

HOSPITAL DE CLÍNICAS DE PORTO ALEGRE PROGRAMA DE RESIDÊNCIA MÉDICA

ALANA MARIA SENA FERREIRA

MEDIDAS DE PREVENÇÃO AOS RISCOS DE EXPOSIÇÃO OCUPACIONAL A RADIAÇÕES IONIZANTES EM PROFISSIONAIS DE SAÚDE: UMA REVISÃO INTEGRATIVA DA LITERATURA.

ALANA MARIA SENA FERREIRA

MEDIDAS DE PREVENÇÃO AOS RISCOS DE EXPOSIÇÃO OCUPACIONAL A RADIAÇÕES IONIZANTES EM PROFISSIONAIS DE SAÚDE: UMA REVISÃO INTEGRATIVA DA LITERATURA.

Trabalho de Conclusão de Residência apresentado ao Programa de Residência Médica do Hospital de Clínicas de Porto Alegre como requisito parcial para a obtenção do título de especialista em Medicina do Trabalho.

Orientador(a): Dra. Maria Carlota Borba Brum

CIP - Catalogação na Publicação

Sena Ferreira, Alana Maria
MEDIDAS DE PREVENÇÃO AOS RISCOS DE EXPOSIÇÃO
OCUPACIONAL A RADIAÇÕES IONIZANTES EM PROFISSIONAIS DE
SAUDE: UMA REVISÃO INTEGRATIVA DA LITERATURA. /
Alana Maria Sena Ferreira. -- 2023.
27 f

Orientador: Maria Carlota Borba Brum.

Trabalho de conclusão de curso (Especialização) -- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Medicina do Trabalho, Porto Alegre, BR-RS, 2023.

1. Segurança radiológica. 2. Radiologia intervencionista. 3. Medidas preventivas. I. Borba Brum, Maria Carlota, orient. II. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os dados fornecidos pelo(a) autor(a).

MEDIDAS DE PREVENÇÃO AOS RISCOS DE EXPOSIÇÃO OCUPACIONAL A RADIAÇÕES IONIZANTES EM PROFISSIONAIS DE SAÚDE: UMA REVISÃO INTEGRATIVA DA LITERATURA.

RESUMO

Este estudo apresenta uma revisão sistemática tipo integrativa sobre as medidas preventivas para redução dos riscos de exposição a radiações ionizantes no individuo ocupacionalmente exposto. A exposição a radiações ionizantes na medicina e em outras áreas da saúde é uma preocupação devido aos riscos potenciais à saúde humana. A fim de mitigar esses riscos, diversas estratégias de radioproteção têm sido desenvolvidas e aprimoradas. A utilização de aventais plumbíferos e protetores de tireoide durante exames radiológicos é uma medida padrão de proteção que ajuda a reduzir a dose de radiação absorvida pelos profissionais de saúde. Além disso, técnicas de redução de dose, como limitação do campo de exame e dose modulada, têm sido amplamente empregadas para minimizar a exposição desnecessária. O uso de tecnologias avançadas de imagem tem permitido a obtenção de imagens de alta qualidade com doses menores de radiação, tornando-se uma opção mais segura para a prática médica. A adoção de protocolos clínicos padronizados também tem contribuído para a otimização da exposição à radiação. Além das medidas técnicas, a educação e treinamento adequados de profissionais de saúde em radioproteção são fundamentais para garantir a segurança na utilização de radiações ionizantes. Em conclusão, a revisão sistemática destaca a importância dessas medidas preventivas para redução dos riscos de exposição a radiações ionizantes. A implementação de práticas de radioproteção adequadas, o uso de tecnologias avançadas e o treinamento de profissionais são fundamentais para garantir a segurança e eficácia dos procedimentos médicos envolvendo radiações ionizantes. Essas medidas contribuem para proteger a saúde dos profissionais de saúde, assegurando uma prática médica mais segura e responsável.

Palavras Chave: Radiação ionizante; Riscos; Exposição ocupacional; Radiologia Intervencionista; Trabalhadores; Proteção radiológica.

SUMÁRIO

1.	INTRODUÇAO	05
	1.1 Justificativa	06
	1.2 Objetivo geral	06
2.	METODOLOGIA	07
3.	RESULTADOS	08
4.	REVISÃO DA LITERATURA	14
	4.1 Radiação ionizante ocupacional	14
5.	DISCUSSÃO	15
	5.1 Segurança radiológica	15
	5.2 Proteção radiológica no Brasil	16
	5.3 Proteção radiológica no mundo	18
	5.4 Radiologia Intervencionista	19
	5.5 Estimativa de exposição na pratica médica	20
	5.6 Estratégias de radioproteção para reduzir os riscos	22
	5.7 Novas medidas preventivas	24
6.	CONSIDERAÇÕES FINAIS	27
7.	REFERÊNCIAS BIBLIOGRÁFICAS	28

INTRODUÇÃO

A radiação possui inúmeros benefícios para a área da saúde, contudo, pode ser demasiadamente prejudicial, pois, quando utilizada de forma incorreta pode trazer efeitos irreparáveis quando o trabalhador é exposto sem a proteção radiológica necessária, deste modo, se faz necessário que o profissional esteja capacitado para trabalhar na área que tenha exposição, praticando todas as medidas de proteção radiológica nas quais são imprescindíveis para a prevenção de sérios danos a sua saúde (Gomes, Júnior, 2015).

Este artigo aborda a importância das medidas preventivas para reduzir os riscos de exposição a radiações ionizantes na área da medicina. As radiações ionizantes são amplamente utilizadas em procedimentos médicos, como radiografias, tomografias computadorizadas e tratamentos de radioterapia, devido à sua capacidade de diagnóstico e tratamento de várias condições de saúde (Gomes, Júnior, 2016).

No entanto, a exposição excessiva a essas radiações pode representar um risco significativo à saúde dos profissionais e do público em geral. Portanto, a implementação de medidas preventivas adequadas é essencial para minimizar esses riscos (Alves, 2016).

Justifica- se no presente estudo, onde verificamos a importância do uso correto dessas medidas preventivas dos riscos das radiações, onde por muitas vezes, a equipe não está praticando as formas para prevenir os riscos à saúde. Deste modo, houve a necessidade de um estudo a partir do presente tema, para que consiga buscar evidenciar os possíveis danos à saúde do trabalhador, conduzindo as ações com respaldo científico e técnico.

