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“Music is the universal language of mankind.”

— HENRY WADSWORTH LONGFELLOW
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ABSTRACT

With the recent advancements in diffusion models, transformers, and the growing large-
scale datasets, the field of generative models, particularly in the music-to-text context, has
seen a remarkable surge in development and popularity. This thesis aims to conduct an
extensive comparative analysis of the latest advancements in text-to-music models. The
analysis will be structured around several key metrics to assess the effectiveness of each
model, such as the quality of the generated audio and adherence to input text. Beyond
these metrics, this analysis will delve into the underlying methodologies and technologies
employed in each model, providing a comprehensive insight into the techniques and ar-
chitectures driving the current state-of-the-art in text-to-music generation.

Keywords: Machine Learning in Music. Perceptual Audio Metrics. Text-to-Music Gen-

eration.



Analise de Modelos Generativos de Sintese Musical Condicionados por Texto

RESUMO

Com os recentes avangos na drea de modelos de difusao, transformadores, e o crescimento
de datasets de larga escala, o campo dos modelos generativos, particularmente na drea de
geracdo de texto-para-musica, tem apresentado um aumento notavel em desenvolvimento
e popularidade. Esta tese tem como objetivo conduzir uma andlise comparativa extensa
dos ultimos avancos dos modelos de texto-para-musica. A andlise serd estruturada em
torno de varias métricas chaves para avaliar a eficicia de cada modelo, como a qualidade
do dudio gerado e a aderéncia ao texto de entrada. Além dessas métricas, esta andlise
se aprofundard nas metodologias e tecnologias subjacentes empregadas em cada modelo,
fornecendo uma visdo abrangente sobre as técnicas e arquiteturas que impulsionam o

estado atual da arte na gera¢ao de musica a partir de texto.
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1 INTRODUCTION

Recent years have witnessed remarkable progress in the field of deep generative
artificial intelligence models, revolutionizing the way we create and interact with digital
content. Central to this revolution are the generative models that can produce complex
and diverse outputs from simple textual inputs. One prominent field that is calling the at-
tention of the entire population is the text-to-image models, such as DALL-E (Ramesh et
al., 2021), which have demonstrated an impressive ability to generate accurate visual rep-
resentations from free textual descriptions. Inspired by the progress seen in text-to-image
generation, researchers have been exploring and creating models (Kreuk et al., 2023; Yang
et al., 2023) capable to generate audio from sequence-wide, high-level captions, such as
“a windy breeze with birds singing in the background”. A common technique used in
these models is casting audio synthesis as a language modeling task in a discrete repre-
sentation space, and leveraging a hierarchy of coarse-to-fine audio discrete tokens (Liu et
al., 2023). These models have not only opened new possibilities in digital art creation but
also have significant implications in fields like graphic design and visual communication,
besides the extended applications that generating audio can have, such as sound effects
for the creation of media entertainment, showing the potential of generative models in
multiple fields.

Generating high-fidelity music from text descriptions, like "An 80s synthpop song
with slow pace and heavy drums in the background", is a challenging task that requires
modeling long range sequences called text-to-music (TTM) generation. Firstly, unlike
speech recordings that use lower sampling rates (e.g. 16kHz), music requires sampling
the signal at a higher rate, like 44.1KHz or 48 kHz, to capture the necessary intricacies.
Secondly, music can contain multiple instruments and an arrangement of melodies, cre-
ating a very complex structure. Considering that human listeners are extremely sensitive
to disharmony and dissonance, melodic errors introduced in the process of music gen-
eration are extremely noticeable. Finally, having the possibility to control attributes that
music impainting and music continuation offers, like key, timbre, and melody, is crucial
for music creators.

Recent advancements in self-supervised audio representation learning (Balestriero
et al., 2023), sequential modeling (Touvron et al., 2023), audio synthesis (Tan et al., 2021)
and music information retrieval (MIR) have greatly influenced the way we interact and

create sound and music, providing the conditions to develop models (Agostinelli et al.,
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2023; Copet et al., 2023; Li et al., 2023a; Zhu et al., 2023) capable of synthesizing music
given a free-form textual input, leading to significant advancements in the fields of audio
processing and music generation. This thesis explores these models, underpinned by the
influence of machine learning (ML) and artificial intelligence (Al) techniques.

In this research, we delve into the nuanced complexities of generating music using
Al, the innovative algorithms and architectures used that are thriving in music genera-
tion, besides exploring the weaknesses and robustness of the evaluation metrics that align
closely with human auditory perception commonly employed for the comparison between
the state-of-the-art models. However, those models still face multiple obstacles to gen-
erate satisfactory results. Besides the inherent difficulty of synthesizing high-quality and
coherent music, this difficulty is further increased by the scarcity of paired music-text
data, a crucial resource for training generative models. This situation stands in contrast to
the field of text-to-image generation, where the availability of extensive datasets has con-
tributed immensely to the advancements achieved in recent years. One of the reasons for
this is that creating text descriptions of general music is not as straightforward as describ-
ing images. Besides not being easy to unambiguously capture with just a few words the
salient characteristics of music (e.g., the melody, the rhythm, the timbre of vocals and the
many instruments used in accompaniment), the audio is also structured along a temporal
dimension which makes sequence-wide captions a much weaker level of annotation than
an image caption.

Our comprehensive experiments reveal a critical insight through the robustness
of objective metrics commonly employed in evaluating TTM generative process. These
metrics, we find, often fail to align accurately with human auditory perception. This dis-
crepancy highlights a significant gap in the current evaluation methodologies for these
models. We conduct an extensive evaluation of the audio quality and the coherence be-
tween the input text and generated music created by these models, emphasizing the critical
need of considering how the different baselines used in the comparison for music qual-
ity affects the evaluation between models, and also how various embeddings employed
to extract the features and characteristics from audio samples can impact on the overall
analysis of a specific model.

In summary, the key contributions of this work are:

1. We extensively evaluate the audio quality generated by the state-of-the-art text-to-

music models.

2. We demonstrate how the popular metrics currently in use fail to predict the percep-
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tual quality of generative music.
3. We propose a more accurate and reliable approach on how to evaluate the quality of
the output generated by these models that properly aligns with the human auditory

perception.
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2 BACKGROUND

In this section, we provide an overview of the existing literature in the field of mu-
sic generation, reviewing some important concepts that are necessary for a better under-
standing for this work and also highlighting some technologies and techniques involved

in the development of TTM models.

2.1 Transformers

A transformer (Vaswani et al., 2017) is a type of neural network architecture
predominantly used in the field of natural language processing (NLP). Unlike traditional
neural network architectures that process data sequentially, transformers utilize a mecha-
nism called attention, or self-attention, that enables the model to consider the entire input
sequence at once, allowing it to capture complex relationships between different parts of
the sequence, which is particularly useful in understanding the context and semantics in
language tasks. In essence, they allow the model to focus on different parts of the input
sequence when making predictions.

