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ABSTRACT

The adoption of Blockchain (BC) technology has rapidly grown, expanding its applica-

tions to different fields such as finance, cybersecurity, and the Internet of Things. Thus,

identifying BC traffic in a network could enable the implementation of specific perfor-

mance and Quality-of-Service (QoS) requirements derived from the wide range of BC

applications. This work aims to perform an in-depth analysis of Ethereum packets in an

emulated private BC using a Lightweight SDN Testbed (LST), a testbed tool for network

research that relies on Docker containers and Software-defined Networking (SDN). It also

explores the possibilities of expanding the network topology in the present work for fu-

ture research on BCs. The results obtained from the analysis performed in the proposed

scenario in this work demonstrate that identifying Ethereum transactions is a challenging

task, given its encryption. However, the novel dataset generated in this work, containing

both Ethereum and regular HTTP traffic, can be explored to perform automated traffic

classification in real time and provide a base for future research on Ethereum packet iden-

tification using Machine Learning (ML) algorithms. Further, it is shown that, if given

enough resources, the use of LST can be easily extended to different network topologies

in BC emulation.

Keywords: Blockchain. Ethereum. SDN. Docker containers.



Extraindo e Identificando Transações Blockchain em Redes Definidas por Software

RESUMO

A adoção da tecnologia Blockchain (BC) tem crescido rapidamente, expandindo as suas

aplicações a diferentes domínios, como as finanças, a cibersegurança e a Internet das

Coisas. Assim, a identificação do tráfego de BC numa rede poderia permitir a implemen-

tação de requisitos específicos de desempenho e Qualidade de Serviço (QoS) derivados

da vasta gama de aplicações de BC. Este trabalho tem como objetivo realizar uma análise

aprofundada dos pacotes Ethereum em um BC privado emulado usando um Lightweight

SDN Testbed (LST), uma ferramenta de testbed para pesquisa de rede que se baseia em

contêineres Docker e Redes Definidas por Software (SDN). Também explora as possibi-

lidades de expandir a topologia de rede no presente trabalho para futuras pesquisas sobre

BCs. Os resultados obtidos a partir da análise realizada no cenário proposto neste tra-

balho demonstram que a identificação de transacções Ethereum é uma tarefa desafiante,

dada a sua encriptação. No entanto, o novo conjunto de dados gerado neste trabalho, que

contém tráfego HTTP regular e Ethereum, pode ser explorado para efetuar a classificação

automática do tráfego em tempo real e fornecer uma base para investigação futura sobre

a identificação de pacotes Ethereum utilizando algoritmos de Aprendizagem de Máquina

(ML). Além disso, é demonstrado que, se forem dados recursos suficientes, a utilização

do LST pode ser facilmente alargada a diferentes topologias de rede na emulação BC.

Palavras-chave: Blockchain, Ethereum, Redes Definidas por Software, Containers Doc-

ker.
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1 INTRODUCTION

Blockchain (BC) is a technology based on the concept of distributed ledgers that

stores information in a decentralized and distributed network (SCHEID et al., 2021). The

information is persisted as a transaction, that is validated and stored in a chain of blocks

on the distributed network. Its structure is based on Peer-to-Peer (P2P) communication,

which evicts the necessity of a central authority and thus enables the existence of a de-

centralized network with shared resources (BELOTTI et al., 2019). It was first proposed

in 2008, as the database and means to solve the double-spending problem for the Bitcoin

cryptocurrency (NAKAMOTO, 2009), and since then, its adoption has expanded to sev-

eral other areas such as finances, cybersecurity and Internet of Things (IoT) (MONRAT;

SCHELéN; ANDERSSON, 2019), as well as to other emerging cryptocurrencies, such as

Ethereum (BUTERIN, 2014).

In this sense, from the wide range of possible applications of BC technology

and different BCs, derives different Quality-Of-Service (QoS) and performance require-

ments (MONRAT; SCHELéN; ANDERSSON, 2019) Thus, being able to identify BC-

related packets in a network and differ them from regular traffic would be beneficial as

this could allow performing several different actions such as (i) identifying and prioritiz-

ing BC applications traffic, (ii) detecting devices that are possibly infected with crypto-

jackers and (iii) performing load-balancing for different BC nodes.

The employment of Machine Learning (ML) techniques in the field of BC traffic

analysis has been a common practice in recent scientific literature. Algorithms such as

KMeans allows a deeper analysis of possible patterns and relationships existent in BC

traffic, providing the possibility of visualizing such attributes. Thus, clusterizing BC

traffic data with the use of KMeans can be helpful in the visual identification of patterns

related to BC packets and their behavior.

Since the architecture of BCs is complex, comprising several different layers (e.g.,

network layer, data model layer, execution layer and application layer) (BELOTTI et

al., 2019), it is difficult to create and maintain an actual BC environment. Further, the

size of BCs, such as Bitcoin and Ethereum, is over 400 GB, requiring dedicated hard-

ware (SANKA; CHEUNG, 2021). This characteristic hinders the use of real BC environ-

ments for research purposes, specially since it makes replicating test scenarios even more

unfeasible. Fortunately, it is possible to resort to BC emulation and simulators to avoid

such difficulties. Simulation aims to reproduce a BC system model, enabling its evalua-
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tion in a parameterized way, without the need to implement the entire system (PAULAV-

IčIUS; GRIGAITIS; FILATOVAS, 2021) whereas emulation aims to replicate the behav-

ior of a system as closely as possible (GILL; LEE; QIAO, 2021).

Thus, in this work, the Lightweight SDN Testbed (LST) (KAIHARA et al., 2022)

tool is used to emulate an Ethereum-based BC network containing different nodes. Sev-

eral Ethereum transactions and normal traffic requests are sent and captured by the Software-

Defined Networking (SDN) controller inside LST. The network traffic is then inspected,

and different analysis using ML regarding Ethereum transactions characteristics and its

differences from regular traffic are brought upon. The contributions of this work are sum-

marized as follows:

• A novel dataset containing both Ethereum and normal HTTP traffic, properly la-

beled, that can be used for further research on Ethereum traffic analysis;

• A real-world scenario using the LST tool that emulates an Ethereum BC network

in a feasible and highly configurable manner; and

The remainder of this work is organized as follows: Chapter 2 describes the back-

ground on BC, Ethereum, and its implementation, as well as the SDN concept. Chapter

3 discusses related work on Ethereum BC traffic analysis and the use of SDN in such a

context. Chapter 4 describes the methodology and the implementation of the emulation

scenario. Followed by Chapter 5, which details the experiments, presents the results and

their evaluations, and discusses challenges and future research on the subject. Finally,

Chapter 6 concludes this work presenting conclusions and future work.
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2 BACKGROUND

This chapter details the concepts, paradigms, and technologies involved in this

work. Hence, the main components of the Ethereum BC are described, followed by SDN

and the LST tool.

2.1 Ethereum

Ethereum was proposed in 2015 as a BC able to support the creation of versa-

tile applications (BUTERIN, 2014). It offers, within its BC ecosystem, the support for

developers to create Decentralized Applications (DApps) using a Turing-complete pro-

gramming language. With such a language, developers define immutable BC-based smart

contracts that contain specific rules for the enforcement of transactions used by DApps.

Thus, by providing this language, Ethereum became the De Facto standard for DApps.

Unlike Bitcoin, where the BC state is defined by Unspent Transaction Output

(UTXO) transactions, Ethereum uses account-based states, where each account is defined

by a set of fields (e.g., nonce, balance, contract code and storage) (BUTERIN, 2014), and

state transitions are transactions of information or value between different accounts.

The Ethereum networking layer is a stack of protocols that define rules for commu-

nication between participating nodes, allowing them to discover each other and exchange

information. It can be subdivided into two different layers: (i) the Execution layer and

(ii) the Consensus layer (ethereum.org, 2023). While execution clients send transactions

to other nodes in the execution layer, consensus layer clients propagates proposed chain

blocks across the network. Thus, it is necessary to have two different P2P networks: one

for connecting execution clients and other for consensus clients.

2.1.1 Execution Layer

Execution clients must be able to discover other peers in the network to connect

and later exchange information between them. For such, the execution layer provides the

discovery stack discv4, based on UDP protocol. Figure 2.1 depicts message flow in the

node discovery process. New nodes connect to boot nodes, which are initial nodes whose

addresses are hardcoded in the node client, through PING-PONG messages. A PING



14

message informs the bootnode of the existence of a new node, who replies with a PONG

message. The new node can then request a list of peers to perform connection through a

FINDNODE request to the bootnode.

Figure 2.1: Node discovery process in Ethereum

Blockchain 
Node 2

Blockchain 
Node 1

discv4

PING

PONG

FINDNODE

NEIGHBORS

Node Discovery

Source: (The Author, 2024)

After the discovery process, communication between the new node and existing

nodes are governed by DEVP2P, a stack of network protocols based on TCP that de-

fines how peers participating in the Ethereum network should structure their communi-

cation. Figure 2.2 demonstrates the communication proccess under DEVP2P protocol

stack. RLPx is the protocol inside the DEVP2P stack that defines how peers must es-

tablish and maintain a connection. Messages in the RLPx protocol are encoded using

Recursive Length Prefix (RLP) and encrypted through the secp256k1 Elliptic Curve Inte-

grated Encryption Scheme (ECIES), an asymetric encryption method. Thus, initializing

a connection between two Ethereum nodes consists on performing a cryptographic hand-

shake through the RLPx protocol, allowing participating nodes to agree on the ECIES

ephemeral key used for further encrypted communication. A successful handshake trig-

gers both nodes to exchange HELLO messages, confirming that the connection was es-

tablished and allowing subsequent transaction exchange communication through the Wire

subprotocol (ethereum.org, 2023).

