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Resumo. No contexto médico, a estenose (constrição) de um vaso sanguíneo é o estreitamento
anormal de sua seção transversal, causado pelo acúmulo de placas nas paredes do vaso. Esses
estreitamentos podem ocasionar diferentes problemas de saúde, dependendo da localização
e severidade. Do ponto de vista fluidodinâmico, constrições em canais podem gerar zonas
de recirculação, onde há maior propensão para o acúmulo de partículas suspensas no fluido.
Assim, o presente trabalho avaliou, a partir de simulações em CFD, parâmetros fluidodinâmicos
do escoamento pulsátil de sangue em uma veia com estenose axissimétrica. Diferentes modelos
reológicos para representação do sangue foram consideradas. Inicialmente, o sangue foi
modelado como um fluido newtoniano que segue o modelo de Einstein, considerando a
influência da concentração de eritócitros (hematócrito) sob os parâmetros do escoamento.
Subsequentemente, foram utilizados os modelos não newtonianos de Carreau e Cross. Os
campos de velocidades, comprimentos de recirculação e campos de tensões cisalhantes foram
analisados. Dentre as simulações em que o modelo de Einstein foi utilizado, a que considerou
o valor de hematócrito mais elevado obteve as respostas mais semelhantes com as retornadas
pelos modelos de Carreau e Cross. Os comprimentos de recirculação médios mais elevados
foram obtidos quando utilizado o modelo de Cross.

Palavras-Chave: Estenose, Vaso Sanguíneo, Escoamento Pulsátil, Modelos Reológicos, Recir-
culação, CFD

Abstract. In the medical context, the stenosis (constriction) of a blood vessel is the abnormal
narrowing of its cross-section, caused by the accumulation of plaques on the vessel walls.
Depending on their location and severity, these narrowings can lead to different health problems.
From a fluid dynamics perspective, constrictions in channels can create recirculation zones,
where there is a greater propensity for the accumulation of fluid suspended particles. Thus,
the present work evaluated the fluid dynamic response of pulsatile blood flow in a vessel with
axisymmetric stenosis, using CFD simulations. Different rheological models for representing
blood were considered. Initially, the blood was modeled as a Newtonian fluid following the
Einstein model, considering the influence of erythrocyte concentration (hematocrit) on flow
parameters. Subsequently, the non-Newtonian models of Carreau and Cross were used. Velocity
fields, flow recirculation lengths and shear stress fields were analyzed. The simulation results
obtained using the Einstein model showed that the model yielded similar responses to those
obtained from the Carreau and Cross models when the highest hematocrit value was considered.
The longest average recirculation lengths were obtained when using the Cross model.
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1. INTRODUCTION

1.1. Blood

Blood is a fluid composed of a concentrated suspension of RBCs (red blood cells,
also known as erythrocytes), white cells (leukocytes), and numerous oval-shaped
platelets within the plasma - an aqueous solution of various proteins. Typical values
for erythrocytes, leukocytes, and platelets diameters are 6-8 µm, 7-22 µm, and
2-4 µm, respectively. Since the erythrocyte volume fraction substantially exceeds
the fraction of any other component, it is common to consider RBCs as the only
suspension within plasma. (BERIS et al., 2021)

According to E. Fatahian, Kordani, and H. Fatahian (2018), blood viscosity
is mainly determined by four factors: plasma viscosity; RBCs aggregation and
deformability; hematocrit (which is the RBC concentration), and corporal tempera-
ture. Among them, the hematocrit and the RBCs aggregation and deformability
are those that contribute the most to blood’s non-Newtonian characteristics of
shear-thinning viscosity and yield stress.

1.2. Atherosclerosis

Atherosclerosis is a vascular pathology that has been a major cause of mortality
in developed countries. The term "atherosclerosis" has a Greek origin, consisting
of two parts: atherosis (accumulation of fat accompanied by several macrophages)
and sclerosis (fibrosis layer comprising smooth muscle cells (SMC), leukocyte,
and connective tissue). (RAFIEIAN-KOPAEI et al., 2014)

It consists of the progressive narrowing and occlusion of blood vessels caused
by hyperlipidemia and lipid oxidation (RAFIEIAN-KOPAEI et al., 2014). Due
to the deposition of small cholesterol/fatty particles in the vessel’s tunica intima
(see Figure 1), a plaque (called atheroma plaque) is formed. Restricting the flow
through the vessels, it can potentially result in a heart attack if the vessel being
blocked supplies blood to the heart. (WAITE; FINE, 2007)

Figure 1 – Blood vessel simplified anatomy. Adapted from Almeida (2021)

Atherosclerosis can also lead to a blood clot formation, that could eventually
result in a stroke. In addition, if a piece of the atheroma plaque breaks away from
the vessel’s wall and flows downstream, it can become lodged in smaller vessels,
also potentially resulting in a stroke. (WAITE; FINE, 2007)
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From a medical perspective, the abnormal narrowing of the cross-sectional area
of a blood vessel or valve is called stenosis. That way, atherosclerosis can be
thought of as the vascular pathology in which the blood vessel stenosis is caused
by the atheroma plaque.

