
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

BRUNO ENDRES FORLIN

Improving the Efficiency of
Multi-Threaded Processing

In-Memory

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Advisor: Prof. Dr. Luigi Carro
Coadvisor: Prof. Dr. Paulo Cesar Santos

Porto Alegre
March 2022

CIP — CATALOGING-IN-PUBLICATION

Forlin, Bruno Endres
Improving the Efficiency of Multi-Threaded Process-

ing In-Memory / Bruno Endres Forlin. – Porto Alegre:
PPGC da UFRGS, 2022.

100 f.: il.
Thesis (Master) – Universidade Federal do Rio Grande do

Sul. Programa de Pós-Graduação em Computação, Porto Ale-
gre, BR–RS, 2022. Advisor: Luigi Carro; Coadvisor: Paulo
Cesar Santos.

1. Processing in-memory. 2. Memory energy. 3. Multi-
thread. 4. Simulation. 5. Thread-communication. I. Carro,
Luigi. II. Santos, Paulo Cesar. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Aos meus pais e à Luíza.
Que voemos juntos.”

AGRADECIMENTOS

Realizar um mestrado inteiro à distância, em tempos de pandemia exigiu
muito mais da minha psique do que eu poderia imaginar. Felizmente eu não tive que
carregar esse peso sozinho. Várias pessoas me ajudaram nessa jornada de dois anos.

Ao meu orientador Prof. Luigi Carro, que além de conseguir melhorar uma
linha de pesquisa inteira com um simples e-mail, segue sendo um exemplo de bom
senso, carinho com o aluno e com as pessoas que estão por trás dos números. Agradeço
profundamente toda a ajuda que recebi, tenho o maior respeito pelo professor que és.

Ao meu co-orientador Dr. Paulo Cesar Santos, à parte do conhecimento que di-
vidiu comigo nos últimos anos, agradeço pela atenção diária nesse período turbulento.
Agradeço pela amizade, conversas e discussões, sei que sou um pesquisador melhor
graças ao nosso convívio. Sem o suporte e apoio constante dos meus orientadores, eu
(muito facilmente) poderia ter me perdido no trajeto. Serei eternamente grato.

Também gostaria de agradecer aos colegas do grupo, pelas dicas e suporte
durante esses dois anos, que possamos nos rever pessoalmente algum dia. Para
completar, não posso deixar de fora minha família, sempre pronta pra me acolher
e discutir o futuro. E em especial gostaria de agradecer à Luíza, companheira de
quarentena e de vida, vamos chegar mais longe juntos.

ABSTRACT

Processing-in-Memory (PIM), with the help of modern memory integration tech-
nologies, has emerged as a practical approach to mitigate the memory wall and
improve performance and energy efficiency in contemporary applications. Novel
memory technologies and the advent of 3D-stacked integration have provided means
to compute data in memory, either by exploring the inherent analog capabilities or
by tight-coupling logic and memory. PIM devices aim to explore the entire memory
bandwidth, leveraging the application’s data parallelism in different ways. With
general-purpose programming models and hardware devices that can be accessed inde-
pendently, it is only natural that programmers try to exploit thread-level parallelism
in the applications.
Shared data structures inevitably appear with general-purpose threads and must be
handled correctly to maintain memory consistency. Whether this maintenance is
done by software or hardware, data must still travel between different memory regions.
Current commercial PIM devices ignore data transfer in their designs and leave this
task to the host processor, sending data through the memory bus to the host caches,
where it will be rearranged and sent back to memory. We argue that this process goes
against the principles of PIM design by increasing data movement between PIM and
host. We demonstrate this inefficiency analytically and, with experiments, develop a
power model that can extract an upper and lower bound for communication energy
in the host. Depending on the host processor used, relaying data through the caches
can cost 3 × more energy than the DRAM access, highlighting the heavy energy
costs involved in using the host for communication.
To correctly execute these experiments, we need to run benchmarks tightly integrated
with the host processor while extracting its metrics. There is a lack of tools capable of
quickly simulating different PIM designs and their suitable integration with multiple
multi-core host processors. Thus, this dissertation presents Sim2PIM, a Simulation
Framework for PIM devices that seamlessly integrates any PIM architecture with
a multi-core host processor and the memory hierarchy. By analyzing data-sharing
corner cases, this work shows that this communication, if executed through the host,
can hinder the benefits of PIM devices. We use the simulator to demonstrate that
if the PIM device relies on the host for data-sharing, communication between PIM

units scales faster with the data size compared to computation. In some cases, it
can cost 86% of the total execution time.
We propose a PIM-side communication solution that can reduce the performance and
energy costs of data-sharing by maintaining data in the memory module. Inter-PIM
can access PIM units and their memory spaces independently, decoupling them from
the standard DDR memory access pattern while operating without host oversight. We
can achieve performance and energy gains on data transfers between PIM units with
a low area and power overheads. The Inter-PIM solution reduces the performance
costs of inter-thread data movement by around 20% when data is aligned in memory
and more than 4× when data is not aligned. Inter-PIM completely avoids using the
host hardware to communicate, significantly improving data-sharing energy efficiency
by more than 9×.
Keywords: Processing in-memory. memory energy. multi-thread. simulation.
thread-communication.

Melhorando a Eficiência de Processamento em Memória em Múltiplas

Threads

RESUMO

Processamento em memória (PIM), com a ajuda de modernas tecnologias de integra-
ção, emergiu como uma solução prática para o memory wall enquanto melhora a
performance e efciciência energética de aplicações contemporâneas. Novas tecnologias
de memória juntamente com o surgimento de técnicas de integração 3D proveram os
meios para computar dados na memória. Seja explorando as capacidades analógicas
ou integrando lógica e memória. Dispositivos PIM tem o objetivo de explorar toda
a banda da memória, usando o paralelismo de dados das aplicações de diferentes
formas. Com modelos de programação genéricos, e dispositivos de hardware que
podem ser acessados independentes, é natural que programadores tentem explorar
paralelismo a nível de thread.
Com threads de propósito geral, estruturas de dados compartilhados inevitavelmente
surgem, as quais devem ser lidadas corretamente para garantir consistência na
memória. Independentemente da maneira como essa consistência é mantida, dados
devem ser transmitidos entre diferentes regiões de memória. Os atuais dispositivos
comerciais PIM ignoram esse aspectos em seus designs e deixam a transferencia de
dados à cargo do processador.
Enviando dados através do bus de memória para as caches, onde eles serão rearranja-
dos e enviados de volta para a memória. Nós argumentamos que esse processo vai
contra os princípios de design PIM, aumentando os movimentos de dados entre o PIM
e o processador. Nós demonstramos essa ineficiência analiticamente e experimen-
talmente, desenvolvendo um modelo de consumo de potência que consegue extrair
limites superiores e inferiores para a comunicação via o processador. Dependendo
do processador usado, retransmitir dados através das caches pode custar 3 × mais
energia, salientando os altos custos energéticos em usar o processador para esta
tarefa.
Para rodar corretamente esses experimentos, nós precisamos executar benchmarks
muito integrados com o processador, enquanto extraímos suas métricas. Existe uma
falta de ferramentas capazes de rapidamente simular diferentes designs PIM e suas
integrações com múltiplos processadores multi-core. Logo, essa dissertação apresenta

