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ABSTRACT

The evolution in CMOS technology has led to an increased computational capacity of

electronic devices, enabling complex applications to be processed in embedded platforms.

An example of this is the growth of machine learning (ML) applications processed on-

device. These techniques are efficient for pattern-recognition and prediction, but require

huge amounts of data and operations to generate models that can learn efficiently. Hence,

when considering devices with battery constraints, such as wearables, simpler models

like tree-based ones may be more suitable, given their power/energy efficiency. ML al-

gorithms allow for the insertion of errors without necessarily compromising the output,

making approximate computing (AxC) techniques promising alternatives to further de-

crease the power/energy costs of these applications. The problem that arises from this

approach is that the use of AxC combined with model selection substantially increases

the amount of parameters that must be considered and optimized during design space ex-

ploration (DSE). This thesis proposes the use of automated frameworks to generate ML

VLSI accelerators and perform automatic synthesis, for different degrees of approxima-

tion, greatly speeding up the DSE process. The proposed frameworks automatically map

ML models to HDL, employing AxC techniques in different layers to achieve improved

energy/area savings. The efficiency of the proposed frameworks is assessed by explor-

ing approximate VLSI architectures for Decision Trees (DT) and Random Forests (RF).

Different model/design parameters were tested, namely tree depth, number of trees, and

quantization level, adding up to 1540 compared designs. The other proposed frameworks

explore techniques for approximating comparators and performing gate-level pruning in

DTs/RFs. The models generated from the initial framework present power reductions of

10× or more for the same inference throughput reported in previous works. The remain-

ing frameworks also obtained significant savings compared to the current state-of-the-art.

The main contribution of this thesis is to enable an automated and comprehensive DSE

of ML models, allowing designers to make a better-informed assessment of the trade-offs

involved in this process.

Keywords: Low-Power. Machine Learning. Decision Trees. Random Forests. Approxi-

mate Computing.



Automação da Exploração do Espaço de Projeto de Arquiteturas VLSI

Aproximadas para Modelos de Aprendizado Baseados em Árvores de Baixa

Potência

RESUMO

A evolução da tecnologia CMOS tem levado a um aumento da capacidade computacional

de dispositivos eletrônicos, permitindo o processamento de aplicações complexas em pla-

taformas embarcadas. Um exemplo disso é o aumento de aplicações de aprendizado de

máquina (ML) processadas no dispositivo. Essas técnicas são eficientes para reconheci-

mento de padrões e predição, mas requerem muitos dados e operações para gerar modelos

eficientes. Assim, ao considerar dispositivos com limitações de bateria, como wearables,

modelos simples como os baseados em árvores podem ser mais adequados, dada sua

eficiência em potência/energia. Algoritmos de ML permitem a inserção de erros sem

necessariamente comprometerem a saída, tornando técnicas de computação aproximada

(AxC) alternativas promissoras para diminuir os custos energéticos dessas aplicações. O

problema que surge é que o uso de AxC combinado com a seleção do modelo aumenta

o número de parâmetros a serem considerados durante a exploração do espaço de projeto

(DSE). Essa tese propõe o uso de frameworks para gerar aceleradores VLSI de ML e fazer

a síntese automaticamente, para diferentes graus de aproximação, acelerando a DSE. Os

frameworks propostos mapeiam modelos de ML para HDL, utilizando técnicas de AxC

em diferentes camadas para atingir melhores economias de energia/área. A eficiência dos

frameworks propostos é verificada explorando arquiteturas VLSI aproximadas para árvo-

res de decisão (DT) e florestas randômicas (RF). Diferentes parâmetros foram testados,

como profundidade da árvore, número de árvores e nível de quantização, somando 1540

designs. Os outros frameworks propostos exploram técnicas de aproximação de compa-

radores e gate-level pruning nas DTs/RFs. Os modelos gerados pelo framework inicial

apresentam reduções de potência de 10× ou mais para a mesma vazão de inferência re-

portada em trabalhos anteriores. Os outros frameworks também obtiveram economias de

potência significativas comparados ao estado-da-arte. A principal contribuição dessa tese

é permitir uma DSE de modelos de ML automatizada, permitindo que projetistas façam

uma verificação mais precisa dos trade-offs envolvidos no processo.

Palavras-chave: Baixa Potência, Aprendizado de Máquina, Árvores de Decisão, Flores-

tas Randômicas, Computação Aproximada.
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1 INTRODUCTION

The recent advances in semiconductor technology, more specifically in Comple-

mentary Metal-Oxide Semiconductor (CMOS) devices, have been leading to significant

improvements in several types of applications. However, the CMOS evolution has also

led to an increase in the power density in several devices (DENNARD, 2015). This issue

has raised a problem denoted by designers as the Dark Silicon era (RAHMANI et al.,

2017), which states that, given the limitations of cooling technology, it is not possible

to have an entire device working simultaneously. In other words, some portions of the

chip will have to be eventually turned off while other parts are operating (SHAFIQUE;

HENKEL, 2015; KHDR et al., 2017).

These power and energy issues are even more serious when considering battery-

powered devices, e.g., smartphones and wearables, which are strongly correlated to the

Internet of Things (IoT). The miniaturization of such devices and the aforementioned ad-

vances in CMOS technology have allowed for the popularization of embedded systems

operating in several environments and created a tendency for performing operations lo-

cally instead of sending them to remote servers (which also leads to increased security).

Additionally, predictions from the GSM Association (ASSOCIATION, 2022) indicate

that smartphone internet users will account for 60% of the world population by 2025.

This popularization of embedded devices, allied with the increasing demands for more

complex computational applications and the tendency of computing locally, is creating an

urgency to take power dissipation and energy consumption into account. Therefore, it is

of utmost importance to create solutions to mitigate this issue.

Wearables are among the embedded devices that have been receiving significant

attention lately due to their capability of sensing and computing. Such devices are leading

to a transformation in fields such as healthcare, shifting from a hospital-centered system to

a person-centered one. Even though some smartphones can perform some sort of tracking

regarding motion, wearable devices perform these activities (and many others) much more

accurately.

According to Precedence Research (PRECEDENCE, 2022), the global wearable

market size was estimated at USD 121.7 billion in 2021, and is expected to represent

around USD 392.4 billion by 2030. The use of such wearable devices is allied to the

concepts of IoT and edge computing, the latter which indicates a shift from a cloud-

centered paradigm towards the extreme edge.
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An important factor that contributes to achieving low-power when dealing with

wearable and IoT applications is the fact that some of them do not require high frequencies

to operate. As it will be seen in Chapter 3, power dissipation is proportional to the operat-

ing frequency, which is the reason why low frequencies are strongly related to decreased

power dissipation, hence leading to low energy consumption. A thorough research was

performed for different models of wearable devices. Bauer et al. (BAUER; WUTZKE;

BAUERNHANSL, 2016) present frequencies of 20Hz and 200Hz for gyroscopes in Mo-

torola and Invensense smartwatches, respectively. Beukenhorst et al. (BEUKENHORST

et al., 2018) present a frequency value of 50Hz for the Huawei Watch 2 smartwatch.

Mortazavi et al. (MORTAZAVI et al., 2015) perform experiments in smartwatches for

posture tracking, using Samsung Gear smartwatch, considering sampling rates of 100Hz,

50Hz, and 10Hz. The Apple Developer documentation reports a limit of around 100Hz

for accelerometers in iOs devices1. Other sources have presented values never higher than

1kHz.

Despite the low frequencies required for wearable applications, power dissipation

is still a major issue. The limitations in battery life require the devices and applications

to be executed efficiently. Processor manufacturers have realized that some applications

are not efficiently executed using general-purpose processors (GPPs). This is due to in-

struction fetching and the additional hardware that would have to be present and might

not be useful if a specific application is being targeted. Due to the popularization of some

types of applications, such as machine learning (ML) and deep learning (DL), digital sig-

nal processing, video compression, etc., it has become viable to use dedicated hardware

architectures for them, given requirements such as throughput, power, and energy.

Along with other techniques, such as clock and data gating, designing dedicated

architectures is one of the main strategies to mitigate power, energy, and timing issues, as

they are designed solely for specific applications. Application-Specific Integrated Circuits

(ASICs) and Field-Programmable Gate Arrays (FPGAs) are platforms for implementing

such architectures. ASICs are designed for specific domains and represent the class of

circuits that contrast the most from software solutions running on GPPs. The use of FP-

GAs may represent a good balance standing between the spectrum of GPPs and ASICs.

However, when energy efficiency is the main design restriction to take into account, de-

signing architectures in ASICs for dedicated execution of certain key compute-intensive

algorithms is still the best approach (SCHMITZ; AL-HASHIMI; ELES, 2004).

1Available on: <https://developer.apple.com/documentation/coremotion/getting_raw_accelerometer_
events>

https://developer.apple.com/documentation/coremotion/getting_raw_accelerometer_events
https://developer.apple.com/documentation/coremotion/getting_raw_accelerometer_events
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ML and DL are types of applications that have been receiving significant attention

lately, and this has also motivated the development of novel and more complex algo-

rithms. GPPs are too power-hungry to execute these applications in an efficient manner.

In addition, they cannot fully explore the degree of parallelism present in most of them. In

order to mitigate these issues, such applications are executed in Graphics Processing Units

(GPUs), FPGAs, or ASICs (ZHANG et al., 2015). An example of this is the Apple A12

System-on-Chip (SoC), which contains a Neural Processing Unit (NPU) to accelerate the

inference of Neural Networks (NN) (FRUMUSANU, 2018).

The need for dedicated circuits for ML and DL (SZE et al., 2017) tends to increase

in the following years, given that more cases of successful prediction models are being

found. In particular, Deep Neural Networks (DNN) have been receiving the attention of

researchers due to their versatility and excellent performance. Efficient solutions based

on DNNs can be found in several applications, from the managing of web searches in data

centers to mechanisms of object and character recognition in portable devices (LECUN;

BENGIO; HINTON, 2015). However, recent works show that even efficient VLSI archi-

tectures present significant power dissipation. For example, the Eyeriss, an accelerator

for a Convolutional Neural Network (CNN), dissipates 278mW of power (CHEN et al.,

2017), which is unsuitable for many embedded platforms.

For simpler problems that do not require convolution or memory-based models,

traditional ML techniques represent an important alternative that requires less computing

resources. This is the case of tree-based models, such as Decision Trees (DT) and Random

Forests (RF). These models are composed of a series of feature-based splits that can be

implemented with comparators and basic logic functions. Consequently, tree-based mod-

els are simpler than NNs, as they do not require the use of multiply-accumulate (MAC)

or other more complex operators and mostly use comparators. This characteristic makes

DTs and RFs excellent candidates for applications with severe energy limitations.

In addition to employing simpler operators, other design techniques can be used

to further increase energy savings of ML designs. Approximate computing has recently

been employed to reduce the power consumption in applications that are resilient to a cer-

tain degree of error in their output (VENKATARAMANI et al., 2015), and it is present in

many applications for battery-powered devices (CHIPPA et al., 2013). Due to their prob-

abilistic nature, ML algorithms are well-suited for approximate computing approaches.

However, the effect of such approximations in the output quality must also be taken into

consideration. In that sense, circuit designers must choose the best model based on a
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power-accuracy trade-off analysis. As shown in (HAN; ORSHANSKY, 2013), approx-

imate arithmetic operators can be efficiently employed in operational blocks to achieve

different qualitative levels, according to the observation of a set of variables in the system

(HAN; ORSHANSKY, 2013), e.g., application being targeted, battery life available, etc.

Besides using approximate arithmetic operators, several other techniques of ap-

proximate computing can be performed in the design stack, each affecting performance

and design parameters (e.g., area, power, delay) to a certain degree. Quantization tech-

niques can be performed in the features to be analyzed, decreasing the size of the operators

within the architectures and potentially decreasing the bandwidth required by a memory

module fetching the data to the kernels. Other cross-layer approaches can also be per-

formed by modifying the algorithm at the software level so that the hardware underlying

it becomes simpler. Gate-level pruning is also a technique that has been receiving at-

tention lately, which focuses on pruning specific nodes from the netlist representation of

the RTL designs based on removal metrics (CASTRO-GODíNEZ et al., 2021). Applying

sub- or near-threshold syntheses may lead to more power-efficient kernels as well, insert-

ing errors in the modules. However, sub- and near-threshold analyses are out of the scope

of this thesis.

The enormous design space created by combining several approximation tech-

niques to ML models imposes a problem for designers. This is because verifying how

different approximations interact with each other in a hardware accelerator cannot be eas-

ily inferred, requiring RTL descriptions and syntheses to be performed for each scenario.

This leads to an unfeasible work for describing the VLSI accelerators, limiting the num-

ber of possibilities tested to find a model efficient enough to the needs of a designer. This

issue is amplified for tree-based models, which do not have as many tools available, as

they have not received as much attention as NNs.

1.1 Thesis Proposal and Goals

Given the considerations made previously, the claim presented in this thesis is that

design frameworks implemented to automate the generation of approximate computing

VLSI architectures can better explore the design space to achieve low-power in tree-based

ML models while incurring small or negligible losses of accuracy. In order to accomplish

this claim, the following goals were set:
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• Present a literature review on the foundations and current state-of-the-art in low-

power tree-based machine learning VLSI hardware architectures and approximate

computing to determine the most suitable techniques to be employed;

• Propose frameworks for automatic generation of tree-based machine learning VLSI

hardware architectures to ease the design space exploration and analyses of trade-

offs;

• Evaluate and explore the most suitable approximate techniques to be included in

the machine learning models generated in the frameworks;

• Provide sets of VLSI accelerators that can achieve efficient results in terms of

power-, energy-, and area-accuracy trade-offs, considering ASIC and FPGA plat-

forms and targeting applications related to embedded systems.

Several explorations have been made to support the thesis claim. The first focus

was developing a baseline framework to design tree-based models, given that these are

simple and popular ML methods. The framework has been developed to generate DT

and RF VLSI architectures, allowing the variation of several design parameters. This

framework enables the analysis of power-, energy- and area-accuracy trade-offs. This

framework was extended to include approximation methods (i) to quantize the input fea-

tures, (ii) to approximate the comparators of the tree (in both regular standard-cell and

MAJ-based DTs/RFs), and (iii) to apply both indiscriminate and hierarchical gate-level

pruning in the netlist representations. As a case study, data sets based on wearable de-

vices have been analyzed, but the trade-off analysis to search for the best models can be

easily adapted for any application by using the developed tools. Additional explorations

have been performed during the Ph.D. thesis development period that also use the base-

line framework, focusing on hardware security for error-tolerant circuits, but they are not

presented here, given that they are out of the scope of the thesis claims. Even so, this

shows the extensive usefulness of the developed framework even when power dissipation

is not the focus.

The contributions brought by this research work include:

• a set of frameworks to generate VLSI accelerators of tree-based inference models

in a fully parallel manner from raw data sets, including preprocessing, training,

translation, and synthesis stages, employing (i) quantization, (ii) approximations in

the comparators, and (iii) indiscriminate and hierarchical gate-level pruning;

• a dedicated and optimized translation method of the tree models to HDL descrip-
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tion, which provides for significantly reduced power dissipation in the VLSI is sig-

nificantly reduced;

• evaluation in terms of power-, energy-, and area-accuracy trade-offs of DT and RF

models of different complexities, with varying tree depth, number of trees, input

quantization, approximation of comparators, and gate-level pruning;

• a framework that performs approximations in tree-based accelerators applied to

MAJ-based circuits, focusing on emerging technologies.

Possible future work can opt to analyze other types of tree-based models, such as

XGBoost (CHEN; GUESTRIN, 2016). Alternatively, one can explore other ways of im-

plementing these DT/RF architectures, e.g., using a fixed kernel sequentially calculating

the inference through a fixed number of comparators.

1.2 Thesis Organization

This report is split into the DT/RF steps that involve power analyses and addi-

tional proposals related to tree-based models. This document is structured as follows:

Chapter 2 presents a detailed background on the main concepts regarding ML; Chapter

3 presents a background regarding VLSI design, focusing on power dissipation through-

out the abstraction layers, and approximate computing, detailing the main possibilities

of hardware approximations along the design stack; Chapter 4 details a review of state-

of-the-art works found in the literature that address similar topics regarding ML models

(focusing on hardware architectures for DTs and RFs), or generic approximate comput-

ing techniques; Chapter 5 describes the proposals, the frameworks developed, the gener-

ation of the architectures, and the approximation techniques employed, for both regular

standard-cell and MAJ-based circuits; Chapter 6 presents the power, energy, timing, area,

and accuracy results of the architectures implemented; Chapter 7 concludes the thesis

manuscript, by summarizing the contributions of the work, and highlighting the main

future paths that can be addressed.
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2 MACHINE LEARNING

Since the early days of computer science, researchers have wondered whether ma-

chines would be able to autonomously think (TURING, 1950), i.e., have intelligence and

perform tasks that could mimic human behavior. This approach is based on software that

could automate routine tasks, identify objects in images, understand speeches, perform

medical diagnoses, etc. (GOODFELLOW; BENGIO; COURVILLE, 2016). This concept

is denoted as Artificial Intelligence (AI). Even though the beginning of the field dates

way back from the 1950s, employing AI has only become significantly popular nowa-

days, given that semiconductor technology has evolved to a point where some proposals

are now feasible to be implemented to a certain degree.

Even though some applications that use AI are trivial to be executed by computers,

the major challenge is to attempt to solve tasks that the human mind could intuitively solve

but are not easily described as an algorithm (GOODFELLOW; BENGIO; COURVILLE,

2016). Therefore, achieving this intuition with AI would require additional research and

evolution of the technology, which was not yet possible when the concept was conceived.

A particular field of AI called machine learning (ML) has developed particularly

fast in the past few years. Figure 2.1 illustrates where ML stands within the AI coverage.

Figure 2.1: Venn Diagram presenting where ML stands w.r.t. the AI concept.
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AI can be best characterized nowadays as an umbrella term that encompasses

ML and many other approaches like heuristic search and genetic algorithms. In specific,

rule-based systems are AI applications that are outside the ML scope. DTs are classical

examples of ML systems and are one of the main focuses of this thesis within the broad
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AI field. DL models are mostly represented by CNNs and other types of NNs.

It is convenient to define the term learning for clarification purposes. According

to (MITCHELL, 1997), "A computer program is said to learn from experience E with

respect to some class of tasks T and performance measures P, if its performance at tasks

in T, as measured by P, improves with experience E".

The task T denotes the application that is being targeted, e.g., object detection.

Many tasks are referred to as classification, as they aim to label inputs into specific cat-

egories (classes). A well-known classification problem is the Breast Cancer Wisconsin

(STREET; WOLBERG; MANGASARIAN, 1993), which attempts to predict, based on

ten different features, whether a patient has benign or malignant breast cancer. Regression

tasks are another popular category in ML. Regression problems aim at finding a numerical

output, such as when predicting prices of houses given parameters such as size, location,

etc. Structured output, transcription, and clustering are also important tasks within the

ML field.