In a fluid dynamics context, constrictions in channels (such as stenosis in blood
vessels) can create recirculation zones, where there is a greater propensity for the
accumulation of fluid suspended particles. From an atherosclerosis perspective,
recirculation zones next to the stenosis could promote greater fatty particles/choles-
terol deposition, feeding back the atherosclerosis process.

1.3. Objectives

The present work will evaluate, from CFD simulations, fluid dynamic parame-
ters of pulsatile blood flow in a vessel with an axisymmetric stenosis, considering
different rheological models to represent blood. Initially, the blood will be modeled
as a Newtonian fluid that follows Einstein’s model, considering the influence of
hematocrit on fluid parameters. Next, the non-Newtonian models of Carreau and
Cross will be used. That way, it will be possible to analyze the velocity fields in the
domain, flow recirculation lengths, and shear stresses for each rheological model.

2. THEORETICAL FOUNDATION

2.1. Non-Newtonian models for blood

At low shear rates, blood acts as a non-Newtonian fluid with shear thinning
behaviour (WAITE; FINE, 2007). Nevertheless, for high shear rates (above 100
s−1), its behavior is close to that of a Newtonian fluid (WAITE; FINE, 2007). In
this section, the rheological models for representing blood used in the work will be
presented in more detail.

2.1.1. Einstein model

The Einstein’s hematocrit-dependent model for blood considers erythrocytes
as blood’s only suspension particles within the plasma, assuming its format as
spheres. It relates the blood viscosity with the blood’s plasma viscosity µP, the
blood’s hematocrit value Ψ, and the corporal temperature T , as represented by
Equation 2.1 (WAITE; FINE, 2007).

µ(ψ) = µP

(
1

1−βψ

)
such that

β = 0,076exp
[

2,49ψ +
1107

T
exp(−1,69ψ)

] (2.1)

The blood’s hematocrit value Ψ varies from 0% (representing no erythrocytes)
to 100% (representing a blood 100% erythrocyte). This value varies from 42 to
45% in healthy males, according to Waite and Fine (2007). A person is considered
anemic if their hematocrit falls below 25%.

However, the change in hematocrit value implies a change in the whole blood’s
specific mass, as investigated by Burstain et al. (1994). This relation can be
approximated as shown in Equation 2.2 and goes in agreement with the literature
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data for normal blood density with physiological values of hematocrit ranging from
38 to 50%.

ρ = 1026+57,8Ψ (2.2)

2.1.2. Carreau model

The Carreau model for representing non-Newtonian fluids is defined according
to the following equation:

µ(γ̇) = µ∞ +(µ0 −µ∞)
[
1+(λ γ̇)2

]n−1
2

(2.3)

where µ∞ is the high shear rate viscosity; µ0, the viscosity at low shear rates; λ is
a time constant that represents the transition range in which the viscosity ceases
to be constant and starts to decrease. At low shear rates, a Carreau fluid behaves
similarly to a Newtonian fluid.

The article of Cho and Kensey (1991) shows a good fit between the blood’s
viscosity experimental data from different authors and the Carreau model equation.
Cho and Kensey (1991) also provide the coefficients for the present model:

λ = 3,313 s
n = 0,3568
µ0 = 0,056 Pa · s
µ∞ = 0,00345 Pa · s

2.1.3. Cross model

The Cross model is often applied in simulations for modeling the blood flow in
large arteries since it generates a shorter range of viscosities in low and high shear
rate regions (KARIMI et al., 2014). It follows Equation 2.4.

µ(γ̇) = µ∞ +
µ0 −µ∞

1+(λ γ̇)m (2.4)

where m is the power-law index. In the context of blood modeling, Cho and Kensey
(1991) provides the coefficients for the present model:

λ = 1,007 s
m = 1,028
µ0 = 0,056 Pa · s
µ∞ = 0,00345 Pa · s

2.2. Channel Entrance Length

For internal flows in ducts/tubes, the entrance length is defined as the distance
measured from its inlet to the point where the flow is said to be fully devel-
oped (FOX; MCDONALD, A.; PRITCHARD, 2018). Fox, A.T. McDonald, and
Pritchard (2018) present an empirical relation for estimating the entrance length on
laminar flows in ducts/tubes:

Ld

D
≈ 0,06Re (2.5)
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Ray, Ünsal, and Durst (2012) studied the development length in pipes with
laminar sinusoidally pulsating flows. The relation obtained by the authors to
estimate the maximum development length is shown in Equation 2.6.

