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How many real zeros does a random Dirichlet series
have?
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Abstract

Let F (σ) =
∑∞
n=1

Xn
nσ

be a random Dirichlet series where (Xn)n∈N are independent
standard Gaussian random variables. We compute in a quantitative form the expected
number of zeros of F (σ) in the interval [T,∞), say EN(T,∞), as T → 1/2+. We also
estimate higher moments and with this we derive exponential tails for the probability
that the number of zeros in the interval [T, 1], say N(T, 1), is large. We also consider
almost sure lower and upper bounds for N(T,∞). And finally, we also prove results
for another class of random Dirichlet series, e.g., when the summation is restricted to
prime numbers.
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1 Introduction

Around 1938, in a series of papers [13, 14, 15, 16], Littlewood and Offord proved
estimates for the average number of real roots of a random polynomial

p(z) = X0 +X1z + · · ·+Xnz
n,

where (Xj)
n
j=0 are random variables. In 1943, inspired in the first of these papers,

Kac [11] presented a formula for the expected number of these real roots in the Gaussian
case. From this formula he deduced that if n is the degree of the random polynomial,
and if (Xj)

n
j=0 are independent standard Gaussian variables, then

E Number of real roots of p(z) =

(
2

π
+ o(1)

)
log n.
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How many real zeros does a random Dirichlet series have?

An analogous statement for random variables with other distributions is also true,
but this has turned out to be a great challenge in the last century, when, for instance,
we consider that (Xj)

n
j=0 are Rademacher random variables (see this 1956 paper [8] by

Erdős and Offord for the Rademacher case, and these other papers [9, 10] by Ibragimov
and Maslova for other distributions).

In the past 50 years, this beautiful theory has evolved in deepness and in many
perspectives – here we refer to these papers [6, 18] by Do, Nguyen, Vu and Nguyen, Vu
for a short survey and a nice state of an art on this topic.

In Analytic Number Theory, the location of the zeros of certain analytic functions are
of utmost importance. For instance, the location of the zeros of the analytic continuation
of the Riemann zeta function

ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1,

have deep connections with the distribution of prime numbers, where here and through-
out this paper, s denotes a complex number s = σ + it.

The Riemann ζ function is a particular case of a Dirichlet series, and here we are
interested in the case where we replace the constant 1 by random variables, i.e.,

F (s) =

∞∑
n=1

Xn

ns
,

where (Xn)n∈N are i.i.d. Gaussian random variables with mean 0 and variance 1.
This random Dirichlet series F (s) is, almost surely, convergent if and only if s is in the

complex half plane Re(s) = σ > 1/2 due to the Kolmogorov Three-Series Theorem, and
to classical results for general Dirichlet series. These series have been studied recently
by the authors [3], where it has been proved a Law of the Iterated Logarithm (LIL)
that describes the almost sure fluctuations of F (σ) when σ → 1/2+ (in the Rademacher
case), and by Buraczewski et al. [4], where they considered a more general class of this
particular random series and proved LIL and other convergence theorems.

A key difference between the zeros of this random Dirichlet series F (s) and that of
the Riemann zeta function, is that, ζ(s) has no real zeros1 in the half plane Re(s) > 0,
while in the random case there are an infinite number of real zeros accumulating at the
right of 1/2, almost surely, see [2].

Throughout this paper we shall specialize on real zeros but in several places we will
be looking at F (s) for a given complex number s. Our target in this paper is to prove
results for F (σ) for real σ > 1/2.

For 1/2 < T < U , N(T,U) denotes the number of real zeros of F (σ) in the interval
[T,U ], where each zero is counted without multiplicity, and U can be either a real number
or∞. Since F (σ) is an analytic function, N(T,U) <∞ for all T > 1/2 and U <∞, almost
surely.

As far as we are aware, little attention has been given for zeros of random Dirichlet
series in the literature. We found a nice geometric point of view of the expected number
of zeros of a general random series of functions by Edelman and Kostlan, see [7]. For
the case of our random Dirichlet series, in [7] appeared the following formula:

EN(T,U) =
1

π

∫ U

T

√
d2

ds2
log ζ(s)

∣∣∣∣
s=2σ

dσ. (1.1)

1Indeed ζ(s) = 1
1−21−s

∑∞
n=1

(−1)n+1

ns
, and this alternating series is well defined for all Re(s) = σ > 0.

The fact that ζ has no real zeros follows from the fact that the sequence (1/nσ)n∈N is decreasing and the
series is alternated.
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We recall that our random Dirichlet series is almost surely convergent at any complex
number at the right of s = 1/2, and divergent at this point and at any complex number
at the left of it. By the formula above, we can deduce that for any 1/2 < T < U < ∞,
the function inside the integral at the right hand-side of (1.1) is continuous, and hence
EN(T,U) <∞. However, the point s = 1/2 is almost surely a singularity of the analytic
function given by the random Dirichlet series F (s), c.f. [2]. The first aim of this paper is
to make it quantitative the formula (1.1) as T gets closer to this singularity at s = 1/2.

Theorem 1.1. There exist δ > 0 and constants c0, (cn)n≥2 such that, for all T ∈
(1/2, 1/2 + δ):

EN(T,∞) =
1

2π
log

(
1

T − 1/2

)
+ c0 +

∞∑
n=2

cn(T − 1/2)n. (1.2)

Remark 1.2. Considering the Laurent expansion of ζ around its simple pole at s = 1:

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)n
γn
n!

(s− 1)n, (1.3)

where γn is called the n-th Stieltjes constant, it is possible to show that the coefficients cn,
in Theorem 1.1, for n ≥ 2, are given by 1

π times a polynomial pn with rational coefficients
in the variables (γn)n≥0. In fact, these coefficients can be explicitly computed by formal

expansion of power series. For instance, c2 =
2γ1+γ2

0

2π .

1.1 Moment bounds

Another interesting investigation comes when we consider higher moments EN(T, 1)k

for a real number k ≥ 1. We were able to proof the following estimate.

Theorem 1.3 (Moment estimates). There exists a constant C > 0 such that for all k ≥ 1

and all 1/2 < T < 1,

EN(T, 1)k ≤
(
Ck log

(
1

T − 1/2

))k
.

