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ABSTRACT

The escalating reliance on private transportation calls for better traffic management strate-

gies to efficiently allocate routes in increasingly congested networks. The present study

integrates Multiagent Reinforcement Learning (MARL) with Car-to-Infrastructure (C2I)

Communication and further enriches this integration by introducing a virtual graph (VG).

This VG connects origin-destination (OD) pairs that exhibit similar attributes, which en-

ables the provision of variable information to drivers. By sharing information exclusively

among similar or adjacent OD pairs, the VG injects a level of variability into the data

drivers receive. The proposed method (dubbed QL-C2I ODVG) was assessed against

other established approaches: a centralized iterative route assignment approach, a tra-

ditional en-route trip-building Q-Learning (QL) methodology, and a QL with C2I frame-

work without the VG integration. Results show that QL-C2I ODVG not only expedites the

learning process towards equilibrium but also outperforms traditional methods in achiev-

ing shorter travel times. These findings underscore the potential of the proposed method

at improving route distribution and traffic flow, suggesting that it could be a valuable tool

in the development of intelligent traffic systems. It also highlights the benefits of intro-

ducing variability in shared information and points to future research directions, including

exploring different VG configurations and their impact on learning dynamics in multiob-

jective traffic scenarios.

Keywords: Multiagent Reinforcement Learning. Q-Learning. Transportation Systems.

Car-to-Infrastructure Communication. Similarity Graph.



Construção de Rotas em Tráfego Urbano: Acelerando a Convergência do

Aprendizado Através do Compartilhamento de Informação Entre Motoristas com

Experiências Similares

RESUMO

A dependência crescente de transporte rodoviário privado exige estratégias mais eficien-

tes de gestão de trânsito, especialmente para distribuir rotas em cidades cada vez mais

congestionadas. Este estudo propõe uma integração de Aprendizado por Reforço Multia-

gente (MARL) com a Comunicação Carro-Infraestrutura (C2I), aprimorada pela introdu-

ção de um grafo virtual (VG). Este VG estabelece conexões entre pares origem-destino

(OD) com atributos similares, permitindo assim a distribuição de informações variadas

aos motoristas. Compartilhando dados apenas entre pares OD similares ou adjacentes, o

VG acrescenta variabilidade às informações recebidas pelos condutores. O método pro-

posto, denominado QL-C2I ODVG, foi comparado com outras abordagens: um método

centralizado e iterativo de atribuição de rotas, um método tradicional de Q-Learning (QL)

para construção de rotas ao longo do trajeto, e um framework QL com C2I sem a inclu-

são do VG. Os resultados indicam que o QL-C2I ODVG não só acelera o processo de

aprendizado rumo ao equilíbrio, mas também supera métodos convencionais na redução

dos tempos de viagem. Esses resultados ressaltam o potencial do método proposto para

melhorar a distribuição de rotas e o fluxo de trânsito, sugerindo que ele pode ser uma

ferramenta valiosa no desenvolvimento de sistemas de tráfego inteligentes. Este estudo

também destaca os benefícios de introduzir variabilidade nas informações compartilhadas

e sugere futuras direções de pesquisa, como explorar diferentes configurações do VG e

seu impacto na dinâmica de aprendizado em cenários de tráfego com múltiplos objetivos.

Palavras-chave: Aprendizado por Reforço Multiagente. Q-Learning. Sistemas de Trans-

porte. Comunicação Carro-Infraestrutura. Grafo de Similaridade.
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1 INTRODUCTION

In large metropolitan areas, the sharp increase in traffic demand presents numerous

challenges, particularly in achieving efficient travel from one location to another. This

is especially true for commuters, who regularly navigate the same routes and have the

opportunity to learn from and adapt to recurring traffic patterns. The primary goal for

transportation authorities and traffic experts is to optimize the distribution of traffic flow

across available routes, thereby reducing overall travel time. This often entails some level

of communication among drivers.

Drivers often choose their routes based on personal experience. However, with

advancements in technology, the landscape of information exchange is evolving. Modern

technologies facilitate a variety of communication methods, including broadcast-based

ones like GPS and cellphone data. More interactive options are emerging in studies,

offering two-way communication channels where drivers not only receive information

but also contribute to it.

Many current systems, such as Waze and Google Maps, operate in a centralized

manner. They guide users on routes based on collective data gathered from their entire

user base. Although this centralized approach can be effective on a larger scale, it can fall

short in situations where service penetration is low. This limitation arises as the system

depends on a substantial amount of data to compute precise estimates of traffic conditions.

Consequently, in situations with fewer users utilizing the system, the precision of the

estimates diminishes.