Transformers consist of two main parts: the encoder and the decoder. The encoder
processes the input data (like a sentence in a language translation task) and generates a
context-rich representation of it, called an embedding. The decoder then uses this rep-
resentation to generate the output data (like the translated sentence). This architecture
makes transformers highly effective for a range of tasks such as machine translation, text
summarization, question-answering, etc. The overall architecture of a transformer is ex-
emplified in figure 2.1.

The transformer model’s ability to process inputs in parallel significantly improves
training efficiency over prior models that required sequential data processing. This par-
allelization has been key to the model’s scalability and effectiveness in handling large
datasets and complex tasks. In the context of music generation, transformers gener-
ate music by predicting the next note based on the previous ones. Models like Musi-
cLM(Agostinelli et al., 2023), MusicGen (Copet et al., 2023) and JEN-1 (Li et al., 2023a)
employ transformer-based decoder-only models to autoregressively generate audio tokens
in the music sequence. Such autoregressive models can produce highly coherent audio as
each token generation is conditioned on the previous context. However, the sequential

token-by-token generation manner inherently sacrifices speed for both generation and in-



ference, restricting the applicability of such techniques in downstream tasks.

Figure 2.1 — The transformer architecture.
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2.2 Diffusion Models

15

A diffusion model (Sohl-Dickstein et al., 2015) is class of generative Al models

that works by gradually adding Gaussian noise to the original data in the forward diffusion
process and then learning to remove the noise in the reverse diffusion process. It is a
latent variable model referring to a hidden continuous feature space, it behaves similarly

to VAEs (Variational Autoencoders) and is inspired on non-equilibrium thermodynamics.

In the forward diffusion process, the model gradually adds Gaussian noise to the

input x through a series of 7" steps. Firstly, starts with sampling a data point x, from the
real data distribution ¢(x) like x9 ~ ¢(x¢) and then adding some Gaussian noise with

variance [3; to x;_1, producing a new latent variable x, with distribution ¢(x;|x;_1). The

forward diffusion process is represented in equation 2.1.
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T
X1 T|X0 Hq Xt|Xt 1 Q(Xt|Xt—1)N(Xt; vV 1 — Bexii, ﬁtD (2.1)
t=1

The reverse diffusion process is the process of training a neural network to recover
the original data by reversing the noising process applied in the forward pass, as shown in
equation 2.2. Estimating ¢(x;|x;_1) is difficult as it can require the whole dataset. That’s
why a parameterized model py can be used to learn the parameters. For small enough ;
it will be a Gaussian and can be obtained by just parameterizing the mean and variance.

This entire process of forward and reverse diffusion is illustrated in figure 2.2.

o(Xo0.7)D o(X—1]Xt), Po (X1 |%e)N (%413 po (x4, 1), B (x4, 1)) (2.2)

HEH

Figure 2.2 — The diffusion process graphical model.

Paxtlfxt
@O O — 6 H

Source: (Ho; Jam; Abbeel, 2020)

In the context of music generation, diffusion models can generate music in paral-
lel, offering faster generation speed but often at the cost of lower coherence. The trade-off

between generation speed and coherence remains a key challenge in this area.

2.3 Quantized Variational Autoencoders

Quantized Variational Autoencoders (VQ-VAE) represent an advanced class of
generative models that integrate the principles of variational autoencoders (VAEs) with
vector quantization techniques (Oord; Vinyals; Kavukcuoglu, 2018). VQ-VAE models are
particularly effective in handling tasks where discrete representations are more suitable,
such as in music, speech and image generation, where we first need to convert the input
into discrete tokens.

In a VQ-VAE, the encoder first maps the input data x to a continuous latent space.

The key aspect of VQ-VAE is the quantization step, where the continuous latent represen-
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tation is converted into a discrete form. This is achieved by mapping each vector in the
latent space to the nearest vector in a predefined set of vectors, known as a codebook. The
codebook contains a finite set of vectors, and each vector is referred to as a codeword.

The process of mapping to the nearest codeword can be represented by equation 2.3.

zg(x) = ey, where k = argmin||z.(z) — ¢jll2 (2.3)

The decoder in VQ-VAE then takes these quantized latent vectors and reconstructs
the input data. The quantization step introduces a discrete bottleneck in the model, which
forces the latent space to learn a more structured and efficient representation of the data.
The reconstruction loss, combined with a commitment loss that keeps the encoder out-
puts close to the chosen codeword, is used to train the model. This architecture allows
VQ-VAE to generate high-quality and diverse samples while maintaining computational
efficiency. The process of encoding, quantization, and decoding in VQ-VAE is illustrated

in figure 2.3.

Figure 2.3 — Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space.
The output of the encoder z(x) is mapped to the nearest point e5. The gradient V, L (in red) will
push the encoder to change its output, which could alter the configuration in the next forward

pass.
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2.4 Generative Adversarial Networks

Generative Adversarial Networks (GANSs) are a class of generative models that
have gained significant attention for their ability to generate highly realistic data (Good-
fellow et al., 2014). The generative model in a GAN is pitted against an adversary: a
discriminative model that learns to determine whether a sample is from the model dis-

tribution or the data distribution. The generative model can be thought of as analogous
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to a team of counterfeiters, trying to produce fake currency and use it without detection,
while the discriminative model is analogous to the police, trying to detect the counterfeit
currency. Competition in this game drives both teams to improve their methods until the
counterfeits are indistinguishable from the genuine articles.

In summary, the generator network in a GAN learns to generate data by mapping
latent space vectors, drawn from a prior distribution, to the data space. The generated data
is intended to mimic the real data distribution. The discriminator, on the other hand, is
trained to distinguish between the real data and the data generated by the generator. This
training process can be conceptualized as a minimax game, where the generator tries to
fool the discriminator, and the discriminator tries to correctly classify real and fake data,

as represented in equation 2.4.

mGin max V(D,G) = Epppa(ylog D(x)] + E.op_»)[log(1 — D(G(2)))]. (2.4)

The training of GANs involves back-and-forth optimization of the generator and
the discriminator. The generator learns to produce more realistic data, while the discrimi-
nator becomes better at identifying the generated data. This adversarial process continues
until the generator produces data indistinguishable from real data, at which point the
discriminator is maximally confused. GANs have been successfully applied in various
domains, including image synthesis, style transfer, and super-resolution. The adversarial
training process and the interaction between the generator and discriminator in GANs are

depicted in figure 2.4.

2.5 Audio Representation

Audio representation in digital signal processing and machine learning can be
primarily categorized into two forms: waveform and spectrum. These representations are
fundamental in various audio-related applications, including speech recognition, music

information retrieval, music generation and audio synthesis.