Sim2PIM um simples simulador para dispositivos PIM que integra qualquer arquite-
tura PIM com um processador multi-core e a hierarquia de memória. Analisando
casos de compartilhamento de dados, esse trabalho mostra que essa comunicação,
se execudada pelo processador, pode minar os benefícios de dispositivos PIM. Nós
usamos esse simulador para demonstrar que se o dispositivo PIM depende do proces-
sador para compartilhamento de dados, o custo de comunicação entre threads escala
mais rápido com o tamanho dos dados do que o custo da computação, em alguns
casos podendo custar 86% do tempo total de execução.
Nós propomos uma solução interna para o PIM que reduz os custos de performance e
energia de compartilhamento de dados, mantendo a comunicação dentro do módulo
de memória. Esse mecanismo pode acessar unidades PIM e seus espaços de memória
independentemente, se desacoplando do padrão de acesso à memória DDR, enquanto
opera sem supervisão do processador. Com baixos custos de área e potência, podemos
atingir ganhos de performance e energia em transferências de dados entre unidades
PIM. A solução Inter-PIM reduz o custo de performance de movimento de dados
entre threads em 20% quando os dados estão alinhados na memória e em mais
de 4× quando não estão. Inter-PIM evita usar o processador para comunicação,
significativamente melhorando a eficiência energética do compartilhamento de dados
em mais de 9×.

Palavras-chave: processamento em memória, energia da memória, multi-thread,
simulação, comunicação de threads.

LIST OF FIGURES

Figure 1.1 Increasingly larger gap between processor and memory performance
along the years... 14

Figure 1.2 Common Types of Processing-in-Memory Devices 15

Figure 2.1 Reconfigurable Vector Unit (RVU) architecture.................................. 21

Figure 3.1 Different modes for threads to share PIM computation 26
Figure 3.2 Different PIM Vector Engines in an 8kB row DRAM device. 27
Figure 3.3 Vector operations required to operate over 1MB of data with different

spatial data localities for a monolithic SIMD unit and multiple smaller
units in parallel.. 27

Figure 3.4 PIM units on DDR DIMM-like module connecting with an unmodi-
fied host ... 31

Figure 4.1 Host loading, rearranging, and then storing data back to memory. 39
Figure 4.2 Amount of bytes read and written in a broadcast operation between

the active threads in two 64-byte transfers.. 40
Figure 4.3 Amount of bytes read and written in a multicast operation between

the active threads in two 64-byte transfers.. 40
Figure 4.4 Placement of the Inter-PIM mechanism in between the data-path

of the DIMM. .. 41
Figure 4.5 Inter-PIM communication mechanism and PIM Unit status............... 42
Figure 4.6 High level depiction of Inter-PIM hardware, with the IM as part of

the package.. 44
Figure 4.7 Inter-PIM interconnect description. .. 45
Figure 4.8 Breakdown of the total memory power consumption by its components.49
Figure 4.9 Size of each type of cache access for different data transfers............... 52

Figure 5.1 Simulators scope when considering system integration. Many more
examples exist in all categories.. 56

Figure 5.2 Overview of Sim2PIM modular components and execution phases. 59
Figure 5.3 Creation of threads before instrumentation (left) and after (right). ... 62
Figure 5.4 Interfaces and overheads of offloading data from the application to

PIM-simulation. The functionality encapsulated by Sim2PIM space is the
executable, while the Application Space is the original application code....... 64

Figure 5.5 Overhead diagram for a multi-thread application on the Sim2PIM
with the Hardware Performance Counters (HPC). .. 67

Figure 5.6 Simulated Cycles and Simulation Time for a 64MB vecsum applica-
tion offloaded by the Xeon CPU to the PIM device using three different
simulation configurations... 72

Figure 5.7 Execution time and accuracy for a vecsum application with eight
threads in different simulators. .. 73

Figure 6.1 Energy and Cycle results for 8 threads of vecsum kernel with a
broadcast access pattern.. 77

Figure 6.2 Energy and Cycle results for 8 threads of vecsum kernel with a
multicast access pattern. ... 78

Figure 6.3 Energy and Cycles for 1MB of non-aligned shared data movement
between threads... 79

Figure 6.4 Shared data movement in the GEMM application.............................. 79
Figure 6.5 Execution cycles and Energy for GEMM kernels 80

Figure B.1 Sim2PIM PIM_interface() call graph. .. 95
Figure B.2 Sim2PIM join_interface() call graph. ... 96
Figure B.3 Sim2PIM create_interface() call graph... 96
Figure B.4 Sim2PIM main() call graph. ... 97

LIST OF TABLES

Table 4.1 Area and power overheads for the 3x3 NoC interconnect @45 nm. 46
Table 4.2 Power consumption for each component, calculated with data from

Micron’s 8GB DDR4-2666 Data Sheet (MICRON, 2017). 48
Table 4.3 Host System used in the data movement test....................................... 51
Table 4.4 Collected metrics from executing data transfer between DRAM chips

with 106 repetitions .. 51
Table 4.5 Energy consumption for data access and movement. Extracted from

(KESTOR et al., 2013)... 53

Table 5.1 Baselines and Case Study PIM Parameters .. 69
Table 5.2 Average overheads for two different Hardware Performance Counterss

(HPCs), unhalted cycles and retired instructions. Measured with 10,000
repetitions in the warm-up phase of two different processors......................... 70

Table 5.3 Simulated Cycles vs. Simulation time for Sim2PIM and perf on the
AMD processor. Values represent a single thread and the average of 4 threads.71