O artigo discute diversas estratégias preventivas, incluindo a adoção de práticas de radioproteção, como a utilização de aventais plumbíferos e protetores de tireoide durante exames radiológicos. Além disso, destaca a importância do uso criterioso de exames de imagem, evitando a repetição desnecessária de exames e a escolha de alternativas com menor exposição à radiação, sempre que possível.

Outra medida preventiva abordada no artigo é a educação e treinamento adequados dos profissionais de saúde, capacitando-os a utilizar as técnicas de

radiologia com segurança e a conscientizar sobre os benefícios e riscos dos exames radiológicos. O uso de tecnologias avançadas de imagem, que proporcionam imagens de alta qualidade com menor dose de radiação, também é mencionado como uma estratégia promissora para reduzir a exposição.

Além disso, o artigo demonstra a importância da implementação de protocolos de controle de qualidade e auditorias regulares para garantir a conformidade com as práticas de segurança e a otimização do uso de radiação.

JUSTIFICATIVA

Avaliar as medidas de prevenção atuais existentes contra a exposição as radiações ionizantes no individuo ocupacionalmente exposto.

OBJETIVO

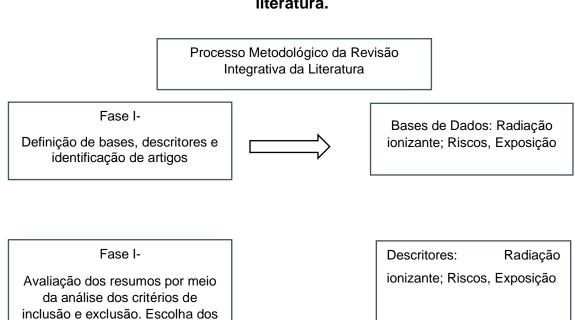
O objetivo do presente estudo é pesquisar por meio da literatura pertinente as medidas preventivas aos riscos de exposição à radiação ionizante para os profissionais de saúde ocupacionalmente expostos, para compreender os fundamentos da radiação ocupacional e avaliar melhor a importância da criação das leis, medidas de segurança e proteção.

METODOLOGIA

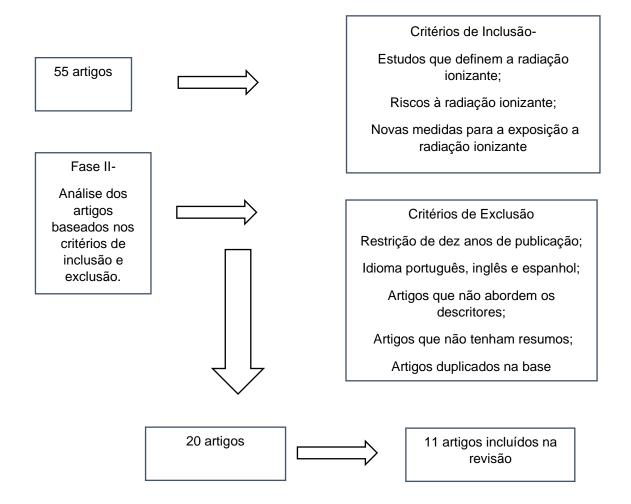
O presente estudo é uma revisão bibliográfica de literatura realizada a partir da busca na base de dados da Scielo (*Scientific Eletronic Library Online*), no site do Ministério da Saúde, INCA (Instituto Nacional do Câncer) e Redalyc (Rede de Revistas Científicas de América Latina y el Caribe), PubMed, com os seguintes Descritores em Ciências da Saúde (DeCs): Radiação ionizante; Riscos, Exposição.

O estudo foi conduzido em três fases. Na fase 1 definimos a problemática e a hipótese do estudo, que se trata de investigar as medidas preventivas aos riscos de exposição à radiação ionizante. Na fase 2, definimos as bases de

pesquisa, os descritores em saúde e elegemos os potenciais estudos que utilizaríamos, de acordo com os critérios de inclusão escolhidos, que foram os estudos que definiam conceitualmente riscos de exposição à radiação ionizante. Adotamos como critérios de inclusão a restrição de dez anos de publicação e os idiomas português, inglês e espanhol para melhor entendimento dos profissionais da saúde. Foram excluídos, também, os artigos que não abordavam os descritores e artigos duplicados na base.


A pesquisa bibliográfica foi realizada entre abril e maio de 2023. Foram encontrados seguindo os DeCS: Radiação ionizante; Riscos, Exposição ocupacional, medicina radiológica, um total de189 artigos, dissertações e/ ou teses na base de dados, onde 60 foram do Scielo, no site do Ministério da Saúde 35 publicações, INCA 30 publicações, Lilasc 20 publicações, Pub Med 20 publicações e Redalyc 24 publicações. Na fase 3, avaliamos minuciosamente os artigos selecionados, onde de acordo com os critérios foram eleitos 55 artigos para leitura e foram selecionados 11 para levantamento e escrita do presente trabalho.

RESULTADOS


artigos potencialmente elegíveis para inclusão na revisão.

A Figura 1 apresenta o processo de levantamento bibliográfico e a seleção dos artigos. Optou-se por apresentar os dados ao longo do estudo em tabelas descritivas.

Figura 1: Fluxograma do processo de revisão integrativa da literatura.

A maior proporção dos artigos (27,3%) foi publicada a partir do ano de 2014. Os principais resultados sugerem supervisão e conscientização para as novas medidas preventivas aos riscos de exposição à radiação ionizante.

Quadro 1. Identificação dos artigos, conforme título, autor (es), objetivo (s), metodologia, principais resultados, ano de publicação.