The experience E, with the learning process, can improve the performance P of

the algorithm. Experience can be obtained through different methods and is represented

by the data employed. Depending on the case, ML can be split into different categories,

which are presented as follows:

• Supervised Learning: this is the most popular approach. It is based on learning

through a set of features extracted from data, and each example of this feature set

includes an associated output label (AGGARWAL, 2015). These features can be

seen as characteristics of the input data that may be relevant to define the desired

output, either for classification or regression problems. Usually, for these problems,

part of the data set is used to train the model. With the training set, the ML model

learns the patterns and similarities with the data being used for training, along with

the knowledge of what class/value it is supposed to be. With that information, the

ML model is adjusted to be able to learn how to find out the class – or value, for

regression – when unseen sets of data come into play. Examples of supervised

learning problems are shown in Figure 2.2, in which a binary classification and

a regression problem are presented, considering specific features in each of them.

In the classification problem of Figure 2.2-a, two features are considered, and the

colors of each point represent their respective output label, provided by the data set,

and the red dotted line represents the solution found by the ML model to separate

the two classes. In the case of Figure 2.2-b, a regression problem with one feature



22

is presented, with its respective output value, which is a continuous value. In this

example, the red dotted line represents the function that the ML model represents

to infer the output values when different values for the feature are presented.

• Unsupervised Learning: this is based on attempting to learn similar patterns in

data sets that have no associated output labels. This is mainly used for: (i) clustering

purposes, to split data that can be similar to each other, allowing for categorization,

or (ii) anomaly detection, which is based on detecting rare events from a set of

inputs with little information about them. Unsupervised problems are beyond the

scope of this work; therefore, a more detailed background is not presented in this

report.

• Reinforcement Learning: this type of learning is based on concepts of trial and

error. The ML algorithm using reinforcement learning usually performs opera-

tions and learns from its previous actions, based on scoring, e.g., rewardings and

punishments. Popular examples of reinforcement learning are intelligent chess AI

machines that interact with the chessboard and attempt to calculate the best actions

to be performed based on a range of possibilities (SILVER et al., 2018). Reinforce-

ment learning is also out of the scope of this thesis.

Figure 2.2: Example of (a) classification and (b) regression problems for supervised learn-
ing methods.
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Lastly, the performance P is represented by a metric that can be used to evaluate

the efficiency of the model. It is important to evaluate the ML model on unseen data

(i.e., combinations of features that were not considered in the training process) to verify

whether the model has generalized well enough. It is convenient to have a test set available

whose data has not been used by the model prior to evaluation. The performance of the

model is usually defined by the accuracy, indicating the proportion of correct outputs.
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Several methods for measuring accuracy can be used, and their definitions highly depend

on the type of task being addressed. For simple classification tasks, for instance, the

accuracy is defined based on the number of correct classifications, determined by the

equivalence of the model output and the label defined in the test set.

2.1 Machine Learning Flow

In general, the use of ML follows the flow presented in Figure 2.3. Each of the

steps involved in this process is described below. This explanation focuses on supervised

learning problems, specifically for classification ones, as they are the focus of this thesis.

Figure 2.3: Generic flow applied to ML problems.
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Systems employing ML algorithms usually need to be fed with a considerable

amount of input data. The data which feeds ML algorithms usually come in a raw format.

Depending on the model employed, this data is not usually ready to be used as input for

the algorithm. Such data can be generated from sensors, for instance, which read values

from the environment in which they are inserted.

Thus, the raw data must be used in a preprocessing step to convert it to useful

information for the context in which it is being used, depending on the ML model, speci-

ficities of the framework being employed, etc. In this step, data remapping or quantization

can also be applied, depending on the limitations of the system.

The preprocessed data is utilized in a feature extraction process. This process can

usually be performed by manually extracting the features based on the own intuition of
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the designer of the data set or through features that are easily extractable. Features can

also be combined to create others, which may lead to better results in the model evaluation

step.

Before being used in the training process, the data can be split into training and

test sets, as mentioned. This is known as the hold-out method (AGGARWAL, 2015).

Usually, popular rules of thumb to be used when splitting data into train and test sets are

66.6%-33.3%, 80%-20%, and 90%-10%. It is up to the designer to be able to check which

split works best for a specific problem. A simple example for a data set of a supervised

problem with 10 samples is shown in Figure 2.4, where each line corresponds to one

sample, each gray square in a line denotes a different feature, and the output classes are

denoted in blue and green. In this case, the split chosen is 80%-20%.

Figure 2.4: Use of the hold-out method for a simple data set with 10 samples, and two
output classes.
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Alternatively, a cross-validation split can also be used. In this method, the data is

split into k different groups. Then, k − 1 of these split sets are used to train the model,

and the remaining group is used as a test set. This process occurs until every group has

been used as a test set.

The split of the data itself is also very important. Considering a classification

problem, if we split the data into two sets and the training set only contains data whose

output label indicates one specific class, the model will not learn when to output a differ-

ent one. Therefore, performing a split that has adequate proportions of the classifications

provided in the entire data set is important to guarantee greater robustness to the algo-

rithm. This method is referred to as stratified sampling (AGGARWAL, 2015), and is also

exemplified in Figure 2.4, given that both training and test sets contain half the samples

for each output class.

ML algorithms receive this set of features to perform the training process. The
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training stage only uses the training set and self-adjusts – by varying its own parameters,

considering limitations imposed by the programmer – finding relations between the dif-

ferent features, leading to a final trained model. It is desired that this model predicts the

correct outputs when sets of unseen data come into play.

The model is then evaluated using a performance metric, depending on the model

being employed. This evaluation is performed on the test set, given that it contains data

that was unseen for the model. For simple classification problems, for instance, we can

employ the 0/1 loss function (RUSSELL; NORVIG, 2009), as in Equation 2.1, where yi

and ŷi denote the predicted label and the correct one from the data set. Based on this

function, the accuracy can be defined as in Equation 2.2, in which n is the number of

samples of the test set.

L(ŷi, yi) =

1, if ŷi = yi

0, ŷi 6= yi

(2.1)

Acc =
1

n
·

n∑
i=1

L(ŷi, yi) (2.2)

Other important metrics for accuracy can be considered, such as precision and

recall (TING, 2010). Precision is defined as the proportion of true positives (predictions

that the ML model correctly classified) w.r.t. the total number of positives predicted by

the model. On the other hand, recall denotes the proportion of true positives w.r.t. the

number of instances that were supposed to be classified as positives. These two metrics

are defined in Equations 2.3 and 2.4, where Tp, Fp and Tn denote the true positives, false

positives, and true negatives, respectively.

Precision =
Tp

Tp + Fp

(2.3)

Recall =
Tp

Tp + Fn

(2.4)

Both precision and recall are out of the scope of this thesis, given that this would

increase the number of parameters when searching for better configurations.

It can also be convenient to apply model evaluation using the training data to verify

how the model performs on already seen data. Some problems arise when the algorithm

presents high accuracy with the training set but performs poorly on new data. This is

usually called overfitting. Alternatively, if the algorithm presents low accuracy on the
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training data, we have a case of underfitting.

After evaluating the model to verify whether it is acceptable for the accuracy levels

envisioned, the ML model can be deployed for further use on unseen data. Alternatively,

the algorithm can opt to perform feature extraction and training once again.

2.2 Machine Learning Techniques

This section addresses well-known ML techniques, which are employed in this

work to achieve the claims of the thesis. The focus is given to tree-based hardware archi-

tectures, since they are simple and hardware-friendly models.

2.2.1 Tree-based Methods

Decision Trees

A DT is a popular supervised learning method employed in both classification and

regression problems. They are formed by using features of a training set to obtain a model

that is made of comparisons, i.e., true or false decisions, between a feature and a constant

(defined in the training process). These nodes are denoted as decision nodes. DTs classify

the instances by sorting them from a root node to several leaf nodes (MITCHELL, 1997).

The goal of a DT is to correctly predict the outputs, defined by the leaf nodes through

the training process as well, when samples that may not have been tested yet are given as

inputs to the DT.

Figure 2.5-a illustrates a DT for a classification problem with 4 classes. Here, the

decision nodes are the ≤ (less than or equal to) comparisons, which always compare a

feature (indicated by featureX) with a constant (CX), and the leaf nodes, indicated by

the ellipses, represent the predicted class.

One of the main advantages of DTs is that they are more interpretable than other

models, such as NNs. Therefore, the model can be easily validated by a designer.

The training step for generating a DT can be performed in many different ways.

A popular algorithm used for generating DTs is the Classification and Regression Tree

(CART) (BREIMAN et al., 1984). CART works by splitting the train data into different

branches based on a measurement function. In order to determine the best class to be

split, DT implementations usually consider the Gini Impurity metric, which defines the
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probability of classifying a new random data incorrectly based on the existing distribution

of data in the training set. The Gini impurity is calculated as in Equation 2.5, where N is

the number of different classes and p(i) refers to the probability of an element being from

class i.

G =
N∑
i=1

p(i) · (1− p(i)) (2.5)

After defining the best feature to split data, CART performs the split, and the Gini

Impurity metric is applied once again for each of the features in the newly split data. The

algorithm may halt – stop splitting – when all the data samples have the same target value

or the samples in the current node are constant. Moreover, the split can be halted due to

limitations on the tree depth or other additional heuristics considered.

In DTs, the training stage is performed offline. Therefore, for this thesis, a software-

hardware approach is considered, in which the software is responsible for the training

stage (performed in a GPP running the algorithm), and the inference stage is executed

by the dedicated hardware accelerators generated in this thesis. This is employed given

that there is no apparent need for the training stage to be performed in a power-efficient

manner if we consider that it can be performed prior to the execution.

In some problems, it may be convenient to design architectures that are fully ded-

icated to a specific training process, with the comparisons explicitly programmed. This

is due to the fact that some applications will be permanently embedded in a device. On

the other hand, some other applications may require a DT model changing with time. In

this case, we require an architecture model that can adapt to the new sets of comparisons

being performed.

Hardware architectures for DTs can be employed using comparators, along with

’AND’ and ’OR’ chains (or multiplexers), as it will be shown in Section 5.1. This the-

sis employs DTs for classification problems only. More specifically, multi-classification

target variables are considered.

Random Forests

Random Forests (RF) are classifiers that consist of a large number of trees operat-

ing simultaneously (BREIMAN, 2001). RFs follow the assumption that a group of experts

(or models) making decisions will lead to better results on average compared with a single

tree. Given that each tree has its prediction, a voting method (e.g., majority voting) must
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be employed to define the final RF decision.

The training stage in a RF is done by randomly sampling a subset of the input

features used to train each tree. The number of features can be adjusted during training.

When designing circuits for RFs, in addition to all the DTs in the forest, the voter

that makes the final decision also needs to be considered. One simple and efficient solu-

tion is to use a majority voter, as depicted in Figure 2.5-b, but more complex alternatives

using weighted votes can also be considered (at the cost of more hardware resources).

Figure 2.5: Tree-based classifiers: (a) Decision Tree and (b) Random Forest.
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2.3 Chapter Summary

This chapter presented a detailed background of the main concepts related to AI,

focusing mostly on the ones that are related to this work the most. Therefore, concepts

related to ML models such as DTs and RFs were presented.

Such concepts will be required for a better understanding of the proposals in Chap-

ter 5.
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3 VLSI DESIGN

3.1 Power Dissipation in CMOS Integrated Circuits

Given that this thesis focuses on obtaining combinations between model config-

urations and approximate techniques with the best power dissipation vs. accuracy trade-

offs (besides area and energy reductions wrought by AxC), it is essential to provide a

basic background on power dissipation in CMOS circuits.

There are two main sources for power dissipation in CMOS circuits:

• Static Power (Pstatic): Dissipation due to leakage currents, even when the circuit

is in an idle state, with all circuit inputs at DC levels. Leakage currents in CMOS

technology are due to three factors: MOSFET transistors subthreshold currents,

reversely biased diodes off-state currents, and DC gate-to-channel or gate-to-drain

tunneling currents through ultra-thin (less than 2 nm) dielectrics (RABAEY, 1996).

Static power is given by Equation 3.1, where Istatic is the total static current drawn

from the circuit DC supply when adding all the DC currents mentioned above.

Pstatic = Istatic · Vdd (3.1)

• Dynamic Power (Pdynamic): This dissipation is a consequence of the switching

activity in a logic gate. Dynamic power in CMOS is composed of two portions: (i)

Pswitching, which is the power dissipated due to the capacitive loads at the output

of the gate, i.e., charging the load when logic state transitions from ’0’ to ’1’ and

discharging the load when a transition occurs from ’1’ to ’0’; and (ii) PSC , which

occurs when a direct current flows through a path from the voltage supply to ground

in a CMOS network. PSC occurs when a static CMOS circuit is switched on by an

input signal with rising and fall times different from zero, which leads to the PMOS

and NMOS transistors of both networks being active simultaneously for a short

period of time. This situation leads to the direct current flowing directly to ground.

Hence, Pdynamic is given by Equation 3.2.

Pdynamic = Pswitching + PSC (3.2)

Pswitching is presented in Equation 3.3, considering a load capacitance CL that will

be charged or discharged based on a change in the gate output. A denotes the output node
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activity, measured in events/second, and Vdd is the input source voltage. It may be more

convenient to use a probability value α, which represents the node activity factor, along

with the operating frequency f , given that most of the circuit nodes will not change at

every clock cycle.

Pswitching = CL · A · V 2
dd = α · f · CL · V 2

dd (3.3)

Most tools for measuring power consider α as a fixed value. This is employed

as a methodology for power extraction in many works, which does not lead to accurate

results, given that the input variations depend on the application for which the developed

architecture will be used.

Short-circuit power can be expressed by Equation 3.4, where ISC is the short-

circuit current, and β is a factor related to the input signal transition time to the cell peak

short-circuit current.

PSC ≈ VDD · ISC ·
τin
4
· 2f ≈ V 2

DD · f ·
CL

10
(3.4)

Taking the dynamic power Pdynamic – which is the sum of Pswitching and PSC –

and static power Pstatic into account, we can define the total power as in Equation 3.5.

Ptotal = Pdyn + Pstatic = Pswitching + PSC + Pstatic (3.5)

As presented by (RABAEY; PEDRAM, 1996), power dissipation can be mitigated

by applying different design techniques at several abstraction levels, as shown in Figure

3.1.

Figure 3.1: Design abstraction levels at which power dissipation can be optimized
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Source: Adapted from (RABAEY; PEDRAM, 1996)

These specific abstraction levels are described below.
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• System level: power dissipation can be mitigated at this level through techniques

such as partitioning and power states. Moreover, system-level approaches can bene-

fit from techniques of frequency- and voltage-scaling, which will lead to a decrease

in the power dissipation based on the equations presented above, and power gating,

which tends to turn some gates off during the execution. In particular, power gating

has been increasingly applied due to the increase in the power density, which led to

the Dark Silicon era (as aforementioned in Chapter 1).

• Algorithm level: at this level, power dissipation can be decreased through opti-

mizations in language, compiler (through optimization flags), concurrency, regular-

ity, locality, etc, when a software is running on an embedded system, for example.

• Architectural level: this consists of reducing power by changing the architectural

aspect, which can include: (i) paralellizing hardware functions to work at a de-

creased frequency; (ii) applying clock/power-gating to some units at a lower level

w.r.t. the system one, so as to mitigate the dissipation occurring from switching in

unused hardware modules; (iii) schemes for low-power data encoding.

• Circuit level: at this lower level, blocks can be optimized to focus on power, such

as arithmetic operators. Approximate computing can also be applied here, by im-

plementing efficient hardware, as long as the application is not compromised.

• Technology level: among the possibilities at this level, it denotes optimizations

coming from the technology scaling, which leads to differences in the models for

power dissipation, the technology employed itself, or from physical/device aspects

that can be enhanced to change aspects of the transistors, such as the change in the

threshold voltage through a change in doping concentration.

The scaling with respect to the technology node affects power dissipation in dif-

ferent ways. Given that the capacitances decrease due to smaller transistor sizes, there

is a consequent decrease in dynamic power dissipation. However, this reduction in the

capacitance can be accompanied by an increase in the operating frequency, which can

offset the capacitance reduction. Furthermore, static power dissipation tends to increase

due to factors such as sub-threshold leakage, which becomes more significant when the

node is smaller. Power density also tends to increase given that more transistors can fit

in the same area w.r.t. larger technology nodes. Therefore, in general, power dissipation

scales in a complex manner, involving trade-offs between several factors.
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3.2 Approximate Computing

Approximate computing has emerged as a promising design alternative that trades

exactness for reductions in the costs of either hardware or software (STANLEY-MARBELL

et al., 2020). Regarding hardware costs, which are the focus of this thesis, approximate

computing can bring significant reductions in VLSI circuit area, timing (reductions in the

critical path delay), and power dissipation, hence reducing the energy consumption (HAN;

ORSHANSKY, 2013; STANLEY-MARBELL et al., 2020). This is done by leveraging

the intrinsic error resilience of several applications, such as image processing (PAIM et

al., 2019; SOARES et al., 2019), video coding (PAIM et al., 2020), healthcare consumer

electronics (SEIDEL et al., 2021), and ML (ZERVAKIS et al., 2021; TASOULAS et al.,

2020).

Approximate computing is very popular in image and video compression, given

that the subjective characteristic of the human eye to the video content makes it intuitive

to apply approximate computing techniques. In that specific scenario, it is mostly a re-

quirement, given that a video without any kind of compression is usually unfeasible to

be transmitted or stored. The use of approximate computing techniques in ML models is

also really convenient due to their probabilistic nature.

The use of approximation is even more important when considering embedded

devices, e.g., smartphones and wearables. Given that the evolution of ML and DL al-

gorithms has led to more complex computations, and since they have been employed

in these battery-powered devices even more due to the tendency of performing comput-

ing at the extreme edge, using approximate techniques is of utmost importance to alle-

viate the effects that this increase in computation would have in the battery life of the

device. Therefore, designing approximate computing ML solutions has attracted signifi-

cant research interest (ZERVAKIS et al., 2021), and it has been applied in ML for signal

(BUSCHJÄGER; MORIK, 2018; PASHAEIFAR et al., 2019), image and video process-

ing (GRELLERT et al., 2019), and healthcare (CHANG et al., 2019), to name a few.

Several techniques can be used to achieve approximation, and they can be applied

in most levels of the design stack, from the software all the way to the netlist level. This

classification is based on the taxonomy from (PAGLIARI; PONCINO; MACII, 2016),

which is shown in Figure 3.2.

• Netlist Level: this level refers to transistor or gate-level approximations. Two main

techniques are found in the literature: (i) the use of approximate functional units,
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Figure 3.2: Approximate computing (AxC) techniques at different design abstraction lev-
els.
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Source: Adapted from (PAGLIARI; PONCINO; MACII, 2016)

such as approximate adders, multipliers, MAC operations, etc (GARG; PATEL;

DUTT, 2020; KIM et al., 2019; ZENDEGANI et al., 2017), and (ii) approximate

logic synthesis concepts, which is a more generic approximation regarding func-

tional units, but now applied to any gate-level circuit (PAGLIARI; PONCINO;

MACII, 2016). Within this context, gate-level pruning is a technique applied to

the netlist descriptions, which is generated after the logic synthesis steps from the

Register Transfer Level (RTL) model. The netlist contains the logic elements from

a standard-cells library along with a file describing the switching activity of each

gate (CASTRO-GODíNEZ et al., 2021). This technique allows for pruning the

nodes based on some metrics regarding the switching activity. The use of pruning

in the netlist level may lead to approximations that the other levels cannot achieve,

given that the designer usually does not have any control of what the synthesis tool

generated from the RTL descriptions. This technique is employed in this thesis.

