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Ataxias, in particular if of genetic origin, have long
been considered untreatable. They are now becoming
models for the development of targeted molecular
therapies due to their defined genetic etiology. The
current decade will thus translate the advance in
genomics of ataxias, which has allowed the
unraveling of almost 50 autosomal dominant spi-
nocerebellar ataxias (SCAs) and more than 100 auto-
somal recessive ataxia (ARCA) genes, into therapy

approaches based on the underlying gene mutations
and derived molecular mechanisms.1-3 The most
advanced of them will now cross the threshold to
clinical trials, raising hopes for availability of effec-
tive molecular treatments for specific ataxias within
the next years. To facilitate the clinical development
of therapies for ataxias, a worldwide research plat-
form, the Ataxia Global Initiative (AGI), was recently
established.
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Genetic Ataxias: Forerunners for
Targeted Therapy Development

Although small molecules had been the mainstay of
drug therapy since the beginning of modern medicine,
biomedical research has recently developed an arsenal
of macromolecules that complement the small-molecule
approach and may be particularly suitable for the treat-
ment of genetic diseases. These options are further
expanded by gene-based therapies.4

Currently, antisense oligonucleotides (ASOs) inducing
cleavage of the RNA encoding the presumably toxic
disease proteins are a main focus of therapy develop-
ment for ataxias. Such ASOs already underwent suc-
cessful early-phase clinical trials in Huntington’s
disease and superoxide dismutase 1 amyotrophic lateral
sclerosis (SOD1 ALS).5,6 However, subsequent phase
3 trials did not prove clinical efficacy, but a positive
effect on fluid biomarkers in SOD1 ALS (https://
investors.biogen.com/news-releases/news-release-details/
biogen-announces-topline-results-tofersen-phase-3-study-
and-its). In animal models of SCAs caused by CAG
repeat expansions, such ASOs proved to be effective,
and phase 1/2 trials in polyglutamine SCAs are immi-
nent (ClinicalTrials.gov: NCT05160558).7,8 ASOs that
modulate splicing promise even wider applications,
including individualized treatments in single patients.9

Such interventions are currently being developed for
ataxia telangiectasia and optic atrophy 1, a disease often
associated with ataxia.9,10 Another line of development
is adeno-associated virus-based gene therapies to deliver
small interfering RNAs or microRNAs targeting genes
coding for toxic proteins.11

Efficient delivery still presents a major bottleneck for
the clinical application of ASOs and viral vectors. Dis-
tribution of ASOs in the brain after intrathecal injection
appears sufficient for several ASO types, but the
repeated injections are a burden for patients.12 Gene
therapy with viral vectors has the advantage of a single-
dose application. However, many questions regarding
vector design, immunogenicity, route of application,
and distribution are still awaiting final anwers.13

Joint Action of all Stakeholders as
the Key to Success: The Ataxia

Global Initiative

Although manifold promising new treatment
approaches for ataxias are on the way, a number of
major challenges stand in the way of successful trials.
These include: (1) limited access to existing clinical
data, (2) inappropriate sensitivity and questionable
patient relevance of outcome assessments, (3) lack of
validated biomarkers, and (4) absence of an effective

trial infrastructure. To address these challenges in a
timely and effective manner and facilitate the clinical
development of therapies for ataxias, we established the
AGI in 2021 (https://ataxia-global-initiative.net/). The
AGI is a worldwide research platform formed by indi-
vidual members, including academic or industry-based
ataxia researchers, clinical investigators, ataxia clini-
cians, and representatives of patient organizations. Cur-
rently, AGI has 185 members from 29 countries. In
addition, the AGI is partnering with industry compa-
nies and patient organizations (Fig. 1).
To achieve its goals, the AGI has established an orga-

nizational structure consisting of multistakeholder
working groups and trial-readiness services, including
the AGI Trial Site Registry and the Ataxia Advisory
Committee Therapy.14 The AGI Trial Site Registry pro-
vides information on personnel, facilities, and ataxia
patient populations at the participating sites around the
globe in a readily available, standardized fashion. The
Ataxia Advisory Committee Therapy allows academic
groups and companies to have their preclinical and clin-
ical development plans evaluated by an international
board of preclinical, clinical, regulatory, and industrial
experts, as well as patient representatives, with the aim
to de-risk therapy development (Fig. 2). In addition, the
AGI started a collaboration with the Critical Path Insti-
tute resulting in the launch of the Critical Path to Ther-
apeutics for the Ataxias (CPTA), which has a specific
focus on data sharing and driving toward regulatory
acceptance of clinical and biomarker outcomes for clini-
cal trials (https://c-path.org/programs/cpta/).
AGI is sharing information and resources via the AGI

website (https://ataxia-global-initiative.net), a monthly
AGI newsletter (received by more than 700 people), and
scientific conferences and symposia specifically focused
on therapy development and trial readiness. To foster
ataxia expertise of young clinicians, the AGI Young
Investigator Initiative has started to implement an AGI
training curriculum including a regular webinar on vari-
ous methods of ataxia outcome measures, open to par-
ticipation for all people interested in ataxia research. To
provide information about ataxia research to laypeople,
patient organizations can play an important role, and
there is representation both in the Steering Committee
and in the membership of AGI. In addition, AGI has
started a partnership with SCASource (https://scasource.
net/), which is an online multilingual platform that dis-
seminates ataxia research news in lay language.15