Table 6.1 Baselines and PIM Parameters ... 75
Table 6.2 DRAM, Inter-PIM, and Host energy and power results scaled ac-

cording to the number of threads. .. 76

CONTENTS

1 INTRODUCTION ...14
1.1 Motivation..16
1.2 Research Goals and Contributions ...17
1.3 Dissertation Overview ..18
2 RELATED WORK ..19
3 UNDERSTANDING MULTI-THREADED PIM..............................25
3.1 Why Bother with Multi-Thread? ...25
3.2 PIM Architecture...28
3.3 Integrating With the Host System...29
3.3.1 in-Memory Mapped PIM... 30
3.3.2 Code Offloading... 31
3.3.3 Cache Coherence ... 33
3.3.4 Virtual Memory Support ... 34
3.4 Communicating Between Threads..35
3.4.1 Parallel Programming Model... 35
3.4.2 PIM Hardware Support ... 37
4 IMPROVING PIM COMMUNICATION ...38
4.1 Communication Efficiency ..38
4.2 Inter-PIM Hardware ..41
4.2.1 Functional Requirements ... 42
4.2.2 Interconnection Device .. 43
4.2.3 Hardware Topology ... 44
4.2.4 Overheads.. 45
4.3 Memory Access Power ...47
4.4 Processor and Cache Energy..50
5 BUILDING A SIMULATOR...55
5.1 Sim2PIM Framework..57
5.2 Instrumentation..60
5.3 Interfaces..61
5.4 Backbone..63
5.4.1 Precise measurements .. 63
5.4.2 Environment Setup.. 64
5.4.3 Communication Buffer... 65
5.4.4 PIM-Control Interface ... 66
5.5 Application Thread Management...67
5.6 Thread Synchronization ...68
5.7 PIM-Simulator ...68
5.8 Validating the Simulator ..69
5.8.1 Overhead Evaluation ... 70
5.8.2 Simulation Time Evaluation.. 71
6 EVALUATING COMMUNICATION STRATEGIES74
6.1 Experiment Setup ..74
6.2 Energy Efficiency..75
6.3 Communication Patterns..76
6.4 Experimenting with a Complex Application79
7 CONCLUSIONS ..81
7.1 Future Work...81
REFERENCES ...83

APPENDIX A — HOST TRANSMISSION CODE.............................91
APPENDIX B — SIM2PIM...95
APPENDIX C — RESUMO EXPANDIDO...98
C.1 Contribuições e Objetivos Alcançados...99
C.2 Trabalho Futuro ..99

14

1 INTRODUCTION

In 2022 we see a stark contrast to the reality of 1959 when the Nobel
Prize-winning physicist Richard Feynman addressed the American Physical So-
ciety: "There’s Plenty of Room at the Bottom." The last 50 years saw unprecedented
development due to the advances in computer performance predicted in 1975 by
Moore’s Law (Moore, 2006; SCHALLER, 1997). However, decades of miniaturiza-
tion took the transistor to its physical limits, and even though we still see strides
in technology, they are presenting diminishing gains (LEISERSON et al., 2020).
Performance improvements also began to shift purely from frequency increases and
transistor counts due to the breakdown of Dennard Scaling (DENNARD et al., 1974).
The industry responded to these phenomena with increasingly complex processing
cores and the popularization of multi-core systems.

However, the Dark Silicon effect (TAYLOR, 2012) prohibits the entire chip
from operating at total capacity at the same time. Furthermore, vector units in these
complex processing cores, coupled with the increased number of cores, increased the
pressure on the memory system significantly. This pressure aggravated the memory-
wall (MCKEE et al., 1994; HENNESSY; PATTERSON, 2011) problem, generated
from decades of processor performance gains overtaking memory performance, as
shown in Figure 1.1. Cache memories in the processor are inefficient for modern
applications that handle vast amounts of data in a streaming fashion (SANTOS
et al., 2016; SHAHAB et al., 2018; SANTOS et al., 2017; NAI et al., 2017; GAO;

Figure 1.1 – Increasingly larger gap between processor and memory performance along the
years.

Year

P
er
fo
rm
an
ce

10

1000

100000

10000000

1000000000

1980 1985 1990 1995 2000 2005 2010 2015 2020

Processor Memory

Adapted from: (HENNESSY; PATTERSON, 2011).

15

Figure 1.2 – Common Types of Processing-in-Memory Devices

.

Complex
CPU

Cache
Hierarchy

. . .

Host Processor

FUs

Register
File

Specialized
CPU

Cache
Hierarchy

Analog Cell

Memory
Layers

Logic Layer

TZIANTZIOULIS; WENTZLAFF, 2019a). As the widespread adoption of Graphics
Processing Units (GPUs) in the last decade has shown, significant gains in perfor-
mance require new architectures, computing modes, and software that fit critical
applications’ requirements.

Advances in memory technology, chip stacking, and manufacturing processes
have allowed the resurgence of Processing-in-Memory (PIM) as a viable candidate
for accelerating memory-intensive applications. There have been several solutions
presented in the literature for the memory-wall problem. Despite the similar objective,
PIM, Near-Data Accelerator (NDA), and Computing-In-Memory (CIM) devices
possess fundamentally different architecture approaches (LOH et al., 2013; NGUYEN
et al., 2020). The solutions proposed in (Liu et al., 2018; BOROUMAND; GHOSE,
2018; DRUMOND et al., 2017; AHN et al., 2015a; DEVAUX, 2019; ZHANG et al.,
2014a) added complete general-purpose processors to the logic layer. In traditional
General-Purpose Processor (GPP), although the performance is commonly measured
from the processing logic’s point of view, the Last-Level Cache (LLC) is the default
data entry point, making it the main bottleneck in terms of on-chip bandwidth. This
bottleneck still exists even inside the memory.

Another approach proposes using small functional units (FUs) in the logic
layer memory chips. This method is a better fit for power and area-constrained
devices such as the ones based on 3D-stacked integration and those that aim to adopt
cheaper integration methods, as shown in Figure 1.2. However, it requires innovative
programming models, cache coherence, and virtual memory support. Several authors
(Lee et al., 2018; SANTOS et al., 2017; NAI et al., 2017; AHN et al., 2015c; CALI et
al., 2020; FARMAHINI-FARAHANI et al., 2015; GAO; KOZYRAKIS, 2016; GAO
et al., 2017; KIM et al., 2016) proposed the use of custom hardware logic to exploit

16

the enormous bandwidth available on memory devices fully. However, these works
rely heavily on host-side hardware modifications for integration. This requirement
presents a severe limitation, as no current system can natively support such PIM.