Alternatively, approximations regarding sub/near-threshold computing can also be

applied at this level (SCHLACHTER; CAMUS; ENZ, 2015). This technique is re-

lated to transistors working at voltages closer to the threshold voltage Vth, in which

the circuit is not fully turned on. The reduction in power and energy leads to a dete-
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rioration of the robustness of the circuit against process/voltage/temperature (PVT)

variations. However, sub/near-threshold computing is out of the scope of this work.

• Algorithm Level: according to (PAGLIARI; PONCINO; MACII, 2016), this level

also includes architecture-level techniques, as there is not a well-defined distinction

between this level and the netlist level approximations. Voltage Over-Scaling can

be included at this level, as well as approximate behavioral synthesis. The latter

can include approximations in the RTL description, such as truncation of LSBs,

substitution of variable operators to constant ones, etc. This is also briefly employed

in the thesis through the use of comparators with the constants explicitly described,

leading to less costly hardwares w.r.t. generic comparators.

• Processor Level: this is mostly based on accepting errors due to temperature, pro-

cess variability, radiation, etc, by not using reliability methods in the entire proces-

sor. This leaves some portions without any sort of protection, leading to decreased

area and power.

• Software Level: this type of approximation refers to optimizations that can be

exploited by an operating system by relaxing correctness requirements, whether

by skipping computations due to limited budgets, or by relaxing synchronization

between threads to improve performance.

• Cross Level: they usually rely on the effects of combining approximation tech-

niques at different abstraction levels to obtain power and area savings. Dynamic

scheduling can also be applied, to change the approximation levels in different lay-

ers at runtime, based on budget requirements. Alternatively, some of the techniques

in this thesis are performed as cross level. For example, as it will be seen, remap-

ping and quantization were performed at a higher level before generating the RTL

descriptions, as an attempt to decrease hardware resources. The same will be seen

from the contribution regarding constant parameter approximation, as they were

adjusted expecting to achieve reductions in the underlying hardware in which they

will be implemented.

3.3 Chapter Summary

This chapter aimed at providing an overview of concepts related to power dissipa-

tion in CMOS circuits, presenting possibilities of mitigating power in several abstraction
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levels. It also presented a background on approximate computing, which is important to

understand the proposals and results obtained in this thesis. This background used the tax-

onomy from (PAGLIARI; PONCINO; MACII, 2016), and detailed the most well-known

approximate computing techniques throughout the design stack. More details are given to

some specific levels since they presented techniques related to the proposals of this thesis.
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4 RELATED WORK

For this thesis, extensive research has been performed to find related proposals in

the literature. This chapter will present and describe works regarding implemented VLSI

accelerators and analyses of ML models. The focus is given to tree-based methods, given

that they are simple, hardware-friendly, and popular models. More attention is given to

works that provide area, power dissipation, or energy consumption results, which are the

main focuses of this thesis.

4.1 Tree-based Models

The ML research in this thesis is mainly represented here by DTs, RFs, or other

tree-based methods. To compare the work developed in this thesis with other implemen-

tations of DTs and RFs, research on the literature had to be made. The comparisons made

in part of Chapter 6 are performed using the most similar works found in this section.

Most related works that were found in the literature that evaluate power dissipation

and energy consumption focus on NNs, due to their higher popularity and good accuracy

results for more complex problems such as face recognition. Despite that, there are works

that also make explorations on other tools such as DTs or RFs. Considering the reduced

circuit requirements of DTs/RFs, these methods are usually more suitable for low-power

environments, and it is important to have works performing analyses on these.

Yang et al. (YANG; BOLING; MASON, 2014) propose a DT-based spike classi-

fication system for neural recording implants. The proposed architecture dissipates 32nW

power per channel, using a clock frequency of 50kHz, considering eight channels. How-

ever, apparently, the data set used in their paper is no longer available for download and,

therefore, the work is not reproducible.

Buschjäger et al. (BUSCHJÄGER; MORIK, 2018) investigate implementations of

DT/RF considering models for Von-Neumann architectures and FPGAs. Power results are

presented for both an FPGA – which are compared to the work of this thesis in Section 6.3

– and an ARM processor for several tree models. Although the work performs compar-

isons between different models of DTs/RFs and presents power results, no data for VLSI

ASIC is presented, the input data switching activity for their data set is not considered,

and no model complexity variation (tree depth or number of trees) or approximation tech-

niques are applied. Additionally, even though the work performs comparisons between
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different models of DTs/RFs and presents power results, High-Level Synthesis (HLS) was

used to obtain the HDL architectures directly from the algorithm description, which is not

suitable to fulfill power-aware design requirements. Even so, the work was reproduced as

much as possible and is compared to the DTs/RFs from the proposed framework.

Kang et al. (KANG et al., 2018) implement an integrated circuit of a RF classifier

focused on traffic sign recognition and face recognition data sets. The chip presents power

results of 7.1mW. Despite the fact that this work only implements single models for the

RF classifiers (no analysis on the trade-offs for several parameters is performed), the work

was reproduced and is compared to the proposal in this thesis.

Tong et al. (TONG; QU; PRASANNA, 2017) present algorithms and architectures

using DTs for online traffic classification. However, this work is not focused on power-

efficient hardware architectures. Mitsunari et al. (MITSUNARI et al., 2018) propose

an architecture for a decision tree ensemble focused on object detection. Also, a task

scheduling algorithm is proposed in order to control the memory accesses to improve the

performance of the architecture. Even though the work considers the decision and leaf

nodes of the DTs, no approximations are performed. Wang et al. (WANG et al., 2019)

propose the use of deep neural DTs. These models take advantage of the characteristic of

automatic feature extraction of NNs and employ the obtained features in DT modules. The

works from Tong et al. (TONG; QU; PRASANNA, 2017), Mitsunari et al. (MITSUNARI

et al., 2018), and Wang et al. (WANG et al., 2019), do not provide any power reports.

Chang et al. (CHANG et al., 2019) presents a processor focused on automatic

sleep staging, using a NN-based DT for classification. The chip was prototyped using a

180nm CMOS process and dissipates 4.96µW of power. This work presents an interesting

co-design approach to optimize the algorithm and architecture of the model.

Shen et al. (SHEN et al., 2012) present an architecture that combines depth- and

breadth-first searches in a DT to reach the shortest path with reduced space. The archi-

tecture was synthesized to a 65nm CMOS standard cells library at 333MHz and achieved

a power consumption of 7.26mW. However, the architecture includes modules other than

the DT; hence, it is unfeasible to estimate the power dissipation of the DT to make a fair

comparison.

Ignatov et al. (IGNATOV; IGNATOV, 2017) proposes the use of decision streams,

which are more efficient manners of assembling a DT with better generalization. This

is given the fact that DTs have similar distributions in lower layers closer to the leaf

nodes. Hence, the tree becomes an acyclic graph, merging nodes that are statistically
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indistinguishable.

Zhao et al. (ZHAO; SUN; CHEN, 2018) proposes a discretization method for

floating-point values on DTs. The proposal is based on the fact that the memory re-

quirements for floating-point values are high; therefore, discretization, in this context, is

essential.

Kuehn and Manoli (KUEHN; MANOLI, 2018) propose an integration between

FPGA and ASIC to implement a DT model, so that ASIC can implement the parallel ar-

chitecture, whereas the FPGA can keep updating the model whenever it needs, generating

a reconfigurable architecture. However, no results for architectures are presented.

Baumgartner et al. (BAUMGARTNER; HUEMER; LUNGLMAYR, 2022) pro-

pose an efficient majority voter and applies it to a RF as a case study, for the MNIST

data set. The proposal achieves significantly better results in terms of classifications per

second when compared to other state-of-the-art accelerators, despite presenting decrease

accuracy given that the related work used SVMs and NNs. However, the results con-

sidering the entire RF module using the proposed majority employs pipeline techniques,

and the main focus here is on obtaining increased throughput, and not on finding good

trade-offs between power and accuracy.

Bartels et al. (BARTELS et al., 2021) present a setup with hardware and software

for training and inference for classifying cow behavior using a DT. An 8-bit quantization

is applied in the features, and a power of 216µW was obtained. Besides the DT module, a

feature extraction stage is implemented in hardware as well, making it difficult to estimate

the power of the DT. Moreover, the work does not perform any exploration on different

models, no information is provided on the exact algorithm used for training, and on the

tree depth considered. Also, the exact data set could not be obtained.

Ajirlou et al. (AJIRLOU; PARTIN-VAISBAND, 2022) propose the use of a RF

classifier to dynamically adjust the clock frequency of a MIPS processor, based on in-

struction information. The proposal consists on employing the accelerator as a pipeline

stage of the MIPS implementation. The work presents some variations in tree depth and

number of trees, but no approximate computing techniques are mentioned. Moreover, the

power estimations and overheads considered the entire MIPS processor and all its stages

(fetching, decoding, execution, memory, and write back), so estimating the cost of the

analyzed RF accelerator is unfeasible.

Silva et al. (SILVA; GRELLERT; MEINHARDT, 2022) propose the use of ap-

proximate comparators in DT models. Proposals of comparators fully dedicated or based
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on subtractors were analyzed and, for both models, approximate versions were proposed.

Quantization was also performed in the data sets, and the training algorithm applied was

the C5.0. However, it was not clear how the DT models were designed in hardware, or if

the power/energy results are only a brief estimation based on the number of comparators.

Also, no automatic generation of the models was presented, which makes it difficult to

perform a broader evaluation. Even so, reductions in energy without much impact in the

accuracy were obtained with some of the approximate models.

Shih et al. (SHIH; CHIU; WU, 2023) implement a DT with online training and in-

ference in the same ASIC chip. The inference portion performs a technique of double-root

DT, which leads to a speedup when compared to the approach denoted as Single Module

Per Level (SMpL). The approach uses pipeline schemes to accelerate the process, tak-

ing the online training into consideration. The ASIC implementation considers a TSMC

40nm technology with multi-Vt. The power reported is 73.7mW, but this implementation

considers both the online training and inference stages simultaneously operating.

Daghero et al. (DAGHERO et al., 2021) present an adaptive RF model, for a

RISC-V microcontroller. The approach is based on dynamically deciding to early-stop

the inference of the weaker trees that compose the RF when a high-enough classification

confidence is obtained. In this case, the proposal can stop either based on thresholds of

maximum energy or minimum accuracy. The work manages to achieve energy reductions

of up to 90% while incurring in accuracy drops of about 0.5%, for the data sets analyzed.

Some works that focus on DTs or other similar tree-based models have been pro-

posed focusing on wearable domains, such as (SONG et al., 2019; GAURA; KEMP;

BRUSEY, 2013; KIM et al., 2020; MIAO et al., 2019; WANG et al., 2017). However,

these works also do not present explicit power results.

Tree-based models have been employed in several other scenarios, which proves

their usability even though NNs have been receiving increased attention. Some examples

are the application of DTs for identifying performance bottlenecks in GPUs (ZHENG;

HU; JIN, 2018), energy consumption forecasting (AL-GUNAID et al., 2016), color filter-

ing (TUSOR et al., 2015), packet classification (KITAMURA et al., 2015), LTE and Wifi

systems (CAI et al., 2016), etc.

Even though the DT/RF proposals of this thesis involve the use of generic frame-

works that can operate in any data set, the tools were tested using case studies focused

on wearable devices or similar embedded-related environments. Most of the analysis pre-

sented in this report involves the use of four data sets: activities, accelAdl, wearable,
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and wireless. The papers focused on these four data sets are shown in Section 6.1, in

which the characteristics of each of these data sets are described and detailed. Hence, this

explanation of related works based on these data sets is not presented in this section.

Table 4.1 summarizes the characteristics of the related papers in the current liter-

ature that focus on DTs, RFs, or other tree-based methods, in the context of this thesis.

None of the works listed propose any method of automatically generating tree-based hard-

ware descriptions from software structures, which is one of the contributions of this thesis.

Therefore, design space explorations (with the variation of approximate techniques, tree

depth, number of trees, etc) cannot be easily made with the related works. Additionally,

every work presenting power results does not mention the use of an accurate hardware

switching activity estimated from the actual data set considered. This is important when

we are focusing on power-aware accelerators, given that the switching activity of the

data being fetched to the architecture significantly influences its power dissipation. Some

works also employ training inputs not directly available and, although some works can

be reproduced performing feature extraction, others cannot be reproduced due to lack of

details in their papers. This is specifically detailed in the "Features Obtainable?" column.

The feature extraction was only attempted for the works that presented power results, in

order to perform hardware comparisons.

Table 4.1: Main characteristics of prior related works regarding DTs, RFs and other tree-
based methods.

Decision Dedicated Automatic Approx. Power FeaturesWork
Tool Hardware Generation Techniques

ASIC
Results Obtainable?

(SHEN et al., 2012) DT
(YANG; BOLING; MASON, 2014) DT
(TONG; QU; PRASANNA, 2017) DT

(IGNATOV; IGNATOV, 2017) Decision Stream/DT
(SHARMA; SHEWANDAGN; BHUKYA, 2017) DT N/A

(BUSCHJÄGER; MORIK, 2018) DT/RF ≈
(KANG et al., 2018) RF

(ZHAO; SUN; CHEN, 2018) DT
(KUEHN; MANOLI, 2018) DT N/A
(MITSUNARI et al., 2018) DT N/A

(WANG et al., 2019) Deep Neural DT
(CHANG et al., 2019) NN-based DT

(BARTELS et al., 2021) DT ≈ N/A
(KANANI; VAIDYA; AGARWAL, 2021) Gradient Boosting ≈ ≈

(DAGHERO et al., 2021) RF
(BAUMGARTNER; HUEMER; LUNGLMAYR, 2022) RF ≈

(AJIRLOU; PARTIN-VAISBAND, 2022) RF ≈ N/A
(SILVA; GRELLERT; MEINHARDT, 2022) DT

(KARN; ELFADEL, 2022) DT
(CHOUDHURY; AHAMED; GUHA, 2023) DT (learning) ≈

(SHIH; CHIU; WU, 2023) DT ≈
(SLIMANI et al., 2023) RF ≈

This Thesis DT/RF
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4.2 Chapter Summary

This chapter presented the most relevant works found during the literature research

performed for this thesis, based on the goals that were set. This research was performed

to verify where the state-of-the-art is, in several aspects, regarding VLSI design for ML

(focusing on tree-based models) models. Even though several works found are focused

on the models used in this thesis, i.e. DTs and RFs, not all of them can be replicated

to perform fair comparisons, given that some data sets are unavailable or some details

regarding the hyperparameters are not presented. Some works that include approximate

computing solutions for tree-based models (mainly DTs and RFs) were also researched.

Mostly, the approximations found consist in applying quantization to the data, which is

the first technique employed in the proposals, as it will be seen in Chapter 5.
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5 PROPOSED DESIGN TECHNIQUES FOR AUTOMATED EXPLORATIONS ON

TREE-BASED VLSI ARCHITECTURES

5.1 A Framework for Designing Tree-based RTL Models

The first part of this thesis aims at implementing hardware architectures for DTs

and RFs by developing a framework. Given the potential of these simpler solutions on

battery-powered systems and the lack of detailed works in the literature regarding the

analysis of these ML methods in terms of power and energy efficiency, it was decided that

working on solutions for DTs and RFs would be the focus. The framework implemented

in this thesis can be easily adapted to other tree-based methods. This proposal, consider-

ing only DTs, was published in (ABREU; GRELLERT; BAMPI, 2020), and its extension

including RFs and additional analyses was published in (ABREU; GRELLERT; BAMPI,

2022). This framework was also released as an open-source contribution1.

In order to justify the research for a low-power context, the focus was on data

sets that are related to scenarios that could be found in embedded devices. Therefore, the

primary goal was to analyze the power and energy efficiency of DTs and RFs in data sets

related to wearable devices.

The Scikit-learn (SK) (PEDREGOSA et al., 2011) library from Python contains

methods for modeling DTs and RFs, namely DecisionTreeClassifier and RandomForest-

Classifier. These are well-known solutions in data science: along with methods that

enable the manipulation of the data sets, such as the train_test_split function, a designer

can easily train these ML models with their own set.

The DecisionTreeClassifier method allows for the variation of the maximum tree

depth of the DT. As stated in Section 2.2.1, this limitation early-terminates the splitting

process that was being performed through the calculation of the Gini index (or entropy).

This is useful when such a deep tree is not required, given that it may lead to increased

execution time and complexity for the training and inference processes. The Random-

ForestClassifier method, besides also supporting the limitation of the tree depth of every

DT, allows the designer to choose the number of estimators (trees) required for the model.

This leads to more trees being calculated in parallel, which may result in increased accu-

racy, given that the number of voters deciding for the final outcome is higher. However,

this also results in more time to execute the inference, as well as increased complexity.

1Available on: <https://github.com/Brunno815/Framework_DTRF>

https://github.com/Brunno815/Framework_DTRF
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Additionally, limiting both maximum tree depth and number of trees may be ben-

eficial, given that it may decrease the overfitting aspect of the models. For example, a DT

with an unlimited depth may split the data based on excessive specificities, which may

lead to incorrect predictions when the test set is being analyzed. The same analogy may

be applied to the number of trees in a RF: given that many weaker voters are instantiated,

they can be responsible for making a wrong prediction that a RF with fewer voters would

not make.

Despite the high support for the variation of parameters, SK does not support an

analysis on any kind of hardware architectures for DTs or RFs, given that the library is

intended for software purposes. Therefore, no precise power analysis can be performed

using only SK. At the same time, if we desire a detailed trade-off analysis including

parameters such as power, area, and accuracy, for each data set, manually describing

hardware architectures for each different scenario would be unfeasible. For such an ex-

tensive analysis to be conceived, creating a dedicated design automation framework that

generates the hardware architectures for the DT and RF models, based on the SK struc-

tures, is required. Even though solutions such as HLS are becoming popular as well when

it comes to automatically generating RTL descriptions based on a software code, these

tools are still not useful enough when power-efficient scenarios come into play. Also,

HLS only focuses on generating one single RTL model for each high-level description.

As it will be seen, the framework developed here can generate several models at once and

perform a broad design space exploration; hence, this work does not directly compare

with HLS.

The goal of this tool is to output RTL descriptions, in HDL format, of the tree-

based models (equivalent to their software descriptions), along with testbench files that

read data from the respective data set for which the hardware was described. These test-

benches are used in the simulation process to obtain the switching activity, so that the

synthesis can provide accurate power results. The power estimation methodology will be

detailed in Section 6.2. Additionally, a debugging environment was created in order to

assess the correctness of the described architectures.

For this specific framework, the architectures were developed as dedicated as pos-

sible (i.e., the constants of the models were all hard coded) and described specifically for

each data set analyzed. Therefore, the tool generates an architecture that is the unrolled

version of the DT or RF. As an example for a DT, it may be convenient to visualize its

software structure as a function with a chain of if-else operations. This is presented in
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Algorithm 1, for a structure with a tree depth of 2, with three output classes. The RF

structures are simply composed of several of these DTs with a voter.

