
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

GIOVANI DA SILVA

Analysis and improvements of Multi
Objective Reinforcement Learning

Algorithms based on Pareto Dominating
Policies

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Engineering

Advisor: Prof. Anderson Rocha Tavares

Porto Alegre
September 2023

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Engenharia de Computação: Prof. Claudio Machado Diniz
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“I care too much, wanna share too much, in my head too much

I shut down too, I ain’t there too much

I’m a complex soul, they layered me up

Then broke me down, and morality’s dust, I lack in trust

This time around, I trust myself

Please everybody else but myself

All else fails, I was myself

Outdone fear, outdone myself”

— KENDRICK LAMAR

ACKNOWLEDGMENTS

I would like to start by expressing my deep gratitude to my parents, Lani and

Nelson. Thank you for being incredibly patient with me over these 5 years, for being

understanding and supportive, even when I expressed my love or desires in an unconven-

tional way. Know that a great part of who I am today and the constantly evolving person I

am becoming is a result of the unconditional love and support I received from you. Even

with my flaws, you have always stood by my side, and my greatest wish has always been

and continues to be to make you proud. Without a doubt, you are the best parents in the

world.

I am immensely grateful to my girlfriend, Jaqueline, for facing so many chal-

lenges by my side, for her understanding and for tolerating my quirks and my sometimes

"in another world" way of seeing things. We make quite a team, and these last 5 years

together, even when sometimes distant, have been marked by mutual care and affection.

Your presence in my life is an invaluable gift.

I cannot fail to thank my second mothers as well, Aunt Tata and Grandma Evonir.

The love you’ve consistently shown at every encounter is essential to the person I’ve

become, and I’m immensely grateful to have you in my life. The way you keep our

family united and care for everyone’s well-being is a constant inspiration to me. I love

you very much.

My sister, Gabi, deserves a special mention. Her presence and support in difficult

times were crucial in keeping us united as a family. Moreover, sharing experiences that

only siblings who pretend to hate each other understand has always been and continues to

be funny.

To my brother-in-law, Bruno, thank you for the years of friendship and for being

my eternal FIFA opponent. To my uncles, Aunt Léia, Uncle Lauro, Uncle Luiz, and Uncle

Doda, you are inexhaustible sources of inspiration and affection. Nothing of what I am

would be possible without the example and love I received from each of you.

My cousin Mateus, you have always been an inspiration and one of my best

friends, regardless of the physical distance. Know that your presence is essential for

me to be here, and I hope to see you again soon.

To my cousins Fê and Bruno, it’s always a pleasure to share happy moments with

you and strengthen our family bonds.

To the family friends, Márcia, Aunt Tereza, and Aunt Romilda, you played impor-

tant roles in my upbringing, and I wish the best for each of you.

To school friends, Victor, I thank you for the runs at "Feijão" and for our almost

philosophical discussions ranging from soccer to veganism. Leo and Cassiano, thank you

for understanding my ways and always being present to talk about anything and laugh

along with me. Nadine, for the countless outings and random conversations, you are a

special friend.

To my futsal friends over the years, Caue, Pedro, Natan, João, and Pepe, those

were some great years playing and winning with you. It’s always good to see you.

To my friends Bruno and Marcelo, thank you very much for the hours of conver-

sation, talking nonsense. It’s always a pleasure.

To my friend Ricardo, I’m grateful for the years of friendship. Even though we’re

different in so many ways, our mutual understanding is remarkable. The fact that both of

us are "small-town" guys who came to Porto Alegre at 17, full of fear and uncertainties,

might have brought us even closer.

To my college friends, you were essential in making the field of computing more

welcoming and less lonely. I thank you for the help, the laughter, and the explanations on

the subjects.

To the friends from Dunk Park (Anderson, Antônio, Careca, Dani, Dudu, Edu,

Fe, Gian, Mi) and RB Cãopiladores, practicing the sports I love was fundamental to my

physical and mental well-being over these years. Thank you for sharing these moments

with me; I’m always happy to see you.

To the professionals who helped me, like the psychologist, psychiatrist, and nutri-

tionist, you were crucial for my health and well-being over these 5 years.

To the professors at the Institute of Informatics at UFRGS, over these 5 years, you

made me fall in love with computing. I entered as a student who didn’t know what an

"if" was, and today I leave graduation, passing into the master’s in the field of artificial

intelligence. If you had told me this 5 years ago, I would do it all over again. The young

Giovani who watched "I, Robot," "Ex Machina," and other works of science fiction would

be proud. Special thanks to professors Renata Galante, Ribas, Mariana, and Bampi. Each,

in your own way, made me like topics completely diverse in the field of computing. I’d

also like to thank Professor Gabriel Ramos for being my co-advisor during the period

of scientific initiation. His patience, teaching, and helpfulness were crucial. He and

Professor Anderson made me love the area of AI and reinforcement learning even more.

So, I am very grateful. Also, I would like to thank FAPESP (Fundação de Amparo a

Pesquisa do Estado de São Paulo) for the resources and the support in the COMA project

during my scientific initiation.

To my advisor, Professor Anderson, thank you for the incredible patience, time,

teachings, and discussions for the sake of science that we had in the last year and a half.

I couldn’t have chosen a better advisor. Your teachings have certainly made me a better

scientist and a lover of AI.

Finally, I want to thank myself. In these years, I went through moments of uncer-

tainty and found myself again with calmness and wisdom. The ability to make difficult

decisions and remain calm is a personal achievement that I value and will continue to

improve.

In summary, I am grateful to all who are part of my life, as each of you has

contributed to shaping who I am today. Your presence and support have been invaluable,

and I feel blessed to have each of you on my journey. These 5 years of graduation were

special, challenging, but incredible.

ABSTRACT

In today’s complex optimization landscape, challenges often transcend the pursuit of a

solitary objective, instead requiring the simultaneous consideration of multiple, some-

times conflicting, goals. This complexity has given rise to the field of Multi-Objective

Optimization. In recent years, researchers have begun to integrate these multi-objective

approaches into Reinforcement Learning, leading to the emergence of Multi-Objective

Reinforcement Learning (MORL). The field is gaining traction, especially due to the ca-

pabilities of model-free Reinforcement Learning algorithms. Essentially, these model-

free MORL algorithms strive to balance multiple, often conflicting, objectives without

necessitating prior knowledge of the environment. This thesis provides an in-depth anal-

ysis of model-free MORL algorithms anchored in Pareto Dominating Policies (PDP),

specifically focusing on two key algorithms: Pareto Q-Learning (PQL) and Pareto Deep

Q-Networks (PDQN), these algorithms were selected for their model-free characteristics

and their resemblance to well-known reinforcement learning algorithms like Q-Learning

and Deep Q-Networks.

This study features implementations from scratch of both the PQL and PDQN algorithms.

It evaluates the performance of PQL in the Deep Sea Treasure environment and assesses

PDQN in both the Deep Sea Treasure and a simulated urban traffic setting. This research

identifies common challenges, such as the generation of non-optimal policies and the

difficulties associated with managing large state spaces.

Our findings reveal that the application of the PDQN algorithm in real-world scenarios,

such as Gym City Flow (ZHANG et al., 2019), has led to no improvements, thereby

demonstrating their inefficacy. To address these challenges, this work proposes enhance-

ments to the PDQN algorithm and introduces a new MORL technique based on Pareto-

Dominating Actions. Preliminary tests indicate that this innovative approach shows promise

in enhancing the effectiveness of MORL algorithms.

The primary contributions of this work lie in its examination of the current state of MORL

algorithms based on Pareto Dominating Policies: discussing their architecture, their chal-

lenges and their possible improvements, while also testing their effectiveness in MO sce-

narios. By doing that, we are trying to shed light on their inherent limitations and chal-

lenges. In light of these limitations, we propose enhancements to the PDQN algorithm

through an innovative approach that holds the potential to establish an effective approach

to MORL algorithms in the future. This work serves as both a critical review of existing

methodologies and a forward-looking exploration of the future landscape of MORL cen-

tered on Pareto Optimality.

Keywords: Reinforcement Learning, Multi-objective, Artificial Intelligence, Multi-Objective

Reinforcement Learning, Pareto Dominating Policies, Pareto Deep Q-networks.

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

Env Environment

ML Machine Learning

MO Multi-Objective

MORL Multi-Objective Reinforcement Learning

NN Neural-network

PDQN Pareto Deep Q-Networks

PQL Pareto Q-Learning

RL Reinforcement Learning

PDP Pareto Dominating Policies

LIST OF FIGURES

Figure 2.1 Example of Pareto Frontier for a 2-objective minimization problem.
Here, f1 and f2 are the objective functions. Points A, B, and D are better
in one objective without compromising too much of the second one compared
to C. Therefore, A, B, and D are part of the Pareto Frontier and dominate C.
As one moves along the Pareto Frontier, improvement in one objective results
in a trade-off, worsening the other objective. (CAI; LIJIA; GONG, 2014)20

Figure 2.2 Illustration of the ⊕ operator. Source: The Author..23
Figure 2.3 Illustration of the FP operator process. Source: The Author.........................24
Figure 2.4 Illustration of the hypervolume evaluator. The Q-values (1,4),(2,3),(3,2)

are shown with respect to a reference point (0,0). The hypervolume in this
2D scenario, the hypervolume would be the area between each point and the
reference point: 4 for the first point, 6 for the second and 6 for the third point.
Source: The Author...25

Figure 2.5 Illustration of the Non-dominated Estimator process, Source: The Author. .28
Figure 2.6 Illustration of adding an anomaly point to a correct Pareto Frontier and

the anomaly Frontier generated. Source: The Author. ...29
Figure 2.7 Illustration of the correction of the anomaly point. Source: The Author.29
Figure 2.8 Illustration of the shift anomaly in the domain region of the Pareto Fron-

tier. Source: The Author. ..31
Figure 2.9 Illustration of the correction made in the shift of the Pareto Frontier

domain. Source: The Author. ...32

Figure 3.1 Illustration of the Deep Sea Treasure environment (VAMPLEW et al.,
2011) ...34

Figure 3.2 Plot of the comparison between the True Pareto Frontier and the PQL
Pareto Frontier. Source: The Author...35

Figure 3.3 Plot of the treasure reward x number of episodes, Source: The Author........36
Figure 3.4 Plot of the time penalty x number of episodes, Source: The Author.............36
Figure 3.5 Comparison between the true Pareto Frontier and the PDQN Pareto

Frontier algorithm implemented by The Author. Source: The Author.....................37
Figure 3.6 Comparison between the PQL Pareto Frontier, the PDQN Pareto Fron-

tier and the PQL Pareto Frontier from the algorithms implemented by The
Author. Source: The Author. ..38

Figure 3.7 Illustration of the traffic scenario experiment (ZHENG et al., 2019)............38

Figure 4.1 Illustration of the Deep Sea Treasure map utilized in the MO Q-Learning
and MO SARSA approaches. Source: The Author. ...49

Figure 4.2 Illustration of the states(rectangles) and Non-dominated actions (arrows)
for our MO Q-Learning approach, Source: The Author. ..49

Figure 4.3 Illustration of the states(rectangles) and Non-dominated actions (arrows)
for our MO SARSA approach, Source: The Author...50

Figure 4.4 Illustration of the Deep Sea Treasure map environment with the non-
dominated actions and states, the algorithm has a good result in finding the
non-dominated actions in most states. Source: The Author.52