Availability and Aggregation of
Natural History Data for Robust Trial

Design

Reliable natural history data are key for trial design.
Although longitudinal cohort data are available for the

1126 Movement Disorders, Vol. 37, No. 6, 2022

K L O C K G E T H E R E T A L

 15318257, 2022, 6, D
ow

nloaded from
 https://m

ovem
entdisorders.onlinelibrary.w

iley.com
/doi/10.1002/m

ds.29032 by U
frgs - U

niversidade Federal D
o R

io G
rande D

o Sul, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://investors.biogen.com/news-releases/news-release-details/biogen-announces-topline-results-tofersen-phase-3-study-and-its
https://investors.biogen.com/news-releases/news-release-details/biogen-announces-topline-results-tofersen-phase-3-study-and-its
https://investors.biogen.com/news-releases/news-release-details/biogen-announces-topline-results-tofersen-phase-3-study-and-its
https://investors.biogen.com/news-releases/news-release-details/biogen-announces-topline-results-tofersen-phase-3-study-and-its
https://ataxia-global-initiative.net/
https://c-path.org/programs/cpta/
https://ataxia-global-initiative.net
https://scasource.net/
https://scasource.net/


main CAG repeat SCAs (SCA1, SCA2, SCA3, and
SCA6) and the most frequent ARCAs (Friedreich
ataxia, ARSACS, SPG7, and RFC1 disease),16-19 they
are missing for the large majority of other SCAs and
ARCAs. Extensive efforts are thus undertaken by AGI
partners to map the natural history of other SCAs and
ARCAs. The AGI is in an ideal position to serve as a
platform for sharing and exchanging these data. To
facilitate this, the AGI is developing procedures and

preparing templates that help to overcome the related
legal and administrative hurdles. One ongoing initiative
to bring together existing natural history data of genetic
ataxias is coordinated by the CPTA.
However, novel, more in-depth and rigorous natural

history studies are needed to provide more robust trial-
like natural history and biomarker data. Although the
first such natural history studies are currently under-
taken by AGI partners (Biomarkers and Genetic Mod-
ifierers in Pre and Postsymptomatic SCA3/MJD,
BIGPRO, The Clinical Research Consortium for the
Study of Ataxia, CRC-SCA, European Spinocerebellar
Ataxia type 3/Machado Joseph Disease Initiative,
ESMI, Integrated Multimodal Progression Chart in
Spastic Ataxias, PROSPAX, Clinical Trial Readiness
for SCA1 and SCA3, READISCA, and others), more
dedicated public and industry funding for such studies
is needed, with the AGI ideally positioned to coordinate
such multicenter endeavors on a global scale.

Cross-Center Standardized Outcome
Assessment for All Main Outcome

Domains

Both planning and execution of trials is challenged by
large between- and even within-center variability in out-
come assessment. This includes literally all outcome
domains, for example, variability in clinical, digital,

FIG. 1. Organizational structure of the Ataxia Global Initiative (AGI).

FIG. 2. Resources and working groups of the Ataxia Global Initiative
(AGI). MRI, magnetic resonance imaging; NGS, next generation
sequencing.
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imaging, and molecular outcome assessment. To over-
come this challenge, the AGI has established cross-center
harmonized standard operating procedures for each
major outcome domain, including clinical, fluid bio-
marker, magnetic resonance (MR) imaging, and digital-
motor assessments, complemented by standardized train-
ing tools, such as the Scale for the Assessment and Rating
of Ataxia (SARA) training tool (https://ataxia-global-
initiative.net/resources/sara-training-tool/), and recorded
training webinars.

Clinical Outcome Parameters:
Sensitivity to Change and Patient

Meaningfulness

Given the relatively slow progression of most SCAs
and ARCAs with survival times exceeding 20 years
after ataxia onset,20 clinical outcome parameters for tri-
als need to be sufficiently sensitive to change. Although
SARA serves as the most widely applied primary
clinical outcome for genetic ataxias, there is substantial
intraindividual variability, reaching almost 20% of the
entire scale range on repeated testing within 14 days.21