(
Ld

D

)
max

=
[
(0,619)1,6 +(0,0567ReM)1,6

]1/1,6
[

1+CL +
ṁ∗

A −CL

1+( F
3,25)

3

]
(2.6)

where D represents the pipe diameter, ReM represents the flow’s average Reynolds
number (Equation 2.7) and ṁ∗

A is the dimensionless amplitude of the mass flow
rate pulsation, defined in Equation 2.9. In their work, it is shown that ṁ∗

A equals u̇∗A
- the dimensionless amplitude of velocity pulsation (Equation 2.8).

ReM =
ρuMD

µ
(2.7)

u̇∗A =
uA

uM
(2.8)

ṁ∗
A =

ṁA

ṁM
(2.9)

In addition, CL is a function of ṁ∗
A (Equation 2.11) and F is the dimensionless

pulsation frequency, defined from pulsation frequency f (Equation 2.10).

F =
R2 f
ν

(2.10)

CL = 0,1671(ṁ∗
A)

1,1881 (2.11)

2.3. Womersley Number

The Womersley number α is a dimensionless parameter that indicates the
distance to the laminar velocity profile in a long vessel coincides with the Poiseuille
flow profile when the fluid is subjected to a sinusoidal pressure gradient (CARO
et al., 2011). It is defined as:

α = R
(

ωρ

µ

)1/2

= R
(

ω

ν

)1/2
(2.12)

where R is an appropriate characteristic length (generally the vessel radius) and ω

is the oscillatory frequency of the flow in rad/s.
The Womersley number may also be considered an "unsteady Reynolds number"

for the flow since it indicates the proportion of inertial and viscous forces in motion
determination within the time scale of one period of oscillation (CARO et al.,
2011).

When α is small (less than unity), the flow is ‘quasi-steady’ and its velocity
magnitude is determined by the instantaneous pressure gradient, with the profile
being parabolic at all times. In that scenario, viscous forces are dominant, and
inertial forces could be neglected (CARO et al., 2011).

For large values of α , the fluid volume set in motion by the wave passage is
big when compared to the volume of fluid that is delayed due to the wall’s no-slip
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condition (the boundary layer is thin). Thus, viscous forces could be neglected and
inertial forces are dominant (CARO et al., 2011).

Caro et al. (2011) also pointed out that α2 is the ratio between the time neces-
sary for the viscous forces to diffuse across the whole tube width (d2/4ν) and a
characteristic time of the oscillation period (1/ω).

transient inertial force
viscous force

=
ρωU

µUL−2 =
ρωL2

µ
=

ωL2

ν
= α

2

3. METHODOLOGY

In this chapter, it will be presented the work methodology in detail.

3.1. Geometry

For the present work, it will be considered a constant diameter of 1 cm for both
expiratory and inspiratory phases, i.e., it will be considered rigid vessel walls with
a diameter of 1 cm. The constriction severity (d/D) will be considered as being
0,5 (see Figure 2).

Figure 2 – Constricted channel geometry. Adapted from Almeida (2021)

The length of L1 will be estimated given that the flow can be considered fully
developed (considering the peak Reynold number) before reaching the constriction.
From Equation 2.6, it is obtained an entrance length of 22,30 cm. However, by
using Equation 2.5, the entrance length estimative 39,89 cm. As the entrance length
calculated by Equation 2.5 is greater than the one from Ray, Ünsal, and Durst
(2012) relation, the first one is going to be used as a reference. It will be considered
L1 = 42,5 cm. That way, the constriction center is located at x = 45 cm.

The constriction to outlet length L2 has to be extensive enough so that all
recirculation zones and flow perturbations are observed. From a study of the effects
of blood’s non-Newtonian behavior on the laminar-turbulent transition over a BFS
geometry, Kelly et al. (2020) obtained a maximum primary recirculation zone in
Re ∼= 1200 where x1/S ∼= 13,1, representing S the step size and x1 the recirculation
length. Although the study was performed considering a turbulent non-pulsatile
flow, this relation for the maximum primary recirculation zone will be used as a
reference for this work.

Assuming S as being d/2 in the constricted vessel geometry, the maximum
primary recirculation zone x1 equals 3,275 cm. Considering that the flow could
have other recirculation zones, and to ensure that all flow perturbations will be
observed, it will be considered L2 = L1.
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3.2. Rheology models

3.2.1. Einstein Model

As mentioned in the Theoretical Foundation, Einstein’s model is a function
of the hematocrit value Ψ, corporal temperature T , and plasma viscosity µP.
According to Késmárky et al. (2008), plasma viscosity value ranges from 1,1 to
1,3 mPa · s at 37ºC, regardless of age and gender. It will be considered µP as 1,2
mPa · s and T as 37ºC (310 K).