Título do Artigo/	Autores	Objetivo	Principais Resultados	Ano
Título do Periódico				
5 . ~	Oliveira,	Analisar os métodos	A realização da	2022
Proteção	Ferreira,	de proteção em	supervisão de	
Radiológica De	Maia	relação à alta dose	radioproteção é	
Pacientes E		de radiação	essencial dentro da	

		utilizadas pelos	radiologia	
Profissionais Da		profissionais da	intervencionista, o	
Radiologia		radiologia	ambiente de trabalho	
Intervencionista		intervencionista.	estar em conformidade	
Intervencionista			com os requisitos	
			exigidos pela Portaria	
			SVS/MS n° 453.	
Proteção	Gomes,	Enfatizar a	Neste caso,	2016
Radiológica Dos	Júnior	importância do uso	conscientização é a	
Trabalhadores		adequado dos	palavra-chave deste	
Expostos À		equipamentos de	estudo para deixar	
Radiação Ionizante		proteção radiológica,	claro que a segurança	
		os riscos aos quais	é muito importante, e	
		os profissionais são	que a radiação ao	
		submetidos ao	mesmo tempo em que	
		trabalhar sem	pode ser benéfica,	
		proteção.	pode ser também	
			altamente prejudicial	
			se utilizada de maneira	
			indevida.	
Incentivando A	Silva et al	Incentivar os	Com esse projeto	2013
Prática Da		estudantes a refletir	houve uma	
Radioproteção		sobre a proteção	conscientização, tanto	
		radiológica de si, dos	dos alunos, quanto dos	
		pacientes e do	instrutores de estágio	
		ambiente	que acompanham o dia	
			a dia dos alunos e dos	
			próprios colegas de	
			profissão.	
Proteção radiológica	Alves et al	Avaliar o	Observou-se que todos	2016
conhecimento e		conhecimento de	os profissionais	
métodos dos cirurgiões-dentistas		cirurgiões-dentistas	mostraram	
chargioco deritiotas		da cidade de Patos-	preocupação em	
		PB acerca da	relação à	
		biossegurança em	radioproteção e que	
		radiologia	buscavam realizar os	
		odontológica e	exames radiográficos	
		métodos de proteção	seguindo os princípios	
		utilizados.	de cada técnica	
1			radiográfica a fim de se	

			ovitor a rapatição dos	
			evitar a repetição das	
			mesmas. Para	
			proteção do paciente, a	
			maioria relatou utilizar	
			avental de chumbo,	
			incluindo protetor de	
			tireóide, além de	
			reduzir o tempo de	
			exposição. Acerca da	
			proteção própria, a	
			maior parte afirmou	
			possuir paredes com	
			revestimento de	
			chumbo.	
	Borges et al	Sintetizar a melhor	Durante toda a vida os	2015
Proteção		evidência possível	seres humanos estão	
Radiológica Para		sobre os riscos	expostos diariamente	
Profissionais Da		provenientes da	aos efeitos da	
FIOIISSIONAIS DA		radiação aos	radiação, sendo natural	
Saúde		profissionais dessa	ou artificial. Quanto à	
		área. Informar sobre	proteção, pouco pode	
		os EPI's necessários	fazer para reduzir os	
		para a prevenção da	efeitos das de origem	
		radiação, e as	natural, porem para as	
		possíveis	fontes artificiais todo	
		consequências de		
		excesso de tempo de	direcionado a fim de	
		trabalho nessa área.	controlar seus efeitos.	
		tiabalilo fiessa area.	É nesse momento que	
			a proteção radiológica	
			. ,	
			tem seu papel mais	
Drograma D-	Oliveiro	Vorificar co resis	importante.	2042
Programa De	Oliveira	Verificar as reais	Os resultados	2013
Capacitação E		condições de	encontrados nesta	
Especialização		formação dos	pesquisa delinearam a	
Técnica Em		Técnicos em	criação de um curso de	
Proteção		Radiologia, em	especialização técnica	
Radiológica Para		relação ao	em radioproteção, que	
Profisionais Em		conhecimento sobre	faz parte do quadro	
Radiologia Médica		Radioproteção no	permanente de curso	

		compo do Dodistasis	do Coclo Dellissania	
		campo da Radiologia	da Escola Politécnica	
		Médica Diagnóstica.	de Saúde Joaquim	
			Venâncio da	
			FIOCRUZ, resolvendo,	
			parcialmente, um dos	
			problemas apontados	
			hoje pelos órgãos de	
			fiscalização sanitária,	
			que é a falta de	
			profissional	
			especializado	
Percepção referente	Sampaio	Realizar o estudo	Os resultados serão	2019
ao risco de	·	sobre esta	obtidos por um	
exposição à radiação		problemática do risco	questionário que	
ionizante: Análise		ocupacional à	aborda as várias	
efetuada nos		exposição de	características da	
exames		radiação deste posto	população.	
transportáveis		de trabalho que	população	
realizados pelos		pressupõe uma		
técnicos de		presença próxima do		
		técnico		
radiologia	Duo el -		A avmas!=== > == P===	2047
Exposição	Prado	Identificar a	A exposição à radiação	2017
ocupacional à		percepção da equipe	foi relacionada pelos	
radiação ionizante		de enfermagem	participantes, com a	
pela equipe de		atuante em um	assistência ao paciente	
enfermagem.		serviço de	no ato do exame, em	
		diagnóstico por	que sete participantes	
		imagem hospitalar	referiram já atuar sem	
		sobre os riscos	os equipamentos de	
		ocupacionais e as	proteção em alguma	
		formas de prevenção	situação específica,	
		da exposição	condicionada às	
		causadas pela	intercorrências, e três	
		radiação ionizante	sem o uso de	
			dosímetro. A	
			realização de	
			capacitações foi	
			descrita como	
			importante para todos.	
Normatização e	Levi	Analisar o potencial	Acreditamos que o	2015
unificação dos		1, - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	1	_

programas de proteção radiológica:		das Tecnologias da Informação e	potencial das TIC contribuirá largamente	
monitoramento das radiações ionizantes		Comunicação (TIC)	para a disseminação	
e sua otimização		como ferramenta	da informação para as	
		para a comunicação	instalações radiativas,	
		e disseminação do	estimulando o	
		conhecimento em	desenvolvimento neste	
		Proteção Radiológica	país de grandes	
		1 Totoquo Ttadiologica	extensões territoriais,	
			onde permanece um	
			desafio oferecer o	
			acesso à informação	
			ao maior número de	
			pessoas possível,	
			minimizando custos e	
			maximizando	
			resultados	
Occupational	Portela et al	Occupational	The occupational	2022
exposure in the work		exposure in the work	exposure related the	
process of radiology technologists with		process of radiology	factors, distance, time	
68Ga-labeled		technologists with	and shielding. Thus, it	
radiopharmaceuticals		68Ga-labeled	was observed high	
		radiopharmaceuticals	times during handling	
		·	of the material, small	
			distances between	
			sources and	
			radiosensitive	
			structures, such as the	
			eye lens and the	
			thyroid gland. It is	
			recommended to	
			reassess and	
			standardize the work,	
			once that critical	
			moments should not be	
			restricted only to	
			dosimetric reading.	
Occupational	D Adliene	Reconstruction and	Doses to radiology	2020
radiation exposure of health professionals		analysis of low doses	technologists and	
and cancer risk		received by the	radiology nurses were	
assessment for				

Lithuanian nuclear	occupationally		found to be highest
medicine workers	exposed	medical	over the years.
	radiation work	kers.	However, their annual
			doses never exceeded
			dose limit of 20 mSv
			and were following the
			same decreasing
			tendency as the doses
			of other personnel.