To address this limitation, a potential solution could be the implementation of a

decentralized approach to information processing, incorporating independent Reinforce-

ment Learning (Sutton; Barto, 2018) agents. By decentralizing data processing and em-

powering drivers with information, this method allows them to make more informed de-

cisions about their routes, potentially enhancing the overall efficiency of traffic manage-

ment.

Traffic Assignment Problem (Dafermos; Sparrow, 1969) involves efficiently as-

signing routes to vehicles within a traffic network to optimize the distribution of vehicle

demand throughout the network. The proposed method resembles traffic assignment in

that it relies on drivers exploring different routes and eventually choosing those that offer

the shortest travel times, based on their accumulated experience. While traffic assignment

methods are effective for planning purposes, designed to optimize or modify existing traf-
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fic networks to minimize travel costs (Ortúzar; Willumsen, 2011), the approach proposed

here diverges significantly. It concentrates on the operational aspect, where drivers, espe-

cially commuters traveling repeatedly between the same locations, aim to minimize their

travel times within the current network infrastructure. Additionally, unlike traffic assign-

ment which is a centralized approach where routes are assigned to drivers, this method

allows drivers to choose their routes independently, based on their personal experiences

and preferences.

Several existing methods have adeptly addressed the issue of route choice us-

ing Multiagent Reinforcement Learning (MARL), as discussed later in Chapter 3. This

framework allows agent drivers to independently choose and learn the least costly routes

through their personal experiences. While this method may be effective, it can be some-

what slow to deliver optimal results, as agents need time to individually gather experi-

ences in an environment that is constantly changing due to the influence of other agents’

actions. Given this context, the central aim of the current study is to explore ways to

potentially accelerate the learning process within MARL. The approach focuses on sup-

plying agents with localized and varied information. The idea is that by introducing this

method, agents might be able to learn faster, adapting more swiftly to the dynamic nature

of traffic conditions.

To furnish the learning agents with localized and varied information they require,

the proposed methodology builds upon existing works that combined MARL with Car-

to-Infrastructure Communication (C2I) (Schumacher; Priemer; Slottke, 2009). This in-

tegration is further enhanced through the introduction of a Virtual Graph1 (VG), which

links commuters based on the similarity of their experiences during their journeys. The

essence of this approach lies in utilizing the VG within the C2I framework. It enables

drivers to enrich their knowledge base, not just through their personal experiences but

also by leveraging insights from other agents who have encountered similar traffic sce-

narios. By connecting agents with akin characteristics, the VG fosters a more shared, yet

distributed learning environment, aiming to enhance the route selection process.

In comparing the proposed method, referred to as QL-C2I ODVG, with estab-

lished approaches such as a centralized iterative route assignment, traditional en-route

trip-building Q-Learning (QL), and QL with C2I (excluding VG integration), the results

demonstrate that QL-C2I ODVG accelerates the learning process towards equilibrium and

surpasses traditional methods, achieving shorter travel times.

1In the context of this work, Virtual Graph and Similarity Graph are the same entity, hence the term is
used interchangeably.



13

2 THEORETICAL BACKGROUND

2.1 Reinforcement Learning

Reinforcement Learning (RL) has gained significant popularity in the field of Ma-

chine Learning (ML) in recent years. The primary objective of an RL agent is to maximize

a numerical reward within a given set of permissible actions. As noted in (Sutton; Barto,

2018), the learner is not told which actions to take, but instead must discover which ac-

tions yield the most reward by trying them. Unlike other ML methods such as Supervised

Learning, RL approaches do not heavily rely on large datasets for training. Instead, they

learn to achieve their objectives through active interaction with their environment.

An RL problem can be usually defined as a Markov Decision Process (MDP)

(Sutton; Barto, 2018). We define the MDP as a tuple M = (S, A, T , R), where S is

a set of states (i.e. the state space) the agent might be in at a given moment, A is a set

of actions the agent might take, T : S × A × S → [0, 1] is a state transition function,

indicating the probability of an agent transitioning from state s ∈ S to state s′ ∈ S when

taking an action a ∈ A at time step t, andR : S ×A → R is a reward function.