The most disruptive approach to overcome the memory wall is to think of
the memory as a computational device. This approach uses the memory’s analog
circuitry to process data by allowing multiple cells to be accessed simultaneously,
then computing while transferring data between the memory cells and the sense
amplifiers. The computation can happen in either the Memory Array or the Peripheral
Circuits of the Memory Core, as shown in Figure 1.2. In the Dynamic Random
Access Memory (DRAM), this is accomplished by sharing capacitor charges. (GAO;
TZIANTZIOULIS; WENTZLAFF, 2019b; HAJINAZAR et al., 2021; SESHADRI
et al., 2013; SESHADRI et al., 2017; DENG et al., 2018). In the same way, new
technologies (e.g., memristors, spin-transfer torque cells) use electrical resistance,
exploiting Kirchhoff’s Law, to compute on stored data (DREBES et al., 2020; Xie;
Cai; Yang, 2019; Jain et al., 2018; AGA et al., 2017; CHI et al., 2016; ECKERT et
al., 2018; LI et al., 2017; SHAFIEE et al., 2016; SONG et al., 2017; SONG et al.,
2018; XIN; ZHANG; YANG, 2020).

1.1 Motivation

Regardless of memory-cell technology, integration technology, or architecture,
the PIM device can be adapted to work with a GPP environment as described by San-
tos et al. (SANTOS; FORLIN; CARRO, 2021b). Integration with a multi-core host
processor brings several advantages, including enabling the host hardware. Recently
commercial PIM solutions have sprung up, promising out-of-the-box integration
solutions for GPP environments (LEE et al., 2021; NIDER et al., 2021). Unlike
many academic PIMs presented before (SHAFIEE et al., 2016; LI et al., 2017), these
PIMs are presented as general-purpose units, which allow the use of general-purpose
threads to complete a given task. Instead of behaving as dataflow engines, where
data is received, processed, and forwarded in a neatly task-optimized pipeline, these
PIMs allow flexibility in the organization and computation of data. These designs
are composed of several PIM units within the same memory module, which allow
independent access with thread and data-level parallelism.

17

In this multi-thread scenario, shared data structures and inter-thread data
movement inevitably appear in the application. Communication between threads
is handled differently depending on the system’s memory. This communication,
when happening between multiple independent clients, (e.g., multi-core processors,
multi processor systems, networks), requires memory consistency (JACOB; NG;
WANG, 2010). In the last 40 years, this consistency was implemented in multiple
manners, from software-only to hardware mechanisms (JACOB; NG; WANG, 2010).
Whether this consistency is maintained through hardware (e.g., MOESI), software
mechanisms (i.e., APIs), or both, the data still has to move between different, often
physically separated memory regions. For most current shared-memory systems, such
as multi-core processors, multi-processor systems, or GPUs, this movement happens
inside the caches or with specific protocols and pathways. History tends to repeat
itself, and as it was with processor development 40 years ago, the best solution for
data movement depends on the technology available and the hardware limitations.

The cache hierarchy in host processors handles inter-thread data movement
inside the chip, with minimal costs for the application. However, this cost is
aggravated for PIM solutions as the proposed commercial solutions rely on the
host hardware to relay communications between the threads. Using the host for
inter-thread communication simplifies the hardware at the PIM side at the cost
of rearranging the data on the host processor. This inter-thread data movement
is forced to occur off-device, incurring a more significant communication latency,
energy costs, and degradation of host performance. Currently, there is a general lack
of research on the behavior of PIM systems integrating with out-of-the-shelf host
processors in multi-threaded regimes. Together with the lack of studies, the absence
of tools to efficiently evaluate and explore the design space for PIM software and
hardware. This dissertation strives to improve this scenario.

1.2 Research Goals and Contributions

The objective set for this dissertation is to evaluate the performance and
energy costs of using the host for inter-thread data movement in the PIM device and
investigate the gains of using a dedicated in-device mechanism to do so. First, we
review works in the literature showing some of the history of PIM and highlighting
that multi-thread execution has not been a point of focus for most works. We

18

explore the theoretical limits of multi-threaded PIM execution for the data and
thread mapping in the PIM. This analysis is agnostic to the PIM hardware and
technology, only caring about data arrangement and access width. Then, we explore
a PIM architecture and its integration with the host system.

We evaluate the communication costs of PIMs using the host for communica-
tion, as is the case with current commercial solutions (i.e., UPMEM (NIDER et al.,
2021) and HBM-PIM (LEE et al., 2021; KWON et al., 2021)). This analysis yields
the results we need to develop a better model for multi-thread PIM execution and
how the lack of dedicated PIM-thread communication harms PIM efficiency. We
propose Inter-PIM, a device that can improve energy and performance efficiency for
PIM-thread communications. To experiment on this design, we develop Sim2PIM
from the ground up. Sim2PIM is a simulation framework that focuses on the interac-
tion between the host and PIM system by executing host code on the actual processor,
only simulating the PIM. The simulator will be released as an open-source tool to
improve PIM research and development. As we will demonstrate, the inter-thread
communication approach is orthogonal to technology and PIM implementation. It is
also transparent to the programmer, as it does not require any extra APIs or other
coding mechanisms.

1.3 Dissertation Overview

This dissertation is organized as follows: Chapter 2 dives into more detail on
some of the PIM design proposals and commercial products that appeared in the last
decade. Chapter 3 presents a theoretical analysis of PIM performance when operating
with multiple threads. This chapter also demonstrates the means to integrate the
PIM device into a host system and the requirements and implications of inter-thread
communication. In Chapter 4, we present Inter-PIM, explaining its integration with
commercial and academic solutions. We also demonstrate the efficiency and energy
costs of moving data with the host system. Chapter 5 contains the description of
our simulator and its design philosophy. The results extracted are presented in
Chapter 6. Finally, Chapter 7 presents our conclusions and the future work left by
this dissertation.

19

2 RELATED WORK

PIM architectures are starting to solidify with the advent of commercial
products (NIDER et al., 2021; LEE et al., 2021; KWON et al., 2021). However, that
was not the case less than a decade ago. After a hiatus of almost 15 years, the idea
of processing within the memory was brought back. The technology was not quite
there to deliver on the promise of in-memory computing (SANTOS, 2019), starting
to re-appear with the advent of 3D-stacked memories (PAWLOWSKI, 2011) and a
more mature toolchain. One of the most exciting works to come in these early days
was RowClone (SESHADRI et al., 2013). While not precisely proposing to operate
on the data in the memory, it demonstrated a way to use the DRAM’s internal
row buffers and busses to transfer data between two rows. This mechanism allowed
for incredible performance and energy gains by saving on expensive data transfers
between host and memory.

