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ABSTRACT

This thesis presents a novel approach to remotely prototyping digital circuits without
FPGA-based prototyping boards. Motivated by the cost of FPGA-based prototyp-
ing boards and the mobility restrictions caused by the COVID-19 pandemic, the
thesis presents an emulation-based platform, Pitanga, aiming to reduce hardware
costs while allowing students to prototype digital circuits without being physically
present in the laboratories of the educational institution. Instead of a physical
prototyping board, the student interacts with a lightweight graphical user interface
containing a virtual prototyping board on the computer. The platform uses a client-
server architecture that offloads the student’s computer by running the design and
the emulation software on the server-side. This approach is an alternative to FPGA-
based remote laboratories. However, the Pitanga platform responds to the students’
stimuli with near-zero latency and employs general-purpose CPUs to emulate the
remote physical FPGA-based prototyping board. The Pitanga platform responds
with reduced latency because it runs a predictive emulator on the server-side that
calculates the output for every possible input state of the virtual prototyping board
running on the client-side. The results show that the Pitanga platform can emulate
a digital circuit of 72,486 transistors at 1Hz system clock. This complexity is the
equivalent of an Intel 8086 implemented in NMOS technology or a 1024-bit counter
implemented in CMOS technology. Also, the results show that the predictive emu-
lator is O(n) time.

Keywords: Remote laboratory. circuit design. emulation. fpga.



Laboratório remoto baseado em emulação para a prototipação de
circuitos digitais sem FPGA

RESUMO

Esta tese apresenta uma abordagem inovadora para a prototipagem remota de cir-
cuitos digitais sem o uso de placas de prototipagem baseadas em FPGA. Motivado
pelo custo dessas placas e pelas restrições de mobilidade causadas pela pandemia
COVID-19, a tese apresenta a plataforma Pitanga, baseada em emulação, com o
objetivo de reduzir os custos de hardware e permitir que os alunos criem protótipos
de circuitos digitais sem estar fisicamente presentes nos laboratórios da instituição
de ensino. Em vez de uma placa de prototipagem física, o aluno interage com uma
interface gráfica de usuário, leve, contendo uma placa de prototipagem virtual no
computador. A plataforma utiliza uma arquitetura cliente-servidor que executa o
software de design e emulação no lado do servidor, portanto, diminuindo a carga
computacional no computador do aluno. Essa abordagem é uma alternativa aos
laboratórios remotos baseados em FPGA. A plataforma Pitanga responde com la-
tência próxima de zero aos estímulos dos alunos utilizando CPUs de propósito geral
para emular placas de prototipação baseada em FPGA. A redução de latência ocorre
porque há um emulador preditivo no lado do servidor que calcula as respostas para
todos os possíveis estados de entrada da placa de prototipagem virtual em execução
no lado do cliente. Os resultados mostram que a plataforma Pitanga pode emular um
circuito digital de 72.486 transistores a 1Hz de clock do sistema. Essa complexidade
equivale a um Intel 8086 implementado em tecnologia NMOS ou a um contador de
1024 bits implementado em tecnologia CMOS. Além disso, os resultados mostram
que o emulador preditivo possui complexidade O(n).

Palavras-chave: Laboratório remoto, emulação de circuitos, educação em enge-
nharia.
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1 INTRODUCTION

Since March 2020, human society has been severely affected by the COVID-19
pandemic (CIOTTI et al., 2020). The pandemic has forced governments worldwide
to adopt social distancing policies, even imposing lockdowns and face masks on peo-
ple to avoid spreading the new virus. Companies suspended in-person activities,
countries closed their borders, and the world supply chain has slowed down in re-
sponse to such political measures (JAFFE, 2021; TIMUR; XIE, 2021; CAI; LUO,
2020). In the higher education sector, universities worldwide had to adapt and pro-
vide distance learning courses to keep the classes going (GAUDIOT; KASAHARA,
2020; LIEBOWITZ, 2020).

Distance learning impacted not only the delivery of traditional face-to-face
classes but also the delivery of hands-on laboratory experiments. Hands-on labora-
tories require physical access to equipment, challenging IT university departments
to provide the laboratory infrastructure through the Internet. Consequently, the
number of publications related to virtual and remote laboratories has increased dra-
matically during this period to provide solutions to this problem (RAMAN et al.,
2022; RODA-SEGARRA, 2021).

In electrical and computer engineering courses, hands-on laboratories usu-
ally employ FPGA-based prototyping boards for digital circuit design experiments.
During COVID-19, many universities could not use their laboratory infrastructure
(computers, FPGA boards, and related software) because in-person lab activities
were not permitted. Although some universities have managed to share the labo-
ratory infrastructure online for their students (MELOSIK et al., 2022; ALMEIDA
et al., 2022), each university is unique, with different facilities, staff, budgets, and
professors. Not every university can afford to buy FPGA-based prototyping boards
for hands-on laboratories, much less finance a dedicated staff to support the infras-
tructure required to share the lab online. Therefore, a generation of students had
the quality of their engineering education negatively affected by the lack of hands
laboratories (ASGARI et al., 2021). This practical problem motivates the effort
to develop more cost-efficient tools and teaching alternatives while still remotely
providing students with the digital circuit design experience.
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1.1 A glance at the FPGA remote laboratory

The effort to share lab infrastructure over the Internet is not new. The first
records date back to 1996 with the implementation of a robot arm experiment con-
trolled over the Internet at the College of Engineering of the Oregon State University
(AKTAN et al., 1996). MIT also contributed to the microelectronics field by making
device characterization over the Internet possible in 2003 with WebLab, delivering
the laboratory experience to any user with a conventional web browser (FJELDLY;
SHUR, 2005).

In the digital circuit design arena, the popularization and ever-growing capac-
ity of FPGA devices (TRIMBERGER, 2015) contributed to replacing digital circuit
laboratories using traditional breadboards and TTL components with FPGA-based
prototyping boards (NICKELS, 2000; BOULDIN, 2004). This technological ad-
vancement made possible the emergence of web-based digital circuit design labora-
tories in the early 2000s (BECKER et al., 1998; IZUMI et al., 2001; MCCRACKEN;
ZILIC; CHAN, 2003), starting a new research field known in the scientific literature
as FPGA remote laboratory.

Although FPGA remote laboratories have been researched for more than two
decades, this approach has two fundamental limitations that could not be solved
entirely. They are:

1. FPGA remote laboratories are not fault-tolerant, requiring a very responsive
maintenance service to fix and replace unexpected hardware failures and mal-
functions;

2. FPGA remote laboratories rely on costly hardware acquisition for scaling,
imposing additional cost challenges for anyone employing this solution.

These two aspects are the heart of the recent issues researched in the litera-
ture today. For this reason, to find a solution for the issue described in item 1, Villar-
Martinez et al. presented a recent study about fault-detection techniques to auto-
matically identify hardware malfunctions in FPGA remote laboratories (VILLAR-
MARTINEZ et al., 2021). The authors’ investigation did not solve the faults but
attenuated the need for a responsive maintenance service. To obtain a solution for
the lab scaling, as described in item 2, the same authors evaluated the effectiveness
of FPGA remote laboratories replication (VILLAR-MARTINEZ et al., 2022). The
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evaluation has considered educational institutions sharing FPGA-based boards in a
network of several FPGA remote laboratories. In this case, the remote lab scales
due to the addition of FPGA-based boards shared by other institutions in the same
lab network.

In both cases, the authors did not present a definitive solution for auto-
matic fault detection in the remote lab equipment, just as they did not show a
definitive solution for laboratory scaling without the receipt of buying additional
FPGA-based boards. Thus, both issues described in items 1 and 2 remain without
a cost-affordable and fully-automated solution.

1.1.1 The FPGA remote laboratory architecture

FPGA remote laboratories have been evolving since their first appearance in
the early 2000s. However, independently of the advancements, all FPGA remote lab-
oratories have the same principle: an off-the-shelf FPGA-based prototyping board
connected to a computer that shares this same board over the Internet. Figure 1.1
depicts the basic architecture of this type of lab.

Figure 1.1: Traditional FPGA remote laboratory overall architecture

Notice that the traditional architecture requires a computer, an FPGA-based
board, and a webcam on the server-side. The computer acts as a proxy server,
allowing users on the client-side to access the FPGA-based board. The webcam is
usually positioned above the FPGA-based board to capture light stimuli - i.e., LEDs
and seven-segment display changes - so the remote user can check whether his or
her design is working correctly.
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The traditional architecture has the disadvantage of demanding facilities
(room, electricity, cooling), network and computing hardware (network equipment,
computers, cables), and people to support the underlying IT software and services
(operating system, design software, software updates). These demands naturally
impose additional costs on the educational institution. For this reason, educational
institutions with a limited budget commonly choose digital circuit simulators as an
alternative to practical laboratories.

However, although the digital circuit simulator approach is less costly, simu-
lators operate with previously defined input stimuli. The user must code the input
stimuli, either in Verilog or VHDL format, run the simulator and check the results
(either visually or in an automated way). There is no real-time interaction between
the user and the designed circuit when the simulator runs. Indeed, simulators are
not meant to provide a real-life experience: instead, simulators are meant to provide
a debugging environment for verifying digital circuits. Thus, the sole use of sim-
ulators in digital circuit laboratory sessions eliminates the primary purpose of the
lab: to provide a practical experience that the students will get when using real-life
FPGA-based prototyping boards.

1.1.2 The proposed remote laboratory architecture

This thesis presents a cost-efficient alternative architecture - named Pitanga
platform (COSTA; DROVES; REIS, 2023a) - for experimenting with digital circuits.
Following the recent trends in Laboratory as a Service (LaaS) (RAMOS; ALBER-
TINI; SOLIS-LASTRA, 2022), this thesis proposes an emulation-based platform as
an alternative for the traditional FPGA remote laboratories, as shown in Figure 1.2.

Figure 1.2: Pitanga emulation-based remote laboratory overall architecture

The proposed architecture differentiates from the traditional architecture be-
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cause it does not provide physical FPGA-based prototyping boards. Instead, the
system delivers a virtual prototyping board that runs on any general-purpose com-
puter on the client-side. The virtual board captures the user stimuli and transmits
to the server-side for further processing. The server-side emulates the digital circuit
- previously built by the Pitanga compiler - and transmits the response back to the
client-side. The server-side also runs on a general-purpose architecture.

As the Pitanga client-server architecture runs on a general-purpose computer,
both sides scale with cost-affordable general-purpose computers. The proposed ar-
chitecture also delivers digital circuit prototyping as a software service for digital
circuit classes. This approach eliminates common hardware faults in FPGA remote
laboratories (VILLAR-MARTINEZ et al., 2021) by implementing the FPGA-based
board in software. Thus, the proposed platform addresses the two heart issues listed
in Section 1.1.1: the need for a responsive maintenance team and the FPGA lab
scaling cost.

Compared to the traditional FPGA remote laboratory in Figure 1.1, the Pi-
tanga platform replaces the FPGA-based board on the server-side with a responsive
digital circuit emulator. The emulator receives the user stimuli captured by the
rendered virtual board on the client-side and produces a response to these inputs.
The emulator sends back the responses to the client-side, which updates the output
components of the virtual board (LEDs and seven-segment displays). So, this archi-
tecture replaces both the webcam and the FPGA-based board, reducing lab costs
and enabling scaling.

The Pitanga architecture comes as a cost-affordable alternative approach to
the practical problem of prototyping digital circuit designs remotely and without
FPGA-based prototyping boards. However, the Pitanga architecture depicted in
Figure 1.2 is unclear about its benefits as an educational technology. According
to Froyd et al. (FROYD; WANKAT; SMITH, 2012), acceptance of educational
technologies benefit from being inexpensive, easy to use, and based on standards
extensively used in the industry. Considering the Pitanga platform is also a product
that pursues acceptance as an educational technology, Table 1.1 lists some of the
Pitanga platform requirements, each one associated with the acceptance criteria
proposed by Froyd et al.:
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Table 1.1: Pitanga platform requirements associated with acceptance criteria of
educational technologies applied to digital circuit remote laboratories
No Requirement Criteria
1 Widely used commercial HDL as input based on

industry-standard
2 Similar design flow and design stats in comparison

with commercial design tools (i.e., area, cells usage,
power, and timing report)

based on
industry-standard

3 Design software integration capability with commer-
cial design tools

based on
industry-standard

4 Use of the established institution computing hard-
ware for immediate deployment of the remote labo-
ratory

inexpensive

5 Low cost for scaling up and down the digital circuit
lab

inexpensive

6 No need for a highly available and responsive lab
maintenance staff

inexpensive

7 Virtual circuit board with look and feel similar to
typical FPGA-based educational boards

easy to use

8 Non-confusing design software with a lightweight in-
stallation process

easy to use

9 Useful documentation with significant teaching ma-
terial

easy to use

10 User stimuli response in real-time by the remote em-
ulation software

undefined

From a product perspective, the Pitanga platform proposes to address all
the requirements listed in the Table 1.1. However, from a research perspective, the
tenth requirement demands special attention and raises the following questions:

• What maximum network latency must the proposed architecture deliver to be
acceptable as a real-time emulator?

• How fast can an emulated digital circuit run on the proposed platform?

• How many logic cells can the proposed platform emulate?

The answer to these research questions resides in the goal of this thesis.
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1.2 Thesis

This thesis claims that students can prototype digital circuits remotely and
without physical FPGA-based boards. By using the proposed architecture described
in Figure 1.2, this thesis implements a digital circuit emulation software and demon-
strates that it is possible to prototype digital circuits as a software service with real-
time response to user stimuli. With the help of EDA data structures extensively
used in modern logic synthesis tools, the proposed system resembles the FPGA re-
mote laboratory experience, with the advantage of bypassing the network latency
inherent to the client-server architecture.

The main contribution of this thesis is the real-time response that the sys-
tem delivers. In order to do that, the Pitanga platform employs techniques from
networked games (GLAZER; MADHAV, 2015) and logic synthesis tools (WANG;
CHANG; CHENG, 2009). The result is a digital circuit predictive emulator. In
other words, the result of this thesis is an algorithm capable of predicting the digital
circuit response to the user inputs before the user interacts, i.e., before the user even
presses any of the push buttons and switches in the virtual prototyping board.

The iLabs from Stanford Univerity proposed a remote laboratory that can
also predict responses to user stimuli (ZAMAN; NEUSTOCK; HESSELINK, 2021).
Zaman et al. predict the responses by generating and storing an extensive data set
of recorded laboratory experiments previously. The Zaman’s proposal fits well for
experiments with a finite number of states and experiments where network latency
does not impose an issue. However, this is not the scenario of digital circuit experi-
ments, in which non-responsive circuits may indicate a design error, and the number
of circuit states is much more significant.

1.3 Goal

The goal of this thesis is to evaluate the effectiveness of the proposed client-
server architecture in Figure 1.2 in responding to user stimuli. It aims to find the
system responsiveness decay when the Pitanga emulation software runs remotely
(i.e., virtual board and emulator on different machines) and locally (i.e., virtual
board and emulator on the same machine), as depicted in Figure 1.3.

Figure 1.3 illustrates three distinct regions, each encompassing a range of
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coordinates denoting {transistor count, system frequency} pairs. The coordinates
within the innermost semi-circle indicate the pairs of coordinates at which the Pi-
tanga emulation system operates with near-zero latency, offering heightened respon-
siveness. On the other hand, the coordinates within the outermost semi-circle repre-
sent the coordinates where the Pitanga emulation system operates with latency that
is perceptible to the user, resulting in reduced responsiveness. The region between
the outer and inner areas denotes the pair of coordinates where the Pitanga system
exhibits partial responsiveness, although not perceivable by the user.

Figure 1.3: Expected system responsiveness decay when the Pitanga emulation soft-
ware runs remotely and locally

This thesis argues that the system responsiveness (the Pitanga platform re-
sponsiveness) decays as the emulated digital circuit gets bigger and bigger. The same
behavior is expected as the emulated circuit frequency increases. Figure 1.3 aims
to identify and locate a set of pre-defined circuits following a meaningful method-
ology. In order to define what is the acceptable system responsiveness to the user,
this thesis borrows the latency concept from computer games. In computer games,
latency refers to the amount of time between an observable cause and its observable
effect (GLAZER; MADHAV, 2015). So, for a digital circuit running in the Pitanga
platform, latency is the amount of time it takes between an input change (i.e., push
button, clock rising) to be observable at the output (i.e., LEDs, displays).

Finally, after identifying the emulated circuit designs that do not compromise
the usability of the system due to latency, the thesis correlates the emulated designs
with past commercial IC designs with similar transistor counts. The goal is to
demonstrate that the Pitanga platform can emulate digital circuits complex enough
to be used as a virtual remote laboratory, benefiting educational institutions with a
limited budget.
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1.4 Thesis Organization

This thesis is divided into six more chapters (seven in total, considering the
introduction). The role of the additional chapters in the organization of this thesis
is described in the following.

Chapter 2: GENERAL CONCEPTS — presents the theoretical foundation and
established knowledge that is needed to understand the Pitanga platform.
The chapter discusses VLSI design, relevant EDA data structures, simula-
tion techniques, multiplayer game programming concepts, hamming codes and
hamming distance.

Chapter 3: REVIEW OF REMOTE LABORATORIES — reviews previous and
recent works on FPGA-based remote laboratories. It also maps and discusses
several simulation-based tools used in digital circuit laboratories.

Chapter 4: THE PROPOSED REMOTE LABORATORY—proposes the emulation-
based remote laboratory. The architecture of the system and implementation
details are discussed. The chapter discusses the predictive emulator algorithm
using modern EDA data structures in order to avoid system latency.

Chapter 5: METHODOLOGY — describes the input and output parameters, how
the input parameters are controlled and how the output parameters are mea-
sured in order to have reproducible experiments.

Chapter 6: RESULTS— presents and discusses the results obtained when running
the emulation-based system with a pre-defined set of circuits. Results in terms
of the platform latency are presented. The chapter also correlates the results
with past IC designs.

Chapter 7: CONCLUSIONS AND FUTURE WORKS — provides the conclu-
sions. The chapter also discusses the contributions and future works.
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2 GENERAL CONCEPTS

This chapter presents the foundational concepts required to comprehend the
virtual remote laboratory architecture proposed in Chapter 4. In order to under-
stand the proposed architecture, named Pitanga platform, this thesis employs knowl-
edge from three distinct areas: VLSI design, electronic design automation (EDA),
and multiplayer gaming programming.

The chapter begins by explaining the key aspects of a VLSI design in the
Section 2.1. This section focuses on the necessary concepts for integrating the Pi-
tanga platform in the most appropriate VLSI design methodology and flow. Then,
Section 2.2 presents modern EDA data structures in order to support the reader on
how to model and emulate a virtual programmable chip in software. Finally, Section
2.3 explores multiplayer gaming programming to help the reader understand the im-
portance of the client-server architecture and the predictive algorithm proposed in
Chapter 4.

2.1 VLSI design

VLSI design is the process of building a digital integrated circuit through
the connection of electrical components in a meaningful way in order to achieve
an expected functionality. The expected functionality usually starts with a set
of statements written in human language, which is gradually transformed into a
network of transistors (RABAEY; CHANDRAKASAN; NIKLIć, 2003). VLSI stands
for Very Large Scale Integration.