LIST OF TABLES

Table 3.1 Allowed Phases ...39
Table 3.2 Possible movements ..40
Table 3.3 Results in (SCHREIBER et al., 2022a) in comparison with PDQN.42

Table 4.1 Average of computational metrics with and without the Target Reward
Estimator after 10.000 Episodes in 10 runs ..45

Table 4.2 Q-values for actions in the first state in MO Q-Learning................................48
Table 4.3 Q-values for actions in the first state in MO SARSA......................................50
Table 4.4 Q-values for actions in a secondary imaginary state50
Table 4.5 Q-values for actions in a first imaginary state ...51
Table 4.6 Q-values for actions in a first imaginary state using SARSA51

CONTENTS

1 INTRODUCTION...13
2 BACKGROUND..16
2.1 Reinforcement Learning...16
2.1.1 Q-learning ..16
2.1.2 Deep Q-Network..18
2.2 Multi-objective optimization..20
2.3 Multi objective Reinforcement Learning..21
2.3.1 Pareto Q-Learning..22
2.3.2 Pareto Deep Q-Networks ...25
2.3.2.1 Estimating the immediate reward ...26
2.3.2.2 Estimating the non-dominated set...27
2.4 Related works ..31
3 EVALUATING PQL AND PDQN ...34
3.1 PQL in Deep Sea Treasure Environment..34
3.2 Results of PDQN in the Deep Sea Treasure Environment...................................36
3.3 Results of PDQN in a simulated Traffic Light Control environment.................37
4 ENHANCEMENTS IN THE PDQN ALGORITHM ..44
4.1 Incorporation of the Target Reward Estimator ...44
4.2 Another approach on action selection...46
5 CONCLUSION ...54
REFERENCES...56

13

1 INTRODUCTION

In many real-world scenarios, optimization extends beyond refining a single crite-

rion to balancing multiple, often conflicting, objectives. For instance, consider the design

of a car where engineers must balance fuel efficiency, safety, speed, and cost. Such com-

plexity gives rise to multi-objective optimization, where the challenge lies in identifying

solutions that offer the best rewards among various goals. Such solutions are termed

Pareto optimal or non-dominated solutions, and their collective representation is known

as the Pareto Frontier—a visual depiction of the most favorable trade-offs. While a deeper

exploration of these concepts will follow, they set the stage for the subsequent discussion

on Multi-Objective Reinforcement Learning, where agents navigate a multifaceted objec-

tive landscape.

Model-free Multi-Objective Reinforcement Learning (MORL) algorithms have

gained significant attention in recent years due to their independence from a model of

the environment, making them highly relevant for solving real-world problems. These

problems span diverse domains such as traffic environments (OMAR; GOMAA, 2014),

energy management (QIN et al., 2020), healthcare (JALALIMANESH et al., 2017) and

even virtual-world applications, like video games (SHEN et al., 2020). Among the vari-

ous approaches to MORL, algorithms that utilize Pareto Dominating Policies (PDP) have

become increasingly popular due to their effectiveness in optimizing multiple objectives.

These algorithms aim to create a policy or decision that improves one objective’s out-

comes without negatively impacting the outcomes of any other objectives.

This work presents a comprehensive analysis of MORL algorithms based on PDP.

We assess the strengths and limitations of two existing algorithms: Pareto Q-Learning(PQL)

(Section 2.3.1) and Pareto Deep Q-Networks (PDQN) (Section 2.3.2). Additionally, we

evaluate both algorithms in the Deep Sea Treasure Environment (Section 3.1 and Section

3.2), also specifically test PDQN in a simulated urban traffic environment of Traffic Light

Control (Section 3.3). We identify common issues such as suboptimal optimization and

difficulty in handling large states space. Furthermore, building upon this analysis, we

propose enhancements to PDQN (Chapter 4) and also introduce a novel MORL technique

(Section 4.2). This innovative approach is rooted in Pareto-Dominating Actions, enumer-

ated through an on-policy reinforcement learning algorithm, as opposed to PDP. Notably,

our preliminary tests showcase promising results with this technique, highlighting its po-

tential to outperform existing methods.

14

The primary aim of this study is to make a meaningful contribution to the field by

offering valuable insights into the present landscape of Multi-Objective Reinforcement

Learning (MORL) algorithms rooted in Pareto Dominating Policies (PDP). By thoroughly

examining the current state of these algorithms(their architecture and effectiveness), we

shed light on their inherent challenges and limitations.

Beyond the analysis, this work also presents a forward-looking perspective by

proposing an innovative approach to address these challenges. We strive to offer novel

solutions to the issues encountered in this context, using the concept of non-dominated

actions. By exploring this alternative strategy, we seek to further enrich the MORL do-

main, potentially paving the way for more effective and robust solutions.

The central question of this research revolves around assessing the performance

of MORL algorithms based on PDP in varying environments and identifying avenues

for their optimization. Our hypothesis led us to implement and rigorously test these algo-

rithms, revealing key areas for improvement such as architectural tweaks and the inclusion

of non-dominated actions. The study’s contributions are an exhaustive analysis of exist-

ing algorithms, the introduction of a new approach to MORL based on non-dominated

actions, and a critical analysis of the PDQN in a real-world setting. By addressing these

facets, this research not only fills existing gaps but also charts a course for future devel-

opments in the MORL based on the Pareto Optimality landscape.

This work is structured as follows:

● Chapter 2: Background

This chapter establishes the foundational concepts of RL. It progresses into Multi-

Objective Optimization, elucidating its importance and inherent challenges. The

discourse then shifts to MORL, emphasizing its intricacies and distinctions. The

chapter concludes with a comprehensive overview of the algorithms central to this

monograph.

● Chapter 3: Results and Algorithm Evaluation

This chapter delves into the practical application of the introduced algorithms. It

commences with the deployment of the algorithm in the Deep Sea Treasure En-

vironment, underscoring its effectiveness and versatility. Subsequently, the narra-

tive transitions to a real-world context, illustrating the potential applicability of the

PDQN algorithm.

● Chapter 4: Improvements to the PDQN Algorithm

This concluding chapter contemplates enhancements and refinements to the existing

15

methodology. It provides insights into the current approach’s constraints and pro-

poses directions for future exploration. A fresh perspective on tackling the problem

is introduced, suggesting innovative avenues in the domain of MORL.

16

2 BACKGROUND

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a Machine Learning technique that enables agents

to learn by interacting with their environment through trial and error. This environment

is typically represented as a Markov Decision Process (MDP), a structured framework

for decision-making where outcomes are partly random and partly under the control of

a decision-maker. The MDP is defined by M = (S,A,T,R, γ). Here, S denotes the

set of environment states, representing the various situations or positions the agent can

encounter. A signifies the set of actions available to the agent in any given state. The

transition function, T ∶ S ×A × S → [0,1], determines the probability of the agent transi-

tioning from one state to another after performing a specific action. The immediate reward

function, R ∶ S → R, assigns a reward value to each state-action pair. Lastly, the discount

factor γ quantifies the importance of future rewards compared to immediate ones, guiding

the agent in evaluating the long-term consequences of its actions.

The objective of an RL agent is to find a policy that maps the state to an action

that yields the best total reward in the long run. To accomplish this, the agent explores

the environment, takes actions based on the current state, receives feedback (reward), and

utilizes it to adjust its policy on-the-fly to optimize it and maximize the total reward.

Two key factors of RL algorithms are exploration and exploitation. Exploration

involves trying out actions to learn about the environment and discover ways to achieve

potentially higher rewards, ultimately aiding in finding the optimal policy. Exploitation,

on the other hand, involves taking actions that the agent knows will yield the highest

value.

There are several techniques available to address the trade-off between exploration

and exploitation in RL algorithms, the most popular one being the ϵ-greedy technique.

This technique explores by selecting a random action with probability (ϵ) and exploits the

action with the highest estimated value with a probability of 1-ϵ.

2.1.1 Q-learning

Q-Learning (QL) is a widely used RL algorithm, primarily due to its model-free

nature, which means it doesn’t require a model of the environment to learn. Another

17

distinctive feature is its off-policy approach, allowing it to discover the optimal policy

even when following any exploratory strategy. In QL, the agent aims to learn the optimal

action-selection policy for an MDP. This learning process focuses on maximizing cumu-

lative rewards over time, and it achieves this without relying on a predefined environment

model In QL, the agent iteratively refines its knowledge. At each timestep, it observes the

current state s, chooses an action a, and receives the resulting reward r and next state s′.

The agent then uses this experience tuple < s, a, r, s′ > to update its Q-value estimates, as

illustrated in Eq.2.1.

Q(s, a)← Q(s, a) + α [r + γmax
a′

Q (s′, a′) −Q(s, a)] . (2.1)

In this equation, Q(s, a) represents the estimated Q-value of taking an action in

the current state. The term maxa′Q (s′, a′) denotes the highest Q-value estimate for all

potential actions a′ in the next state. The parameters α and γ are the learning rate and

discount factor, respectively. While α determines the influence of new information in the

Q-value update, γ balances the significance of immediate versus future rewards.

The Q-values are updated iteratively until they converge to their optimal values (if

certain conditions are obeyed). Once the Q-values have converged, the agent can follow

the optimal policy by selecting the action with the highest Q-value for each state.

To store and update these Q-values, a table is typically used. It is a table that stores

the estimated Q-values for each state-action pair.

The table approach is sufficient for small and discrete environments. However, as

the number of state-action pairs increases, the table size grows exponentially, making it

impractical for large and complex environments. In order to address this issue, approxi-

mate methods such as neural networks can be used. This is discussed in the next section.

The description of QL can be seen in Algorithm 1.

18

Algorithm 1: Tabular Q-learning
Input: Initial state s, learning rate α, discount factor γ, exploration

parameter ϵ, number of episodes E;

Output: Learned Q-value function Q(s, a);
Initialize Q(s, a) arbitrarily for all state-action pairs;

for t = 1 to E do
Initialize state s;

while s is non-terminal do
Choose action a from state s using an ϵ-greedy policy derived from Q;

Take action a and observe next state s′ and reward r;

Update Q(s, a) using Eq. 2.1;

Update s← s′;
end

end

2.1.2 Deep Q-Network

Deep Q-Network (DQN) (MNIH et al., 2015) is an algorithm used in Reinforce-

ment Learning that combines Q-Learning with deep neural networks. DQN is particularly

effective in handling high-dimensional environments, which can be challenging for tabu-

lar Q-Learning algorithms.

The key idea behind DQN is to use deep neural networks to approximate the Q

function by leveraging a combination of supervised learning and RL.

The set of experiences that the DQN algorithm uses is called replay memory. This

replay memory stores experience tuples < s, a, r, s′ >, which consist of the agent’s current

state s, the action taken a, the immediate reward received r, and the resulting next state

s′. During training, the algorithm samples experiences randomly from this buffer, which

allows the agent to learn from a diverse set of experiences and avoid overfitting to recent

experiences.

The training of the neural network consists of minimizing the squared error be-

tween its predictions and the target Q-values. This is achieved through backpropagation,

with the loss function calculated as the squared difference between the target Q-value and

the predicted Q-value, as shown in Eq.2.2.