2.5.0.1 Waveform

The waveform representation of audio is a direct depiction of sound waves as they

vary over time. In digital audio, a waveform is typically represented as a series of discrete
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Figure 2.4 — Generative adversarial nets are trained by simultaneously updating the
discriminative distribution (D, blue, dashed line) so that it discriminates between samples from
the data generating distribution (black, dotted line) p, from those of the generative distribution p,
(G) (green, solid line). The lower horizontal line is the domain from which z is sampled, in this
case uniformly. The horizontal line above is part of the domain of . The upward arrows show
how the mapping z = G(z) imposes the non-uniform distribution p, on transformed samples. G
contracts in regions of high density and expands in regions of low density of p,. (a) Consider an
adversarial pair near convergence: p, is similar to pga, and D is a partially accurate classifier. (b)
In the inner loop of the algorithm D is trained to discriminate samples from data, converging to
D*(z) = #ﬁ%m. (c) After an update to G, gradient of D has guided G(z) to flow to
regions that are more likely to be classified as data. (d) After several steps of training, if G and D
have enough capacity, they will reach a point at which both cannot improve because p; = pqata-

The discriminator is unable to differentiate between the two distributions, i.e. D(z) = %

~
L)

(a) (b) () (d)
Source: (Goodfellow et al., 2014)

amplitude values sampled at regular intervals. This form of representation captures the
temporal dynamics of sound and is particularly useful for tasks that require a detailed
understanding of the temporal structure of audio, such as time-domain processing and
audio editing.

Waveform representation maintains the raw, untransformed state of sound, making
it suitable for tasks where preserving the original audio fidelity is crucial. Considering
the computational efficiency, using raw audio waveforms as model inputs or generation
targets is extremely challenging, owing to the high complexity of waveform signals.

This approach uses quantization-based audio codecs, like SoundStream (Zeghi-
dour et al., 2021) or EnCodec (Défossez et al., 2022a), to tokenize the continuous wave-
form into a compact, compressed, and discrete representation, while maintaining high
reconstruction quality. For example, MusicGen (Copet et al., 2023) puts a transformer
decoder over EnCodec quantized units, conditioned on text or melody. AudioLM (Bor-
sos et al., 2023) and AudioPalLM (Rubenstein et al., 2023) take text, decode it into audio

tokens via a transformer, then convert the tokens back to raw audio using SoundStream.
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2.5.0.2 Spectrum

Spectral representation, on the other hand, transforms the audio signal from the
time domain to the frequency domain, often using techniques like the Fast Fourier Trans-
form. This transformation results in a spectrum that shows how the energy of the audio
signal is distributed across different frequency components.

Spectral representations, such as mel-spectrograms, are particularly useful in ap-
plications that require analysis of the frequency content of audio signals, such as in speech
recognition, music genre classification, and environmental sound analysis. By repre-
senting audio in the frequency domain, spectral analysis can reveal insights about the
harmonic structure, timbre, and other characteristics that are not readily apparent in the
waveform representation.

This approach first converts the waveform into a mel-spectrogram and then pro-
cesses it by referencing techniques from computer vision, using vector quantized varia-
tional autoencoders (VQ-VAE) or generative adversarial networks (GANs). For example,
Diffwave (Kong et al., 2020) and Diffsound (Yang et al., 2023) feed textual tags or other
conditional signals into a spectrogram decoder to generate mel-spectrogram tokens. The
tokens are fed into a pre-trained audio VQ-VAE to synthesize the mel-spectrogram, which
is finally converted into the audio waveform through a vocoder like HiFi-GAN (Kong;

Kim; Bae, 2020).

2.6 Single-task vs. Multi-task

Conditional neural music generation can be categorized into two types, Multi-task
and Single-task. The former uses low-level control signals with tight temporal alignment
to the audio output, which includes lyrics-conditioned music generation and audio syn-
thesis from MIDI sequences, with tight temporal alignment to the audio output. The latter
utilizes high-level semantic descriptions, like text (Kreuk et al., 2023), as conditioning
signals, where it provides overall coherence and consistency without precise temporal
alignment. However, in practical applications, pairs such as <conditional signal, audio>
are often scarce. Hence, models are commonly trained on unlabeled audio datasets using

self-supervised techniques to boost generalization.
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3 RELATED WORK

In this section, we provide an overview of the existing literature in the field of
audio synthesis and other topics related to music generation, reviewing some important
papers that model music information into quantized tokens, explore how these models
generate different embbedings and their corresponding architectures, as well as the im-

plementation techniques used by them.

3.1 EnCodec: High Fidelity Neural Audio Compression

EnCodec (Défossez et al., 2022a) is a streaming convolutional based encoder-
decoder architecture with a sequential modeling component. This architecture is applied
to both the encoder and decoder sides of the model and is composed of three main compo-
nents: An encoder network F is input an audio extract and outputs a latent representation
z; The second part is a quantization layer () that produces a compressed representation
24, using Residual Vector Quantization (RVQ). This process involves projecting input
vectors onto the nearest entries in a codebook and then further refining this quantization
by using additional codebooks for the residual quantization. This quantization process
converts the continuous latent representation into a discrete set of indices, which can be
re-transformed into a vector form before being fed into the decoder. Finally, a decoder
network G reconstructs the time-domain signal, Z, from the compressed latent repre-
sentation z,. The whole system is trained end-to-end to minimize a reconstruction loss
applied over both time and frequency domain, together with a perceptual loss in the form
of discriminators operating at different resolutions. A visual description of this method is
illustrated in Figure 3.1.

The EnCodec model simplifies and accelerates training through a multi-scale spec-
trogram adversary, effectively reducing artifacts and generating superior audio samples.
A new loss balancer mechanism stabilizes training by adjusting the weight of each loss
term to define its contribution to the overall gradient. This architecture also incorpo-
rates lightweight Transformer models for further compression of the audio representa-
tion, enhancing efficiency while maintaining real-time processing capabilities. The codec
has been extensively evaluated across various audio domains, including speech, noisy-
reverberant speech, and music, demonstrating superior performance over traditional meth-

ods for both 24 kHz monophonic and 48 kHz stereophonic audio.
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Figure 3.1 — EnCodec: an encoder decoder codec architecture which is trained with
reconstruction (£ and ¢;) as well as adversarial losses (¢, for the generator and ¢4 for the
discriminator). The residual vector quantization commitment loss (¢,,) applies only to the

encoder.
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Source: (Défossez et al., 2022b)

3.2 MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised

Training

MERT (Li et al., 2023b) is an open-source pre-trained acoustic music model that
is built on the foundation laid by pre-trained language models (PLMs), which have shown
remarkable success in learning generalizable representations of data in various fields, in-
cluding natural language processing. Recognizing music as a special language, MERT
adapts PLM-based methods to model music sequences. This approach aims to unify the
modeling of a wide range of music understanding tasks, also known as Music Informa-
tion Retrieval (MIR), including music tagging, beat tracking, music transcription, source
separation, etc., leveraging the inherent similarities between music and language as com-
munication interfaces so that different tasks no longer need detailed models or features,
and also intending to use a PLM for acoustic music understanding can re-distribute the
musical knowledge rather than the data itself.