Function dt(feat0, feat1, feat2):

if feat0 ≤ cte0 then

if feat1 ≤ cte1 then

return 0;

else

return 1;

end

else

if feat2 ≤ cte2 then

return 2;

else

return 1;

end

end

return
Algorithm 1: Example code for a DT.

The HDL architectures are generated from these structures. It may be intuitive to

associate each if-else comparison with hardware comparators, which are easily described

in hardware language. The paths leading to each result can be described by ’AND’ and

’OR’ gates. Even though the paths could be described by a chain of multiplexers, pre-

liminary analyses did not present significant differences in the power results. The voting

operation in the RF can be described by some variant of a majority gate, or a chain of

comparisons between the final sums of votes for each class. These considerations will be

detailed later. Additionally, quantization techniques are employed in the features, so that

the width of the comparators can be decreased when describing the hardware accelerators.

This work can be better visualized through a design flow that was created. The

process flow employed in this work is summarized in Figure 5.1. Each part is explained

in the following sub-sections. This flow was also used as a baseline for the other two

proposals performed in this thesis, presented in Sections 5.2 and 5.3.
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Figure 5.1: Processing flow of the framework that generates tree-based accelerators, em-
ployed to analyze the trade-offs of the models.
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5.1.1 Preprocessing

In order to ensure a generalist approach, features are expected to be in the floating-

point precision format, given that this is the case in many practical scenarios. Therefore,

even though some data sets may contain features with integer values only, the most generic

type for them are floating-point. These features can be described using the IEEE Standard

for Floating-Point Arithmetic (IEEE, 2008), which defines arithmetic formats, rules, oper-

ations, etc., so that the operators can be portable between application domains. However,

this work is focused on power-aware approaches, and using IEEE 754-compliant Floating

Point Units (FPU) would require hardware resources too power-hungry for the goals of

this thesis. For this reason, fixed-point units are employed in the proposed designs.

The first step of the design flow is to scale the features to 0-1 ranges. This is done

to standardize the features coming from the data sets. This remapping is performed as

shown in Equation 5.1, where X denotes the value of the feature, Xmin and Xmax refer to

the maximum and minimum value of the same feature in the data set.

Xt =
X −Xmin

Xmax −Xmin

(5.1)

Then, the values of each feature f are quantized so that they correspond to the
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maximum input width of the inference kernel (Maxwidth), as shown in Equation 5.2. The

value for Maxwidth defines the quantization level.

Given that some features present very few different values between them, we

would waste an unnecessary amount of bits if we defined the same Maxwidth value for

these features as well. For this reason, it was defined that features with less than 20

unique values (defined by Nvalues) were deemed categorical and thus limited to the re-

quired amount of bits for them. This was applied by analyzing the features from the

datasets and observing that features with more than 20 different values mostly had several

values, whether from being integer values or floating-point ones. In some cases, features

that presented few values are related to the gender of the user, or some other categorical

context. Therefore, less bits were applied to these features. As an example, if a feature

presents only 14 different values throughout the whole data set, we would only require 4

bits, according to Equation 5.2 (first condition).

Nbitsf =

dlog2Nvaluesfe, if Nvaluesf ≤ 20

Maxwidth, otherwise,
(5.2)

It is important to notice that this value of 20, as presented in Equation 5.2, can

also be generalized. However, including this variable to the work would scale the number

of required analyses and syntheses even more. Therefore, changing the threshold below

which features are deemed categorical is out of the scope of the thesis.

Then, the features are simply scaled back based on the value of Nvalues. This is

performed by multiplying the scaled feature (with the 0-1 range) to the power of 2 of the

value of Maxwidth, as in Equation 5.3.

Xnew =
⌊
Xt · 2(Maxwidth)

⌋
(5.3)

With the Xnew values for the features, FPUs are not required. Given that the

accuracy results can be obtained with SK independently from the hardware architectures,

it is possible to assess the impact of the quantization step by calculating the accuracies

with the precise (unquantized) data sets and with the quantized ones.

In order to estimate the accuracy results, this framework considers the hold-out

method, i.e., the data set is split into training and test sets. For this work, the split used

was 66% for the training set and 33% for the test set. It is important to notice that a

validation set is not required in this case, given that fine-tuning the weights/parameters
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does not apply for a DT/RF, as the algorithms employed fix the constants with the iterative

splits of the training set. This split was done with the train_test_split method from the SK

library, which yields the training and test set separately. This method also stratifies the

data set, maintaining the same proportions of outputs in each training and test set in order

to keep a balance on the predictions.

5.1.2 Training and Accuracy Evaluation

With the training and test sets obtained, the DecisionTreeClassifier method is ap-

plied to generate the classifier structures. For the DT, the splitting metric considered was

the Gini impurity metric. Even though the entropy metric was also available, both yielded

very similar results. Preliminary tests were performed with both metrics, and they pre-

sented negligible differences between each other. For that reason, the default parameter

(Gini) was maintained. The only parameter that was varied was the max_depth. To ensure

reproducibility, the seed was maintained to a value of 0.

The leaf nodes of each DT in the SK library define the number of instances of

each output class that remained after the last split. Figure 5.2 shows an example of a

leaf node of a generic DT, with two classifications. In this case, the result of the output

is the class with the most representation in that split. This is trivial when we denote the

use of a single DT, as we can ignore these weights when designing the accelerator and

only set the final output as the highest one. However, when it comes to the RFs, when

using RandomForestClassifier, these weights are taken into account, given that the final

decision – after the voter – considers the sum of the weights of each class in each DT

operating simultaneously. Therefore, a weighted sum has to be taken into account.

Figure 5.2: Leaf node example in a DT from SK.

Given that it is not desirable to use a large number of adders as the focus is on

low-power accelerators, it was decided to implement a dedicated RF method using several

DecisionTreeClassifier structures, so there could be full control on how to implement the

voter. For simplicity purposes, it was decided to implement it by solely considering the

final decision of each DT, and sum these preliminary decisions for each output class –



48

note that this sum is much cheaper in terms of hardware resources, as it does not take into

account the proportions of each class like they were presented in Figure 5.2. In case of a

draw, the lowest index is chosen as the final decision.

In order to generate different DTs to assemble the RF, a subset of the features

is considered, which is equal to the difference between the total number of features and

the square root (truncated) of the total number. With this set of features, the Decision-

TreeClassifier structure is applied. This step is performed for each DT required in the

RF.

The process to execute the inference stage of the DTs and RFs uses the predict

method of the SK library. Three different approaches are calculated for the analysis with

this framework: (i) training and testing with precise data sets, (ii) training with precise

data set and testing with quantized data set, and (iii) training and testing with quantized

data sets. The first one is useful to consider how much the use of quantization loses

in terms of accuracy when compared to an implementation using FPUs, and the third

one was effectively employed in the architectures. The second one was theoretically

calculated to estimate whether training with different but similar data domains could lead

to good accuracy results as well.

The accuracies are calculated using the accuracy_score method, which simply

takes the labels from the test set and the predicted values – obtained from the predict

method – and compares them, yielding an accuracy.

5.1.3 Tree-to-VHDL translation

In order to automate the process and allow for a wide variety of DT and RF ker-

nels, a tree-to-VHDL algorithm was also proposed and implemented in this stage. This

algorithm receives the Python structure from the SK library – either a unique Decision-

TreeClassifier or an ensemble of them, for the RF – and translates it into an RTL descrip-

tion in VHDL language. The goal of this stage is to output a module that receives the set

of features as an input and yields the decision in the output.

As previously mentioned, DTs are composed of comparators that perform the ≤

(less than or equal to) operation between a feature and the constant defined by the model.

This is performed as in Algorithm 2, with the use of processes.

The comparators are the main building blocks of the generated architectures. The

translator runs through every node in the structure to find every comparison being per-
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process(feat0, cte0):
if (feat0 <= cte0) then

cmp <=′ 1′;
else

cmp <=′ 0′;
end

return
Algorithm 2: Process that performs the comparison in HDL.

formed. Note that it may be the case that the structure presents the same comparison in

two parts of a DT. More likely, the different DTs of a RF structure may present redundant

comparisons as well. Therefore, it is important to obtain the unique comparisons of the

structure so that no redundant hardware is instantiated. The recursion performed to obtain

the comparisons of a single DT is shown in Algorithm 3.

Function getComparisons(tree, featName):
tree_ = tree.tree_;
comparisons = [ ];
Function recurse(node):

if tree_.feature[node] 6= _tree.LEAF then
name = featName[node];
thr = tree_.threshold[node];
if [name, thr] 6⊂ comparisons then

comparisons.append([name, thr]);
end
recurse(tree_.children_left[node]);
recurse(tree_.children_right[node]);

end
return
recurse(0);
return comparisons;

return
Algorithm 3: Function that obtains the comparisons.

This process is performed once when the structure is only a DT, and for each DT

when it is a RF. After this, the list is obtained by appending every list of comparisons, and

the repeated values are removed.

The second step is responsible for creating boolean expressions that lead to each

classification. The literals of each expression are within the n unique comparisons, which

are named c0, c1, ..., cn−1. To do that, the algorithm recursively runs through the DT

(or ensemble of DTs) once again, for each classification. Then, it recursively considers

every comparison all the way down to the leaf nodes, creating AND expressions for each
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path from the root to the leaf node. The paths that lead to the same classification are

merged through an OR operation. Given that the conditions are exclusive, there can be

separate expressions for each of the classifications, as they will never lead to a ′1′ logic

value simultaneously. For example, for a multi-classification problem with 4 different

classes, the algorithm runs through the structure for each class to obtain these expressions.

Algorithm 4 shows an example of obtaining the expression for a single classification

within a DT.

Function getExpr(tree, featName, outIdx):
tree_ = tree.tree_;
ors = [ ];
Function recurse(node, expr):

if tree_.feature[node] 6= _tree.LEAF then
name = featName[node];
thr = tree_.threshold[node];
exprLeft = expr + [[name, thr, TRUE]];
exprRight = expr + [[name, thr, FALSE]];
recurse(tree_.children_left[node], exprLeft);
recurse(tree_.children_right[node], exprRight);

else
if argmax(tree_.value[node]) == outIdx then

ors.append(expr);
end

end
recurse(0, [ ]);
return ors;

Algorithm 4: Function that obtains the expression for a single class in a DT.

For the specific scenario that the problem is a binary classification one, obtaining

the expressions may be performed differently. In this case, only the expression for the

cases that lead to one of the classes have to be obtained. Otherwise, the expression will

be a zero, in which case the correct class is the remaining one. We can consider one

output for this binary classification problem, and it becomes either a one or a zero. If this

pattern was maintained, encoding all the outputs in a binary way would be required when

the problem was a multi-classification one, because this solution of one single expression

does not work for more than two classes. Therefore, it was decided that the number of

outputs for a multi-classification problem would be the same as the number of classes.

Hence, there is one explicit expression per class obtained in the recursion of the DTs.

After this process, the framework obtains one expression per class, in the more

generic scenario. This expression can contain redundancies and can likely be simplified
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or optimized. This may happen in any case where the two children in a comparison node

lead to the same classification. In this case, the recursion will go through the whole

expression for the true side and for the false one. This can be exemplified with the

portion of the DT shown in Figure 5.3.

Figure 5.3: Portion of a DT whose children of a decision node lead to the same classifi-
cation, indicating a possibility for simplification.

feat_0 ≤ 150.5
gini = 0.4043
samples = 64

value = [18, 46]

gini = 0.1723
samples = 21
value = [2, 19]

gini = 0.4673
samples = 43

value = [16, 27]

...

In Figure 5.3, the comparison is performed from feat_0 and the value 150.5.

In this case, when the training algorithm is applied to split the data set and define the

comparisons (using the gini metric), 64 samples are left in this portion of the tree. The

parameter value indicates how many samples from each different class are left in this

node. In this case, a binary problem is presented. When splitting the tree even further, two

nodes are defined, which are leaf nodes. In the leaf nodes, the class with the most samples

is defined as the final decision. In this situation, no matter the result of the comparison

between feat_0 and the constant 150.5, the result will always lead to the second class,

given that it has the most instances in both leaf nodes.

To simplify the expressions, the Python Boolean library (KRAMER, 2009) was

employed. This library contains the simplify method that performs the simplification of

the expression, and it was applied for this case. There are specific scenarios where a

feature appearing in a tree may not even be required in the architecture if it is only used

as a comparison where both children lead to the same class. Therefore, simplifying the

expressions may even lead to reduced required bandwidth.

After the expressions are obtained, the last stage performs the mapping between

comparisons and paths to the VHDL description. The comparisons were mapped to the
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aforementioned process, in Algorithm 2. The mapping of the expressions uses AND/OR

gates, as previously detailed. Additionally, the features are all registered in the inputs, so

these specificities must be taken into account as well.

In the specific scenario of a RF, the voter also needs to be mapped. This has to be

done with the use of adders that will keep track of the sum of the preliminary decisions

of each class, considering all DTs. This is performed with a tree of small adders for each

class. It is left for the optimization process to map this to the elements of the standard-cell

library in an efficient manner.

Figure 5.4 illustrates part of a generic DT architecture generated by this trans-

lator. Only a single classification output is shown, but there will be several AND/OR

combinations similar to the one shown, for each output label. The constants were defined

in the training stage, and the comparisons and paths were obtained in the stages of the

translation.

Figure 5.4: Illustration of an architecture generated by the tree-to-VHDL translator, with
5 features.
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The architectures only consider input and output registers; therefore, no pipeline

is applied. This design decision is warranted by the fact that the focus is on power-aware

scenarios, not targeting high frequency. Inserting many pipeline registers would lead to

higher power dissipation. Additionally, even though using pipeline could allow us to

synthesize the architectures to higher frequencies, this is not necessarily needed when

considering simpler AI tasks such as the ones in wearable devices (as will be presented in

Section 6.1). Therefore, exploring various levels of pipeline is not aligned with the scope

of this current work.

Figure 5.5 shows a RF accelerator generated by the translator, considering a sce-
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nario with three labels. The constants (represented by c0 to c3 in Figure 5.5) were defined

by the training stage, with Scikit-learn, and the comparisons and paths were obtained in

the stages of the translation.

Figure 5.5: Block-diagram of a RF architecture generated by the VHDL translator.
Features
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The case studies for this proposal are wearable devices. However, the translation

methods can be performed for any kind of data set that is explicitly separated in features.

5.1.3.1 Testbench Generation

The testbenches are required to perform the simulation that will obtain the switch-

ing activity of the circuits. These testbenches were also automatically generated to ac-

count for the different data sets evaluated and for the different sets of inputs depending on

the features that are required by the architecture. These files simply read the input files
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from the entire data set.

It is important to notice that, even though the test set is used to obtain the accuracy

results (so that the performance of the model can be verified considering unseen data),

the testbenches read the entire data set. This is due to the fact that it is desirable to have

as much data as possible to infer the switching activity, and some data sets would not

be large enough to reliably provide that if only the test set was used. This is acceptable

because the model was not built as a function of the power dissipation or the switching

activity itself, so estimating the activity through these data would not bias any result.

5.1.3.2 Validation Environment

Once the translation is performed, all the DTs and RFs considered in this work are

tested in a validation environment, which runs the hardware descriptions and the Scikit-

learn predict method to determine the correctness of each one, for a sub-set of lines

of each data set employed. After the correctness of each configuration is verified, the

synthesis and execution steps are ready to be executed. Also, given that the solutions

were validated in this step, the accuracy results can be obtained from the Scikit-learn

methods, as they are equivalent to the result from the RTL description. Additionally, the

accuracy results for the precise models were obtained as well, to perform a comparison

and verify the impacts of applying quantization to the architectures.

5.1.3.3 Synthesis and Simulation

The last part of the flow synthesizes the RTLs generated by the translation step.

This process generates a netlist with specific gates from the chosen standard-cells library.

This netlist is then used in the simulation process, to generate Toggle Count Format (TCF)

files, which are useful to obtain information on the switching activity for the data-driven

power analysis. Then, the desired results are obtained. This process is presented with

more details in Section 6.2.

5.2 Complexity-aware Constant Parameter Approximation

This proposal analyzes a custom method developed in this thesis to approximate

the comparators in tree-based models, denoted as Complexity-aware Constant Parameter

Approximation (C2PAx). Figure 5.6 presents a general motivation for the proposal. All
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Figure 5.6: (a) RF block diagram with 3 trees, each containing comparators, decision
paths, and a voter; (b) Power dissipation per block type in a RF accelerator; (c) normalized
area of comparators for different constants.
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the analyses in this proposal only consider the use of RFs instead of DTs, given that RFs

are composed of several trees and can be seen as a more generic scenario. This work

was accepted and is already published at IEEE Transactions on Circuits and Systems - I

(ABREU et al., 2022).

As considered in the previous proposal from Section 5.1, one can opt to implement

RF accelerators as dedicated as possible, describing the comparators with the constants

explicitly defined. In this case, the logic synthesis tool can optimize its comparator oper-

ator to work only for that specific constant.

In Figure 5.6-a, a generic RF accelerator is presented. RFs are composed of three

elements: (i) comparisons by constants (in pink), whose values are computed in the train-

ing stage, (ii) decision branches, implemented with multiplexers or AND/OR chains, and
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(iii) majority (MAJ) gates. As it can be seen, RF accelerators are hardware-friendly mod-

els, without complex arithmetic operations. Even so, there is significant room for opti-

mization in tree-based accelerators regarding energy efficiency.

The comparator units are the most power-consuming components of tree-based ac-

celerators, accounting for more than 65% of the total power dissipation. This is shown in

Figure 5.6-b, which depicts the average power dissipation of accelerators for RFs trained

on four data sets (which will be detailed in Section 6.1). Therefore, optimizing the com-

parisons might lead to significant reductions in the energy and area of such circuits.

In Figure 5.6-c, the area of the comparators for different constants (for 10-bit

operators) is analyzed, through standalone synthesis (i.e., out of the context of the RF

architecture), using Cadence Genus (CADENCE, 2019). Based on the plot, it can be seen

that the area of these comparators varies drastically. Only the first 32 values are presented

for clarification purposes, but this varied pattern is similar for all the 1024 possible values.

As it can be observed, reductions of up to 59% could be obtained by changing a constant

from 30 to 31, for example.

As an example in terms of gate-level circuit, Figure 5.7 presents both a 4-bit

generic comparator that performs the less than or equal operation (Figure 5.7-a) and a

4-bit comparator that works only for the specific constant of 1011 (Figure 5.7-b). The

circuits were obtained from an unmapped synthesis using Cadence Genus. As it can be

seen, employing comparators exactly as required by the ML model trained, as opposed to

fully generic comparators, can lead to significant area savings.

The flow that describes the framework used in this work to implement the C2PAx

proposal is presented in Figure 5.8. C2PAx has also been released as an open-source

contribution2.

This proposal is basically an extension of the framework presented in Section

5.1. The previous framework only considers the approximations in terms of quantization,

enabling the variation in tree depth and number of trees. This extension allows for the

approximation in the constants of the comparators. Just as in the previous proposal, this

one is agnostic to the data sets being employed, as long as the comparisons are described

using explicit constants. More generically, this proposal can work for any other tree-

based models, such as XGBoost (CHEN; GUESTRIN, 2016), or other architectures that

allow the insertion of errors (not only tree-based models) and use comparators with fixed

constants.