RL agents generally follow a policy that maps states to probabilities associated

with selecting each available action. In other words, if an agent follows a policy π at a

given time step t, then π(a|s) is the probability that the agent will take action a when in

state s. We denote the value function of a state s under a policy π at any time step t as

vπ(s), which is defined in the following equation:

vπ(s) = Eπ

[
∞∑
i=0

γiRt+i+1

∣∣∣St = s

]
, ∀s ∈ S (2.1)

Where E reflects the expected value under policy π, and γ ∈ [0, 1] is a discount

factor for future rewards. The action-value function under policy π is depicted as qπ as in

the following equation:

qπ(s, a) = Eπ

[
∞∑
i=0

γiRt+i+1

∣∣∣St = s, At = a

]
(2.2)

Equation 2.2 reflects the expected return an agent gets starting from s, taking

action a and following policy π thereafter. Once the agent has explored the environment

enough to have learned the optimal action-values q∗, they can follow the optimal policy

π∗, defined as the following:
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π∗(s) = argmax
a

q∗(s, a) (2.3)

2.1.1 Q-Learning

RL can be categorized into two main approaches: model-based and model-free. In

model-based approaches, the objective is to build a representation of the environment and

concentrate on planning the optimal policy based on the assumptions made by the agent

using its environment model. On the other hand, in model-free approaches, the focus is

to directly learn the best policy without explicitly constructing an environment model.

One particular model-free approach that is widely adopted is Q-Learning (QL),

where the agent directly constructs a tabular action-value function. Instead of relying on

a model, the agent maintains a Q-table, which represents the estimated values of each

action for every possible state.

The QL agent updates its policy knowledge by utilizing an update function. When-

ever it receives a reward r for taking an action a in a given state s and transitions to state

s′, it updates its knowledge through the following equation:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(2.4)

Where α is the learning rate, which reflects the impact new experiences will have

in the agent’s knowledge update, and γ is the discount factor for future rewards as dis-

cussed in Section 2.1.

Lastly, establishing a method for the agent to either explore the environment or

exploit its prior knowledge is crucial. This is achieved through an exploration strategy,

with one commonly employed approach being the ε − greedy strategy. In this strategy,

the agent selects the greedy option (using Equation 2.3) with a probability of 1 − ε and

chooses a random action with a probability of ε.

2.1.2 Multiagent Reinforcement Learning

In Multiagent Reinforcement Learning (MARL) (Buşoniu; Babuska; Schutter,

2008), the aforementioned MDP is expanded to include a new component, which is a
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set of agents. This model, also known as a stochastic game, is similar to the traditional

MDP. However, in MARL, the environment becomes stochastic and more unpredictable

because it is influenced by the actions and learning processes of multiple agents simul-

taneously. This simultaneous learning among agents adds a layer of complexity to the

environment, distinguishing MARL from the single-agent MDP framework.

The introduction of the set of n agents alters the framework discussed in Sec-

tion 2.1, leading to the definition of a Multiagent Markov Decision Process (MMDP) as

M = (S,A1, . . . ,An, T ,R1, . . . ,Rn). In this multiagent context, the primary alterations

include the introduction of individual action sets Aj for each agent j, leading in a joint

action set A = A1 × · · · × An. The state transition probability function, T , is now based

on this joint action set and is defined as T = S×A×S → [0, 1]. Additionally, each agent

i possesses its own reward function Rj , which is formulated as Rj = S × A × S → R.

Equation 2.5 represents the updated value function, as Π represents the joint policy, which

is a combination of all agents’ policies πj .

vΠj (s) = EΠ

[
∞∑
k=0

γkRj,t+k+1

∣∣∣St = s

]
, ∀s ∈ S (2.5)

Equation 2.2 is also adapted, as shown in Equation 2.6, where a is the joint action

of the agents.

qΠj (s,a) = EΠ

[
∞∑
k=0

γkRj,t+k+1

∣∣∣St = s,At = a

]
(2.6)

In fully cooperative environments, the reward functions for all agents are the same,

as the agents have the same goal of maximizing a common return. Typically, from the lit-

erature, fully competitive environments arise in stochastic games with two agents, mean-

ing the reward functions are R1 = −R2. This configuration, however, does not imply

that competitive dynamics are exclusive to situations with only two agents. In fact, the

problem addressed in this work is characterized by its competitive dynamics.

2.2 Route Choice Problem

Before discussing the specifics of the route choice problem, it’s crucial to define

what a traffic network is. Formally, a traffic network is conceptualized as a graph denoted

by G = (I, L). Here, I represents the set of intersections within the network. L, on
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the other hand, comprises a set of links, each illustrating the roads within the network

that connect these intersections. The distribution of trips across the network is defined by

a collection of origin-destination (OD) pairs. Each pair indicates a specific demand for

trips, which subsequently translates into flows on the respective links.

Traveling from an origin to a destination efficiently is a significant challenge, as

evidenced by numerous studies. Some of these studies have focused on connecting user

demand (i.e. number of trips per unit of time) with transportation networks to achieve

what is termed User (or Nash) Equilibrium (UE). The UE is a state where no individual

driver can reduce their travel time by altering their route, as stated in the first Wardrop

principle (Wardrop, 1952).

