564	931103	507395	437763	618023	642169,6
inf p16	994975	409570	808312	893429	812044	783666
inf p17	1512706	1092835	1399468	1394478	987273	1277352
inf p18	298338	397136	472791	195870	273237	327474,4
inf p19	597691	568237	735278	452659	805072	631787,4
inf p20	587651	311904	487349	473919	452367	462638
inf p21	33155	31690	37220	25134	29551	31350
inf p22	51298	44572	49765	48630	48165	48486
inf p23	123854	121312	115398	117550	121186	119860
inf p24	21778	16861	23942	24312	25167	22412
inf p25	63212	64036	68512	60485	58875	63024
inf p26	92172	95147	91058	90944	97509	93366
inf p27	96357	95853	91114	92731	91515	93514
inf p28	37933	34458	36490	38821	35028	36546
inf p29	25284	27995	28214	25904	27453	26970
inf p30	123165	122037	119978	120380	123800	121872

Tabela 9. Coloração com orceína dos pacientes. Número de *pixels* por campo amostral nas amostras inferiores.

caso	campo 1	campo 2	campo 3	campo 4	campo 5	média
sup p1	315518	652873	409547	862419	206921	489455,6
sup p2	435285	353658	715483	195873	237852	387630,2
sup p3	107588	475126	283446	423598	389661	335883,8
sup p4	283237	458223	463287	296336	451924	390601,4
sup p5	685454	807958	540820	297583	412335	548830
sup p6	156523	389134	491441	501147	648636	437376,2
sup p7	518198	264862	525667	354269	328977	398394,6
sup p8	235920	267424	409548	395754	123665	286462,2
sup p9	703194	576274	609126	437114	395842	544310
sup p10	233852	529847	412949	302617	412351	378323,2
sup c11	472523	571781	368029	528749	698635	527943,4
sup p12	282984	231463	342876	132634	168974	231786,2
sup p13	236612	546233	196739	417276	392629	357897,8
sup p14	375242	273227	627266	387954	594716	451681
sup p15	287584	439695	231317	307253	293867	311943,2
sup p16	518004	443416	531589	435686	418286	469396,2
sup p17	265263	652318	382964	253195	202829	351313,8
sup p18	330145	353305	331997	612843	494327	424523,4
sup p19	714578	437153	532029	312751	258172	450936,6
sup p20	467497	318236	759635	197264	508781	450282,6
sup p21	23530	35086	41358	37735	28298	33201,4
sup p22	38615	42149	39155	41182	43349	40890
sup p23	157954	154749	171677	165576	155992	161189,6
sup p24	73146	63147	71569	62398	72900	68632
sup p25	91721	92768	93297	90439	94935	92632
sup p26	103517	109058	105230	103986	98839	104126
sup p27	16096	12831	18143	17034	11116	15044
sup p28	47358	46930	43658	44979	51085	46802
sup p29	155312	158913	151987	150378	153404,1	153998,82
sup p30	18832	19075	20086	21142	18170	19461

Tabela 10. Coloração com orceína dos pacientes. Número de *pixels* por campo amostral nas amostras superiores.

caso	sexo	idade	imuno inf	imuno_sup	média
C1	m	38	165077,6	302549,6	233813,6
C2	m	34	98903	367397,4	233150,2
C3	m	38	31540,6	356715	194127,8
C4	m	40	73292,6	246128	159710,3
C5	m	57	144748,6	304604,6	224676,6
C6	m	58	63689,4	299404,4	181546,9
C7	m	34	26054,6	204954,8	115504,7
C8	m	31	113484,8	92604,4	103044,6
C9	f	57	53760,4	345526,4	199643,4
C10	m	59	102447,8	247564,6	175006,2
C11	m	53	132392,4	189165,6	160779
C12	f	27	32379,2	144454,8	88417
C13	f	58	205713,4	222542,6	214128
C14	m	46	55470,6	163841,4	109656
C15	m	49	24233,6	214286,8	119260,2
C16	f	40	47074,6	246104,8	146589,7
C17	m	29	37459,6	331730,6	184595,1
C18	f	39	15293,8	277487,6	146390,7
C19	f	25	101371	192951,2	147161,1
C20	m	34	99006,2	195350,6	147178,4
C21	f	48	63343	128030,2	95686,6
C22	m	49	17153	190274,8	103713,9
C23	f	50	190228,4	187450	188839,2
C24	f	46	78955,6	170077,4	124516,5
C25	f	20	97928,2	157167,8	127548
C26	f	41	91183,8	167807,6	129495,7
C27	f	43	65296,2	118494,2	91895,2
C28	f	29	51399,6	89764,4	70582
C29	f	31	91810,2	168632,6	130221,4
C30	f	23	61719,6	158831,8	110275,7

Tabela 11. Imuno-histoquímica. Médias dos controles.