The Wire subprotocol defines the structure of messages used to synchronize trans-
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action pools between connected peers. Nodes perform this exchange of pending transac-

tions in order to enable miners to pick new transactions and insert them into the BC.

Figure 2.2: DEVP2P protocol traffic flow in Ethereum
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Source: (The Author, 2024)
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2.1.2 Consensus Layer

Similarly to the Execution layer, the Consensus layer also provides a discovery

stack so that consensus clients can connect amongst each other and perform block prop-

agation. The main difference from the discovery stack present in the Execution layer,

is that the one present here uses discovery stack discv5. While it also relies on UDP,

this protocol takes advantage of LIBP2P network stack instead of DEVP2P used in the

Execution layer. Thus, RLPx sessions are not present in the Consensus layer, as LIBP2P

uses noise secure channel handshakes instead.

Ethereum relies on the Proof-of-Stake (PoS) consensus method, where a node

must stake capital (i.e., Ethereum coins known as Ether - ETH), into a smart contract.

Only nodes with stake in the smart contract can propose and validate blocks; if the node

does not follow a set of rules or propose invalid blocks, its stake is reduced, decreasing its

chance of proposing blocks.

Block propagation in the Consensus layer is performed through the use of LIBP2P’s

gossip protocol gossipsubv1 (DEVP2P Community, 2023). Consensus clients must

ensure that received blocks are valid by checking its metadata and sender identification.

Figure 2.3 describes how Execution and Consensus clients, which run in parallel,

are connected. Both clients exchange information between each other using a local RPC

connection, and they both maintain a separate P2P network to connect and communicate

with other consensus and execution clients from different peers.

Figure 2.3: Communication between Execution (eth1 client) and Consensus (eth2 client)
layers

eth2 Client

Beacon Chain

EVM

eth1 Engine

Transaction Pool

Local RPC Connection

p2p

Ethereum Node

p2p

Source: (The Author, 2024)
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2.1.3 Blocks

In Ethereum, a block is a structure that contains batches of transaction information.

Each block is linked to the previous one by pointing to a hash that is cryptographically

derived from the block data, preventing any possible attempts of fraud by changing blocks

content. This structure is used to create a history of transactions in Ethereum, where

participating peers agree and synchronize on the committed transactions.

To create and preserve this history, all blocks and the transactions inside of each

of them are ordered. A validator node is randomly selected to be a block proposer on

the network, and must bundle transactions together in a block structure to propagate it

to other peers and propose a new global state. The receiving peers must then check for

the correctness of the proposed block and decide if they agree with the new state. As

Ethereum uses PoS protocol, this means that validators must also stake ETH into contracts

when performing these operations in order to prevent dishonest or illicit behavior in the

BC (ethereum.org, 2023).

2.1.4 Transactions

A transaction in Ethereum represents a cryptographically signed instruction that

updates the global state of the BC. It can be initiated by an Externally Owned Account

(EOA), and can also interact with smart contracts, for executing an already deployed

contract or deploying a new contract code. Each transaction must be broadcasted in the

network in order to validator nodes execute and insert them into a new block, changing

the global state (ethereum.org, 2023).

A transaction object exchanged by peers in Ethereum consists of the following

attributes (BUTERIN, 2014):

• nonce: a sequence number that is used to avoid message replay. This number is

increment at every new transaction sent by the address;

• gas-price: In order to complete a transaction, the sender must provide a gas

value to cover its computational cost. This amount is used to pay miners per com-

putational step, and is represented in WEI, which is the smallest denomination of

ETH. One ETH is equivalent to 1e18 WEI.

• gas-limit: the maximum number of gas units that a transaction can consume.
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Each computational operation in the Ethereum Virtual Machine (EVM) has a gas

cost associated to them (BUTERIN, 2014).

• recipient: a 20-byte Ethereum address, which can be an EOA or a contract;

• value: the amount of Ether to be sent to the recipient. This value is also denoted

in WEI.

• data: binary data payload. This field is used when interacting with smart con-

tracts, either to deploy a function or to send it as an input to an existing contract.

• V, R and S: components of the Elliptic Curve Digital Signature Algorithm (ECDSA).

V represents the recovery ID of the ECDSA, while R and S are outputs of the

ECDSA.

The state transition function in Ethereum checks if the transaction is well-formed

(i.e., verifies the correctness of the signature and if the nonce matches the one in the

sender’s account) (VUJIčIć; JAGODIć; RANd̄Ić, 2018). Upon validating the transaction,

the sender’s nonce is incremented and the gas allocated for the transaction is removed

from their balance. If the transaction is executed completed, any unused gas amount is

refunded to the sender, and a new global state of the Ethereum network is created.

2.2 Software-Defined Networking

Traditional IP networks are usually configured by network operators using com-

plex low-level commands directly to the proprietary control software that runs inside

routers and switches to enable the application of different network policies to traffic.

Besides that, the coupling of control and data planes inside network traffic devices in-

creases the difficulty of implementing highly customizable network policies (KREUTZ et

al., 2014). Thus, it requires high effort and operation cost to manage traditional networks

in a flexible manner.

Such difficulties drove the interest of making computer networks more flexible in

configuration. Over the time, several contributions have been made in order to achieve a

high level of flexibility in computer networks configurations, such as (i) introducing pro-

grammable functions in networks, (ii) decoupling the control and data planes and (iii) the

proposal of OpenFlow Application Programming Interface (API) (FEAMSTER; REX-

FORD; ZEGURA, 2014).

OpenFlow offers an interface to program flow-tables in different switches and
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routers, in a vendor-independent approach. It puts together several different capabilities

that are common to most Ethernet routers and switches and exposes them through an API

to enable users to control flows in a scalable and feasible manner (MCKEOWN et al.,

2008). Flows are packet-handling rules to match traffic and perform different possible

actions, such as forwarding, dropping and modifying packets. Routers and switches have

their own flow-tables, which is a collection of these rules. Thus, OpenFlow enables, by

exposing an open protocol through an API, that users program these flow-tables in differ-

ent routers and switches, without having to look up to vendor-specific implementations.

All these previous contributions have fostered the development of SDN, which is

a programmable network that uses software-based controllers to communicate with hard-

ware and network traffic. Its main characteristics that differs it from a traditional network

are that (i) it separates the control plane from the data plane, (ii) it consolidates the con-

trol plane, thus making a single controller responsible for the data plane elements trough

an OpenFlow API, transforming network switches into simple forwarding devices and

(iii) forwarding decisions are based on flows instead of destination (FEAMSTER; REX-

FORD; ZEGURA, 2014). This allows to perform real-time traffic management based on

user defined policies in an extensible manner, as it is easier to manage network configu-

rations through SDN than of regular routers.

Figure 2.4: Separation of Data plane and Control plane in SDN

Control Plane

Data Plane

Application Plane

Source: (The Author, 2024)
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As SDN offers a centralized control while exchanging information between differ-

ent network layers, it arises the possibility of tackling several common network performance-

related issues by implementing proper algorithms on the software controller, such as QoS

support, congestion control and data traffic scheduling (XIA et al., 2014).

2.3 LST

LST (KAIHARA et al., 2022) is a lightweight and easy-to-use tool for SDN and

security studies. It allows reproducing scenarios in the context of SDN through the virtu-

alization of physical infrastructures, by taking advantage of Docker containers. Through

the virtualization offered by Docker containers, it is possible to achieve a highly config-

urable and isolated environment.

The tool relies on the Ryu Controller (Ryu SDN Framework Community, 2017),

a SDN framework for network management and control applications that supports several

protocols, such as OpenFlow. Thus, it allows to perform different actions on the virtual

switches e.g., network analysis, changing network route policies and identifying mali-

cious attacks. Further, as it relies on Docker containers, such a controller can be replaced

and modified in a flexible manner.

Listing 2.3 presents the LST code used to emulate a simple topology composed

of two hosts (one Webserver and one client), one switch, and one SDN controller). The

configuration of the hosts containers is performed in Lines 8 and 9, where they are instan-

tiated in LST with a given Docker image. The same occurs for the SDN controller on Line

11, and for the switch, which is instantiated in Line 10 but using the default Docker image

supplied by LST. Hosts are connected to the switch on Lines 13 to 15, and the switch is

then connected to the SDN controller on Line 16. IP addresses for each container are set

on Lines 18 to 22. The switch points to the controller on Line 25, which is initialized on

Line 24. All of the containers on the topology point to the switch on Lines 26 to 31, and

the later is connected to the internet with a given IP address on Line 27.