In the transportation community, the challenge of assigning routes to vehicles in a

traffic network is commonly referred to as the Traffic Assignment Problem (TAP) (Dafer-

mos; Sparrow, 1969). This problem is typically addressed using centralized, macroscopic

methods that utilize volume-delay functions (VDF). Macroscopic approaches abstract

travel times through the VDF, which calculates them based on the density of traffic across

network links. This VDF calculation is based on the proportion of the number of vehicles

in a specific link to the link’s capacity. The UE is achieved iteratively, where a central au-

thority repeatedly allocates routes to drivers and employs the VDF to evaluate and adjust

these assigned routes.

Recently, decentralized methods have been explored, particularly through the use

of RL. In these approaches, each agent learns to navigate to their destination based on

their own experiences. RL tackles this task in two variants: the stateless variant (also

denoted as multi-armed bandit), where agents have a set of pre-computed routes from

which they choose one at the beginning of their trip and follow it to their destination;

and the standard RL approach (which is state-based), where the states are the network

intersections and the actions are the roads the agents can take, meaning the agents build

their trips while navigating through the network.
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3 RELATED WORK

As aforementioned, traditional methods for addressing the TAP have adopted a

centralized approach, focusing on planning tasks. For further details, the reader is referred

to (Ortúzar; Willumsen, 2011).

This work focuses on more recent approaches which aim at the usage of MARL.

Some relevant research in this area includes the use of a regret-minimizing algorithm in

(Ramos; Silva; Bazzan, 2017), or a learning automata approach in (Ramos; Grunitzki,

2015), the implementation of QL in (Grunitzki; Bazzan, 2017), and the combination of

learning automata with a congestion game for achieving UE as explored in (Zhou et al.,

2020). Each of these studies incorporates a framework where agents select from a prede-

fined set of routes, indicating their reliance on a stateless learning methodology.

Alternatively, within the realm of standard MARL approaches, research such as

(Bazzan; Grunitzki, 2016) applies QL in the context of en-route trip building. This method

uses a macroscopic simulation, where a VDF is employed to estimate travel times for

agents.

In works such as (Santos; Bazzan, 2020), (Santos; Bazzan, 2021), and (Santos;

Bazzan; Baumgardt, 2021), the problem is addressed using standard state-based QL, en-

hanced by the integration of Car-to-Infrastructure Communication (C2I) to facilitate a

faster learning process. The study by (Santos; Bazzan, 2021) reveals a key insight in

the realm of MARL applied in context of the route choice problem. It demonstrates that

while employing communication strategies accelerates the learning process, providing

only partial information to certain agents can enhance this effect further, as it effectively

balances the inherent competitive dynamics within the problem. This suggests that con-

trolled information dissemination is more beneficial than giving the full picture in these

scenarios.

Another study that highlights the benefits of C2I to enhance agent learning is pre-

sented in (Bazzan; Gobbi; Santos, 2022), further extended in (Gobbi; Santos; Bazzan,

2022). These researches employed a technique for computing link similarities within

the network, which was then used to extend the infrastructure’s neighborhood for com-

munication with vehicles. Instead of solely sharing local information with drivers, the

infrastructure utilized a graph that connects links with shared attributes to selectively dis-

tribute controlled, non-local information to drivers. The concepts of the graph and the

utilization of non-local information will be detailed in the next section, as they are pivotal
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to this study. This work is directly inspired by these concepts, particularly the idea of a

similarity graph as introduced in the original research, and it was adapted this framework

for the current approach.
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4 CONCEPTS AND FRAMEWORK DEFINITION

4.1 Distinction Between the Road Network and the Virtual Graph

As previously noted, the network is depicted through a graph G = (I, L), symbol-

izing the network’s topological structure. Additionally, the method incorporates a virtual

graph V G = (O,E). Within this virtual graph, O stands for the set of OD pairs, each

representing a distinct origin-destination in the network. E refers to a set of edges that

connect OD pairs which exhibit akin characteristics at a particular time step, as detailed

ahead.

4.2 Virtual Graph

Unlike the network graph, the virtual graph discussed in the previous section sym-

bolizes the connections between OD pairs, effectively representing the connections be-

tween drivers, as each driver is associated with an OD pair.

The VG connects OD pairs that exhibit similar attributes (hence the term simi-

larity graph), with each node representing an OD pair at a specific time step. For the

construction of this graph, it is necessary to initially gather data from OD pairs over time.

This data might come from historical sources or be collected from previous simulations.

Such data includes metrics like average travel time, average waiting time, and the load

of the OD pair, which reflects the number of vehicles in the network with that specific

OD pair, recorded at each time step. After a normalization of the parameters collected,

this data is used to assess every OD pair at a particular time step against all others. If the

difference in attributes between two OD pairs is within a certain threshold ∆, an edge is

established between them in the VG.