caso	sexo	idade	Imuno_inf	lmuno_sup	média
P1	f	48	475851,2	462070,8	468961
P2	f	- 51	484614,6	398703,6	441659,1
P3	f	31	344715,4	340882,5	342798,95
P4	f	31	865540	383789,25	624664,6
P5	f	43	414132	531415,2	472773,6
P6	f	35	408820,6	445100,6	426960,6
P7	f	42	399273	387798,6	393535,8
P8	m	43	214057,4	278754.8	246406,1
P9	m	59	456686,2	547354,6	502020,4
P10	 f	47	436443,6	362643,6	399543,6
P11	f	30	557510,6	512984,6	535247,6
P12	f	47	708025,4	237931,4	472978,4
P13	f	46	650487,8	372392,6	511440,2
P14	f	43	857546,2	426913,2	642229,7
P15	f	53	626545,6	306169,4	466357,5
P16	f	46	783565,4	444843,4	614204,4
P17	f	43	1290838	362914,8	826876,4
P18	m	47	321034,2	442609,2	381821,7
P19	m	34	635946,8	423635,6	529791,2
P20	m	53	463768	463271	463519,5
P21	m	38	32470	36418	34444
P22	m	55	50480	42410	46445
P23	m	54	127202	163386	145294
P24	m	46	25160	70624	47892
P25	m	50	65996	98216	82106
P26	m	49	102418	70856	86637
P27	m	44	99748	16712	58230
P28	m	50	38646	50776	44711
P29	m	45	31000	162004	96502
P30	m	43	127504	21180	74342

Tabela 12. Imuno-histoquímica. Médias dos pacientes.

caso	sexo	idade	orceína inf	orceína_sup	média
C1	m	38	153518	298365,2	225941,6
C2	m	34	103416,4	361456	232436,2
C3	m	38	35621,8	367262,2	201442
C4	m	40	73993,4	229172,4	151582,9
C5	m	57	154148	357629,4	255888,7
C6	m	58	61243,8	269797,8	165520,8
C7	m	34	26500,4	185591,6	106046
C8	m	31	108387,6	100940,6	104664,1
C9	f	57	67089,4	339620,6	203355
C10	m	59	133254	274466,4	203860,2
C11	m	53	140062,4	176345,6	158204
C12	f	27	30920,2	151364,2	91142,2
C13	f	58	207926,2	224665,6	216295,9
C14	m	46	57636,2	166910,4	112273,3
C15	m	49	26118,2	210513,2	118315,7
C16	f	40	42161,6	247142	144651,8
C17	m	29	38229,2	330715,4	184472,3
C18	f	39	15330,4	287343,8	151337,1
C19	f	25	99170,2	191238	145204,1
C20	m	34	96876,4	174271	135573,7
C21	f	48	62166	140785,6	101475,8
C22	m	49	17325,2	181524	99424,6
C23	f	50	193487,6	169219,2	181353,4
C24	f	46	84106,8	171756,6	127931,7
C25	f	20	99399	160407,2	129903,1
C26	f	41	92100,2	172342	132221,1
C27	f	43	68614,2	110298,8	89456,5
C28	f	29	51920,6	90327	71123,8
C29	f	31	90237	170769	130503
C30	f	23	54580	148149,4	101364,7

Tabela 13. Orceína. Médias dos controles.

caso	sexo	idade	orceina inf	orceína_sup	média
P1	f	48	478735,6	489455,6	484095,6
P2	f	51	479760,8	387630,2	433695,5
P3	f	31	338234,8	335883,8	337059,3
P4	f	31	828679,2	390601,4	609640,3
P5	f	43	393130,8	548830	470980,4
P6	f	35	422578,4	437376,2	429977,3
P7	f	42	392764,8	398394,6	395579,7
P8	m	43	212790	286462,2	249626,1
P9	m	59	443550,4	544310	493930,2
P10	f	47	433834,6	378323,2	406078,9
P11	f	30	571263,6	527943,4	549603,5
P12	f	47	752885,4	231786,2	492335,8
P13	f	46	668162,8	357897,8	513030,3
P14	f	43	840885,4	451681	646283,2
P15	f	53	642169,6	311943,2	477056,4
P16	f	46	783666	469396,2	626531,1
P17	f	43	1277352	351313,8	814332,9
P18	m	47	327474,4	424523,4	375998,9
P19	m	34	631787,4	450936,6	541362
P20	m	53	462638	450282,6	456460,3
P21	m	38	31350	33201,4	32275,7
P22	m	55	48486	40890	44688
P23	m	54	119860	161189,6	140524,8
P24	m	46	22412	68632	45522
P25	m	50	63024	92632	77828
P26	m	49	93366	104126	98746
P27	m	44	93514	15044	54279
P28	m	50	36546	46802	41674
P29	m	45	26970	153998,82	90484,41
P30	m	43	121872	19461	70666,5

Tabela 14. Orceína. Médias dos pacientes

NORMAS ADOTADAS

NORMAS DE VANCOUVER

Miranda JA. Normas de Vancouver. 1998 Fev 14: (69 écrans). Disponível em:

URL: http://homepage.esoterica.pt/~nx2fmd/Normas.html

TERMINOLOGIA ANTÔMICA

Terminologia Anatômica Internacional. Sociedade Brasileira de Anatomia, São Paulo, Editora Manole 1ª Edição Brasileira, 2001.

TERMINOLOGIA ANATÔMICA

International Anatomical Terminology, Federative Committee on Anatomical Terminology, Stuttgart: Germany, Thieme, 1998.