Soon after, more complex PIM architectures appeared based on the recently
released HMC standard (Hybrid Memory Cube Consortium, 2013). One example
is Tesseract (AHN et al., 2015a) a PIM architecture focused on accelerating Graph
processing workloads. It focused on extracting the vast internal bandwidth available
in the HMC, with each vault capable of independent processing, in a system composed
of multiple memory cubes. The computing cores in each vault were connected by a
crossbar network, which allowed for independent package-like communication. The
researchers also wrote the graph applications to extract parallelism from the available
data by parallel computation for different vertices. When the data is in a different
core than the instruction, Tesseract transfers the computation itself instead of the
data. They designed an Application Programming Interface (API) for handling this
message passing interface, with a blocking and a non-blocking remote function call.

Still capitalizing on the memory technology provided by the HMC, HIVE (ALVES
et al., 2016) strived to increase the efficiency of vector operations by executing them
inside the HMC. They leveraged that 8 host cores executing parallel SSE compu-
tation could not extract the entire HMC internal bandwidth. HIVE was able to
extract this performance by using 8kB vector operations in simple, functional units.
Additionally, a more straightforward functional unit design could avoid the large area
and power overheads of including entire processing cores inside the HMC. For the
streaming applications it was designed to handle, the cores caches and out-of-order

20

execution increased overhead with little to no performance advantages.(SANTOS
et al., 2016; SHAHAB et al., 2018; SANTOS et al., 2017; NAI et al., 2017; GAO;
TZIANTZIOULIS; WENTZLAFF, 2019a)

As memristor technology matured, designs also started to become more
complex and integrated. ISAAC (SHAFIEE et al., 2016) was arguably the first
architecture to deploy a fully-fledged accelerator for Deep Neural Networks (DNNs)
inference using memristor crossbars. The architecture adopted a pipelined approach,
with each neural network layer receiving its own set of dedicated crossbars. It uses a
mix of memristor arrays, eDRAM buffers, networks, and digital-analog converters to
create multiple tiles. Utilizing tiling to divide the layers, it can efficiently execute all
multiply-accumulate operations in parallel. Each memristor array stores the neuron
weights of that layer. The inputs and outputs are stored in the eDRAM, and each
layer feeds its output to the following layer. It is interesting to note that as the
operations happen in the analog domain, the data must be converted from digital to
analog and back multiple times. This operation and the required hardware constitute
a significant proportion of the memristor array costs overall.

The Reconfigurable Vector Unit (RVU) (SANTOS et al., 2017) expanded
on the concept of HIVE by utilizing the inherent parallelism on the HMC technol-
ogy. It divided the vector units between the 32 vaults, supporting operand size
reconfigurability, from 256B to 8KB data width. This reconfigurability allowed for
extended flexibility on the applications that could take advantage of the massive
internal bandwidth of the PIM. This flexibility is well represented in Figure 2.1. Each
RVU unit is allocated to an HMC vault. They can work in tandem with each other
or independently. The issue of instructions and actual work division happens on
the host core, where an AVX-512-like compilation divides the workload accordingly.
The architecture also supports inter-vault communication through a crossbar switch,
allowing the vaults to access each other’s memory space. In this manner, each RVU
has access to all of the data stored in the HMC.

The Mondrian Data Engine (DRUMOND et al., 2017) focused on optimizing
data analytics workloads with a software-hardware co-design. The authors argue
that accessing the large bandwidth available in the HMC with fine-grained random
accesses was wasteful and required complex hardware. Not only that, but the nature
of data-analytics algorithms, which over time had been heavily optimized for Central
Processing Units (CPUs), required an entirely new design both from software and

21

Figure 2.1 – Reconfigurable Vector Unit (RVU) architecture.

Source: (SANTOS et al., 2017).

the hardware to achieve performance and energy efficiency. From the software
perspective, the authors argued that serialized access played well with the nature
of data analytics while requiring hardware capable of handling the data stream.
Thus, they leverage Single Instruction Multiple Data (SIMD) units to maintain the
compute throughput. However, the Mondrian Data Engine takes PIM design a step
further. The engine is designed with multiple HMC modules in mind, fully connected
through a crossbar network. By using an entire in-order processor core with SIMD
capabilities in each HMC vault, and a host processor responsible for orchestrating
and synchronizing PIM activity, it manages to extract a great deal of performance.

DRISA (LI et al., 2017) takes a different approach to the PIM design. It pro-
poses to change DRAM cells to make them capable of doing basic binary operations,
such as AND, NOR, and Shifts. DRISA is not meant to be used as the main memory,
but rather a Convolutional Neural Network (CNN) accelerator. It takes more liberty
with the memory cells, reducing the standard DRAM cell density and trading-off
area overhead for performance. This trade-off also increases the manufacturing
cost for the memory. However, the authors argue that this trade-off is valid for
an accelerator. The software design is also highlighted in the solution. To explore
DRISA’s performance efficiently, the programmer must optimize resource allocation,
and the inherent parallelism of the CNN must be coupled with DRISA, which is not
a trivial task. Since it is designed as a SIMD architecture, it can be treated as a
vector processor, and other applications can be mapped, such as meta-genome data
analysis (CHEN; PACHTER, 2005).

22

The work of Liu et al. (Liu et al., 2018) investigated mechanisms to integrate
heterogeneous PIMs, those with fixed-function units and programmable units, using
OpenCL. Machine learning frameworks usually rely on middleware to abstract the
hardware to the user. However, this increases the burden on the system programmer,
which must be aware of several different programming models for different PIMs.
Using a 3D stacked PIM architecture, closely integrated with the CPU, they extend
the OpenCL API. They demonstrate that a software-hardware co-design technique
that leverages the CPU, programmable cores, and fixed-function units, can optimize
the training of Neural Networks (NNs). They provide a transparent model to the
programmer with efficient run-time scheduling and fit several heterogeneous PIM
models.

As the PIM idea reaches maturity, less invasive concepts on the available
technologies start to show up. ComputeDRAM (GAO; TZIANTZIOULIS; WENT-
ZLAFF, 2019b) is a PIM architecture that proposes to use off-the-shelf, unmodified
Double Data Rate (DDR) modules to realize in-memory operations. It manages
to do this by violating the DRAM timing parameters on the Memory Controller.
With shorter refresh and open-row phases, this design forces two rows to share the
bit-line. With this, the capacitors share charges for a moment, an effect that can be
manipulated to operate on the cell charges analogically, with the following refresh
operation reverting the charge to a nominal value. The concept is innovative and
surprising for working with unmodified DDR modules.