2Available on: <https://github.com/Brunno815/C2PAx>

https://github.com/Brunno815/C2PAx
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Figure 5.7: (a) Generic 4-bit comparator; (b) 4-bit comparator for the constant 1011 (11).
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Before training, every data is converted to positive numbers and then quantized

to natural values, so that it does not need to apply any floating-point units, ensuring a

simpler hardware. Therefore, every constant in the RF is composed of natural numbers,

as in Section 5.1. For the analyses regarding this proposal, based on preliminary results

of the baseline framework, the features are quantized to a 10-bit integer representation.

For the training stage of the RF, the RandomForestClassifier structure was em-

ployed. Some simplifications were performed so that there was no need to consider the

weighted sums of partial votes in each tree. Even though this was also considered in

the first proposal from Section 5.1, this updated version of the framework does not con-

sider several instances of DecisionTreeClassifier structures. Instead, the exact same initial

structure from RandomForestClassifier was used, but with a modified voter. For the eval-

uations in Section 6, the number of estimations is set to 5 for the C2PAx proposal.

The adjustment of constants may be performed in several different ways. A base-

line approximation method is defined, denoted as Don’t Care (DC). This technique for

approximating the constants works by simply defining the constant and applying DC sig-

nals (SALAMAT et al., 2017) to the LSBs of the constants being compared. For example,

if a feature with the constant 0101100111 is being compared, it can be approximated to
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Figure 5.8: Flow describing the framework employed to obtain the accuracy, VLSI circuit
area and power results for the C2PAx proposal.
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010110011x. This allows the synthesis tool to find the most suitable operator without

considering a strict value in the LSB. Given that this technique seems promising for this

specific application, this is implemented to be compared with the C2PAx proposal. For

this technique, more than one bit can be assigned a DC signal. In the analyses in Chapter

6, the number of DCs is varied from 0 (precise case) to n− 1, where n is the total number

of bits in the constant.

The main idea behind the C2PAx proposal is to slightly adapt the constants of

the comparisons so that the new comparisons are less costly in terms of area and energy,

reducing the resources when considering the entire RF architecture being described. This

may also change the accuracy of the model, depending on the feature being compared.

Even though the aforementioned DC technique also attempts to adapt the constants in one

way, it does not allow for a fine-grained variation. Additionally, it leaves the optimization

of the constant solely to the synthesis tool.

The C2PAx proposal tests, from the constant of each comparator defined in the

training stage, the constants close in a range of m, in both directions. For example, for a

constant x, the constants searched will range from x −m to x +m. The algorithm will

ignore the analysis if the current value of the constant being searched is smaller than 0

or higher than the maximum value of that specific precision. This technique allows for a

more fine-grained analysis, as the number of possible values for the range is much higher

than the DC technique. This idea is illustrated in Figure 5.9, for a step of m = 2 and a

constant x = 361. The list of areas presented in the figure is obtained through previous
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Figure 5.9: Proposed C2PAx technique, considering an initial constant of 361 with a step
of 2.
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synthesis, with the standalone comparators synthesized with different constants (not in

the context of any RF accelerator). For a step of 2, the technique decides to change the

constant of the comparator from 361 to 359, since this is the one with the smallest area

among the ones in a distance up to 2 from the initial constant value. This process is

applied separately for every comparator in the RF accelerator.

Other ideas may be considered to the adjustment of constants. For example, some

comparators may be more relevant than others to define the inference value, whether

from being in a specific height of the tree. Therefore, applying different step values for

different comparators in a DT/RF may bring beneficial results. It is also possible to adjust

the constant to an opposite side from where a constant in the same path of a tree was

adjusted. However, these analyses are out of the scope of this thesis.

The metric to define the best constants to be adjusted is also important. For this

work, it was opted to synthesize every comparison, as presented in Figure 5.6-c (a subset

of the 1024 possible values), and gather the area results, normalized by NAND2 gates.

Even though this could easily scale to a huge amount of syntheses required, some pre-

liminary analyses for the framework proposed in Section 5.1 found that, for the data sets

employed in this thesis, the use of precisions larger than 10 bits do not lead to better accu-

racy results. Therefore, only 1024 comparisons needed to be synthesized – if precisions

smaller than 10 bits were required, only 1023 more comparisons would be needed. Addi-
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tionally, this process only needs to be done once; hence, even if precisions larger than 10

bits were required, e.g. 16 bits, this process could be performed offline, to be used later

for every other data set. This process does not apply for the DC technique, given that the

resulting comparator after applying the DC will fully rely on the synthesis tool.

It is important to notice that the NAND2 metric was only employed given that this

is a normalized and fair metric. One could argue that directly using the power dissipation

could lead to more accurate results; however, individually synthesizing the comparisons

prevents us from finding the exact switching activity that each comparison will have un-

der the full RF architecture. If that level of exactness was desired, we would have to

synthesize every feature of the data set with every possible constant, which would not

scale well. For these reasons, the decision was to use the NAND2-equivalent area as the

metric. Using other metrics to choose the best constant is out of the scope of this work.

For a more generalist approach, one can synthesize the comparators without any

sort of mapping to a standard-cells library. This means that the netlist generated by the

synthesis tool will have generic gates, and whose area is also estimated by the synthesis

tool. Even though this does not depend on any standard cells – which is positive given

that it can be used to estimate the best comparisons when synthesizing for any technology

–, this method could lead to worse results, given that a different netlist would be gener-

ated. The differences between these approaches were also analyzed and are discussed in

Chapter 6.

5.3 DTs/RFs with Gate-Level Pruning

5.3.1 Indiscriminate Pruning

This proposal explores the use of indiscriminate gate-level pruning in DT and RF

accelerators, to analyze the energy- and area-accuracy trade-offs. This work was accepted

for publication (ABREU et al., 2022).

As it was seen, several approximate techniques can be employed in tree-based

models, at many levels of the design stack. In higher levels, approximations can be in-

troduced using quantization in the input features, by limiting the maximum tree depth

and/or the number of estimators, or by approximating the constants of the comparators

(C2PAx). In lower levels, one can perform gate-level pruning based on the description of

the accelerator after logic synthesis steps (i.e., netlist).
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This technique can be used synergically with the other approximation techniques

employed in this thesis, such as quantization and C2PAx. Therefore, a designer working

on a system with fewer resources can evaluate the best possible model to its energy con-

straint, while losing minimal accuracy. To the best of the author’s knowledge, this is the

first work to propose such technique for tree-based architectures.

A tool for performing indiscriminate gate-level pruning in the netlists was recently

proposed in (CASTRO-GODíNEZ et al., 2021), denoted as AxLS (available online). This

tool receives a netlist containing logic elements from a standard-cells library, along with

a file describing the switching activity of the gates. AxLS allows for two kinds of prun-

ing techniques: inOuts and probprun (LINGAMNENI et al., 2011). The first technique

eliminates inputs based on the user’s choice, hence eliminating some gates that rely on

these inputs. The probprun technique (employed in this thesis) prunes nodes based on the

ones with the least switching activities, based on input parameters. The use of pruning

in the netlist level may lead to approximations that the other levels cannot achieve, given

that the designer usually does not have any control of what the synthesis tool generates

from the RTL descriptions. An example of the probprun is presented in Figure 5.10, for a

generic circuit. In this example, n4 presents the smallest switching activity of all nodes,

followed by n2. For a pruning with only one node, n4 and all nodes whose outputs are

unused (in this case, n0 and n1) are pruned. When pruning for two nodes, n2 is excluded

as well.

Figure 5.10: Pruning technique employed by the AxLS tool (CASTRO-GODíNEZ et al.,
2021).
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The term indiscriminate denotes the fact that, when generating a netlist to be

pruned, the hierarchical setting of the modules of the RTL description is lost. There-

fore, pruning will occur on the gates with the least switching activity, regardless of the
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module they were part of before the synthesis.

This technique is also an extension of the framework developed in Section 5.1.

Given that this approximate technique can be employed generically for any other pro-

posal, it is important to evaluate its effect on several data sets to verify whether it is

feasible to be applied. The flow used in this proposal is presented in Figure 5.11.

Figure 5.11: Flow used in this work to apply gate-level pruning using the DT/RF genera-
tion with AxLS.
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Similar to the previous proposals, this flow considers data sets related to wearable

devices. Also, the same DecisionTreeClassifier and the handcrafted RandomForestClas-

sifier structures were employed. The number of estimators was fixed to 5 as well.

The translation process is similar to the one performed in the first proposal in

Section 5.1, but for Verilog language. This was performed given that this language is less

verbose than VHDL and is an enhancement of the baseline framework.

The RTL descriptions are used in a logic synthesis flow with Cadence Genus.

Besides the netlist, the AxLS tool requires Switching Activity Interchange Format (SAIF)

files. These files, as the name suggests, contain the switching activity of the circuit gates,

based on the inputs. To generate them, simulation of the descriptions is required, with

specific inputs. For this case, we use the inputs regarding each respective data set for
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which the architecture was designed.

Then, the netlist and the SAIF file are used as input to the AxLS tool. The SAIF

file is used to apply the probprun technique. For this thesis, the use of the inOuts tech-

nique was not considered, given that the quantization process (described in Section 5.1, to

avoid the use of FPUs) already performs indirect eliminations to the inputs of the model.

Therefore, the use of inOuts would be redundant and would depend on the designer’s spe-

cific choices of elimination (or through random pruning), whereas the probprun technique

only relies on the switching activities of each data set.

The AxLS tool generates a new cropped netlist, in which the n nodes with the

smallest switching activities are eliminated from the original netlist. This new file is

then resynthesized using Cadence Genus, simulated, and a data-driven power estimation

process is performed using the input-vectors of the data set, to obtain accurate switching

activity of the circuit. Then, the area, power/energy, timing, and accuracy results are

gathered.

A proposal regarding iterative pruning is also possible. In this case, instead of

pruning a number of nodes in a single batch, one may decide to prune less nodes, syn-

thesize the circuit, and prune nodes once again, or in even more iterations. For example,

when deciding to prune 12 nodes, instead of a single pruning, a designer can opt to prune

4 nodes, synthesize the circuit, and do this process for a total of three times. This will

lead to a different netlist each time, different from the regular pruning that ranks the initial

netlist and prunes the 12 nodes with the least switching activity.

5.3.2 Hierarchical Pruning

In most VLSI circuits, there will be modules that are more tolerant to approxi-

mation than others. For example, one may wish to prune part of a datapath that contains

arithmetic operators, and decide not to prune a finite-state machine (FSM) of a control

portion, given that it can fully break how the circuit operates.

In this proposal, instead of synthesizing the flattened netlist, i.e., indiscriminately

from the modules described in the respective RTL, we keep the information of every

module. Therefore, the netlist will contain the gates inside each of the modules in which

they are supposed to be. Hence, the designer aiming to approximate the accelerator can

have better control of which modules they want to prune and how much, based on prior

knowledge of the circuit.
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It is also important to notice that the possibilities to approximate the circuits de-

pend on the way that the modules in the RTL were designed. Therefore, the circuit has to

be properly described in a way that it can take advantage of the hierarchical pruning.

Furthermore, this will allow for more combinations of pruning w.r.t. flattened

netlists, given that the proposal allows for pruning from 0% to 100% in each of the mod-

ules. In a example, for a circuit with two modules with 100 gates each (and its flatten

version with 200 gates, for simplification purposes), in the first case we would have 1002

possible pruning combinations, whereas the flattened version would only allow for 200.

This proposal was also implemented in the form of a framework, to generalize

and ease the design space exploration. The framework was implemented as an extension

of the AxLS framework. Most of the modifications required were regarding the parsing

of how the netlist is generated when using the hierarchical option. In this case, since

Cadence Genus is implemented, the command used in the synthesis process to allow for

hierarchical pruning is to set the auto_ungroup attribute to none. It is important to notice

that generalizing the implementation to several synthesis tools would require the parsing

to account for the various syntactic differences between the netlists generated from each

tool. Therefore, the work developed only focuses on Genus.

Even though the proposal can be applied to any netlist, this thesis will present its

application on RFs. As it was already seen in the previous proposals, RFs are composed

of a module with comparators, one with the ’AND/OR’ paths and a final module for

the voter. Each of these modules can be pruned separately in the hierarchical pruning. In

Chapter 6, the differences between indiscriminate and hierarchical pruning will be shown,

to verify whether using hierarchical pruning can lead to a better Pareto curve.

In the case of indiscriminate pruning, the circuit is synthesized in a regular manner,

pruned, and then synthesized again to account for possible optimizations that the pruning

may have caused. For the hierarchical approach, the difference is that the first synthesis

is an ungrouped one. Then, the circuit is pruned according to the directives set by the

designer, who decides which modules to prune. Lastly, the pruned circuit is synthesized

in a normal way, generating a netlist containing only a top-level module, to also account

for possible optimizations that the hierarchical pruning may have generated.

5.4 MAJ-based Logic Synthesis for Tree-based Models

These explorations were performed based on a previous work published by the
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author. The paper can be found in (ABREU et al., 2023) and proposes compact majority

(MAJ) and minority (MIN) gates employing the body biasing feature present in fully

depleted silicon on insulator (FDSOI) technology nodes. The work in (ABREU et al.,

2023) manages to reduce the number of transistors by 2.3× and 2× for the MAJ and MIJ,

respectively, when compared to traditional CMOS implementations.

Despite being related to the aforementioned study, these works were based on

the fact that several emerging technologies operate mostly based on MAJ logic gates

(MISHRA et al., 2021). This is the case of quantum-dot cellular automata (QCA) tech-

nology, for instance. This has led the MAJ-based logic synthesis paradigm to arise to

overcome the conventional logic synthesis (AMARU; GAILLARDON; MICHELI, 2015)

when using these technologies, given that any logic function can be described with only

MAJ and MIN gates. Given that some emerging technologies can implement MAJ gates

more easily, converting accelerators to use only MAJ/MIN gates and applying optimiza-

tions to their MAJ-based versions is an important topic to address.

The work in (ABREU et al., 2023) applied the Mockturtle tool (SOEKEN; AL.,

2018) to perform MAJ-based logic synthesis. The flow employed to generate netlists

based on MAJ/MIN gates is shown in Figure 5.12. This flow has also been employed in

the proposals that will be presented in the sub-sections below.

Figure 5.12: Design flow employed to generate netlists based on MAJ/MIN gates.
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The flow starts from a conventional logic synthesis process, using a regular standard-

cells library. The ABC tool (SYNTHESIS; GROUP, 2019) is responsible for converting

the Verilog netlist to the AIG format, which is supported by Mockturtle. Then, Mockturtle

receives the regular netlist, in AIG format, converts it to an alternative format denoted as

MIG, and performs MAJ-based logic synthesis along with some optimizations. Most of

the times, Mockturtle cannot convert every logic from a regular netlist to one using only

MAJ (as some portions cannot be efficiently converted). Therefore, it leaves the output

netlist with some AND, OR and INV operations. The conversion of both AND and OR

to MAJ gates is done through a parser, based on the fact that an AND logic is obtained
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when a MAJ gate has one of its inputs as ’0’, and an OR is equivalent to a MAJ gate with

one of its inputs as ’1’. Then, a netlist composed of only MAJ and INV gates is obtained.

Then, an additional script is applied to convert any MAJ gates that are connected only

to one INV gate to a MIN gate. A MAJ gate that is connected to more than one INV or

another MAJ gate cannot be converted to an MIN gate. Therefore, these INV gates are

not converted to MIN gates. Hence, the final netlist is composed of only MAJ, MIN, and

INV gates.

MAJ-based logic synthesis was employed in DT and RF circuits in some proposals

of this thesis. The two analyses performed for MAJ-based DTs and RFs are presented in

the following subsections.

5.4.1 MAJ-Based C2PAx

This first exploration attempted to verify whether applying the C2PAx technique in

tree-based models that use MAJ gates is a promising approach that may lead to interesting

results. As seen in Section 5.2, the C2PAx technique requires a table with the area results

of the comparators for every possible constant, for a specific width (see Figure 5.9). This

table is obtained by synthesizing all comparators using regular logic gates (mapped to a

standard-cells library or not).

When MAJ-based DTs/RFs (i.e., DTs/RFs whose RTL descriptions are processed

in the flow from Figure 5.12) are considered, it is interesting to verify whether using

this standard table of area is the most suitable approach. Alternatively, one can opt to

synthesize every comparator and convert the structures of the comparators to MAJ/MIN

gates using the flow from Figure 5.12, and obtaining a new table of areas considering

the costs of the structures with MAJ/MIN gates, which may lead to different relations

between the different constants. Figure 5.13 presents the idea more clearly, with the two

tables being highlighted here.

The process in Figure 5.13 considers the tables using comparators of 10 bits,

which leads to each table containing only 1024 lines. The process starts by generating

an RTL description of a comparator, using a Python script. Then, conventional logic syn-

thesis using a standard-cells library is performed, to generate a netlist. In order to obtain

the area for the regular table, no other process is required, given that this is the final netlist

for this case. For the MAJ-based table, a conversion of the netlist of the comparator to

a MAJ-based one is required. This process is the same as in Figure 5.12, but shrunk for
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Figure 5.13: Flow employed to obtained the regular and MAJ-based tables, required for
applying C2PAx.
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illustrative purposes.

The area of the MAJ-based circuits is obtained in terms of number of transistors.

Even though MAJ-based circuits are reported to be more easily implemented in emerging

technologies, a simulator for such systems was not found. Therefore, the number of tran-

sistors considered for the MAJ and MIN gates were the ones obtained from the author’s

previous work (ABREU et al., 2023), where the compact CMOS-compatible MAJ/MIN

gates were proposed. In this previous work, the number of transistors for the MAJ and

MIN gates are 6 and 8, respectively. This value, however, will not particularly matter for

the table, given that what matters the most here is the relative area results between the

different constants; hence, even if different number of transistors were considered, the

relative results would not change significantly.

The power results are estimated based on SPICE simulations of the MAJ/MIN

gates proposed in (ABREU et al., 2023), for different values of fanout. A script calculates

the fanout of each MAJ/MIN gate, and applies the estimated value from the fanout table

obtained from the SPICE simulations.

MAJ-based C2PAx is then applied to the DT/RF models, as in the flow from Fig-

ure 5.14. As it can be seen, the synthesis process is embedded within the generation of

the AIG. This conversion of the regular DT/RF VLSI accelerator to a MAJ-based DT/RF

is applied in the green square, and is also illustrated as a simplification of the flow from

Figure 5.12. In this case, both the regular and MAJ-based tables were employed to gener-

ate the approximate RTL for the DT/RF model, to verify whether applying regular C2PAx

or MAJ-based C2PAx is better when performing the conversion to a MAJ-based DT/RF

later in the flow.
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Figure 5.14: Modified design flow to generate results for MAJ-based DTs/RFs.
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Hence, this proposal leads to two different contributions: (i) the analysis of the

reductions in MAJ-based DTs/RFs using the C2PAx technique, and (ii) the analysis of

the use of different area tables for applying the C2PAx technique in MAJ-based DTs/RFs.

5.4.2 MAJ-Based Pruning

The second proposal is the use of pruning techniques in MAJ-based circuits. So

far, there is a scarcity in the literature regarding approximate computing involving MAJ-

based accelerators. Hence, a flow that integrates the tools to generate such circuits, along

with one that performs the gate-level pruning, is of utmost importance to pave the way for

approximate computing for emerging technologies. Besides that, it is important to verify

how pruning behaves under MAJ-based circuits, given that they are more democratic

circuits, since the output will only change when most of the inputs decide for it.