MERT’s methodology involves a pre-training paradigm that includes prediction to
acoustic teachers and reconstruction to music teachers, both anchored in the established
masked language model (MLM) paradigm. This structure allows for a nuanced approach
to modeling both acoustic and musical information in audio data. For acoustic informa-
tion modeling, MERT uses two approaches: traditional features and deep learning-based
features. The traditional method employs k-means clustering on log-Mel spectrum and

Chroma features for timbre and harmonic acoustic information, and the deep learning
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approach utilizes EnCodec (Défossez et al., 2022a). For the music teachers, MERT in-
corporates a reconstruction loss to the Constant-Q Transform (CQT) (Brown, 1991) spec-
trogram, emphasizing pitch-level information crucial for tasks like pitch detection, chord
recognition, and music transcription. This approach utilizes mean squared error (MSE)
loss for reconstruction, offering a more nuanced understanding of the musical aspects of
audio.

MERT inherits a speech self supervised learning (SSL) paradigm, employing
teacher models to generate pseudo targets for sequential audio clips. MERT incorpo-
rates a multi-task paradigm to balance the acoustic and musical representation learning to

capture the distinctive pitched and tonal characteristics in music, as shown in Fig. 3.2.

Figure 3.2 — llustration of the MERT Pre-training Framework.
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3.3 DPAM: A Differentiable Perceptual Audio Metric Learned from Just Noticeable

Differences

DPAM (Manocha et al., 2020) is based on just noticeable differences (JNDs) —
the minimal change at which a difference is perceived, and intends to bridge the gap be-
tween human judgment and automated audio evaluation metrics. The model is trained
on a large-scale dataset of human judgments wherein subjects are asked whether two au-
dio recordings sound the same or different. Recordings are modified by injecting various

perturbations characteristic of degradations commonly found in audio processing tasks,
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like noise, reverb, and compression artifacts, and the goal is to determine the JND thresh-
old for each subject. The data collection is optimized using active learning strategies,
efficiently gathering labeled data that are later used to train a perceptual metric.

The architecture is based on (Germain; Chen; Koltun, 2018) consisting of 14 con-
volutional layers with 3x1 kernels, batch normalisation and leaky ReLU units, and zero
padding to reduce the output dimensions by half after every step. Furthermore, the au-
thors also publicly release the dataset, code and resulting metric, as well as listening test

examples.

3.4 CDPAM: Contrastive Learning for Perceptual Audio Similarity

CDPAM (Manocha et al., 2021) is a new approach in perceptual audio metric,
building upon the DPAM (Manocha et al., 2020) model. The DPAM model suffers from
a natural tension between the cost of data acquisition and generalization beyond that data.
It requires a large set of human judgments to span the space of perturbations in which it
can robustly compare audio clips. Moreover, the metric may generalize poorly to unseen
content. Lastly, because the data is focused near JNDs, it is likely to be less robust to
large audio differences.

To circumvent these limitations, besides also focusing on just noticeable differ-
ences (JNDs), CDPAM uses contrastive learning, multi-dimensional representation learn-
ing, and triplet learning to improve the robustness and generalizability of the metric across
a range of audio perturbations. Multidimensional representation learning is used to sep-
arately model content similarity and acoustic similarity. The combination of contrastive
learning and multi-dimensional representation learning allows CDPAM to better general-
ize across content differences with limited human annotation. To further improve robust-
ness to large perturbations beyond JND, the authors collect a dataset of judgments based
on triplet comparisons, asking subjects: “Is A or B closer to reference C?”

The architecture of CDPAM consists of an audio encoder, a projection network,
and a loss network. The audio encoder outputs two sets of embeddings: acoustic and con-
tent, which are then processed through the projection network. The loss network, trained
on JND data and fine-tuned with triplet comparison data, outputs a distance that predicts
human judgment. This design allows CDPAM to effectively differentiate between various
audio perturbations and to generalize well to unseen audio content. The architecture of

CDPAM model is illustrated in figure 3.3.
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CDPAM has been validated across nine diverse datasets, showing better correla-
tion with MOS and triplet comparison tests than its predecessor, DPAM. Its application to
tasks like speech synthesis and enhancement has demonstrated significant improvements,
highlighting the model’s potential in various audio processing applications. This model
presents a significant advancement in the field of audio quality assessment, aligning more

closely with human auditory perception than traditional metrics.

Figure 3.3 — Illustration of the CDPAM Pre-training Framework.
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3.5 DAC: High-Fidelity Audio Compression with Improved RVQGAN

DAC (Kumar et al., 2023) is an audio compression model designed to compress
44.1 KHz audio into discrete codes at an 8kbps bitrate, achieving approximately 90x
compression with minimal quality loss and reduced artifacts. It addresses key challenges
in the field of audio compression, including codebook collapse and quantizer dropout, and
introduces significant innovations like periodic activation functions, enhanced residual
vector quantization, and multi-scale STFT discriminators. This model demonstrates its
versatility by handling diverse audio types such as speech, music, and environmental
sounds at different sampling rates and formats, making it a universal solution for high-
fidelity audio compression.

The model is built on the framework of VQ-GANs and uses the fully convolutional
encoder-decoder network from SoundStream (Zeghidour et al., 2021), that performs tem-
poral downscaling and quantize the encodings using Residual Vector Quantization (RVQ)
with factorized and L2-normalized codes to overcome the limitations of traditional vector
quantization, significantly improving codebook usage and bitrate efficiency. The former
decouples code lookup and code embedding, and the latter converts euclidean distance
to cosine similarity, which is helpful for stability and quality, both used to significantly

improve codebook usage, increasing bitrate efficiency and reconstruction quality.
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In addition to that, the model presents novel techniques and key features, such as:
Periodic Activation Function. The model employs the Snake activation function (Ziyin;
Hartwig; Ueda, 2020) to add periodic inductive bias, improving the handling of periodic
signals in audio waveforms, thus enhancing fidelity.

Quantizer Dropout Rate. Quantizer dropout was introduced in SoundStream (Zeghidour
et al., 2021) to train a single compression model with variable bitrate, however, applying
quantizer dropout degrades the audio reconstruction quality at full bandwidth. A modified
approach to quantizer dropout is adopted, setting the dropout probability at 0.5 to balance
the reconstruction quality across various bitrates.

Discriminator Design. Using magnitude spectrograms, like prior works, discards phase
information which can be utilized by the discriminator to penalize phase modeling errors.
Moreover, high-frequency modeling is still challenging for these models especially at
high sampling rates. Utilizing a complex STFT discriminator (Zeghidour et al., 2021) at
multiple time-scales, the model effectively addresses high-frequency modeling challenges
and reduces aliasing artifacts, besides improving phase modeling.

Loss Functions. The model combines frequency domain reconstruction loss and adver-
sarial loss, employing a multi-scale approach to mel-spectrogram loss calculation and

using straightforward codebook and commitment losses without complex loss balancing.
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4 TEXT-TO-MUSIC MODELS

This chapter delves into the details of Text-to-Music (TTM) models, an intersec-
tion of language processing and music generation. Leveraging recent advancements in
machine learning and artificial intelligence, TTM models are capable of transforming
textual descriptions into rich, nuanced musical compositions. These models represent a
significant leap in both natural language understanding and creative Al, enabling a new
form of expression where text and music coalesce. We explore the most prominent mod-
els in this field, their unique approaches and technologies to this emerging area. From
employing hierarchical sequence-to-sequence modeling to integrating diffusion models,
these TTM systems display a novel approach in music creation and audio processing.
We will explore the models MusicLM (Agostinelli et al., 2023), MusicGen (Copet et al.,
2023), ERNIE-Music (Zhu et al., 2023), and JEN-1 (Li et al., 2023a), showcasing distinct

methodologies and capabilities in generating music from text.