According to Equation 2.2, each value of hematocrit that will be used while
using Einstein’s model will have a corresponding value of ρ . For this work, it
will be used Ψ values of 35%, 40%, 45%, and 50%. Table 1 shows the values of
specific mass and viscosity for all chosen Ψ.

Table 1 – Values used in Einstein’s model for ρ , β and µ as functions of Ψ

Ψ(%) ρ(kg/m3) β µ(Pa · s)
35 1046,23 1,311 2,217e-3
40 1049,12 1,265 2,429e-3
45 1052,01 1,236 2,706e-3
50 1054,90 1,223 3,091e-3

3.2.2. Cross and Carreau models

For Cross and Carreau models, it will be used the respective coefficients pro-
vided by Cho and Kensey (1991), presented in the Theorical Foundation.

3.3. Boundary and Initial Conditions

The geometry is divided into three boundaries: inlet, walls, and outlet (as shown
in Figure 3). The blood pulsation was represented by a senoidal x-component
velocity inlet (Eq 3.1), where Ua is the function’s amplitude and UM its mean value.
The function’s phase lag θ is assumed a value of zero.

For the present work, Inferior Vena Cava (IVC) data from the literature were
used to define the boundary conditions. By performing an MRI on 11 subjects,
Joseph, Voit, and Frahm (2020) measured a mean velocity of 7,7(±3,1) cm/s in
the infrarenal IVC. That way, it will be considered UM as 7,7 cm/s. Furthermore,
Ua will be considered equals to UM. That way, Equation 3.1 varies from 0 to 2UM.

u(t) =Ua sin(2π f t +θ)+UM (3.1)
The pulsation frequency f was set to 1,2 Hz to represent a heartbeat rate of

72 bpm. That way, the pulsation period κ is shown in Equation 3.2. Table 2
summarises the boundary and initial conditions for the case setup. In that table, n
represents the positive direction normal to the patch.

κ = 0,833333 s (3.2)
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Figure 3 – Geometry boundaries (out of scale)

Table 2 – Boundary and Initial Conditions

Boundaries
Boundary Conditions Initial Conditions (t = 0)

u p u p
inlet u(t) = 0,077[sin(2,4πt)+1] δ p/δn = 0 u =UM δ p/δn = 0
walls u = 0 δ p/δn = 0 u = 0 δ p/δn = 0
outlet δu/δn = 0 pgauge = 0 δu/δn = 0 pgauge = 0

3.4. Dynamic characterization of the problem

Just like the velocity values at the input, the Reynolds number will oscillate
throughout a pulsation. The average and peak Reynolds number throughout the
cycle will be represented by ReM and Rep, respectively.

Using a blood viscosity calculated from the Einstein model for a Ψ of 40%,
the Rep was estimated, shown in Eq. 3.3. However, when dealing with oscillatory
flows, the calculated Reynolds number needs to be multiplied by a correction factor
which is function of the Womersley number α (see Hale, D. A. McDonald, and
Womersley (1955)) to obtain an effective Reynolds number Ree f f (Eq. 3.4).

Rep =
ρ(Ua +Um)D

µ
= 664 (3.3)

Ree f f = f (α) ·Re (3.4)
Figure 4 shows a graph of the correction factor as a function of α . Note that,

for α < 2, the pulsation effect on the flow Reynolds is not significant. For our case,
it was obtained a Womersley number of 9 (Equation 3.5). It is worth emphasizing
that the literature considers that a typical value of α for a man’s aorta is around 20.
Even though the Vena Cava is not an aorta, the simplifications assumed to solve
the problem must be also taken into account, such as:

• Constant lumen diameter during the cycle (no inspiration or expiration
phases);

• Blood pulsatile flow is modeled as a sine wave and it is not a perfect repre-
sentation of systole and diastole;

• Blood viscosity is assumed to be independent of the vessel diameter, descon-
sidering the aggregation of blood red cells.
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α =
D
2

√
ω

ν
= 9 (3.5)

According to Fig 4, the correction factor is around 2,5, which leads to a peak
Ree f f shown in Equation 3.6. Being an internal flow in a vessel and considering the
fact that Ree f f ,p is less than 2300, it can be assumed a laminar flow in the sections
without constriction.

Ree f f ,p = f (α) ·Rep = 1162 (3.6)

Figure 4 – Womersley number effect in the velocity ratio for oscillating flows. In that ratio, w̄0
represents the equivalent average velocity which will result in the same maximum
viscous drag as the oscillating flow. The w̄1 represents the maximum forward velocity
of that oscillating flow. (HALE; MCDONALD, D. A.; WOMERSLEY, 1955)

3.5. Numerical Methodology

The numerical simulations were realized in HELYX®, from Engys company.
HELYX® is an open-source CFD software written in C++ programming language.
Since its solvers were based on the OpenFOAM ones, it can represent several
phenomena linked to fluid mechanics, thermodynamics, turbulence, rheological
models, and heat transfer, among others. Even though the software does not have a
student license at the present moment, the company has authorized the author to
use it for this work.