REVISÃO DA LITERATURA

Radiação Ionizante Ocupacional

A descoberta do raio-X ocorreu no ano de 1895 pelo pesquisador Wilhelm Conrad, este importante exame diagnóstico para a saúde permite especificamente na área da radiologia detectar doenças e tratamentos por imagem. (Soares; Pereira; Flôr; 2011).

Na Europa e nos Estados Unidos, existem o enquadramento legal adequado para o uso de radiação ionizante, contudo, na América Latina geralmente não há um especifico que regularize o uso seguro das radiações ionizantes na Medicina. A partir do conhecimento sobre os procedimentos intervencionistas que podem implicar em altas doses de radiação ao operador e o paciente, levou algumas organizações internacionais a publicarem recomendações sobre os altos padrões de segurança.

Portanto, a Diretiva da União Europeia 97/43 a Euratom estabelece os requisitos para a radiação médica intervencionista. Guia Publicado pela Comissão Europeia para fins de educação sobre proteção contra radiação médica, também inclui recomendações de programas de treinamento e acreditação para proteger trabalhadores, pacientes, público em geral e o meio ambiente dos efeitos nocivos da radiação ionizante, é fundamental adotar medidas preventivas eficazes (Levi, 2015).

A exposição ocupacional à radiação ocorre em uma variedade de contextos, desde profissionais de saúde que utilizam raios-X e técnicas de imagem para diagnóstico e tratamento (Silva, 2013).

É importante entender os efeitos potenciais da exposição à radiação. Esses efeitos podem ser agrupados em dois tipos principais: efeitos determinísticos e efeitos estocásticos. Efeitos determinísticos são aqueles que têm uma relação direta com a dose de radiação recebida, como queimaduras de radiação agudas e síndrome de radiação aguda. Esses efeitos têm um limiar de dose, abaixo do qual não ocorrem. Efeitos estocásticos, por outro lado, são aqueles que podem ocorrer aleatoriamente, como o desenvolvimento de câncer e outras doenças genéticas (Tauhata et al, 2013).

Diversas organizações internacionais estabeleceram diretrizes regulamentações garantir dos trabalhadores para а segurança ocupacionalmente expostos à radiação. Entre essas organizações, destacamse a Comissão Internacional de Proteção Radiológica (ICRP), a Agência Internacional de Energia Atômica (IAEA) e o Conselho Nacional de Proteção Radiológica (NCRP), que fornecem orientações sobre limites de dose aceitáveis, métodos de monitoramento e práticas de proteção (Tauhata et al, 2013).

DISCUSSÃO

Segurança Radiológica

A segurança radiológica na área médica é uma parte essencial da prática médica moderna, que utiliza radiações ionizantes para o diagnóstico e tratamento de várias condições de saúde. Garantir a segurança dos profissionais de saúde e do público em geral é uma prioridade absoluta nesse campo. Neste artigo, vamos discutir a situação da segurança radiológica na área médica no Brasil e no mundo, destacando as regulamentações, práticas e desafios enfrentados (BORGES et al, 2015).

O foco principal da segurança radiológica na área médica é reduzir ao mínimo os riscos associados à exposição à radiação ionizante. Essa exposição pode

ocorrer em várias práticas médicas, como radiografias, tomografias computadorizadas (TC), medicina nuclear e radioterapia (CNEN, 2020).

É importante salientar que as leis e regulamentações relacionadas à segurança radiológica podem ser atualizadas e modificadas ao longo do tempo para acompanhar as mudanças na tecnologia, nas práticas médicas e nas diretrizes internacionais de segurança radiológica. Portanto, é essencial consultar as versões mais recentes dessas leis e regulamentações para garantir conformidade com os padrões atuais de segurança radiológica no Brasil. A Comissão Nacional de Energia Nuclear (CNEN) é a principal autoridade reguladora nessa área e tem a responsabilidade de emitir e atualizar regulamentos relacionados à segurança radiológica no país (CNEN, 2020).

Os principais objetivos da CNEN são garantir a segurança do paciente e proteção do profissional de saúde minimizando a exposição de todos envolvidos ou não diretamente ao procedimento (CNEN, 2020).

Proteção Radiológica no Brasil

No Brasil a proteção radiológica médica é regulamentada pela comissão nacional de energia nuclear (CNEN) e pela Agência nacional de vigilância sanitária (ANVISA). Essas agências estabelecem diretrizes para operação segura de equipamentos radiológicos, a qualificação de profissionais de radiologia, o registro de serviços de radiologia, e a avaliação da dose de radiação recebida pelos pacientes. Além disso, o conselho federal de medicina (CFM) estabelece diretrizes especificas para pratica da radiologia médica, incluindo critérios para a prescrição de exames com exposição e a formação de médicos na área. A proteção radiológica no Brasil é regulamentada por várias leis. Os principais marcos legais e regulatórios relacionados à proteção radiológica no Brasil (CNEN, 2020):

- 1. Lei nº 4.118/1962: Esta lei estabeleceu as bases para o exercício da profissão de Técnico em Radiologia e regulamentou as atividades relacionadas à radiologia no país. Ela define as atribuições e responsabilidades dos profissionais que lidam com radiações ionizantes.
- 2. Lei nº 6.839/1980: Essa lei dispõe sobre o registro de empresas nas entidades fiscalizadoras do exercício profissional e estabelece as

responsabilidades das entidades de classe na regulamentação das profissões. Isso inclui a regulamentação das atividades relacionadas à radiologia.