The flow of this proposal is presented in Figure 5.15. The flow is similar to the

one with regular pruning, with the difference that mapping to AIG, MIG, and technology

mapping to MAJ/MIN gates is applied in the RTL description of the DT/RF model. Just

as in the MAJ-based C2PAx proposal, this mapping is performed in the same way as in
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the flow from Figure 5.12. The netlist is then simulated, to obtain the SAIF file, which is a

requirement to apply the probprun technique in AxLS. In this case, there is no particular

.lib file for the MAJ/MIN gates containing the power and area values. As mentioned

previously, power is obtained by counting the fanouts of each gate and fetching that value

from a table which was obtained via SPICE simulation, from the work in (ABREU et al.,

2023). Area is obtained by counting the number of MAJ/MIN gates and multiplying it by

the number of transistors of each one, based on that same work. After obtaining the SAIF

file, pruning is applied for an amount of gates tested by the designer.

Due to the absence of a .lib file, synthesis is not performed after the process to

optimize the circuit. In this case, a Python script is responsible for eliminating the gates

that became useless after the pruning process. This is applied by verifying gates whose

inputs were connected to MAJ/MIN gates that were eliminated. Some of these gates can

be removed, in case at least two of their inputs become either ’1’ or ’0’. This process is

applied repetitively, since the elimination of some gates can always lead to other gates

also being eliminated, until no gates can be removed. Moreover, the inputs of pruned

gates are also verified to check for unused gates as well.

After this process, with an optimized pruned netlist, simulation is performed once

again, to verify the accuracy results, along with power and area results through gate count-

ing.

5.5 Chapter Summary

This chapter presented the proposals developed so far to achieve the goals of the

thesis. A baseline framework for tree-based ML models is presented, which enables the

automatic generation of tree-based VLSI accelerators. This framework is easily adapted to

include approximate techniques, and three of them have been included: (i) input quantiza-

tion, (ii) constant approximation, and (iii) indiscriminate and selective gate-level pruning.

Additionally, approximations were performed for MAJ-based DTs/RFs. First, a proposal

joining the C2PAx technique along with MAJ-based is presented. Then, a second proposal

that integrates the generation of MAJ-based circuits with pruning techniques is proposed.
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Figure 5.15: Modified design flow to generate results for MAJ-based pruning.
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6 EXPERIMENTS, RESULTS AND DISCUSSIONS

This chapter presents details on the specificities of the experiments performed for

the frameworks developed. First, the data sets employed for the majority of the analyses

are detailed, as well as the power estimation methodology employed. Then, the results and

discussions for every proposal are presented regarding the trade-off analyses performed.

6.1 Data sets Employed

Four data sets are used in this thesis: accelAdl, activities, wearable, and wireless.

These data sets were selected based on the fact they are, to some extent, related to wear-

able applications with low power restrictions. The data sets originally have features in

integer or floating-point representation, except for some (such as gender) that are repre-

sented with categories. The features were all converted to the same representation, as

presented in Section 5.1.1, through the processes of remapping and quantization. Their

characteristics are summarized in Table 6.1.

AccelAdl

This is a data set related to Activities of Daily Living (ADL) Recognition with a

wrist-worn accelerometer. This is a collection of data recordings from accelerometers for

simple ADL. This data set is composed of 14 activities, such as: brushing teeth, climbing

stairs, combing hair, descending stairs, drinking glass, eating meat, etc. These activities

are performed by 16 different volunteers and are obtained by a single tri-axial accelerom-

eter attached to the right wrist of each volunteer. Four features are considered in this data

set: the gender of the volunteer, and the x-, y- and z-axes values of the accelerometer.

Two works (BRUNO et al., 2012; BRUNO et al., 2013) consider this data set,

which is available at (DUA; GRAFF, 2017). However, none of these works develop any

kind of hardware architecture.
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Activities

This data set is named Classification of Body Postures and Movements (PUC-

Rio). It is composed of 5 classes (sitting down, standing up, standing, walking, and

sitting) collected from 4 subjects.

This data set is available at (UGULINO et al., 2012), which also explains in more

detail how the data was obtained.

Wearable

This data set corresponds to weight lifting exercises monitored with inertial mea-

surement units, and it contains data from six young subjects performing a variation of

biceps exercises.

This data set is detailed in (VELLOSO et al., 2013), but no dedicated hardware

is presented in the work to perform inference based on this set. (MORTAZAVI et al.,

2014) also uses this data set and mentions the proposal of a RF model. However, no

architectures are presented and, therefore, no power comparisons can be performed.

Wireless

This is a data set focused on the classification of body postures and movements.

This data set contains data from 14 older aged people between 66 and 86 years old. The

set contains 4 classes: sitting on a bed, sitting on a chair, lying on a bed, and ambulating.

The features include gender, age, height, weight, body mass index, and the x- and y-axes

of all the four accelerometers used in each volunteer. Torres et al. (TORRES et al., 2013)

have assembled this data set for public use; however, no architectures are proposed for

the inference stage and no power results are presented.

Table 6.1: Characteristics of each data set.
Data set # Instances # Features # Classes
AccelAdl 446471 4 14
Activities 165632 18 5
Wearable 39242 54 5
Wireless 75128 9 4
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6.2 Power Estimation Methodology for ASIC Design Flow

The architectures already implemented for this thesis use a methodology based on

works such as (SILVEIRA et al., 2017). This method uses a design flow that considers

real-input vectors from the specific data set, which will be used to estimate the dynamic

power dissipation more precisely.

The dynamic power dissipation depends on the signal transitions that can occur

in a specific digital circuit. Commercial synthesis tools, e.g., Cadence Genus Synthesis

Solution (CADENCE, 2019), perform an estimation on the power dissipation based on

standard switching activity – probabilistic default input values – when the designer does

not provide any details on the inputs feeding the circuit. However, these estimations are

pessimistic and rarely represent the real behavior of the circuit when a specific application

is targeted.

Given that power dissipation is a major concern on embedded devices and obtain-

ing power results is a primary goal of this thesis, an accurate method to obtain the power

dissipation is required. Thus, designers will be able to represent, more precisely, the real

behavior, allowing them to access more accurate results, which will make the optimization

of power-hungry modules better.

Figure 6.1 shows the methodology used in the proposals of this thesis to obtain the

power, area, and timing results. The flow begins with the description of the architectures

in a hardware description language (HDL). In this work, the description is generated

through automated tools described in Python language to ease the process, as presented

in Chapter 5. In parallel, the data sets being used as case studies are parsed (based on

quantization configurations) to extract the real-input vectors and use them along with the

register-transfer level (RTL) description of the architectures, which will be synthesized.

Every synthesis in this thesis, so far, uses Genus, which generates a netlist of the circuit, in

Verilog hardware language. The resulting netlist contains elements from the standard cells

library employed in the process. The architectures synthesized in this thesis use a 65 nm

commercial standard-cell library from STMicroelectronics (STMICROELECTRONICS,

2021), at a 1.0V voltage supply. All the optimization effort flags were set as high. A

Standard Delay Format (SDF) file is generated, which contains delay information for the

gates and nets, along with area, power, and timing reports. After this first synthesis, a

simulation tool, such as Irun, is used to simulate the generated netlist with a testbench file

– which was also generated through the automated tool. This testbench reads the input
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data from the data sets being analyzed in this thesis. This process generates a dump file,

which can be in Value Change Dump (VCD) or Toggle Count Format (TCF) file formats

(the works in this thesis use TCF files).

Figure 6.1: Methodology used to obtain accurate power results for the data sets.

Data  
set

Quantization  
Configs.

Netlist
Simulator 

Synthesis
Tool 

text
files

Testbench and Library
Behavioural RTL (.v or

.vhd)

Toggle Count Format
(.TCF)

Design Verilog or VHDL (.v or .vhd)
Tool Command Language (.tcl)

ST 65nm Library (.lib)
Synopsis Design Constraint (.sdc)

Library Exchange Format (.lef)
Capacitance Table (.CapTBL) 

Reports
(power, area,

timing)

Gate-level Netlist (.v) and
Standard Delay Format (.sdf)

Netlist

Legend:
1st stage - Synthesis and
Real Inputs Generation

2nd stage - Netlist
Simulation and Data-

driven Power Estimation

After the simulation of the architecture and with the VCD or TCF file, a second

process (data-driven power estimation) is performed with the netlist already generated.

This second process generates the power, area, and timing results taking the real-input

vectors of the data sets into account.

Additionally, Genus has a mode denoted as physically-aware layout estimation

(PLE), which takes the gate interconnection penalties – in terms of area, power and timing

– into account. This estimation is performed by estimating the lengths of the circuit nets

and considering the capacitance effects when estimating power dissipation. However, the

PLE process considers a relatively pessimistic layout routing estimation. Overall, routing

is not considered in the syntheses performed in this thesis, so the estimation from the PLE

process is the only information related to routing that was obtained.

The PLE analysis requires the use of Library Exchange Format (LEF) files. These

files contain the physical layout information of the standard-cells library, which is essen-

tial to take the interconnections into account. The LEF macro includes the capacitance

of the inner library cell, and the tech LEF comprises the process metal capacitance for

the estimation of the interconnection capacitance. A capacitance table file (CapTBL) can

also be used with the library, and it contains descriptions of the technology capacitances
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in a fine-grained way, by considering process variations.

6.3 Framework: Tree-based RTL Models

This section presents the results of the architectures generated by the baseline

framework, detailed in Section 5.1. The experiments were conducted with the default

hyperparameters (parameters that control training algorithms) for generating the classifier

except for the tree depth and, for RF models only, the number of trees in the forest. The

values tested for tree depth were 1, 2, 4, 6, 8, 10, 12, and the ones tested for the number

of trees were 3, 6, 9, and 12. The quantization (input width) values tested were 1, 2,

3, 4, 6, 8, 10, 12, 14, 16, and 32 bits. Every configuration was simulated for the four

aforementioned data sets. Therefore, considering DTs and RFs, a total of 1540 VLSI

accelerators were generated. Such a wide design space exploration was only possible due

to the highly automated design flow proposed in this thesis.

First, some considerations regarding the operating frequency are presented. Then,

the results regarding (i) classifier performance under different levels of quantization, (ii)

approximations in the train and test sets, and (iii) analyses on power dissipation are pre-

sented. Finally, a comparison with related works is presented to verify the efficiency of

the generated architectures w.r.t. the state-of-the-art.

6.3.1 Operating Frequencies

To synthesize the architectures, specific frequencies had to be chosen. If the archi-

tectures were run in their maximum frequencies, it would not be possible to fairly compare

them in terms of power, given that each one of them has different maximum frequency

values. In a preliminary work (ABREU; GRELLERT; BAMPI, 2020), the operating fre-

quency was considered to be the maximum frequency of the worst-case scenario, which

is the one for the maximum depth, and every other architecture was synthesized for the

same frequency. This approach, however, does not consider the target application (wear-

able devices).

As mentioned in Chapter 1, the research performed indicates values never higher

than 1kHz for the applications mentioned. Considering these reports, and taking into

account that this work deals with accelerometers/gyroscopes or similar applications from



76

wearable devices, the required hardware frequency is not nearly as high as the maximum

frequency achieved by the worst-case scenario. However, to maintain a wide margin

above the limits of the devices found, it was decided to run the architectures at 10kHz.

Even though no wearable devices have been found working at this frequency, it can be

guaranteed that, even in this case, all of the architectures can properly work.

Moreover, even though frequencies higher than the required are being considered,

the focus of the thesis is to analyze the trade-offs involving power. In other words, the goal

is to achieve power reductions w.r.t. a given baseline while minimizing the reductions

compared to a baseline accuracy, and not an absolute small power value without any

reference.

6.3.2 Classifier Performance with Input Quantization

The first analysis of this work aimed at assessing how input quantization affects

model performance. The results are presented in Figure 6.2, and each series represents the

average and confidence intervals across the 1540 experiments. It is possible to observe

that the test accuracy for all data sets converged with an input width of 10 bits, so larger

values can be considered a waste of resources. Therefore, all the subsequent results of

this section were limited to a 1-10 input width range. We can also observe in Figure 6.2

that the best accuracy was obtained with less than 10 bits for the wearable data set. This

shows that input quantization is working as a regularization form, which is in line with

other results in the literature (ZHOU et al., 2017; XU et al., 2018).

Although the goal is not to obtain a single best configuration in this thesis, it can

still be observed that using bit widths larger than 10 is not advisable, as the increase in

accuracy is negligible. In contrast, using less than 10 bits will likely incur in prediction

loss, but this might still be interesting in applications with tight power constraints. This

will be better discussed in the following analyses.

6.3.3 Train/test set Approximation Analysis

Since training is usually performed offline, one can still use precise (floating-

point) data to build models, leaving the approximations (fixed-point, quantized) in the

inference step only. However, using approximate data in both steps might improve per-
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Figure 6.2: Input width (in bits) vs accuracy for all data sets (average across 1540 experi-
ments).
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formance since we are keeping similar operating conditions.

The following analysis aimed at figuring out whether the approximate (fixed point

and quantized) feature values should be used in both training and inference stages, or if

the precise (floating point) data should still be used for training. The results displayed in

Table 6.2 show three configurations: (i) training and inference stages with precise data,

(ii) training with precise data and inference with approximate data, and (iii) training and

inference stages with approximate data.

Table 6.2: Average accuracy results for each data set, based on different training and
inference approaches.

Accuracy (%)
Training Stage Precise Precise Approx.
Inference Stage Precise Approx. Approx.

AccelAdl 50.15 40.53 46.92
Activities 82.69 63.34 74.93
Wearable 64.19 53.55 60.07
Wireless 91.38 84.93 88.18
Average 72.10 60.6 (-11.5) 67.5 (-4.6)

As shown in the table, precise data for both training and inference leads to better

results on average, although approximate models can actually perform better if quantiza-

tion is not too aggressive, as will be discussed later. When approximate data is used in the
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inference step only, the accuracy drops significantly by 11.5% on average, indicating that

this approach may be harmful in practical applications. Finally, when approximate data is

used on both stages, the performance drop is quite smaller (4.6%), and it may even lead

to performance gains if features are not quantized too aggressively, as discussed in the

following paragraphs. Therefore, the remaining discussions will only show results using

approximate values on both stages.

The average values from Table 6.2 are underestimated because they represent an

average across several precision values, number of trees, and tree depths, and consider

both DTs and RFs. All data sets can achieve higher accuracy results than this. It is

also important to highlight that the accelAdl data set has 14 classes, so results above

1/14 (7.1%) can already be considered better than a random guess (provided the classes

are balanced). Even so, the analyses presented in this thesis do not necessarily focus on

obtaining high accuracy values, but on the possibility of finding power-accuracy trade-offs

based on given baselines of power and accuracy.

The accuracy loss was also evaluated for different levels of input quantization,

which is depicted in Figure 6.3. The loss was computed using as baseline the test accuracy

obtained with the precise train/precise inference configuration and was averaged across

all experiments for each data set.

As shown in the figure, using a single bit for each feature should be avoided,

as it may lead to significant losses in accuracy, but this loss becomes smaller with each

extra bit to the point where negative losses are observed. Negative values indicate that

the models trained with approximate data performed better than the ones with precise

data. As discussed previously, this happens because quantization acts as a regularization

mechanism, reducing overfitting (ZHOU et al., 2017; XU et al., 2018). For all data sets,

accuracy gains are observed starting with an input width of 6, and accuracy gains of up

to 6.3% were obtained with 8-bit features. However, it is important to emphasize that the

most suited quantization level depends on each application and must be carefully tuned.

Therefore, we can conclude that using quantized, fixed-point units is ideal for tree-based

circuits. The fixed point units greatly reduce resource consumption (area and power),

whereas quantization works for both reducing resources and also for better accuracy.

With the feasibility of applying approximate computing in both training and in-

ference, an analysis using confusion matrices was also performed. These results analyze

the accuracy per class of each data set. The confusion matrix for the accelAdl data set

is presented in Figure 6.4, for a RF with a tree depth of 10, a bit width of 10, and with
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Figure 6.3: Variation in the accuracy when comparing the approximate model w.r.t. the
precise model (in both training and inference stages).
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6 trees. This is the only data set analyzed here, for simplification purposes, and given

that this was the most critical data set in terms of accuracy, and the one that contains the

highest number of classes. The values in the diagonal of the matrix indicate the amount

of correct predictions for each class.

As it can be seen from Figure 6.4, some of the classes presented very low accu-

racy values. For instance, the eat_meat class certainly was responsible for harming the

overall accuracy (only 6% of the predictions were correct), since the model confused this

action with the brush_teeth one (69%). Other actions performed by the subjects, such as

pour_water, sitdown_chair, eat_soup, and lie_down, also presented accuracy values

under 25%. These values explain the lower accuracy presented in Table 6.2 for the acce-

lAdl data set. Even though the wearable data set also obtained a low average accuracy of

around 60%, maximum accuracy results of around 97% were obtained.

6.3.4 Power Dissipation Analysis

As different parameters were tested (tree depth, number of trees, quantization

level) and they all contribute to the final circuit consumption, the next step was to as-

sess which ones affect circuit power and accuracy the most. Therefore, the results from
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Figure 6.4: Confusion matrix for the accelAdl data set.
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all 1540 syntheses were parsed and the correlation between each parameter with power

and accuracy was computed. The power dissipation values were computed with the actual

switching activity for each data set. The obtained correlation matrix is shown in Figure

6.5.

This analysis shows that tree depth and input width are highly correlated with

power, but only the first one correlates with accuracy. The low correlation between accu-

racy and input width can be explained by the results previously presented. Therefore, if

a designer has to choose between these two parameters to vary in order to reduce power

without severely impacting on the accuracy, it is advisable to start with the input width.

Because the DTs and RFs can be imbalanced, we added the average (avg) tree

depth as an extra parameter for analysis. As expected, this variable correlates better with

the power dissipation and accuracy than the maximum depth. In addition, it can also be

observed in Figure 6.5 that the number of trees (nb trees) has the smallest correlation with

power and accuracy (17% and 4%, respectively) compared with the other variables. This

is likely because larger RFs could not be synthesized due to limitations in the synthesis

tool. When RFs with more than 12 trees were attempted, the synthesis would take an
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unfeasible amount of time or crash due to Out of Memory (OOM) errors. Thus, the

remaining results focus on the variation of tree depth and input width only.

Figure 6.5: Correlation between the parameters analyzed in this work.
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Figure 6.6 shows the impact of model complexity in terms of tree depth and input

width on power dissipation. In this case, the power results presented are the averages

between the DT model and the remaining number of trees (for the RFs). The analysis is

presented in a log10 scale for better visualization, with the maximum tree depths of 1, 2,

4, 6, 8, 10, and 12, and the input widths of 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, and 32. For

example, a total power of 0 in this log scale indicates a power of 101µW, and a power

of 3 indicates a value of 103µW. The results were also averaged across the four data sets

considered in this work, for simplification purposes.