As an application of this result, for C > 0 as in Theorem 1.3, for any fixed λ > 2C, by
choosing k = λ/2C in Theorem 1.3, we obtain the following Corollary by making a direct
usage of Chebyshev’s inequality.

Corollary 1.4 (Exponential tails). There exist constants c, C > 0 such that for any
1/2 < T < 1 and any λ > C,

P (N(T, 1) ≥ λ log(1/(T − 1/2))) ≤ exp(−cλ).

1.2 Almost sure bounds

We observe that the zeros of a random polynomial can be very distinct as the degree
of the polynomial varies. Here we observe that in our random Dirichlet series case,
as T varies, N(T,∞) is non-decreasing as T → 1/2+. Therefore it becomes natural to
consider almost sure limits, and this is the content of our next result.

Theorem 1.5 (Almost sure bounds). We have the following almost sure limits:

lim sup
T→1/2+

N(T,∞)

log( 1
T−1/2 ) log log( 1

T−1/2 )
<∞,

lim inf
T→1/2+

N(T,∞)

(log( 1
T−1/2 ))1/2−ε =∞, for all ε > 0.
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We believe that the upper bound above is close to be optimal, and at the final section
we discuss how our methods can be, perhaps, modified in order to get a lower bound of
the form log(1/(T − 1/2)).

1.3 More general random Dirichlet series

We also compute the expected number of real zeros of random Dirichlet series of the
form

F (σ) :=
∑
p

Xp

pσ
,

where p runs orderly over an increasing set of positive real numbers P := {p1 < p2 < · · · }
with p1 ≥ 1 and pn →∞, and Xp are independent standard Gaussian random variables.
We assume some regularity in the counting function π(x) := |{p ≤ x : p ∈ P}|:

π(x) = (1 + o(1))x(log x)α, x→∞, (1.4)

where α is a real number. As an example, the positive integers satisfy the quantitative
statement above with α = 0, and the prime numbers with α = −1, due to the Prime
Number Theorem.

We denote by Nα(T,U) the number of zeros in the interval [T,U ] of the random series
F (σ) associated to P satisfying (1.4). Regardless the value of α, we have that F (s)

converges for all Re(s) > 1/2, and diverges for all Re(s) < 1/2, almost surely.
By letting

ζα(s) :=
∑
p

1

ps
,

we see from [7] that (1.1) generalizes to

ENα(T,U) =
1

π

∫ U

T

√
d2

ds2
log ζα(s)

∣∣∣∣
s=2σ

dσ. (1.5)

It is important to observe that the assumption (1.4) is not enough to deduce good
analytic properties of ζα(s) around its singularity at s = 1. Even so, a qualitative result,
weaker in comparison with Theorem 1.1, can be obtained.

Theorem 1.6. As T → 1/2+, we have that

ENα(T,∞) = (1 + o(1))×


√

1+α
2π log( 1

T−1/2 ), if α > −1,

1
π

√
log( 1

T−1/2 ), if α = −1,

c, if α < −1,

where c > 0 is a number that depends on the set P.

2 Notation

We use the standard notation:

1. f(x)� g(x) or equivalently f(x) = O(g(x));

2. f(x) = o(g(x));

3. f(x) ∼ g(x).

The case (1) is used whenever there exists a constant C > 0 such that |f(x)| ≤ C|g(x)|,
for all x in a set of numbers. This set of numbers when not specified is the real interval
[L,∞], for some L > 0, but also there are instances where this set can accumulate at the
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right or at the left of a given real number, or at complex number. Sometimes we also
employ the notation�ε or Oε to indicate that the implied constant may depends in ε.

In case (2), we mean that limx f(x)/g(x) = 0. When not specified, this limit is as
x→∞ but also can be as x approaches any complex number in a specific direction.

In case (3), we mean that f(x) = (1 + o(1))g(x).

3 Proof of the main results

3.1 The expected number of zeros

The essence of the proof of Theorem 1.1 is the complex analytic theory of the Riemann
zeta function as we show below.

Proof of Theorem 1.1. We begin by recalling some well known facts about the Riemann
zeta function. Classically defined for Re(s) > 1 as

ζ(s) =

∞∑
n=1

1

ns
,

we have that actually ζ has analytic continuation to the all complex plane except at s = 1

where has a simple pole with residue 1.
In what follows, we will prove eq. (1.2) without specifying the values of cn. Afterward,

we will indicate how to compute the coefficients cn, n ≥ 2, as stated in Remark 1.2.
We begin by observing that

d

ds
log ζ(s) =

ζ ′(s)

ζ(s)
= − 1

s− 1
+

∞∑
n=0

an(s− 1)n,

where the power series above is convergent in the open ball centered at s = 1 and with
radius 3, since the zero of ζ(s) closest to s = 1 is at s = −2. Thus, we reach

d2

ds2
log ζ(s) =

d

ds

ζ ′(s)

ζ(s)

=
1

(s− 1)2
+

∞∑
n=1

nan(s− 1)n−1

=
1

(s− 1)2
(1 +A(s)) ,

where A(s) is an analytic function in a open ball centered at s = 1 and with radius 1.
Moreover, A(s) = O(|s− 1|2) as s → 1, and hence, there exists a δ > 0 such that |A(s)|
does not exceed 1/2 for all s in an open ball B of center 1 and radius δ.

Thus, the function
√

1 +A(s) is analytic in this open ball B and has power series
representation √

1 +A(s) = 1 +

∞∑
n=2

bn(s− 1)n.

The first index starting at n = 2 above is justified by the fact that A(s) = O(|s− 1|2).
Therefore, since for real 1/2 < σ ≤ 1/2 + δ/2√

d2

ds2
log ζ(s)

∣∣∣∣
s=2σ

=
1

2σ − 1

√
1 +A(2σ),

and the power series converges absolutely, the integral of the sum is the sum of integrals:

EN(T, 1/2 + δ/2) =
1

π

∫ 1/2+δ/2

T

(
1

(2σ − 1)
+

∞∑
n=1

bn+1(2σ − 1)n

)
dσ
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=
1

2π
log

(
1

T − 1/2

)
+ c0 +

∞∑
n=2

cn(T − 1/2)n.