- 3. Lei nº 10.826/2003: Embora não seja especificamente sobre proteção radiológica, essa lei regulamenta a posse e o registro de armas de fogo no Brasil, o que inclui a radiografia para fins de balística forense. Isso tem implicações na gestão das radiações ionizantes.
- 4. Resolução CNEN-6/2019: A Comissão Nacional de Energia Nuclear (CNEN) é a principal agência reguladora da proteção radiológica no Brasil. A Resolução CNEN-6 estabelece as diretrizes básicas de proteção radiológica, abrangendo desde a radiologia diagnóstica até a radioterapia. Ela define limites de dose, requisitos de segurança e qualificações necessárias para profissionais envolvidos com radiações ionizantes.
- 5. Resolução CNEN-8/2011: Essa resolução da CNEN trata especificamente dos requisitos de radioproteção e segurança em radioterapia. Ela estabelece padrões rigorosos para garantir a segurança dos pacientes e dos profissionais envolvidos em tratamentos de radioterapia.
- 6. Portaria MS/SVS nº 453/1998: Esta portaria do Ministério da Saúde estabelece diretrizes de proteção radiológica para radiodiagnóstico médico e odontológico. Ela define requisitos técnicos, de qualificação profissional e de segurança para clínicas e serviços de radiologia.
- 7. Portaria MS/SVS nº 453/2001: Esta é uma atualização da Portaria MS/SVS nº 453/1998, com inclusão de requisitos adicionais relacionados à proteção radiológica em serviços de radiodiagnóstico. Ela visa aprimorar ainda mais a segurança nas instalações de radiologia.
- 8. Portaria MS/SVS nº 453/2013: Outra atualização da Portaria MS/SVS nº 453/1998, incorporando novos requisitos e diretrizes para a radiologia médica. Essas atualizações visam manter os padrões de segurança em conformidade com os avanços tecnológicos e as melhores práticas internacionais.

No geral, essas leis, resoluções e portarias estabelecem um quadro regulatório robusto para a proteção radiológica no Brasil, englobando diversas áreas de aplicação das radiações ionizantes e garantindo a segurança dos profissionais e do público em geral. A CNEN desempenha um papel fundamental na fiscalização e regulamentação dessas atividades em todo o país.

Proteção Radiológica no Mundo

A proteção radiológica médica é uma preocupação global, e muitos países têm regulamentações e órgãos reguladores semelhantes aos do Brasil. A Agência Internacional de Energia Atômica (AIEA) desempenha um papel importante na promoção de padrões internacionais para a proteção radiológica (AIEA, 2006). A proteção radiológica no mundo é regida por uma série de padrões internacionais e diretrizes emitidos por organizações e agências globais. Os principais pontos de referência e regulamentações relacionadas à proteção radiológica em nível internacional incluem (AIEA, 2006):

- 1. Agência Internacional de Energia Atômica: é a principal agência das Nações Unidas responsável por questões nucleares e radiológicas. Ela emite diretrizes e padrões internacionais em proteção radiológica e segurança nuclear. A AIEA promove o uso seguro e responsável da tecnologia nuclear em todo o mundo.
- 2. Comissão Internacional de Proteção Radiológica (ICRP): A ICRP é uma organização internacional independente que desenvolve recomendações para a proteção radiológica. Suas recomendações são amplamente aceitas em todo o mundo e servem como base para a elaboração de regulamentações nacionais.
- 3. Diretrizes da Comunidade Europeia: A União Europeia estabelece diretrizes e regulamentos específicos em matéria de proteção radiológica, abrangendo desde a exposição ocupacional até a exposição médica e a proteção do público em geral.
- 4. Diretrizes da Agência de Proteção Ambiental dos Estados Unidos (EPA): Os Estados Unidos têm sua própria agência reguladora, a EPA, que emite diretrizes e regulamentos relacionados à proteção radiológica ambiental, que inclui a proteção da população e do meio ambiente contra a exposição à radiação.
- 5. Organização Mundial da Saúde (OMS): A OMS desempenha um papel na promoção da proteção radiológica no contexto da saúde pública. Ela emite diretrizes e fornece orientações sobre a exposição médica à radiação, particularmente em diagnóstico por imagem.

- 6. Normas Internacionais de Segurança Nuclear (NSS): A AIEA desenvolve normas internacionais de segurança nuclear que abrangem a proteção radiológica em várias áreas, incluindo a operação segura de instalações nucleares e a gestão de resíduos radioativos.
- 7. Convenção Conjunta sobre Segurança da Gestão de Combustíveis Usados e Resíduos Radioativos: Esta convenção, também da AIEA, estabelece padrões para a gestão segura de combustíveis usados e resíduos radioativos.
- 8.Regulamentações nacionais: Cada país tem suas próprias regulamentações e agências responsáveis pela proteção radiológica. Essas regulamentações devem estar em conformidade com as normas internacionais, como as emitidas pela AIEA e pela ICRP.

É importante observar que, embora existam regulamentações e diretrizes internacionais, a implementação e a aplicação específicas podem variar de país para país. No entanto, a colaboração internacional e o compartilhamento de melhores práticas desempenham um papel fundamental na promoção da segurança e da proteção radiológica em todo o mundo. Profissionais de saúde, cientistas nucleares, reguladores e organizações internacionais trabalham juntos para garantir que a exposição à radiação seja mantida em níveis seguros e que a tecnologia nuclear seja usada de maneira responsável (Moura, 2019).

A proteção radiológica médica é essencial para garantir que os benefícios dos procedimentos médicos envolvendo radiação superem os riscos. Tanto no Brasil quanto no mundo, regulamentações rigorosas, treinamento adequado e consciência pública são fundamentais para alcançar esse objetivo. À medida que a tecnologia avança, a proteção radiológica deve evoluir para garantir que a saúde de todos os envolvidos seja preservada (Moura, 2019).

Radiologia Intervencionista

A radiologia intervencionista desempenha um papel fundamental no diagnóstico e tratamento de uma ampla gama de condições médicas. Os profissionais que trabalham na radiologia intervencionista estão sujeitos a uma

série de riscos e potenciais consequências devido à exposição à radiação ionizante. Essas consequências podem variar de leves a graves, dependendo da quantidade de exposição e da falta de medidas de proteção adequadas. Algumas das principais consequências para os profissionais que trabalham na radiologia intervencionista incluem (Moura, 2019):

- 1. Efeitos Agudos na Pele: A exposição aguda e intensa à radiação pode causar eritema (vermelhidão) e queimaduras na pele, conhecidas como radiodermite. Esses efeitos podem ser dolorosos e exigir tratamento médico.
- 2. Catarata Ocular: A exposição crônica à radiação ionizante sem proteção ocular adequada pode aumentar o risco de desenvolvimento de catarata nos olhos dos profissionais. A catarata pode levar à perda de visão se não for tratada.
- 3. Danos ao DNA: A radiação ionizante tem a capacidade de causar danos no DNA das células, o que pode levar a mutações genéticas e possivelmente contribuir para o desenvolvimento de câncer em longo prazo.
- 4. Problemas de Saúde a Longo Prazo: A exposição crônica à radiação sem medidas adequadas de proteção pode levar a problemas de saúde a longo prazo, incluindo doenças cardiovasculares, distúrbios sanguíneos e outros.
- 5. Fertilidade e Problemas Reprodutivos: A radiação também pode afetar a fertilidade e levar a problemas reprodutivos em homens e mulheres expostos, incluindo a diminuição da contagem de espermatozoides e complicações na gravidez.