19

Li(θi) = E(s,a,r,s′) ∼ U(D)[(yi −Q(s, a; θi))2] (2.2)

Where yi = r + γmaxa′Q(s′, a′; θ−i) is the target Q-value, θi are the parameters

of the Q-network at iteration i, U(D) is the uniform random sampling from the replay

memory D.

In addition to the replay memory, DQN uses a target network to stabilize the train-

ing process. This target network, with parameters θ−, is used to stabilize the training

process. This is done because when updating the Q-network, the Q values become highly

correlated, leading to the network getting stuck in a local minimum and failing to converge

to the optimal solution. To address this issue, the target network is periodically updated

with the Q-network values, with the frequency determined by a hyper-parameter C. This

approach allows the Q-network to learn from a more stable set of Q values since the target

network is updated less frequently than the Q-network. The target network plays a critical

role in helping the network avoid correlation problems and gradually adjust to changes

in the Q values over time. Overall, the use of a target network is an important feature of

DQN that helps the algorithm converge.

The complete algorithm of DQN with replay memory is shown in Algorithm 2.

Algorithm 2: Deep Q Network with replay memory
Data: Replay memory D with capacity B, action-value function Q with

weights θ, and target action-value function Q̂ with weights θ− = θ
for episode = 1 to E do

Get initial state st;
for t = 1 to T do

With probability ϵ select a random action at, otherwise select
at = argmaxaQ (st, a; θ);

Execute action at and observe reward rt and next state st+1;
Store transition (st, at, rt, st+1) in D;
Sample random minibatch of transitions (sj, aj, rj, sj+1) from D;
Set yj =

{ rj if episode terminates at step j + 1

rj + γmaxa′ Q̂ (sj+1, a′; θ−) otherwise
;

Perform a gradient descent step on (yj −Q (sj, aj; θ))2 with respect
to the network parameters θ;

if copy to Target then
Q̂← Q;

end
end

end

20

2.2 Multi-objective optimization

Multi-objective problems refer to optimization problems with more than one ob-

jective function that need to be optimized simultaneously. In such problems, there is

usually a trade-off between the objectives, making it difficult to find a single optimal so-

lution that satisfies all the objectives simultaneously. To cope with multiple objectives,

this work uses the concept of Pareto efficiency, also known as Pareto optimality. Pareto

optimality arises in situations where no allocation of resources can make one individual

better off without causing harm to another (LUC, 2008, p.481). This principle can be

applied to multi-objective optimization, as we elaborate next.

In multi-objective problems, the ideal solution would be one that outperforms all

others in every objective, but this is often not feasible. Instead, some solutions stand

out as clearly superior to others, as they excel in one objective without performing much

worse in any other. These are known as non-dominated solutions, which form the Pareto

Frontier. Illustrated in Fig. 2.1.

However, among non-dominated solutions, a dilemma arises when switching solu-

tions: improving the value of one objective often leads to a decrease in another objective.

Despite this challenge, the objective of a multi-objective optimization algorithm is to ac-

curately identify and enumerate all the points of the Pareto Frontier.

Figure 2.1 – Example of Pareto Frontier for a 2-objective minimization problem. Here, f1 and f2
are the objective functions. Points A, B, and D are better in one objective without compromising

too much of the second one compared to C. Therefore, A, B, and D are part of the Pareto
Frontier and dominate C. As one moves along the Pareto Frontier, improvement in one objective

results in a trade-off, worsening the other objective. (CAI; LIJIA; GONG, 2014)

21

2.3 Multi objective Reinforcement Learning

RL traditionally focuses on maximizing a scalar reward. In scenarios where mul-

tiple objectives need to be optimized simultaneously, the standard RL approach might not

be sufficient. This is where Multi-objective Reinforcement Learning (MORL) comes into

play.

MORL is a type of RL where the agent receives a vector-valued reward function

instead of the scalar reward, as is the case in single-objective RL. Specifically, the reward

function is defined as R ∶ S → Rd, where d represents the number of objectives. The

primary challenge in MORL is not just to obtain the maximum reward for a given state-

action pair but to find an optimal policy that can simultaneously maximize rewards across

multiple objectives. This becomes particularly challenging when these objectives conflict

or are antagonistic to each other. For instance, in a driving scenario, one might want to

reach a destination quickly (objective 1) but also want to save fuel (objective 2). These

objectives can sometimes be opposite of each other, making it complex to find a balanced

solution.

A fundamental aspect of MORL is its reliance on the concept of the Pareto Fron-

tier, which we discussed in Section 2.2. In the context of MORL, the Pareto Frontier helps

identify solutions that balance multiple objectives effectively. There are numerous meth-

ods available for determining the Pareto Frontier in optimization problems. Primarily,

what sets MORL apart in many control problems is its intrinsic ability to learn without

depending on prior knowledge of the environment’s dynamics (due to its many model-free

implementations).

In the realm of MORL, there are predominantly two approaches:

● Inner-loop Methods: These algorithms adapt traditional single-objective RL tech-

niques to handle vector operations. Their main objective is to simultaneously find

solutions that optimize all objectives. Essentially, they transform standard RL al-

gorithms to accommodate multiple objectives directly within the learning process

(HAYES et al., 2022).

● Outer-loop Methods: These algorithms adopt a different strategy. They repeatedly

employ a single-objective RL algorithm, but each iteration applies it to a different

scalarization of the reward function. The goal is to unearth optimal policies by

exploring various scalarized versions of the objectives (HAYES et al., 2022).

22

Several MORL algorithms use different techniques to identify non-dominated

policies. Algorithms like Pareto Q-learning (MOFFAERT; NOWé, 2014) and Multi-

objective Actor-Critic (MOAC) (REYMOND et al., 2021) employ Pareto dominance to

identify solutions. On the other hand, algorithms like Multi-objective Deep Deterministic

Policy Gradient (MODDPG) (YU et al., 2021) utilize scalarization methods to convert

multiple objectives into a single composite objective. This work delves deeper into algo-

rithms that emphasize Pareto Dominating Policies, specifically Pareto Q-Learning (Sec-

tion 2.3.1) and Pareto Deep Q-Networks (Section 2.3.2). Distinctively, these algorithms

do not need a pre-defined scalarization function to balance their objectives. Instead, they

directly optimize the vector-valued policy. This approach not only obviates the need for

manual tuning but also ensures a thorough exploration of the solution space, fostering

better generalization across diverse environments.

2.3.1 Pareto Q-Learning

Pareto Q-Learning (PQL)(MOFFAERT; NOWé, 2014), is an extension of the tra-

ditional single-objective Q-learning algorithm, tailored to manage multiple objectives.

Characterized as an inner-loop approach, PQL maintains a set of non-dominated solu-

tions for each state-action pair combination. Initially, this set is empty but gets updated

using the non-dominated set derived from the next state across all potential actions. The

expected returns for a specific state-action combination are articulated as the vector ad-

dition of the immediate reward and the non-dominated set of prospective returns, this is

represented as the Qset(s, a) . This can be seen in Eq. 2.3.

Qset(s, a)← R̄(s, a)⊕ γNDt(s, a) (2.3)

Where R̄ is the average immediate reward, NDt is the set of non-dominated future

returns, γ is the discount factor, and ⊕ is an operator that adds a vector to a set of vectors.

To better understand the operation of ⊕, let’s consider a numerical example. Sup-

pose R(s, a) (the return vector of rewards for a given state-action pair) is [16,−28]. This

vector will be added to each of the non-dominated vectors already found by NDt, for

example, [1,−1], [3,−5], and [124,−21], each multiplied by the value of γ. For simplic-

ity, let’s assume γ = 1 in this example. After this addition, we get the vectors [17,−29],
[19,−33], and [140,−49]. A simple illustration of the ⊕ operator is shown in Fig. 2.2.

23

After that, we check with the Frontier Points operator to see if it could be a new non-

dominated point in the Frontier.

Figure 2.2 – Illustration of the ⊕ operator. Source: The Author.

When an agent receives a new reward r from the environment for taking action a

in state s, the immediate reward estimate R̄(s, a) is updated as follows:

R̄(s, a)← R̄(s, a) + r − R̄(s, a)
n(s, a) (2.4)

Where n(s, a) is the number of times the state-action pair (s, a) has been visited.

The Equation 2.4 is an incremental calculation of the simple arithmetic mean and updates

the estimate of the average reward for the state-action pair (s, a).
NDt represents the set of non-dominated future returns, and it is updated using the

non-dominated set of all the Qset(s, a)’s of the next state (MOFFAERT; NOWé, 2014),

This is done as follows:

NDt(s, a)← FP (∪a′∈AQset (s′, a′)) (2.5)

Or it can be calculated as follows, where FP (Frontier Points)1 is a function that

keeps only the non-dominated solutions from the set:

NDt(s, a)← FP (∪a′∈AR̄ (s′, a′)⊕ γNDt (s′, a′)) (2.6)

1In the reference papers (MOFFAERT; NOWé, 2014) and (REYMOND; NOWE, 2019), this operator
is named ND, but for the sake of reader clarity, we chose to rename it due to the presence of NDt (Non-
dominated estimator) in this Section and in Section 2.3.2.

24

To add clarity to the FP operator, let’s consider a numerical example. Suppose we

have a set of points with values [1,−1], [1,−10], [2,−5], [3,−7], [32,−15], [2,−3], and

[3,−32]. Let’s consider the first objective as a treasure reward we are trying to maximize

and the second as a time penalty we are trying also to maximize(get it closer to zero). The

FP operator will evaluate this set of vectors and retain only those that are non-dominated.

For instance, the vector [1,−1] is non-dominated as it dominates all other vectors in terms

of the second objective (it has the lowest time penalty). The vector [32,−15] is also non-

dominated as it dominates all other vectors in terms of the first objective, having the

highest reward value. Similarly, the vector [2,−3] is non-dominated because no other

vector dominates it in both objectives, as it dominates [1,−1] in terms of reward but

loses in time, and it dominates [32,−15] in terms of time but loses in reward. The same

applies to the vector [3,−7], which is also non-dominated. Therefore, the Pareto Frontier

operator will return these non-dominated vectors [1,−1], [2,−3], [3,−7], and [32,−15],
and discard the dominated ones, such as [1,−10], [2,−5], and [3,−32]. This example is

illustrated in Figure 2.3.

Figure 2.3 – Illustration of the FP operator process. Source: The Author.

Continuing with PQL, as observed, the traditional Q-learning (Eq.2.1) update rule

has been adapted in PQL to accommodate vector rewards (Eq. 2.3). Also, the method

for selecting the optimal action evaluates its quality using the hypervolume indicator, il-

lustrated in Figure 2.4. This indicator computes the total volume under all the Q-values

(Q) relative to a specified reference point, a hyper-parameter that sets the minimum pos-

sible return. The action selection is determined by the ϵ-greedy strategy based on the

hypervolumes of each action.

25

0 1 2 3 4 5
Objective 1

0

1

2

3

4

5
Ob

je
ct

iv
e

2

Hypervolumes
Ref Point (0,0) Point (1.0, 4.0)

Point (2.0, 3.0)
Point (3.0, 2.0)

Figure 2.4 – Illustration of the hypervolume evaluator. The Q-values (1,4),(2,3),(3,2) are shown
with respect to a reference point (0,0). The hypervolume in this 2D scenario, the hypervolume

would be the area between each point and the reference point: 4 for the first point, 6 for the
second and 6 for the third point. Source: The Author.