As Figure 6.6 shows, the power dissipation increases as both maximum tree depth

and input width are increased. This is an expected scenario, given that, with the increase

in tree depth, there are more comparisons between features and constants, as well as

higher number of ’AND/OR’ chains between the root and the output node. The input

width is expected to increase power since each comparison will have more bits, even

though the ’AND/OR’ chains will remain the same. Also, the optimization performed

to deal with categorical features (features with less than 20 unique values being set to a

variable number of bits instead of the value set by Maxwidth) also influences the variation

in input width. In the additional case of the number of trees, which was averaged here,
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Figure 6.6: Power scaling analysis (in log scale) for different levels of input width and
maximum tree depth. The data sets and number of trees were averaged.
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power will increase due to the additional trees and ’AND/OR’ chains for each of them.

Moreover, the increased number of trees will also increase the voter near the output of

each architecture, given that more outputs need to be compared. The impact of the number

of trees in power is softened by the fact that the redundant comparisons are optimized

in this implementation due to redundancy removals from the synthesis tool and from the

methods that remove the redundancies, described in Section 5.1. This is one of the reasons

why the correlation between the number of trees and power dissipation from Figure 6.5

was smaller than the remaining tested parameters, besides the limitation of not using

higher values for the number of trees.

The impacts of the maximum tree depth and the input width in power dissipation

can also be verified from their increase ratio, by fixing one of them. When we compare the

versions with a fixed input width of 32, the variation in tree depth from 1 to 12 increases

power by about 238×. On the other hand, by fixing the tree depth to 12 and varying the

input width from 1 to 32, we obtain an increase of 741×.

Figure 6.7 presents a power-accuracy trade-off analysis, made possible through

the use of the proposed framework. The varying depths are represented by different sym-
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Figure 6.7: Power-accuracy trade-off analysis of all data sets.
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bols in the plot. The lines are presented for clarification purposes for each data set. The

results were averaged across the different combinations of number of trees and input width

(limited to 10). As the figure shows, power scales almost linearly with accuracy until a

saturation point is reached. After this point, power continues to grow while accuracy re-

mains practically unaltered. The main conclusion from this analysis is that it is important

to include power estimations during model training. The training algorithms will usu-

ally build more complex models whenever possible, even if it leads to marginal accuracy

gains at the cost of a significant increase in power consumption. Most cases reach a stable

accuracy with relatively shallow trees, except for the wearable data set, showing that the

proper values must be adjusted for each application.

Although an optimal configuration cannot be defined, as there are well-defined

trade-offs presented in Figure 6.7, we can see that increasing the maximum depth does

not tend to increase the accuracy significantly after a certain point, but power continues to

grow in the same proportion. Therefore, one might still choose smaller depths to achieve

less power consumption at the cost a small loss in prediction performance. This reaffirms

the importance of a solution that can bridge the gap between the two developmental phases

of training and synthesizing a model.
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6.3.5 Comparison with related work

As discussed in Section 4.1, works that propose tree-based circuits that present

power results are scarce, and the test conditions are usually difficult to reproduce (closed

data sets, poor documentation, etc.), making it impossible to perform an ideal related

work comparison. After an extensive search, DT architectures with characteristics similar

to those of (BUSCHJÄGER; MORIK, 2018) and (KANG et al., 2018) were generated.

The comparisons among these and the architectures from this thesis are shown in Table

6.3 considering the same target throughput in inferences/sec.

Buschjäger et al. (BUSCHJÄGER; MORIK, 2018) implement different models

for DTs and RFs as well. However, the power results are not provided for the RFs when

implementing it for an FPGA. Therefore, only comparisons with the DT models are per-

formed. After contacting the authors, the data set used in their work (gamma events

using First G-APD Cherenkov Telescope – FACT (BOCKERMANN et al., 2015)) was

obtained. Their paper mentions the use of 12-bit precision, but the maximum tree depth

is not documented, so a maximum depth was estimated based on the logarithm of the

number of nodes (reported in the paper). In Table 6.3, the results for two DT models

tested in (BUSCHJÄGER; MORIK, 2018) are presented, namely DNF (1) and Native (2).

The DNF solution is one that performs all comparisons in parallel, and the Native one

computes the inference in a more sequential way, through a repetition statement. There-

fore, the DTs were trained with 12 bits of precision, and a tree depth of 11, using the

same data set they employed. The paper also mentions the use of Zedboard containing

an Artix-7 Z-7020 FPGA, but the actual FPGA device is not stated. The architecture

was synthesized considering a frequency that would equal the number of inferences per

second of prior works. In this case, the constraint was set to 1.1MHz for the logic syn-

thesis. In Table 6.3, the top-level power consumption is presented. The power obtained

for all the FPGA board was 82 mW. It is noteworthy that the operating frequency chosen

in the synthesis of the generated architecture was not the maximum frequency possible

in a 65nm CMOS technology. The low frequency 1.1MHz was just set to equalize the

throughput of this work with the other architectures’ results for comparison purposes, as

throughput is directly linked to the application. However, even at any higher frequency

for the VLSI architecture from this work, the energy/inference results would be the same,

as the number of inferences/sec would then be orders of magnitude higher than the value

in (BUSCHJÄGER; MORIK, 2018).



85

Kang et al. (KANG et al., 2018) design a RF accelerator for two data sets: Traffic

sign recognition, using KUL Belgium traffic sign data set (PRISACARIU et al., 2010)

and face detection using MIT CBCL data set (POGGIO, 2007). The maximum tree depth

employed was 6 and the number of trees was 64, so we trained RFs with the same param-

eters. The work mentions the use of 8 classes from the traffic sign data set, and 2 classes

from the face detection set. However, both data sets, when obtained, presented a higher

number of classes than reported in the paper. For this reason, it was decided to pick the

classes with the most train and test images. The images were resized for 16×16 pixels in

gray-scale, similar to how they performed it, and a sub-sampling of 4:1 was also applied,

and formed an additional data set from these pixel values (each pixel is a feature). The

frequency was set to 364.4kHz, which is their throughput in terms of inference/second,

for comparison purposes only, even though the architecture could achieve a higher fre-

quency of operation. Considering their work implements a single chip for both data sets

and the proposal in this thesis implements an architecture per data set, the power and area

results presented from this thesis are from the worst-case scenario between both data sets.

However, the results in Table 6.3 referring to (KANG et al., 2018) do not mention how

much of the power dissipation is due to the RF kernel. It can be briefly inferred from the

share that the RF kernel occupies in the proposed chip, which is about 10%. Therefore,

a better power result of 0.71mW can be estimated instead of the 7.1mW reported in the

paper, but this is also a rough estimation since in-memory computing was applied in that

paper as well.

As mentioned in the previous paragraphs, the exact conditions of the previous

works could not be perfectly reproduced. For that reason, there is no guarantee that

the accuracy in the comparisons will be the same. Therefore, we had to resort to a fair

approximation based on model complexity (i.e., same tree depths, input quantization, and

number of trees). In doing so, we can safely assume that the power and energy results in

this proposal are similar to those obtained with an ideal comparison, i.e. same accuracy,

using the actual models presented by the related works.

Based on the results from Table 6.3, reduced energy/inference results are obtained

w.r.t. both implementations in (BUSCHJÄGER; MORIK, 2018) and the one in (KANG

et al., 2018). Despite the fact that the solution (BUSCHJÄGER; MORIK, 2018)-2 uses

significantly fewer LUTs and FFs, this is compensated through the use of 5 BRAMs as

reported in the table. Moreover, it is important to emphasize the fact that both solutions

use a Zedboard that contains both the Artix-7 FPGA and an ARM processor. Hence, part
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of the processing is also being performed in the ARM, which also can explain the low

area in terms of LUTs in solution 2.

Table 6.3: Comparison with related works. The operating frequencies of the architectures
from this thesis are set to equalize their throughput to the respective related work for DT
or RF

Work
(BUSCHJÄGER; MORIK, 2018)-1 (BUSCHJÄGER; MORIK, 2018)-2 This Work (KANG et al., 2018)∗ This Work†

Artix-7 65nm 65nmTechnology Artix-7 Artix-7
XC7A100T CMOS CMOS

Decision Tool DT DT DT RF RF
Frequency (MHz) 100 100 1.1 1000 0.3644

Inferences/s ≈ 1.1M ≈ 1.1M 1.1M 364.4k 364.4k
Power (mW) 23 8 0.07 0.71 0.073

Energy/Inference
(nJ/decision)

20.9 7.27 0.064 1.94 0.2

9606 LUTs 31 LUTs 3473 LUTsArea
3183 FF 64 FF, 5 BRAM 536 FF

0.1mm2 0.078mm2

∗estimated as 10% of the total power/energy/area
†worst-case power/area result of the 2 tested data sets

6.4 C2PAx

This section presents the results regarding the C2PAx proposal. The results are

divided in four parts: first, the C2PAx proposal defined in Section 5.2 is explored, w.r.t.

the DC (baseline) technique, in terms of their trade-offs between area and accuracy, as

well as their accuracy tuning granularity. Then, after demonstrating the best technique

to be further explored, C2PAx is analyzed in terms of energy consumption, area, and

accuracy, with the variations in maximum tree depth, for the four data sets, for the RFs

synthesized. C2PAx is also compared against the conventional model without any sort of

approximation, unchanged from the Scikit-Learn library. After that, the C2PAx proposal

is analyzed in terms of the critical path delay as a function of the step value. Finally, the

use of generic (non-mapped) synthesis is analyzed.

For the following analyses, as mentioned in Section 5.2, 10-bit comparators were

employed. For the DC method (baseline), DC values from 0 to 9 LSBs were tested. For

the C2PAx method, the step values of 1 to 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, and 200

were tested (along with the precise case with a step of 0). The analyses were conducted

considering only RFs (with 5 trees), given that this is the most generic scenario, with

maximum tree depths ranging from 6 to 10, considering the four data sets. This leads

to a total of 720 architectures synthesized for the evaluations. The frequency was set to

50MHz, which is a value that can encompass other scenarios besides only the wearable

contexts herein analyzed.
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6.4.1 Area-Accuracy Trade-offs of the Adjustment Techniques

This analysis compares the DC and C2PAx techniques in terms of the Pareto fron-

tier, to compare how they perform their area-accuracy trade-offs, for the four data set

considered. This analysis is presented in Figure 6.8, in which each blue triangle repre-

sents a different step configuration for C2PAx, and each orange square denotes a different

configuration of number of DC signals in the constants. The maximum tree depth was

fixed to 10 for this preliminary analysis, and the results are presented for the RF mod-

els only, given that this is the more generic case of a tree-based method. The remaining

analyses in the next sub-sections will present variations in the maximum tree depth.

Figure 6.8: Pareto fronts of every technique being analyzed, for the four data sets consid-
ered in this work. For this analysis, RFs with maximum tree depths of 10 were considered.
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This analysis only showed the points that surpass 50% of the maximum accuracy

achieved for each specific data set. This was chosen given that, below this limit, the DC

technique is the only one that is presented, as it severely harms the accuracy, and such low

accuracy values are not feasible for practical applications, given that such high accuracies

can be achieved, as presented in Figure 6.8.

Moreover, we can observe the varied ranges of accuracy between the different data

sets. For example, the Wearable data set presents accuracy values below 60%, whereas

the Wireless data set remains mostly above 85%. This is due to the fact that the data sets

have different numbers of output classes, as it was seen in Section 6.1, along with the

different number of features and samples provided by each data set.

As it can be seen, the C2PAx proposal seems to dominate the Pareto frontier (i.e.,

the Pareto curve crosses most of the points that use C2PAx) for every data set. In some

cases, it was not possible to find equivalent configurations in terms of accuracy for the

C2PAx and DC, given that DC significantly reduces the accuracy. However, it can be

noticed that the only values where the DC technique seems to obtain competitive results

with the C2PAx proposal are very close to the precise cases (upper left of each plot). In

such cases, the DC does not harm the applications that much. However, when the number

of LSBs to apply DC signals increases, the accuracy severely drops w.r.t. C2PAx.

Besides that, the fact that DC does not allow for a fine-grained analysis as in

C2PAx is another disadvantage. In this proposal, we can opt for any step value between

0 and 1023, whereas DC would only allow for values from 0 to 10. Therefore, C2PAx is

applicable to more systems with varied energy/area constraints.

Some specific points using C2PAx are out of the Pareto curve. These specific cases

may occur when modifications in the constants of the comparators may lead to a change

in the outcome of specific trees in the RF for several samples in the test set, resulting in a

change in the overall accuracy of the model.

6.4.2 C2PAx Area- and Energy-Accuracy Trade-offs

This next analysis presents the area- and energy-accuracy trade-offs of the C2PAx

technique. The curves for power savings versus accuracy are equivalent to the ones pre-

sented for energy savings versus accuracy, given that the clock frequency and throughput

of every kernel being compared are the same, i.e., one inference per cycle. We present

the analyses for RFs, for the four aforementioned data sets. Each of the plots contains the
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points for the five different maximum tree depths (from 6 to 10), and varying steps.

The first analysis defines the C2PAx technique as an approximation method re-

gardless of tree depth variation, and it is presented in Figure 6.9 (for area) and in Figure

6.10 (for energy). Therefore, for each tree depth (represented in different colors/markers),

the different approximation levels (using the aforementioned step values) are presented in

the respective line of that same color/marker. The points marked as a star (?) are used as

the starting point and denote the precise RF with a step of 0, for that specific tree depth.

The precise version for each tree depth (from 6 to 10) is used as the baseline for the

remaining points (i.e., with steps higher than 0) of that respective line.

Figure 6.9: Accuracy as a function of the area savings, for the four data sets employed
in this work, considering RFs with different levels of tree depth limitation. This analysis
considers the savings of the step configurations w.r.t. the precise configuration of their
respective depth.
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Considering Figure 6.9, in general, we observed well-behaved and expected curves

for all four data sets, in the sense that the accuracy does not seem to decay significantly

in points close to the precise ones. The points where the accuracy starts to severely drop

also depend on the data set being analyzed. In some cases, increasing the tree depth all

the way to 10 did not lead to significant improvements w.r.t. smaller tree depths, such as

in the Activities data set. However, the goal of this analysis is to verify the impacts of the

C2PAx technique under different tree depths. Therefore, the most relevant result in this

analysis is the relation between the baseline model (precise) of a specific depth and its



90

Figure 6.10: Accuracy as a function of the energy savings, for the four data sets employed
in this work, considering RFs with different levels of tree depth limitation. This analysis
considers the savings of the step configurations w.r.t. the precise configuration of their
respective depth.
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respective approximate points in the same line.

We can see that most curves seem to keep their accuracies similar to the baseline

ones for small step values, while significantly saving area. The C2PAx proposal only

seems to harm the accuracy results in larger step values, as expected. In these drastic

cases, the accuracy may even increase for some steps when compared to a previous adja-

cent step value, as it can be seen in Figure 6.9 in the RF for the Wearable data set, for a

tree depth of 7, in which the curve goes up in the rightmost point.

In some extreme scenarios, the accuracy of a point with a large step can even

surpass its respective baseline (?), such as in the Wireless data set for a tree depth of

7. This increase in accuracy with area savings of more than 50% may happen due to a

decrease in overfitting, i.e., the changes in the constants of the RF led to a better generality

of the model.

In general, the technique is clearly beneficial and presents high area savings for

negligible accuracy reductions in most scenarios, for slight variations in the step value.

For a tree depth of 10, we obtained area reductions of 25.88% with a negligible accuracy

drop of 0.86%, on average, for the data sets. For area reductions of about 34.46%, the

accuracy drops by only 2.92%, on average.
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The behavior of the C2PAx technique in terms of energy is presented in Figure

6.10. This analysis is similar to the previous one, as it uses the same baseline (precise

case ?). However, even though the savings are still significant, the results seem slightly

more irregular than the previous ones from Figure 6.9. This is due to two reasons: (i) we

used the area as an approximation metric, so the well-behaved scenarios in the previous

analysis are more expected, (ii) power estimation (which was required to obtain the energy

results) is not as easily determinable, as small variations in operators and in the inputs may

change the leakage and dynamic powers. Despite the odd behaviors, we still managed to

obtain significant energy savings with negligible accuracy drops.

The remaining set of results aims at analyzing the C2PAx proposal as a method

to be used to decrease energy as a replacement to the variation in maximum tree depth.

For example, if a designer were to use a precise version of this framework to decrease

power/energy (due to limited contraints of their system), they could opt to decrease the

maximum tree depth, as it would significantly reduce the number of comparators. How-

ever, using the C2PAx technique in varying degrees while maintaining the tree depth

could achieve more savings, for the same accuracy, when compared to decreasing the tree

depth.

Figure 6.11 presents this analysis for the area savings, for the four data sets, con-

sidering RFs. As it can be seen, for many cases, we can achieve larger savings for tree

depth xwith the C2PAx technique, with very similar or even higher accuracies when com-

pared to the precise scenarios with depth x − 1. This is clearly seen, for example, in the

RFs with a depth of 10 and 9 in the Wearable data set (purple and red lines, respectively).

Instead of decreasing the tree depth from 10 to 9 to increase the area savings, it is better to

apply the step technique and maintain the tree depth of 10, as there are points in the purple

line that surpass the baseline point of tree depth 9 in both accuracy and area savings.

In some even better scenarios, we can obtain savings better than two tree depths

below, as it can be seen from the RFs in the Wireless data set for a tree depth 9 (in red),

which has points with better values than the precise case of depth 7 (in orange). Therefore,

for most cases, the proposal is better than applying changes in the maximum tree depth of

the tree by a significant margin, in general.

The energy-accuracy plot in Figure 6.12 shows a similar behavior. For most con-

figurations, higher tree depths with the C2PAx technique can surpass precise smaller

depths in both accuracy and energy savings.
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Figure 6.11: Accuracy as a function of the area savings, for the four data sets employed
in this work, considering RFs with different levels of tree depth limitation. This analysis
considers the savings w.r.t. depth = 10.
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Figure 6.12: Accuracy as a function of the energy savings, for the four data sets employed
in this work, considering RFs with different levels of tree depth limitation. This analysis
considers the savings w.r.t. depth = 10.
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Figure 6.13: Critical path delay reduction w.r.t the precise model for different C2PAX
step values. This plot is presented for RFs of maximum tree depth of 10, which is the
worst-case scenario, averaged through all four data sets.
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6.4.3 Critical Path Delay

Analyzing the impact of the C2PAx technique in the critical path is also important.

Even though no stringent timing issues arise for this application (as wearable applications

considered in this work do not require high computing throughput), there might be specific

data sets for which higher clock frequencies are required. In these cases, decreasing the

critical path delay (CPD) is desired, given that there will be more room for increasing the

maximum clock frequency.

Figure 6.13 presents the decrease in the CPD as a function of the step, averaged

across the four data sets. This analysis was considered for the worst-case scenario only,

which is an RF configuration with a maximum tree depth of 10 (input width and number

of trees remained the same as in the previous analyses, 10 and 5, respectively), for the

maximum frequency of each step configuration.

To estimate the maximum frequency, we synthesize the architectures for a very

small period that will certainly be smaller than the CPD. After obtaining the difference

values from the synthesis tool (i.e., slack timing), we sum the absolute value of the slack

timing to the old period we synthesized it to, and perform the synthesis process again. The

slack timing refers to the difference between the target period and the arrival time. There-

fore, positive slack values denote a possibility to increase the frequency. The process goes

on until we obtain slack timings of 0 or very small positive values.