PIM solutions have appeared in multiple different manners, processing paradigms,
architectures, and position in memory, as seen in Figure 1.2. Finally, we arrive at
the commercial PIM designs of today, where the industry has finally caught up with
a decade of PIM development in academia. One of these solutions is the UPMEM
system (NIDER et al., 2021), which according to their website, is "the first PIM
solution that is fully programmable, scalable, and efficient to address data-intensive
applications and without requiring any hardware architecture changes." A UPMEM
module is composed of a DDR-like module with 2 ranks, with 8 memory chips each.
The chips are not connected, thus inter-DPU communication is only possible by
copying data through the host. Each chip contains a DPU, which is composed of a
general-purpose processor and SRAM buffers. Memory is copied from the DRAM
to the local DPU SRAM via Direct Memory Access (DMA) requests. To hide the
latency from the memory reads, each DPU handles up to 24 hardware threads in

23

an Interleaved Multi-Threading (IMT), which means only one thread advances each
cycle. These threads are also limited to the data in the same chip as the processor,
so workloads must be mindful of the data layout. Due to the portability to the
DDR standard, the host processor reads and writes in bursts of 64 bytes to the
entire module, with each chip receiving 1-byte slices of data. This access is divided
equally to all the chips; thus, the host must reorder data when loading from the main
memory and storing it in the UPMEM. Additionally, this requires that all reads and
writes to the UPMEM be synchronous as they happen in all the units. For data
to transition from one chip to another, it must be explicitly handled by the host
processor and the programmer via the UPMEM API.

The first soon-to-be-available PIM solution from a major memory manufac-
turer, in this case, Samsung, is an HBM-based PIM (LEE et al., 2021). The authors
make an effort to explain why it took so long for the industry to develop a viable
PIM. They argue that past PIM architectures all required modifications to the Host
hardware, which made adoption challenging enough not to warrant a commercial in-
vestment. Their solution sandwiches PIM execution units between the DRAM banks
in the High Bandwidth Memory (HBM). Each PIM unit is comprised of command,
general, and scalar register files, with floating-point SIMD, add and multiply units.
With minimal control logic on the PIM, the host handles memory requests on the
PIM’s behalf. Thus, PIM execution units access the memory at the same data access
granularity as a host processor (LEE et al., 2021). Moreover, as a System in-Package
(SiP) can contain hundreds of SIMD logical units, the programming model considers
multiple host threads to increase the memory request throughput. This throughput
is entirely dependent on the host Instruction Set Architecture (ISA), as the host
is integrated into the system, this will most likely propagate to all iterations of
the commercial product. The threads are allocated to the same thread group and
executed in a lockstep manner, with the same instructions and control-flow path.
For their experimental setup, with 4HBM2 cubes, there were 64 pseudo-channels,
each requiring 16 host threads to reach peak memory bandwidth, resulting in a total
of 1024 threads. To minimize fence overheads between different pseudo-channels,
each thread group can only access its DRAM channel. As there seems to be no direct
link between each pseudo-channel, it is expected that any data rearrangement must
occur through the Host and the PIM API.

24

Even though the commercial products are a welcome addition to PIM research,
these designs are currently being implemented with the PIM units physically separated
(i.e., UPMEM DPUs, and HBM-PIM pseudo-channels). Thus, these PIMs rely

heavily on the host processor to orchestrate the many PIM internal threads,
delegating memory management, data rearrangement, and synchronization. Likewise,
due to the physical separation, inter-thread communication between different PIM
units happens exclusively through the host processor. Ironically, this decision is
in clear contrast to the design philosophy of PIM devices since more pressure is
applied to the memory channel. This added pressure, in turn, harms the energy
and performance benefits of the PIM. Inter-thread communication can be avoided if
multi-thread applications are entirely rewritten, the algorithms are changed, or the
software is mindful of data layout. However, these are clearly show-stopper situations.
And as we will show in the next chapter, the neglect of thread communication can
have a severe impact on efficiency.

25

3 UNDERSTANDING MULTI-THREADED PIM

This chapter investigates the advantages and complications of enabling multi-
thread support on the PIM device. It also dives in the integration techniques
required to connect a multi-thread capable PIM device with an unmodified multi-
core host processor. Finally, it discusses the impact that the PIM device can have
on inter-thread communication.

3.1 Why Bother with Multi-Thread?

Before we demonstrate why multi-thread PIM requires communication be-
tween threads, it is only natural we ask the question: is multi-thread PIM even worth
the trouble? The designers from UPMEM (NIDER et al., 2021) and HBM-PIM (LEE
et al., 2021; KWON et al., 2021) leverage multiple threads due to the hardware
characteristics demanding PIM threads to achieve maximum compute and memory
performance, respectively. Their designs rely on Simultaneous Multi-Threading
(SMT) concept, where multiple threads are alive simultaneously on the same hard-
ware to exploit memory access latencies. However, we argue that PIMs that allow
independent access to parts of the hardware with general-purpose threads are overall
more versatile and efficient from the application and data structure points of view
by allowing Thread Level Parallelism (TLP).

We can demonstrate this examining two PIM technologies, analog DRAM
PIMs (SESHADRI et al., 2017; GAO; TZIANTZIOULIS; WENTZLAFF, 2019a)
and memristor devices (Li et al., ; Yu et al., 2018; Xie et al., 2017). Most of the
reviewed PIM proposals deal with task-specific hardware. Thus, the concept of
general-purpose threads and the optimizations that derive from their flexibility are
often overlooked. One such case is how the PIM should handle multiple concurrent
host requests, as is the case in a multi-core environment. For task-specific hardware,
optimizing for multiple requests defaults to a time-sharing approach, where requests
are served in different time-slots, as each task is completed (e.g., cryptographic
hardware in a CPU). In general-purpose hardware, more flexibility exists in how
requests are served. Figure 3.1 presents two distinct methods to serve multi-thread
requests in a PIM device with an operand width of up to 8kB.