The increasing miniaturization of VLSI technologies raised the complexity
of designing digital circuits. Since the invention of the IC in 1958 by Jack Kilby
and Robert Noyce (SMIL, 2018), the transistor count in a single die has followed
the prediction proposed by Gordon Moore (aka, Moore’s law), doubling the number
of transistors in a chip every 18 months (MOORE, 1965) as show in 2.1. However,
doubling the IC integration capacity does not mean doubling the engineers’ capacity
for designing and verifying new digital circuits every 18 months. This productivity
steep is only possible with good design methodologies and more advanced EDA
tools. For this reason, successful VLSI design, like any other engineering project,
demands efficient methodologies and tools.
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Figure 2.1: Moore’s law: The number of transistors per microprocessor. Although
it is not a law, Moore’s prediction is commonly referred to as a law in VLSI design.
SOURCE: (OURWORLDINDATA, 2022)

There are different methodology styles depending on the chip requirements.
The VLSI design methodology choice affects the VLSI design flow, which is the
sequence of steps necessary for achieving a successful VLSI design. The following
sections describe these design methodologies as well as the typical design flow used
in modern VLSI designs.

2.1.1 VLSI design methodologies

When a company is designing a digital IC, different design methodologies can
be used. These methodologies impact design factors like cost, complexity, power,
schedule, performance, flexibility, and the company business (WESTE; HARRIS,
2010). The choice of a methodology determines the overall approach on how to
perform the design steps that leads to a successful IC design. The comprehension
of the available design methodologies also aids the company in defining the suite of
EDA tools necessary for designing a chip.

The following sections briefly describe the design methods used to implement
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a VLSI design. Understanding such methods will let the reader understand the
methodologies which the Pitanga platform is best suited for.

2.1.1.1 FPGA-based design

Companies use an FPGA-based design methodology when the volume of
chips is not high enough to justify the mass production of chips. This design method
employs an off-the-shelf chip containing an array of logic cells surrounded by pro-
grammable routing resources (HUTTON; BETZ; ANDERSON, 2016). The FPGA
is programmed (or configured) through a binary file known as bitstream. The design
software accompanying the FPGA builds the bitstream file according to the design
intent, usually described in Verilog, VHDL, or schematic.

FPGA stands for Field Programmable Gate Arrays, meaning that the chip
is programmable in the field (i.e., in the customer). In order to possess such pro-
grammable characteristics, the FPGA contains logic blocks composed of registers
and multiplexers (XILINX, 2016). Each register connects to the inputs of the mul-
tiplexer. During the power-on time, the FPGA bootstrapping circuitry configures
the registers through the bitstream file. Thus, depending on the register content,
the multiplexer assumes a different logic function. In other words, the multiplexer
emulates any logic gate in a programmable manner. The number of logic gate inputs
is the number of the selection inputs of the multiplexer.

The programmable feature of FPGAs has the advantage of speeding up the
validation of a product in the market. Depending on the number of sold pieces, the
FPGA-based design can migrate to a cell-based design in order to decrease the unit
cost.

2.1.1.2 Standard cell-based design

A standard cell-based design relies on a set of pre-designed logic cells with a
wide range of functionality. The logic cells implement functionalities such as boolean
algebraic gates of various inputs (inverters, buffers, 2-input NANDs, 3-input XORs,
and others), adders, comparators, multiplexers, laches, flip-flops, registers, and other
more advanced logic circuits (SKYWATER, 2022). These logic cells are grouped into
a library of cells that employs industry-standard file formats like Liberty, LEF (Li-
brary Exchange Format), and Verilog simulation files. Foundries and vendors offer
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libraries (aka, technology libraries) to the market targeting a specific technology.
In a standard cell-based design, the specified digital circuit (usually written

in Verilog) is mapped to the cells in the Liberty file. The produced circuit is a gate-
level netlist containing a network of cells, and this netlist proceeds to physical design
after verification. The physical design extracts the cell geometry and pin locations
from the LEF file to drive cell placement and wire routing. The engineers check each
implementation step with verification tools such as simulators and emulators in order
to preserve the functionality of the design. Verilog simulation files are necessary for
simulators, especially in simulations considering timing delay effects. Although not
mandatory, the technology library may also include power/ground cells (PG pads),
reset cells (XRES), test/analog pads, and input/output cells (IO pads) in addition
to the standard cells.

Most VLSI designs are standard cell-based, as the freedom provided by full-
custom designs is difficult to be efficiently used in practice (KANG; LEBLEBIGI,
2003). The cell library simplifies the design because the designer does not need to
design logic gates and size every transistor. However, the designer is restricted to
the use of the cells from the technology library. This approach applies primarily to
ASICs and, as the final result, produces a set of fabrication masks that is sent to
the foundry for manufacturing the final IC.

2.1.1.3 Gate array-based design

This method uses a set of fabrication masks containing a base array of either
transistors or logic gates (WESTE; HARRIS, 2010). The specified digital circuit is
designed by using the base array of pre-placed cells fixed by the already-produced
masks. The functionality of the design is achieved by the routing wires connecting
the gates in the base array. In gate array-based designs, the design costs reduce
because only metal and via masks need to be manufactured.

From the designer’s perspective, the gate array-based designs use practically
the same set of EDA tools. The difference comes at the physical design level, which
limits the freedom of the designer to routing the wires among the already placed
cells on the floorplanning. IO pads are also fixed, thus, also limiting the input and
output capabilities of the design. In addition to that, designs demanding memory
blocks can only be implemented using such a method if memory blocks are available
in the floorplanning.
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Gate array-based methodologies have the advantage of speeding up the fabri-
cation process because manufacturing starts from the bottom metalization layers and
above. These layers apply to the premanufactured wafers, reducing the turnaround
time to a week or less (RABAEY; CHANDRAKASAN; NIKLIć, 2003). Although
this methodology is less expensive than the standard cell-based which does not need
a complete run, this comes at the expense of lower performance, lower integration
density, or high power dissipation.

2.1.1.4 SoC-based design

SoC-based design is a methodology that started appearing in technical books
in the middle of the 90s (GOOGLE, 2022). The term SoC stands for System-
On-Chip, and the key aspect of this methodology is the reuse of pre-designed
functional blocks, named Intellectual Properties (IPs), for building the final chip
(CHAKRAVARTHI, 2019). The SoC-based design is somewhat similar to building-
block toy assembling (i.e., LEGO), where pre-constructed blocks are used to assem-
ble a larger design. The IP may be company-owned or licensed by another company
for reuse. The licensing company receives royalties for that.

An SoC-based design differs from other VLSI methodologies because they
may integrate digital and analog IPs in the same IC design. This IP may be either
soft or a hard IP. In soft IPs, the designers can access the behavioral code written
in Verilog or VHDL format. This characteristic allows RTL design engineers to
generate gate-level netlists similar to standard cell-based designs. However, when
the design contains hard IPs, designers do not have the behavioral code and must
use LEF files to place and route the hard IP with the other IPs in the digital system.
Hard IPs have fixed sizes, imposing design engineers to define the hard IP locations
in the floorplanning.

In the present day, most VLSI designs are SoCs of considerable complexity.
Thanks to the reuse of IPs, modern IC are in the range of hundreds of billions
of transistors. The Apple M1 Ultra, released in March 2022, integrates 114 bil-
lion transistors and is such an example. This SoC contains 20-core CPUs, 64-core
GPUs, and 32-core neural engines (APPLE, 2022). However, in order to reach such
advancement, SoC-based designs demand new EDA tools for qualifying, verifying,
and integrating IPs. They also demand lots of computing power and efficient EDA
tools to sign off the chip under an appropriate design schedule.
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2.1.1.5 Full-custom design

In this methodology, the designer can modify the dimensions of every transis-
tor and create any logic cell because the designer is no longer limited to the standard
library cell. However, transistor sizing is time-consuming and requires experienced
design engineers in transistors and circuit theory.

Full-custom design uses much fewer EDA tools when compared to gate-array
and standard cell-based methodologies. As the design is manual, there is no need
for too much automation. Thus, the tools used in full-custom designs are practi-
cally the same as the ones used in analog IC designs. Tools like layout editors,
parasitic extractors, design rule checkers, and analog simulators are enough for this
methodology.

The full-custom design is a common approach in high-volume ICs production
because the sales volume amortizes the intensive engineering resources (DILLINGER,
2019). This is the case for arithmetic circuits in general purposes processors and
special blocks that requires either high-speed or low-power consumption (or both).
Standard cell libraries also demand characteristics such as high-speed, low-power
consumption, and compacted area. For this reason, standard cells also use the full-
custom design method. Nowadays, a complete chip design using this methodology
from scratch is unfeasible, the reason why other VLSI methodologies are preferable.

2.1.1.6 Final remarks

The previous sections explained design methodologies where the platform
proposed by this thesis can be used for teaching purposes. However, not all VLSI
design methodologies are suitable for the Pitanga platform, which is the case of the
full-custom design methodology.

It is important to note that VLSI designs can also mix different method-
ologies. For example, an SoC design that integrates a RISC processor with buses
and memory blocks may need standard cell logic to control such blocks; this same
SoC may also need an additional customized block designed for low power. In this
example, the SoC design employs SoC-based, standard cell-based, and full-custom
design methods in the same design.
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2.1.2 VLSI design flow

The more significant VLSI designs become in transistor count, the more
complex the design process is. The design process is composed of several steps that
continuously grow with the advance of foundry technologies. The number of design
steps grows due to several factors, which include:

1. the increasing number of integrated circuits per millimeter square, which de-
mands more sophisticated tools to address multi-billion transistor designs (see
Figure 2.1);

2. the reuse of IPs, which demands special tools and computer power for IP
qualification, integration, verification, and chip sign-off;

3. the finding of new physical effects, which demands the modeling of new pa-
rameters for the IC fabrication process;

In order to accelerate the next generation of VLSI designs, EDA vendors col-
laborate directly with foundries (CADENCE, 2021; SYNOPSYS, 2022c; SIEMENS,
2022a). Based on the new technology challenges, these vendors develop new EDA
software and features capable of automating the new design steps. The vendors then
turn the new design steps into software and release them to the design companies.
The design companies, willing to advance their products to the new technology, must
update their software, qualify the new design tool flow with the new technology, re-
view the computing infrastructure, and train the engineers, among other tasks. This
process repeats over and over with every new foundry technology released.

Figure 2.2 overviews the design steps necessary in different technologies rang-
ing from 250nm to 65nm (CHINNERY et al., 2017). Notice the growth in the number
of design steps as technology advances. Each new design step is associated with a
new EDA tool that automates the flow. Sometimes, the new design step is so com-
plex that it may even demand a new job position. For example, the DFT engineer,
the STA engineer, and the IP integration engineer are typical job positions nowadays
that did not exist in the past.

Note that a VLSI design flow details the design methodology into several
steps. Therefore, VLSI design flows vary depending on the selected design method.
As an example, the design flow in Figure 2.2 details a standard cell-based design
methodology into several steps.
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Figure 2.2: Design flow steps on different target technologies. SOURCE: (CHIN-
NERY et al., 2017)

The following sections describe design flow steps and industry-standard data
formats used in a typical VLSI design flow. It also differentiates design flows accord-
ing to the design method whenever necessary. This thesis does not intend to make
an exhaustive list describing every VLSI design step and data format. Instead, the
following sections intend to overview common VLSI design steps to help the reader
understand how the Pitanga platform can be used with a typical VLSI design flow.

2.1.2.1 Product specification document

Any VLSI design starts with market research. The marketing team compiles
the research into a document named market requirements document, or MRD (CA-
DENCE, 2008c), which outlines the market needs. With the MRD, the product
team develops the production specification document (PSD) containing technical de-
tails about the product, including the foundry technology and expected die area.
Product functionalities, preliminary bill of materials (BOM), and possible third-
party suppliers (IPs, standard cells, EDA software licenses) may also be included
in the PSD for the product cost estimation. Both MRD and PSD are written in
natural language, and the names may vary from organization to organization.
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2.1.2.2 Architecture specification document

The architecture specification document (ASD) is a technical document that
contains further details about the IC architecture to be implemented. This doc-
ument provides information about block partitioning, functional and performance
requirements, design phases and deliverables, IPs (memory blocks, processors, stan-
dard cell library), and the design implementation flow (CADENCE, 2008a). The
design manager is responsible for writing this document for the IC designers in hu-
man language. This document is very technical; it is the starting point of the IC
design, and it is based on the PSD.

2.1.2.3 Verification plan

The verification plan (VPlan) is the document that details the tests that must
be performed to validate the ASD. While the ASD defines the expected functionality
of the IC, the verification plan defines the verification strategy to validate the IC
(CADENCE, 2006). The plan addresses the list of design features and specifies the
testcases that verify each feature. It also defines the verification methodology, the
verification environment, and the coverage metrics used to determine the acceptance
criteria of the IC design.

Depending on the design methodology, decisions about the verification flow
are determined by this plan. For smaller designs, functional and gate-level simu-
lations may be enough for signing off standard cell-based designs chip. However,
hardware-accelerated simulations may be needed for bigger designs. This includes
software licenses for parallel simulation dispatched on either in-house grid engines
or third-party hardware-accelerated devices (SCHIRRMEISTER; BERSHTEYN;
TURNER, 2017). Emulator and FPGA-based prototyping boards are specially
employed for verifying SoC-based designs containing embedded software. Formal
verification and assertion-based techniques may also be defined in this plan.

The verification plan may also be found in the technical literature as verifi-
cation test plan, or just test plan. The verification manager writes this document
in human language based on the ASD.
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2.1.2.4 EDA Environment

The EDA environment is the implementation of the design flow. The CAD
team, based on the target technology in the PSD, the design steps in the ASD, and
the verification methodology in the VPlan, is in charge of building and supporting
this environment. As the design flow comprises the implementation and the verifi-
cation flow (CADENCE, 2008a), the CAD team is responsible for integrating and
qualifying both flows with the target technology and EDA tools. Figure 2.3 shows
the EDA environment and all the steps detailed so far. Notice that the EDA environ-
ment may be viewed as a container for the EDA tools, technology files, verification
environment, and design files.

Figure 2.3: An VLSI design flow at the highest level including product development
processes

The CAD team works in collaboration with the design team in order to
qualify the tech files (foundry target technology, IPs, VIPs, standard cell, and other
files) with the EDA tools. The qualification step is crucial because it speeds up time-
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to-tape-out by identifying potential issues early in the design flow. For example, it
is not uncommon to detect the same cell in the timing library (liberty file) and the
simulation library (either Verilog or VHDL) with a cell name mismatch (CADENCE,
2007b). Or yet, pin names mismatches between back-end views from the same
OpenAccess database. Sometimes, proprietary technology files are not provided by
the foundry PDK, demanding the generation of such files with specific tools. This
process aims to validate the consistency and completeness of the technology libraries
and is called library qualification.

The qualification process is not limited only to the library qualification; it
extends to the qualification of the EDA tools and the computing infrastructure as
well. Some tools may require OS library updates, which may affect the operation
of other tools if applied without caution. In addition to that, verification tools
demand lots of computing power for simulation. If not properly qualified with the
infrastructure, they may slow down all the computers in the same network.

The EDA tool qualification process serves to identify potential infrastructure
bottlenecks early in the flow, such as insufficiency of CPU cores, storage, switches,
or memory. There is no use in buying high-speed storage if there are not enough
computing cores, as there is no use in buying more computing cores if the storage
is not fast enough. There must be a balance between storage writing speed and
computing power to avoid bottlenecks.

The same rationale applies to computing power and software licenses. There
must be a balance. For example, having high-speed storage, network, and CPU
cores makes no sense if there are insufficient EDA software licenses. All of this must
be considered in order to have an efficient EDA environment.

2.1.2.5 Verification Flow

The verification flow contains scripts that launch different verification tools
depending on the design under test/design under verification (DUT/DUV) devel-
opment stage (CADENCE, 2007c). The CAD team works in collaboration with the
verification engineering team in order to automate the verification flow.

As the verification tools demand lots of simulation computing power, the
CAD team develops scripts to optimize the usage of the available software licenses
and computing resources throughout the organization’s projects. When several
teams work on different IC designs, the CAD team is also responsible for defin-
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ing the usage policies of hardware-accelerated simulation tools (e.g., third-party
emulators and compute grid engines).

The verification flow is commonly related to the set of logical simulation
tools. However, there are other types of verification tools in this flow. For example:

• Static timing analyzers (STA) verify the design timing (CADENCE, 2008e);

• physical verification tools verify the geometry of the design against the IC
fabrication rules (CADENCE, 2008g);

• power verification tools verify the dynamic power consumption of the design
(CADENCE, 2008f);

• constraint checkers verifies the consistency of synthesis design constraints files
(CADENCE, 2007a).

This thesis considers that the verification flow consists of more than just logic
simulation tools and their respective files. Although these tools and files must be
considered in Figure 2.3, they are not shown in order to keep the schema clear.

2.1.2.6 Implementation Flow

The implementation flow contains the tools and technologies required for
implementing the IC Design (CADENCE, 2008a). The CAD team works with the
design engineering team to automate the implementation flow through shell scripts.

After library qualification, the implementation flow is validated with a sample
design. This step may require additional software patches and OS library updates.
The CAD team may also identify tool bugs, reporting a fix to the EDA tool vendor.
The vendor solution may take some time, and, for this reason, as for the verification
flow, it is recommended to validate this flow in order to avoid unexpected errors
during the design implementation phase.

Much like the verification flow, the implementation flow is an ongoing process
that continues throughout the IC design flow. This flow requires additional software,
such as language compilers, script interpreters, FPGA design software, PCB editors,
mathematical software (e.g., MATLAB), office packages, version control systems,
bug trackers, and additional pieces of software necessary for the project.
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2.1.2.7 Verification Environment

The verification environment is the implementation of the verification strat-
egy defined in the verification plan. SystemVerilog is the preferred language for
coding verification environments nowadays, Although SystemC, Python, C/C++,
and Matlab are also used (MOURSI et al., 2018). The verification environment
follows the methodology and methods defined in the verification plan.

Much like the IC designer for IPs, verification design engineers reuse past ver-
ification environments in order to accelerate future designs. For this reason, several
verification methodologies attempts started after the 2000s for easiness the reuse,
such as eRM (eReuse methodology), AVM (Advanced Verification Methodology),
OVM (Open Verification methodology), and UVM (Universal Verification Method-
ology) (ROSENBERG; MEADE, 2013). The UVM has become the standard IEEE
1800.2; consequently, many companies employ UVM for verifying VLSI designs.

Nowadays, EDA vendors licenses verification intellectual properties (VIPs)
in the same manner as IPs. While IPs are intended for companies willing to accel-
erate VLSI designs by reusing functional pre-designed blocks, VIPs are intended for
companies willing to accelerate VLSI designs by reusing certified verification envi-
ronments to validate their IPs. In summary, VIPs are a good strategy for saving
the development time of a new verification environment from scratch.

2.1.2.8 Design files

Design files implement the hardware architecture specification expressed in
the ASD, capturing the design engineer’s intent into a file format. Although design
files are commonly associated with hardware description languages (HDL), there are
also design files describing low-power structures, maximum path delay, and maxi-
mum allowed logic area. These are the constraint files that, combined with HDLs,
capture the whole design intent.

When describing the logic functionality, VHDL and Verilog are the languages
that come to the design engineer’s mind. VHDL was conceived at the beginning
of the 80s for documenting purposes (SHAHDAD et al., 1985), while Verilog was
conceived in the middle 80s as a language for circuit simulation (MAGINOT, 1992).
Nowadays, both languages are used for circuit simulation and synthesis. These
languages can describe digital logic in structural and behavioral forms (WESTE;
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HARRIS, 2010). The structural form is very similar to a textual description of a
schematic, while the behavioral format can describe circuits at higher abstraction
levels (i.e., RTL and architectural levels). For this reason, the behavioral format
enhances productivity and thus is the preferred method for describing circuits.