4.1 MusicLM: Generating Music From Text

MusicLM (Agostinelli et al., 2023) proposes casting the process of conditional
music generation as a hierarchical sequence-to-sequence modeling task. To achieve this,
MusicLLM uses AudioLM’s (Liu et al., 2023) multi-stage autoregressive modeling as the
generative component, while extending it to incorporate text conditioning. To address
the challenge of text-music pairs data scarcity, MusicLM incorporates MuLan (Huang et
al., 2022). MuLan is a music-text joint embedding model consisting of two embedding
towers, one for each modality. This allows the authors to easily scale the training data
and to increase the robustness of noisy text descriptions. MuLan architecture is showed
on figure 4.1.

MusicLLM architecture is composed of three independently pre-trained models for
extracting audio representations that will serve for conditional autoregressive music gen-
eration: SoundStream (Zeghidour et al., 2021), an audio compressor which receives an
waveform as input and compresses it at a lower bit rate, maintaining a high reconstruction
quality used for generating acoustic tokens, making use of the residual vector quantiza-
tion (RVQ) technique; the masked-language-modeling (MLM) module of a w2v-BERT
(Chung et al., 2021) for semantic tokens to maintain long-term coherent generation; Mu-

Lan embeddings computed from the audio as conditioning during training, and MuLan
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Figure 4.1 — Learning framework diagram for MuLan.
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embeddings computed from the text input during inference. These components are illus-
trated in Figure 4.2.

To support future research, the authors also publicly release MusicCaps, a high-
quality music caption dataset hand-curated with 5.5k text-music pairs prepared by expert
musicians. The authors also extend the generative process to include other conditioning
signals beyond text, extending MusicLLM to accept an additional melody in the form of au-
dio (e.g., whistling, humming) as conditioning to generate music that follows the desired

melody, rendered in the style described by the text prompt.

4.2 Simple and Controllable Music Generation

MusicGen (Copet et al., 2023) is a controllable music generation model able to
generate music given textual description, consisting of a single language model com-
prised of a single-stage transformer that operates over several streams of compressed dis-
crete music representation, eliminating the need for cascading several models, such as
hierarchically and upsampling. The language model is over the quantized units from En-
Codec (Défossez et al., 2022b), a convolutional auto-encoder with a latent space quantized
using Residual Vector Quantization (RVQ) (Zeghidour et al., 2021), and an adversarial re-

construction loss. Compression models that employ Residual Vector Quantization (RVQ)
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Figure 4.2 — Independent pre-training of the models providing the audio and text representations

for MusicLM.
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results in several parallel streams, where each stream is comprised of discrete tokens orig-
inating from different learned codebooks. A codebook refers to the set of quantized values
that represent the audio signal generated by the audio tokenization model EnCodec.

The authors introduce a new modeling framework, which generalizes to various
codebook interleaving patterns, and explore several variants. Through patterns, the au-
thors can leverage the internal structure of the quantized audio tokens. In RVQ, each
quantizer encodes the quantization error left by the previous quantizer, thus quantized
values for different codebooks are in general not independent, and the first codebook is
the most important one. Through empirical evaluations, the authors showed the bene-
fits and drawbacks of various codebook patterns, such as exact flattened autoregressive
decomposition and inexact autoregressive decomposition, as it’s illustrated on Figure 4.3.

The authors also show that generally there are three main approaches for rep-
resenting text for conditional audio generation. (Kreuk et al., 2023) proposed using
a pretrained text encoder, specifically T5 (Raffel et al., 2020). (Chung et al., 2022)
show that using instruct-based language models provide superior performance and finally,
(Agostinelli et al., 2023; Liu et al., 2023; Huang et al., 2023; Sheffer; Adi, 2023) claimed
that joint text-audio representation, such as CLAP (Wu et al., 2023), provides better-
quality generations. The authors experiment with all of the above. Besides text condi-
tioning music generation, MusicGen also allows the conditioning on a melodic structure

from another audio track, whistling or humming. Such an approach also allows for an
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Figure 4.3 — Codebook interleaving patterns for MusicGen.
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iterative refinement of the model’s output.

4.3 ERNIE-Music: Text-to-Waveform Music Generation with Diffusion Models

ERNIE-Music (Zhu et al., 2023) was the first text-to-music generator model that
can receive as an input a free-form textual prompt as the condition to guide the waveform
generation process using diffusion models. To circumvent the problem of the scarcity of a
large text-to-music dataset, (Zhu et al., 2023) collects the data from the Internet on music
service supporting platforms by utilizing the “comment voting” mechanism, where users
rate each other comments via the "upvote" option. The authors consider the “popular
comments” as generally relatively high quality and usually contain much useful music-
related information such as musical instruments, genres, and expressed human moods.

As shown in Figure 4.4, ERNIE-Music overall model architecture contains a con-
ditional music diffusion model which models the predicted velocity 0y(z,t,y), and a text
encoder E(-) that maps text tokens into a sequence of vector representations. The inputs
of the music diffusion model are latent variable z;, timestep ¢, and the representation of
text sequence. The output is the estimated velocity v;. The authors adopt the architec-
ture of UNet whose key components are stacked convolutional blocks and self-attention
blocks, which model the global information of the music signals. Generation models can

estimate the conditional distribution and the conditional information can be fused into the
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generative models in many ways.

The authors also study which format of text used as input benefits the model to
learn text-music relevance, comparing between generating music based on a set of pre-
defined music tags representing the specific music’s feature, which they call Music Tag
Conditioning, and free-form text, called End-to-End Text Conditioning. To achieve this,
they train two models with the two text formats and manually evaluate the text-music rel-
evance of the generated music, concluding that the End-to-End Text Conditioning method
obtains better text-music relevance than using the Music Tag Conditioning method. The
authors consider that the main reason for this difference might be that the human-made
music tag selection rules introduce much noise and result in the loss of some useful infor-

mation from the original text.