Listing 2.1 – Initializing nodes using LST

1 signer = Host(’signer’)

2 h1 = Host(’node1’)

3 h2 = Host(’node2’)

4 s1 = Switch(’s1’)

5 c1 = Controller(’c1’)

6

7 signer.instantiate(dockerImage=’eth-node’)
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8 h1.instantiate(dockerImage="eth-node")

9 h2.instantiate(dockerImage="eth-node")

10 s1.instantiate()

11 c1.instantiate(dockerImage="eth-controller")

12

13 signer.connect(s1)

14 h1.connect(s1)

15 h2.connect(s1)

16 s1.connect(c1)

17

18 signer.setIp(’10.1.1.1’,24,s1)

19 h1.setIp(’10.1.1.2’,24,s1)

20 h2.setIp(’10.1.1.3’,24,s1)

21 s1.setIp(’10.1.1.4’, 24)

22 c1.setIp(’10.1.1.5’, 24, s1)

23

24 c1.initController(’10.1.1.5’, 9001)

25 s1.setController(’10.1.1.5’, 9001)

26

27 s1.connectToInternet(’10.1.1.6’, 24)

28 signer.setDefaultGateway(’10.1.1.6’, s1)

29 h1.setDefaultGateway(’10.1.1.6’, s1)

30 h2.setDefaultGateway(’10.1.1.6’, s1)

31 c1.setDefaultGateway(’10.1.1.6’, s1)
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3 RELATED WORK

There are efforts on capturing and identifying BC transactions in SDN available in

the literature. This chapter details such approaches and compares them with the approach

proposed in this work.

3.1 State-of-the-Art Approaches

(TEKINER; ACAR; ULUAGAC, 2022) offers an cryptojacking detecting mecha-

nism for IoT devices based on ML algorithms that are trained using network features such

as packets per second and average packet size. The proposed methodology is applied to

in-browser and host-based cryptojacking malware. Although it does differentiate regular

traffic from cryptojacking-related, it does not apply to regular BC traffic. Therefore it is

not possible to use the proposed tool to capture and identify BC transactions that are not

related to malware.

Similarly, (CAPROLU et al., 2021) proposes a ML-based framework for detec-

tion of cryptominers on Bitcoin, Bytecoin and Monero BCs. It relies on metrics such

as interarrival time and packet size to train the model and subsequently perform traffic

classification, though it does analyzes Ethereum BC traffic.

(RODRIGUEZ; POSSEGA, 2018) monitors resource-related API calls and CPU

consumption by browsers to identify malicious cryptojackers in a host. The work uses

Support Vector Machines (SVM) to train a model on a dataset of malicious and benign

websites and classify them. Its application is specific to the context of browser-based

cryptojackers and thus does not tackle on identifying specific BCs traffic on a network.

(MUñOZ; SUáREZ-VARELA; BARLET-ROS, 2021) uses NetFlow protocol, which

performs flow-level network measurements, to feed data to different ML models to iden-

tify cryptominers on Bitcoin, BitcoinCash, DogeCoin, LiteCoin and Monero BCs.

(NING et al., 2019) detects in-browser malicious cryptojackers of Monero BC us-

ing a Convolutional Neural Network (CNN) approach, monitoring features such as CPU,

memory and disk usage. The proposed tool is constrained to detection of Monero-related

malicious malware in browsers, thus not being possible to identify regular Ethereum pack-

ets with it.

On a similar approach, (KELTON et al., 2020) proposes a browser-based tool for

detecting cryptomining activities in web pages. It analyzes the behavior of CPU, memory
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and disk usage, representing it as a timeseries, and correlates it to patterns that indicates

cryptojacking activity using a CNN algorithm. The work extends the detection to Monero,

Webchain and uPlexa BCs, but still lacks an identification of possible Ethereum transac-

tion activities.

(KIM et al., 2021) uses a semi-supervised learning approach with AutoEncoder

to detect anomalies in real-world Bitcoin traffic data. Bitcoin BC network traffic in this

work is classified through a set of eleven features, which includes average byte size of

messages, clock cycles cost per second for a node and the number of received messages.

Given that the work does not make use of SDN, it does not extend to take advantage of its

capabilities such as blocking such anomalies in the network nor does it focus on Ethereum

traffic, though it could be finetuned to apply to other cryptocurrencies since it relies on

standard network features as described by the authors.

(NASEEM et al., 2021) proposes Minos, a lightweight tool for detecting crypto-

jacking based on WebAssembly (Wasm) modules in web pages. Feeding both malicious

and benign Wasm binaries to a CNN-based ML model, the tool classifies cryptomining

activity through Wasm modules on the network in real-time. The work is restricted to the

context of Wasm and in-browser detection, thus not being possible to extend it to other

cryptocurrencies such as Ethereum.

(RUSSO; SRNDIć; LASKOV, 2021) reconstructs Stratum protocol from raw Net-

Flow records and use its data on a One-class classifier ML algorithm to detect cryptomin-

ing of Monero BC. It detects encrypted mining traffic since it relies on network metadata

instead of payload data and on features that describe the behavior of the Stratum protocol.

(NETO et al., 2020) proposes an incremental learning model that detects and

blocks cryptocurrency mining flows on top of SDN controllers. Similarly to our ap-

proach, it leverages SDN with the use of Ryu Controller, although its implementation

is not specific to Ethereum, and it uses Mininet as an emulation environment, thus lacking

the advantages of using LST as a tool for such context.

(CABAJ; GREGORCZYK; MAZURCZYK, 2018) uses HTTP traffic characteris-

tics such as message sequence and content size to classify packets of crypto ransomware

and proposes a SDN-based detection system. While it does also leverage SDN, the au-

thors propose a method based on HTTP communication characteristics of two common

ransomware families, thus not being applicable to the Ethereum BC.

(GABA et al., 2022) offers a ML model prototype for detection of security attacks

on Ethereum BC with the use of SDN. It relies on a dataset of historical Ethereum Classic
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transactions, contracts, blocks and logs to extract relevant features to the model. The

proposed method is specific to the context of security attacks, i.e., it does not tackle on

specific Ethereum BC traffic characteristics and differentiating it from regular network

traffic.

Other works such as (NING et al., 2019) and (KELTON et al., 2020) focus on

metrics such as CPU, memory and disk usage to evaluate and classify whether a packet is

related to BC traffic or not in their respective ML models. This is not applicable in a SDN

controller as it does not have access to such metrics from the nodes connecting to it, thus

being not feasible to identify Ethereum packets in such manner.

3.2 Comparison and Discussion

Table 3.1 summarizes and compares the related work on the field in different di-

mensions, such as which BC is analyzed, the identification method employed, which

metrics are used, and if the approach relies on SDN or not.

Table 3.1: Related Work Comparison
Work Blockchain Identification

Method Metrics SDN Environment

(TEKINER; ACAR; ULUAGAC, 2022) Not Specified
KNN
SVM
RF

Timestamps
Packet size ✗ Datasets

(NETO et al., 2020) Not Specified
RF
GBT Network traffic ✓ Emulated

(CAPROLU et al., 2021)
Bitcoin
Bytecoin
Monero

RF
Inter-arrival time
Packet size ✗ Emulated

(RODRIGUEZ; POSSEGA, 2018) Not Specified SVM CPU usage ✗ Datasets

(MUñOZ; SUáREZ-VARELA; BARLET-ROS, 2021)

Bitcoin
BitcoinCash
DogeCoin
LiteCoin
Monero

SVM
CART
Naive Bayes

NetFlow traffic data ✗ Datasets

(NING et al., 2019) Monero CapsNet
CPU
Memory
Disk usage

✗ Datasets

(KELTON et al., 2020)
Monero
Webchain
uPlexa

CNN
CPU
Memory
Network usage

✗ Datasets

(KIM et al., 2021) Bitcoin AutoEncoder
Packet size
Number of packets ✗ Datasets

(CABAJ; GREGORCZYK; MAZURCZYK, 2018) Not Specified HTTP Traffic POST messages size ✓ Emulated
(GABA et al., 2022) Ethereum Classic Not Specified Not Specified ✓ Datasets
(NASEEM et al., 2021) Not Specified CNN WASM binaries ✗ Datasets
(RUSSO; SRNDIć; LASKOV, 2021) Monero OCC NetFlow traffic data ✗ Datasets

(MUñOZ, 2019) Bitcoin
SVM
CART
Naive Bayes

NetFlow traffic data ✗ Datasets

Based on the related work research, most of the available work tries to capture

and identify BC-related traffic in traditional networks. (NETO et al., 2020), (CABAJ;

GREGORCZYK; MAZURCZYK, 2018) and (GABA et al., 2022) are the only ones who
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takes advantage of SDN when trying to identify BC traffic. Besides, it is possible to notice

that the most common approach is using Machine Learning algorithms to analyze traffic

and classify it. As data is typically encrypted in BCs traffic to ensure security and privacy,

Deep Packet Inspection (DPI) approaches tend to not be very feasible when trying to

detect and classify BC-related packets in real time.

It is also possible to notice that there are several works on identifying illicit browser-

based cryptomining activity, specially on Monero BC, as it is one of the most mined digital

coins (RUSSO; SRNDIć; LASKOV, 2021). Therefore, there are few works that proposes

characterizing and identifying other BCs traffic data like Ethereum.

Thus, this work focuses on trying to identify packets belonging to Ethereum traf-

fic and differentiate them from regular network traffic, by leveraging LST tool with an

underlying SDN and a Ryu Controller, as this has not been addressed yet in the current

available scientific literature.
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4 ANALYZING AND IDENTIFYING ETHEREUM TRANSACTIONS

This chapter details the methodology applied in the present work for the iden-

tification and analysis of Ethereum-related packets using LST, the scripts used to send

Ethereum transactions amongst nodes in SDN, and the generated dataset of Ethereum-

related traffic.