Constraint files do not implement the logic functionality but the circuit per-
formance requirements defined in the ASD. These files drive EDA tools toward the
final chip mask, constraining the circuit area, the allowed propagation delay between
flip-flops, and the maximum power consumption, just to name a few examples. The
synopsys design constraint (SDC) is the most prominent constraint file and is also
the industry standard for writing timing constraints. At the time this thesis is being
written, Synopsys controls the format and provides SDC as an open-source format
(GANGADHARAN; CHURIWALA, 2014; SYNOPSYS, 2022b).

Table 2.1 shows industry-standard design files commonly used in the VLSI
design flow (ACCELLERA, 2022). Except for SDC (SYNOPSYS, 2022b), all the
other formats are IEEE standards.

Table 2.1: Design file standards used in industrial VLSI design flows
Language Usage
Verilog HDL. Describe digital circuits in RTL, gate-level, and transistor-

level. The RTL and gate-level notation is commonly used by
VLSI and FPGA synthesis tools.

VHDL HDL. Like Verilog, however, it cannot describe circuits at the
transistor level. Used by VLSI and FPGA synthesis tools.

PSL Property specification language. Formal notation for specifica-
tion of electronic system behavior. Capture design intent in a
form suitable for verification tools.

SystemC HDL. Describe complex heterogeneous systems that are hybrid
between hardware and software. Mostly used in HLS tools.

SystemVerilog HDL. Subsumes Verilog and enhances the language by support-
ing advanced verification structures. Used by verification tools.

UPF Constraint file. Specify power intent for energy-aware VLSI de-
signs. Enable portability of power intent across EDA tools.

SDC Constraint file. Used mainly to describe timing and drive RTL
synthesis and physical design tools throughout the VLSI design
flow.
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2.1.2.9 RTL simulation

In VLSI design, simulation is the process of reproducing the behavior of an
electronic circuit in a computer environment. The electronic circuit is modeled with
the help of HDLs, which are then read and translated by EDA simulation tools. In
a simulation, the verification environment drives the DUT with computer-generated
stimuli (i.e., non-real traffic). Depending on the purpose of the simulator, circuit
characteristics such as functionality, timing, and power are analyzed. When the
purpose of the simulation is to reproduce the logic functionality, the term functional
verification is used (SCHIRRMEISTER; BERSHTEYN; TURNER, 2017).

RTL simulation is a functional verification where the DUT is described in
the RTL form. The same HDL files used for the RTL simulation are used for the
RTL synthesis, the reason why this design step triggers RTL synthesis as shown in
Figure 2.4. RTL simulation, also known as pre-synthesis simulation, is characterized
depending on the host architecture where the DUT runs as follows:

• Traditional RTL simulation: the main vehicle for the functional verification
of digital blocks and IPs of low transistor count. It runs on general-purpose x86
CPUs and is employed early in the verification flow when hardware bugs are
frequent. The term RTL simulation usually refers to this type of simulation.

• Parallel RTL simulation: speed up traditional RTL simulations by running
several instances of the DUT in parallel. This type of simulation requires a grid
scheduler software (ORACLE, 2010) for dispatching DUTs and testbenches
to different x86 cores over the network (PULLI; KREMASTIOTIS; KULIS,
2022). Companies with plenty of EDA licenses and a computer farm typically
use this type of simulation.

• Hardware accelerated RTL simulation: in this type of RTL simula-
tion, the DUT runs on a hardware accelerator while the verification envi-
ronment runs in the designer’s workstation. The acceleration is achieved by
mapping the DUT into the hardware accelerator, which may be composed
of GPUs (ZHANG; REN; KHAILANY, 2020), FPGAs (BIANCOLIN et al.,
2019; ALDEC, 2022), or customized processors (CADENCE, 2022d). Typi-
cally, acceleration can reach, or even exceed, 1000 times over traditional RTL
simulation (SCHIRRMEISTER; BERSHTEYN; TURNER, 2017).

Although not mandatory, traditional and parallel RTL simulations are enough
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in standard cell-based designs. Hardware-accelerated RTL simulation is preferred
when the gate count impacts the simulation speed, which is usually the case of
SoC-based designs.

2.1.2.10 In-circuit emulation

Emulation is the imitative process of the functioning of one hardware sys-
tem by using another hardware system with the same functionality. The emulated
hardware behaves identically to the original hardware system, although it contains
hardware pieces that are not physically identical to the genuine hardware system. In
VLSI design, emulation is also referred to as in-circuit emulation (ICE). Like RTL
simulation, ICE is also a functional verification step because it aims to reproduce
and check the logic functionality. The input design files are described at the RTL
abstraction level, meaning that RTL simulators and synthesis tools can use the same
files.

ICE maps the RTL design files into specialized hardware that interfaces with
a prototype of the target system. The specialized hardware emulates the forthcoming
IC of the target system, allowing system-level and software testing prior to the silicon
availability. ICE differs from RTL simulation because the verification environment
is not modeled in software, but it is in-circuit. Real electronic devices interfaces with
the emulated DUT, thus, providing live real-time traffic in the verification process
(MACMILLEN et al., 2000).

Figure 2.4 shows ICE as a functional verification step of SoC-based design.
ICE is generally employed in SoC-based designs because the gate count is much
higher when compared to standard cell-based designs. The usage of IPs is the leading
cause of such gate count difference, demanding more powerful verification tools. As
an SoC contains several IPs, some orchestration is needed to control the system.
Therefore, SoC-based design usually includes an embedded microprocessor. The
microprocessor demands software, requiring hardware and software co-development
in the design flow. ICE lets software developers verify the software behavior in the
target system during the design flow, thus accelerating the development cycle.

Depending on the host architecture where the DUT runs, emulation is char-
acterized as follows:

• Processor-based emulation: consists of a massive array of boolean pro-



39

cessors connected through inter-processor switches (PFISTER, 1982). Each
boolean processor is a RISC architecture with logic and arithmetic instruc-
tions that simulates logic gates (BACHRACH et al., 2017). The processor-
based emulator comes with a compiler that maps and partitions the design
files among the several boolean processors. The compiler also schedules in-
dividual boolean operations in the correct time sequence among the boolean
processors, thus emulating the intended logic circuit. Hardware debugging is
straightforward, much like in RTL simulators. Due to their fast compilation
time, hardware and software developers use processor-based emulators early
in the design flow when hardware bugs are frequent. As of the writing of this
thesis, the Cadence Palladium was an example of a processor-based emulation
platform (CADENCE, 2022c).

• FPGA-based emulation: consists of one or more off-the-shelf FPGAs com-
bined into a single emulation platform. The emulation platform maps and par-
titions (i.e., compiles) the design files among the FPGA devices. Depending on
the partition cut, wires connecting two partitions may exceed the number of
ports of a single FPGA, requiring repartitioning and remapping. For this rea-
son, the time to recompile a large design is very long and discourages changes
(SCHIRRMEISTER; BERSHTEYN; TURNER, 2017). Hardware debugging
is an offline process and requires the definition of probe signals before compila-
tion. Although FPGA-based emulation has some disadvantages, this platform
is much faster when compared to processor-based emulators. For this rea-
son, software developers prefer FPGA-based emulators for software debugging
toward the end of the development cycle, when hardware bugs are less fre-
quent. The Synopsys ZeBU and Siemens Veloce are examples of commercial
FPGA-based emulators (SYNOPSYS, 2022a; SIEMENS, 2022b). The term
FPGA-based prototyping is commonly used for these commercial emulators.
In this thesis, the term FPGA-based emulation is preferable.

Finally, unlike RTL simulation, unexpected or unplanned stimuli are easily
captured in ICE, exercising the DUT in states not even imagined by the verification
team. Hence, there is a parcel of randomness in ICE that RTL simulation cannot
replicate. For example, simply pressing a button by a user may produce results in
an emulator that an RTL simulator cannot reproduce.
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Figure 2.4: VLSI synthesis flow overview

2.1.2.11 RTL synthesis

The RTL synthesis translates a digital circuit from the behavioral level to
the logic gate level (WESTE; HARRIS, 2010). The RTL synthesis tool infers the
digital circuit intent coded by the design engineer and maps it to the logic gates
made available by the liberty file (aka technology library). The resulting output
is a list of logic gates, a network of interconnected gates, named gate-level netlist
or just netlist. The netlist is usually written in Verilog format and is a textual
representation of a circuit schematic.

The technology library generally contains complex logic cells in addition to
primitive gates. The library has cells of different sizes, speeds, power, and function-
ality. This variety of cells is used by RTL synthesis tools depending on the constraint
files. Constraint files, like SDC and UPF, drive the synthesis process to choose the
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most appropriate cells to achieve the requirements defined in the ASD. For exam-
ple, if the timing constraints are aggressive, the synthesis tool maps the design to
high-speed cells, thus increasing the total area. Alternatively, if power constraints
are specified, the synthesis tool may choose low-power cells from the tech library.
When no constraint is explicitly defined, the RTL synthesis tool selects smaller cells
because a smaller area means less die area, consequently, less cost.

Depending on the EDA vendor, RTL synthesis tools may also provide the
following functionalities (CADENCE, 2008d):

• Scan chain insertion: replace flip-flop cells with scan flip-flops from the
tech library. It also connects the scan flip-flops serially to form a scan chain.
Automatic test equipment uses the scan chain to test the chip for failures after
manufacturing.

• Architecture selecion: generates the best architecture implementation for
datapaths using the cells in the tech library. For example, the tool may map
to a carry-save adder instead of a ripple-carry adder.

• Low-power synthesis: if provided by the tech library and defined in the
power constraints file (UPF), the synthesis tool inserts low-power cells such as
clock gating, state retention power gating (SRPG), isolation, and level shifters
in the design.

The output of the RTL synthesis is a gate-level netlist and an updated SDC
file. These files are the inputs to the physical design. The RTL synthesis runs several
times until functional verification does not find hardware bugs anymore.

2.1.2.12 Formal verification

Formal verification mathematically proves whether two digital circuits have
the same boolean functionality (WESTE; HARRIS, 2010). This characteristic of
formal verification is a valuable resource for comparing the several transformations
that occur with the design files throughout the VLSI design flow, from RTL to
GDSII. A formal verification tool can prove that both RTL (i.e., pre-synthesis) and
gate-level netlist (i.e., post-synthesis) are equivalent without running simulation/em-
ulation tools. It can also prove the logical equivalence of the design after applying
(CADENCE, 2007b)

1. DFT transformations, such as scan chain insertions.
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2. logic optimizations, such as resource sharing.

3. low-power techniques, such as clock gate insertions.

4. ECOs, such as fixing a hardware bug after silicon prototyping.

When combined with STA tools, formal verification reduces the need for
time-consuming gate-level simulations (GLS). As formal verification techniques rely
on mathematical operations, input stimuli are unnecessary. For this reason, formal
verification is more efficient than GLS when comparing two different versions of the
same design. However, GLS is still necessary for signing off the chip.

2.1.2.13 Static timing analysis

Static timing analysis (STA) computes and compares every path delay in
the gate-level netlist against the timing specification defined in the SDC file (CA-
DENCE, 2008e). The path delay, also named timing path, is the propagation time
of data from a start point to an end point relative to the circuit clock. A start point
is either an input port or a clock pin of a sequential cell, while an end point is either
an output port or data input of a sequential cell. Unlike gate-level simulation, STA
does not need input stimuli to verify the timing correctness of the design. Every tim-
ing path is computed with the pre-computed cell delays available in the Liberty file.
When combined with formal verification, STA reduces the need for time-consuming
gate-level simulations.

As the project moves toward the end, accurate propagation delay in the wires
becomes available. This accuracy occurs after physical design, which places and
routes the circuit components (i.e., standard cells) and extracts the wiring delays.
Physical design tools annotate wire delays into a file named standard delay format
(SDF) (DILLINGER, 2019). With the SDF available, the designer can run a much
more precise STA, which is closer to the real and expected timing. The analysis also
considers the signal propagation at different temperatures and voltage operating
conditions. These conditions also apply to temperature and voltage variations in
different parts of the chip (on-chip variation, OCV). This type of analysis aims to
identify the best and worst-case operating conditions of the designed circuit and is
also known as corner analysis.
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2.1.2.14 Gate-level simulation

Gate-level simulation (GLS) reproduces the behavior of the DUT after the
RTL synthesis. In GLS, the same verification environment applied in functional
verification stimulates the DUT. However, in this case, the verification environment
uses only some testcases because gate-level simulators are extremely slow for com-
puting gate delays in large circuits. Thus, running all the testcases would be very
time-consuming (SINGH, 2015).

Although the couple STA and functional verification (FV) are more efficient
than GLS, this couple cannot certify the design’s correctness in some specific scenar-
ios. One example scenario occurs when RTL synthesis inserts low-power structures
to shut off/power-on entire circuit portions. These structures cannot be easily veri-
fied with the STA/FV duo, especially during the transition from and to these states.
Another common scenario where GLS is well-suited is during the analysis of power-
up and reset states. These states take several clock cycles; non-expected glitches
may occur and impact the circuit behavior (EDN, 2014).

Notice that VLSI design uses the same term gate-level simulation for post-
synthesis and post-layout simulations. Post-layout GLS differs from post-synthesis
GLS because it computes both gate and interconnection delays in simulation. This
simulation is very precise, is used for signing off the chip, is compute-intensive (i.e.,
needs computer farms), and is also known as regression.

2.1.2.15 Power Analysis

Power analysis estimates the power consumption of the circuit, which is com-
posed of both dynamic and static power (WESTE; HARRIS, 2010). Dynamic power
is proportional to the signal-switching activity, while static power primarily depends
on the current leakage of CMOS transistors. Design engineers reduce the dynamic
power consumption with low-power circuit structures, while static power is reduced
with specially designed low-voltage threshold CMOS transistors. A modern SoC
design contains multiple cells of different threshold voltages to reduce static power
(CHAKRAVARTHI, 2019).

Power analysis tools use the signal-switching activity of VLSI designs to
estimate power. RTL simulator generates this signal-switching activity from a par-
ticular set of test vectors and stores it into either the industry-standard file VCD or
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SAIF (IEEE, 2019; IEEE, 2018). The switching-activity file, in combination with
the UPF file that guides the circuit implementation, analyzes whether or not the
specified power consumption is met. If power consumption is not met, the circuit
is redesigned. Design engineers may also decide to pack the die into a different
package material, i.e., ceramic or plastic, or use an external cooling system for the
chip (CADENCE, 2008a).

2.1.2.16 Physical Design

The goal of the physical design is to produce the physical layout of the target
circuit. The main input files that guide the physical design are the post-synthesis
netlist, the power and timing constraints (UPF and SDC), and the timing and
physical libraries (Liberty and LEF). The GDSII file is the output of the physical
design process.

Physical design is out of the scope of this thesis, and for this reason, this large
process is summarized as follows (WESTE; HARRIS, 2010; CADENCE, 2008b):

• Floorplanning: define the die size, IO and core boundaries, the location of
blocks for placement, and blockage areas. Add power rings and power stripes
to connect blocks and cells to the power structures.

• Placement: place standard cells in the floorplanned design. It also specifies
spare, JTAG, and padding cells for placement. Clock buffers replace padding
cells during clock tree synthesis.

• Scan Reorder: reconnects the scan chain implemented during RTL synthesis,
considering the scan flip-flops location after placement. Reorders the scan
chain for optimizing the routing resources and timing.

• Clock tree synthesis: distributes the clock signal, inserting clock buffers to
minimize the arrival latency and signal skew among the various sequential
cells distributed over the chip.

• Route: route the interconnections among standard cells, I/O cells, and IPs to
match the post-synthesis netlist. Use the corresponding metal layers in order
to meet the timing constraints defined in the SDC file;

• Extraction: calculate the parasitic resistance and capacitance from the inter-
connections. Write it into a file named SPEF. Timing and power analysis tools
use SPEF files to generate more accurate analyses.
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• Delay Calculation: compute the delay of every interconnection and standard
cell in the design. Write the information into the SDF file, which is used by
STA tools.

• Signal Integrity: analyze unintended noise effects in the signal propagation
caused by either parasitic resistance or capacitance, such as signal glitches
due to long nets routed in parallel.

• IR Drop: check whether the chip power supply does not drop below acceptable
voltage levels because of abrupt power consumption changes, causing unwanted
chip malfunction.

• EM Analysis: check whether the current density in all parts of the chip does
not exceed specified levels, resulting in either open-circuits or short-circuits.

• GDSII Export: transform the placed and routed design to a file containing the
geometries of every electrical component. The foundry uses this file to build
the mask set that will manufacture the chip.

• Layout-Versus-Schematic: compares the transistor-level netlist with the GDSII
file to ensure the connectivity of the design. This step is also known as LVS.

• Design Rule Check: compares whether the physical layout geometries in the
GDSII file follow the technology drawing rules provided by the foundry. This
step is also known as DRC.

2.1.2.17 EDA Files

EDA tools output different file formats throughout the VLSI design flow.
Each format has a purpose; some of them are proprietary, while others are industry
standards. These files are frequently modified by EDA tools throughout the flow.
Table 2.2 shows common EDA files and their corresponding usage in modern VLSI
design flows (CHAKRAVARTHI, 2019; CADENCE, 2008b):
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Table 2.2: Files generated by commercial EDA tools throughout the VLSI flow
Format Usage
DEF Design Exchange Format. Industry-standard. Generated by

place and route tool. Contain floorplanning information such
as die size, IO and core boundaries, and logical connectivity.

SDF Standard Delay Format. IEEE stardard 1497-2001. Contain de-
lay information of cells and nets. Produced by timing calculators
after place and route. Used by STA and simulators.

SAIF Switching Activity Interchange Format. Defined in the IEEE
standard 1801-2018. Contain the switching activity of signals
captured by simulation tools. Used by power analysis tools.

HDL Verilog and VHDL files. As defined in Table 2.1. EDA imple-
mentation tools output modified gate-level netlists of these files
throughout the flow.

VCD Value Change Dump. Defined in the IEEE standard 1800-2017.
Contain information about value changes that occur during the
simulation of selected signals of the design.

GDSII Graphical Design System II. Industry-standard. Contain the de-
sign layout in the form of planar geometric shapes. Used by DRC
and LVS tools before signing off the design for mask production.

SPEF Standard Parasitic Exchange Format. IEEE standard 1481-2019.
Communicate parasitic information throughout the design flow
process. Used by circuit simulators and power analyzers.

2.1.2.18 Technology Library

The technology library contains the cells necessary for the standard cell-
based methodology. This library is composed mainly of analog, logic, and I/O
cells. Foundries or IP providers design these cells, usually using the full-custom
based methodology. The tools in the implementation flow use the cells from the
technology library to map the design described from the behavioral level to the
gate-level, and from the gate-level to the physical level.

The files in the technology library are also generated by EDA tools. However,
these files are not modified during the implementation flow. For the scope of this
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thesis, the following technology files are of interest:

Table 2.3: Technology files in a technology library
Format Usage
HDL Verilog and VHDL files. As defined in Table 2.1. Contain infor-

mation about the logic functionality of every cell in the library.
Simulators use these files in order to run gate-level simulations
and regressions.