The solver used for the simulations is authored and owned by Engys. For data
post-processing, the open-source tool ParaView was used, in addition to HELYX®.
The simulations were conducted in an HPC environment, using from 48 to 72
processors, depending on the simulation.

3.5.1. Inlet boundary

The software does not allow, at the present moment, the user to enter an ana-
lytical function as a condition of a field in the domain boundaries. However, it is



9

possible to enter values for a field on a boundary throughout all iterations/time
steps. The values inputted by the user are then linearly interpolated over the itera-
tions/time steps.

Thus, to represent the velocity field function at the domain input (Equation
3.1), a Python 3.9 script was written to generate a CSV file that would be read and
interpreted by HELYX®. For each time step to be simulated, the script calculates
the corresponding value for u and writes a line in the CSV file with this data. The
code is presented in Appendix A.

3.5.2. Runtime Controls

In transient cases, it is necessary to verify the CFL (Courant-Friedrichs-Lewy)
condition to guarantee the numerical stability of the solution (see Equation 3.7).
Generally, an approximation is made using the Courant number where the flow
velocity is used as a reference. The maximum allowed Courant number Cmax de-
pends on the temporal integration scheme, associated with the spatial discretization
schemes. However, Cmax is normally used as being equal to 1.

C =
uL∆t
∆x

≤Cmax (3.7)

By default, HELYX uses the fully implicit temporal discretization method,
which is inherently stable, allowing the utilization of larger simulation time steps
when compared to the implicit (semi-implicit) and explicit methods. For the
simulations performed in this study, it was used a time step of 0,001 second.

The simulation’s end time was set in 16,666 seconds, which corresponds to the
time of 20 wave periods (Eq. 3.1). The results were written in the simulations
folder every 0,831 seconds (approximately one-third of the period).

3.6. Mesh Convergence

For the quantification of numerical uncertainty related to the mesh refinement,
it was used the Grid Convergence Index (GCI), proposed by P. J. Roache (see
Roache (1997)). This methodology is based on the comparison of the result of
flow variables, obtained from grids with different spacing, and the realization of
generalized Richardson extrapolations.

It was compared three flow variables of the problem: maximum velocity magni-
tude, recirculation length, and the pressure difference between two probes located
at ±5 cm of the constriction center. An application integrating Python and Bash
(programming languages) was made by the author to perform this grid convergence
analysis, given a set of base mesh sizes and compared parameters.

The Tables 3 and 4 show the simulation data for each mesh compared and the
grid convergence indexes, respectively. In the first table, M1 represents the most
refined mesh, while M3 represents the most coarse and M2 the intermediate one.
For the second table, fR-ij represents the Richardson extrapolation value obtained
from comparing M j and Mi meshes. The same logic applies to GCIij indexes.

4. RESULTS

In this section, the results obtained from the simulations will be presented.
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Table 3 – Grid convergence analysis data for d/D = 0,5 geometry

Meshes
Variables M1 M2 M3

Number of Cells 2.834.786 574.808 163.832
Umax (cm/s) 36,551 37,360 39,406
∆pprobes (Pa) -47,232 -50,301 -62,448

Recirculation Lenght (mm) 57,270 59,960 71,030

Table 4 – GCI indexes and fields Richardson’s extrapolations values for d/D = 0,5 geometry

Variables Umax ∆pprobes Recirculation Lenght
fR-32 36,2660922 cm/s −46,676840 Pa 56,8093477 mm
fR-21 36,2660924 cm/s −46,676842 Pa 56,8093479 mm
GCI32 (%) 3,66 9,00 6,57
GCI21 (%) 0,97 1,47 1,00

4.1. Wall Shear Stresses in x direction

From the wall shear stress data in walls patch, it was possible to extract the cross-
section perimeter averaged WSS in x direction, represented by WSSx,cs. Figures
presenting the WSSx,cs distribution around the constriction (from x = 0,42 m to
x = 0,56 m) for each of the rheological models at pre-determined simulation times
can be found in Appendix B. However, Figure 5 shows WSSx,cs at t/κ = 19,94
from x = 0,425 m to x = 0,475 m, i.e., the constriction length.

Figure 5 – WSSx,cs in the constriction length at t/κ = 19,94

To analyze the convergence of WSSx,cs distributions throughout the pulsations,
the ∆WSSx,cs variable was introduced (Equation 4.1). It represents the absolute
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difference between the WSSx,cs distribution of a given time and the distribution of
the previous period, averaged across the domain’s length.