A detailed exposition of PQL is provided in Algorithm 3.

For this work, the PQL algorithm was implemented, tested, and evaluated in the

Deep Sea Treasure environment. Some of the results can be seen in Section 3.1. Addition-

ally, the implementation is publicly available online at <https://github.com/GiovaniCenta/

MOparetoQlearning>.

2.3.2 Pareto Deep Q-Networks

The Pareto Deep Q-Networks (PDQN) is an innovative approach that fuses the

principles of the classic Deep Q-Learning algorithm (Section 2) with the multi-objective

strategies and mechanisms of Pareto Q-Learning (Section 2.3.1).

The PQL algorithm, much like its single-objective QL counterpart, faces difficul-

ties in handling large environments. This challenge is inherent in its architecture, which

keeps a set of Q-values (or non-dominated points) for each state-action pairing. Such a

design can lead to increased computational demands and instability (SUTTON; BARTO,

2018, Chapter 11).

https://github.com/GiovaniCenta/MOparetoQlearning
https://github.com/GiovaniCenta/MOparetoQlearning

26

Algorithm 3: Pareto Q-Learning Algorithm (MOFFAERT; NOWé, 2014)
Input: Empty sets for each state-action pair: Qset(s, a)← ∅, number of

steps, α ∈ (0,1], discount factor γ ∈ (0,1)
for each episode t do

Initialize state s
repeat

Choose action a from s using a policy derived from Qset
Take action a and observe the next state s′ and reward vector r
Update the ND policies of s′ in s:

Qset(s′, a′)← FP ({Q(s′, a′) ∪Qset(s′, a′)) ∣ a′ ∈ A
Update average immediate rewards:

R(s, a)← R(s, a) + 1
n(s,a)(r −R(s, a))

Proceed to next state: s← s′
until terminal state is reached;

end

To enhance its efficiency, PDQN utilizes neural networks to approximate both the

Pareto Frontier and the average immediate reward. By adopting this neural network-based

methodology, PDQN can possibly handle large environments. The Q-set within PDQN

is derived from Eq. 2.3, with both the immediate reward and the non-dominated points

being estimated using neural networks. Subsequent sections will delve into the specifics

of how the neural network estimates the immediate reward and the intricacies of the Non-

dominated Estimator.

2.3.2.1 Estimating the immediate reward

In RL algorithms, it’s essential to draw a clear distinction between two concepts:

● The immediate reward that an agent gains when it performs a specific action in a

given state.

● The Q-value of a state-action pair, which represents its long-term value.

In the context of PDQN, a neural network is employed to estimate the immedi-

ate reward. This approach allows the algorithm to approximate a complex, non-linear

function that correlates the state-action pair with the reward. The network takes the state-

action pair as its input and yields a reward vector, denoted as r ∈ Rd, with d being the

number of objectives.

The primary goal is to train the neural network to reduce the quadratic error be-

tween the observed and estimated rewards, similar to a regression task. This approach

aims to improve the network’s proficiency in formulating optimal policies.

27

2.3.2.2 Estimating the non-dominated set

In the PDQN approach, alongside approximating the reward R, there’s a need to

approximate NDt, which represents the non-dominated returns. A significant challenge

arises due to the variable size of this set. Specifically, the number of non-dominated points

returned varies depending on the state. This variability makes it impractical to use only

state and actions as inputs to output a fixed number of points.

One might consider limiting the set to a predefined number of top non-dominated

points, say j. However, this introduces another challenge: the sequence in which these

j points appear becomes crucial. For consistent network updates, each output neuron

must be compared with a consistent target value, given the same input. Any change in

the sequence of points would alter the target, potentially disrupting the training process.

Furthermore, maintaining this sequence is not feasible. Whenever a new non-dominated

point emerges (which is state-dependent), an existing point would need to be removed,

leading to a sequence alteration.

To address these challenges, the network is designed to accept not only a state s

and action a as input but also d − 1 additional values. These values correspond to the

rewards associated with each of the first d − 1 objectives for the given state-action pair.

Specifically, the network takes as input a tuple (s, a, o1, . . . , od−1), where s is the current

state, a is the current action, and (o1, . . . , od−1) are the rewards for the first d−1 objectives

for that state-action pair. The network then outputs the value od, which is the estimated

reward for the last objective. By combining this output od with the input values, a single

point in Rd for (s, a) is derived. Adding this to the estimated reward value R̄ (as per

Eq. 2.5), a single point on the Pareto Frontier is obtained. This procedure is iterated p

times, where p is a hyper-parameter denoting the desired number of points on the Pareto

Frontier, resulting in p distinct points on the Frontier. This process is illustrated in the

diagram of Fig. 2.5.

This method of approximating the Pareto Frontier has some limitations, specif-

ically, the Pareto Frontier for some states may only exist within a subdomain of Rd−1,

meaning that the predictor may sometimes produce objective values that are not actually

possible within that Frontier.

To handle such scenarios, the predictor is specifically trained to be conservative

in its predictions. If it encounters points that are likely not part of the Pareto Frontier,

it assigns them values that are worse than the smallest possible reward. This approach

ensures that even if the predictor makes big mistakes, it leans towards caution, preventing

28

Figure 2.5 – Illustration of the Non-dominated Estimator process, Source: The Author.

overestimation.

For example, let’s analyze a Pareto Frontier of the Deep Sea Treasure (Fig 3.1)

problem with the points: points = [(1, -1), (3, -5), (16, -9), (24,

-14), (50, -15), (124, -19)]. Suppose we attempt to add a point with the

value of (74,−2). This point is impossible to obtain - the submarine cannot reach a

reward of 74 in so few steps. If we were to add this point to the Pareto Frontier, the

entire Frontier would be compromised. Points such as (3,−5), (16,−9), (24,−14), and

(50,−15)would all be dominated, leading to incorrect results, as we can see in Figure 2.6.

To address this issue, we can simply compare this point to the maximum value that the

time penalty reward can achieve, which is −17. By doing so, we can adopt a conservative

approach and exclude this point from the Frontier, assigning low reward values to the

second objective, so it can be dominated by all existing points and does not interfere with

the existing Frontier. This is illustrated in Figure 2.7.

By using this approach, the Pareto Frontier is not biased towards any particular

region of the domain, and the architecture can identify all the non-dominated points in

the given state-action space. Overall, this should allow for more accurate and effective

approximations of the Pareto Frontier in complex problems (REYMOND; NOWE, 2019).

Another challenge encountered in the PDQN method is the potential instability

29

0 20 40 60 80 100 120
Treasure Reward

17.5

15.0

12.5

10.0

7.5

5.0

2.5

Ti
m

e
Pe

na
lty

Frontier with anomaly point
Pareto Frontier
Anomaly Frontier
Pareto Frontier Points
Anomaly Point

Figure 2.6 – Illustration of adding an anomaly point to a correct Pareto Frontier and the anomaly
Frontier generated. Source: The Author.

0 20 40 60 80 100 120
Treasure Reward

25

20

15

10

5

0

Ti
m

e
Pe

na
lty

Frontier with anomaly point
Pareto Frontier
Pareto Frontier Points
Anomaly Point

Figure 2.7 – Illustration of the correction of the anomaly point. Source: The Author.

introduced by newly discovered non-dominated points. When these new points are in-

tegrated, they can inadvertently alter the predictions for existing points on the Pareto

Frontier, leading to inconsistencies in the approximation. To mitigate this, the PDQN

method adopts a comprehensive update strategy. Instead of solely updating with the new

points, the entire Pareto Frontier is refreshed. This involves using the current predictions

of all points as their own targets, ensuring a consistent and stable representation of the

Pareto Frontier. Stability in the Pareto Frontier is vital for hypervolume calculation. If the

Pareto Frontier experiences frequent shifts or replacements, the hypervolume can exhibit

significant fluctuations. Such inconsistencies can misguide the optimization process and

lead to miscalculations.

The algorithm sometimes encounters situations where it must artificially introduce

30

points to ensure comprehensive coverage of the Rd−1 domain. This is crucial to maintain

a consistent representation of the Pareto Frontier across the entire domain. Two primary

scenarios necessitate this artificial introduction of points:

1. Terminal States: In certain situations, when the algorithm reaches terminal states,

the Pareto Frontier is solely defined by the terminal reward. This means that the

Pareto Frontier is not derived from a combination of multiple objectives but is in-

stead represented by a singular value. This can lead to gaps and inconsistencies in

the representation of the Pareto Frontier across the domain. This is very similar to

what we described in Figure 2.6.

2. Shift in NDt Range: After specific calculations, particularly as per Eq. 2.5, there’s

a shift in the range that NDt covers. This shift can create regions in the Rd−1 domain

that lack representation on the Pareto Frontier.

To add clarity to the shift in the NDt Range problem, let’s exemplify it: When

the FP (Frontier Point) operator is used in PDQN, as mentioned earlier, the entire Frontier

is updated simultaneously. This can lead to situations where the shift in the Frontier

results in points that are impossible to obtain. For instance, let’s say we currently have a

Frontier with the points [(1, -2), (2, -4), (3, -8), (8, -11), (16,

-13)]. After adding a new non-dominated point and updating the Frontier, we obtain

a new set of points [(1, 0), (2, -2), (3, -7), (8, -9), (16, -11)].

Based on the true Frontier, we know that it is impossible to achieve treasure values of 1

with a penalty of 0 and treasure reward 2 with -2 as a penalty, this problem is described

in Fig.2.8. Therefore, a correction is needed. To address this, we discard the points that

cannot exist while retaining the rest of the updated Frontier, in addition to sample points

from the region, this process can be seen in Fig.2.9.

To address these gaps and ensure that the entire Rd−1 domain is covered, the algo-

rithm samples points from the uncovered regions. Each of these sampled points is then

evaluated based on its dominance relationship with existing points:

● Non-Dominated Points: If a sampled point is not dominated by any existing point

on the Pareto Frontier, it’s assigned a conservative value, similar to how points

outside the Frontier are treated, like in Fig. 2.7.

● Dominated Points: On the other hand, if a sampled point is dominated by an

existing point, it adopts the value of that dominating point.

In essence, this strategy of artificially introducing points and assigning them val-

31

2 4 6 8 10 12 14 16
Treasure Reward

12

10

8

6

4

2

0
Ti

m
e

Pe
na

lty

Shift in Pareto Frontier
Original Pareto Frontier
Updated Pareto Frontier
Anomaly point

Figure 2.8 – Illustration of the shift anomaly in the domain region of the Pareto Frontier. Source:
The Author.

ues based on their dominance relationship ensures that the Pareto Frontier remains con-

sistent, accurate, and comprehensive across the entire Rd−1 domain.

An overview of the PQDN is provided in Algorithm 4.

For this work, the PDQN algorithm was implemented, tested, and evaluated in the

Deep Sea Treasure environment. Some of the results can be seen in Section 3.2. This im-

plementation is available online at <https://github.com/GiovaniCenta/Pareto-Deep-Q-Networks>.

Also, the PDQN was implemented and tested in the Gym City Flow urban traffic envi-

ronment of Traffic Light Control (Section 3.3), the implementation is available online at

<https://github.com/GiovaniCenta/Pareto-Deep-Q-networks-in-Traffic-Environment-Gym-City-Flow>.