4.1 Methodology

In this work, we defined a methodology to investigate the network behavior of

Ethereum BC transactions in comparison with regular HTTP traffic. The methodology

included several steps, each contributing to the overall aim of the study. The methodology

was structured to not only set up a controlled emulated BC environment but also to capture

and analyze network traffic data. This approach enabled us to create a unique dataset and

conduct the analysis of the traffic patterns. The steps of such a methodology included:

1. Deploying a Private Ethereum BC: A private Ethereum network was deployed

using a custom genesis file, defining the initial state of the BC and the balance of

participating accounts;

2. Creating Ethereum Nodes: A set of nodes was created and deployed in the private

BC to conduct analysis of the communication between them;

3. Using the SDN Ryu Controller to Capture Packets: Packet Capture (PCAP) files

were saved directly from the controller for posterior processing, generating a novel

dataset with both regular HTTP and Ethereum traffic;

4. Sending Ethereum transactions: Participating nodes in the private BC performed

several transactions with different values in order to enable posterior analysis of its

packets;

5. Generating random HTTP traffic: To compare the differences between Ethereum

and regular HTTP traffic, a random traffic generator was used to include its packets

into the final dataset; and

6. Analysis of patterns and characteristics: Ethereum-related packets were dis-

sected to understand their characteristics and differences towards regular HTTP traf-

fic.
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4.2 Scenario

Figure 4.1 illustrates the proposed scenario. In the scenario, a private Ethereum

BC was created, relying on the Proof-of-Authority (PoA) consensus protocol, where one

or more nodes are assigned as validators for the entire network. One of the participating

nodes is defined as the Ethereum Block Signer. This node contains the genesis file for

the private Ethereum BC system, which defines the initial data on the first block in the

chain as well as other configurations (e.g., difficulty, gas limit, initial account balances

and minimum block time in seconds). Then, two other generic BC nodes, containing the

same genesis file, are initialized and later connected to the virtual switch.

Figure 4.1: Emulated Scenario with LST
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Source: (The Author, 2024)

The virtual switch container is instantiated with a Ryu Controller that saves in-

coming packets from the network into a PCAP file. This enables later inspection of the

emulated BC system network traffic. It is important to mention that the controller can be

customized and exchanged if required; thus, showing that LST can serve as a testbed for

experiments regarding the analysis of traffic in different scenarios.

Once all of the participating nodes are connected to the virtual switch, they are

instantiated using Geth (geth.ethereum.org, 2024), the official Ethereum client built in Go.

After the node discovery process ends and the nodes are synchronizing with BC network,

it is possible to start sending transactions to the network, check account balances, and

inspect network flows that are recorded through the Ryu Controller.
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4.3 Implementing the Scenario

This section details the implementation of the scenario, including related BC files,

Docker files, and LST configuration.

4.3.1 Deploying a Private Ethereum Blockchain

The private Ethereum BC network in the present work is deployed using Geth.

A customized genesis file is used to define the initial state of the BC, as well as other

core settings (i.e., current chain ID, gas limit in blocks and the starting balances of listed

accounts). Listing 4.1 illustrates the genesis file for the initial state of the BC.

Listing 4.1 – Configuration file for the private Ethereum BC

1 { "config": {

2 "chainId": 3107,

3 "homesteadBlock": 0,

4 "byzantiumBlock": 0,

5 "constantinopleBlock": 0,

6 "petersburgBlock": 0,

7 "istanbulBlock": 0,

8 "berlinBlock": 0,

9 "clique": {

10 "period": 5,

11 "epoch": 30000

12 }

13 },

14 "difficulty": "1",

15 "gasLimit": "8000000",

16 "alloc": {

17 "0x6b4F3286fe87612e7Deb71A2FBedA0e948Ad4980": {

18 "balance": "1000000000000000000"

19 },

20 "0x0b913e0F6093819aff423254AaA8cAd82FDa9b02": {

21 "balance": "500000000000000000000"

22 },

23 "0x84564ba949a198f5e0f09bfe7233760F29d3a1d0": {

24 "balance": "500000000000000000000"

25 }

26 } }

The chainId (Line 3) is used to identify the current chain. It is an unique value,

preventing replay in the BC; gasLimit (Line 19) is the block gas limit and is usually de-

fined to minimize transaction and propagation time by limiting the amount of gas that the

set of transactions inside a block can consume; clique (Line 13) is the PoA consensus
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protocol in the private BC. The minimum difference between timestamps of two consecu-

tive blocks is defined in seconds as period, and epoch refers to the number of blocks after

which there will be a reset on the pending votes for the proposed blocks (Lines 14 and 15,

respectively). The three participating nodes in the proposed scenario are assigned with a

starting amount of ETH under the attribute array alloc (Line 20) so that they can perform

transactions, allowing posterior capture of Ethereum transaction packets in LST with the

help of Ryu SDN Controller for analysis.

4.3.2 Creating Ethereum Nodes

Setting up a new node on the private BC through Geth consists of using the geth

init command, passing the genesis file as an input parameter. Additionally, a command

with different parameters is executed, mainly to (i) unlock the account in order to be able

to send transactions without the need of manually approving them, (ii) provide the account

password and (iii) provide the bootnode list so that the new node can execute the node

discovery process. Listing 4.2 demonstrates the shell script containing the commands

used with Geth to create a new Ethereum node on LST.

Listing 4.2 – Initialization commands executed on Geth to create a new regular Ethereum Node

1 geth init --datadir /home/.ethereum/data /home/.ethereum/genesis.json

2 geth --nat=extip:$1 --datadir=/home/.ethereum/data --networkid=3107 \

3 --keystore=/home/.ethereum/keystore --unlock "0x0b913e0F6093819aff423254AaA8cAd82FDa9b0

2" \

4 --allow-insecure-unlock --password "/home/.ethereum/account-password" \

5 --http --http.port=8545 --http.corsdomain="*" --http.api=net,admin,eth \

6 --bootnodes enode://2adeac6710220735cf6c4737e752644b93a4102ea388e77c3196666326cebc68bfd0

2472630e300018a22c3e9952d09d915e29c693ca4dcd9231e3407d86b9c4@10.1.1.1:30303 \

7 --verbosity=5 > /home/geth.log 2>&1

The unlock parameter receives an account address (Line 3) to allow it to per-

form transactions through Geth. bootnode list parameter (Line 6) points to the signer

account address, as it will be the initial node in this proposed scenario, allowing future

participating nodes to connect and inquire for other nodes that are connected on the private

BC.

Creating the signer node is done through the same steps. The difference is that this

node receives the mine and miner.etherbase parameters that refers to, respectively,

enable the mining process and thus being able to propose new blocks, and the public

address for the block mining rewards. Listing 4.3 ilustrates the shell script used to set up
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a new signer node on the private BC.

Listing 4.3 – Initialization commands executed on Geth to create a new signer Ethereum Node

1 geth init --datadir /home/.ethereum/data /home/.ethereum/genesis.json

2 geth --nat=extip:$1 --datadir=/home/.ethereum/data --networkid=3107 \

3 --mine --miner.etherbase=0x6b4F3286fe87612e7Deb71A2FBedA0e948Ad4980 \

4 --keystore=/home/.ethereum/keystore --unlock "0x6b4F3286fe87612e7Deb71A2FBedA0e948Ad498

0" \

5 --allow-insecure-unlock --password "/home/.ethereum/account-password" \

6 --http --http.port=8545 --http.corsdomain="*" --http.api=miner,net,admin,eth \

7 --verbosity=5 > /home/geth.log 2>&1

The miner.etherbase parameter receives the signer account address (Line

3). As this node will be used as the initial node on the private BC, it is not necessary to

provide it with the bootnode parameter as shown in Listing 4.2.

Both signer and regular nodes are deployed as Docker containers in LST. There-

fore, it is possible to achieve an isolated environment for each node, that is also inde-

pendent from the operating system that is running LST, contributing to a replicable test

scenario. Listing 4.4 presents the Dockerfile used to initialize a container with all the

necessary files (e.g., the genesis files presented in Listing 4.1 is copied to the node in Line

18) for the deployment of an Ethereum node in the scenario’s private BC.

Listing 4.4 – Dockerfile used for boot of a new Ethereum node on the private BC in LST

1 FROM ubuntu:20.04

2

3 ENV DEBIAN_FRONTEND noninteractive

4

5 RUN apt-get update \

6 && RUNLEVEL=1 apt-get install -y cron samba openssh-server sudo net-tools iproute2

iputils-ping iptables nano apt-utils

7

8 RUN apt-get update \

9 && RUNLEVEL=1 apt-get install -y software-properties-common \

10 && add-apt-repository -y ppa:ethereum/ethereum \

11 && apt-get update \

12 && apt-get install -y ethereum

13

14 RUN apt-get install -y tcpdump

15

16 RUN mkdir /home/.ethereum

17 # copy genesis.json

18 COPY genesis.json /home/.ethereum/

19

20 # copy premade keys

21 COPY keystore/ /home/.ethereum/keystore

22

23 # copy password for keys
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24 COPY account-password /home/.ethereum/

25

26 COPY command-signer.sh /home

27 COPY command-node.sh /home

28

29 COPY onboot.sh /home

30 RUN chmod +x /home/onboot.sh

31 CMD ["./home/onboot.sh"]

32

33 # For conecting via Open SSL

34 EXPOSE 22

35

36 # Ethereum ports

37 EXPOSE 30303

38 EXPOSE 8545

As regular nodes and the signer node use the same Dockerfile to build its image,

both initialization scripts presented in Listings 4.2 and 4.3 are copied to the environment

(Lines 26 and 27). Password keys are also copied to the container environment (Line 24)

so that Geth can unlock the accounts and allow transactions to be performed without the

need of manual approval. Once the container is running, the corresponding shell script

with Geth commands is executed and the Ethereum node is initialized and connected to

the BC.