Now we will show that EN(1/2 + δ/2,∞) is a constant. Indeed, for Re(s) > 1

ζ ′(s)

ζ(s)
= −

∞∑
n=2

Λ(n)

ns
,

where Λ(n) is the classical von Mangoldt function.2 Therefore

d

ds

ζ ′(s)

ζ(s)
=

∞∑
n=2

Λ(n) log n

ns
.

By the general theory of Dirichlet series, d
ds
ζ′(s)
ζ(s) is a continuous function and always

positive in the real interval [1 + δ, 100], and hence EN(1/2 + δ/2, 100) is a real number.
Let L > 100. Since

√
a+ b ≤

√
a+
√
b for all a, b ≥ 0, and 0 ≤ Λ(n) ≤ log n, we have that

∫ L

100

√√√√ ∞∑
n=2

Λ(n) log n

n2σ
dσ ≤

∫ L

100

∞∑
n=2

log n

nσ
dσ

≤
∞∑
n=2

log n

∫ ∞
100

exp(−σ log n)dσ =

∞∑
n=2

1

n100
<∞,

where the interchange between the integration and summation is justified by the fact
that the Dirichlet series converges absolutely for σ in the range [100, L], for any large
L > 100. Therefore, the limit

lim
L→∞

EN(100, L)

exists and is a real number. This completes the proof.

Now we are going to justify that the coefficients cn = pn/π, where pn is a polynomial
with rational coefficients in the variables (γn)n≥0.

Before doing that, we recall the following result from Complex Analysis that can
easily be obtained from Theorem 3.4, p. 66 of the book of Lang [12]:

Lemma 3.1. Let f be analytic in a open ball centered at w = g(a), where g is an analytic
function in a open ball centered at a. Suppose that

f(z) =

∞∑
n=0

bn(z − w)n, g(z) =

∞∑
n=0

an(z − a)n.

Then, in a open ball centered at z = a, f(g(z)) can be represented by a convergent power
series given by

f(g(z)) =

∞∑
n=0

bn

( ∞∑
m=0

am(z − a)m − w

)n
=

∞∑
n=0

bn

( ∞∑
m=1

am(z − a)m

)n
.

Working carefully the lemma above, we see that the final power series of the com-
position is obtained by formally expanding each inner power series at power n and the
resulting series is the sum over these expansions.

2The von Mangoldt function is defined as follows: If n is the power of a prime, say n = pm, then Λ(n) = log p.
If n is not a prime power, then Λ(n) = 0.
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With that on hand, observe firstly that

1

ζ(s)
=

s− 1

1−
∑∞
n=1(−1)n γn−1

(n−1)! (s− 1)n
:=

s− 1

1− w
,

where w = w(s) is an analytic function at some open ball centered at s = 1, and
w = O(|s− 1|) as s→ 1. Using the Taylor expansion

1

1− w
=

∞∑
n=0

wn,

we obtain that at some open ball centered at s = 1, by Lemma 3.1, 1/ζ(s) around s = 1

is described by a Taylor series whose coefficients are described by polynomials with
rational coefficients in the variables (γn)n≥0. The same is true for ζ ′(s)/ζ(s), since the
product of two convergent power series in a ball are again a convergent power series in
a, perhaps, smaller ball. And moreover( ∞∑

n=0

ans
n

)( ∞∑
n=0

bns
n

)
=

∞∑
n=0

( ∑
u,v≥0
u+v=n

aubv

)
sn.

Now, d
dsζ
′(s)/ζ(s) is described by a Laurent series whose coefficients are described

by polynomials with rational coefficients in the variables (γn)n≥0, and the same is true
for A(s) defined above and consequently for

√
1 +A(s), since the power series of

√
1 + z

in the variable z has rational coefficients. The last step was to integrate 1
2σ−1

√
1 +A(2σ),

and this keeps the target property. This justifies Remark 1.2.

3.2 Moment bounds

The proof is based on the following inequality involving the number of zeros of an
analytic function and its maximal value in circles: Let F (s) be analytic in a domain
containing the disc |s| ≤ R, let M be the maximal value of |F | on this disc, and assume
that F (0) 6= 0. Then, for r < R, the number of zeros of F in the disc |s| ≤ r does not
exceed

log(M/F (0))

log(R/r)
. (3.1)

A proof of this can be found at the book of Montgomery and Vaughan [17, p. 168].
Now we begin the proof of Theorem 1.3 with the following lemma concerning bounds

of Dirichlet series at different points.

Lemma 3.2. Let F (s) =
∑∞
n=1Xnn

−s be a Dirichlet series convergent for Re(s) > 1/2.
Let Re(s) > 1/2 and σ1 ∈ (1/2,Re(s)). Let A(t) =

∑
n≤tXnn

−σ1 . Then

|F (s)| ≤ |s− σ1|
Re(s)− σ1

sup
t≥1
|A(t)|.

Proof. We have that

F (s) =

∞∑
n=1

Xn

nσ1
· 1

ns−σ1
.

Now we write the sum above as a Riemann-Stieltjes integral:

F (s) =

∫ ∞
1−

1

ts−σ1
dA(t).

Using integration by parts, we reach:

|F (s)| =
∣∣∣∣(s− σ1)

∫ ∞
1

A(t)

ts−σ1+1
dt

∣∣∣∣ ≤ |s− σ1|
Re(s)− σ1

sup
t≥1
|A(t)|.
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Now we recall a classical inequality for sums of independent random variables:
Levy’s maximal inequality: Let X1, . . . , Xn be independent random variables. Then

for all t ≥ 0

P

(
max

1≤m≤n

∣∣∣∣ m∑
k=1

Xk

∣∣∣∣ ≥ t) ≤ 3 max
1≤m≤n

P

(∣∣∣∣ m∑
k=1

Xk

∣∣∣∣ ≥ t

3

)
. (3.2)

A proof of this can be found in the nice book of Peña and Giné, [5, p. 4]. In what follows
we will need an infinite version of the inequality above:

P

(
sup
m≥1

∣∣∣∣ m∑
k=1

Xk

∣∣∣∣ ≥ t) ≤ 3 sup
m≥1

P

(∣∣∣∣ m∑
k=1

Xk

∣∣∣∣ ≥ t

3

)
. (3.3)

To obtain this, we observe that the event inside the probability in the left hand-side
of (3.2) increases as n→∞ to the event in the left hand-side of (3.3). Therefore, by the
continuity of probabilities, to obtain (3.3) we only need to make the limit n→∞ in (3.2).