2.4 Related works

The theoretical underpinnings of the Reinforcement Learning (RL) components in

this research are primarily informed by the book "Reinforcement Learning: An Introduc-

tion" by Richard Sutton and Andrew Barto (SUTTON; BARTO, 2018). This seminal text

not only provides a comprehensive overview of RL but also introduces key algorithms and

methodologies that have been adapted in this study. The book’s discussion on model-free

learning methods and policy optimization techniques has been particularly influential in

shaping the RL algorithms we employed.

In the realm of Multi-Objective Reinforcement Learning (MORL), the paper "Multi-

https://github.com/GiovaniCenta/Pareto-Deep-Q-Networks
https://github.com/GiovaniCenta/Pareto-Deep-Q-networks-in-Traffic-Environment-Gym-City-Flow

32

2 4 6 8 10 12 14 16
Treasure Reward

12

10

8

6

4

2
Ti

m
e

Pe
na

lty

Shift in Pareto Frontier
Original Pareto Frontier
Updated Pareto Frontier
corrected anomaly point

Figure 2.9 – Illustration of the correction made in the shift of the Pareto Frontier domain. Source:
The Author.

Objective Reinforcement Learning using Sets of Pareto Dominating Policies" by Kristof

Van Moffaert and Ann Nowé (MOFFAERT; NOWé, 2014) serves as a cornerstone. This

paper is pivotal for its introduction of Pareto Dominating Policies (PDP) as a formalized

approach to MORL. The authors methodology for identifying and utilizing Pareto-optimal

solutions has been directly incorporated into our research, influencing both the algorithms

we chose to study and the metrics we used for evaluation.

The algorithmic architecture of Pareto Deep Q-Networks (PDQN) in our study is

heavily influenced by the paper "Pareto-DQN: Approximating the Pareto front in complex

multi-objective decision problems" by Mathieu Reymond and Ann Nowé (REYMOND;

NOWE, 2019). This paper not only provides a detailed architecture of PDQN but also

discusses its applicability in complex decision-making scenarios. The authors insights

into the limitations and potential improvements of PDQN have guided the enhancements

we proposed in our own work.

For the application to real-world Traffic Light Control scenarios, we turned to the

paper "On the Explainability and Expressiveness of Function Approximation Methods in

RL-Based Traffic Signal Control" by Lincoln V. Schreiber, Lucas N. Alegre, Ana L.C.

Bazzan, and Gabriel de O. Ramos (SCHREIBER et al., 2022b). This research offers a

comprehensive framework for applying RL algorithms in traffic control settings, includ-

ing the challenges and considerations for real-world deployment. The paper’s empirical

evaluations and methodological insights have been instrumental in shaping the design and

metrics of our own experiments in a similar context.

33

Algorithm 4: PDQN algorithm (REYMOND; NOWE, 2019)
Input: Replay memory D, Reward Estimator R̄, Non-dominated Estimator

NDt, target Non-dominated Estimator N̂Dt, hyper-parameters γ, ϵ,
number of episodes: M , copy target step: C, number of sample
points: p

for episode = 1 to M do
terminal ← False;
while ¬terminal do

Sample points p from Rd−1;
Qset(s, ., p)← R(s, .)⊕ γNDt(s, ., p);
hv ← hypervolume(Qset(s, ., p));
a← ϵ-greedy(hv);
Execute a in environment, observe state s′, reward r, terminal t;
Add transition (s, a, r, s′, t) to D;
Sample minibatch (si, ai, ri, s′i, ti) from D;
Sample points pi from Rd−1;

yi ←
⎧⎪⎪⎨⎪⎪⎩

ND(⋃a′∈A Q̂set(s′i, a′i, pi)) if not ti
ri otherwise

;

Update NDt by performing gradient descent step on
(yi −Qset(si, ai, pi))2;

Update R by performing gradient descent step on (ri −R(si, ai))2;
Every C steps copy NDt to ˆNDt

terminal ← t;
end

end

34

3 EVALUATING PQL AND PDQN

To gain a deeper understanding of the algorithms and their limitations, we imple-

mented and evaluated them in specific environments. For PQL, we used the Deep Sea

Treasure environment, and for PDQN, we utilized both the Deep Sea Treasure and Gym

City Flow environments. We compared our findings with previous results and identified

limitations, which are discussed in the following chapter.

3.1 PQL in Deep Sea Treasure Environment

The Deep Sea Treasure is a deterministic environment that serves as a benchmark

in the domain of MORL. In this environment, an agent controls a submarine with the

primary goal of collecting treasures as quickly as possible. The state space is defined

by a grid that represents the submarine’s coordinates. The action space comprises the

four allowed directional movements: Up, Down, Left, and Right. Additionally, when the

submarine attempts to cross a boundary, it remains in the same place and incurs a time

penalty. The agent aims to optimize the balance between maximizing treasure rewards and

minimizing time consumption. It’s worth noting that rewards escalate with increasing

water depth, as depicted in the Deep Sea Treasure map (Figure 3.1). However, each

movement of the submarine incurs a time penalty of −1. This MO environment was

provided by (ALEGRE et al., 2022).

Figure 3.1 – Illustration of the Deep Sea Treasure environment (VAMPLEW et al., 2011)

Given its relatively simple state and action spaces, the Deep Sea Treasure environ-

ment is particularly suited for evaluating the Pareto Q-Learning algorithm. Consequently,

we implemented and tested the algorithm within this setting. The experiment utilized

the following hyper-parameters: γ = 0.96, number of episodes = 35000, hypervolume

35

reference point = [0,−25], ϵ = 1, and ϵ decrease = 0.999.

To understand the effectiveness of our implementation, it’s crucial to compare it

against a benchmark. The true Pareto Front of the Deep Sea Treasure problem serves this

purpose. In this problem, determining the Pareto Front analytically is straightforward:

one simply needs to consider the shortest path to each reward. Each pair of time and

reward constitutes a point on the front. This front represents the set of non-dominated

solutions where no objective can be improved without sacrificing another. To gauge the

performance of the PQL algorithm, their respective Pareto Fronts were compared to this

true Pareto Front.

For a more refined and precise representation, the algorithms were run using the

best policies with a greedy action selection (i.e., ϵ = 0).

The results of the Pareto Frontier in our implementation of the PQL algorithm are

illustrated in Figure 3.2. The plot demonstrates the algorithm’s capability to establish a

boundary that balances both objectives: minimizing the time penalty while maximizing

treasure rewards. While the current results are promising, particularly for the initial trea-

sure rewards, there is room for further optimization with respect to the latter rewards. This

could be achieved through hyperparameter tuning or by enhancing the algorithm’s ability

to learn optimal policies, which is the primary focus of the PDQN algorithm, which will

be seen in the following Section 3.2.

0 20 40 60 80 100 120
Treasure Reward

25

20

15

10

5

0

Ti
m

e
Pe

na
lty

True Pareto Frontier vs PQL Frontier
True Pareto Frontier
PQL Frontier
True Pareto Frontier Points
PQL Frontier Points

Figure 3.2 – Plot of the comparison between the True Pareto Frontier and the PQL Pareto
Frontier. Source: The Author.

Figures 3.3 and 3.4 depict the algorithm’s performance in terms of rewards over

episodes. These figures show the algorithm’s ability to obtain good rewards while man-

36

aging time. Although there is room for improvement, the results validate the PQL algo-

rithm’s capability in navigating the complexities of the Deep Sea Treasure environment.

The algorithm did not follow an optimal policy for most episodes but managed to follow

a satisfactory one, with rewards close to 16 and a time penalty close to −9. This accounts

for the non-optimal results for the latter treasure rewards in Fig.3.2. Once the algorithm

settled on a preference for the 16 treasure reward, it did not explore enough to find optimal

policies for subsequent rewards like 24, 50, 74, and especially 124.

Figure 3.3 – Plot of the treasure reward x number of episodes, Source: The Author.

Figure 3.4 – Plot of the time penalty x number of episodes, Source: The Author.

3.2 Results of PDQN in the Deep Sea Treasure Environment

After our exploration with the PQL algorithm, we applied the PDQN algorithm

to the Deep Sea Treasure Environment. The methodology for determining the Pareto

Frontier with PDQN was equal to our approach for PQL. For this experiment, the hyper-

parameters were set as follows: Discount factor (γ) was 0.99, number of episodes was

37

35000, hypervolume reference point was [0,−25], the initial exploration rate (ϵ) was 1,

rate of decrease for ϵ was 0.9999, number of points p was 16, learning rate for Replay

Estimator was 0.001, and learning rate for Non-dominated Estimator was 0.0001.

The outcomes of the PDQN algorithm Pareto Frontier are illustrated in Figure 3.5.

0 20 40 60 80 100 120
Treasure Reward

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Ti
m

e
Pe

na
lty

True Pareto Frontier vs PDQN Frontier
True Pareto Frontier
PDQN Frontier
True Pareto Frontier Points
PDQN Frontier Points

Figure 3.5 – Comparison between the true Pareto Frontier and the PDQN Pareto Frontier
algorithm implemented by The Author. Source: The Author.

The analysis reveals interesting results. Notably, the initial data points on the

PDQN’s Pareto Frontier align closely with those of the true Pareto Frontier. However,

discrepancies become apparent in the later points, indicating areas for improvement. Ad-

ditionally, when compared to the PQL Frontier results (Fig. 3.6), the PDQN outperforms

PQL in the latter treasure rewards, (50,74, and 124 rewards).

3.3 Results of PDQN in a simulated Traffic Light Control environment

With the continuous expansion of urban areas and the increasing number of vehi-

cles on the roads, urban traffic congestion has become a significant challenge in today’s

society (ZHANG; LEVINSON, 2004). This issue affects not just daily commuting and

transportation efficiency but also has broader implications on social well-being (ELIAS-

SON, 2009), public health (BRAUER; HYSTAD, 2019), and environmental sustainability

(HO; MULLEY, 2013). As cities search for effective solutions, traffic light control has

emerged as a promising strategy (ABDOOS; MOZAYANI; BAZZAN, 2011), leveraging

existing infrastructure in many urban centers.

38

0 20 40 60 80 100 120
Treasure Reward

25

20

15

10

5

0

Ti
m

e
Pe

na
lty

True Pareto Frontier vs PQL Frontier
True Pareto Frontier
PQL Frontier
PDQN Frontier
True Pareto Frontier Points
PQL Frontier Points
PDQN Frontier

Figure 3.6 – Comparison between the PQL Pareto Frontier, the PDQN Pareto Frontier and the
PQL Pareto Frontier from the algorithms implemented by The Author. Source: The Author.

Over the years, many studies have utilized RL algorithms to optimize traffic light

control systems. These algorithms, often combined with neural networks and other ad-

vanced techniques, have shown potential in improving traffic flow and reducing conges-

tion (SHAH; ZHOU, 2019). However, there remains a gap in the application of Multi-

objective algorithms specifically for this context.

For the testing scenarios, we utilized realistic traffic datasets sourced from cameras

in Hangzhou, China, as provided by (ZHENG et al., 2019). Which included a single four-

lane intersection layout. Every intersection maintained a speed limit of 11.11 meters per

second across all four lanes. With each approach measuring 300 meters, Conforming to

standard traffic regulations, we followed the sequence of a green light transitioning to a 3-

second yellow light and finally to a 2-second red light across all signals. These scenarios

were recreated using the CityFlow simulator (ZHANG et al., 2019). This traffic scenario

is illustrated in Figure 3.7.