∆WSSx,cs(t) =
1

0,9 m

0,9 m

∑
xi=0 m

abs(WSSx,cs(xi)|t −WSSx,cs(xi)|t−κ) (4.1)

Figure 6 shows the variation of ∆WSSx,cs through simulation time. It is seen that,
even after 20 pulses, the shear stress distributions for Einstein’s models considering
Ψ from 30 to 45% still fluctuate. However, for the Cross and Carreau models, the
distributions throughout the pulsation periods appear to vary in a more regular
way. In addition, the Einstein model considering Ψ as 50% behaviors similar to
the non-Newtonian models.

Figure 6 – ∆WSSx,cs throughout pulsations

It should be highlighted that there are at least two additional sources of numeri-
cal error in the above data. The first of these is associated with the precision of the
time step. Even though the simulation time step is relatively small, the period is a
periodic decimal. This way, the times recorded by the simulation cannot coincide
with the period (which is why, for example, t/κ is shown equal to 1,99 and not
2,00). The second additional source of error occurs in the use of such shear stress
data: the data was extracted from the nodes of the cell volume, and not from its
center.

4.2. Velocities in x direction

To evaluate the velocity field downstream of the constriction, three surfaces
were created (Figure 7) in the simulations at 2 cm (surface 01), 4 cm (surface
02), and 6 cm (surface 03) from the constriction. Figure 8 shows the velocity
distributions in the x direction on the surfaces, for each of the rheological models,
in t = 16,066 s. The highest and lowest speeds were observed on surface 01, for
the Einstein model with Ψ = 40%, with values of 0,6787 m/s and -0,1451 m/s,
respectively.

Note that the u distributions were very similar between the Einstein with Ψ =
50%, Cross, and Carreau models on all surfaces. Furthermore, when analyzing
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Figure 7 – Surfaces where the velocity field was analyzed

Figure 8 – Velocity in x-direction distributions in defined surfaces, for each rheological model at
t = 16,066 s

surface 02 for the simulations in which Einstein’s models were used, it is evident
that the increase in hematocrit made the flow’s viscous effects more notable.

4.3. Cycle-Averaged Maximum Recirculation Lenghts

Using the function object fieldAverage in HELYX, it was possible to obtain a
field of pulsation-averaged values of WSSx,cs , named WSSx,cs. This new field,
which represents the shear stress in x direction averaged in the cross-section and in
a pulsation period, is defined in Equation 4.2 and illustrated in Figure 9.

WSSx,cs =
1
κ

∫ t

t−κ

WSSx,cs dt (4.2)

From this field, it was possible to obtain the maximum recirculation lengths
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Figure 9 – Graphical example of pulsation-averaged WSSx,cs

averaged in [t −κ, t]. The recirculation length in the x direction corresponds to the
extension of the domain in which the WSSx is negative. Figure 10 shows those
cycle-averaged maximum recirculation lengths for each of the rheological models.

Figure 10 – Cycle-averaged maximum recirculation lengths for each one of the rheological
models

From Figure 10, it can be seen that the Einstein model with Ψ of 50% has the
most similar values for recirculation length to the non-Newtonian models, among
all variations of Einstein models simulated. Furthermore, the recirculation lengths
increased when raising Ψ values.
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5. CONCLUSION

By conducting a numerical study on the fluid dynamic response of the pulsatile
flow in a vein with axisymmetric stenosis, the velocity, and shear stress fields were
analyzed as well as the flow recirculation lengths. Blood, often modeled as both
Newtonian and non-Newtonian (depending on the specific physical context) was
assessed using three distinct rheological models: Einstein, Cross, and Carreau. For
the Einstein model - dependent on the hematocrit value Ψ - it was used Ψ values
35%, 40%, 45%, and 50%.

In terms of shear stress distributions, the non-Newtonian models exhibited
similar profiles, displaying consistent variations throughout the pulsation periods,
akin to the Einstein model with Ψ = 50%. In contrast, for Einstein models with
Ψ set at 35%, 40%, and 45%, the variations in shear stress distribution fluctuated
over the periods.

Being a three-dimensional flow, particularly in the region immediately down-
stream of the stenosis, we assessed the distribution of u values on pre-defined
surfaces. On the surface nearest to the constriction (Surface 01), the u distribu-
tion exhibited similarities across all rheological models. The highest and lowest
u values were observed on this surface, for the Einstein model with Ψ = 40%.
Flow’s viscous effects became more notable on surface 02 when Ψ increased. Once
more, Einstein’s model with Ψ = 50% produced the results more similar to those
of the non-Newtonian models, among all values of Ψ. Finally, the distributions
on Surface 03 showed no significant differences between the various rheological
models.