Another inequality we will need is the following: Let x1, . . . , xR be positive real
numbers. Then, for all k ≥ 1

(x1 + · · ·+ xR)k ≤ Rk−1(xk1 + · · ·+ xkR). (3.4)

The proof of this inequality can be made by the following argument: Let X be a random
variable with uniform distribution over {x1, . . . , xR}. Then the above inequality is just
the moment bound EX ≤ (EXk)1/k.

We continue with the following:

Lemma 3.3. Let F (s) be our random Dirichlet series. Let 0 < δ ≤ 1/2, and C0 be a circle
with center σ0 = 1/2 + 5δ/4 and radius δ/4. Let C1 be a circle with same center σ0 but
with radius δ/2. Let M = maxs∈C1

|F (s)|. Then there exists a constant C > 0 that does
not depend on δ such that for all k ≥ 1

E |log(M/F (σ0))|k ≤ Ckkk.

Proof. Let σ1 = 1/2 + δ/2. The maximal value that |s− σ1| can attain for s ∈ C1 is below
2δ, and the minimal value that Re(s)− σ1 can attain is δ/4. Therefore, by Lemma 3.2 we
have that almost surely

M ≤ 8 sup
t≥1
|A(t)|, (3.5)

where A(t) =
∑
n≤tXnn

−σ1 .

Observe that F (σ1) has variance ∼ 1
δ , and F (σ0) has variance ∼ 2

5δ . Therefore

|log(M/F (σ0))|k =

∣∣∣∣∣log

( √
δM√

5δF (σ0)/
√

2

)
+ log(

√
5/2)

∣∣∣∣∣
k

� 3k−1(| log(
√
δM)|k + | log(

√
5δF (σ0)/

√
2)|k + logk(

√
5/2)),

where we used the inequality (3.4) in the last step above.
Now we will estimate E| log(

√
δM)|k. The estimate of E| log(

√
5δF (σ0)/

√
2|k can be

done analogously. We split
√
δM =

√
δM1[0≤

√
δM<1] +

√
δM1[

√
δM≥1].

Estimate for E| log(
√
δM)|k1[

√
δM≥1] We split 1[

√
δM≥1] =

∑∞
n=1 1[3n−1≤

√
δM<3n]. In

the event [3n−1 ≤
√
δM ≤ 3n], we have that | log(

√
δM)|k ≤ (n log 3)k. Further, by

inequality (3.5), we have that

P
(

3n−1 ≤
√
δM ≤ 3n

)
≤ P

(√
δM ≥ 3n−1

)
≤ P

(
8 sup
t≥1

√
δ|A(t)| ≥ 3n−1

)
.
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By Levy’s maximal inequality (3.3) applied for A(t), we reach

P
(

3n−1 ≤
√
δM ≤ 3n

)
≤ 3 sup

t≥1
P
(
|
√
δA(t)| ≥ 3n−4

)
= 3P

(
|
√
δF (σ1)| ≥ 3n−4

)
,

where the equality above is justified by the fact that for each t ≥ 1, A(t) has Gaussian
distribution with mean 0 and with variance increasing to the variance of F (σ1) as t→∞.
But now we recall that

√
δF (σ1) has Gaussian distribution with variance tending to 1 as

δ → 0+, and certainly above a small fixed c > 0 and below a large fixed d > 0, for all
0 < δ ≤ 1/2. Hence, we are allowed to use a rough bound P(3n−1 ≤

√
δM ≤ 3n)� 3−n.

Therefore

E| log(
√
δM)|k1[

√
δM≥1] �

∞∑
n=1

nk

3n
=

∞∑
n=1

nke−n

(3/e)n
� sup

n
nke−n ≤ kke−k,

where in the last step above we just used elementary tools from calculus.

Estimate for E| log(
√
δM)|k1[0≤

√
δM≤1] We begin by observing that the if M = 0, then

by analyticity F (s) = 0 everywhere and hence that all Gaussians (Xn)n≥1 are identically
0, and this happens with probability 0. So we can work with E| log(

√
δM)|k1[0<

√
δM≤1].

As before, we split 1[0<
√
δM≤1] =

∑∞
n=1 1[3−n<

√
δM≤3−n+1]. In the event [3−n <

√
δM ≤

3−n+1], we have that
| log(

√
δM)|k ≤ (n log 3)k.

Let u = 1/2 + 3δ/4 be the leftmost point of the circle C1. We thus have

P
(

3−n <
√
δM ≤ 3−n+1

)
≤ P

(√
δM ≤ 3−n+1

)
≤ P

(
|
√
δF (u)| ≤ 3−n+1

)
.

Now observe that
√
δF (u) is Gaussian with variance bounded below by some c > 0 and

above by some d > 0 in the interval 0 < δ ≤ 1/2, and hence, for sufficiently small ε > 0,

P(|
√
δF (u)| ≤ ε)� ε.

Thus, as in the previous case above

E| log(
√
δM)|k1[0≤

√
δM≤1] �

∞∑
n=1

nk

3n
� kke−k,

and this completes the proof of the lemma.