26

T1

T2

T1

T2

t

Waiting

Waiting

0 0 0 0T1

T2

T1

T2

t

t

0 0 0 0

0 0 0 0

0 0 0 0

X X

X X X X

X X X X

X X X X

X X

X X

Waiting

Waiting

t

8kB Row

0 0 0 0 0 0 0 0 0 0

(a) Time-Sharing with full occupation

T1

T2

T1

T2

t

Waiting

Waiting

0 0 0 0T1

T2

T1

T2

t

t

0 0 0 0

0 0 0 0

0 0 0 0

X X

X X X X

X X X X

X X X X

X X

X X

Waiting

Waiting

t

8kB Row

0 0 0 0 0 0 0 0 0 0

(b) Time-Sharing with half occupation

Figure 3.1 – Different modes for threads to share PIM computation

Figure 3.1a demonstrates two threads (T1 and T2) occupying the hardware
in a time-shared manner. Although adopting this technique ensures host-thread
parallelism, which means parallel request emissions, it does not allow thread-level
parallelism at PIM side. Unless the application thread can hide the latency for a
time-slot, the thread will keep waiting. When a thread is capable of fully exhausting
the PIM resources, there is no way around a time-shared approach. However, when
the application does not demand enough data locality to occupy the entire 8kB row
(i.e., data can not be organized in the memory as to fit the operation size) there is a
waste of hardware resources, as shown in Figure 3.1b. For both memristor crossbars1

and DRAM computations the solution presented in the literature is to pad the rest
of the width with zeroes, thus wasting bandwidth and energy (Chu et al., 2020). As
these are monolithic structures, the entire crossbar and the entire DRAM row must
compute on data. Conceptually, the simplest solution is to increase the granularity
of computation.

The design presented in (GAO; TZIANTZIOULIS; WENTZLAFF, 2019a)
can be abstracted to a monolithic, very large SIMD unit, as shown in Figure 3.2a. If
this PIM is paired with an application or data set that can not support such large
data locality, it will not be as efficient. PIMs must be able to handle applications
that exploit multiple data granularities efficiently. We can envision a PIM capable
of operating on different vector sizes, by simply dividing the SIMD unit in smaller
segments, as shown in Figure 3.2b. These could operate in unison to provide larger
widths, while still being controlled by individual threads. All other implementation
variables disconsidered, we can use the number of sequential operations as a proxy
for evaluating performance between these two hypothetical PIM hardwares. We
model the number of sequential vector operations required (V OP) by taking in to

1The occupancy issue for memristor crossbars is similar, but with the wasted resources expanding
quadratically and with additional concerns of data arrangement.

27

Figure 3.2 – Different PIM Vector Engines in an 8kB row DRAM device.
(a) Monolithic 8kB PIM unit.

DRAM DRAM DRAM DRAM

8kB PIM UNIT

DRAM DRAM DRAM DRAM

M
em

or
y

M
od

ul
e

To/ From Host

(b) Granular 1kB PIM units can be arranged to form larger units.

DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM

M
em

or
y

M
od

ul
e

To/ From Host

1kB PIM
UNIT

1kB PIM
UNIT

1kB PIM
UNIT

1kB PIM
UNIT

1kB PIM
UNIT

1kB PIM
UNIT

1kB PIM
UNIT

1kB PIM
UNIT

1kB SIMD
2kB SIMD

4kB SIMD 8kB SIMD

account the data size (DS), PIM unit width (PW), PIM unit used (PU), concurrent
threads (TN), and percentage of PIM unit occupancy (PO):

V OP = DS

PWPUTNPO

(1)

In Figure 3.3, we plot this equation for 1MB of aligned data, with different
available data localities, from 1kB to 8kB, and the maximum number of concurrent

Figure 3.3 – Vector operations required to operate over 1MB of data with different spatial
data localities for a monolithic SIMD unit and multiple smaller units in parallel.

Data Locality

S
eq

ue
nt

ia
l O

pe
ra

tio
ns

0

250

500

750

1000

1250

8kB 6kB 4kB 3kB 2kB 1,5kB 1kB

Monolithic Reconfigurable

28

threads2 so as to maximize PIM occupancy, we can see that the monolithic PIM
requires more sequential operations to compute the data. When the combined width
of the PIM units does not match data locality (e.g. data locality equals 1.5kB) or
there are left over PIM units (e.g. data locality equals 6kB), the performance is
never worse than the monolithic approach. Of course, this distributed approach
requires the data to be ordered appropriately in the memory so each PIM unit can
process data properly. For the example PIM, this is much like the approach taken
by UPMEM, where data for PIM operation is transposed. For memristor crossbars,
the issue is similar, but instead of 1D vector operations, the data locality problem
expands to 2D. As stated by Chu et al. (Chu et al., 2020), there is a trade-off for
memristor crossbar sizes, as a large-scale crossbar benefits from increased capacity
and better energy trade-off with peripheral circuits while suffering from a loss of
efficiency for unused memristor cells.

3.2 PIM Architecture

As briefly mentioned in Chapter 2, the underlying PIM hardware can direct
which multi-thread programming model is more suitable. We can see these distinct
approaches in the two commercial PIMs currently available, the UPMEM (NIDER
et al., 2021) and the HBM-PIM (LEE et al., 2021). The HBM-PIM has simpler
functional units inside the PIM, so it relies on the host for instruction offloading,
virtual memory translation, and data coherence. UPMEM on the other hand has
full processor cores inside the PIM, operating akin to a coprocessor (e.g. a GPU).
However, it can not be used as the system’s main memory. For both PIMs, the host
must also handle data transfer between the memory and the PIM.

As to avoid unfair comparisons between memory technology and computing
hardware in the PIM, we leverage a different architecture, that integrates character-
istics from both of them, and could be feasibly implemented. Our test architecture
is similar in technology to UPMEM, with regular DRAM chips containing logic.
It follows the DRAM specifications and the DDR protocol, fitting inside a Dual
In-line Memory Module (DIMM). The PIM device has 8 memory chips, with 8 PIM
compute units in total. This logic is similar to the one in the HBM-PIM, with simple
SIMD units, that can be combined to work in tandem, as to completely exhaust the

2The monolithic hardware only has 1 thread and 1 PIM unit.

29

internal memory bandwidth. It also serves to avoid the problems of the monolithic
PIM device presented in Section 3.1.

The PIM uses an ISA without branch or jump instructions, relying on the
host processor for the instruction offload. It contains load, store, and arithmetic
instructions. Loads and stores can happen directly in the main memory, or in the
internal registers of the PIM unit, or other units of the same PIM. Each PIM unit
contains a 1 kB vector unit, with the arithmetic instructions operating in data that
is currently in the registers.3 To coordinate with the host, each PIM unit has a few
memory-mapped registers that the PIM can use to communicate with the host. A
minimal version of this functionality allows the PIM to set 3 flags: 1 waiting host
data, 2 busy, and 3 done. This way, the host can become aware of the current PIM
status, by polling these registers directly.

The implemented PIM is presented in Figure 3.4. The following sections
will demonstrate its integration with the host system using a novel integration
method (SANTOS; FORLIN; CARRO, 2021a).