Figure 3.7 – Illustration of the traffic scenario experiment (ZHENG et al., 2019).

39

To address this, we applied our version of the PDQN algorithm to this scenario.

We aimed to optimize the Traffic Lights control environment and assess the adaptability

of the PDQN in this setting.

In this scenario, each traffic light at the intersection serves as an individual agent.Let’s

define the state space, action space, and reward functions of this complex environment:

● Action Space: The set of actions available to the agent comprises eight distinct

phases, each corresponding to a specific movement defined in Table 3.1. These

movements represent different traffic flow configurations at the intersection. Once

the agent selects a particular phase, it remains active for a fixed duration of 20 sec-

onds, during which the agent determines the order of these phases. It is important to

note that the timing of each phase is predetermined and remains constant; thus, the

agent’s decisions focus on the sequencing of the phases rather than their individual

durations. While the agent can opt for the same phase multiple times within the

20-second interval, such choices are made only once every 20 seconds.

Table 3.1 – Allowed Phases

Phases Allowed Movements Allowed Directions

0 W → E, E→W →, ←
1 S→N, N →S ↓, ↑
2 W →N, E→S ,

3 S→W, N →E ,

4 W →E, W →N →,
5 E→W, E→S ←,
6 S→N, S→W ↑,
7 N →E, N →S , ↓

● State Space: The state space is modeled as a continuous real-valued vector, denoted

by Sd, where each of the d components corresponds to the queue length of a specific

movement at the intersection. At a given time step t, the state is represented as St =
[F0, F1, F2, F3, F4, F5, F6, F7], where F0 through F7 represents the queue lengths

of movements 1 through 8, respectively. The possible movements can be seen in

table 3.2. These queue lengths provide critical information about the number of

vehicles waiting in each traffic lane. By considering the state of each movement, the

agent gains insights into the current traffic conditions, allowing it to make informed

decisions for optimizing traffic flow.

● Reward Functions: In our MO scenario, we have identified two pivotal reward

40

Table 3.2 – Possible movements

Movement Direction Symbol

0 W → E →
1 E→W ←
2 S→N ↑
3 N →S ↓
4 W →N
5 E→S
6 S→W

7 N →E

functions to address the complexities of urban traffic control. The first reward is

centered on the intersection pressure, which is quantified as the difference between

the density of vehicles entering the intersection and those departing. By minimizing

this pressure, we aim to substantially enhance the overall traffic flow and mitigate

congestion, ensuring smoother transit for commuters. For the second reward, we

emphasize the lane waiting count. This metric represents the number of vehicles

queued (waiting to be able to move) in each lane. We’ve chosen this particular

reward because it provides a direct measure of localized congestion and can be in-

strumental in identifying specific bottlenecks or areas that would require immediate

attention.

This definition of action and state spaces provides a structured framework for the

agent to make intelligent decisions and effectively optimize traffic signal control. The

real-valued state representation allows the agent to perceive the traffic situation in a con-

tinuous manner, providing a more nuanced understanding of the traffic dynamics at the

intersection. Similarly, the discrete action space enables the agent to exert control over the

traffic signals in a practical and manageable way. Furthermore, the reward functions have

been thoughtfully designed to facilitate simultaneous optimization, enabling the agent to

achieve favorable outcomes in multiple objectives.

For the sake of consistency and to allow for direct comparison of results, we con-

ducted our experiment using the same scenarios as Lincoln V. Schereiber in his paper "On

the Explainability and Expressiveness of Function Approximation Methods in RL-Based

Traffic Signal Control" (SCHREIBER et al., 2022b). This facilitated our focus on realistic

traffic datasets referenced in previous studies.

The PDQN algorithm was designed to address the challenge of managing a large

number of state-action pairs, a common issue with traditional Pareto Q-Learning ap-

41

proaches. Using a neural network to approximate both the Pareto Frontier and the average

immediate reward, the PDQN proved somehow effective at managing state-action pairs

in smaller environments as we have seen before 3.2.

To enable a comparison with the current literature, we employed the same perfor-

mance metrics as (SCHREIBER et al., 2022b), namely:

● Travel Time: This measures the duration a vehicle takes to traverse an intersection.

It is calculated by noting the difference (in seconds) between the vehicle’s entry and

exit times at the intersection.

● Speed Score: This index measures how swiftly a vehicle can cross the intersection,

while still adhering to the speed limit. It is calculated by dividing the actual speed

of the vehicle by the speed limit of the road.

● Throughput: This is a count of the number of vehicles that have completed their

trips. It’s determined by tallying the number of completed steps in each vehicle’s

route.

In addition to these metrics, we also compared our results against established traf-

fic management algorithms such as:

● Fixed Time (LI et al., 2016): This model keeps the traffic light phases on a pre-set,

unchanging cycle, with each phase lasting 58 seconds, a duration found to be most

efficient in Schreiber’s tests (SCHREIBER et al., 2022b).

● Self-organizing traffic lights (SOTL) (COOLS; MOONS; WETS, 2013): The

Self-Organizing Traffic Lights Control strategy changes the traffic phases when ei-

ther a certain number of waiting vehicles is exceeded or the minimum green light

duration is reached.

● Max-Pressure (HAO; YANG, 2019): Regarded as the current best approach in

traffic signal control, Max-Pressure gives priority to the traffic phase with the most

halted or incoming vehicles, balanced by the number of departing vehicles. The

decision to switch or maintain phases is made every 20 seconds.

This approach allows for an in-depth analysis and comparison of our results against

standard methods and the findings of Schereiber’s paper (SCHREIBER et al., 2022b).

Upon implementing the PDQN algorithm within the CityFlow gym environment,

we quickly discerned the algorithm’s difficulties in managing the multifarious aspects of

urban traffic dynamics. The initial outcomes not only fell short of expectations but also

deviated significantly from benchmarks established by contemporary studies. Vital per-

42

formance indicators, including average travel time and vehicle throughput, lagged behind

ideal standards, especially when contrasted with results achieved using other RL algo-

rithms. A table of these comparison results can be seen in table 3.3. These observations

underscored the limitations in the adaptability of the PDQN algorithm within such intri-

cate contexts.

Table 3.3 – Results in (SCHREIBER et al., 2022a) in comparison with PDQN.
Results in Hangzhou environment

Algorithm TravelTime SpeedScore Throughput

PDQN 594.9216 0.197 3170
FixedTime 558.837 0.218 3313
SOTL 304.32 0.276 3899
MaxPressure 131.91 0.425 4327
DQL-XGB 124.96 ± 4.80 0.468 ± 0.015 4323
DQL-FB 131.70 ± 9.76 0.428 ± 0.022 4320
DQL-NN 132.47 ± 4.88 0.431 ± 0.018 4280

When analyzing the performance over the last 150 episodes for both the stan-

dard DQN and PDQN approaches, a distinct disparity emerged. The DQN algorithm

successfully optimized both throughput and travel time—increasing the throughput while

reducing the travel time. In contrast, the PDQN did not demonstrate a similar level of

optimization. For a visual comparison of their throughput performances, refer to Figures

3.8a and 3.8b. For travel time performances, see Figures 3.9a and 3.9b.

(a) Average throughput of the DQN algorithm
over the last 150 episodes.

(b) Average throughput of the PDQN algorithm
over the last 150 episodes.

(a) Average travel time of the DQN algorithm
over the last 150 episodes.

(b) Average travel time of the PDQN algorithm
over the last 150 episodes.

43

Upon analyzing the performance of the PDQN algorithm in this context, several

questions emerged. Although the primary objective of the PDQN algorithm was to excel

in larger environments, the results presented in this section indicate its shortcomings in

achieving that goal. Consequently, in the subsequent chapter, we aim to enhance the algo-

rithm’s learning capabilities by modifying its architecture (Section 4.1) and introducing a

novel approach based on non-dominated actions (Section 4.2).

44

4 ENHANCEMENTS IN THE PDQN ALGORITHM

4.1 Incorporation of the Target Reward Estimator

To try enhance the stability of the PDQN algorithm, we introduced a Target Re-

ward Estimator. This component is analogous to the Target Network found in the Deep

Q-Learning framework, as referenced in Alg. 2. The primary reason for introducing

this stability mechanism is to ensure that the neural network controlling the agent is not

updated at every timestep, which would otherwise result in more erratic control behavior.

Our main objective was to improve the stability of the Reward Estimator. While

the Non-dominated Estimator already incorporates a target for a similar purpose, our aim

was to further stabilize the Target Reward approximations. It should be noted that this

is more about enhancing the stability in the agent’s control rather than in the estimators

themselves.

In our proposed approach, the Target Reward Estimator’s role is to produce Target

Reward values for the PDQN algorithm. These values are then used to adjust the priorities

of experiences in the replay buffer and to determine approximation errors.

To implement this, the Target Reward Estimator is updated at regular intervals,

copying the weights from the Reward Estimator every C episodes. During the PDQN

training, the values from the Target Reward Estimator would be used similarly to the

Target Non-dominated values. This is expected to aid in calculating approximation errors

and updating the neural network parameters.

By integrating the Target Reward Estimator into the PDQN algorithm, we hoped

to reduce fluctuations in reward predictions, potentially leading to smoother learning and

better algorithm performance.

However, our tests showed that adding the target Estimator didn’t bring significant

benefits. The Pareto Frontier benchmark was equal to the results reported in Section 3.2.

Also, it slightly increased the algorithm’s computational demands, as shown in Table 4.1.

One reason could be the added complexity from the Target Reward Estimator, possibly

introducing more noise and affecting reward prediction accuracy. The existing robustness

of the algorithm might mean the added Estimator doesn’t bring enough value to justify

the computational cost.

Also, In RL, Q-values denote the cumulative rewards for executing a specific ac-

tion in a particular state. As the agent deepens its understanding of the environment, these

45

Table 4.1 – Average of computational metrics with and without the Target Reward Estimator after
10.000 Episodes in 10 runs

With Target Reward Estimator Without Target Reward Estimator

Memory usage 56.7% 54.9%
CPU Usage 99.9% 99.85%

Running time(seconds) 612 597

Q-values evolve, classifying them as non-stationary targets. On the other hand, immedi-

ate rewards remain consistent and unaltered, categorizing them as stationary targets. For

instance, in the Deep Sea Treasure environment, every time the agent arrives at the state

with coordinates (x, y) = (0,1) (refer to Figure 3.1), it receives an immediate reward of

1. However, the corresponding Q-value might vary based on the trajectory taken to reach

that state, as dictated by its update equation (see Eq. 2.1).

The discussion on Q-values and immediate rewards highlights the concept of boot-

strapping and stability in RL algorithms. In the case of the Q-values in the PDQN algo-

rithm, the estimates are updated using another estimate of Q, specifically the Q-value

of the future state. This means we are updating an estimate with another imprecise es-

timate made by the agent itself. This bootstrapping process introduces non-stationarity

in the Q-value updates, making stabilization mechanisms like backpropagation crucial.

Backpropagation averages updates over multiple iterations, ensuring that the network’s

predictions are not swayed by transient fluctuations in the data and are grounded in a

consistent understanding of the environment.

On the other hand, immediate rewards have a stationary target that is not influ-

enced by the agent’s imprecise estimates. These rewards are updated exclusively based

on samples from the environment, negating the need for stabilization mechanisms. This

inherent stability in immediate rewards stands in contrast to the non-stationary nature of

Q-value updates, highlighting the importance of stabilization mechanisms for the latter

while demonstrating their lack of necessity for the former.