É importante ressaltar que muitas dessas consequências podem ser evitadas ou minimizadas através do uso adequado de equipamentos de proteção individual (EPI), como aventais plumbíferos, óculos de proteção e luvas, bem como a aplicação de práticas de otimização de dose e monitoramento de exposição à radiação, a conscientização no numero de procedimentos X os riscos possíveis. Além disso, o treinamento adequado em proteção radiológica e a adesão às regulamentações e diretrizes de segurança são fundamentais para mitigar os riscos associados ao trabalho na radiologia intervencionista (Moura, 2019).

Estimativa de Exposição à radiação na Prática Médica

A estimativa da exposição à radiação na prática médica é uma preocupação importante, pois o uso de radiações ionizantes em procedimentos médicos pode expor pacientes e profissionais de saúde a doses variáveis de radiação. Essa exposição pode ter consequências para a saúde, tornando essencial a realização de estimativas precisas e a adoção de medidas preventivas (EPA, 2015).

A dosimetria é fundamental para monitorar a dose de radiação recebida por indivíduos expostos. Avanços recentes na tecnologia dosímetros permitem uma avaliação mais precisa da dose absorvida em diferentes órgãos e tecidos. A implementação de dosímetros mais sensíveis e específicos pode ajudar a identificar áreas de maior exposição e possibilitar ajustes nas práticas de trabalho para reduzir a dose recebida (Tauhata et al, 2013):

Para realizar uma estimativa da exposição à radiação na prática médica, é necessário considerar diversos fatores, tais como:

- 1.Tipo de Procedimento: Diferentes procedimentos médicos envolvem diferentes níveis de exposição à radiação. Por exemplo, exames de raios-X, tomografias computadorizadas e procedimentos de radioterapia apresentam níveis distintos de radiação ionizante.
- 2. Dose de Radiação: Cada procedimento emite uma dose específica de radiação, que é medida em unidades como miligrays (mGy) ou milisieverts (mSv).

Quadro 2: Limite De Doses Individuais Anuais

Órgão	Indivíduo ocupacionalmente	Indivíduo do público
	exposto	
Corpo inteiro (dose efetiva)	20 mSv [a]	1 mSv [b]
Dose equivalente para o cristalino	20 mSv [a]	15 mSv
Dose equivalente para a pele [c]	500 mSv	50 mSv
Dose equivalente para mãos e pés	500 mSv	

- [a] Média aritmética em 5 anos consecutivos, desde que não exceda 50 mSv em qualquer ano.
- [b] Em circunstâncias especiais, a CNEN poderá autorizar um valor de dose efetiva de até 5 mSv em um ano, desde que a dose efetiva média em um período de 5 anos consecutivos, não exceda a 1 mSv por ano.
- [c] Valor médio em 1 cm2 de área, na região mais irradiada.
- 3. Frequência dos Procedimentos: A frequência com que os procedimentos são realizados em um determinado local ou população influencia a exposição acumulada ao longo do tempo.
- 4. Tamanho da População e Demografia: O número de pacientes submetidos a procedimentos radiológicos e sua distribuição por faixa etária e gênero também afetam a estimativa da exposição.
- 5.Técnicas Utilizadas e Equipamentos: A utilização de técnicas de radioproteção e equipamentos mais modernos e avançados pode reduzir a dose de radiação recebida.
- 6. Protocolos Clínicos: Protocolos clínicos bem estabelecidos e atualizados podem ajudar a padronizar a prática médica e reduzir a variabilidade na exposição à radiação.

Estratégias das regulamentações e diretrizes de radioproteção para reduzir os riscos de exposição a radiações ionizantes no âmbito da medicina

A exposição a radiações ionizantes apresenta riscos significativos à saúde humana e ao meio ambiente. Portanto, a adoção de medidas preventivas é essencial para minimizar esses riscos e garantir um ambiente seguro para trabalhadores, pacientes e o público em geral. A proteção em fonte, distância segura, tempo de exposição limitado, monitoramento, treinamento, conscientização e a aplicação de legislação adequada são elementos fundamentais para garantir o uso seguro e responsável de radiações ionizantes em diversas atividades, contribuindo para a preservação da saúde e do bemestar da sociedade (Prado, 2017).

1. Práticas de Radioproteção:

As práticas de radioproteção, incluem o uso de aventais plumbíferos, protetores de tireoide e óculos de proteção durante exames radiológicos. Serão destacadas as medidas preventivas que visam reduzir a dose de radiação

absorvida pelo paciente e pelos profissionais de saúde envolvidos no procedimento (Silva et al, 2013).

2. Utilização Criteriosa de Exames de Imagem:

É importante a utilização criteriosa dos exames de imagem, evitando a repetição desnecessária de exames e a escolha de alternativas com menor exposição à radiação, sempre que possível. A conscientização sobre os benefícios e riscos dos exames será discutida como um fator essencial na tomada de decisão clínica.

3. Educação e Treinamento de Profissionais de Saúde:

Se faz necessário o treinamento adequado dos profissionais de saúde envolvidos no uso de radiações ionizantes, a fim de garantir a segurança e eficácia dos procedimentos radiológicos. A capacitação para aplicar técnicas de radiologia com segurança e a educação dos pacientes sobre os procedimentos também serão discutidas (Oliveira, 2013)

4. Tecnologias Avançadas de Imagem:

A tecnologia avançada de imagem permite a obtenção de imagens de alta qualidade com menor dose de radiação dada a necessidade da verificação do melhor exame para o paciente visando a redução da exposição, sem comprometer a precisão diagnóstica.

Controle de Qualidade e Auditorias:

A importância da implementação de protocolos de controle de qualidade e a realização de auditorias regulares em serviços de radiologia. Essas práticas asseguram a conformidade com as diretrizes de segurança e a otimização do uso de radiação nos procedimentos médicos (Silva et al, 2013).

6. Monitoramento e Dosimetria:

Utilizar dosímetros para monitorar a dose de radiação recebida por trabalhadores expostos e pacientes em procedimentos médicos. Isso permite o acompanhamento da dose acumulada e a detecção precoce de exposições elevadas (Tauhata et al, 2015).