It is also important to highlight a fundamental distinction between this approach

and the method outlined in (Bazzan; Gobbi; Santos, 2022). In the latter, the virtual graph

was used to depict a virtual linkage among network links, representing a virtual connec-

tion between links that had similar characteristics at a certain time step.

In the study presented in (Bazzan; Gobbi; Santos, 2022), a VG served to integrate

non-local information into the communication framework, meaning the similar character-

istics between links was used with the goal of expanding the neighborhood which com-

municates with the drivers. Conversely, in the current study, a VG is employed to provide
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distinct information to drivers navigating nearby areas, aiming to enhance the distribution

of demand. This further emphasizes the difference between the two methodologies.

4.3 Communication Using the Virtual Graph

Agents interact with the infrastructure through devices termed "Communication

Devices" or CommDevs. As agents approach each intersection, they engage in a two-way

information exchange with these CommDevs. Specifically, agents relay the travel time

from their last journey segment, while CommDevs provide anticipated travel times for

the upcoming routes. This forecast is based on data previously gathered from agents who

have traversed the same intersection.

Here is where the VG makes a critical aspect in streamlining communication.

Rather than CommDevs disseminating travel time information from all past vehicles, they

selectively share data pertinent to each agent’s specific journey. This is achieved by agents

disclosing their OD pairs to the CommDevs. Consequently, CommDevs relay only rele-

vant information, which pertains to those agents whose OD pairs are neighboring in the

VG at that particular moment.

4.3.1 Data Managed by the Infrastructure

Each CommDev within the infrastructure employs queue-based system for data

storage. This system retains crucial details conveyed by the agents: the travel time and

their respective OD pair. Each piece of data is structured as a tuple, integrating both the

travel time and the OD pair reported to the CommDev.

To ensure relevance and manage storage efficiently, these queues are subject to a

maximum capacity constraint. As a result, when a queue reaches its limit, the introduction

of new data requires the removal of the oldest entry, thereby maintaining a dynamic and

updated dataset. It’s important to note that the queues are link-specific; that is, each queue

corresponds to and stores data pertinent to a particular link connected to the CommDev’s

intersection.

What sets this method apart from C2I strategies such as those mentioned in pre-

vious researches (Santos; Bazzan, 2020; Santos; Bazzan, 2021), is the specificity of the

data exchange. In the present model, CommDevs transmit expected travel times rele-
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vant to each agent’s OD pair. This means that agents receive targeted information about

expected travel times from other agents who share similar journey characteristics. By

focusing on this OD-neighbors concept, the system ensures that agents receive different

information in order to achieve a more distributed demand throughout the network. Ad-

ditionally, it’s important to note that all CommDevs utilize a shared pre-computed virtual

graph to determine each OD neighbor.

Regarding neighborhood computation, CommDevs utilize the virtual graph as fol-

lows: the graph contains information about which OD pair shares similar characteristics

at a specific time. Given a timestep t and an OD pair x, if x is neighbor (meaning they

share characteristics) to another OD pair y during the interval containing timestep t, the

rewards from both OD pairs are combined to compute the expected reward for agents

associated with OD pair x at timestep t.

4.3.2 Information Used by the Agents

Typically, Q-Learning involves agents updating their Q-values based on the out-

comes of their most recent actions. However, in this approach, agents additionally refine

their Q-values using the expected travel times provided by the CommDevs. This integra-

tion means that every time an agent arrives at an intersection, it not only considers its own

experiences but also incorporates data received from the CommDevs into its Q-Table.

4.4 QL-C2I ODVG Algorithm

Given that the proposed approach utilizes QL alongside C2I, and incorporates a

VG to connect OD pairs with similar attributes, it has been termed QL-C2I ODVG.

In a network G, every vehicle agent v ∈ V has an OD pair (o, d) ∈ I × I . Here,

intersections i ∈ I represent possible states for the agents, and the actions available in

these states are defined by the outgoing links from these intersections. When an agent v

selects an action, i.e., traverses a link ℓ ∈ L, it then perceives a corresponding reward.

If the simulator reports a travel time tvℓ for an agent v on a link ℓ, the reward for

this action is assigned as −tvℓ , as the goal is for agents to minimize their travel times.