This distinction holds significance: the unwavering nature of immediate rewards

negates the requirement for an auxiliary target network. While such networks are con-

ventionally employed to stabilize learning by furnishing consistent Q-value targets, the

presence of stationary rewards allows for direct updates to the primary network based on

the immediate rewards obtained.

46

4.2 Another approach on action selection

In our investigation of PDQN, our primary objective was to identify mechanisms

to eliminate the reliance on sample points within the algorithm. This exploration led us

to the promising proposition of incorporating a hypervolume Estimator. This innovative

approach seemed poised to render artificial points redundant and to facilitate the direct

computation of the maximum Q-value for that state and action pair, replacing the need for

p sample points and the need for the equation Qset(s, ., p) ← R(s, .) ⊕ γNDt(s, ., p) in

the PDQN algorithm(Alg. 4).

This hypervolume Estimator would be designed to amalgamate the two core ap-

proximations intrinsic to the PDQN algorithm – the Reward Estimator and the Non-

dominated Estimator – yielding a unified framework. The central idea here was to make

the algorithm more efficient by utilizing the existing state and actions to estimate the hy-

pervolume with the locally non-dominated actions, thereby bypassing the p points sam-

pling.

Yet, this approach seemed to clash with a pivotal premise posited by van Moffaert

and Anne Nowe in their foundational work (MOFFAERT; NOWé, 2014, p.3679), which

claimed, "Selecting actions that are locally non-dominated within the current state does

not guarantee that the entire policy is globally Pareto optimal." This assertion posed a

challenging dichotomy prompting deeper exploration.

In MORL, actions are deemed non-dominated when they can’t be surpassed by

any other action across all objectives. This definition is grounded in the principle of Pareto

optimality, where any action on the Pareto Frontier is, by definition, non-dominated.

To dissect this enigma further, we embarked on empirical studies using a MO tab-

ular approach. For this purpose, we utilized two foundational algorithms: Q-Learning and

SARSA. Each algorithm utilizes d tables, where d represents the number of objectives.

Each table is designed to estimate the expected return of a state-action pair for a specific

objective. From these tables, locally non-dominated values are extrapolated for each ac-

tion in every state. Subsequently, a non-dominated action is randomly selected, serving

as the basis for the decision-making policy. The MO Q-Learning algorithm is described

in Alg. 5 and the MO SARSA algorithm is described in Alg. 6.

Our experimental setup involved implementing both algorithms in a simplified

version of the Deep Sea Treasure environment, illustrated in Fig. 4.1. Both algorithms

were configured with identical hyperparameters: α = 0.4, γ = 0.98, ϵ = 1, epsilon decrease =

47

Algorithm 5: Multi-Table Q-Learning
Input: Initial state s, learning rate α, discount factor γ, exploration
parameter ϵ, number of episodes E, number of objectives d;

Output: Learned Q-value functions Q1(s, a),Q2(s, a), . . . ,Qd(s, a);
Initialize Qi(s, a) arbitrarily for all state-action pairs and for i = 1, . . . , d;
for e = 1 to E do

Initialize state s; Initialize done = False;
while not done do

a← ϵ-greedy in FP([Q1,Q2 . . . , Qd]);
Take action a and observe reward,s′,done;
r1, r2, . . . , rd ← reward;
if not done then

for i = 1 to d do
Qi(s, a)← Qi(s, a) + α [ri + γmaxa′Qi(s′, a′) −Qi(s, a)];

end
end
else

for i = 1 to d do
Qi(s, a)← ri;

end
end
s← s’;

end
end

0.996, and number of episodes = 3600. The non-dominated actions for every state were

vividly depicted in Figures 4.2 and 4.3. An examination of the Q-Learning results, re-

vealed a discernible flaw: it incorrectly identified the upward action as non-dominated

on the first state. This choice is inconsistent with the principle of non-dominance, as

this action would merely increase further time penalties without getting any rewards.

Conversely, SARSA’s implementation did not display these anomalies. The correct non-

dominated actions – moving downward (securing a low-value treasure with minimal time

penalty) and shifting rightward (navigating towards treasures with higher values but in-

curring larger time penalties) – were correctly identified. This observation indicates that

when Q-Learning randomly selects one of the non-dominated actions, choosing the ’Up’

action could result in global non-dominance issues, such as the generation of non-optimal

policies. This is a pitfall that the SARSA approach avoids.

By closely examining the Q-values (Q1 for the treasure and Q2 for the time penalty)

associated with each action in the initial state, we uncover intriguing differences between

Q-Learning and SARSA in this multi-objective setting.

In table 4.2, the action to move right is considered non-dominated because it op-

48

Algorithm 6: Multi-Table SARSA
Input: Initial state s, learning rate α, discount factor γ, exploration
parameter ϵ, number of episodes E, number of objectives d;

Output: Learned Q-value functions Q1(s, a),Q2(s, a), . . . ,Qd(s, a);
Initialize Qi(s, a) arbitrarily for all state-action pairs and for i = 1, . . . , d;
for e = 1 to E do

Initialize state s; Initialize done = False;
a← ϵ-greedy in FP([Q1,Q2 . . . , Qd]);
while not done do

Take action a and observe reward,s′,done;
r1, r2, . . . , rd ← reward;
a’← ϵ-greedy in FP([Q1,Q2 . . . , Qd]);
if not done then

for i = 1 to d do
Qi(s, a)← Qi(s, a) + α [ri + γQi(s’, a’) −Qi(s, a)];

end
end
else

for i = 1 to d do
Qi(s, a)← ri;

end
end
a← a′;
s← s’;

end
end

timizes the first reward but has a worse time penalty. The action to move down tends to

generate lower time penalties while achieving a minimum reward, so it is also considered

non-dominated. However, both the Up and Left actions are considered non-dominated

as they provide intermediate values of reward and penalty. They dominate the action to

move right in terms of time penalty and dominate the action to move down in terms of

reward. This is not ideal, as both actions should not be considered non-dominated in this

environment.

Table 4.2 – Q-values for actions in the first state in MO Q-Learning

Action Q1 Q2

Up 2.71176239 -1.98
Down 1.0 -1.0
Left 2.71176239 -1.98

Right 2.76710448 -2.9404

The problem with Q-Learning is that it mixes things up: the maximum value for

one objective may take the value of one action in state s′, but for another objective, it may

49

Figure 4.1 – Illustration of the Deep Sea Treasure map utilized in the MO Q-Learning and MO
SARSA approaches. Source: The Author.

Figure 4.2 – Illustration of the states(rectangles) and Non-dominated actions (arrows) for our MO
Q-Learning approach, Source: The Author.

take the value of another action.

On the other hand, SARSA does not face this issue. In table 4.3, the action to

move down correctly dominates all other actions in terms of time, while the action to

move right dominates all others in terms of reward. Both the actions to move left and up

do not dominate either right or down in any objective.

Let’s consider an illustrative example to clarify the differences between Q-Learning

and SARSA in this multi-objective setting. Imagine a scenario where taking the action

of going upwards leads to a second state with Q-values as shown in Table 4.4. In Q-

Learning, the independent Q1 and Q2 tables would select different actions due to the max

operator in Eq.2.1. Specifically, Q1 would opt for the ’Up’ action to maximize its value,

50

Figure 4.3 – Illustration of the states(rectangles) and Non-dominated actions (arrows) for our MO
SARSA approach, Source: The Author.

Table 4.3 – Q-values for actions in the first state in MO SARSA

Action Q1 Q2

Up 1.86478052 -5.93641483
Down 1.0 -1.0
Left 1.99666967 -6.10895009

Right 2.76710448 -4.80396016

while Q2 would choose ’Down’.

In contrast, SARSA’s on-policy approach would select the same action based on

its current policy. This difference stems from the update equations for SARSA (Eq. 4.1)

and Q-Learning (Eq. 2.1). While Q-Learning updates its Q-values based on the maximum

Q-value for each objective, SARSA chooses the update for both objectives based on the

action chosen by its policy.

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′) −Q(s, a)] (4.1)

Table 4.4 – Q-values for actions in a secondary imaginary state

Action Q1 Q2

Up 9.0 0.0
Down 0.0 9.0
Left 1.0 2.0

Right 2.0 1.0

Using Eq. 2.1, let’s consider an imaginary first state Q-table where the ’Up’ action

initially has a Q-value of 0 for both Q1 and Q2. With hyperparameters set to γ = 0.9 and

α = 0.5, and assuming a reward of 0 for transitioning to the next state, the updated Q-

51

values for both Q1 and Q2 would be 4.05, as calculated using Eq. 4.2. As shown in Table

4.5, both Q-values end up being equal, since they both select Q-values of 9 in the next

state. In the context of non-dominated actions, ’Down’ and ’Right’ would be considered

non-dominated. Also, in this case, the ’Up’ action would also be categorized as non-

dominated.

Q1,2(0, ↑)← 0 + 0.5 [0 + 0.9 ∗ 9 − 0] = 4.05. (4.2)

Table 4.5 – Q-values for actions in a first imaginary state

Action Q1 Q2

Up 4.05 4.05
Down 15 1
Left 2 3

Right 1 15

Applying the SARSA equation in the same context, let’s assume that the next

action selected by the policy is ’Down’. The corresponding Q-values for this action in the

subsequent state are (0,9) for Q1 and Q2, respectively. Using these values in Eq. 4.1, we

obtain updated Q-values of 0 for Q1 and 4.05 for Q2, as detailed in Eq. 4.3 and Eq. 4.4,

respectively. The updated Q-values are presented in Table 4.6. In this particular case, the

’Up’ action loses its non-dominated status, as it is outperformed by all other actions with

respect to the first Q-value, so only ’Down’ and ’Right’ are non-dominated actions.

Q1(0, ↑)← 0 + 0.5[0 + 0.9 ∗ 9 − 0] = 4.05 (4.3)

Q2(0, ↑)← 0 + 0.5[0 + 0.9 ∗ 0 − 0] = 0 (4.4)

Table 4.6 – Q-values for actions in a first imaginary state using SARSA

Action Q1 Q2

Up 0 4.05
Down 15 1
Left 2 3

Right 1 15

The key distinction to get these results lies in the look-ahead strategy of Q-Learning

and SARSA. While Q-Learning uses the estimated return of the greedy policy, SARSA

bases its decision on a single action recommended by the current policy. This avoids the

52

issue in Q-Learning where the best action in a state differs for each objective. Both al-

gorithms look ahead, but they differ in their approach: Q-Learning considers the value of

the best action in the next state, whereas SARSA considers the value of the action chosen

by the policy in the next state.

When we expanded our research to a bigger Deep Sea Treasure Environment, the

results were even more illuminating. Our straightforward Multi-Objective (MO) SARSA

algorithm showcased an ability to navigate this environment. This simple algorithm could

navigate and find non-dominated actions for various states in the bigger environment, as

can be seen in Fig. 4.4. This observation was particularly striking. It suggests that even

a relatively basic MO SARSA-based approach, when fine-tuned and applied correctly,

has the potential to decipher and adopt a globally optimal policy from locally optimized

policies.