Using the values of the shear stress fields averaged over a pulsation and the cross-
section perimeter, it was able to present the cycle-averaged maximum recirculation
lengths over x. The Cross model yielded the highest recirculation values, while
Einstein’s with Ψ = 35% exhibited the smallest. Among the simulated Einstein’s
models, the increase of Ψ yielded the higher recirculation length values and once
again the simulation with Ψ of 50% obtained a response more similar to the models
of Carreau and Cross.

Upon analyzing the obtained results, a substantial disparity in the hydrodynamic
response was evident, as anticipated, when manipulating the hematocrit value.
The fact that Einstein’s model considering the greater value of Ψ (Ψ = 50%)
demonstrated the closest resemblance to non-Newtonian models was expected
since the hematocrit is one of the main contributors to some non-Newtonian
characteristics, as mentioned in Section 1.1.

Among the non-Newtonian models, a small (but significant) difference was
noted in the shear stress distributions and recirculation lengths. Although such
differences are expected, it is crucial to consider the potential influence of multiple
sources of numerical error, as well as the spatial and temporal dependency of the
flow.

5.1. Suggestions for future works

For future investigations, it is recommended further exploration studies of this
simulated scenario. Regarding blood rheology, additional rheological models, such
as Herschel-Bulkley, should be considered. Additionally, examining the change in
the ratio between the vessel diameter and the constriction diameter (the stenosis
severity) would be valuable.

Given the blood composition, modeling blood as multiphase fluid may provide
more trustworthy results. Furthermore, a multiphase representation opens avenues
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for analyzing the deposition rate of cholesterol particles within the vessel walls,
offering a more advanced perspective for future research.



16

REFERENCES

ALMEIDA, G. P. V. de. Implementation of Hematocrit-Dependent Viscosity Model for Blood
Flow Predictions using CFD. 2021. PhD thesis – Instituto Tecnológico de Aeronáutica
(ITA).

BERIS, A. N. et al. Recent advances in blood rheology: A review. [S.l.: s.n.], 2021.

BURSTAIN, J. M. et al. Blood Volume Determination as a Function of Hematocrit and Mass in
Three Preservative Solutions and Saline. American Journal of Clinical Pathology, v. 102,
n. 6, p. 812–815, Dec. 1994. ISSN 0002-9173. DOI: 10.1093/ajcp/102.6.812.

CARO, C. G. et al. The Mechanics of the Circulation. 2. ed. [S.l.]: Cambridge University Press,
2011.

CHO, Y.; KENSEY, K. Effects of the non-Newtonian viscosity of blood on flows in a diseased
arterial vessel. Part 1: Steady flows. Biorheology, v. 28, p. 241–62, Feb. 1991. DOI: 10.
3233/BIR-1991-283-415.

FATAHIAN, E.; KORDANI, N.; FATAHIAN, H. A Review On Rheology of Non-Newtonian
Properties Of Blood. IIUM Engineering Journal, v. 19, n. 1, p. 237–250, Mar. 2018. DOI:
10.31436/iiumej.v19i1.826.

FOX, R.; MCDONALD, A.; PRITCHARD, P. Introdução à Mecânica dos Fluidos. [S.l.]: LTC,
2018. ISBN 9788521634812.

HALE, J. F.; MCDONALD, D. A.; WOMERSLEY, J. R. Velocity profiles of oscillating arterial
flow, with some calculations of viscous drag and the Reynolds number. The Journal of
Physiology, v. 128, n. 3, p. 629–640, 1955. DOI: 10.1113/jphysiol.1955.sp005330.

JOSEPH, A. A.; VOIT, D.; FRAHM, J. Inferior vena cava revisited – Real-time flow MRI of
respiratory maneuvers. NMR in Biomedicine, v. 33, n. 4, 2020. DOI: 10.1002/nbm.4232.

KARIMI, S. et al. Effect of rheological models on the hemodynamics within human aorta: CFD
study on CT image-based geometry. Journal of Non-Newtonian Fluid Mechanics, v. 207,
p. 42–52, 2014. ISSN 0377-0257. DOI: 10.1016/j.jnnfm.2014.03.007.

KELLY, N. S. et al. Influence of Shear-Thinning Blood Rheology on the Laminar-Turbulent
Transition over a Backward Facing Step. Fluids, v. 5, n. 2, 2020. ISSN 2311-5521. DOI:
10.3390/fluids5020057.

KÉSMÁRKY, G. et al. Plasma viscosity: A forgotten variable. Clinical hemorheology and
microcirculation, v. 39, p. 243–6, Feb. 2008. DOI: 10.3233/CH-2008-1088.

RAFIEIAN-KOPAEI, M. et al. Atherosclerosis: Process, Indicators, Risk Factors and New
Hopes. Int J Prev Med. 2014 Aug;5(8):927-46., 2014.