4.3.3 SDN Controller

A custom implementation of Ryu SDN Controller is used in the present scenario.

It allows capturing incoming packets in real time, so that they can be saved in a PCAP file

for posterior analysis and inspection of Ethereum packets and its differences of regular

HTTP traffic packets. Analogously to the deployment of Ethereum nodes, the SDN Con-

troller is also deployed as a Docker container in LST. Thus, a customized Dockerfile is

used to perform the deployment of the container in the network with the necessary pack-

ages and scripts (i.e., Python, Ryu and the custom Ryu controller implementation that

saves incoming packets in a file). Listing 4.5 demonstrates the Dockerfile used to create

the SDN Controller container in LST.

Listing 4.5 – Dockerfile used to setup the custom Ryu SDN Controller using LST

1 FROM ubuntu:20.04

2 RUN apt update \

3 && RUNLEVEL=1 apt install -y --no-install-recommends sudo net-tools iproute2 iputils-

ping python3 python3-pip iptables nano\
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4 && python3 -m pip install --upgrade pip \

5 && pip3 install ryu eventlet==0.30.2 pandas \

6 && apt-get -o Dpkg::Options::="--force-confmiss" install --reinstall netbase

7

8 RUN apt-get install -y tcpdump

9

10 COPY controller.py /home

11

12 COPY onboot.sh /home

13 RUN chmod +x /home/onboot.sh

14 RUN touch /home/file.pcap

15 CMD ["./home/onboot.sh"]

After booting, the controller container runs the custom Ryu Controller implemen-

tation that was copied (Line 10). A PCAP file is created in the container environment

(Line 14) in order to save incoming packets from the network using pcaplib, a library

available from Ryu’s Python package (Nippon Telegraph and Telephone Corporation,

2014). Listings 4.6 and 4.7 demonstrates the initialization of the custom Ryu controller

class and the handling of incoming packets, respectively.

Listing 4.6 – Initialization of the custom implementation of Ryu SDN Controller class
1 def __init__(self, *args, **kwargs):

2 super(SimpleSwitch, self).__init__(*args, **kwargs)

3 self.datapaths = {}

4 self.mac_to_port = {}

5 self.pcap_writer = pcaplib.Writer(open(’/home/file.pcap’, mode=’wb’))

Initializing the custom class object used in the scenario consists of, in addition to

initializing Ryu’s base class (Line 2), instantiating pcaplib’s Writer class object (Line

5) so that it can afterwards save incoming packets into a given PCAP file.

Listing 4.7 – Handling of incoming packets performed in the custom Ryu SDN Controller
1 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)

2 def _packet_in_handler(self, ev):

3 msg = ev.msg

4 datapath = msg.datapath

5 ofproto = datapath.ofproto

6 parser = datapath.ofproto_parser

7 pkt = packet.Packet(msg.data)

8 self.pcap_writer.write_pkt(ev.msg.data)

The handling of incoming packets in Ryu is defined by setting a trigger to a spe-

cific OpenFlow event of packet income (Line 1). In the declared function, it is possible to

perform several different actions directly to the packet (e.g., checking its content, modify-

ing a specific field or even dropping the packet). For the proposed scenario in this work,

the only objective is to record received packets for posterior analysis, which is done using
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the write_pkt function from pcaplib library (Line 8).

4.3.4 Sending Transactions

Once the private BC is initialized and all the participating nodes, as well as the

SDN controller, are deployed, we can then start sending transactions from a node to an

existing account address. To do so, a customized function that executes a command inside

of a docker container is used in the experiment. Listing 4.3.4 demonstrates the function

created to send transactions amongst participating nodes in the BC.

Listing 4.8 – Customized function to send transactions in the private BC
1 def sendTransaction(_node, _from, _to, _value, _gas):

2 try:

3 sendTransactionCommand = ’’’geth attach --exec ’eth.sendTransaction({from: "’’’+

_from+’’’",to: "’’’+_to+’’’", value: ’’’+str(_value)+’’’, gas: ’’’+str(_gas)+’’’})’

/home/.ethereum/data/geth.ipc’’’

4 print(sendTransactionCommand)

5 subprocess.run(’’’docker exec ’’’+ _node + ’’’ ’’’ + sendTransactionCommand,

shell=True)

6 return True

7 except Exception as e:

8 print(e)

9 return False

It is possible to pass parameters of value, gas, sender address and receiver address,

as well as from which Docker Ethereum node to execute the transaction (Line 1). The

container will then run Geth client’s sendTransaction function with the respective

parameters (Line 5), sending the transaction to the private blockchain, which will undergo

the process of transaction validation and later insertion into a block through the PoA

protocol.

4.3.5 Generating HTTP Traffic

To generate a dataset containing regular HTTP traffic as well as Ethereum-related

packets, this work relied on noisy (HURY, 2018), a public library that generates random

HTTP and DNS traffic noise. It consists of a simple Python script that makes HTTP

requests to websites that are listed in a JSON configuration file. Thus, it is possible to

define several different sources, which allows making requests that vary in packet size,

so that it does not bias later analysis and comparison of Ethereum and regular HTTP
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traffic. An example of noisy’s configuration file used in the proposed scenario is shown

in Listing 4.9.

Listing 4.9 – Configuration file used in noisy

1 {

2 "max_depth": 25,

3 "min_sleep": 3,

4 "max_sleep": 6,

5 "timeout": false,

6 "root_urls": [

7 "http://4chan.org",

8 "https://www.reddit.com",

9 "https://www.yahoo.com",

10 "http://www.cnn.com",

11 "http://www.ebay.com",

12 "https://wikipedia.org",

13 "https://youtube.com",

14 "https://github.com",

15 "https://medium.com"

16 ],

17 "blacklisted_urls": [

18 ".css",

19 ".ico",

20 ".xml",

21 ".png",

22 ".iso"

23 ],

24 "user_agents": [

25 "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/601.7.7 (KHTML,

like Gecko) Version/9.1.2 Safari/601.7.7",

26 "Mozilla/5.0 (iPad; CPU OS 9_3_2 like Mac OS X) AppleWebKit/601.1.46 (KHTML,

like Gecko) Version/9.0 Mobile/13F69 Safari/601.1",

27 "Mozilla/5.0 (iPhone; CPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 (

KHTML, like Gecko) Version/9.0 Mobile/13B143 Safari/601.1"

28 ]

29 }

Websites to which requests will be executed are defined under the root_urls

attribute (Line 6). The library also allows defining a list of blacklisted websites or ex-

tensions under blacklisted_urls attribute (Line 17), which in this scenario is used

to avoid downloading common frontend files to the container environment when running

the script, and a list of user agents under user_agents attribute (Line 24), so it can

simulate requests being made by different users through different web browsers.
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4.3.6 Capturing Packets and Dataset Creation

In order to collect Ethereum traffic and regular HTTP traffic, two executions of

the proposed scenario were performed: one exclusively with Ethereum traffic, and the

other exclusively with regular HTTP traffic using noisy. This was done so that the

packets in the final dataset could be correctly labeled and classified, ensuring that future

analysis using ML algorithms and manual inspection would be fed with proper data. Both

executions were performed for one hour, resulting in two different PCAP files with similar

sizes. As shown in Listing 4.7, received packets in the SDN controller are written in a

PCAP file that is saved in the controller environment. As LST takes advantage of Docker

container technology, it is possible to get the content of the SDN controller container

and save it into the machine running the experiment. Thus, after each execution of the

proposed scenario, the final PCAP file for each one was saved for posterior processing.

Since PCAP files contain numerous information that are not relevant to the con-

text of this work, they were post-processed and converted into CSV files containing only

selected attributes that seemed possibly the most influential and relevant for an analysis

and comparison of Ethereum and regular HTTP traffic. Listing 4.3.6 demonstrates how

the PCAP file containing Ethereum traffic obtained from an execution of the proposed

scenario is converted into a CSV file so that its data can later be inserted into the final

dataset containing both Ethereum and regular network traffic.