We are ready to:

Proof of Theorem 1.3. We let T = 1/2 + δ for some 0 < δ < 1/2. Let C(0)
0 be a circle

with center σ0 = 1/2 + 5δ/4 and radius δ/4. Let C(0)
1 be a circle with same center σ0

but with radius δ/2. Call the rightmost point of C(0)
0 by T1 = 1/2 + 3δ/2. Isolating δ

in terms of T , we can write T1 = 1/2 + (T − 1/2)(3/2). Define δ1 = T1 − 1/2, C(1)
0 the

circle with leftmost point at s = T1 and with radius δ1/4. The rightmost point of C(1)
0

is T2 = 1/2 + (T − 1/2)(3/2)2. Define C(1)
1 to be a circle with same center as C(1)

0 but
with radius δ1/2. By continuing this process, we obtain a sequence of pairs of concentric

circles C(n)
0 and C(n)

1 with same proportions of C(0)
0 and C(0)

1 so that Lemma 3.3 can be
used in each one of this pair of circles.
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Set T0 = T . The number of zeros N(T, 1) can be split as

N(T, 1) ≤ N(T0, T1) +N(T1, T2) +N(T2, T3) + · · ·+N(TR−1, TR),

where R is defined as the smallest positive integer n so that Tn ≥ 1. Since Tn =

1/2 + (T − 1/2)(3/2)n, we have that R� log(1/(T − 1/2)).
By inequality (3.4), we have that

N(T, 1)k ≤ Rk−1
R−1∑
n=0

Nk(Tn, Tn+1).

Say that the center of C(n)
0 is σ(n)

0 and that Mn = max
s∈C(n)

1
|F (s)|. Using the inequal-

ity (3.1), we see that
N(Tn, Tn+1)� log(Mn/F (σ

(n)
0 )).

Thus combining (3.4) with Lemma 3.3, we obtain constants C,D > 0 such that

EN(T, 1)k ≤ Rk−1
R−1∑
n=0

Ckkk ≤ CkkkRk ≤ Dkkk logk(1/(T − 1/2)),

and this finishes the proof.

3.3 Almost sure bounds

We begin with the

Proof of the upper bound. Let Tn = 1/2 + 1/2n.
We use Corollary 1.4 with λn = D log log(1/(Tn − 1/2)), for some constant D > 0:

P(N(Tn, 1) ≥ λn log(1/(Tn − 1/2)))� 1

nDc
.

So, if Dc > 1, the probabilities above are summable and hence the Borel-Cantelli Lemma
is applicable, that is, almost surely for all n sufficiently large

N(Tn, 1)

D log(1/(Tn − 1/2))) log log(1/(Tn − 1/2)))
≤ 1.

Observe that N(T ) is non-decreasing as T → 1/2+. Now, for Tn ≤ T ≤ Tn−1, we have
that

N(T, 1)

D log(1/(T − 1/2))) log log(1/(T − 1/2)))

≤ D log(1/(Tn − 1/2))) log log(1/(Tn − 1/2)))

D log(1/(Tn−1 − 1/2))) log log(1/(Tn−1 − 1/2)))

≤ 4.

To pass the above estimate to N(T,∞), we just observe that any Dirichlet series has a
half plane inside its region of absolute convergence in which there are no zeros. A proof
of this can be found at the book of Apostol [1, p. 227]. In our case, our random Dirichlet
series converges absolutely and almost surely in the half plane Re(s) > 1. To complete
the argument, we see that since a Dirichlet series is an analytic function, it cannot have
and infinite number of real zeros between s = 1 and this half plane where it does not
vanishes, unless that it vanishes identically, which is not the case.

Now we continue with the proof of Theorem 1.5.
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The lower bound The proof of the lower bound will be divided in some steps. Our
idea is to consider the following quantities: Let σn = 1/2 + 1/2n and define

S+(R) =
∑
n≤R

1[F (σn)>0],

S−(R) =
∑
n≤R

1[F (σn)<0].

Thus S+(R) counts the number of times that F is positive along the sequence σn, and
S−(R) the number of times that F is negative along the same sequence.

In what follows, we will prove a quantitative Law of large numbers for S+(R) and for
S−(R). We need firstly the following result.

Lemma 3.4. Let F (σ) be our random Dirichlet series and σn = 2−1 + 2−n. Then there
exists a constant C > 0 such that

| corr(F (σk), F (σl))| ≤
C

√
2
|k−l| .

Proof. We have that

EF (σk)F (σl) =

∞∑
n=1

1

nσk+σl
= ζ(σk + σl) ∼

1

2−k + 2−l
.

On the other hand,

EF (σ)2 = ζ(2σ) ∼ 1

2σ − 1
.

Therefore

corr(F (σk), F (σl)) ∼
√

2−k−l+2

2−k + 2−l
=

2

2(l−k)/2 + 2(k−l)/2 �
1

√
2
|k−l| .

Lemma 3.5. Let F (σ) be our random Dirichlet series and σn = 2−1 + 2−n. There exists
a constant C > 0 such that for all k and l

| corr(1[F (σk)>0],1[F (σl)>0])| ≤
C

√
2
|k−l| ,

and

| corr(1[F (σk)<0],1[F (σl)<0])| ≤
C

√
2
|k−l| .

Proof. We begin by observing that F (σk) and F (σl) have joint Gaussian distribution.
This can be verified by checking that any linear combination of them has a Gaussian
distribution, see the book of Shiryaev [19, p. 301]. In our case, for any real numbers a
and b:

aF (σk) + bF (σl) =

∞∑
n=1

Xn

(
a

nσk
+

b

nσl

)
,

and since (Xn)n∈N are i.i.d. standard Gaussians, we reach that the distribution of
aF (σk) + bF (σl) also is Gaussian.

Now, a simple calculation shows that

corr(1[F (σk)>0],1[F (σl)>0]) = 4P(F (σk) > 0, F (σl) > 0)− 1.

Let X = F (σk)/
√

varF (σk) and Y = F (σl)/
√

varF (σl). Thus, the probability in the
right-handside above is P(X > 0, Y > 0). Observe that X and Y are standard Gaussians
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with correlation ρ, say. Let Z be another standard Gaussian random variable independent
of X. Thus (X,Y ) has the same distribution of (X, ρX +

√
1− ρ2Z). With this we reach

P(X > 0, Y > 0) = P

(
X > 0, Z > − ρ√

1− ρ2
X

)
=

1

4
+ P

(
X > 0, 0 > Z > − ρ√

1− ρ2
X

)
:=

1

4
+ f(ρ).

Now we see that f(ρ) is the probability that the pair (X,Z) lies in a sector with angle

θ = tan−1

(
ρ√

1− ρ2

)
.