RAY, S.; ÜNSAL, B.; DURST, F. Development length of sinusoidally pulsating laminar pipe
flows in moderate and high Reynolds number regimes. International Journal of Heat and
Fluid Flow, v. 37, p. 167–176, 2012. ISSN 0142-727X. DOI: 10.1016/j.ijheatfluidfl
ow.2012.06.001.

ROACHE, P. J. Quantification Of Uncertainty In Computational Fluid Dynamics. Annual
Review of Fluid Mechanics, v. 29, n. 1, p. 123–160, 1997. DOI: 10.1146/annurev.fluid.
29.1.123.

WAITE, L.; FINE, J. Applied Biofluid Mechanics. [S.l.]: The McGraw-Hill Companies, 2007.
DOI: 10.1036/0071472177.

https://doi.org/10.1093/ajcp/102.6.812
https://doi.org/10.3233/BIR-1991-283-415
https://doi.org/10.3233/BIR-1991-283-415
https://doi.org/10.31436/iiumej.v19i1.826
https://doi.org/10.1113/jphysiol.1955.sp005330
https://doi.org/10.1002/nbm.4232
https://doi.org/10.1016/j.jnnfm.2014.03.007
https://doi.org/10.3390/fluids5020057
https://doi.org/10.3233/CH-2008-1088
https://doi.org/10.1016/j.ijheatfluidflow.2012.06.001
https://doi.org/10.1016/j.ijheatfluidflow.2012.06.001
https://doi.org/10.1146/annurev.fluid.29.1.123
https://doi.org/10.1146/annurev.fluid.29.1.123
https://doi.org/10.1036/0071472177


APPENDIX A. Inlet data generator script 17

APPENDIX

A. INLET DATA GENERATOR SCRIPT

1 # -------------------------------------------------------------------- #
2 # Inlet .csv file generator #
3 # -------------------------------------------------------------------- #
4
5 # --------------------------------- 0 Imports ------------------------ #
6
7 from math import sin , pi, ceil
8 from typing import Union
9

10 Number = Union[int , float]
11 # -------------------------------- 1 Functions ----------------------- #
12
13 def inletEquation(time: float , avgValue: Number , ampValue: Number , freq:

Number , phaseLag: Number) -> Number:
14 """ Returns the flow velocity on the inlet , given a certain time
15
16 Args:
17 time (float): time value
18 avgValue (Number): average value of senoidal wave
19 ampValue (Number): amplitude value of senoidal wave
20 freq (Number): frequency value
21 phaseLag (Number): phase lag value
22
23 Returns:
24 Number: flow velocity on inlet
25 """
26 return avgValue + ampValue*sin(2*pi*freq*time + phaseLag)
27
28
29 # ----------------------------- 2 Inputs ----------------------------- #
30 # 2.1 File name
31 csvFileName: str = ’inlet.csv’
32
33 # 2.2 Velocity parameters
34 u_avg: Number = 7.7e-02 # Average inlet speed , in cm s
35 u_amp: Number = 7.7e-02 # Inlet speed magnitude , in cm s
36 theta: Number = 0 # Phase lag
37
38 # 2.3 Cardiac frequency
39 freq_bpm: int = 72 # in bpm
40 freq_Hz: Number = freq_bpm /60 # in Hz
41 period: Number = 1/ freq_Hz # Cardiac period , in s
42
43 # 2.4 Time parameters
44 deltaTime: Number = 1E-3 # Time Step , in s
45 finalTime: Number = 20* period # Final Time , in s
46 NumberTimeSteps: int = int(finalTime/deltaTime)+1 # Number of time

steps
47
48 # ------------------------ 3 Array Generation ------------------------ #
49 # 3.1 Time array
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50 print(’Creating time array ...’)
51 timeVector: list = [deltaTime * counter for counter in range(

NumberTimeSteps)]
52
53 # 3.2 Velocity array
54 print(’Creating velocity array ...’)
55 velocityVector = [inletEquation(
56 t, u_avg , u_amp , freq_Hz , theta) for t in timeVector]
57
58
59 # -------------------------- 4 File creation ------------------------- #
60 print(’Creating file ...’)
61 with open(csvFileName , ’w’) as arquivo:
62 for i in range(len(timeVector)):
63 texto: str = str(timeVector[i]) + ’,’ + str(velocityVector[i]) +

’\n’
64 arquivo.write(texto)

B. WSSx,cs FOR EACH RHEOLOGICAL MODEL

Figure 11 – WSSx,cs distribution for Einstein model considering ψ = 35%
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Figure 12 – WSSx,cs distribution for Einstein model considering ψ = 40%

Figure 13 – WSSx,cs distribution for Einstein model considering ψ = 45%
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Figure 14 – WSSx,cs distribution for Einstein model considering ψ = 50%

Figure 15 – WSSx,cs distribution for Cross model
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Figure 16 – WSSx,cs distribution for Carreau model
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