Figure 4.4 — ERNIE-Music overall architecture.
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4.4 JEN-1: TEXT-GUIDED UNIVERSAL MUSIC GENERATION WITH OMNI-
DIRECTIONAL DIFFUSION MODELS

The majority of the TTM models operates on spectogram representations of the
audio, incurring fidelity loss from audio conversion. Others employ inefficient autore-

gressive generation or cascaded models, like MusicGen (Agostinelli et al., 2023), where
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their training objectives are confined to single task, lacking the versatility of humans
who can freely manipulate music. JEN-1 (Li et al., 2023a) represents a significant ad-
vancement in text-guided music generation, employing in-context learning and is trained
with multi-task objectives, enabling music generation, music continuation, and music in-
painting within a single model, this multi-tasking is illustrated in figure 4.5. To achieve
this goal, the authors proposes a omnidirectional latent diffusion model, and additional
masked music information, which the model is conditioned upon, can be extracted into
latent embedding and stacked as additional channels in the input. The architecture of the
omnidirectional diffusion model enables various input pathways, facilitating the integra-
tion of different types of data into the model, resulting in versatile and powerful capa-
bilities for noise prediction and diffusion modeling. JEN-1 integrates the unidirectional
diffusion mode by employing a unidirectional self-attention mask and a causal padding
mode in convolutional blocks.

To avoid the spectrogram conversion losses, JEN-1 uses a masked autoencoder
and diffusion model to directly model waveforms, which effectively reduces noises and
mitigates artifacts, generating high-fidelity 48kHz stereo audio, and also integrates au-
toregressive and non-autoregressive diffusion to balance dependency modeling and gen-

eration efficiency.

Figure 4.5 — Illustration of the JEN-1 multi-task training strategy, including the text-guided music
generation task, the music inpainting task, and the music continuation task. JEN-1 achieves the
in-context learning task generalization by concatenating the noise and masked audio in a
channel-wise manner. JEN-1 integrates both the bidirectional mode to gather comprehensive
context and the unidirectional mode to capture sequential dependency.
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Table 4.1 — Models Information Summary

Feature ‘ MusicLM ERNIE-Music MusicGen JEN-1

Creators Google Baidu Inc. Meta Research Futureverse
Release Date | 26 Jan 2023 9 Feb 2023 8 Jun 2023 9 Aug 2023
Architecture | Transformer Diffusion Transformer  Diffusion And Transformers
Sample Rate 24 kHz 16kHz 32 kHz 48kHz Stereo
Dataset MusicCaps  Web Music w/ Text ~ MusicCaps Private Music Data
Task Single-Task Single-Task Single-Task Multi-Task

Table 4.2 — Self-Reported Evaluation Metrics

Model | FADygg | FADpqy | KL | CLAPT

ERNIE-Music - - - -

MusicLM 4.0 0.44 1.01 -

MusicGen 3.8 - 1.22 0.31

JEN-1 2.0 - 1.29  0.33
4.5 Models Summary

In table 4.1, we have summarized the main features and characteristics of each
model discussed in this section. This summary provides a quick reference to understand
the distinct capabilities, methodologies, and applications of each model in the context of
audio processing and music generation. In table 4.2, we display the metrics reported by
the authors in each corresponding paper (Zhu et al., 2023; Agostinelli et al., 2023; Copet
et al., 2023; Li et al., 2023a).
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5 STATE-OF-THE-ART METRICS

5.1 CLAP

CLAP (Contrastive Language-Audio Pretraining) (Wu et al., 2023) is a pipeline
of contrastive language-audio pretraining that considers different audio and text encoders,
and, similar to the Contrastive Language-Image Pretraining (CLIP), where it learns the
correspondence between text and image by projecting them into a shared latent space,
CLAP aims to develop an audio representation by combining audio data with natural
language descriptions based on their overlapping information with focus on the coherence
between them. The overall architecture of clap can be viewed on figure 5.1

The authors publicly released LAION-Audio-630K, a large-scale audio-text dataset
consisting of 633,526 pairs with a total duration of over 4,300 hours. In addition, the
model also includes the feature fusion mechanism, designed to handle the variability in
audio lengths. This mechanism allows for efficient processing of different lengths of
audio inputs, combining global and local audio information, and significantly reducing
computational inefficiency associated with long audio. Another key aspect of CLAP is its
keyword-to-caption augmentation, which expands labels or tags of datasets like AudioSet
into detailed captions. This expansion not only enriches the dataset but also contributes
to more effective training of the contrastive language-audio pretraining model.

The paper conducts comprehensive experiments in text-to-audio retrieval, zero-
shot audio classification, and supervised audio classification. These experiments demon-
strate the model’s superior performance in text-to-audio retrieval and its state-of-the-art

results in zero-shot settings for audio classification tasks.

5.2 Fréchet Audio Distance

Traditional metrics like Signal to Distortion Ratio (SDR) and Signal to Interfer-
ence Ratio (SIR) focus on how closely the enhanced audio matches the original studio
recording, but they often fail to capture the perceptual quality of the music. This gap led
to the development of the Fréchet Audio Distance (FAD), a metric specifically designed
to evaluate the quality of generated audio clips. Based on the concept of the Fréchet In-
ception Distance (FID), widely used in the domain of image generation, FAD adapts this

idea to the audio realm.
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Unlike traditional metrics, the FAD score is computed by comparing an entire set
of audio samples to a reference set in terms of their respective distributions in an embed-
ding space as a whole, rather than individual clips. The process begins with the conversion
of audio clips into embeddings, usually using the VGGish model, which encapsulate the
key characteristics of the audio to be evaluated. The statistical distribution of these em-
beddings is then computed for both the real and generated datasets, as shown in figure
5.2. Given a multinormal fit to the distribution of audio embedding features with means
i and p; and covariance matrices Y, and Y, for the reference and test set, respectively,
the FAD is

FAD = ||y — i) + tr (ET vy, -2 zzrzt) , (5.1)

where tr(-) is the matrix trace. A lower FAD score indicates that the generated audio
is more similar to the real audio, suggesting higher quality and greater realism in the
generated samples. In summary, FAD is a metric which is designed to measure how a
given audio clip compares to clean, studio recorded music.

FAD has been widely adopted in the research community for evaluating various
audio generation tasks as an objective music quality metric, including music synthesis,
speech generation, and sound effect production. One of the key strengths of FAD is it’s
ability to evaluate audio quality without the need for human judgment, which can be
subjective and inconsistent. This makes FAD a reliable and scalable tool for comparing
different audio generation models, tracking improvements in model performance over
time, and benchmarking against other methods in the field. However, while FAD is often
used as a proxy for perceptual quality (Agostinelli et al., 2023; Copet et al., 2023; Li
et al., 2023a), the underlying assumption given (5.1) is that the reference set is of high
quality, that the audio embeddings capture features related to quality, that the embedding
distribution can be approximated by a multinormal fit, and that the resulting single FAD

score for the entire test set is a meaningful metric of model performance.
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Figure 5.1 — The architecture of CLAP proposed model, including audio/text encoders, feature
fusion, and keyword-to-caption augmentation.
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Figure 5.2 — FAD computation overview: using a pretrained audio classification model, VGGish,
embeddings are extracted from both the output of a enhancement model that we wish to evaluate
and a large database of background music. The Fréchet distance is then computed between
multivariate Gaussians estimated on these embeddings.
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6 COMPARISON RESULTS

In this chapter, we evaluate the models performance using the previously men-
tioned metrics. For running the evaluation algorithms, some experiments in this work

used the PCAD infrastructure!, at INF/UFRGS.