Liberty Liberty. Industry-standard. Property of Synopsys Inc. Contain
power, timing, and area information of every cell available in the
technology library. Used by RTL synthesis, power and timing
analyzers.

LEF Library Exchange Format. Industry-standard. Property of Ca-
dence. Contain physical information about the geometries of
every cell available in the technology library. Used by physical
design tools during placement.

2.2 Electronic Design Automation

Electronic Design Automation (EDA) is the discipline that builds software
that automates the circuit design steps. It allows designers to simulate and test
the functionality of the design before physical implementation, which helps identify
potential issues early on. This section presents the data structure and briefly discuss
different digital logic simulation techniques that support the work of this thesis.

2.2.1 And-Inverter-Graphs

And-Inverter Graphs (AIGs) are directed acyclic graphs where the internal
nodes represent 2-input AND gates. The edges between the nodes represent wires
and may also contain inverter gates, enabling AIGs to represent any Boolean func-
tion using AND and NOT logic operators (WANG; CHANG; CHENG, 2009).

The efficiency of AIGs originates from the uniformity of their nodes, which
ensures that all nodes have the same number of inputs and outputs. This uniformity
facilitates merging nodes sharing the same logical conditions, resulting in a compact
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and memory-efficient data structure. Additionally, representing AIGs as vectors
of integers enables iterative algorithms to be used instead of recursive algorithms,
further improving their efficiency.

Figure 2.4(a) shows a half adder represented as an AIG. Next to it, in Figure
2.4(b), the same AIG is represented as a vectors of integers. The nodes represent
AND operations and the dashed edges represent NOT operations. Note that each
edge of the graph has two associated numbers. These numbers represent the input
signals of a node and are described in Table 2.4(b) by the columns i0 and i1, re-
spectively. The index column represents the node where the signals i0 and i1 meet
in Table 2.4(b). The value of the index is calculated by performing integer division
on the number associated with the edge leaving the same node that the input edges
meet. Therefore, as an example, node nine is represented by the index 9div2 = 4,
which has as inputs the numbers i0 = 3 and i1 = 4. Node six is represented by the
index 6div2 = 3, which has as inputs the numbers i0 = 2 and i1 = 4. Node four is
represented by the index 5div2 = 2, which has as inputs the numbers i0 = 4 and
i1 = 4. As the inputs are equal, this means a primary input.

Figure 2.5: Example of a half-adder represented as an AIG

(a) Example AIG (b) AIG as a list of vectors

The exception to this rule is the primary inputs of the AIG, represented by
repeated even numbers in the i0 and i1 columns.

These characteristics make AIGs an unique and efficient data structure for
Boolean function representation and reasoning, making it the data structure of
choice for modern logic synthesis (REIS; DRECHSLER, 2018) when compared to
truth tables, sum-of-products, product-of-sums, and binary decision diagrams(BDDs).
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2.2.2 Zero-delay simulation

Zero-delay simulation is a type of digital circuit simulation technique that as-
sumes the delay of each gate to be zero, meaning that the output of the gate changes
immediately after the input changes (GEREZ, 1999). This assumption simplifies the
simulation process, making it faster and more efficient. It is particularly useful in
analyzing digital circuits that operate at high clock frequencies or have many stages,
such as microprocessors and memory circuits.

However, it is important to note that the zero-delay simulation does not
consider the physical delays associated with the propagation of signals through the
circuit (CADENCE, 2008a). As a result, it may not accurately reflect the actual
behavior of the circuit, especially for designs that require precise timing analysis or
that operate at low frequencies.

2.2.3 Unit-delay simulation

Unit-delay simulators take into account the delay of each gate in the circuit.
The output of a gate changes after a certain delay, which is determined by the gate’s
propagation delay (GEREZ, 1999). The simulator models the circuit as a sequence
of discrete time steps, with the output of each gate updated at the end of each time
step. This approach accurately represents the circuit’s behavior but requires more
memory and computational resources (CADENCE, 2008a).

Unit-delay simulation is computationally more expensive than zero-delay sim-
ulation because it requires the evaluation of the propagation delay in every input or
internal state change. Therefore, it is typically used for detailed analysis of digital
circuits or for verifying circuits that require accurate timing behavior.

2.2.4 Event-based simulation

Event-based simulators are designed to simulate the DUT only when in-
put stimuli from the verification environment changes (WANG; CHANG; CHENG,
2009). The simulator processes these stimuli, known as events, at the specific time
of each event using a queue structure.
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Following the queue schedule, the simulator computes and propagates the
events to the DUT outputs. This propagation updates every circuit gate and se-
quential cell, including combinational and sequential circuits. The system clock is
also considered an event in this type of simulator.

Despite being slower than cycle-based simulators, event-based simulation is
widely used in the EDA industry (CADENCE, 2008a). It provides a significant
advantage in supporting digital circuits in different levels of abstraction, such as
behavioral, RTL, and gate-level models. The time between events and the circuit
size impacts the simulation time. Consequently, more events (e.g., higher clock
frequency) require more computing processing.

2.2.5 Cycle-based simulation

Cycle-based simulators evaluate the inputs of the DUT only when the system
clock changes (WANG; CHANG; CHENG, 2009). The inputs to the circuit are
applied at the beginning of each clock cycle, and the circuit outputs are evaluated
at the end of each cycle. The simulator then advances to the next cycle, repeating
the process with new input values. This process continues until the desired number
of cycles has been simulated or until the circuit reaches a stable state.

Unlike event-based simulators, this technique accelerates the simulation pro-
cess by avoiding evaluations of intermediate events that do not impact in the circuit
state. The simulator stores only the output signals of flip-flops, discarding the com-
binational logic output. This approach results in a reduced memory footprint and
faster simulation time, as it is proportional to the number of cycles and flip-flops
(CADENCE, 2008a). However, its usage is restricted to synchronous circuits only.

2.3 Multiplayer Game Programming

Multiplayer game programming is the process of creating video games that al-
low multiple players to interact and play together in real-time. It involves designing
and implementing game mechanics, network architecture, and communication pro-
tocols to enable seamless gameplay experiences for players across various platforms.
The following sections present some concepts from multiplayer game programming
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that support the work of this thesis.

2.3.1 Client-Server model

The client-server model is a network topology frequently used in online games.
It involves a central computer, referred to as the server, that communicates with
all other computers, referred to as clients. In this model, the server must possess
more bandwidth and processing power than the clients since it is responsible for
communicating with all of them. The server acts as the central hub in this topology.

The client-server model is prevalent in various game genres, including first-
person shooter games, action games, multiplayer massive online games, and real-
time strategy games (GLAZER; MADHAV, 2015). The complexity of this topology
surpasses that of online single-player games because the actions on the client-side
involve the transmission of data packages to the server-side. The server is responsible
for processing these incoming packages and broadcasting the changes to all clients
connected to it.

In VLSI design, the client-server model is frequently employed to execute
computationally demanding circuit simulations, thereby relieving the client CPU.
In this situation, the server possesses substantially greater computing power than the
clients, and broadcasting to all connected clients is unnecessary due to the distinct
nature of VLSI design.

2.3.2 Latency

In the context of computer games, latency refers to the time delay between
a cause and its observable effect (GLAZER; MADHAV, 2015). This delay can be
observed in various scenarios, such as the time between a mouse click and a unit
responding to orders in a real-time strategy game or between a user moving their
head and the virtual reality display updating in response.

Different types of games have varying tolerance levels for latency. VR games
are the most sensitive to latency, with a latency of less than 20 ms required for
the user to remain immersed in the simulated reality. Fighting games, first-person
shooters, and other action games are also sensitive to latency, ranging from 16
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to 150 ms before the user perceives the game as unresponsive. Real-time strategy
games have the highest tolerance for latency, with some games reaching up to 500ms
without being detrimental to the user experience.

2.3.3 Round Trip Time

Round trip time (RTT) refers to the time it takes for a network packet to
travel from the player’s device to the game server and back to the player’s device
again. RTT is typically measured in milliseconds (ms), and it represents the delay
or latency experienced by the player in sending a command to the game server and
receiving the response.

A low RTT is desirable in online gaming because it means that the player’s
actions can be communicated quickly and accurately to the server, and the player
can receive a response without experiencing noticeable delays. On the other hand, a
high RTT can result in lag or other performance issues, which can negatively impact
the player’s experience.

Game developers and network engineers work to minimize RTT by optimizing
server locations, reducing network congestion, and using other techniques to improve
network performance (MADHAV, 2014).

2.3.4 Jitter

The RTT between two hosts is not a fixed value. It fluctuates over time,
resulting in a deviation from the expected value. This deviation is known as jitter,
which can negatively impact the overall performance of client-server applications
(GLAZER; MADHAV, 2015).

Jitter affects the arrival time of network packets, changing the arriving order.
A reliable transport protocol like TCP or a customized packet ordering system is
necessary to guarantee an ordered packet delivery. Given the adverse effects of jitter,
reducing it as much as possible is essential to improve the application’s usability.
Sending minimal packets to maintain low traffic and deploying servers close to clients
are common techniques for reducing jitter.
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2.3.5 Client Prediction

Client prediction refers to the ability of a client to forecast the future states
calculated by the server (MADHAV, 2014). For instance, in an online 3D map game
with multiple players, the client prediction algorithm can estimate the intermediate
frames between server updates, inferring other players’ positions based on their last
known location and velocity.

If the server updates occur sufficiently frequently, the client’s representation
of other players will be reasonably accurate. However, a poor connection makes
client predictions inaccurate when updates are infrequent. Since the server has the
final authority, the client must correct any differences between the prediction and
the actual positions. Nonetheless, if the prediction is reasonably accurate, it will
appear smooth and uninterrupted to the player.

2.4 Hamming Codes and Hamming Distance

Hamming codes are a concept that will be used in the predictive emulator
proposed in this thesis. This section describes the concept. Consider Figure 2.6, it
shows two Karnaugh maps side by side. On the Karnaugh map on the left, position
5 is highlighted. The code corresponding to position 5 is 0101. In the Karnaugh
map it is easy to see that the neighbor codes 1,4,7,13 differ only by one bit. So, it
is possible to say that codes 1,4,7,13 have hamming distance 1 with respect to code
5. If only one input bit is allowed to change at a time, an eventual current input
5 can only move to next input 1,4,7,13. When the current input changes from 5
to 13 a new set of possibilities with hamming distance 1 becomes available, namely
5,9,12,15. This will be discussed later but from a basic concept perspective, the
inputs in the proposed emulator can change one at a time.

2.5 Previous works from LogiCS lab

LogiCS Lab, short for Logic Circuit Synthesis Lab, is the research group lo-
cated at the Universidade Federal do Rio Grande do Sul (UFRGS) (logiCS, 2023).
Situated in the Informatics Institute, the lab has contributed significantly to var-
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Figure 2.6: Example of Hamming code

ious research efforts. This section outlines the work of past researchers, including
students and professors, who invested a portion of their lives during their academic
journey at the LogiCS lab. The idea of presenting past research from LogiCS is due
to the fact that the history of research in this group is at the basis of the proposed
thesis.

This thesis has its roots in the foundation concepts of logic circuit design
(ROSA et al., 2003; WAGNER; REIS; RIBAS, 2006) and logic synthesis (REIS;
MATOS, 2018) (REIS; DRECHSLER, 2018) investigated by the LogiCS group. The
continuous research throughout the years has explored various areas, including the
automatic generation of logic cells for cell libraries (TOGNI et al., 2002; MARTINS
et al., 2015), technology mapping (REIS et al., 1997; REIS, 1999; CORREIA; REIS,
2004), generation of circuits from BDDs (PERALTA et al., 2021; BRANDãO et
al., 2022; PERALTA et al., 2023), and transistor netlist synthesis for logic cells
(JUNIOR et al., 2006; da Silva; REIS; RIBAS, 2009; ROSA et al., 2007; BUTZEN
et al., 2010a; BUTZEN et al., 2012; ROSA et al., 2009).

The research group also proposed efficient techniques for synthesizing tran-
sistor networks to optimize area (POLI et al., 2003), variability (da Silva; REIS;
RIBAS, 2009; BUTZEN et al., 2010a; BUTZEN et al., 2012), and power (BUTZEN
et al., 2010b). Some methods proposed in the LogiCS lab, such as KL-cut-based syn-
thesis (MACHADO et al., 2012) and functional composition-based synthesis (MAR-
TINS; RIBAS; REIS, 2012), are used in different applications. These include the
use used in new technologies (NEUTZLING et al., 2013; MARRANGHELLO et
al., 2015; NEUTZLING et al., 2015; NEUTZLING et al., 2018; NEUTZLING et al.,
2019), robust circuits (GOMES et al., 2014; GOMES et al., 2015), and asynchronous
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circuits (MOREIRA et al., 2014).
Although this thesis does not contribute with new logic synthesis methods,

it absorbs the expertise and the scientific approach preserved and improved over
the existence of the LogiCS lab. The works on this thesis builds on top of the
prior knowledge of data structures such as And-Inverter-Graphs (AIGs). This prior
knowledge built throughout the years was combined with a business need driven
by inPlace Design Automation (inPlace Design Automation, 2023). This thesis
innovates then as a cooperated effort, between the academia and the industry, in
order to to deliver not only an academic contribution, but the proof of concept
for a product that is able to emulate digital hardware in the form of software as
a service (COSTA; DROVES; REIS, 2023c) to provide a virtual board approach
(COSTA; SILVEIRA; REIS, 2022; COSTA; SILVEIRA; REIS, 2023) to prototype
digital circuits.

2.6 Contributions of this chapter

This chapter provides the fundamental concepts necessary to understand
this thesis. As the thesis presents a virtual FPGA-based board for educational
purposes, it is crucial to comprehend VLSI design in order to identify that digital
circuit experiments using physical FPGA-based boards are related to the in-circuit
emulation (ICE) verification step. Additionally, this chapter introduced AIGs in the
context of EDA because they are a very efficient data structure used to model the
behavior of digital circuits in modern design tools. Finally, a few multiplayer gaming
programming concepts are shown because the virtual remote laboratory proposed
by this thesis employs a software architecture commonly used in online multiplayer
gaming.
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3 REVIEW OF REMOTE LABORATORIES

Engineering students need to practice the teachings they obtain during the
undergraduate course. In order to provide such an experience to the students, aca-
demic professors prepare laboratory lessons to go with the theory during engineering
courses. These lessons require a particular environment with physical equipment
prepared and, sometimes, pre-configured to be used by the students.

The traditional way of putting into practice the concepts taught to the stu-
dents is through a hands-on session, where both students and laboratory equipment
are in the same physical environment. This teaching method is a common practice;
however, with the advance of the Internet, remote laboratory experiments started to
be used more frequently by education institutions (NEDIC; MACHOTKA; NAFAL-
SKI, 2003). This type of laboratory differs from the traditional hands-on laboratory
because the student and the laboratory equipment are geographically separated.
The student accesses the lab equipment over the Internet, being able to control the
intended experiment as if he or she were in the laboratory.

Considering such differences, Gomes proposed a classification scheme for
laboratory experiments, represented in the four quadrants indicated in Figure 3.1
(GOMES; BOGOSYAN, 2009).

Figure 3.1: Types of engineering laboratories. SOURCE: (GOMES; BOGOSYAN,
2009)

This thesis focuses on situations where the user and the laboratory equipment
(either physical or modeled) are in separate locations. Section 3.1 briefly review
digital circuit experiments using FPGA-based boards remotely, while Section 3.2
presents remote simulation-based approaches. Then, Section 3.3 briefly compares
both alternatives, concludes the chapter and suggests the thesis approach, which is
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further explored in Chapter 4.

3.1 FPGA-based remote laboratories

FPGA-based remote laboratories are hands-on sessions where students re-
motely experiment with digital circuits in FPGA-based electronic boards. These
FPGA devices are usually embedded in development kits containing push buttons,
displays, LEDs, Wifi, USB, and other interfaces. These boards replace the old-style
hands-on experiments, where the students learn digital circuit design by connect-
ing discrete components (i.e., resistors, transistors, LEDs, TTLs) and wires into a
breadboard.

The FPGA-based remote laboratory is an alternative to the traditional (i.e.,
in-person) FPGA-based laboratory when both students and lab equipment cannot
simultaneously be physically present in the same place. A remote computer with
the appropriate software configures the digital circuit designed by the student into
the FPGA, which is made available over the Internet and can be accessed by the
student from the student’s location.

The first approach to remote laboratories was proposed by Aktan and Bo-
hus in 1996 (AKTAN et al., 1996; BOHUS et al., 1996) in the control engineering
laboratory of the Oregon State University (USA). In their works, Aktan and Bohus
implemented a system for controlling a robot arm over the Internet. The students
could then control the robot arm’s trajectory and watch the resulting outcome by
video.

Indeed, Aktan and Bohus’s work was not in the VLSI design field. How-
ever, their primary contribution echoed in several engineering areas, including VLSI
design. Years later, in 2003, Fjeldly and Shur (FJELDLY; SHUR, 2003) published
LAB ON THE WEB, a book containing contributions from several researchers about
running real electronics experiments via the Internet. This book is an important
milestone in the history of remote laboratories in semiconductor electronics because
it presented several cases from renowned universities, such as the Microelectronics
WebLab from the Massachusetts Institute of Technology (MIT).

The following section summarizes the main contributions of researchers of
FPGA-based remote labs. The sections were grouped according to the major con-
tributions, as perceived by the author of this thesis.
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3.1.1 Putting the puzzle together

The first laboratory experiments of digital circuits using FPGA-based boards
over the Internet started very straightforwardly. During the 2000s, most FPGA-
based remote labs were just remote computers sharing the screen over the Internet.
Microsoft Windows was the base development platform, and both the FPGA design
software and board were compatible with this platform. The difference between local
and remote laboratories consisted of the visual feedback and the input interfaces.
The same computer was employed for both local and remote experiments. Thus,
the student used the same GUI for local and remote laboratory experiments.

The remote lab used a client-server architecture, where the server-side con-
tained at least the FPGA configuring software and the FPGA board. Although not
mandatory, the client-side might include the FPGA tool chain to implement the
digital circuit and build the FPGA configuration file. Both Darmstadt University
of Technology (BECKER et al., 1998; BECKER et al., 2000) and McGill University
(MCCRACKEN; ZILIC; CHAN, 2003) proposed this type of laboratory around the
2000s. In their proposal, they suggested a video camera for streaming the FPGA
board, providing visual feedback for the student. Figure 3.2 shows this concept.

Figure 3.2: Basic FPGA remote lab architecture. SOURCE: (BECKER et al., 1998)

Hashemian added the missing video camera to his FPGA-based remote lab
implementation (HASHEMIAN; RIDDLEY, 2007). In addition to that, in Hashemian’s
proposal, the FPGA board push buttons and switches could be controlled remotely.
This innovation was possible because the remote lab employed custom control hard-
ware to interface with the FPGA board. LabView, installed on the server-side,
managed the custom control hardware and the webcam. Microsoft XP Remote
Desktop (MRD) was required to access the lab environment.
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El-Medany did not implement the video camera but presented an attempt to
scale the solution proposed by Becker and McCracken. In his proposal, he deployed a
remote laboratory consisting of 20 PCs, each of them connected to one FPGA board
(EL-MEDANY, 2008). El-Medany did not implement any resource allocation control
scheme, and MRD technology was also employed. Thus, the students might know
the remote computer IP address before connecting to one of the remote stations.
Figure 3.3 shows both Hashemian’s and El-Medany’s proposals.

Figure 3.3: Two different implementations of FPGA-based remote laboratories.