As it can be seen, the step always reduces the CPD, on average, when compared to

the baseline model of step 0. A decrease in the CPD is the most intuitive scenario, given

that the adjustment of the constants aims at decreasing the area of each comparator. This
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will lead to a higher probability of fewer gates being involved in the CPD.

On the other hand, some results present an average increase in the CPD when

compared to smaller step scenarios (higher than 0), even when we attempt to decrease the

comparator size. This behavior is mainly due to two reasons:

1) The constant comparator offline synthesis does not measure the exact timings required

for each comparator when we use them in the context of the overall RF accelerator. This

may be due to differences in the timing of the RF accelerator and the standalone com-

parator that may lead to different operators or due to different fanout configurations (the

standalone comparator synthesis is unaware of the number of gates to which it will be

connected in the decision paths);

2) The optimizations performed by the synthesis tool regarding redundancies removal

might lead to differences in the logic circuits of the comparators.

Although we attempt to remove some redundant comparators from the several

trees in the RF with the framework, as detailed in a previous work from the author

(ABREU; GRELLERT; BAMPI, 2022), most of it is still performed by the synthesis

tool. Hence, changing the comparators may not always lead to a decrease in the CPD.

6.4.4 Employing Generic Synthesis

The C2PAx technique is agnostic to the mapping and can be generically imple-

mented to any technology node. We demonstrated in the previous sub-sections the results

for a non-mapped comparators cost table to demonstrate this genericity.

The purpose of this analysis is to demonstrate that using the generic option is a

viable approach, as opposed to the more dedicated way of synthesizing and mapping the

isolated comparators for the specific standard-cells library. More specifically, in the non-

mapped scenario, we synthesize the isolated comparators without mapping (as was done

in the previous analyses) and apply the C2PAx technique – which analyzes comparators

in the vicinity of the precise one – to each comparator of the architectures being ana-

lyzed. This architecture is then synthesized and mapped to a standard-cells library so that

more precise area, power, and critical path delay results can be gathered. In the mapped

scenario, the difference is that we synthesize the isolated comparators mapping it to a

standard-cells library, and use these mapped results to estimate the constants to which the

comparisons will be adjusted by the C2PAx technique.

For this analysis, we only considered the C2PAx technique as well, given that
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the baseline DC technique does not rely on previous isolated synthesis – it delegates the

choice of operator directly to the synthesis tool.

This experiment was conducted for every tree depth as well. Considering that we

have a total of 26 different steps being tested (including the baseline with step 0), for RFs,

for the 5 different tree depths and the four data sets, we have a total of 390 architectures

tested with the mapped analysis.

It was found that only 28 out of the 390 architectures presented differences in

their synthesis results. Out of the 28 different results, 20 of them were from the Activities

data set, 4 from Wearable, and 4 from Wireless. These variations are due to small differ-

ences in the relations between the best comparators in both the mapped and non-mapped

approaches, which may manifest in specific comparisons. Besides the fact that there is

only a small number of different results, the differences in these results were negligible:

the maximum accuracy increase was 0.0183% for the mapped approach with an average

power increased by 0.35%, and area increased by 0.12%, when using the mapped ap-

proach. There were small variations in both power and area between these approaches,

depending on the specific tree-based configuration.

In addition to these negligible differences in accuracy, power, and area, using

mapped comparators is dependent on the results from the specific standard-cells library.

Therefore, for the sake of generality, the decision to use the non-mapped comparators is

the most suitable one, as it represents an insignificant difference.

6.5 DTs/RFs with Gate-Level Pruning

6.5.1 Indiscriminate Pruning

This section presents the synthesis results of the use of the indiscriminate pruning

technique from the AxLS tool (probprun) in the RF accelerators. For this thesis, it was

considered that the nodes are eliminated from the original netlist based on a percentage of

the total number of nodes. Pruning percentages from 0 to 100% were tested in steps of 1%.

A variation in the maximum tree depth was also considered, from 6 to 10. Considering

all the three data sets along with the variation in these other parameters, a total of 1515

architectures were synthesized. The frequency was set to 50MHz.

The first set of results is presented in Figure 6.14 and reveals the energy savings

as a function of the model accuracy, for the configurations tested. The power and en-
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Figure 6.14: Energy savings vs. inference accuracy, for the pruning levels tested, for
several tree depth limitations.
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ergy savings are the same, given that the operating frequency and the throughput do not

change. In the charts, the precise models are presented as a star (?). We can see that the

use of pruning at the netlist level allows us to obtain fine-grained approximations in the

architectures, generating a wide range of possible results in terms of the trade-off between

energy and accuracy.

Given that we are dealing with trade-offs, the most suitable solutions for a spe-
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cific system depend on the battery constraints and the accuracy drops tolerable. The area

results are omitted here, given that the plots would be almost redundant. However, some

slightly irregular behaviors occurred in the energy plot in Figure 6.14 (that did not occur

with the area), considering that some pruned models obtained results with higher energy

consumption when compared to the baseline precise models. This behavior only mani-

fests for small percentages of pruned nodes (it can be seen in the Activities data set for

a tree depth of 7, for instance), and it occurs due to the fact that the resynthesis of the

pruned netlist may slightly modify some gates of the architecture, and these changes may

lead to higher switching activities in these gates.

For every tree depth configuration of each application, the area and energy con-

sumption results were already zero before pruning 100% of the nodes. This is due to the

fact that the gates that led to the outputs were never the last ones to be pruned. Thus, even

though there are still gates instantiated in the pruned netlist, none of them connect to an

output, so the synthesis tool simplifies the circuit. In such cases, the accuracy is never

zero, given that the fixed values for the outputs also lead to a specific classification.

Table 6.4 presents the overall results under several target energy savings, from

10% to 80%, for the tree depths of 6 and 10, for simplification purposes. This analysis was

performed considering that different applications with different battery resources would

opt for different approximation levels. In this analysis, the data sets were averaged. The

baseline models for computing the energy and area savings, the accuracy losses, and the

slack increases were the precise models without any pruning applied.

The rows denoted as real savings are presented to verify the actual savings of the

approximate model that was the closest to the desired target energy savings. As it can be

seen, due to how fine-grained the pruning technique is, the real savings were always close

to the target savings. Moreover, these results could be even closer if we opted to prune

with a step smaller than 1% between the approximation levels.

We can see that the area savings are higher than the energy savings, in relative

terms. This is due to the fact that the AxLS tool prioritizes pruning in gates that have

the least switching activity, hence the impacts in power/energy are smaller. However, no

verification on the size of the gates is performed, so nodes of any size (small or large)

with small switching activity will be pruned, hence saving more relative area than energy.

The slack timing increases of the approximate solutions were also computed, for

the critical paths. As it can be seen, the slack timing, on average, were always increased

for these scenarios, in a rate similar to the energy and area savings.
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In general, we can obtain significant energy savings for small or negligible ac-

curacy drops. On average for all tree depths, we can reduce energy by about 20%, for

instance, for accuracy drops of only 0.68%. If we increase the energy savings constraints

for about 40%, accuracy losses are still below 4%, on average.

Table 6.4: Overall accuracy drops, area savings, and slack increases of the configurations
for several energy savings targets.

Target Energy Savings∗

10% 20% 30% 40% 50% 60% 70% 80%
Real Savings 10.31% 21.55% 32.14% 42.00% 50.10% 64.47% 72.32% 80.24%

Accuracy Loss 0.26% 0.55% 1.98% 3.47% 6.76% 11.05% 16.01% 20.32%
Area Savings 19.71% 27.55% 41.40% 50.06% 61.08% 72.36% 79.39% 86.99%

Tree Depth = 6

Slack Increase 9.54% 14.75% 20.61% 25.01% 33.49% 39.79% 45.73% 55.83%
Real Savings 10.71% 20.45% 30.85% 41.14% 54.44% 62.10% 70.80% 81.92%

Accuracy Loss 0.28% 0.81% 2.05% 4.20% 8.20% 10.52% 17.59% 22.74%
Area Savings 16.64% 26.71% 39.84% 50.34% 63.34% 69.60% 78.05% 86.98%

Tree Depth = 10

Slack Increase 24.08% 39.35% 62.92% 54.29% 80.71% 108.39% 138.41% 165.98%
∗The baseline configuration for savings calculation is the one without any pruning, for each respective tree depth.

The proposal of iterative pruning was also briefly analyzed. However, the results

did not differ significantly from the regular pruning approach. An enormous amount of

pruning iterations are possible, for each number of nodes that one initially desires to

prune. Hence, even though some specific combination of iterative pruning may present

better reductions w.r.t. to regular pruning, the exact combination is likely dependent on

the data set. Moreover, this would require an unfeasible amount of synthesis processes

to exhaustively analyze and find a combination with significant reductions. This was

not found for initial analyses performed with iterative pruning. For these reasons, this

approach was not deeply analyzed.

6.5.2 Hierarchical Pruning

This section presents the results for the hierarchical pruning approach in RF ac-

celerators, using the implemented framework. For this proposal, the nodes are also elimi-

nated based on a percentage of the total number of nodes, but this time the total number of

nodes is relative to each module. An analysis using the regular AxLS with indiscriminate

pruning was applied from 0% to 100% of the gates, in steps of 1%, to serve as a baseline

for comparison.

In order to allow for a very detailed analysis on the effects of using hierarchical

pruning by running several combinations, only the Activities and Wireless data sets are

presented in this analysis. For the hierarchical pruning, the three different modules were
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pruned from 0% to 100% in steps of 5% each. Additionally, to increase the analysis in

configurations with small pruning percentages, the grain of pruning for small percentages

was increased from 0% to 10% in steps of 1%.

The results of the RFs for both the Activities and Wireless data sets are presented

in Figure 6.15. Here, power savings are presented, but the energy savings are equivalent.

The baseline, in each scenario, is the configuration with 0% of pruning. The colored

triangles are the data in the Pareto curve.

Figure 6.15: Pruning results for both indiscriminate and hierarchical pruning of RFs for
the Activities and Wireless data sets.
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The results from Figure 6.15 clearly show the number of possibilities that can

be obtained with the hierarchical pruning. Furthermore, the results show that significant

savings can be obtained for the same accuracy w.r.t. the baseline model, especially in the
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range of about 50% and 70%, respectively, for both data sets, which is where the baseline

model starts to decay significantly.

It is important to notice that several points are in the lower portion of the plots,

indicating low accuracy for varied energy savings. It occurs in the RFs given that small

changes in the voter module can lead to the optimization of the rest of the circuit. Besides,

even for small pruning percentages in the voter, other prunings will have occurred in both

comparisons or AND/OR gates, which may be responsible for optimizing and pruning the

voter.

Overall, it is clear that the hierarchical pruning, besides having to test more points,

is more present in the Pareto curve when compared to the indiscriminate pruning. This is

clearly seen by the colors of the plots in the Pareto and their respective legends, as seen

in each plot. This pattern is maintained for both data sets. Even though the gains are

less significant for small pruning percentages (since most versions of the circuit are still

working properly), the smaller decay in the plot for the hierarchical pruning is evident for

both data sets. For the Activities data set, only two points of the Pareto curve are from the

indiscriminate pruning (selective disabled), and the Wireless data set has only five. The

remaining points are all combinations of pruning in the three different modules, which

shows that employing hierarchical pruning is a better alternative for DTs/RFs.

6.6 Approximations on MAJ-based Decision Trees and Random Forests

This section presents the results for the two approximation proposals presented in

Section 5.4, regarding MAJ-based DTs/RFs. The first proposal is the adaptation of the

C2PAx proposal for MAJ-based DTs/RFs, and the second one is a pruning analysis on

such models.

6.6.1 MAJ-based C2PAx

The C2PAx proposal for MAJ-based circuits was applied in two different ways.

As mentioned in Section 5.4, one can decide to either use the regular or the MAJ-based

table to change the constants of the comparators, and this analysis will show the effects

of applying each of them. The step values tested for each table were the same as the first

C2PAx analysis from Section 6.4: 1 to 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, and 200,
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along with the precise case with a step of 0.

The Pearson correlation coefficient between the two tables was calculated and the

value found was 93.04%. Hence, both tables present a very similar correlation, which

means that the change from a regular standard-cell netlist to a MAJ-based netlist in the

isolated comparators do not lead to significant relative changes in the cost of the com-

parators.

Figure 6.16 shows the comparison in terms of power-accuracy trade-offs between

the use of the two tables in MAJ-based DTs/RFs. The analysis is presented for the four

data sets, for RFs with 5 trees, with tree depths from 6 to 9. The baselines (i.e., the

configurations with a step of 0) are presented with a ?, just as in the analyses from Section

6.4. The results for the area-accuracy trade-offs are not presented here given that the plot

formats do not present any significant differences w.r.t. the power savings.

As it can be seen from Figure 6.16, aside from specific cases, applying either table

does not lead to significant changes in power savings. In these specific scenarios, both

solutions can achieve the best trade-offs. Hence, it can be concluded that, even though

applying a MAJ-based table for MAJ-based DTs/RFs can lead to slightly better results in

some points, maintaining a regular table for MAJ-based trees is still a good approach in

terms of the power-accuracy trade-off.

6.6.2 Gate-Level Pruning on MAJ-based DTs/RFs

The gate-level pruning exploration for MAJ-based circuits was analyzed similarly

to the results from Section 6.5.1. However, the pruning percentages used in this analysis

ranged from 0% to 100% in steps of 0.5%, instead of 1%, to show that the granularity of

the technique can be enhanced (limited by steps of a single gate).

The results are presented in Figure 6.17, for the four data sets, considering tree

depths from 6 to 9. The baseline points with 0% of pruning are represented as a ?. Just as

in the MAJ-based C2PAx analyses, the results are presented only for the power savings,

given that the curves of the area savings plots are very similar.

As shown in Figure 6.17, every data set presented expected curves, in the sense

that no abrupt decreases in accuracy are observed in points close to the baseline. Signifi-

cant power savings can be observed for every configuration, given that almost every curve

is approximately a straight line parallel to the x-axis (aside from wearable, which decays

slightly more with smaller pruning percentages w.r.t. the other data sets).
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Figure 6.16: Comparison between the C2PAx technique being applied in MAJ-based RFs
with regular and a MAJ-based table, in terms of power-accuracy trade-off. The compari-
son is shown for every tree depth, for the four data sets considered throughout the thesis.
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6.7 Chapter Summary

This chapter presented the main results and findings of the work developed so far,

for the frameworks regarding tree-based VLSI accelerators, comparator approximation,

and both indiscriminate and hierarchical gate-level pruning. Several analyses were per-

formed to verify the resource decrease when applying approximate computing in terms

of power-, energy-, and area-accuracy trade-offs. Limitations on resources were obtained

through quantization, constant approximation, gate-level pruning, and limitations in tree

depth and number of trees. Additionally, some analyses on critical path delay were also

presented in this chapter, to verify how these optimizations impact the maximum operat-
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Figure 6.17: Power-Accuracy trade-off results of applying pruning to MAJ-based RF
models, considering the four data sets, for tree depths of 6 to 9.
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ing frequency, when required. Lastly, results were presented regarding some approxima-

tions in MAJ-based DTs/RFs: adaptations in C2PAx and pruning for MAJ-based circuits.
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7 CONCLUSION

The work presented in this thesis led to important findings and contributions to

the field of power-efficient hardware architectures for machine learning. This chapter

concludes the report of the thesis, discussing the main contributions of each portion of the

work developed.

The claim of this thesis is related to showing that the use of frameworks for au-

tomatic generation of tree-based VLSI accelerators can ease the design space exploration

when searching for efficient solutions in terms of power efficiency. This thesis was split

into three main contributions developed: (i) the framework for automatically generating

tree-based VLSI accelerators; (ii) the approximation in the comparator operators; and

(iii) the use of indiscriminate and hierarchical gate-level pruning in tree-based models.

Additionally, some of the contributions are also extended for MAJ-based circuits, to ver-

ify whether they apply in the context of emerging technologies. Other alternative works

related to tree-based models were also developed during the doctorate period, not neces-

sarily related to power dissipation. These works include an analysis on IP security, and

the use of tree-based models for logic optimization, but these are not presented here given

that they are out of the scope of the thesis claims. Even so, all of the works developed here

(both the contributions aligned with the scope of this thesis and the alternative ones) make

the use of frameworks to ease the analysis, which shows the usefulness of automating the

design space exploration.

Section 5.1 presented the baseline framework for generating the VLSI accelerators

for DT and RF models. This framework allows for extensive design space explorations

to define the best possible configurations, allowing for the variation of tree depth, number

of trees, and quantization level. With that, several trade-off analyses were performed to

assess the advantages of the variation in each parameter w.r.t. power, energy, area, and ac-

curacy. This framework is made available for designers who seek to employ DT/RF accel-

erators, and is an important contribution to the scientific community to perform analyses,

comparisons and include new proposals within it.

A new method to approximate the comparators of tree-based models was proposed

in Section 5.2. This method is specific to comparators that employ explicit constants in

one of its operators. In order to verify the impacts of this proposal, it was implemented

and evaluated as an extension of the baseline framework, and compared to a more naïve

approximation method.
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Section 5.3 presented an implementation that merges DTs/RFs and indiscriminate

gate-level pruning. This proposal unifies the first framework developed along with an

existing tool denoted as AxLS, which approximates the netlist representation of the VLSI

descriptions generated by the framework. By automating the generations and pruning

configurations, designers can test several different levels of approximation and decide on

the best ones. Significant reductions in power, energy, and area were reported, with very

small or negligible losses in accuracy. Furthermore, this thesis also proposed the use of

hierarchical pruning, as an enhancement of tools such as AxLS. This allows for designers

to go even further beyond the limits of indiscriminate pruning, by allowing them to choose

the modules to prune.

Section 5.4 presents contributions regarding MAJ-based DTs/RFs, given that MAJ

and MIN gates are very convenient to be implemented in emerging technologies. Two

main analyses were presented: an adaptation of the C2PAx technique for MAJ-based

DTs/RFs, and an analysis of gate-level pruning in these MAJ-based accelerators.

Overall, the current findings, made possible by the use of the frameworks, are

related to the way that tree-based VLSI accelerators behave under different types of ap-

proximations (some of which are also proposed in this thesis), for several configurations.

This is of utmost importance given that tree-based models can be conveniently employed

when there are strict battery limitations that prohibit the use of more complex models.

Several future works are possible, also due to the fact that the frameworks contain-

ing the VLSI translator, the C2PAx implementation, and AxLS, have all been made avail-

able as open-source projects. Among the possibilities, one can opt to implement a DT/RF

generator with generic kernels, that have a fixed number of comparators and can work for

different data sets using the same VLSI implementation (using generic comparators in this

case). Other tree-based models aside from DTs and RFs can also be implemented, such

as the ones from the XGBoost framework, which has received significant attention lately.

Alternatively, one can opt to maintain the same dedicated implementations of the trees

as presented in this thesis, and apply approximate comparators, or modify the adjustment

of the constants performed by C2PAx based on some other heuristic (e.g., the step value

does not need to be a constant for the entire DT/RF). Other proposals for gate-level prun-

ing using heuristics other than just the standard probprun technique from AxLS can be

possible, such as prioritizing pruning when the gates are in the critical paths, or pruning

based on the gate fanout. All the available frameworks can be conveniently extended to

include other similar proposals.
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