6.1 FAD Score

In the literature, a commonly used reference set to calculate FAD is to only use
the MusicCaps (Agostinelli et al., 2023) dataset as a reference set, which consists of 10 s
music-related segments from Youtube videos, however, MusicCaps has a large portion of
the samples labeled as “low-quality” by the expert raters. Furthermore, FAD is computed
on audio embeddings, but embedding models trained with different architectures, losses,
and data may capture different aspects of the audio. The great majority of TTM mod-
els published so far only generate the VGGish embedding for calculating the FAD score,
lacking variability and potentially propagating the weaknesses of the VGGish model it-
self.

To further elaborate on the problems of using only this configuration, we use the
research done by (Copet et al., 2023), where it asked human raters to evaluate the sound
quality of the music generated by MusicGen using different parameters and configura-
tions of the model, which are the model pre-trained with 1.5B parameters and the output
with and without a melody to guide the generation, and also the output without melody
where the model was trained with 3.3B parameters. Table 6.1 shows the objective and
subjective metrics for the model MusicGen, where the objective metric is the FAD score
calculated over the VGGish embedding and with the MusicCaps dataset as the baseline
for the evaluation. We can see that even though the setting without a pre-defined melody
and with 1.5B parameters on the model training showed the lowest FAD with a score
of 3.4, the human raters evaluated it as the one with the lowest sound quality, proving
that using the VGGish embedding with MusicCaps dataset as a baseline doesn’t correlate
properly with the human auditory perception.

To have a more robust comprehension of the generated output quality of the anal-
ysed models, it’s necessary to consider different reference sets for comparison, as well

as different embeddings to extract different features from the audio. Following (Gui

'gppd-hpc.inf.ufrgs.br (accessed in Dec 2023 and Jan 2024)
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Table 6.1 — MusicGen generated music evaluation for FAD score and subjective music quality.
Three different versions of the model are tested.

MUSICCAPS Test Set

MODEL FAD,z, | | OVL. T

MusicGen w.o melody (1.5B) 3.4 | 80.74+1.17
MusicGen w.o melody (3.3B) 3.8 | 84.81+0.95
MusicGen w. random melody (1.5B) 5.0 | 81.30+1.29

Hannes Gamper, 2024), we’ll use the FMA-Pop (Defferrard et al., 2017) as a new ref-
erence set to calculate the FAD score, consisting of 4230 songs from the Free Music
Archive (FMA). Beyond that, we also consider different embeddings to investigate how
the different features that can be extracted from the same audio has an impact on the over-
all result and evaluation score. To address this, we use the Microsoft publicly available
Frechet Audio Distance Toolkit? (Gui Hannes Gamper, 2024), computing the following
embeddings of the generated music of the models:

CLAP (Microsoft). Microsoft’s Contrastive Language-Audio Pretraining (CLAP) ? (Elizalde;
Deshmukh; Wang, 2023) is trained with 128,000 audio and text pairs, has shown state-of-
the-art performance in Zero-Shot learning tasks across multiple domains including sound
event classification, scenes, music, and speech. We describe how CLAP works in section
5.1

CLAP-Music (LAION). For LAION’s CLAP #(Wu et al., 2023) in music, the pretrained
model used is "music audioset epoch 15 esc 90.14" (L-CLAP mus). This model is specifi-
cally trained and tailored for music-related tasks, leveraging LAION’s large-scale dataset
and expertise in audio processing.

CLAP-Audio (LAION). The LAION CLAP (Wu et al., 2023) model for general audio,
labeled as "630k-audioset-best" (L-CLAP aud), is designed to handle a broader range of
audio types. This model is expected to have a wide application in various audio processing
tasks beyond music, including general sound events and scenes.

Encodec. The EnCodec model > (Défossez et al., 2022b) encoder-decoder architecture is
described in section 3.1. This version of EnCodec is a causal model operating at 24 kHz

on monophonic audio trained on a variety of audio data. It can compress audio to 1.5, 3,

2github.corn/microsoft/fadtk (accessed in Dec 2023 and Jan 2024)

3 github.com/microsoft/CLAP (accessed in Dec 2023 and Jan 2024)

4 github.com/LAION-AI/CLAP (accessed in Dec 2023 and Jan 2024)
Sgithub.com/facebookresearch/encodec (accessed in Dec 2023 and Jan 2024)
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6, 12 or 24 kbps.

Encodec (48k). This version of EnCodec is a non-causal optimized for 48 kHz stereo-
phonic audio trained on music-only data. The EnCodec (48k) model retains the core
characteristics of the standard EnCodec but is tailored for higher fidelity in stereo audio
settings.

MERT-v1-95M. In section 3.2, we explained how MERT functions. In this version of
MERT® (Li et al., 2023b), the number of parameters that are loaded to memory is 95
million. The main differences from the first version this model (MERT-vO0) is that v1
implements a MLM prediction with in-batch noise mixture, is trained with higher audio
frequency (24K Hz) and more audio data (up to 160 thousands of hours). The number of
transformer layers and the corresponding feature dimensions also can be outputted from
the model. This is marked out because features extracted by different layers could have
various performance depending on tasks.

VGGish. VGGish 7, developed by Google, is a well-known audio feature extraction
model and the most commonly used for measuring the FAD Score. It’s based on the
VGG architecture (Simonyan; Zisserman, 2015), commonly used in image processing,
and adapted for audio. VGGish processes audio into log-Mel spectrogram patches and
outputs 128-dimensional embeddings. It’s pre-trained on a large-scale YouTube dataset
and is often used as a feature extractor for various audio classification tasks.
DAC-44kHz. The standard model of Descript Audio Codec® (Kumar et al., 2023) dis-
cussed on section 3.5, where it compresses 44.1 KHz audio into discrete codes at 8 kbps
bitrate. Can be used on all domains (speech, environment, music, etc.), making it widely
applicable to generative modeling of all audio.

CDPAM (Acoustic). As we describe in section 3.4, this corresponds to the acoustic em-
bedding generated in the CDPAM (Manocha et al., 2021) model. Following the instruc-
tions of the authors, we convert the audio samples to 16-bit PCM audio files to perform
correctly.

CDPAM (Content). Similarly to CDPAM Acoustic, this represents the content embed-
ding generated by the CDPAM model. We also convert the audio samples to 16-bit PCM
audio files.

Table 1 presents the comparison of the proposed evaluation method of the FAD

®huggingface.co/m-a-p/MERT-v1-95M (accessed in Dec 2023 and Jan 2024)

7github.com/tensorflow/models/tree/master/research/audioset/vggish (accessed in Dec 2023 and Jan
2024)

8github.com/descriptinc/descript-audio-codec (accessed in Dec 2023 and Jan 2024)
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Table 6.2 — Multiple embeddings used for the calculation of the FAD Score evaluation for the
proposed models.