Since the distribution of (X,Z) is invariant by rotations, we have that f(ρ) = θ/2π. So
our target correlation is

corr(1[F (σk)>0],1[F (σl)>0]) =
2

π
tan−1

(
ρ√

1− ρ2

)
.

Using the fact that tan−1(x) =
∫ x

0
dt

1+t2 ≤ x and Lemma 3.4, we complete the proof of
the lemma in the first case. The second case can be done analogously.

Lemma 3.6. Let S+(R) and S−(R) be as above. Then, for all ε > 0

S+(R), S−(R) =
R

2
+Oε(R

1/2+ε), a.s.

Proof. The proof of this lemma is a direct application of a result in Probability theory for
weak dependencies that says the following: Let Yn be a sequence of square-integrable
random variables such that

sup
n≥1
| corr(Yn, Yn+k)| ≤ ρk,

for some constants ρk such that
∞∑
k=1

ρk <∞. (3.6)

If for some increasing sequence of positive real numbers bn we have that
∞∑
n=1

var(Yn)(log n)2

b2n
<∞, (3.7)

then the series
∞∑
n=1

Yn − EYn
bn

converges almost surely.
A proof of this can be found at the book of Stout [20, p. 28].
In our case, we apply the result above for Yn = 1[F (σn)>0], and Yn = 1[F (σn)<0]. We

have that (3.6) is satisfied by Lemma 3.5. Now we take bn = n1/2+ε. Since 0 ≤ Yn ≤
1, (3.7) also is satisfied. Thus we get convergence of the series

∞∑
n=1

1[F (σn)>0] − 1/2

n1/2+ε
,

∞∑
n=1

1[F (σn)<0] − 1/2

n1/2+ε
.

Now we recall a particular case of Kroeneckers’ Lemma (see the book of Shiryaev [19,
p. 390]): For any sequence of real numbers (an)n and σ > 0, if the series

∑∞
n=1 ann

−σ

converges, then the partial sums
∑
n≤x an = o(xσ). By applying this result to the random

variable an = 1[F (σn)>0] − 1/2 or an = 1[F (σn)<0] − 1/2, we obtain the target result.
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We are ready to the

Proof of the Lower bound. We see that if both S+(R+ V )− S+(R) ≥ 1 and S−(R+ V )−
S−(R) ≥ 1, then F (σ) has at least one sign change in the interval [σR+V , σR], and
consequently has a zero in this interval.

By Lemma 3.6

S+(R+ V )− S+(R) =
R+ V

2
+O((R+ V )1/2+ε)−

(
R

2
+O(R1/2+ε)

)
=
V

2
+O((R+ V )1/2+ε),

and the same holds for S−.

In order to maximize the counting of number of zeros we need V as small as possible.
But the equality above says that to guarantee a zero in the interval [σR+V , σR] we need
V a bit larger than Oε((R+ V )1/2+ε), where the implicit constant in this Oε term might
depend in ε and could be random. So, we seek for a sequence Rn such that, if ε > 0 is
small, then (Rn+1 −Rn)/R

1/2+ε
n+1 →∞.

Indeed such property is satisfied by choosing Rn = [n2+8ε] (here [x] stands for the
integer part of x), since by the mean value theorem for differentiable functions, for some
n ≤ θn ≤ n+ 1,

Rn+1 −Rn = (2 + 8ε)θ1+8ε
n ,

and then
Rn+1 −Rn
R

1/2+ε
n+1

∼ (2 + 8ε)n2ε−8ε2 .

So we showed that almost surely for all n sufficiently large, there is a zero of F (σ)

in the interval [σRn+1
, σRn ]. The number of these subintervals has size proportional to

R1/2−ε′ for some new small ε′ > 0. Indeed, if n is the largest positive integer k such that
Rk ≤ R, then n ∼ R1/(2+8ε).

Thus, for any ε > 0, almost surely for all R sufficiently large there is at least (1 +

o(1))R1/2−ε zeros of F (σ) in the interval [1/2 + 1/2R, 1] and hence at least a quantity
� (log(1/(T − 1/2)))1/2−ε of zeros in the interval [T, 1].

3.4 More general random Dirichlet series

Proof of Theorem 1.6. Just as in Theorem 1.1, we have that

ENα(T,U) =
1

π

∫ U

T

√
ζ ′′α(2σ)

ζα(2σ)
−
(
ζ ′α(2σ)

ζα(2σ)

)2

dσ.

Thus, we need to estimate, as σ → 1/2+, quantities of the form

ζ(β)
α (2σ) =

∑
p

(log p)β

p2σ
=

∫ ∞
2

(log x)β

x2σ
dπ(x) +O(1),

where β = 0, 1, 2 and the last integral above is in the Riemann-Stieltjes sense. Integration
by parts gives, as σ → 1/2+:

ζ(β)
α (2σ) = (2σ + o(1))

∫ ∞
2

π(x)(log x)β

x2σ+1
dx = (1 + o(1))

∫ ∞
2

(log x)α+β

x2σ
dx.
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Lemma 3.7. Let γ be a real number. Then, as σ → 1/2+:

J(γ, σ) :=

∫ ∞
2

(log x)γ

x2σ
dx = (1 + o(1))


Γ(γ+1)

(2σ−1)γ+1 , γ > −1,

log( 1
σ−1/2 ), γ = −1,

c(γ), γ < −1,

where Γ is the classical Euler’s Gamma function, and c(γ) is a constant that depends
on γ.

Proof of Lemma 3.7. The case γ < −1 is easy. Let then γ > −1. Let u = (2σ − 1) log x.
Then

J(γ, σ) =
1

(2σ − 1)1+γ

∫ ∞
(2σ−1) log 2

u(1+γ)−1e−udu

= (1 + o(1))
Γ(γ + 1)

(2σ − 1)1+γ
.

In the case that γ = −1,

J(−1, σ) =

∫ ∞
(2σ−1) log 2

e−u

u
du

=

∫ 1/100

(2σ−1) log 2

e−u

u
du+O(1)

=

∫ 1/100

(2σ−1) log 2

1 +O(u)

u
du+O(1)

= log

(
1

σ − 1/2

)
+O(1).

This proves the lemma.