Perceiving the limitations of the proposed remote lab solutions to handle
multiple users, Indrusiak et al. (INDRUSIAK; GLESNER; REIS, 2007) presented
a comparative analysis of remote FPGA access strategies, evaluating more sophisti-
cated communication technologies other than the MRD. In his study, he evaluated
different network technologies for handling multiple users. He also considered the
dynamic allocation of FPGA-based boards from a limited pool set. From a perspec-
tive, Indrusiak suggested a path for more advanced and automated ways to scale
and manage the resources of FPGA remote laboratories.

In summary, during the 2000s, the FPGA-based remote labs were nothing
more than a junction of different off-the-shelf pieces of software. The challenge was
"putting the puzzle together," and Microsoft XP Remote Desktop was the primary
vehicle for transmitting the remote computer screen. The student should previously
know the computer IP address containing the FPGA board of interest, and no
resource allocation scheme was available. The 2000s witnessed the beginning of the
FPGA remote labs research field, an important research topic for the succeeding
years.



60

3.1.2 Setting up the infrastructure

The research contributions during the 2000s showed that FPGA remote labs
could not be delivered by simply joining separate pieces of off-the-shelf software.
Software development was necessary to allocate the available FPGA boards to the
students.

Morgan (MORGAN; CAWLEY, 2011; MORGAN et al., 2011) contributed
to solving this issue by implementing an FPGA-based remote lab containing seven
FPGA boards and seven webcams running concurrently. Unlike El-Madany’s pro-
posal, each user had an account that, once logged in, could access the FPGA board
from a list of available devices. The system communicated with the FPGA board
via a web application and USB server, using a GUI to interact with the remote
board push buttons, switches, and LEDs. Ravanasa (RAVANASA; HASHEMIAN,
2014) proposed a similar approach; however, using an improved GUI and no cam-
era. Rodriguez-Gil (RODRIGUEZ-GIL et al., 2014) improved the GUI even more,
using graphical web technologies to overlay the FPGA board switches with inter-
active virtual switches. Figure 3.4 gives an idea of both Morgan’s and Ravanasa’s
proposals.

Figure 3.4: Example of FPGA-based remote laboratories supporting multiple users.

The advances in remote labs have raised the question of the best location
to install the FPGA toolchain because such a choice impacts the overall student
laboratory experience and learning. For example, professional FPGA design software
like Quartus Prime (INTEL, 2022) and Xilinx Vivado (AMD Xilinx, 2022) varies
from 7GB to 70GB, depending on the software version and supported FPGA devices.
The software download, installation, and licensing may seem trivial to an engineer,
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but students and faculty members may have technical, computing, and personal
resource limitations. In addition, students may waste considerable time downloading
and installing any of these solutions on their own machines.

In order to avoid costly installations and waste of resources on the client-side,
Doshi (DOSHI et al., 2015) implemented a cloud-based environment where students
could run the FPGA design software on the server-side. The cloud infrastructure
on the server-side relied on a LAMP stack (Linux, Apache, MySQL, and PHP), the
same stack used by software as a service (SaaS) applications. Al Qassem (Al Qassem
et al., 2020) employed a lightweight solution using docker containers, deploying the
FPGA design flow as a cloud microservice on the server-side. Both Doshi and
Al Qassem’s solutions have simplified the FPGA design software access to a web
browser on the client-side.

Figure 3.5: FPGA-based remote laboratories schemes using LAMP stack and mi-
croservices.

After the contributions of many researchers, Angulo (ANGULO et al., 2019)
from the University of Deusto, Spain, presented a complete FPGA remote labora-
tory solution. The solution employed the Remote Laboratory Management System
(RLMS) named WebLab Deusto, and supported the following features: user account
management, user authentication, FPGA board resource selection, web cameras for
real-time feedback, FIFO queue for FPGA board scheduling, web browser access
from the client-side, and a virtual interface with switches and push-buttons. This
solution contemplated significant contributions from past publications, setting a
milestone in the developing of FPGA remote labs.
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3.1.3 Scaling up the labs

The advances made in FPGA remote labs during the period described in 3.1.2
resulted in the centralization of the design software and the FPGA board on the
server-side. The centralization motivated researchers to investigate new challenges
to scale up FPGA remote labs. In 2018, Angulo et al. examined previous FPGA
remote lab implementations and identified key technical requirements to pursue in
order to deploy and maintain scalable remote labs (ANGULO; RODRIGUEZ-GIL;
GARCIA-ZUBIA, 2018). These technical requirements are:

• Scalability - the remote laboratory must allocate and release the FPGA-based
boards dynamically (e.g., design software, prototyping board, additional hard-
ware) in order to support multiple users running the remote experiments;

• Adaptability - the remote laboratory must upgrade new instances without
redesigning the remote lab from scratch (the cost of adding a new instance or
adapting an existing one must be taken into account);

• Deployability: access to the laboratory should comply with the security policies
of the institutional IT services without requiring specific configuration (e.g.,
open ports, firewalls, deployments of specific software);

• Universality: the student may access the remote laboratory from any de-
vice (e.g., laptop, tablet, smartphone) with any operating system in any web
browser;

• Integrability: the capability of the remote laboratory system to integrate with
educational platforms such as Google Classroom and Moodle.

In 2019, the University of Deusto, in conjunction with LabsLand1, paved
the road for scaling remote labs up by proposing a cost-effective architecture for
embedded systems (VILLAR-MARTINEZ et al., 2019). This effort resulted in a
novel laboratory architecture supporting the integration of laboratories from differ-
ent universities around the globe. Recently, the UNIFESP and UPNA (Universidad
Pública de Navarra) joined the Labsland laboratory network (MAYOZ et al., 2020),
integrating their FPGA laboratories into one lab. The joint collaboration resulted

1The efforts to scale up remote labs resulted in two spin-off companies: the LabsLand from
the University of Deusto and the ViciLogic from the University of Ireland (LABSLAND, 2022;
VICILOGIC, 2022). The LabsLand hosts remote laboratories for several experiments, such as
biology, chemistry, electronics, engineering, physics, robotics, and technology. ViciLogic offers
FPGA-based remote laboratories only.
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in a cross-national remote laboratory where the students of both institutions can
select any of the 17 FPGA boards from both laboratories transparently. Figure 3.6
shows the laboratory infrastructure of both institutions.

Figure 3.6: The cross-national FPGA remote laboratory between Brazil and Spain.
The image on the left shows the Brazilian laboratory at UNIFESP. SOURCE:
(MAYOZ et al., 2020)

Despite the technological advances in FPGA remote labs, these solutions still
suffer from a lack of reliability (VILLAR-MARTINEZ et al., 2021). Without fault-
tolerant measures or a permanent lab support staff, the laboratory may become
unavailable frequently. Consequently, the student may become confused about the
reliability of his/her experiments over the Internet, particularly when the physical
FPGA board is running remotely. For this reason, the latest research on FPGA
remote labs focuses on finding counter-measures alternatives to improve the lack of
reliability naturally imposed by hardware (VILLAR-MARTINEZ et al., 2022). One
of the proposed solutions goes toward a dataset of previously recorded experiments
(e.g., a set of videos and photographs of the experiment), which are streamed to
the student during the lab experiment in an interactive manner (NEUSTOCK et
al., 2021; ZAMAN; NEUSTOCK; HESSELINK, 2021). This approach is attractive
because it improves the experiment’s reliability and scalability; however, it comes
at the cost of less flexibility to the student.

3.2 Simulation-based remote laboratories

Simulation-based remote laboratories provide the computer infrastructure for
simulating logic circuit experiments remotely. This type of remote lab contains the
simulation software installed on the server-side; the client-side usually contains a
lightweight installed software or a web browser to control and observe the running
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simulation on the server-side (BALAMURALITHARA; WOODS, 2009).
The most straightforward way of implementing simulation-based remote lab-

oratories is by sharing the remote computer’s screen with the software of interest
installed. For this reason, little research is found on this subject, particularly for
client-server logic circuit simulators. In addition, whenever possible, students may
prefer to have the simulation software locally installed on his/her machine, making
it unnecessary to begin any research in this field. Thus, it is more common to find
research on novel EDA algorithms rather than new software architectures or better
user interfaces.

However, professional-grade digital circuit simulators became highly com-
plex, demanding complicated and long software setups to simulate simple digital
circuits such as adders and multiplexers. The software setup may take considerable
time in laboratory sessions, shifting the student’s attention to understanding the
simulator operation instead of the digital circuit experiment. Educational compa-
nies are turning this difficulty of using professional-grade circuit simulators into an
opportunity to develop easy-to-use digital circuit simulators for aspiring engineering
students. This trend is also motivated by the lack of engineers to fulfill technology
jobs (PADWICK et al., 2020), the reason why it is becoming increasingly crucial to
develop educational software to attract young students to the VLSI design career.

Table 3.1 shows several digital circuit simulators available for teaching digital
circuits. In order to make a broad comparison among the simulators, the table
classifies the simulators according to the following characteristics as described in
their official websites:

• Arch: whether the software architecture is standalone or SaaS;

• Entry: determine whether the software inputs are non-standard schematic files
or industry-standard HDLs;

• License: whether the software is proprietary or opensource;

• Purpose: whether the software is for professional or educational usage.
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Table 3.1: Simulation-based software used in VLSI education. The table does not
show SPICE simulators as these are out of the scope of this thesis (e.g., MultisimLive,
CircuitLAB). The reference for each software is available in Appendix.

Software Arch Input License Purpose
CircuitVerse SaaS schematic2 MIT educational
logic.ly standalone schematic proprietary educational
LogiSim standalone schematic GPL2 educational
Deeds standalone schematic3 freeware educational
Icarus standalone vlog/vhdl GPL2 professional
Verilator standalone verilog LGPL3 professional
LogicCircuit standalone schematic freeware educational
simulator IO SaaS schematic proprietary educational
Logic Gate standalone schematic GPL3 educational
OpenCircuit SaaS schematic GPL3 educational
SmartSim standalone schematic GPL3 educational
BOOLR SaaS schematic GPL3 educational
LogiJS SaaS schematic GPL3 educational
EasySim standalone schematic proprietary educational
wiRedPanda standalone schematic GPL3 educational
Digital standalone schematic GPL3 educational
Hradla SaaS schematic GPL3 educational
MAX+Plus II 4 standalone schematic

vlog/vhdl
proprietary professional

Intel Quartus standalone schematic
vlog/vhdl

proprietary professional

Xilinx Vivado standalone vlog/vhdl proprietary professional
Logic Circuit Pro standalone5 schematic proprietary educational
EDA playground SaaS vlog/vhdl proprietary professional
#Data SaaS schematic proprietary educational

Notice that most of the simulators listed in Table 3.1 use non-standard de-
sign entries, meaning that the experiments designed in these simulators cannot be

2Limited support to Verilog.
3Export to VHDL.
4No vendor support (end-of-life).
5Smartphone app only
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used in real FPGA-based laboratories. The exceptions are Icarus, Verilator, Intel
Quartus, Xilinx Vivado, and EDA playground. However, as mentioned before, these
simulators became highly complex for new-entry engineering students because they
are intended for skilled engineers. The remaining options are MAX+Plus II, Circuit-
Verse, and Deeds. However, each has its drawbacks: MAX+Plus II has no vendor
support and is standalone, CircuitVerse has minimal support to Verilog and cannot
export designs, and Deeds is standalone, requiring a PC with Windows installed.

Although institutions commonly use simulators as a cost-efficient alterna-
tive for FPGA-based remote laboratories, simulators do not replace the need for
experiments (FROYD; WANKAT; SMITH, 2012). In addition, simulators primary
purpose is debugging, not prototyping. In a simulator, students observe a pulse
switching from LOW to HIGH in a waveform diagram instead of a LED light-up.
The metric for a successful experiment is abstract, although simulations have proved
helpful in engineering education.

3.3 Contributions of this chapter

This chapter presented FPGA-based remote laboratories and software-based
remote laboratories for digital circuit experiments. A historical bibliographical re-
view of FPGA-based remote laboratories was presented, concluding that state-of-
the-art FPGA remote labs still pursue to be fully fault-tolerant. In addition, these
labs are only partially scalable, the reason why the most recent labs employ a pre-
dataset of previously recorded experiments to provide a certain degree of scalability
to the user.

Software-based alternatives were also presented as opposed to FPGA remote
labs. Educational institutions use simulators as a cost-efficient alternative when
FPGA labs are not viable. Table 3.1 presented several simulators, most from non-
academic sources, and concluded that educational simulators do not follow industry-
standards. As simulations do not replace FPGA labs, there is room for a solution
combining the FPGA lab experience and the simulator’s cost-efficiency. This so-
lution must also consider the use of industry-standards and is further explored in
Chapter 4.
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4 THE PROPOSED REMOTE LABORATORY

The main technologies used for practical digital circuit laboratories in en-
gineering education are: FPGA prototyping boards and logic circuit simulators.
However, these technologies have limitations depending on how they are applied, as
discussed in Chapter 3.

This chapter delves deeper into the limitations of both FPGA-based and
simulation-based remote laboratories, which are explained in sections 4.1 and 4.2,
respectively. Section 4.3 presents a new approach for remote laboratory experi-
mentation using emulation, which combines the best features of both FPGA-based
and simulation-based remote laboratories. The proposed system’s architecture is
described in Section 4.5. Lastly, Section 4.6 summarizes the chapter’s contribution,
which is also the thesis’s contribution.

4.1 FPGA-based remote laboratory limitations

A recent study conducted by Vilar-Martinez of the University of Deusto
(VILLAR-MARTINEZ et al., 2021) examined the quality of service provided by
five remote labs that offer various experiments, including those that do not employ
FPGA-based boards. The study aimed to identify the reasons for unavailability of
these remote labs. The labs analyzed in the study were iSES (Czech Republic),
RemLabNet (Switzerland), RexLab (UFSC/Brazil), WebLab-Deusto (Spain), and
GOLDi (Ukraine).

To conduct the analysis, the laboratory experiments were performed on four
different dates: 16-Apr-20, 26-Apr-20, 04-May-20, and 12-May-20. A total of 42
different experiments were evaluated on each day as follows:

• 17 experiments in iSES

• 06 experiments in RemLabNet

• 12 experiments in RexLab

• 03 experiments in WebLab-Deusto

• 04 experiments in GOLDi

Vilar-Martinez gathered the operation outcomes and categorized them based
on the error type into separate Tables, 4.1 and 4.2 respectively:
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Table 4.1: Percentage of laboratories according to their operativity over a number
of 4 days. SOURCE: (VILLAR-MARTINEZ et al., 2021)

Operability per day Percentage
Fully operative for 4 days 26.2%

Inoperative for 1 day 19.0%
Inoperative for 2 days 21.4%
Inoperative for 3 days 7.1%
Inoperative for 4 days 21.4%

Table 4.2: Relationship of type of errors and how they affected the analyzed remote
experiments. SOURCE: (VILLAR-MARTINEZ et al., 2021)

Type of error Percentage Description
Experiment is offline 7.1% The URL to access the re-

mote lab is unavailable.
Experiment is not accessible 30.9% The URL is available, how-

ever, the service for remote
experiment in unavailable.

Experiment is not visible 35.7% The webcam is not work-
ing properly and the stu-
dent has no visual feedback
of the remote experiment.

Experiment is not controllable 11.9% The student can access
and visualize the experi-
ment; however, the experi-
ment controls are not work-
ing properly.

Experiment is not observable 7.9% The student can run the re-
mote experiment; however,
the experiment is not dis-
played correctly, or the data
published in the interface is
inconsistent with the results
shown by the webcam.

Upon analyzing Tables 4.1 and 4.2, it is evident that the sample of remote
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labs investigated in this study is not completely reliable. Although not apparent in
tables 4.1 and 4.2, this study demonstrated the FPGA remote laboratory from the
University of Deusto exhibited uncontrollable behavior in two out of four attempts
due to failed bitstream uploads (i.e., the FPGA device could not be programmed
remotely). Additionally, six out of sixteen attempts in the embedded system remote
laboratory provided by Goldi, employing both FPGA and MCUs, resulted in ex-
periment unavailability, indicating a 37.5% failure rate attributed to webcam issues
(i.e., the experiment could not be visible).

These findings highlight the need for improving reliability in remote labs,
which is essential for student confidence and overall satisfaction. To address this
issue, Vilar-Martinez et al., in the same study, proposed a scheme to detect labora-
tory instance fails. So, to increase the student’s confidence in using remote labs, it
is necessary to detect when a particular instance fails and remove it from the pool
of working lab instances. The study carried out an experiment to self-detect remote
faulty lab instances and achieved the following automation:

1. early detection of malfunctioning lab instances and consequent support staff
alert;

2. removal of the malfunctioning lab instances for maintenance, preventing stu-
dents from experiencing failed sessions;

3. redirection of students to other working lab instances containing the same
configuration of the malfunctioning instance;

Noticed that the proposed solution does not prevent, fix or reduce the number
of internal failures. However, it contributes to removing failing lab instances, a
handy feature when looking for scalable solutions.

With this in mind, Villar-Martinez et al. combined the contribution of previ-
ous work on lab scalability based on replicability (VILLAR-MARTINEZ et al., 2019)
with fault-detection in a most recent study aiming to evaluate the effectiveness of
remote laboratories using such techniques (VILLAR-MARTINEZ et al., 2022). The
new study considered replicas of the same laboratory configuration to improve scal-
ability. The replicas were part of a federation of remote laboratories in different
parts of the world. The evaluation, therefore, included real data provided by the
startup LabsLand (LABSLAND, 2022), responsible for managing and supporting
the federation of laboratories.
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The study evaluated 72,377 laboratory sessions across various institutions
worldwide for a period of 736 days, with a focus on the LabsLand DE1-SoC FPGA
laboratory, which is equipped with the Altera System-on-Chip Cyclone V FPGA
and based on the Intel DE1-SoC development board. There were 62 remote labo-
ratory instances, with 26 in Spain and 36 in the United States, all having the same
configuration. The study suggested that it is possible to develop production-level
laboratories for real-world multi-institutional usage by implementing the proposed
fault-detection scheme with replicas of the same laboratory equipment. However,
the proposed solution heavily relies on exact replicas of the laboratory instance, thus
needing hardware and software uniformity beyond requiring a qualified team to fix
eventual laboratory faults.

Despite the significant advances obtained by Villar-Martinez et al., the cost
of FPGA-based board replication, lab deployment, and maintenance is still signif-
icantly high (VILLAR-MARTINEZ et al., 2022). In addition, the study fails to
address remote laboratories’ latency issues, such as the response time of students’
interactions with the remote lab (e.g., a LED light-up just after pressing a button
in the web browser). There is a time for the remote laboratory system to capture
user interactions action in the web browser, transform it into a real signal for the
FPGA-based board, and then stream it back to the user through the webcam (GUO;
HUSSEIN; ORDUNA, 2022). Therefore, in addition to the limitations im-
posed by the equipment costs and configuration uniformity policies, the
most recent studies on FPGA remote labs did not explore the latency
issues between the user and the remote laboratory.