Listing 4.10 – Conversion of PCAP file to CSV selecting only relevant attributes
1 def readPCAP(filepath):

2 packets = PcapReader(filepath)

3 i = 0

4 packet_list = []

5 for packet in packets:

6 try:

7 if packet.haslayer(TCP):

8 if len(packet[TCP].payload) > 0:

9 packet_list.insert(i, (packet[IP].src, packet[TCP].sport, packet[IP

].dst, packet[TCP].dport, len(packet), bytes(packet[TCP].payload), PROTOCOL.TCP,

LABEL.ETH_TRAFFIC))

10 else:

11 packet_list.insert(i, (packet[IP].src, packet[TCP].sport, packet[IP

].dst, packet[TCP].dport, len(packet), ’’, PROTOCOL.TCP, LABEL.ETH_TRAFFIC))

12 elif packet.haslayer(UDP):

13 if len(packet[UDP].payload) > 0:

14 packet_list.insert(i, (packet[IP].src, packet[UDP].sport, packet[IP

].dst, packet[UDP].dport, len(packet), bytes(packet[UDP].payload), PROTOCOL.UDP,

LABEL.ETH_TRAFFIC))

15 else:
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16 packet_list.insert(i, (packet[IP].src, packet[UDP].sport, packet[IP

].dst, packet[UDP].dport, len(packet), ’’, PROTOCOL.UDP, LABEL.ETH_TRAFFIC))

17 except:

18 pass

To read and process resulting PCAP files from the scenario, scapy (Scapy Com-

munity, 2024) library is used in the script. Thus, by declaring an object with a given PCAP

file path, it reads its packets into memory (Line 2). TCP and UDP packets are treated sep-

arately (Lines 7 and 12) as it is necessary to access corresponding fields for each protocol.

The selected attributes were, in order, (i) IP source, (ii) Source port, (iii) IP destination,

(iv) Destination port, (v) Packet length, (vi) Packet payload, (vii) Packet protocol and (viii)

Dataset label. An example of the resulting dataset can be seen in Figure 4.2.

Figure 4.2: Dataset Row Example
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Source: (The Author, 2024)

Thus, after both executions of the proposed scenario with Ethereum traffic and

regular HTTP traffic, a novel dataset in CSV format was generated containing rows in the

model presented by Figure 4.2, enabling an evaluation and discussion of Ethereum traffic

and its differences towards regular HTTP traffic.
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5 EVALUATION AND DISCUSSION

The experiments were conducted on a host with an Ubuntu 22.04 LTS operating

system, with 16 GB RAM and an AMD® Ryzen 5 3600 6-core processor. The source

code (e.g., Docker files, BC-related files, and LST scenario definition file) to reproduce

the scenario, as well as the final dataset generated in this work, are available at <https:

//github.com/andrei-azevedo/extracting-ethereum-traffic-lst>.

5.1 Emulating an Ethereum Network

Deploying a private Ethereum blockchain using LST has been shown to be a very

feasible and easy task (AZEVEDO et al., 2023). As LST is as highly configurable and

flexible tool that relies on Docker containers technology, it allows to create an isolated

environment, which is suitable to replicate test scenarios in the context of network security

and SDN. Thus, creating a network topology such as the one defined in the scenario

proposed on Figure 4.1 can be done with low effort. Listing 5.1 demonstrates how the

network topology on the proposed scenario for this work was deployed using LST. Due to

the use of Docker images to deploy each participating node, inserting new nodes into the

network topology can be done by simply instantiating a new object with a given Docker

image parameter (Lines 2 and 3) and connecting them to the virtual switch (Lines 14, 15

and 16).

Listing 5.1 – Creating the proposed Ethereum blockchain network topology using LST
1 signer = Host(’signer’)

2 h1 = Host(’node1’)

3 h2 = Host(’node2’)

4 s1 = Switch(’s1’)

5 c1 = Controller(’c1’)

6

7 signer.instantiate(dockerImage=’eth-node’)

8 h1.instantiate(dockerImage="eth-node")

9 h2.instantiate(dockerImage="eth-node")

10 s1.instantiate()

11 c1.instantiate(dockerImage="eth-controller")

12

13 signer.connect(s1)

14 h1.connect(s1)

15 h2.connect(s1)

16 s1.connect(c1)

Figure 5.1 demonstrates an example of 10 transactions (see Line 110) being sent

https://github.com/andrei-azevedo/extracting-ethereum-traffic-lst
https://github.com/andrei-azevedo/extracting-ethereum-traffic-lst
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using the emulated Ethereum BC system using LST code, implementing the proposed

network topology depicted in Figure 4.1. In the example, we successfully sent transac-

tions from a node using the function sendTransaction() (see line 112) that calls

to a given node1’s Geth to send the transaction with defined parameters, such as from

and to addresses, ETH amount and gas. In the figure, the red dashed box highlights the

translanted geth command from the sendTransaction() function and the transaction

hash.

Figure 5.1: Sending a transaction using Geth through LST

Source: (The Author, 2024)

After sending a transaction using Geth through LST, it is possible to check its

details by using the returned transaction hash, as shown in Figure 5.1, demonstrating the

correctness of the deployed BC network using LST. Figure 5.2 shows the retrieval of

a transaction details using its unique hash value. Lines 118 and 119 demonstrates the

execution of Geth’s getTransaction method in LST passing a transaction hash as

parameter.

LST is a very flexible tool that allows us to easily set up new nodes in the blockchain

network and submit transactions with different ETH values. Figure 5.3 depicts an example

of a different topology containing four common nodes (two more nodes than the original

scenario), and randomly sending several transactions with different ETH values among

them (see lines 129 to 133).

This allows us to verify the communication between several nodes in the network

with the signer and verify if all the nodes are synchronizing with the BC. Further, with

the use of LST and the experiment defined as a Python script, it can be repeated by other

researches to achieve the same result, fostering reproducible research. Moreover, the net-

work topology using LST can be extended up to the available resources on a host’s ma-
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Figure 5.2: Retrieving details from a transaction using Geth through LST

Source: (The Author, 2024)

chine, thus being possible to emulate complex BCs and other networks in a reproducible

manner if given enough resources (i.e., memory to deploy new Docker containers).

5.2 Traffic Analysis

The evaluation and analysis of Ethereum traffic and transactions was divided into

(i) Separation and categorization of Ethereum traffic and (ii) Evaluating characteristics of

transaction packets and its differences towards other Ethereum-related packets and regular

HTTP traffic using ML techniques.

5.2.1 Separation and categorization of Ethereum traffic

In order to evaluate the characteristics of and to correctly identify transaction traf-

fic in Ethereum, it was necessary to categorize which packets belonged to transactions

and which didn’t. To do so, all of the private Ethereum BC traffic from the executions

of the proposed scenario in this work was extracted and recorded into PCAP files for

analysis. It is not feasible to manually identify and categorize specific packets and relate

them to transactions exclusively through payload analysis, specially due to the encryption

used in Ethereum, which avoids the use of DPI techniques to inspect packet payload and

other relevant attributes, as shown in the available literature (GABA et al., 2022). There
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Figure 5.3: Sending several transactions from any of the four participating nodes with
different ETH values

Source: (The Author, 2024)

are some characteristics in specific protocols used in Ethereum that can facilitate the par-

tial identification of its packets, i.e., the fact that node discovery process uses discv4

subprotocol, which runs in UDP, as depicted in Figure 2.1. Thus, we have relied on a

Wireshark Ethereum Dissector (bcsec.org, 2018) to categorize node discovery packets

and separate them from the rest of Ethereum traffic to facilitate posterior categorization

of transaction packets. Figure 5.4 shows an example of discv4 packets identificated in

Wireshark on the PCAP files obtained from the proposed scenario using the dissector.

Figure 5.4: Ethereum Wireshark Dissector used in node discovery messages

Source: (The Author, 2024)

It is possible to see that the node on IP address 10.1.1.1 requests for the private

BC bootnode for other nodes through the FindNode message, as explained on Section

2.1.1 regarding the node discovery process. The bootnode then proceeds to answer with

messages of type Neighbors. Hence, it is possible to categorize packets belonging to

the node discovery process under the discv4 subprotocol, which facilitates the posterior

analysis and categorization of remaining Ethereum-related packets.

As the rest of the Ethereum communication is performed through the devp2p
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stack, which relies on TCP protocol, all of its traffic is encrypted. Therefore, it is not

possible to distinguish packets belonging to different Ethereum devp2p communication

processes by manually inspecting its content. This is also shown in the current avail-

able literature (GABA et al., 2022), corroborating the need of other techniques to classify

Ethereum traffic. Thus, in this work, we have tried to take advantage of ML techniques

to categorize Ethereum traffic and to identify which packets belonged to transactions per-

formed in the BC.

5.2.2 Categorization and Evaluation of Transaction Packets

In order to attempt to categorize Ethereum transaction traffic, we have compared

some of the differences in packets extracted from the executions of the proposed scenario.

Figure 5.5 compares the amount of Ethereum packets and their size in bytes. Packets

were obtained from PCAP files that resulted of the executions of the proposed scenario,

containing Ethereum traffic with and without transactions, respectively.

Figure 5.5: Ethereum traffic analysis
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It is possible to perceive that transactions that occurred in the proposed scenario

have increased the amount of packets in the range of 0 to 200 bytes. This goes in accor-

dance with the logical structure of a transaction that is defined in Ethereum’s Whitepaper

(BUTERIN, 2014), as depicted in Figure 5.6, that demonstrates the expected structure of

a transaction packet in Ethereum BC.

Figure 5.6: Structure of a transaction message in Ethereum
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Data is used in Ethereum to deploy or interact with smart contracts, as shown in

Section 2.1.4. Ethereum Improvement Proposal (EIP) 170 (eips.ethereum.org, 2016) has

introduced a limit to the size of Contract codes deployed in the BC to 24.576 bytes, to

avoid high computational costs of reading and preprocessing code to the EVM. Hence, as

transactions that were performed in the proposed scenario did not contain any data (i.e.,

smart contracts deployment or any other additional data), it is expected that their sizes in

bytes are up limited by the sum of the maximum possible size of other fields.