Now we continue with the proof of Theorem 1.6. We begin by estimating ENα(T, 1/2+

δ) for some small δ > 0.
Case α > −1. In this case, by Lemma 3.7 we have that

ENα(T, 1/2 + δ) =
1

π

∫ 1/2+δ

T

(
(1 + o(1))Γ(3 + α)(2σ − 1)−(3+α)

(1 + o(1))Γ(1 + α)(2σ − 1)−(1+α)

−
(

(1 + o(1))Γ(2 + α)(2σ − 1)−(2+α)

(1 + o(1))Γ(1 + α)(2σ − 1)−(1+α)

)2)1/2

dσ.

Due to the property that Γ(z + 1) = zΓ(z), the last expression simplifies to

ENα(T, 1/2 + δ) = (1 + o(1))

√
1 + α

π

∫ 1/2+δ

T

1

2σ − 1
dσ

= (1 + o(1))

√
1 + α

2π
log

(
1

T − 1/2

)
.

Case α = −1. In this case

EN−1(T, 1/2 + δ) =
1

π

∫ 1/2+δ

T

(
(1 + o(1))Γ(2)(2σ − 1)−2

log(1/(2σ − 1))

)1/2

dσ

=
(1 + o(1))

2π

∫ 2δ

2T−1

1

x
√
− log x

dx
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=
(1 + o(1))

2π

∫ − log(2δ)

− log(2T−1)

−v−1/2dv

=
(1 + o(1))

π

√
log

(
1

T − 1/2

)
.

Case α < −1. In this case we have that ζα(2σ) = c + o(1), as σ → 1/2+, for some
c > 0. The proof of this case follows the idea of the previous ones, in which the function
J(γ, σ) of Lemma 3.7 is analyzed. For that, we will have to divide our proof in the cases
−2 < α < −1, α = −2, −3 < α < −2, α = −3 and α < −3. We will present the details
only for the case −2 < α < −1. The other cases can be treated similarly.

Let then −2 < α < −1. We have that

ENα(T, 1/2 + δ) =
1

π

∫ 1/2+δ

T

(
(1 + o(1))Γ(3 + α)(2σ − 1)−(3+α)

c+ o(1)

−
(

(1 + o(1))Γ(2 + α)(2σ − 1)−(2+α)

c+ o(1)

)2)1/2

dσ.

The function inside the square-root above behaves, as σ → 1/2+, as a constant times

(2σ − 1)−
3+α
2 .

Apart from the fact that this function blows as σ → 1/2+, we have that the exponent
(3 + α)/2 lies in the interval (1/2, 1), and hence the hole function is integrable in the
interval [1/2+, 1].

Now we will show that in any case, EN(1/2 + δ,∞) is a real number. The function
ζα(σ) converges absolutely for σ > 1, and hence it is an analytic function. Further, ζα(σ)

is a series of positive numbers, and hence ζα(σ) 6= 0 for all σ > 1. Hence ENα(1/2+δ, 100)

is the definite integral of a continuous function, a real number. Consider now

F (σ) =

∞∑
n=1

Xpn

pσn
= p−σ1

∞∑
n=1

Xpn

(pn/p1)σ
:= p−σ1 G(σ).

Thus, F (σ) share same zeros with G(σ). Now we can write

ζQ(σ) :=
∑
q∈Q

1

qσ
,

where Q = {q1 = 1 < q2 < q3 < · · · } and qn = pn/p1, for all n. Thus, ζQ(σ) > 1 for all
σ > 1 and limσ→∞ ζQ(σ) = 1. Hence

ENα(100, L)�
∫ L

100

√
ζ ′′Q(2σ)

ζQ(2σ)
dσ

�
∫ L

100

√
ζ ′′Q(2σ)dσ

�
∫ L

100

∑
q>1

log q

qσ
dσ

�
∑
q>1

1

q100

<∞.

This shows that EN(100,∞) is a real number, and this ends the proof.
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4 Concluding remarks

4.1 Almost sure lower bound

We believe that our almost sure lower bound is far from being optimal, and we
include it here for completeness. We describe an approach that could perhaps replace
the exponent 1/2 by 1. If instead of considering S+ and S−, we work directly with

S(R) =
∑
n≤R

1[F (σn)>0]1[F (σn+1)<0],

then the number of zeros can be lower bounded directly by a rescaled quantity in-
volving S(R). The problem that we could not solve is to compute the correlations of
{1[F (σn)>0]1[F (σn+1)<0]}n≥1, since this involves quadruple integrals and not so nice as in
Lemma 3.5. We hope to investigate this in another occasion.

4.2 General random Dirichlet series

It is interesting to observe from formula (1.5) that a number λ > 0 such that

π(x) = (λ+ o(1))x(log x)α

has no effect in the asymptotics of ENα(T,U).
Another interesting remark comes from the fact that we could deal with a slight more

general random Dirichlet series if we allow to put extra weights {ap ≥ 0 : p ∈ P}:

F (σ) =
∑
p∈P

apXp

pσ
.

All we need to do is to make regularity assumptions on the partial sums

π∗(x) :=
∑
p≤x

a2
p.

In this case, formula (1.5) remains valid if we replace ζα by

ζ∗(s) :=
∑
p∈P

a2
p

ps
.

The results of Theorem 1.6 remains unchanged if we worked out with assumptions
on π∗(x) instead of π(x), since all what matters is the behaviour of ζ∗(s) around its
singularity.

An interesting example comes when we consider P = N and an =
√
τ(n), where

τ(n) is the number of positive divisors of n. In this case, ζ∗(s) = ζ2(s) and the expected
number of zeros will be just

√
2 times EN(T,∞) given by Theorem 1.1.

References

[1] T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.
Undergraduate Texts in Mathematics. MR0434929

[2] M. Aymone, Real zeros of random Dirichlet series, Electron. Commun. Probab., 24 (2019),
Paper No. 54, 8. MR4003128

[3] M. Aymone, S. Frómeta, and R. Misturini, Law of the iterated logarithm for a random Dirichlet
series, Electron. Commun. Probab., 25 (2020), Paper No. 56, 14. MR4137941

[4] D. Buraczewski, C. Dong, A. Iksanov, and A. Marynych, Limit theorems for random Dirichlet
series, arXiv:2211.00145 (2022). MR4640264

EJP 29 (2024), paper 5.
Page 16/17

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=0434929
https://mathscinet.ams.org/mathscinet-getitem?mr=4003128
https://mathscinet.ams.org/mathscinet-getitem?mr=4137941
https://arXiv.org/abs/2211.00145
https://mathscinet.ams.org/mathscinet-getitem?mr=4640264
https://doi.org/10.1214/23-EJP1067
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


How many real zeros does a random Dirichlet series have?