However, simply doing this does not guarantee a quick arrival at the destination, as agents

might loop through the network. To encourage efficient route completion, a positive bonus
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Algorithm 1: QL-C2I ODVG
Data: G,D,O,M, α, γ, ϵ, B

1 step← 0;
2 while step < M do
3 for v in V do
4 if v has finished its trip then
5 v.update_Q_table(B − v.last_link_travel_time);
6 G.commDev[v.curr_intersect].update_queue(

−v.last_link_travel_time−B, v.last_link, v.od);
7 v.start_new_trip();
8 end
9 else if v.has_reached_an_intersect() then

10 v.update_Q_table(−v.last_link_travel_time);
11 G.commDev[v.curr_intersect].update_queue(v.last_reward,

v.last_link, v.od);
12 v.update_Q_vals(G.commDev[v.curr_intersect].info(v.od));
13 v.choose_action();
14 end
15 end
16 step← step+ 1

17 end

B is granted to agents when they reach their destination, incentivizing them to end their

trips as quickly as possible.

The main approach is outlined in Algorithm 1, where the initial parameters are set

forth: G is the network topology, D embodies the constant demand within the network, O

represents the OD pairs, M is the cap on the simulation’s time steps, and the Q-Learning

parameters α, γ, ε are as defined in Section 2.1.1. Lastly, B is introduced as the incentive

bonus.

The main iterative process, detailing the agents’ learning and communication,

takes place from Lines 2 to 17. Inside this loop, another loop from Lines 3 to 15 en-

sures each agent performs their role in the simulation.

For agents that complete their trips, the operations between Lines 4 and 8 take

effect. Specifically, Line 5 shows agents updating their Q-Table with the latest travel time

and adding the bonus B. Line 6 depicts the agent communicating with the infrastructure,

sending the latest reward minus the bonus B (as it should not be communicated to the

infrastructure), the last link traveled, and the OD pair, before starting a new journey as

shown in Line 7.

The segment from Lines 9 to 14 deals with agents in between trips. In Line

10, agents record their rewards, and in Line 11, they communicate with the CommDev.
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Line 12 is where agents update the Q-values with the expected rewards from the Com-

mDev, and finally, in Line 13, they choose their next action based on these updated in-

sights.

Note that agents update their Q-Tables using Equation 2.4 in methods specified in

Lines 5 and 10. Additionally, in Line 12, agents apply the same Equation 2.4. However,

instead of relying solely on their own experiences, they incorporate expected rewards pro-

vided by the infrastructure to update their experiences for each link. This update considers

the links informed by the infrastructure as if the agents had taken those links as actions.
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5 EXPERIMENTS AND RESULTS

The Simulation of Urban Mobility (Lopez et al., 2018) (SUMO) tool was utilized

to carry out the simulations. By leveraging SUMO’s API, vehicle agents were able to

engage with the simulator during their routes, and it also enabled the collection of metrics

data necessary for analyzing the outcomes.

5.1 Scenario

Figure 5.1 – 5x5 Grid Network
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The selected scenario is depicted as a 5x5 grid, illustrated in Figure 5.1. Each line

within the figure corresponds to a bidirectional link, each stretching 200 meters in length

and comprising two lanes in each direction.

The demand within the network was calibrated to keep it populated at approxi-

mately 20% to 30% of its total capacity, indicating a medium to high density range. It is

important to note that in real-world conditions, no network operates at full capacity at all

times, which also does not indicate that there will not be links fully saturated at certain

times. The mentioned percentage only indicates an overall average occupancy across all

links.
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Table 5.1 – Allocation of demand across OD pairs.
Origin Destination Demand

Bottom0 Top4 102
Bottom1 Top3 86
Bottom3 Top1 86
Bottom4 Top0 102

Left0 Right4 102
Left1 Right3 86
Left3 Right1 86
Left4 Right0 102

5.2 Demand Distribution

Table 5.1 shows the distribution of vehicle demand for specific OD pairs. Con-

sidering the design of the proposed network and the objective to maintain its usage at

approximately 30% of its capacity, it is estimated that about 750 vehicles should be circu-

lating within the network to meet this target. The values presented in the table are aligned

with this projection, and the disparity in demand arises from the differences in the dis-

tances between the origin and destination points. Essentially, it states that an increase in

distance between an OD pair implies a proportionally higher demand for that particular

pair.

5.3 Virtual Graph Definitions

As mentioned in Sections 4.2 and 4.3, the primary goal is to leverage the usage of

the OD pair VG to speed up the learning process and reduce travel times. With this goal in

mind, two attributes were selected: the average travel time and the average waiting time

for vehicles within each OD pair at every time step.

Since we deal with a competitive scenario, it’s crucial to differentiate the infor-

mation available to each driver, given that it greatly influences the dynamics of the en-

vironment (as previously mentioned in Chapter 3). Therefore, the adoption of a sparse

VG is key. As discussed in Section 4.2, the connectivity within the graph is influenced

by the chosen threshold value, ∆. By setting ∆ = 0.0001, we ensure a limited number

of connections between OD pairs, which effectively leads to varied information being

disseminated among drivers.