MODEL ERNIE-Music MUusicLM MUsSICGEN JEN-1
CLAP MICROSOFT 548.9 254.3 342.1 259.9
CLAP-LAION-MusSIC 0.82 0.435 0.452 0.298
CLAP-LAION-AUDIO 0.669 0.279 0.428 0.419
ENCODEC 146.3 15.978 29.48 12.96
ENCODEC-48K 68.80 10.36 11.35 10.43
MERT-v1-95M 18.98 11.74 12.87 12.04
VGGISH 8.578 3.353 4.305 4.587
DAC-44KHz 967.1 778.4 347.2 1183.8
CDPAM-ACOUSTIC 0.334 0.052 0.075 0.124
CDPAM-CONTENT 0.295 0.049 0.054 0.124

Score considering all the embeddings listed above for ERNIE-Music (Zhu et al., 2023),
MusicLM (Agostinelli et al., 2023), MusicGen (Copet et al., 2023) and JEN-1 (Li et al.,
2023a). As there is no official public implementation for ERNIE-Music’, MusicLM!°
and JEN-1!!, we use these models public demos for our tests. For comparing these results
with the subjective overall quality rated by humans, we report the research done by (Li
et al., 2023a) for the models MusicLM, MusicGen, and Jen-1, where they asked human
raters to evaluate the audio quality of the generated samples of these models from a score
in the range of 1 to 100, where 100 would be the highest quality, and the results were 81.7,
83.8 and 85.7 respectively. We can see that, compared to the VGGish embedding, which
is the standard embedding used in evaluations of the FAD score, the MERT-v1-95M and
EnCodec-48k present results more aligned with the human perception, and both of them

are designed and trained on music datasets.

6.2 CLAP Score

To calculate the CLAP score discussed in section 5.1, we’ll use the official Mi-
crosoft’s implementation of the Contrastive Language-Audio Pretraining '>. We use the
2023 pre-trained model to compute the CLAP scores of each song generated by the TTM

models with it’s corresponding text description, and report the mean of this output.

9ERNIE-Music-Generated-Cases (accessed in Dec 2022 and Jan 2023)
10g00gle-research.github.io/seanet/musiclm/examples/ (accessed in Dec 2023 and Jan 2024)
www.futureverse.com/research/jen/demos/jen1 (accessed in Dec 2023 and Jan 2024)
12github.com/microsoft/CLAP (accessed in Jan 2024 and Feb 2024)



42

Table 6.3 — Comparison of the CLAP score and overall subjective music alignment with
state-of-the-art text-to-music generation models

QUANTITATIVE QUALITATIVE

MODEL CLAPt | ALL %
ERNIE-Music 13.65 -
MusicLM 16.35 82.0
MusicGen 15.79 79.5
JEN-1 11.76 82.8

To evaluate the alignment of Microsoft’s CLAP score and the human perception,
we also use Jen-1 (Li et al., 2023a) research conducted on human raters that subjectively
measures the coherence between the input text and generated music of TTM models. We
report in table 6.3 the score of MusicGen, MusicLM and Jen-1 subjectively alignment and
the score of our evaluation on Microsoft’s CLAP for all of the 4 models. This analysis
juxtaposes the CLAP scores against subjective evaluations of coherence between the gen-
erated music and input text, revealing a divergence between objective scores and human
perception. Notably, the CLAP score’s divergence between MusicLM and JEN-1, despite
similar subjective evaluations, highlights the metric’s sensitivity to nuances not captured
in human ratings. This observation prompts a deeper inquiry into the alignment of ob-
jective metrics like CLAP with subjective human judgment, potentially guiding future

refinements in evaluative methodologies for music generation models.
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7 CONCLUSION

This work has explored the domain of music generation using text-to-music (TTM)
models, offering a comprehensive analysis of the latest methodologies, architectures, and
evaluation metrics in the field. Through an extensive review of the models MusicLM,
ERNIE-Music, MusicGen, and JEN-1, this research has highlighted the significant ad-
vancements in generating music that aligns with textual descriptions, demonstrating the
potential of these models to revolutionize how we interact with music creation and under-
standing.

The evaluation of these models using state-of-the-art metrics such as FAD and
CLAP scores revealed insightful findings on their performance, underscoring the impor-
tance of robust, multifaceted evaluation frameworks to accurately capture the nuances of
generated music quality and text-audio coherence. This work has shown that while ob-
jective metrics provide essential insights into model performance, they also contain many
discrepancies between these objective metrics and human perception, evident in the di-
vergent CLAP and FAD scores of the models that otherwise performed similarly in the
reported subjective evaluations.

Moreover, the exploration into different embeddings and reference sets for FAD
calculation has underscored the necessity of diversifying evaluation methodologies to en-
sure a comprehensive and nuanced assessment of music generation models. By consid-
ering various aspects of audio quality and textual coherence, this research advocates for
a more holistic approach to evaluating TTM models, one that mirrors the complexity and

richness of human musical experience.

7.1 Limitations

This research, while comprehensive in its approach to evaluating text-to-music
generation models, encounters several limitations that are important to acknowledge.
Firstly, the analysis was partly constrained by only having access to the demos of some
music generation models. This limited access restricted the ability to conduct a more
robust, in-depth evaluation and comparison across a full spectrum of model outputs, po-
tentially affecting the insights into each model’s capabilities and performance nuances.

Additionally, the study did not incorporate a qualitative research component in-

volving human raters, instead, we use the qualitative research done by other authors



44

(Copet et al., 2023; Li et al., 2023a). The absence of subjective evaluations from hu-
man listeners represents a significant limitation, as it precludes a holistic understanding
of the generated music’s perceptual and emotional impact. Human evaluation is crucial
for assessing aspects of musical quality, such as emotional expression, overall audio qual-
ity, and the coherence between the generated music and the provided textual descriptions,

which current objective metrics might not fully capture.

7.2 Future Work

In light of the limitations identified, new possibilities for future work emerge,
promising to extend the research’s scope and depth in evaluating text-to-music generation
models. An immediate area for expansion involves utilizing a larger dataset of outputs
from the generated models. By analyzing a more extensive and varied collection of music
samples, future research can offer a more robust and less noisy evaluation of a model’s
performance, encompassing a wider array of musical genres, styles, and expressions.

Furthermore, the study could benefit from analyzing additional state-of-the-art
models not covered in this work. Given the rapid pace of advancements in the field,
examining newer models would provide valuable insights into evolving methodologies,
architectures, and capabilities, enhancing our understanding of the current landscape of
music generation technologies.

Lastly, future research should consider evaluating the models using additional ob-
jective metrics, like the Kullback—Leibler Divergence (KLD) and MuLan Cycle Consis-
tency (MCC), alongside more implementations of the CLAP score. Employing these
metrics would offer a different perspective on the distributional characteristics of the gen-
erated music compared to reference datasets, potentially uncovering new information and
a more in-depth knowledge of the models performance. Similarly, exploring diverse im-
plementations of the CLAP score could refine the assessment of textual-audio coherence,
providing a more robust evaluation of how effectively models translate textual descrip-
tions into musically expressive outputs, and also detect potential flaws within the CLAP

implementations already created.
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