7. Legislação e Regulamentação:

Implementar leis e regulamentos que estabeleçam diretrizes claras para o uso seguro de radiações ionizantes em diferentes setores, como a medicina, indústria e pesquisa. - Garantir a fiscalização e o cumprimento das normas de

segurança em todas as atividades envolvendo radiações ionizantes (Alves et al, 2016).

- 8. Limitação da Exposição:
- Estabelecimento de limites de dose aceitáveis com base em regulamentações internacionais, como os limites de dose estabelecidos pela Comissão Internacional de Proteção Radiológica (ICRP) e outras organizações.
- Monitoramento frequente da exposição à radiação para garantir que os trabalhadores não ultrapassem os limites estabelecidos.
- Minimização do tempo de exposição direta à fonte de radiação.
- Rotação de trabalhadores para limitar o tempo total de exposição acumulada.
- 9. Distância e Blindagem:
- Manutenção de uma distância segura das fontes de radiação para reduzir a exposição direta.
- Uso de barreiras de proteção, como paredes de concreto e escudos de chumbo, para absorver a radiação e proteger os trabalhadores.
- 10. Monitoramento de Ambiente e Pessoal:
- Monitoramento contínuo do ambiente de trabalho para identificar áreas de exposição potencialmente perigosas.
- Uso de dosímetros pessoais para monitorar a dose de radiação individualmente.
- 11. Manutenção e Inspeção:
- Manutenção regular de equipamentos de radiação para garantir que estejam funcionando corretamente e emitindo doses controladas.
- Inspeção de dispositivos de proteção, como escudos de radiação, para garantir sua eficácia.
- 12. Planejamento e Protocolos de Trabalho:
- Desenvolvimento de protocolos operacionais seguros para minimizar a exposição desnecessária à radiação.
- Planejamento cuidadoso de procedimentos de trabalho, incluindo medidas de segurança, antes de realizar atividades que envolvam radiação.

Novas medidas preventivas aos riscos de exposição a radiação ionizantes

A Inteligência artificial tem demonstrado um grande potencial na área médica, incluindo a interpretação de imagens de diagnóstico. Utilizar a IA para otimizar a aquisição e interpretação de imagens de raios-X e tomografias computadorizadas pode reduzir a necessidade de repetição de exames, diminuindo a exposição do paciente à radiação sem comprometer a qualidade diagnóstica.

O sistema interno de gerenciamento pode ser empregado para mapear e avaliar a distribuição espacial da exposição à radiação em determinada área ou local de trabalho. Essas ferramentas permitem identificar regiões com maior risco e direcionar medidas preventivas específicas para essas áreas, contribuindo para uma gestão mais eficiente da proteção radiológica (Alves et al, 2016).

Pesquisas contínuas no campo da física de materiais podem levar ao desenvolvimento de materiais de blindagem mais eficientes contra radiações ionizantes. A utilização de materiais mais leves e compactos com alta capacidade de atenuação pode facilitar a implementação de barreiras de proteção em diferentes ambientes de trabalho (Borges et al, 2015).

Aprimorar os sistemas de monitoramento e controle de fontes radioativas é essencial para prevenir acidentes e vazamentos. A utilização de tecnologias de monitoramento remoto e sistemas de alarme avançados pode garantir a detecção precoce de falhas e ações corretivas imediatas para evitar exposições desnecessárias (Alves et al, 2016).

Estimular a pesquisa científica na área de proteção radiológica é fundamental para o desenvolvimento contínuo de novas medidas preventivas. Investir em estudos sobre os efeitos biológicos da radiação, técnicas de monitoramento, métodos de proteção e inovações tecnológicas pode trazer avanços significativos para a segurança radiológica (Oliveira, Ferreira, Maia, 2002).

A conscientização e educação pública sobre os riscos e benefícios associados à radiação ionizante são fundamentais para garantir a cooperação e o engajamento da sociedade nas medidas preventivas. Campanhas informativas podem promover uma cultura de segurança radiológica, incentivando o cumprimento das medidas de proteção por todos os envolvidos (Oliveira, Ferreira, Maia, 2002).

Com o avanço da tecnologia, têm surgido diversas inovações voltadas para reduzir a exposição ocupacional à radiação e minimizar os riscos associados a ambientes de trabalho onde a radiação é uma preocupação. Esses desenvolvimentos visam tanto melhorar a segurança dos trabalhadores quanto a precisão dos procedimentos que envolvem radiação. Alguns exemplos notáveis de desenvolvimentos tecnológicos incluem:

Técnicas de Imageamento com Menor Dose

Na radiologia: Desenvolvimento de técnicas de imageamento por raios-X que exigem doses menores, mantendo a qualidade da imagem. Isso reduz a exposição dos profissionais de saúde (Claus et al, 2019).

Radioterapia: Uso de técnicas de tratamento mais precisas, como a radioterapia guiada por imagem (IGRT), que direcionam a radiação ao tumor com maior precisão, minimizando a exposição do operador (Claus et al, 2019).. Equipamentos de Proteção Avançados: Desenvolvimento de aventais de chumbo e outros EPIs mais leves, confortáveis e eficazes na redução da exposição à radiação sem comprometer a mobilidade dos profissionais de saúde (Claus et al, 2019).

Dosimetria Pessoal Aprimorada: Integração de sistemas de dosimetria pessoal mais sensíveis e precisos para monitorar a exposição individual à radiação em tempo real, permitindo ajustes imediatos se os limites forem atingidos (Claus et al, 2019).

Robótica e Automatização: Para realizar tarefas perigosas e repetitivas, reduzindo a exposição direta dos trabalhadores (Claus et al, 2019).

Simulação e Treinamento Virtual: permite a prática sem risco real de exposição (Claus et al, 2019).

Tecnologias de Monitoramento Ambiental: Sistemas de monitoramento ambiental que detectam níveis elevados de radiação em tempo real e alertam os trabalhadores para tomar medidas de segurança no ambiente (Claus et al, 2019).

Novos Materiais de Blindagem. Dosimetria Biológica Avançada. Tecnologias de Telessaúde (Claus et al, 2019).

Equipamentos de Medição Portátil: Desenvolvimento de dispositivos portáteis de medição de radiação para que os trabalhadores possam realizar verificações rápidas de exposição em diferentes áreas (Claus et al, 2019).