4.2 Simulation-based remote laboratory limitations

There is no physical prototyping board in simulation-based remote labora-
tories. The computer displays the DUT behavior on the computer screen through
waveform diagrams. The parcel of randomness expected in a real environment,
such as the exact moment that the user presses a button, is not considered in a
simulation-based environment. As the DUT interfaces with the software-generated
stimuli previously coded in the verification environment by the user, there is no
real-time interaction between the user and the DUT. At first impression, the lack of
real-time response sounds like a limitation.
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However, some simulators provide real-time interaction. Logic.ly, Circuit-
Verse, and Logisim are simulation-based remote laboratories that allow students to
build logic circuits with interactive virtual switches and output lights. Figure 4.1
show a screenshot as an example of such tools. Although Logisim is a standalone
tool, it can be installed on a remote computer and made available over the Internet,
just like the standalone tools listed in Table 3.1.

Figure 4.1: Example of simulation-based laboratories capable of interacting in real-
time through virtual buttons and switches.

Although some simulation-based educational tools offer real-time interaction,
more is needed to guarantee a comprehensive practice experience. A hands-on expe-
rience requires the implementation of the designed circuit using the same techniques
used in real FPGA-based designs. Code the design in an HDL (e.g., Verilog and
VHDL), choose the target FPGA, synthesize the circuit, write constraint files, and
analyze circuit logic usage, power, and timing reports to cite a few techniques. The
simulation-based tools do not offer such features because they focus on simulation,
not implementation.

Simulation-based and FPGA-based remote labs have different purposes. While
simulation-based labs do not interact with real traffic, FPGA-based labs interact
with real traffic. It is a mistake to claim that simulation-based laboratories are
limited because their purpose is static debugging. And static debugging requires
replicable input stimuli in order to be effective. Therefore, the limitation of
simulation-based remote laboratories occurs when educational institu-
tions rely solely on simulators for experimenting with digital circuits.
These institutions use simulation-based tools due to the cost of FPGA-based labo-
ratories.
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4.3 Emulation-based remote laboratory limitations

Emulators are a widely explored solution in the IC design industry, but they
are yet to be explored as a solution for remote laboratories. As described in Section
2.1.2.10, designers use emulators in design with many logic gates, which is why
Figure 2.4 places it as part of the SoC-based flow.

Some EDA companies offer emulators as part of their product portfolio. Ca-
dence, Siemens, Synopsys, and Aldec are among them. This small group of suppliers
is due to the small demanding market niche, typically linked to few companies with
sufficient capital to invest in IC projects with high sales volume in cutting-edge tech-
nologies (CADENCE, 2022a; CADENCE, 2022b). Therefore, today’s remote
laboratories based on emulators are an unviable solution for education
due to their high cost.

4.4 Differences between remote laboratory types

After analyzing the limitations of FPGA-based and simulator-based remote
labs in education and considering the limitations of a possible emulation-based re-
mote laboratory, we summarize that:

1. FPGA-based remote laboratories are expensive to implement, maintain, and
scale. Also, they are not suitable for experiments that require responsiveness
between the remote student and the remote board;

2. Simulator-based remote laboratories do not provide hands-on experience and,
therefore, should not be used as the only alternative for digital circuit experi-
mentation in education;

3. Emulator-based remote laboratories are not used in education, only in indus-
try, and therefore are yet to be explored as an educational technology.

The following sections further analyze emulators to understand how this tech-
nology can help develop an emulation-based remote lab.
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4.4.1 Comparison between emulation and prototying

Figure 4.2 presents a simplified architecture of an emulator being used to
verify a target system. Unlike a prototype where the FPGA is directly soldered
onto the board, the emulator connects to the system through an interface. The
separation through an interface is one characteristic that differentiates emulators
from FPGA-based prototypes. So, emulators can verify different systems, while
FPGA-based prototypes are restricted to the systems they are embedded in.

Figure 4.2: Simplified example of an emulator being used for system verification.
The emulator, unlike an FPGA-based prototype board, is connected via a high-speed
interface.. SOURCE: (SCHIRRMEISTER; BERSHTEYN; TURNER, 2017)

Another feature that distinguishes FPGA-based prototyping from emulators
is where the DUT is configured. As emulators are detached from the target system to
be verified, they are architectures designed with additional resources for hardware
debugging. Emulators have more advanced logic analyzers with greater storage
capacity. Thus, emulators can trace hardware bugs more easily. In FPGA-based
prototypes, the trace memory is limited to the memory resources available on the
FPGA itself. Therefore, the memory window may not be sufficient to identify the
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root cause of a hardware bug. Figure 4.3 shows several differences between emulation
and FPGA-based prototyping.

Figure 4.3: Comparison between emulation and FPGA-based prototyping. Note
that emulators perform better than FPGAs in hardware debugging. However, when
hardware debugging is no longer as frequent in the project, prototyping becomes
more advantageous due to its execution speed for debugging software. SOURCE:
(SCHIRRMEISTER; BERSHTEYN; TURNER, 2017)

In summary, emulators are excellent for debugging hardware compared to
FPGA-based prototyping. Also, they are easier to use because the time spent on
hardware bring-up is much shorter.

4.4.2 Advantages of emulators in education compared to prototyping

Emulators have an attractive characteristic for practical labs on digital cir-
cuits: their ability to interact with real traffic (MACMILLEN et al., 2000). Assum-
ing the cost and complexity of emulators are not considered, they would become
an attractive option for educational labs in digital circuit courses. Emulators can
interface with real electronic devices, just like FPGAs in educational prototyping
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boards. Moreover, as seen in Section 4.4.2, emulators

1. can be reused in other systems, meaning that the same emulator can be used
in different and less expensive educational boards;

2. have the advantage over FPGAs in hardware debugging and bring-up, which
is beneficial when learning digital circuits;

3. provide students with the industry best practices, preparing them for the in-
dustry reality.

All of these advantages are especially valuable in educational contexts, where
students may be less experienced with hardware design and more prone to errors.
Finally, note that the items above are in line with the acceptance criteria of educa-
tional technologies identified by Froyd et al., which are low cost, ease of use, and
alignment with industry standards (FROYD; WANKAT; SMITH, 2012). Items 1,
2, and 3 meet these criteria, respectively.

4.5 The Pitanga emulation-based remote laboratory

This thesis proposes a remote laboratory based on the Pitanga architecture,
founded on the emulator concept, where the processor or programmable device is
separated from the target system. In the specific case of the Pitanga architecture,
the connection interface between the target system and the emulator is the Inter-
net. Figure 4.4 presents the general concept of the Pitanga architecture. The user
experiments with the digital circuit on the left side of the figure (the client-side),
while the emulator runs on the right side of the figure (the server-side).

Figure 4.4: Overview of the Pitanga remote laboratory client-server architecture.
The emulator on the server-side connects to the virtual board through the Internet.

The idea is similar to FPGA-based remote laboratories, but in this case,
the educational board is virtual and on the client-side with the user. The board
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connects to the remote emulator through the internet, which runs on an x86 archi-
tecture processor. Therefore, the DUT (Device Under Test) runs on a cheap and
highly scalable x86 general-purpose architecture offered by several cloud computing
services.

Figure 4.5 shows the functional block diagram for the Pitanga platform ar-
chitecture. Each block targets specific requirements on Table 1.1. As the platform
intends to provide an alternative for remote digital circuit experiments, it is nec-
essary to address the limitations imposed by FPGA-based, simulation-based, and
emulation-based remote laboratories.

Figure 4.5: Functional block diagram for the Pitanga remote laboratory architecture.

The following sections present the proposed system and detail the functional
blocks comprising the Pitanga architecture’s main characteristics. These blocks will
be briefly introduced before delving into the details of the AIG-based emulator on
the server-side.

4.5.1 IO Interface

This section describes the role of the IO interface as a component of the
Pitanga remote laboratory architecture. Keep in mind that the overall architecture
was presented in Figure 4.5. For increased readability, the IO interface described in
this section is highlighted in Figure 4.6. In the following, we discuss the role of the
IO interface.

In order to configure a digital design to run into a specific board, two types
of information are necessary. The first information is the description of the digital
design itself, we assume here that it is described as one or more Verilog files. The
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Figure 4.6: Pitanga IO Interface as a component of the Pitanga remote laboratory
architecture.

second information is the description of how the elements of the board should be
connected to the inputs and outputs of the digital circuit design. This description
is normally done in some proprietary format, in the case of Pitanga virtual board,
pinout files are used for this purpose.

The IO interface reads the Verilog and the pinout files describing the target
design, encoding them for communication with the remote emulator. The IO inter-
face processes the design files in the Client-Side of the architecture. These design
files go through the emulator interface and are sent to the Pitanga tool flow on the
server-side of the architecture, which includes an RTL synthesizer and a compiler.
The flow generates the main data structure for the AIG-based emulator, returning
a report containing the logic gates used in the design. The compilation report is
displayed by the IO interface on the client-side user screen of the Pitanga platform,
as shown in Listing 4.1.

In short, the IO interface receives the design files from the user on the client-
side and it sends these files for processing on the server-side. If the compilation
of the design is successful, the IO interface exhibits the compilation report (or the
compilation error messages if compilation is unsuccessful). Finally, when compila-
tion is successful, the IO interface will exhibit the design configured in a virtual
prototyping board as described in the next section.
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Listing 4.1: Design summary report generated by the Pitanga plataform after map-
ping the input pinout and verilog files to the AIG-based emulator.

DESIGN SUMMARY REPORT

module : counter

design file: counter .v

pinout file: counter . pinout

Total number of wires : 95

Total number of cells : 86

Total number of ports : 23

Cell Instances Cell Instances Cell Instances

-----------------------------------------------------------------------------

AND2 3 | NAND2 17 | XOR2 0

AND3 2 | NAND3 1 | XOR3 0

AND4 0 | NAND4 0 | XOR4 0

OR2 1 | NOR2 34 | XNOR2 7

OR3 0 | NOR3 11 | XNOR3 0

OR4 0 | NOR4 1 | XNOR4 0

-----------------------------------------------------------------------------

BUF 0 | INV 5 | DFFRSE 4

Cells utilization : 86/500 cells (17.20 %).

4.5.2 Virtual Prototyping Board

This section describes the role of the virtual prototyping board (COSTA;
DROVES; REIS, 2023b) as a component of the Pitanga remote laboratory archi-
tecture. Keep in mind that the overall architecture was presented in Figure 4.5.
For increased readability, the virtual prototyping board described in this section is
highlighted in Figure 4.7.

The virtual prototyping board allows the designer to interact with the design
that has been configured in the Pitanga board architecture. It comprises three
blocks: the board IO interface, the system clock, and the emulator interface. Notice
that emulator interface is also inside the predictive emulator block. For this reason,
it will be discussed separately in Section 4.5.3.

The Board IO Interface block includes the input and output devices of the
board: three push-buttons, ten switches, ten LEDs, and four seven-segment displays.
The input devices, like the board itself, are virtual. Figure 4.8 shows the virtual
board and its virtual IO devices.
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Figure 4.7: The Pitanga virtual prototyping board as a component of the Pitanga
remote laboratory architecture.

The input devices are responsive to user mouse clicks. Each mouse click on
an input device generates an event that captures the state of all inputs on the virtual
board. The emulator interface receives the states for further processing. The system
clock is also considered an input, but instead of being controlled by the user, it is
controlled by the system. The system clock generates a square wave of configurable
frequency, alternating between 0 and 1. The state alternation triggers an event that
captures all inputs of the virtual board and sends them to the emulator interface.
Therefore, the emulator interface block receives the state of all inputs at each user
or system event.

Figure 4.8: The Pitanga virtual board emulating a 16-bit accumulator. The push-
buttons and toggle switches are sensitive to mouse clicks.
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4.5.3 Emulator Interface

This section describes the role of the emulator interface as a component of
the Pitanga remote laboratory architecture. Keep in mind that the overall architec-
ture was presented in Figure 4.5. For increased readability, the emulator interface
described in this section is highlighted in Figure 4.9. In the following, we discuss
the role of the emulator interface.

As shown in Figure 4.5, the emulator interface is a block that is present at the
client-side and server-side, connecting both sides. When the Pitanga virtual board
is configured and the circuit is operating, the emulator interface is responsible for
the communication between the client-side and the server-side. This communica-
tion entails two tasks. The first task is capturing the input signal changes made
by the user through the board IO interface as well as the input changes made au-
tomatically by the system clock (in the input clock signal). These input changes
are communicated from the emulator interface on the client-side to the server-side
emulator interface, which then requests the AIG-based emulator to produce the cor-
responding new output signals. These new output signals are then sent back from
the emulator interface server side to client side to be exhibited by the board IO
interface.
Figure 4.9: The emulator interface as a component of the Pitanga remote laboratory
architecture. The emulator interface connects to every block of the Pitanga platform.

The emulator interface is similar to a cable connecting the target system
(i.e., the virtual prototyping board on the client-side) to the emulation unit (i.e.,
the AIG-based emulator on the server-side). However, in the Pitanga platform,
this connection is not a single physical cable. Instead, the Pitanga platform uses
proprietary application protocols on top of Internet standard protocols, such as the
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TCP/IP stack. Obviously this produces a time overhead that would increase the
latency between a user acting on a switch in a virtual board and obtaining the
corresponding answer from the server-side to be exhibited in the board. This is
mitigated by using predictive simulation to pre-compute answers for every possible
future action on the client side using a predictive emulator as described in Section
4.5.5.

The emulator interface is connected to all components in the Pitanga remote
laboratory architecture. Besides the role played during circuit emulation, the emula-
tor plays a role in circuit configuration before the emulation starts. In this sense the
board is configured by a user using the IO interface to remotely access the Pitanga
Design Flow component through the emulator interface. In the next section we will
discuss the Pitanga Design Flow.

4.5.4 Pitanga Design Flow

This section describes the role of the Pitanga Design Flow as a component
of the Pitanga remote laboratory architecture. Keep in mind that the overall archi-
tecture was presented in Figure 4.5. For increased readability, the Pitanga Design
Flow described in this section is highlighted in Figure 4.10. In the following, we
discuss the role of the Pitanga Design Flow.

Figure 4.10: Overview of the Pitanga design flow as a component of the Pitanga
remote laboratory architecture.

The Pitanga design flow is used to convert the design files into an AIG file
that will be used in circuit emulation. The Pitanga design flow consists of the RTL
Synthesis and Netlist Compiler blocks. Figure 4.11 overviews the Pitanga design
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flow.
The RTL synthesis block uses the open-source YOSYS/ABC tool (Claire Xe-

nia Wolf, 2023; BRAYTON; MISHCHENKO, 2010), which reads the input Verilog
project files and the Pitanga virtual cell library. The library is described in Lib-
erty format, is located on the server-side, and cannot be modified by the user. The
YOSYS/ABC tool synthesizes the project files and delivers a Verilog netlist mapped
to the Pitanga cell library. The Netlist Compiler reads the mapped verilog netlist
and produces the AIG for emulation.

Figure 4.11: Overview of the Pitanga design flow components.

The Netlist Compiler parses the Verilog netlist and the pinout file, creating
an abstract syntax tree (AST) (AHO et al., 2007). From the AST, the data structure
capable of computing sequential digital circuits, called Pitanga AIG, is built. The
Pitanga AIG is made based on the structure presented in Section 2.2.1 but modified
to support the computation of sequential circuits using flip-flops. The AIG is used
for predictive emulation as described in the next section.

4.5.5 Predictive Emulator

This section describes the role of the Predictive Emulator as a component of
the Pitanga remote laboratory architecture. Keep in mind that the overall archi-
tecture was presented in Figure 4.5. Figure 4.12 highlights the Predictive Emulator
(COSTA; DROVES; REIS, 2023d) described in this section for improved readability.
In the following, we discuss the role of the Predictive Emulator.

The predictive emulator is the core of the Pitanga platform. In this section,
we will explain the data structures and the algorithm used in the AIG-based emu-
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Figure 4.12: AIG-based emulator as a component of the Predictive Emulator.

lator. The data structure used in the AIG-based emulator is an and-inverter graph
(AIG). Every node in an AIG is a two-input AND logic gate, except for the primary
input nodes of the AIG. Each node is associated with a pair of integers in the format
{n, n + 1}, where n is a positive integer and n + 1 is the subsequent odd positive
integer.

In the AIGs of Figures 4.13 and 4.14, solid lines in the arcs represent that the
node output is a direct signal (even number), while dashed lines in the arcs represent
that the signal is in the negated form (odd number). Therefore, the integer used to
identify the node also defines the node output signal polarity (i.e., direct or negated
signal). The half-adder represented as an AIG in Figure 4.13 shows that.

The half-adder has inputs a and b and outputs Sum and Cout. These are
external labels for readability; internally, each label is represented by a pair of
numbers. For instance, the pair of numbers {2,3} is used to reference input a.
Similarly, the pair of numbers {4,5} is used to reference input b. The label a is a
variable, and the pair of numbers {2,3} is used to represent literals of variable a,
such that a = 2 and !a = 3. This way, it is possible to refer to both literals of a
given variable as numbers. This representation allows storing an AIG as a table of
vectors of integers, as described in the following.

Figure 4.14 shows the AIG representation for a half-adder as a table of vectors
of integers. The leftmost column indexes the AIG node and its input values i0 and
i1. The index of the table is the node (even) identifier divided by two. For instance,
node a = 2, so the index to store node a is 1. Similarly, node b = 4, so the
index to store node b is 2. As inputs to the circuit have no inputs to themselves,
columns i0 and i1 repeat the node identifier. So, for a the vector index 1 indicates
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Figure 4.13: A half-adder implemented in the Pitanga platform as an AIG. The
numbers on the edges are used to build a vector of integers that represents the AIG.

a = i0 = i1 = 2. Similarly, for b the vector index 2 indicates b = i0 = i1 = 4.
The output Cout has the number 6, so it is stored in index 3. We recall that

the internal nodes are two-input AND logic gates, so index 3 contains inputs i0=2
and i1=4, indicating that output Cout = (a) · (b), or numerically: 6 = (2) · (4). The
output Sum has the number 13, so it is stored in index 6. We recall that the number
13 is paired with 12, so they share the index 6 as 12/2 = 6. Notice that index 6
contains i0=9 and i1=11, indicating that output Sum =!((9) · (11)), or numerically:
13 =!((9) · (11)), or yet !12 =!((!8) · (!10)).

The AIG in Figure 4.14 has two intermediate nodes with numbering {8, 9}
and {10, 11}. Numerically, index 4 from the vector states that 8 = 3·4, while index 5
expresses that 10 = 2 ·5. This way, the AIG representation can be described
as a table of vectors of integers as depicted in Figure 4.14.

Figure 4.14: An AIG representation for a half-adder. The table on the left describes
the AIG using the vector of integers i0 and i1.

Once the data structure has been understood, it is possible to understand the
predictive emulator algorithm. The algorithm will be explained for the half-adder
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in Figure 4.14. Firstly, consider that the board starts with inputs ab = 00 (current
value, or c for short). The Karnaugh map in Figure 4.14 highlights the inputs
ab = 00 in green. As there are two inputs, there are also two vectors with hamming
distance 1 from ab = 00: ab = 10 (hamming a, or ha) and ab = 01 (hamming b or
hb). Considering the vectors ha, hb, and c represent possible future states of the
inputs of the virtual prototyping board, it is possible to organize these values as a
triplet of future input states Fs. Thus, we have:

Fs = {ha, hb, c} = {{10}, {01}, {00}} (4.1)

The triplet of future input states Fs described in equation 4.1 is a list of
vectors. This list of vectors can also be viewed as a matrix of 3 lines and 2 columns,
obtaining

Fs =


1 0
0 1
0 0

 (4.2)

By transposing equation Fs in Equation 4.2, we have:

Fs
T =

1 0 0
0 1 0

 (4.3)

Notice that each line of the matrix 4.3 now represents the future input states
of variables a and b, respectively (the rightmost value represent the future state with
no input changes). For variable a, the line is a = [1, 0, 0]. Similarly, for variable b,
the line is b = [0, 1, 0]. Applying a bitwise AND operation in both lines, we have

a · b = 100 · 010 = 000 (4.4)

The Equation 4.4 results in the triplet Cout = {0, 0, 0} from the AIG rep-
resentation in Figure 4.14. The graph shows that Cout = (6) = (2) · (4) and these
numbers can be divided by 2 and then converter to indexes for the AIG table rep-
resentation. As the AIG table representation is a Directed Acyclic Graph (DAG),
the values of the triplets - i.e., future states - can be propagated in the AIG using
bitwise logic AND and logic NOT operations. Therefore, the predictive emu-
lator algorithm only does a single pass on the AIG table. The runtime is
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linear with respect to the table size, which is linear with the number of
AIG nodes in the circuit being emulated.