Figure 5.2 displays the virtual graph created using the defined threshold. In this
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Figure 5.2 – Generated Virtual Graph with threshold of ∆ = 0.0001.
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graph, each node corresponds to an OD pair within a specific time interval during which

the OD pair exhibits attributes similar to another OD pair.

5.4 Q-Learning Parameters

Initially, the agents’ Q-Table is set with zero values, serving a dual purpose. This

initialization not only encourages exploration in the early stages but also provides a neu-

tral starting point for each action available to the agents before undergoing knowledge

updates.

Extensively discussed in prior studies which focus on multiagent Q-Learning for

route choice problems (Bazzan; Grunitzki, 2016; Santos; Bazzan, 2020; Santos; Bazzan;

Baumgardt, 2021), the selected parameters include a learning rate of α = 0.5, a discount

factor γ = 0.9, an ε-greedy exploration strategy with a constant ε = 0.05, and a bonus

B = 1000.
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Building upon the insights from previous studies, it’s understood that the α pa-

rameter has a limited impact in scenarios involving en-route trip building. The selected

values for γ and ε are designed to predominantly steer agents towards the greedy choice,

and ensure that future rewards significantly influence their current decisions. Additionally,

the bonus value is set to adequately offset any potential waiting times that agents might

encounter within the network. This configuration of parameters is aimed at optimizing

the agents’ performance by balancing immediate and future rewards while mitigating any

delays they might face.

5.5 Results and Analysis

Before delving into the results, it’s important to clarify that the simulation was

set to run for a maximum of M = 60, 000 time steps. Additionally, given the stochastic

nature of the approaches employed, the simulations were conducted 30 different times for

each approach to account for this variability.

5.5.1 QL-C2I ODVG x Dynamic User Assignment

Figure 5.3 – Comparison between the classical approach and the proposed method: the blue curve
represents the DUA method with routes determined following 100 iterations, while the red curve
illustrates the proposed QL-C2I ODVG method. The shaded areas around each curve indicate the
confidence intervals for the respective methods.
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To compare with classical approaches, the proposed method was benchmarked

against a method called Dynamic User Assignment (DUA). DUA is an iterative procedure

created by the developers of SUMO, which refines route assignments through multiple

simulation runs, each informed by the data from preceding runs. Notably, DUA stands

apart as a centralized approach that operates independently of any RL strategies.

In the comparative analysis, DUA was subjected to 100 iterations to establish

stable route assignments for all vehicles. These routes were then followed by the vehicles

for the duration of the main simulation without any en-route changes.

As illustrated in Figure 5.3, DUA exhibits more efficient performance in the initial

stages. This is expected, as the QL-C2I ODVG algorithm undergoes a learning phase.

However, as the simulation proceeds, and particularly after the threshold of approximately

35, 000 steps (taking into account the confidence interval), the learning curve of the QL-

C2I ODVG algorithm stabilizes, and it begins to outperform DUA.

5.5.2 QL-C2I ODVG x Standard QL

Figure 5.4 – Comparison of the standard QL approach against QL-C2I ODVG Method: the orange
curve represents the state-based QL approach, which operates without communication, while the
red curve illustrates the QL-C2I ODVG method. The lighter shaded regions surrounding the curves
denote the confidence intervals of each approach.
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The effectiveness of the proposed QL-C2I ODVG method was evaluated in con-

trast to the traditional Q-Learning approach, where agents independently learn optimal

routes based solely on individual experiences without communication.
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As demonstrated in Figure 5.4, both the standard QL and the QL-C2I ODVG

methods eventually converge to a similar average travel time during the exploitation phase

of learning. However, a key distinction is observed in the exploration phase: the QL-C2I

ODVG method achieves convergence significantly faster – approximately 20, 000 steps

sooner than its traditional counterpart.

Another notable observation is the considerable variance in the travel times of the

standard QL method compared to the QL-C2I ODVG at the exploration phase. This dis-

crepancy arises because agents using QL are introduced into the network incrementally,

which disrupts the learning process with considerable noise, especially when these agents

interact with non-QL vehicles. As standard QL agents solely rely on their experiences to

update their Q-values, the learning phase is extended, delaying the attainment of equilib-

rium. This highlights the advantage of the QL-C2I ODVG method, which benefits from

the communication process, allowing agents to adapt more quickly and with less variabil-

ity to the network conditions, showcasing a clear benefit over the vanilla QL approach.