[5] V. H. de la Peña and E. Giné, Decoupling, Probability and its Applications (New York),
Springer-Verlag, New York, 1999. From dependence to independence, Randomly stopped
processes. U -statistics and processes. Martingales and beyond. MR1666908

[6] Y. Do, H. Nguyen, and V. Vu, Real roots of random polynomials: expectation and repulsion,
Proc. Lond. Math. Soc. (3), 111 (2015), pp. 1231–1260. MR3447793

[7] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer.
Math. Soc. (N.S.), 32 (1995), pp. 1–37. MR1290398

[8] P. Erdös and A. C. Offord, On the number of real roots of a random algebraic equation, Proc.
London Math. Soc. (3), 6 (1956), pp. 139–160. MR0073870

[9] I. A. Ibragimov and N. B. Maslova, The average number of real roots of random polynomials,
Dokl. Akad. Nauk SSSR, 199 (1971), pp. 13–16. MR0292134

[10] I. A. Ibragimov and N. B. Maslova, The mean number of real zeros of random polynomials.
II. Coefficients with a nonzero mean, Teor. Verojatnost. i Primenen., 16 (1971), pp. 495–503.
MR0288824

[11] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer.
Math. Soc., 49 (1943), pp. 314–320. MR0007812

[12] S. Lang, Complex analysis, vol. 103 of Graduate Texts in Mathematics, Springer-Verlag, New
York, fourth ed., 1999. MR1659317

[13] J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic equation,
J. London Math. Soc., 13 (1938), pp. 288–295. MR1574980

[14] J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic equation.
III, Rec. Math. [Mat. Sbornik] N.S., 12(54) (1943), pp. 277–286. MR0009656

[15] J. E. Littlewood and A. C. Offord, On the distribution of the zeros and a-values of a random
integral function. I, J. London Math. Soc., 20 (1945), pp. 130–136. MR0019123

[16] J. E. Littlewood and A. C. Offord, On the distribution of zeros and a-values of a random
integral function. II, Ann. of Math. (2), 49 (1948), pp. 885–952; errata 50, 990–991 (1949).
MR0029981

[17] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory, vol. 97
of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge,
2007. MR2378655

[18] O. Nguyen and V. Vu, Roots of random functions: a framework for local universality, Amer. J.
Math., 144 (2022), pp. 1–74. MR4367414

[19] A. N. Shiryaev, Probability, vol. 95 of Graduate Texts in Mathematics, Springer-Verlag,
New York, second ed., 1996. Translated from the first (1980) Russian edition by R. P. Boas.
MR1368405

[20] W. F. Stout, Almost sure convergence, Academic Press [Harcourt Brace Jovanovich, Publish-
ers], New York-London, 1974. MR0455094

Acknowledgments. We are warmly thankful to Roberto Imbuzeiro and to user Iosif
Pinelis from mathoverflow for helping us with Lemma 3.5. This project is supported
by CNPq, grant Universal number 403037/2021-2 and was completed while the first
author was a visiting professor at Aix-Marseille Université. He is thankful to CNPq for
supporting this visit with the grant Bolsa PDE, number 400010/2022-4 (200121/2022-7).
The revision of this paper was done after the authors were granted by FAPEMIG. We
thank FAPEMIG for supporting us with ‘Universal’, grant number APQ-00256-23.

EJP 29 (2024), paper 5.
Page 17/17

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=1666908
https://mathscinet.ams.org/mathscinet-getitem?mr=3447793
https://mathscinet.ams.org/mathscinet-getitem?mr=1290398
https://mathscinet.ams.org/mathscinet-getitem?mr=0073870
https://mathscinet.ams.org/mathscinet-getitem?mr=0292134
https://mathscinet.ams.org/mathscinet-getitem?mr=0288824
https://mathscinet.ams.org/mathscinet-getitem?mr=0007812
https://mathscinet.ams.org/mathscinet-getitem?mr=1659317
https://mathscinet.ams.org/mathscinet-getitem?mr=1574980
https://mathscinet.ams.org/mathscinet-getitem?mr=0009656
https://mathscinet.ams.org/mathscinet-getitem?mr=0019123
https://mathscinet.ams.org/mathscinet-getitem?mr=0029981
https://mathscinet.ams.org/mathscinet-getitem?mr=2378655
https://mathscinet.ams.org/mathscinet-getitem?mr=4367414
https://mathscinet.ams.org/mathscinet-getitem?mr=1368405
https://mathscinet.ams.org/mathscinet-getitem?mr=0455094
https://doi.org/10.1214/23-EJP1067
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

•Very high standards

•Free for authors, free for readers

•Quick publication (no backlog)

•Secure publication (LOCKSS1)

•Easy interface (EJMS2)

Economical model of EJP-ECP

•Non profit, sponsored by IMS3, BS4, ProjectEuclid5

•Purely electronic

Help keep the journal free and vigorous

•Donate to the IMS open access fund6 (click here to donate!)

•Submit your best articles to EJP-ECP

•Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System: https://vtex.lt/services/ejms-peer-review/
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: https://imstat.org/shop/donation/

http://en.wikipedia.org/wiki/LOCKSS
https://vtex.lt/services/ejms-peer-review
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://imstat.org/shop/donation/
http://www.lockss.org/
https://vtex.lt/services/ejms-peer-review/
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
https://imstat.org/shop/donation/

	Introduction
	Moment bounds
	Almost sure bounds
	More general random Dirichlet series

	Notation
	Proof of the main results
	The expected number of zeros
	Moment bounds
	Almost sure bounds
	More general random Dirichlet series

	Concluding remarks
	Almost sure lower bound
	General random Dirichlet series

	References