Notice that by using bitwise logic operations and hamming distance 1 it is
possible to determine the output values for every possible input. Instead of comput-
ing a single boolean value for each node in the circuit, the simulation is performed
with multiple values for each node. Figure 4.14 illustrates that the triplet obtained
for the output Sum in the predictive simulation is Sum = {1, 1, 0}. The cur-
rent value c for Sum given by c(Sum) = 0, meaning that for ab = 00 the output
Sum = 0. The predictive value for a change in input a is ha(Sum) = 1, meaning
that for ab = 10 the output Sum = 1. Finally, the predictive value for a change in
input b is hb(Sum) = 1, meaning that for ab = 01 the output Sum = 1.

The predictive emulation is performed on the server-side. However, the an-
swers transmitted to the client-side contain the future values to be exhibited at the
outputs. This way, the client already knows in advance the answers for every pos-
sible user interaction, updating the virtual prototyping board immediately as the
set of possible answers is already stored on the client-side. At the same time the
client updates the virtual board, the emulator interface triggers a new request to
the AIG-based emulator on the server-side. The AIG-based emulator then provides
a new set of answers - with hamming distance one - considering the new status.

4.6 Contributions of this chapter

This chapter presented the core of the thesis proposal. The architecture of
the system was described. The description of the algorithm for predictive emulation
was done with the example of a simple half-adder circuit, highlighting that the
emulation runtime is linear on the number of nodes in the AIG. Also, this chapter has
described how the system mitigates latency through pre-computing output values
using predictive emulation with hamming distance 1.
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5 METHODOLOGY

Identifying and measuring the user tolerance is crucial because a novice stu-
dent can wrongly interpret the lack of responsiveness of the system as a failure in
the DUT. As the Pitanga platform is an educational tool, such perception by the
student is not desirable.

The following sections present the methodology used in this thesis to measure
the Pitanga system responsiveness. Section 5.1 and 5.2 describes the input and out-
put parameters, respectively. Section 5.3 explains the experiment environment and
how the input parameters control the experiments. Then, Section 5.4 demonstrates
how the output parameters are collected for further analisys.

5.1 Output parameters

A cause-and-effect relationship has a specific period between the observable
cause and the observable effect. This period can be the time elapsed from clicking
a mouse (the observable cause) to firing a weapon in a first-person shooter game
(the observable effect). It can also be the touching of a tablet screen (the observable
cause) until the rotating of a piece in a puzzle game (the observable effect). In the
context of multiplayer online game development, this time delay is referred to as
latency (GLAZER; MADHAV, 2015). Depending on the nature of the game, the
latency duration may be more or less tolerable to the user.

Like a game, the Pitanga platform has a latency between pressing a button
(the observable cause) and the lighting of an LED (the observable effect). However,
instead of waiting for a switch to be pressed before beginning to calculate the answer,
the Pitanga platform performs this operation in a predictive manner. By computing
the solution for all possible events previously, the output devices on the virtual board
(such as LEDs and seven-segment displays) are immediately updated when the user
interacts with the board. As all the possible results are already stored on the client-
side, the virtual prototyping board commits the solution in the output devices when
an event occurs. Immediately, the board dispatches a new request to the predictive
emulator on the server-side for computing the new set of possible solutions.

The predictive emulator eliminates latency because the observable effect is
already stored on the board for every possible observable cause. However, this tech-
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nique has limitations, specifically when the predictive emulator is not fast enough to
deliver the answer before the next event on the board. For example, the predictive
calculation algorithm for a combinational adder circuit is expected to be faster than
the interval between two addition operations requested by the user. The same is
expected when two consecutive clock events are faster than the predictive emulator.
In such situations, latency may be noticeable by the user and even not tolerable.

5.1.1 Predictive Delay

Figure 5.1 is a temporal diagram showing the relationship between the pre-
dictive delay and two consecutive system clock events, denoted as ∆Event. The
red circles are the events related to the rising and falling edges of the system clock.
Each edge triggers a request to the predictive emulator on the server-side, which cal-
culates all the possible solutions of the circuit. After finishing the calculation, the
emulator interface transmits the answers back to the client-side, which stores them
in the virtual board. The predictive delay written in green in Figure 5.1 indicates
the elapsed time of this operation.

Figure 5.1: Predictive delay and system clock with no network delay (RTT = 0)

The predictive delay is the output parameter that ensures the system respon-
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siveness if it is smaller than ∆Event. The inequation 5.1b shows this relationship
as

Predictive Delay ≤ Clock Event′ − Clock Event (5.1a)

Predictive Delay ≤ ∆Event (5.1b)

However, ∆Event is not a function of two consecutive clock events ideally
spanned in time. For example, the clock rising and clock falling events may vary
depending on factors such as the processing load on the Pitanga client-side. In
addition, the client-side awaits the incoming data from the server-side before com-
mitting the outputs to the virtual board and dispatching the next computation
request. The Pitanga platform behaves in a way that the ∆Event from Figure 5.1
is always greater than the predictive delay.

5.1.2 System Tolerance

In order to differentiate the varying ∆Event from an ideally spanned ∆Event,
Equation 5.1b must be rewritten as

Predictive Delay ≤ ∆Eventideal (5.2)

where,

∆ Eventideal = Clock Periodideal

2 (5.3)

Noticed that ∆Eventideal is a constant because it depends solely on the nom-
inal system clock from the client-side. This constant delimits the amount of time
that the predictive delay affects the system responsiveness. Then, by defining that

System Tolerance = ∆Eventideal (5.4)

and applying equation 5.4 to inequality 5.2, we obtain:

Predictive Delay ≤ System Tolerance (5.5)
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The Inequation 5.5 delimits the amount of time that the predictive delay
cannot exceed for the Pitanga platform to run as expected. The system tolerance is
the parameter that defines this amount of time.

5.1.3 User Tolerance

The lack of responsiveness of the system is not noticeable to the user when
the predictive delay is slightly greater than the system tolerance. The predictive
delay needs a certain amount of time over the system tolerance to become evident
to the user. Although there is no exact definition for this amount of time, this time
exists and depends on the nature of the application.

In online multiplayer games, this time delay, or latency, can vary from up
to 20ms for virtual reality games to 500ms for real-time strategy games (GLAZER;
MADHAV, 2015). For the Pitanga platform, we consider a latency of up to 150ms
tolerable, the same as used in first-person shooter games. Thus, we have:

User Tolerance = System Tolerance + 150ms (5.6)

Since user tolerance is greater than the system tolerance, by applying Inequa-
tion 5.5 we conclude that

Predictive Delay ≤ System Tolerance ≤ User Tolerance (5.7)

When true, the Inequation 5.7 means the Pitanga platform is running with
high responsiveness. However, this inequality may become false depending on the
input parameters, meaning that the system is unresponsive.

5.1.4 Slack

The slack is used in conjunction with Inequality 5.7. Through this parameter,
it is possible to identify whether the system is responsive or not. Below is its
definition:

Slack = System Tolerance− Predictive Delay (5.8)
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The slack parameter has a comparable definition to the slack employed in
STA tools. For instance, a positive slack indicates that the timing in the Pitanga
platform is functioning correctly. However, a negative slack may imply a latency
that the user may not tolerate.

It should be emphasized that a negative slack may imply a latency not toler-
able for the user because the slack may be negative and not perceived by the user.
This scenario can occur when the predictive delay exceeds the system tolerance but
not the user tolerance.

In addition to the predictive delay, the system tolerance and the user toler-
ance, the slack is the fourth output parameter employed in this study to validate
the thesis that students can remotely prototype responsive digital circuits without
using FPGA-based prototyping boards.

5.2 Input parameters

The experiments must collect the output parameters predictive delay, system
tolerance, user tolerance, and slack. However, these parameters depend on input
parameters. Knowing and controlling the input parameters is the key to effective
and reproducible experiments.

5.2.1 Transistor count

The more logic cells the circuit has, the bigger the AIG in memory and,
therefore, the longer the emulation processing time. The longer the emulation time,
the longer the predictive delay.

As logic cells are nothing more than a group of transistors, and a digital
circuit is a group of logic cells, each circuit running in the Pitanga platform can be
measured by its number of transistors. The transistor count affects the predictive
delay; consequently, it is one of the input parameters.

Table 5.1 details the transistor count for each cell in the Pitanga library. The
number of transistors considers typical CMOS logic gate designs (WESTE; HARRIS,
2010). The only exception is the DFFRSE flip-flop which uses transmission gates
in its design.
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5.2.2 System frequency

The faster the elapsed time between two events, the faster the predictive
emulator on the server side must process and deliver the set of possible outputs to
the virtual prototyping board on the client-side.

Two consecutive events are more controllable and reproducible when they
do not depend on human interference. The system clock on client-side is such an
event that does not depend on human interference. In addition, the system clock
can easily control the time elapsed between two events by modifying its operation
frequency directly in the source code.

The experiments in this thesis use the system frequency as an input param-
eter to control the time elapsed between consecutive events. Modifications on this
parameter affect the system tolerance and, consequently, the user tolerance.

5.3 Running the experiments

The experiments require a prepared and configured environment in order to
be replicated. Section 5.3.1 defines two configurations for evaluating the Pitanga
platform, Section 5.3.2 details the hardware specification for the predictive emulator
on the server-side, and Section 5.3.3 shows how the input circuit and design flow is
controlled.

5.3.1 Preparing the environment

This work performs two sets of experiments. The first set runs the client-
server architecture on a single machine (i.e., both client-side and server-side running

Table 5.1: Virtual transistor count for each cell in the Pitanga library.
Cell Transistors Cell Transistors Cell Transistors

AND2 6 NAND2 4 XOR2 12
AND3 8 NAND3 6 XOR3 22
AND4 10 NAND4 8 XOR4 32
OR2 6 NOR2 4 XNOR2 12
OR3 8 NOR3 6 XNOR3 22
OR4 10 NOR4 8 XNOR4 32
BUF 4 INV 2 DFFRSE 38
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concurrently on the same machine). The second set runs the same experiments on
a client-server architecture of separate machines. Figure 5.2 shows the concept of
the experiment environment for the single-machine and client-server architecture,
respectively.

Figure 5.2: Different configurations for evaluating system and user tolerance

(a) Single-machine architecture

(b) Traditional client-server architecture

Notice that the single-machine architecture in Figure 5.2 (a) is equivalent to
the timing diagram indicated in Figure 5.1. On the other hand, the architecture
shown in Figure 5.2 (b) is equivalent to the timing diagram in Figure 5.3.

The single-machine experiment provides a more dynamic, cost-effective, and
streamlined environment for validating changes compared to the traditional client-
server architecture that requires configuring an extra remote computer. Besides, the
single-machine architecture may also serve as an alternative application.
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Figure 5.3: Predictive delay and system clock with network delay (RTT 6= 0)

5.3.2 Hardware specs

The Pitanga Platform was designed to run on low-end CPUs to meet the
needs of students and educational institutions that cannot afford to acquire high-
end computers or FPGA-based prototyping boards (requirement 4, Table 1.1). For
this reason, the experiments on the client-side run on a 2010 computer. Listing 5.1
details the specification of this computer.

Listing 5.1: Target architecture for evaluating test on the client-side.

Notebook DELL Inspiron 14 N4050

CPU: Intel(R) Core(TM) i5 -2430M CPU @ 2.40 GHz Quad -Core

RAM: DDR3 2x4 GB 1333 MHz

HDD: SSD WDC WDS240G2G0A - 240 GB

When running on a remote machine, the server-side runs on a Google Cloud
e2-micro server (CLOUD, 2023). Listing 5.2 details the specification of the e2-micro
machine.

Listing 5.2: Target architecture for evaluating test on the client-side.

Machine : e2 -micro

vCPUs: 2
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Memory (GB): 1

Local SSD: no

5.3.3 Controlling the experiments

The input parameters, as the experimenting environment, must be control-
lable in order to be reproducible. Therefore, the experiments must:

1. easily allow the modification of the transistor count in the input design;

2. run each Verilog netlist on different clock frequencies;

The number of transistors can be easily modified and reproducible with the
proper input circuit design. Counters with different bit widths satisfy these criteria
because they:

1. can be parameterized in Verilog, allowing the execution of counters of different
sizes.

2. are sequential circuits dependent on clock events and can therefore be emulated
at different frequencies on the Pitanga platform;

Figure 5.4 shows the schematic for an N-bit counter. The counter output bits
connect to a bit-wise NOR gate that sets the z output flag whenever the counter
equals zero. The carry out signal from the N-bit adder also connects to the c output
of the module. So, regardless of the size of the counter, the input and output signals
of the module remain constant.

Figure 5.4: Schematic for a N-bit counter

A fixed number of IOs enables the usage of the same pinout file for N-bit
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counters of different sizes, enabling the automation of the experiments. Figure 5.5
shows the design flow for the experiments. Notice that each emulation run has an
associated N-bit counter netlist.

Figure 5.5: Automated design flow for the experiments

Eight counters of sizes 8, 16, 32, 64, 128, 256, 512, and 1024 bits generate
de data input stimuli. The Yosys tool synthesizes each counter and maps them to
separated Verilog netlists compatible with the Pitanga netlist compiler. Yosys uses
the Pitanga cell library for mapping the N-bit counters. This library comprises the
cells available in the Pitanga emulator as shown in Table 5.1. As the transistor count
is directly related to the number and type of cells, each experiment determines a
specified number of transistors.

The experiments aim to collect and calculate the output parameters predictive
delay, system tolerance, user tolerance, and slack for different-sized counter circuits.
Each experiment runs at a specific clock frequency, starting at 1Hz. The other
frequencies are linearly spaced at every 6 Hertz, i.e., 1Hz, 7Hz, 13Hz, 19Hz, and
25Hz. The frequency spacing is linear because it helps to identify the experiments
that the slack begins to affect the system responsiveness. The maximum frequency
is 25Hz because the scheduler of the development framework is limited to 60 frames
of event per second (Kivy, 2023).

Notice that any frequency above 30 Hz will place two or more events in the
same event frame of the scheduler. In other words, frequencies above 30Hz trigger
two or more predictive emulations; however, only one run has temporal validity.
Therefore, operating the virtual board at frequencies higher than 30Hz is ineffective
because it consumes the CPU unnecessarily.
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5.4 Collecting the samples

The input parameters system frequency and transistor count control the ex-
periments. There are five input system frequencies and eight different N-bit counter
designs. However, as shown in Figure 5.2, there are two different environment con-
figurations. So, the methodology collects samples for the 8 · 5 · 2 = 80 experiments.

Each experiment collects 200 samples. The events that trigger the collection
of samples are the clock edges and the data arrivals on the client-side. Just after
an event triggers, the experiment environment samples the experiment name, the
system frequency, the sample id, the event type, and the timestamp. The sample is
saved into a CSV file as shown in listing 5.3.

Listing 5.3: Measurements collected in a sample of the experiments.

EXPERIMENT ,FREQUENCY ,SAMPLE_ID ,EVENT_TYPE , TIMESTAMP

counter8b ,1,1, build_start ,1675774117 ,74082

counter8b ,1,2, build_finish ,1675774118 ,4461

counter8b ,1,3, rising_edge ,1675774118 ,53675

counter8b ,1,4, data_arrival ,1675774118 ,56587

counter8b ,1,5, falling_edge ,1675774119 ,02927

counter8b ,1,6, data_arrival ,1675774119 ,05841

counter8b ,1,7, rising_edge ,1675774119 ,53152

counter8b ,1,8, data_arrival ,1675774119 ,57588

counter8b ,1,9, falling_edge ,1675774120 ,03678

counter8b ,1,10, data_arrival ,1675774120 ,06534

The sample is composed of five columns, each of them containing data. Each
collum is explained as follows:

• EXPERIMENT: experiment name identifying the counter width;

• FREQUENCY: frequency of the experiment system clock in Hertz;

• SAMPLE_ID: identification of the sample in the current experiment;

• EVENT_TYPE: type of the event. They are build_start, build_finish, ris-
ing_edge, data_arrival, and falling_edge.

• TIMESTAMP: timestamp in seconds of the sample;

The compilation time is associated with the event type build_start and
build_finish. This work does not detail these events because they are out of the
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scope of the thesis.

5.4.1 Computing the predictive delay

The experiment environment processes the CSV file after collecting the sam-
ples for every experiment. The predictive delay related to rising and falling clock
edges are obtained by computing the difference of the timestamp as follows:

Predictive Delayr = TIMESTAMPdata_arrival − TIMESTAMPr (5.9a)

Predictive Delayf = TIMESTAMPdata_arrival − TIMESTAMPf (5.9b)

5.4.2 Computing the tolerances

The system and user tolerance are constant values as defined by Equations
5.4 and 5.6, respectively. The experiment environment computes these parameters
once and repeats their value for each sample.

5.4.3 Computing the slack

By applying 5.9a and 5.9b on equation 5.8, we obtain one slack related to
the rising edge and another slack related to the falling edge. These equations are as
follows:

Slackr = System Tolerance− Predictive Delayr (5.10a)

Slackf = System Tolerance− Predictive Delayf (5.10b)

Although equations 5.10a and 5.10b produce different results, the differences
are not significant for the analysis.
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5.4.4 Computing the transistor count

For each experiment, the Pitanga platform generates a design summary con-
taining the number of equivalent CMOS transistors of the design. These values are
necessary to compare the complexity of projects emulated on the Pitanga platform
with real IC designs, such as those shown in the Figure 2.1.

5.5 Contributions of this chapter

This chapter presented the methodology used to evaluate the responsiveness
of the Pitanga platform. It has defined the input and output parameters, the exper-
iment environment, and how the input parameters control the experiments in order
to be reproducible. It also explained how the output parameters are collected and
stored for further analysis.
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6 RESULTS

This chapter presents the effectiveness of the predictive emulation algorithm
explained in Section 4.5.5. The chapter presents several charts using the results
obtained through the methodology presented in Chapter 5.

Section 6.1 shows the linear complexity of the developed algorithm. Section
6.2 shows a series of charts demonstrating the average predictive delay as a function
of the system frequency and the number of transistors. Operating ranges for the
Pitanga platform are identified in Section 6.3, revealing that the frequency and
the project size are closely related to the system responsiveness decay. Section 6.4
demonstrates the emulation capacity of the Pitanga platform by comparing sample
designs with real projects of historical CPUs. Finally, Section 6.5 presents the
contributions of this chapter.

6.1 Time Complexity

Figure 6.1 illustrates the emulation runtime for N-bit counters of 8, 16, 32,
64, 128, 256, 512, and 1024 bits. Each counter has a specific number of associated
transistors: 494, 1040, 2166, 4414, 8884, 18052, 36622, and 72486, respectively. The
Pitanga platform computes the total number of transistors according to the number
of transistors in each counter cell. The number of transistors in each cell is obtained
from the design summary and the values in Table 5.1.