5.5.3 QL-C2I ODVG x QL-C2I

Figure 5.5 – Comparison between the original QL-C2I and the proposed QL-C2I ODVG: the green
curve delineates the original QL-C2I approach, which provides uniform information to all drivers,
while the red curve depicts the QL-C2I ODVG method, utilizing a virtual graph to differentiate the
information distributed to drivers. The shaded areas around each curve illustrate the confidence
intervals of the respective strategies.
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The proposed QL-C2I ODVG method was also compared to a base QL-C2I strat-
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egy as outlined in reference (Santos; Bazzan, 2020). In the original QL-C2I model, agents

update their Q-values based on personal experiences and information exchanged with

CommDevs. Unlike the proposed method, the original QL-C2I does not differentiate in-

formation based on OD pairs; instead, CommDevs broadcast expected rewards based on

data from all vehicles passing through, regardless of their specific OD pairs.

Figure 5.5 presents the comparative results, indicating a marginal yet consistent

superiority of the QL-C2I ODVG approach. This is evidenced by a slightly lower peak

during the learning phase and a trend towards better convergence in travel time, particu-

larly if taking only the average values denoted in the main curves. Even though the av-

erage results favor the proposed method, it’s important to acknowledge a non-negligible

overlap in the confidence intervals. Hence, the state of marginal superiority, as the dis-

tinctions between the methods are not decisively significant. Still, this modest yet dis-

cernible edge demonstrates that incorporating a Virtual Graph to provide variable infor-

mation to agents, as done in QL-C2I ODVG, can enhance the learning process beyond

what is achieved with the standard C2I methodology.

5.5.4 Comparison Among All Approaches

Figure 5.6 – Comparison of all methods: The blue curve illustrates the average performance of
the DUA method, the orange curve tracks the standard QL method without communication, the
green curve is indicative of the original QL-C2I, and the red curve represents the proposed QL-C2I
ODVG method. For clarity in visual representation, this plot omits the confidence intervals.

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000
Step

400

600

800

1000

1200

1400

1600

Av
er

ag
e 

Tr
av

el
 T

im
e

DUA
QL
QL C2I
QL C2I ODVG

Figure 5.6 provides a comparison of the proposed QL-C2I ODVG method against
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all approaches at once. The comparative analysis reveals that the QL-C2I ODVG method

consistently outperforms the others in several aspects. It achieves a lower average travel

time at the point of convergence compared to the DUA method – a trend common among

all learning-based methods. Additionally, it reaches convergence more rapidly than the

standard QL method, a characteristic shared by both methods incorporating communica-

tion.

Furthermore, the QL-C2I ODVG method exhibits a marginally improved conver-

gence and achieves slightly better travel time at convergence than the original QL-C2I

approach. While the improvement over the original QL-C2I method may appear modest,

it’s important to note that the current study tested only one hypothesis using the QL-C2I

ODVG method, specifically employing a sparse graph to define OD neighborhoods. Fu-

ture research should explore a variety of graph configurations and neighborhood thresh-

olds to determine more definitively the superior performance of the proposed method over

the original QL-C2I.
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6 CONCLUSIONS

As urban congestion continues to increase and road network expansion fails to

keep pace, the ability to choose routes wisely is becoming increasingly crucial. MARL

has shown considerable promise as a method for agents to independently learn and en-

hance their route selection during travel.

This study introduced an approach that integrates MARL with C2I communica-

tion, augmented by a virtual graph that connects OD pairs. Vehicles engage with the

infrastructure each time they approach an intersection, exchanging travel time data they

experienced in nearby links and receiving expected times for upcoming links. The virtual

graph serves to inject diversity into the information supplied to the agents.

The methodology applied in this research includes the use of MARL for the learn-

ing process within a complex route choice environment featuring multiple OD pairs.

Agents are not confined to choosing from pre-defined route sets; conversely, they dy-

namically construct their routes as they navigate the network towards their destinations.

The integration of MARL with C2I facilitates the exchange of experience data among

agents, with the virtual graph introducing a variation in the information communicated

through C2I.

The findings indicate that providing agents with varied information can benefit

the learning process. Agents achieve a state of equilibrium more swiftly compared to

traditional methods, with even a marginal improvement over the original QL with C2I ap-

proach. These results support the premise that variability in the information disseminated

to agents is advantageous, particularly in a competitive route choice environment where

sharing uniform information could lead to homogeneous decision-making and potential

route congestion.

Looking ahead, further research could explore varying the threshold values for

virtual graph generation, thereby altering the interconnectivity between OD pairs to un-

derstand its impact on learning. Additionally, applying this framework to multiobjective

scenarios, such as presented in (Santos; Bazzan, 2022), could provide deeper insights into

its effectiveness across broader applications. Last but not least, exploring a dynamic vir-

tual graph, where the graph updates itself throughout the simulation, could be a potential

direction for future research.
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