0 2 4 6 8 10

0

2

4

6

8

10

1.0

-10.0 2.0

-10.0 -10.0 3.0

-10.0 -10.0 -10.0 5.0 8.0 16.0

-10.0 -10.0 -10.0 -10.0 -10.0 -10.0

-10.0 -10.0 -10.0 -10.0 -10.0 -10.0

-10.0 -10.0 -10.0 -10.0 -10.0 -10.0 24.0 50.0

-10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0

-10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 74.0

-10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 124.0

Figure 4.4 – Illustration of the Deep Sea Treasure map environment with the non-dominated
actions and states, the algorithm has a good result in finding the non-dominated actions in most

states. Source: The Author.

53

Given these revelations, it’s clear that the drawbacks observed in Q-learning stem

from its tendency to optimize actions for one objective, often neglecting others in the

process. This can inadvertently result in wrong non-dominated actions. SARSA, with

its on-policy design, offers a more adaptable and immediate approach. It prioritizes the

action chosen by the policy, ensuring a consistent alignment with the current environment

and objectives.

While our findings shed a promising light on this approach, it’s essential to tread

with caution. Our experiments have thus far been constrained to grid-sized environments,

characterized by their limited state and action spaces. This specificity raises questions

about the scalability and general applicability of our SARSA method in more expansive

and intricate domains.

Furthermore, in our quest for a deeper understanding and to potentially validate

or challenge our insights, we reached out to the original authors of (MOFFAERT; NOWé,

2014). Our primary goal was to discuss the nuances between locally and globally opti-

mized solutions, seeking clarity about the topic. Sadly, we have yet to receive a response.

In light of this, integrating SARSA’s into the PDQN framework seems like a nat-

ural progression. This could not only streamline the algorithm but potentially enhance

its computational speed and accuracy. By eliminating the necessity for artificial sample

points, the algorithm could become more straightforward and more attuned to real-time

decision-making.

54

5 CONCLUSION

As seen in this work, the landscape of MORL is becoming increasingly complex.

Balancing multiple objectives is often a challenging task, especially in model-free envi-

ronments. This study contributes to the field by providing a comprehensive analysis of

MORL algorithms based on Pareto Dominating Policies (PDP), with a specific focus on

Pareto Q-Learning (PQL) (Section 2.3.1) and Pareto Deep Q-Networks (PDQN) (Section

2.3.2).

Also, our research evaluated the performance of PQL in the Deep Sea Treasure

environment (Section 3.1) and assessed PDQN in both the Deep Sea Treasure (Section

3.2) and a simulated urban traffic setting (Section 3.3). We identified prevalent challenges

in these algorithms, such as the generation of non-optimal policies for later rewards and

the poor results in managing large state spaces.

To address these challenges, we proposed enhancements to the PDQN algorithm

and introduced a novel MORL technique rooted in Pareto-Dominating Actions (Chapter

4). Preliminary tests indicate that this innovative approach shows promise in enhancing

the effectiveness of action selection in such contexts (Section 4.2). This serves as the

primary contribution of this study, offering both a critical analysis of existing methods

and a forward-looking perspective on the field of MORL based on Pareto Optimality.

While our research has made strides in understanding the complexities and chal-

lenges of MORL algorithms based on PDP, there is still much to be done. Future work

could focus on:

1. Extensive testing of the proposed enhancements to the PDQN algorithm.

2. Further refinement of the novel SARSA MORL technique based on Pareto-Dominating

Actions.

3. Exploration of other real-world applications where these algorithms can be effec-

tively deployed.

4. Investigating the scalability of the SARSA MO algorithm in larger state spaces.

By thoroughly examining the current state (their architecture and effectiveness in

dealing with MO problems) of MORL algorithms based on PDP, this study has shed light

on their inherent challenges and limitations. More importantly, it has proposed innovative

solutions to these challenges, paving the way for other MORL algorithms based on Pareto

Optimality.

55

In summary, this study not only sheds light on the inherent challenges and limi-

tations of current MORL algorithms based on PDP but also proposes a solution based on

non-dominated actions. This innovation can pave the way for more effective and robust

MORL algorithms, thereby enriching the domain and inspiring future research endeavors.

56

REFERENCES

ABDOOS, M.; MOZAYANI, N.; BAZZAN, A. Traffic light control in non-stationary
environments based on multi agent q-learning. In: . [S.l.: s.n.], 2011.

ALEGRE, L. N. et al. MO-Gym: A library of multi-objective reinforcement learning en-
vironments. In: Proceedings of the 34th Benelux Conference on Artificial Intelligence
BNAIC/Benelearn 2022. [S.l.: s.n.], 2022.

BRAUER, M.; HYSTAD, P. Traffic-related air pollution and health in canada. Environ-
mental Pollution, Elsevier, v. 252, p. 1075–1083, 2019.

CAI, Q.; LIJIA, M.; GONG, M. A survey on network community detection based on
evolutionary computation. International Journal of Bio-Inspired Computation, v. 8,
01 2014.

COOLS, O.; MOONS, E.; WETS, G. Self-organising traffic lights: A tool for pedes-
trian management. Transportation Research Part C: Emerging Technologies, Elsevier,
v. 26, p. 58–74, 2013.

ELIASSON, J. The social costs of traffic congestion: A review of the literature. Trans-
port Policy, Elsevier, v. 16, n. 6, p. 362–368, 2009.

HAO, S.; YANG, L. Traffic network modeling and extended max-pressure traffic con-
trol strategy based on granular computing theory. Journal of Advanced Transportation,
Hindawi, v. 2019, p. 1–12, 2019.

HAYES, C. et al. A practical guide to multi-objective reinforcement learning and plan-
ning. Autonomous Agents and Multi-Agent Systems, v. 36, 04 2022.

HO, C. Q.; MULLEY, C. Environmental impacts of urban traffic congestion: A review.
Transport Policy, Elsevier, v. 29, p. 217–224, 2013.

JALALIMANESH, A. et al. Multi-objective optimization of radiotherapy: distributed q-
learning and agent-based simulation. Journal of Experimental & Theoretical Artificial
Intelligence, Taylor Francis, v. 29, n. 5, p. 1071–1086, 2017. Disponível em: <https:
//doi.org/10.1080/0952813X.2017.1292319>.

LI, Z. et al. Traffic signal timing optimization based on intersection delay. Transportation
Research Part C: Emerging Technologies, Elsevier, v. 71, p. 464–478, 2016.

LUC, D. T. Pareto optimality. In: . Pareto Optimality, Game Theory And Equi-
libria. New York, NY: Springer New York, 2008. p. 481–515. ISBN 978-0-387-77247-9.
Disponível em: <https://doi.org/10.1007/978-0-387-77247-9_18>.

MNIH, V. et al. Human-level control through deep reinforcement learning. Nature,
Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Re-
served., v. 518, n. 7540, p. 529–533, fev. 2015. ISSN 00280836. Disponível em: <http:
//dx.doi.org/10.1038/nature14236>.

MOFFAERT, K. V.; NOWé, A. Multi-objective reinforcement learning using sets of
pareto dominating policies. Journal of Machine Learning Research, v. 15, n. 107, p.
3663–3692, 2014. Disponível em: <http://jmlr.org/papers/v15/vanmoffaert14a.html>.

https://doi.org/10.1080/0952813X.2017.1292319
https://doi.org/10.1080/0952813X.2017.1292319
https://doi.org/10.1007/978-0-387-77247-9_18
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://jmlr.org/papers/v15/vanmoffaert14a.html

57

OMAR, M. K.; GOMAA, W. Adaptive multi-objective reinforcement learning with hy-
brid exploration for traffic signal control based on cooperative multi-agent framework.
Engineering Applications of Artificial Intelligence, v. 29, 03 2014.

QIN, Y. et al. An energy-aware scheduling algorithm for budget-constrained scientific
workflows based on multi-objective reinforcement learning. The Journal of Supercom-
puting, v. 76, 01 2020.

REYMOND, M. et al. Actor-critic multi-objective reinforcement learning for non-linear
utility functions. In: . [S.l.: s.n.], 2021.

REYMOND, M.; NOWE, A. Pareto-DQN: Approximating the Pareto front in complex
multi-objective decision problems. In: Proceedings of the Adaptive and Learning
Agents Workshop 2019 (ALA-19) at AAMAS. [s.n.], 2019. Null ; Conference date:
13-05-2019 Through 14-05-2019. Disponível em: <https://ala2019.vub.ac.be>.

SCHREIBER, L. et al. On the explainability and expressiveness of function approxi-
mation methods in rl-based traffic signal control. In: 2022 International Joint Con-
ference on Neural Networks (IJCNN). Padova, Italy: IEEE, 2022. Disponível em:
<https://doi.org/10.1109/IJCNN55064.2022.9892422>.

SCHREIBER, L. V. et al. On the explainability and expressiveness of function approxima-
tion methods in rl-based traffic signal control. In: 2022 International Joint Conference
on Neural Networks (IJCNN). [S.l.: s.n.], 2022. p. 01–08.

SHAH, M.; ZHOU, B. A survey of urban traffic management and the application of ar-
tificial intelligence techniques. Transportation Research Procedia, Elsevier, v. 37, p.
92–99, 2019.

SHEN, R. et al. Generating behavior-diverse game ais with evolutionary multi-objective
deep reinforcement learning. In: . [S.l.: s.n.], 2020. p. 3343–3349.

SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction. Cam-
bridge, MA, USA: A Bradford Book, 2018. ISBN 0262039249.

VAMPLEW, P. et al. Empirical evaluation methods for multiobjective reinforcement
learning algorithms. Machine Learning, v. 84, p. 51–80, 07 2011.

YU, Y. et al. Multi-objective optimization for uav-assisted wireless powered iot networks
based on extended ddpg algorithm. IEEE Transactions on Communications, PP, p. 1–1,
06 2021.

ZHANG, H. et al. CityFlow: A multi-agent reinforcement learning environment for
large scale city traffic scenario. In: The World Wide Web Conference. ACM, 2019.
Disponível em: <https://doi.org/10.1145%2F3308558.3314139>.

ZHANG, L.; LEVINSON, D. Traffic congestion and reliability: Trends and advanced
strategies for congestion mitigation. Transport Policy, Elsevier, v. 11, n. 3, p. 229–245,
2004.

ZHENG, G. et al. Learning phase competition for traffic signal control. In: . [S.l.: s.n.],
2019. p. 1963–1972. ISBN 978-1-4503-6976-3.

https://ala2019.vub.ac.be
https://doi.org/10.1109/IJCNN55064.2022.9892422
https://doi.org/10.1145%2F3308558.3314139

	Acknowledgments
	Abstract
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.1.1 Q-learning
	2.1.2 Deep Q-Network

	2.2 Multi-objective optimization
	2.3 Multi objective Reinforcement Learning
	2.3.1 Pareto Q-Learning
	2.3.2 Pareto Deep Q-Networks
	2.3.2.1 Estimating the immediate reward
	2.3.2.2 Estimating the non-dominated set

	2.4 Related works

	3 Evaluating PQL and PDQN
	3.1 PQL in Deep Sea Treasure Environment
	3.2 Results of PDQN in the Deep Sea Treasure Environment
	3.3 Results of PDQN in a simulated Traffic Light Control environment

	4 Enhancements in the PDQN Algorithm
	4.1 Incorporation of the Target Reward Estimator
	4.2 Another approach on action selection

	5 Conclusion
	References