Note that the emulation runtime chart is directly proportional to the number
of transistors. Since the number of transistors is related to the type of cell, and each
cell is associated with AIG nodes, we have the following:

number ofAIG nodes ∝ number cells ∝ number of transistors (6.1a)

number ofAIG nodes ∝ number of transistors (6.1b)

The chart shown in Figure 6.1 demonstrates that the emulation runtime on
the server-side is linearly proportional to the number of AIG nodes in the emulated
circuit. In other words, the AIG-based emulator takes O(n) time to calculate every
possible circuit output, as discussed in Section 4.5.5. Thus, as derived from the
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proportionality described in 6.1b, the emulation runtime is also proportional to the
expected number of transistors in the circuit.

Figure 6.1: Time complexity analysis for the AIG-based emulator (RTT=0).

It is important to point out that the emulation runtime samples collected in
Figure 6.1 are the minimum values from a population of 102 predictive emulator
runs in the single-machine architecture (RTT=0). Considering the average value for
the traditional client-server architecture (RTT 6=0), the chart would have deviations
due to network latency.

6.2 Predictive Delay Analysis

The predictive delay is a linear function proportional to the number of tran-
sistors in the emulated circuit. The predictive delay has the same meaning as the
emulator runtime. The following section uses predictive delay instead of emulator
runtime

In Sections 6.2.1 and 6.2.2, we present the predictive delay for different N-bit
counter, indicating when the delays begin to impact system responsiveness.

6.2.1 RTT=0

Figure 6.2 shows four charts for different N-bit counters running at 1, 7, 13,
and 25 Hz system frequencies. The 494 number on the leftmost side of the chart in
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Figure 6.2(a) represents the number of transistors for an 8-bit counter synthesized
with the Pitanga platform. The numbers to the right also represent the number
of transistors of N-bit counters. Each number is associated with an N-bit counter
with twice as bits as the left one. That is, the 1040-transistor counter has 16 bits,
the 2166-transistor counter has 32 bits, and so on, up to the rightmost counter with
2048 bits.

The chart shows the average predictive delay for N-bit counters ranging from
8 to 2048 bits. Each result is an average of 102 samples. The predictive delay exceeds
the system tolerance yellow line at 7Hz for the counter with 145,932 transistors (i.e.,
the 2048-bit counters). At 25Hz, the N-bit counters with 36,3622 transistors is on
the limit of the system tolerance.

The user tolerance is exceeded for the N-bit counter with 145,932 transistors
at 13 Hz and 25Hz. In other words, the user perceives the lack of system responsive-
ness for the 2048-bit counters at 13Hz and 25Hz on single-machine architectures.

Figure 6.2: Average predictive delay and ∆Event values for different system fre-
quencies (RTT=0).

(a) System frequency = 1 Hz (b) System frequency = 7 Hz

(c) System frequency = 13 Hz (d) System frequency = 25 Hz



103

6.2.2 RTT 6=0

The lack of system responsiveness can be observed for smaller circuits and
lower frequencies in client-server architectures. Figure 6.3 shows four charts follow-
ing the same layout as the charts presented in Section 6.2.1. Note that, compared to
the charts in Figure 6.2, the rightmost counter of 2,048 bits (i.e., 145,932 transistors)
does not appear. This counter had compilation errors in the server-side hardware
and, therefore, it was excluded from the analysis set. The N-bit counters of 72,486
and 36,662 were also removed from Figure 6.3(d) to enlarge the analysis chart area.

The average predictive delay indicates that the user tolerance is exceeded
for N-bit counters with more than 512 running at 13 Hz. Therefore, the system
responsiveness decays in designs with 36,622 transistors or more at 13 Hz. For
designs running at 25 Hz, all counters exceed the system tolerance range, indicating
a possible lack of responsiveness if the same system runs additional processes on the
same CPU.

Figure 6.3: Average predictive delay and ∆Event values for different system fre-
quencies (RTT6=0).

(a) System frequency = 1Hz (b) System frequency @ 7Hz

(c) System frequency @ 13Hz (d) System frequency @ 25Hz
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6.3 Tolerance Analysis

Section 6.2 presented the system responsiveness for different circuit sizes
emulating different operating frequencies. However, the analysis was performed
through an average of 102 predictive delay samples. As these data represent the
sample average, they provide a general overview of the system behavior.

Sections 6.3.1 and 6.3.2 aim to present a statistical analysis of the sampled
data and are more detailed and conclusive. The analysis was performed only for the
traditional client-server architecture (RTT 6=0).

6.3.1 Histogram

Figure 6.4 shows the operation of the eight N-bit counters in the Nominal,
SysTol, and UsrTol operating ranges. Each operation range is indicated on the
horizontal axis of the charts, and its meaning is described as follows:

• Nominal: indicates that the system is responsive to the user;

• SysTol: indicates that the system is at risk of becoming unresponsive to the
user if the CPU load increases with the execution of new processes;

• UsrTol: indicates that the system is unresponsive to the user.

The analysis of the charts shows that the system is responsive to the user
for all the N-bit counters at 1Hz. For counters up to 18,052 transistors (i.e., 256-bit
counter or less), the system operates in the SysTol range in some frequencies. In
this operation range, the user does not perceive the lack of responsiveness of the
system, but the system identifies delays in the arrival of data on the client-side.

Finally, for circuits larger than 36,622 transistors (i.e., 512-bit counters), most
of the samples are in the UsrTol range; therefore, the system becomes unresponsive
to the user. Some samples can also be found in the UsrTol range in Figures 6.4(b)
to 6.4(e). However, due to the small number of samples in this operation range,
the system response delay may not be perceptible by the user due to the higher
operating frequency.
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Figure 6.4: Operating ranges for different counter sizes running in the traditional
client-server architeture (RTT 6=0).

(a) 8-bit Counter (494 Transistors) (b) 16-bit Counter (1,040 Transistors)

(c) 32-bit Counter (2,166 Transistors) (d) 64-bit Counter (4,414 Transistors)

(e) 128-bit Counter (8,884 Transistors) (f) 256-bit Counter (18,052 Transistors)

(g) 512-bit Counter (36,622 Transistors) (h) 1024-bit Counter (72,486 Transistors)

6.3.2 Heat map

Figure 6.5 presents the system responsiveness in the heat map format for six
operation scenarios of the Pitanga platform. The heat map has different colors to
indicate each operating range, including the Nominal, the SysTol, and the UsrTol



106

operating ranges. The column maps present when the RTT=0 and the RTT 6=0. The
row maps show results for the Pitanga platform operating in the best-case, nominal-
case, and worst-case scenarios. The meaning of each of these cases is described as
follows:

• Best-case: the maximum slack time of the population of 102 samples;

• Nominal-case: the average slack time of the population of 102 samples;

• Worst-case: the minimum slack time of the population of 102 samples.

Each column contains slack results for different sizes of N-bit counters ac-
cording to their number of transistors. The slacks are obtained according to the
equations 5.10a and 5.10b in Section 5.4.3.

Figure 6.5: System responsiveness decay for designs with different transistors count
for system frequencies ranging from 1 to 25 Hz.

(a) Best-case scenario (RTT=0) (b) Best-case scenario (RTT 6=0)

(c) Nominal scenario (RTT=0) (d) Nominal scenario (RTT 6=0)

(e) Worst-case scenario (RTT=0) (f) Worst-case scenario (RTT 6=0)

The heat map analysis shows that the system responsiveness is inversely
proportional to the operating frequency and the number of emulated transistors.
Therefore, the analysis confirms the hypothesis of the system responsiveness decay
proposed in Figure 1.3.
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6.4 Comparison with past commercial IC designs

Figure 6.6 shows the evolution of various commercial ICs designs according
to the number of transistors (ROSER; RITCHIE; MATHIEU, 2023). Red circles
highlight some ICs to assist the reader in understanding the evolution of CPUs over
time. The same chart presents a green rectangle in the lower left corner, limited to
36,622 transistors on the vertical axis. This quantity represents the equivalent num-
ber of CMOS transistors obtained by the Pitanga platform for a 1,024-bit counter
using the Pitanga library described in Table 5.1.

Figure 6.6: Emulation capacity of the Pitanga platform compared to past IC designs.
The highlighted number in the vertical axis represents the number of transistors for
a 1,024-bit counter designed in the Pitanga platform using the Pitanga library.

By enlarging the green rectangle highlighted in Figure 6.6, we obtain Figure
6.7, where we observe several historical ICs from the past, including:

• Intel 4004 : The first CPU released by Intel in 1971 (INTEL4004, 2023) was
used by the Busicom 141-PF printing calculators of the Nippon Calculating
Machine Corporation. Fabricated using NMOS technology, the Intel 4004
CPU has 2,300 transistors. This number of transistors is equivalent to 5,600
CMOS transistors, a complexity compared to a 64-bit counter on the Pitanga
platform.
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• MOS Technology 6502 : With 3,510 transistors (WIKIPEDIA, 2023b), varia-
tions of this CPU were used in the Atari 2600 and Nintendo Entertainment
System (NES) consoles. These versions employed NMOS technology, thus,
half the number of transistors compared to CMOS technologies. The num-
ber of transistors in the 6502 can be compared to 2 · 3, 510 = 7, 020 CMOS
transistors, which is close to the capacity of a 128-bit counter on the Pitanga
platform.

• Zilog Z80 : The Z80A version of this CPU was widely used in Sega Master
System consoles (WIKIPEDIA, 2023e). Developed with 8,500 NMOS transis-
tors by Zilog in 1974, this thesis compares it to a 256-bit counter or a near-
equivalent containing 2 · 8, 500 = 17, 000 CMOS transistors on the Pitanga
platform.

• WDC 65C816 : The 22,000 transistors implemented in CMOS technology
(WIKIPEDIA, 2023d) is an improved version of the MOS Technology 6502
CPU and had several variations, including the Ricoh 5A22 CPU (WIKIPEDIA,
2023c) used in the Super Nintendo Entertainment System (SNES). A 512-bit
counter emulated on the Pitanga platform has more CMOS transistors than
this CPU.

• Intel 8086 : Known for its instruction set, which persists in the CPUs of most
contemporary PCs, the Intel 8086 was released in 1978 with 29,000 NMOS
transistors (WIKIPEDIA, 2023a). A 1024-bit counter on the Pitanga platform
can emulate 72,486 CMOS transistors.

Figure 6.7: Emulation capacity of the Pitanga platform compared to real designs.

Considering the Pitanga platform operating in the nominal scenario defined
in Figure 6.4(d)), the Intel 4004, MOS Technology 6502, Zilog Z80, WDC 65C816,
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and Intel 8086 CPUs can be emulate at 13Hz, 7Hz, 7Hz, 1Hz, and 1Hz frequencies,
respectively. In other words, not only can the CPUs of the Atari 2600, NES, Mas-
ter System, and SNES be used for learning hardware development on the Pitanga
platform, but they can also be emulated.

6.5 Contributions of this chapter

This chapter presented the results of the Pitanga emulation-based remote
laboratory. Following to the methodology defined in Chapter 5, this chapter showed
that the predictive emulator runtime is O(n). Additionally, through 102 collected
samples, we identified three operating ranges for the platform: Nominal, SysTol, and
UsrTol. Based on these operating ranges, we classified a group of designs according
to their operating frequency and transistor count on a heat map. The heat map
confirmed the hypothesis of the system responsiveness decay proposed in Figure 1.3
and allowed the comparison of the results with historical CPU designs from the past.
Finally, the chapter concludes that the Pitanga platform can emulate various CPUs
used in the 80s video game consoles, provided they run at frequencies around 10Hz.
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7 CONCLUSIONS AND FUTURE WORKS

This thesis claims that students can experiment with responsive digital cir-
cuits remotely, without FPGA-based prototyping boards, using industry standards
in a cost-efficient, easy-to-use design environment. In order to support this the-
sis, Chapter 2 contextualizes the reader by explaining the foundational concepts of
VLSI design methodologies and flows commonly used in the industry. Chapter 3
presents the evolution of digital circuit remote laboratories on education, identifying
the solutions and limitations of FPGA-based and simulation-based remote labora-
tories. Chapter 4 delves deep into the limitations of state-of-art FPGA-based and
simulation-based remote laboratories and introduces a third option not explored in
education: emulation-based remote laboratories. Still, in Chapter 4, an emulation-
based architecture using general-purpose CPUs and industry standards is proposed
as an alternative for FPGA-based laboratories, providing a cost-efficient laboratory
capable of conducting responsive experiments over the Internet.

The thesis presents the emulation-based remote laboratory architecture, the
Pitanga platform, that implements a particular communication interface and an
AIG-based emulator on the server-side. This implementation enables a responsive
platform over the Internet by predicting the output values for every possible input
state from the client-side. The algorithm capable of accomplishing this feature is
named predictive emulator, and Chapters 5 and 6 present the methodology and
results for this algorithm, respectively.

7.1 Contributions of this thesis

The thesis proposes a list of requirements for responsive digital circuits re-
mote laboratories as defined in Table 1.1. The proposed remote laboratory must be:
based on industry standards, inexpensive, and easy-to-use. This thesis has made
contributions to these criteria, as indicated below:

• based on industry standards: The Pitanga platform supports the Verilog stan-
dard for digital circuit description, follows a design flow that resembles pro-
fessional tools using a cell library during RTL synthesis, and displays design
summary reports similar to professional tools. The Verilog standard allows the
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platform to integrate with industry software, such as the Yosys RTL synthesis
tools (requirements 1, 2, and 3).

• inexpensive: The platform runs on general-purpose CPUs, decreasing the need
for educational institutions and students to acquire or replace legacy edu-
cational FPGA-based prototyping boards. Moreover, the platform supports
scaling on the server-side according to user demand, allowing additional cost-
affordable CPU power as needed. As the emulation platform is a software-
based model, the risks of hardware failure decrease significantly, reducing also
the costs of maintaining a permanent laboratory maintenance staff (require-
ments 4, 5, and 6).

• easy-to-use: The platform provides a virtual prototyping board on the client-
side that closely resembles the PCB layouts of entry-level educational FPGA-
based prototyping boards. The client-side size is 133MB after installation,
much smaller than the gigabytes of FPGA design software for digital circuit
design and implementation. With the development of documentation and
teaching materials, various educational institutions can benefit from the plat-
form because it can be easily installed without needing additional physical
hardware (requirements 7, 8, and 9).

Satisfying requirements 1 to 9 are commercial contributions of this thesis.
However, from a scientific point of view, the main contribution is the solution to
the tenth requirement in table 1.1: a method for providing real-time user stimuli
response.

The real-time response is one of the limitations imposed by FPGA-based re-
mote laboratories. The state-of-art solution for this issue is a pre-recorded database
of past experiments on video. However, this solution is possible only for experiments
with limited inputs and conditions. This thesis in Chapter 2 explored EDA modern
data structures, circuit simulation, and multiplayer game programming techniques
to broaden this limitation. As a result, the thesis delivers a software solution capa-
ble of predicting all the possible outputs for a given input state of a digital circuit
description in Verilog. The solution uses a predictive emulator algorithm that com-
putes all the possible outputs using an AIG-based data structure in O(n) time.

Further analysis of the predictive emulator shows that the size and operating
frequency of the input circuit determine the operating range in which the circuit may
run without noticeable latency. Latency occurs when the predictive emulator cannot
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deliver the results before the subsequent user event or clock event. Thus, as the final
contribution of Chapter 6, this thesis produces a heat map categorizing operating
ranges for different circuit sizes and frequencies running in the Pitanga platform.
The heat map confirms the hypothesis of the expected system responsiveness decay
depicted in Figure 1.3.

7.2 Future works

Every new solution has its limitations, and the solution proposed in this
thesis is no different. The proposed emulation-based remote laboratory has limi-
tations. Some limitations are straightforward to solve, while others are not. Some
limitations can be more complex to solve. However, every limitation may become
an opportunity for future improvements.

One of the limitations that can be easily solved is the low operating frequency.
The results obtained in this thesis indicate that the main contribution, which is the
predictive emulator, operates near 10 Hertz. This frequency is enough for students
development basic sequential digital circuits, but it limits more advanced students
who seek to develop more complex circuits. One way to quickly increase the op-
erating frequency of the emulator to the hundreds of Hertz range is to rewrite the
Pitanga platform code to a compiled language. The results obtained for this the-
sis run on interpreted Python without any code acceleration treatment. Another
way to accelerate the predictive emulator is to use machines with better computa-
tional performance on the server-side. Consider that the results in Chapter 6 ran
on machines with low computational performance.

More complex solutions to increase emulation speed, potentially reaching
thousands of Hertz, could involve combining the previous solutions with an interrupt
system on the server-side. Applications that operate at higher frequencies do not
require an immediate response and can wait for the server to complete a given
operation. This implementation would allow the server to execute several clock
cycles at each event occurs on the client side, differentiating the clock speed of
the client and the server sides. This solution requires the implementation of a
synchronization scheme that could be adapted from those used in multiplayer games.
Another solution is running the client and server on the same machine. In this case,
the situation returns to leaving the user responsible for installing and configuring
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the design software environment, making it appropriate for more advanced users.
Examples of more challenging solutions that could improve emulator perfor-

mance include identifying and separating digital circuit blocks into different CPU
cores. Developing this solution requires a well-implemented inter-process communi-
cation system and an algorithm for partitioning the AIG into different CPU cores.
Other solutions involve developing compilers that identify arithmetic constructs that
do not need to be executed with the help of an AIG. For instance, instructions such
as addition could replace a large portion of an AIG that performs an addition op-
eration with a single instruction in the target CPU architecture.

Finally, there are also impractical implementation strategies, such as increas-
ing the hamming distance of the predictive emulator too much. In this case, the
emulator would predict sequences of possible user interactions, such as pressing
a sequence of buttons rather than just one. In such cases, the calculation time
of the predictive emulator becomes exponential, making this solution impractical.
However, depending on certain conditions, such as when the inputs to the virtual
prototyping board are few, increasing the depth of the Hamming distance of the
predictive emulator may become feasible.
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8 APPENDIX

Table 8.1: References for the Table 3.1 listed in Chapter 3
Software Reference
CircuitVerse (IIIT-Bangalore, 2022)
logic.ly (logic.ly, 2022)
LogiSim (Carl Burch, 2022)
Deeds (Giuliano Donzellini, 2022)
Icarus (Stephen Williams, 2022)
Verilator (CHIPS Alliance, 2022)
LogicCircuit (Logic Circuit, 2022)
simulator IO (Bastian Born, 2022)
Logic Gate (Steven Kollmansberger, 2022)
OpenCircuit (OpenCircuits, 2022)
SmartSim (Ashley Newson, 2022)
BOOLR (Jaap Dechering, Gees Brouwer, Teun de Theije, 2022)
LogiJS (LogiJS, 2022)
EasySim (EasySim, 2022)
wiRedPanda (GIBIS UNIFESP, 2022)
Digital (Helmut Neemann, 2022)
Hradla (Jenda Horák, 2022)
MAX+Plus II (INTEL, 2022)
Intel Quartus (INTEL, 2022)
Xilinx Vivado (AMD Xilinx, 2022)
Logic Circuit Pro (Stefan Belinov, 2022)
EDA playground (DOULOS, 2022)
#Data (Von Braun Labs, 2022)
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