Although we can infer that transaction packets in the dataset are in the range of

100 to 200 bytes in size, we could not safely differentiate them from other devp2p

Ethereum-related messages in the network that could coincide with the same size, nor

with other regular HTTP traffic packets. Figure 5.7 demonstrates the variation of packet

size in regular HTTP traffic generated with noisy, that simulates web browsing.
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Figure 5.7: Variation of packet size in regular HTTP traffic
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Traffic generated from the simulation of web browsing displays a great amount

of packets in the range of 50 to 200 bytes, coinciding with the inferred size of Ethereum

transaction packets in the scenario. Further, we rely on the KMeans algorithm, which

is an unsupervised ML algorithm, to clusterize Ethereum traffic and perceive if there

were any possible packet size patterns that could be related to the type of message in the

BC. KMeans was selected due to its ease of implementation and the advantages it offers

regarding the visualization of large datasets, as the one obtained in this work. Cluster-

ing with KMeans could help to identify patterns and structures by grouping and plot-

ting Ethereum packet data, aiding in the detection of relationships between attributes that

might not be apparent when analyzing individual packets.

To identify the optimal number of clusters (i.e., the k value), we rely on the Elbow

method, a heuristic that is often used in KMeans algorithm to analyze the variation of

Within-Cluster Sum of Squares (WCSS), which is the sum of the square distance between

the centroid of a cluster and points that belong to it. The Elbow method varies k and fits

the model, recording the WCSS for each iteration. By plotting the variation of WCSS

with the increment of the number of clusters, it is possible to choose a value of k where
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the rate of decrease of WCSS is at its maximum curvature, i.e., the "elbow" of the curve,

indicating that it is not worth increasing the number of clusters past this point. Figure 5.8

depicts the Elbow method using KMeans algorithm applied to Ethereum traffic obtained

from the execution of the scenario proposed in this work.

Figure 5.8: Optimal number of cluster analysis using Elbow Method
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From the results obtained by the use of the Elbow method, it is possible to per-

ceive that the optimum number of clusters appears to be k=4. Hence, this is the value that

is chosen to proceed for future analysis of Ethereum traffic. Figures 5.9 and 5.10 demon-

strates the obtained results from applying the KMeans algorithm using k=4 in Ethereum

TCP and UDP traffic, respectively.

As transactions performed in the experiment are structured in the same way, i.e.,

they do not have any smart contract interaction, they tend to present the same packet size,

thus being perceived at the same place in the plotted clusterization of TCP traffic in Fig-

ure 5.9, in the region of 100 to 200 bytes close to the range of 30000 on the x-axis. Based

on the results obtained from the clusterization using KMeans, it can be concluded that cat-

egorizing Ethereum traffic by packet size and destination port alone was not reasonable

as there was no clear correlation between these features and Ethereum traffic type (e.g.,

transactions, block synchronization, and node discovery). This behaviour might be due

to the encryption of the traffic and the standardized transaction structure of Ethereum.

Further, the experiments performed in this work did not include the presence of smart
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Figure 5.9: KMeans Clusterization of Ethereum TCP Traffic
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contract interaction, which is planned to be investigated in future work.

5.3 Challenges and Remarks

One of the main challenges faced during this work was the fact that the packets

under the devp2p protocol stack were encrypted using ECIES asymmetric encryption

method, as mentioned in Subsection 2.1.1. Therefore, decryption of a packet’s content

to analyze it and classify the packet as BC traffic would require knowing the ephemeral

key established during the handshake of two nodes, which is not attainable in a real-case

scenario. The literature shows that the most common approach to overcome such chal-

lenge, when analyzing traffic of cryptojackers, is to adopt ML techniques to successfully

identify and differentiate them from regular HTTP traffic (GABA et al., 2022). Though,

as no available work had targeted Ethereum transaction traffic yet, we have tried to ap-

ply such techniques, i.e., KMeans algorithm to clusterize Ethereum traffic and identify

possible patterns.
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Figure 5.10: KMeans Clusterization of Ethereum UDP Traffic
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Although the clusterization of Ethereum traffic did not lead to promising results

when trying to identify possible patterns and comparing it to regular HTTP traffic, the

generated novel dataset, as well as the remarks on the expected structure of Ethereum

transactions and the replicable scenario using LST provided by this work, can foster fur-

ther research on the use of ML techniques to identify Ethereum traffic and transactions in

the BC in real-time using SDN.
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6 SUMMARY, CONCLUSION AND FUTURE WORK

The identification of BC traffic has been a topic of increasing interest in recent

years. The wide range of BC applications and the rise of its use in different areas (MON-

RAT; SCHELéN; ANDERSSON, 2019) leads to the development of different QoS re-

quirements to be applied by network administrators. Hence, the possibility of identifying

BC-related traffic in real-time to detect possibly infected devices with cryptojackers, or to

prioritize its traffic through a SDN controller, would be greatly boosted by the automation

of detection of BC packets in a network in real-time without the need of human supervi-

sion, thus reducing the costs to do so.

The use of SDN in the context of BC test scenarios has not been deeply explored

in the available scientific literature yet, as shown in Chapter 3. The advantages offered by

SDN through the separation of the control and data planes, i.e., the customization of a vir-

tual switch that can take action upon network flows or individual packets, can be beneficial

to tackle the QoS requirements from BC applications. Though, the intrinsic variations of

network experiments, that depends on several factors such as the underlying operating

system, available resources and utilized softwares, are a barrier for the reproduction of

test scenarios in network research. Most of the testbeds available are restricted to the

context of the application that they were developed to, or are applicable with SDN (KAI-

HARA et al., 2022). Hence, in this work, we intended to provide an experiment that could

serve as an example for reproducing other BC test scenarios using SDN with LST. The

results obtained from the implementation of the network topology depicted in Figure 4.1

shows that the use of LST, as it is a highly configurable tool that offers an isolated envi-

ronment for network experiments while leveraging SDN, allows an easy setup to conduct

test scenarios with low effort. As it leverages Docker containers, any custom environment

can be set up and deployed on the nodes, as shown in Listing 4.4. The use of a custom

SDN controller deployed on the virtual switch container in LST also enhances the range

of possible applications that can be researched in test scenarios.

As Ethereum cryptocurrency is the second largest by market capitalization (Coin-

MarketCap, 2024), it becomes an increasing target of malicious activity and its use in

several areas is naturally expanded to different applications. Although there is some work

available in the current scientific literature on identifying BC traffic using ML techniques,

most of them are directed to other BCs such as Bitcoin, which is the most popular, or

Monero, as its cryptocurrency is a popular in-browser cryptojacking target. Thus, this
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work also aimed to tackle the topic on Ethereum BC. Analysis conducted on the extracted

packets from Ethereum traffic demonstrates the typical expected structure on a transaction

message, when there is no smart contract data attached to it. Even though there is a limit

to the maximum size in bytes of deployed contract codes in transaction messages, and by

consequence to the message itself, observations performed in Chapter 5 shows that relying

on packet size alone is not sufficient to differ Ethereum traffic from regular HTTP traffic,

as they often coincide in packet length. As the content of Ethereum messages transmit-

ted through the devp2p stack protocols are encrypted, it is also not possible to rely on

payload analysis to conduct classification of the BC packets. Thus, it is necessary to

perform deeper inspection and combine different attributes to ML algorithms to success-

fully identify Ethereum traffic in real time. Further research could use LST to tackle the

identification of Ethereum-related packets using ML techniques with and without smart

contract data, as they are a common component in Ethereum transactions.

The employment of LST conducted in this work can serve as a base for future

research on BC emulation and traffic analysis, as the scenario can be easily reproduced

and the network topology can be extended up to the available resources on the host’s

machine. The novel dataset containing Ethereum and regular HTTP traffic provided by

the executions of the proposed scenario in this work can be used in future work to explore

the usage different ML algorithms, e.g., SVM or CNN, to classify Ethereum traffic and

transactions, as these algorithms are already used in other papers to identify several BCs

traffic (NETO et al., 2020; KELTON et al., 2020). In addition, smart contract interactions

can be emulated so that the related transactions can be included in the dataset.
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Abstract. Besides the main blockchain use-case of exchanging cryptocurren-
cies, Distributed Applications (DApps) can also be developed on top of such
a technology. However, due to the size of popular blockchains and price,
testing these DApps in a real-world environment becomes challenging. Thus,
blockchain emulators were proposed to address such as issue. This paper
presents the experience of emulating an Ethereum network using a Docker-
based lightweight testbed developed for Software Defined Networks (SDN).

1. Introduction
Blockchain is a technology based on the concept of distributed ledgers that stores in-
formation in a decentralized and distributed network [Scheid et al. 2021]. It was first
proposed in 2008, as the database and means to solve the double-spending problem
for the Bitcoin cryptocurrency [Nakamoto 2009], and since then, its adoption has ex-
panded to several other areas such as finances, cybersecurity and Internet of Things
(IoT) [Monrat et al. 2019], as well as to other emerging cryptocurrencies, such as
Ethereum [Buterin 2014].