CONSIDERAÇÕES FINAIS

A proteção dos profissionais contra os riscos de exposição ocupacional a radiações ionizantes é uma questão fundamental. No Brasil, a regulamentação e as normas nesse campo são estabelecidas principalmente pela Comissão Nacional de Energia Nuclear (CNEN). Esta entidade define limites de dose ocupacional, procedimentos de monitoramento e requisitos de proteção radiológica em instalações nucleares e radiativas.

No entanto, a implementação prática dessas regulamentações pode variar entre diferentes instituições e profissionais. Alguns desafios incluem a falta de conscientização, recursos limitados, uso inadequado de equipamentos de proteção individual (EPIs) e problemas de fiscalização. É fundamental promover a conscientização, fornecer treinamento adequado e garantir o cumprimento rigoroso das normas para proteger a saúde e a segurança dos trabalhadores que lidam com radiações ionizantes. A cooperação entre autoridades reguladoras, instituições de saúde e profissionais é essencial para atingir esse objetivo.

Em resumo, embora existam regulamentações e normas sólidas em relação à proteção contra radiações ionizantes no Brasil, a implementação prática pode variar e enfrentar desafios. É essencial que as autoridades reguladoras, instituições de saúde e profissionais trabalhem juntos para garantir que essas normas sejam rigorosamente seguidas e que a segurança dos profissionais seja uma prioridade em todas as circunstâncias. A conscientização, o treinamento e a fiscalização adequados são elementos chave para atingir esse objetivo.

REFERÊNCIAS BIBLIOGRÁFICAS

- Adliene D, Griciene B, Skovorodko K, Laurikaitiene J, Puiso J. Occupational radiation exposure of health professionals and cancer risk assessment for Lithuanian nuclear medicine workers. Environ Res. 2020 Apr;183:109144. doi: 10.1016/j.envres.2020.109144. Epub 2020 Jan 18. PMID: 32028181.
- AGÊNCIA INTERNACIONAL DE ENERGIA ATÔMICA (AIEA) .
 Proteção Radiológica de Pacientes. Disponível em https://www.iaea.org/topics/radiation-protection-of-patients
- AGÊNCIA DE PROTEÇÃO AMBIENTAL DOS ESTADOS UNIDOS (EPA) . Estimativa de Doses de Radiação a partir de Exames Médicos de Raios-X. Disponível em: https://www.epa.gov/sites/production/files/2015-05/documents/402-r-93-081.pdf
- ALVES, W. de A.; CAMELO, C. A. C.; GUARÉ, R. de O.; COSTA, C. H. M. da; ALMEIDA, M. S. C. Proteção radiológica: conhecimento e métodos dos cirurgiões-dentistas. Arquivos em Odontologia, [S. I.], v. 52, n. 3, 2016. DOI: 10.7308/aodontol/2016.52.3.01. Disponível em: https://periodicos.ufmg.br/index.php/arquivosemodontologia/article/view/3708.
- CLAUS, T. V.; SOARES, F. A.; WEIS, G. L.; BAUHARDT, T. Otimização de técnicas de exposição em sistema de radiologia computadorizada (RC) / Optimization of exposure techniques in computerized radiology (RC) system. Brazilian Journal of Health Review, [S. I.], v. 2, n. 5, p. 4071–4087, 2019. DOI: 10.34119/bjhrv2n5-015. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/3283
- 6. COMISSÃO INTERNACIONAL DE PROTEÇÃO RADIOLÓGICA (ICRP)
 . Proteção Radiológica em Medicina. Disponível em: https://www.icrp.org/page.asp?id=107
- 7. COMISSÃO NACIONAL DE ENERGIA NUCLEAR (CNEN). **Diretrizes básicas de proteção radiológica** resolução 164/14, p.13, 2014.
- 8. GOMES, Nathaly Andrade; JÚNIOR, Paulo Pinhal. PROTEÇÃO RADIOLÓGICA DOS TRABALHADORES EXPOSTOS À RADIAÇÃO IONIZANTE. **UNILUS Ensino e Pesquisa**, v. 13, n. 30, p. 244, 2016.

- 9. IAEA. INTERNATIONAL ATOMIC ENERGY AGENCY. Risk management of Knowledge loss in nuclear Industry organizations. Vienna, **Austria**, 2006.
- 10.MOURA, Márcio Ferreira de et al. Estudo sobre a proteção radiológica de uma sala de radiologia intervencionista em um hospital em Uberlândia. 2019.
- 11. NUCLEAR-CNEN, Energia. **Comissão Nacional de Energia Nuclear**. 2020.
- 12. OLIVEIRA, Sergio R. Programa de capacitação e especialização técnica em proteção radiológica para profissionais em radiologia médica. 2013.
- 13.OLIVEIRA, C. M. de .; FERREIRA, D. da S. .; MAIA, L. F. dos S. PROTEÇÃO RADIOLÓGICA DE PACIENTES E PROFISSIONAIS DA RADIOLOGIA INTERVENCIONISTA. **Revista Atenas Higeia**, [S. I.], v. 3, n. 3, 2022. Disponível em: http://www.atenas.edu.br/revista/index.php/higeia/article/view/129.
- 14. ORGANIZAÇÃO MUNDIAL DA SAÚDE (OMS) . **Proteção radiológica em medicina**. Disponível em: https://www.who.int/ionizing_radiation/about/medical_exposure/en/
- 15. PORTELA T, CAMOZZATO TSC, Flor RC, Ribeiro G, de Melo JAC, Alves CSO. Occupational exposure in the work process of radiology technologists with 68Ga-labeled radiopharmaceuticals. Appl Radiat Isot. 2022 May;183:110104. doi: 10.1016/j.apradiso.2022.110104. Epub 2022 Feb 10. **PMID**: 35245862.
- 16.PRADO, Sandra Regina Pereira do. Exposição ocupacional à radiação ionizante pela equipe de enfermagem. 2017.
- 17. SAMPAIO, Carla Sofia de Araújo Rodrigues de Oliveira. Perceção referente ao risco de exposição à radiação ionizante: Análise efetuada nos exames transportáveis realizados pelos técnicos de radiologia. 2019. Tese de Doutorado.

- 18. SILVA, Natanael Oliveira et al. Incentivando a prática da radioproteção. In: IX Latin American IRPA Regional Congress on Radiation Protection and Safety-IRPA. 2013. p. 15-19.
- 19. TAUHATA, L., SALATI, I. P. A., DI PRINZIO, R., DI PRINZIO, M. A. R. R. Radioproteção e Dosimetria: Fundamentos 9ª revisão novembro/2013 Rio de Janeiro **IRD/CNEN.** 345p.