Thus, various sample size calculations come to the
unanimous conclusion that, in a trial of at least 1 year
in duration, several hundreds of participants would be
needed to detect a disease-slowing effect of an investiga-
tional drug.16,22 There is an ongoing debate whether
modified SARA versions, such as the Modified Func-
tional SARA that is used in an ongoing drug trial
(https://clinicaltrials.gov/ct2/show/NCT03701399),
have higher sensitivity. A thorough analysis of proper-
ties of SARA, potential modification of the scale, and
careful analysis and validation of possible new ver-
sions are some of the main tasks of the AGI together
with CPTA.
Nevertheless, there is an obvious need to follow new

strategies to improve clinical assessment that go beyond
application of clinical scales in the hospital. One
approach developed by AGI partners is ataxia capture
by body-worn sensors.23-25 Further improvement can
be achieved by shifting the assessment into real life,
either by repeated video capture (SARAhome) or body-
worn sensors, which has shown to dramatically reduce
calculated sample sizes.21,25,26

Standard clinical ataxia scales such as the SARA need
to show that they capture not just neurological proxies
of ataxia functions, but indeed reflect meaningful bene-
fit of patients’ lives. This challenge might be alleviated
by correlating change in SARA with change in patient-
reported outcomes reflecting patients’ daily life impact
more closely, for example, the Friedreich Ataxia Rating
Scale Activity of Daily Living scale,27 the PROM-
Ataxia,28 and other patient-reported outcomes cur-
rently under development by AGI partners, leveraging

the worldwide AGI infrastructure and its close interac-
tion with patient organization, such as the National
Ataxia Foundation or Ataxia UK. AGI partners are cur-
rently about to start a project on the worldwide evalua-
tion of Patient Reported Outcome Measure of Ataxia
(PROM-Ataxia) and Friedreich Ataxia Rating Scale
Activity of Daily Living with the goal to make them
available in more languages, to assess them longitudi-
nally in a multicenter setting, and to directly compare
them. An alternative innovative novel approach to
overcome this challenge might be to establish a patient-
ranked order of function of the respective disease func-
tions and disease scale domains, as developed for
ALS.29

Development of Validated
Biomarkers

For early-phase clinical trials, there is an urgent need
for biomarkers that are sensitive to detect treatment effi-
cacy in small groups of patients before moving to large
and registration trials with primary clinical outcomes.
Currently, blood concentrations of neurofilament light
chain, a marker of axonal injury,30,31 gait-related sensor
data,25 and a number of MR imaging measures, including
regional brain volumes,32,33 diffusion tensor imaging-
derived measures,34 and neurochemical abnormalities
detected by MR spectroscopy,35 are the most promising
biomarker candidates.
In the future, preventive trials in preataxic mutation

carriers will also be a realistic option. In such trials, the
number of patients converted to manifest disease could
serve as a primary outcome, as in the recently started
ATLAS (Adults With a Confirmed Superoxide Dis-
mutase 1 Mutation) trial for ALS (https://clinicaltrials.
gov/ct2/show/NCT04856982). This approach, how-
ever, requires a trial population that is enriched for
proximity to conversion to manifest disease. This can
be achieved by stratifying preataxic patients based on
genetic information and biomarker results, because all
biomarkers mentioned earlier showed increasing abnor-
malities with proximity to ataxia onset. The same bio-
markers may also be considered as primary outcomes
in trials with premanifest disease.

Trial Infrastructure and Availability of
Trial-Ready Patients

The presence of an appropriate infrastructure for
clinical trials with access to well-characterized, geneti-
cally stratified patients is the prerequisite for trial readi-
ness in genetic ataxias. The existing consortia that are
running natural history studies provide valuable data.
However, more can be done to assist trial readiness
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globally. To this end, the AGI Trial Site Registry is
being established that provides reliable information on
the local infrastructures available in centers worldwide
for ataxia trials and on precise numbers of trial-ready
patients.
Results from recent trials in neurodegenerative dis-

eases, specifically the NURTURE study in infants with
spinal muscular atrophy, suggest superior efficacy of
targeted treatments initiated in premanifest or early dis-
ease stages compared with those initiated later.36 This
fact highlights the challenge to develop strategies to effi-
ciently identify and recruit ataxia subjects in early or
even preataxic disease stages. For autosomal dominant
ataxias, this seems possible via research programs that
systematically focus on family-based recruitment of
preataxic relatives of symptomatic index patients.37-39

Such programs must be combined with adequate sup-
port and counseling.
It seems more difficult in practice, however, for all

ARCAs. Due to the autosomal recessive inheritance,
patients usually come to medical attendance only when
first symptoms have developed and are often already in
mild to moderate disease stage on first visit to trial referral
sites. These observations highlight the need for specific
screening programs to identify so far genetically
undiagnosed patients who belong to the group of poten-
tially treatable ARCAs, for example, by systematic
genetic, phenotype, machine learning–, or biomarker-
based screening approaches. Successful exemplary
approaches in each of these domains have already been
developed, for example, for Niemann-Pick Type C
ataxia,40 and will now be further advanced by the AGI.
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