Since the architecture of blockchains is complex, comprising several different
layers (e.g., network layer, data model layer, execution layer and application layer)
[Belotti et al. 2019], it is difficult to create and maintain an actual blockchain environment
for evaluation purposes. Further, the size of blockchains, such as Bitcoin and Ethereum, is
over 400 GB, requiring dedicated hardware [Sanka and Cheung 2021]. Fortunately, it is
possible to resort to blockchain emulation and simulators to avoid such difficulties. Sim-
ulation aims to reproduce a blockchain system model, enabling its evaluation in a param-
eterized way, without the need to implement the entire system [Paulavičius et al. 2021]
whereas emulation aims to replicate the behavior of a system as closely as possi-
ble [Gill et al. 2021].

Thus, in this work, we rely on the Lightweight SDN Testbed
(LST) [Kaihara et al. 2022] to emulate an Ethereum-based blockchain network contain-
ing different nodes. We defined a scenario with one signer creating and attesting blocks
and two regular nodes sending transactions. We show that it is possible to emulate an
Ethereum network in an flexible and reproducible manner while being possible to send
transactions among the nodes and to synchronize the blockchain, enabling a complete
evaluation of the system relying on real-world blockchain software.

The remainder of this paper is organized as follows. Section 2 presents an
overview of LST and the Ethereum blockchain. Section 3 discusses related work on
Ethereum blockchain simulator and emulators available in the literature. Section 4 de-
scribes the scenario for running the experiment, while Section 5 elaborates on its results.
Finally, Section 6 concludes this paper and indicates future work on the topic.
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2. Background

This section describes the two main technologies employed in this paper, LST and the
Ethereum blockchain.

2.1. Lightweight SDN Testbed (LST)

LST [Kaihara et al. 2022] is a lightweight and easy-to-use tool for SDN and security stud-
ies. It allows reproducing scenarios in the context of SDN through the virtualization of
physical infrastructures, by taking advantage of Docker containers. Through the virtual-
ization offered by Docker containers, it is possible to achieve a highly configurable and
isolated environment.

The tool relies on the Ryu Controller, a SDN framework for network management
and control applications that supports several protocols, such as OpenFlow. Thus, it al-
lows to perform different actions on the virtual switches e.g., network analysis, changing
network route policies and identifying malicious attacks. Further, as it relies on Docker
containers, such a controller can be replaced and modified in a flexible manner.

2.2. Ethereum

Ethereum was proposed in 2015 as a blockchain able to support the creation of versatile
applications [Buterin 2014]. It offers, within its blockchain ecosystem, a way for develop-
ers to create Decentralized Applications (DApps) using a Turing-complete programming
language. With such a language, developers define immutable blockchain-based smart
contracts that contain specific rules for the enforcement of transactions used by DApps.
Thus, by providing this language, Ethereum became the De Facto standard for DApps.

Unlike Bitcoin, where the blockchain state is defined by Unspent Transaction Out-
put (UTXO) transactions, Ethereum uses account-based states, where each account is de-
fined by a set of fields (e.g., balance), and state transitions are transactions of information
or value between different accounts. Ethereum relies on the Proof-of-Stake (PoS) consen-
sus method, where a node must stake capital (i.e., Ethereum coins - ETH), into a smart
contract. Only nodes with stake in the smart contract can propose and validate blocks;
if the node does not follow a set of rules or propose invalid blocks, its stake is reduced,
decreasing its chance of proposing blocks.

3. Related Work

There are several blockchain simulators available in the literature
[Paulavičius et al. 2021]. However, in terms of blockchain emulation, there are
few approaches in the literature. Thus, as the focus of this paper is on emulation, we only
describe Ethereum-based emulators.

[Gill et al. 2021] emulates a real Ethereum blockchain by leveraging Container-
net [Peuster et al. 2018], a Mininet fork that allows using Docker containers as hosts. It
also provides network monitoring feature for retrieving statistics trough a Netflow col-
lector, enabling traffic analysis. Although Mininet does support OpenFlow protocol, the
proposed blockchain system emulator does not provide an interface for setting up a SDN
Controller as does LST. Thus, although traffic can be analyzed with Netflow collected
statistics, it is harder to perform any actions on incoming packets in the emulated system.
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[Wang et al. 2019] presents an emulator that is highly scalable, but is designed to
support only public blockchains that are based on the Proof-of-Work (PoW) consensus
protocol. In contrast to LST, which uses Docker containers for each node, the proposed
emulator is a Java application; thus, having a less isolated and flexible environment. In
another work, [Polge et al. 2021] only emulates the networking layer of the blockchain,
the remainder of the layers is simulated. Hence, it cannot be considered a full-fledged
blockchain emulator but rather a hybrid emulator.

Based on such a review, it can be seen that, in the literature, one only ap-
proach focuses on using containers to emulate a blockchain network. However, SDN
and lightweight emulation using Docker is not explored in this context. Hence, using
LST as a flexible blockchain emulator with SDN to create a Ethereum network or any
blockchain network presents an interesting opportunity.

4. Scenario
Figure 1 illustrates the blockchain network scenario emulated using LST. The host pro-
vides the required CPU, RAM, Disk for the virtualization of the elements of LST. Two
blockchain nodes and a blockchain signer node are initialized as docker containers, and
later connected to the virtual Switch container, creating the blockchain network topology.
The Switch is connected to a custom Ryu Controller container, that enables us to record
and later inspect the network flows. It also uses the network interface provided by the
host, thus allowing the blockchain emulated system to have Internet connection.

Blockchain 
Node 2

Internet

ControllerBlockchain 
Node 1

Blockchain 
Signer

LST

Host

CPU RAM Disk Network
Interface

Switch

Network Flows

Figure 1. Emulated Scenario with LST

In this scenario, we have created a private Ethereum blockchain that relies on
the Proof-of-Authority (PoA) consensus protocol, where one or more nodes are assigned
as validators for the entire network. We define one of the participating nodes as the
Ethereum Block Signer. This node contains the genesis file for our private Ethereum
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blockchain system, which defines the initial data on the first block in the chain as well
as other configurations (e.g., difficulty, gas limit, initial account balances and minimum
block time in seconds). Then, two other generic blockchain nodes, containing the same
genesis file, are initialized and later connected to the virtual switch.

The virtual switch container is instantiated with a Ryu Controller that saves incom-
ing packets from network into a Packet Capture (PCAP) file. This enables later inspection
of the emulated blockchain system network traffic. It is important to mention that the con-
troller can be customized and exchanged if required; thus, showing that LST can serve as
a testbed for experiments regarding the analysis of traffic in different scenarios.

Once all of the participating nodes are connected to the virtual switch, they are
instantiated using Geth, the official Ethereum client built in Go. After the node discovery
process ends and the nodes are synchronizing with blockchain network, we can then start
sending transactions to the network, check account balances, and inspect network flows
that are recorded through the Ryu Controller.

The following steps were required to perform this experiment: (i) create the docker
containers, and (ii) execute the experiment Python script. In the first step, it is created the
docker images for the nodes, signer and OpenFlow switch. The images for the nodes and
the signer contains the Geth client, and the genesis file for the creation of the Ethereum
blockchain network. It is possible to use the default docker images provided by LST and
install the required software, for example Geth for the Ethereum node. In the second
step, we execute the experiment Python script, which creates the blockchain topology
presented above, performs Ethereum transactions and check the accounts balance.

5. Experiment and Results

This experiment was conducted on a host with an Ubuntu 22.04 LTS operating system,
with 16 GB RAM and an AMD® Ryzen 5 3600 6-core processor. The code to re-
produce the scenario is available at https://github.com/andrei-azevedo/
ERRC23-ETH-LST. Figure 2 demonstrates an example of an emulated Ethereum
blockchain system using LST. In the example, we successfully sent transactions from
a node using the function sendTransaction() that calls to a given node1’s Geth to
send the transaction and check the account balance after the transaction.

Figure 2. Sending a transaction and checking account balance in an Ethereum
blockchain network emulated with LST
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We can also see that LST is a very flexible tool that allows us to easily set up
new nodes in the blockchain network and submit transactions with different ETH values.
Figure 3 depicts an example of a different topology containing four common nodes (two
more nodes than the original scenario), and randomly sending several transactions with
different ETH values among them (see line 132). This allows us to verify the communi-
cation between several nodes in the network with the signer and verify if all the nodes are
synchronizing with the blockchain. Further, with the use of LST and the experiment de-
fined as a Python script, it can be repeated by other researches to achieve the same result,
fostering reproducible research.

Figure 3. Sending several transactions from any of the four participating nodes
with different ETH values.

6. Conclusion and Future Work
In this paper, we have demonstrated that it is feasible to emulate an Ethereum blockchain
using Docker containers and SDN with the use of LST, which is a versatile and highly
configurable tool. Thus, allowing us to perform several analyses and actions on the em-
ulated network. By leveraging Docker container technology, the tool creates an isolated
environment that is ideal for testing purposes on blockchain systems without relying on a
testnet, which might require prohibitive hardware resources and human effort for config-
uration of nodes.

Our experiments demonstrated that setting up new nodes and sending transac-
tions with different values in the emulated Ethereum blockchain network using LST is a
straightforward task. In addition, the experiments can repeated with predictable results
by other researchers aiming to test novel blockchain-based approaches and DApps in a
real-world-like blockchain network with minimal effort.

For future work, it could be investigated the use of the SDN controller to identify
Ethereum packets in the network traffic so that cryptojacker traffic is mitigated and to
create smart contract interactions simulations with several real-world Ethereum nodes
and traffic conditions.
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