3.3 Integrating With the Host System

Integrating PIM with the host system comes with its own set of challenges.
PIM designs that adopt full processors require no modifications on the host side to
provide cache coherence, data consistency, and virtual memory support since they
can rely on well-established multi-processing methods (i.e., OpenMP, MPI) (NAIR
et al., 2015; ZHANG et al., 2014b; DREBES et al., 2020). Some of the PIM
solutions described in Chapter 2 do not have the means to integrate with the host by
themselves. Thus, to couple with a general-purpose environment, these PIMs require
a series of novel solutions for code offloading, cache coherence, and virtual memory
support (SANTOS et al., 2019).

As seen by recent commercial solutions (NIDER et al., 2021; LEE et al., 2021),
integration with an unmodified host processor is preferred for a rapid PIM adoption.
Few solutions provide seamless integration with the host processor (DRUMOND et
al., 2017; Liu et al., 2018; DREBES et al., 2020). All of these problems are tackled
in our previous work (SANTOS; FORLIN; CARRO, 2021b), where integration with
unmodified host processors is prioritized. The Plug N’ PIM strategy accomplishes

3The implemented ISA is described in further details on (SANTOS, 2019).

30

this with the use of native host instructions to deliver the PIM instructions, added to
the application executing on the host processor. While the performance onus for the
integration falls on the host, the use of similar strategies on commercial products seem
to indicate this is preferential to modifying the host processor, at the cost of inserting
hardware in the PIM module. This extra hardware, named Instruction Manager
(IM) (shown in Figure 3.4), is a small Finit State Machine (FSM) as described in
(SANTOS, 2019). It is responsible for decoding PIM instructions and sending them
to the correct units. In the next sections, more details and functionalities of the
Instruction Manager will be disclosed.

3.3.1 in-Memory Mapped PIM

Plug ’N PIM allows communication between host and PIM units by mapping
each PIM unit in memory. That is, the host accesses each PIM unit through a unique
address. The mapped devices are within the main memory module instead of coupled
to the bus. Moreover, unlike typical memory-mapped devices, the proposed solution
only maps PIM devices to addresses as to provide a means for host and accelerator to
communicate. Also, the present technique requires no particular type of caching or
logical memory type, which means it is fully compliant with any memory region (e.g.,
uncacheable, write-combining, write-back, write-through). Hence, a host processor
can directly access the PIM units via ordinary memory-access instructions load/store,
with no need for additional host’s hardware resources or software/system unique
treatments.

Figure 3.4 illustrates the memory-mapped PIM units. Operating System
(OS) support is required to allow such mapping, e.g., through a driver. Since
PIM instructions are emitted to known addresses, the IM Module can monitor and
intercept incoming commands to these addresses and then issue the instructions to
the proper PIM device. Therefore, in the case of PIM instructions, the traditional
DRAM synchronous communication latency is avoided.

31

Figure 3.4 – PIM units on DDR DIMM-like module connecting with an unmodified host

DRAM DRAM DRAM DRAM

PIM UNIT
0x00

PIM UNIT
0x04

PIM UNIT
0x08

PIM UNIT
0x0C

DRAM DRAM DRAM DRAM

PIM UNIT
0x10

PIM UNIT
0x14

PIM UNIT
0x18

PIM UNIT
0x1C

1024 B

L1 Data Cache

L2 Cache

Execution
Engine

TLBL3 Cache

Memory Controller

H
os

t P
ro

ce
ss

or

M
em

or
y

M
od

ul
e

Memory Subsystem Core

WC Buffers

Non-Temporal StoreCache Line FlushData Path

8bit 8bit 8bit 8bit 8bit 8bit 8bit 8bit

64bit

INSTRUCTION MANAGER

3.3.2 Code Offloading

Code offloading can happen in different granularities. Coarser grained imple-
mentations dispatch more complex commands to PIM units, such as MPI, OpenMP
(NAIR et al., 2015), CUDA-like functions (BOROUMAND; GHOSE, 2018; DREBES
et al., 2020), and kernel functions(Liu et al., 2018). The fine-grain approaches rely
on individual instructions being offloaded to computing units (AHMED et al., 2019;
NAI et al., 2017; LEE et al., 2021).

Commonly, when implementing simple Functional Units (FUs) or exploiting
logical resources of modern memory technologies (e.g., ReRAM), the PIM designers
avoid implementing all typical stages of a processor, such as instruction and data
cache memories, and complex pipelines with intricate fetch and decode stages. This
decision occurs mainly due to the area, and power constraints (LIMA et al., 2018).
Therefore, the host processor must offload the PIM instructions one by one. This
behavior requires both software and hardware to manage the per instruction code
offloading.

The compiler naturally manages the software-side in order to adequately
select the suitable instructions to be offloaded to the PIM devices (e.g., operating
over huge vector) (AHMED et al., 2019). This way, both host and accelerator codes
are intrinsically interleaved, being optimized and generated as one. This approach
can then generate PIM instructions, as shown in Listing 3.1:

32

Listing 3.1 – Hybrid Code - x86 and PIM ASM code
1 mov $ -16384 , %rax
2 .LBB0_1 :
3 PIM_256B_LOAD_DWORD [%rax+b+16384] , %V0_R256B_0
4 PIM_256B_LOAD_DWORD [%rax+c+16384] , %V0_R256B_1
5 PIM_256B_VADD_DWORD %V0_R256B_0, %V0_R256B_1, %V0_R256BB_1
6 PIM_256B_STORE_DWORD %V0_R256B_1, [%rax+a+16384]
7 add $4096 , %rax
8 jne .LBB0_1

However, to deliver these instructions to the PIM device, there must be
hardware support from the decoder and execution units. Plug ’N PIM aims at a
non-invasive solution, taking advantage of the memory-mapped approach to issue
each instruction as a native store instruction to the respective address.

Towards this, the compiler embeds each PIM instruction as 16 bytes of data,
which can be seen on Listing 3.2. This data is then sent to a memory-mapped PIM
address as a Non-Temporal Store (i.e., MOVNTDQ for x86), natively supported by
the host hardware, as shown in Listing 3.2. This solution uses the Non-Temporal
Store instruction to ensure fast streaming-like writing to the main memory while
avoiding polluting the cache memories and their latencies. As illustrated in lines 3
through 8 of Listing 3.2, the compiler generates the PIM memory instruction and
places it as an immediate value into a 16 Bytes long register (e.g., xmm0).

Listing 3.2 – PIM LOAD embedded into x86 instructions.
1 c l f l u s h 16384(%rsp ,%rax , 4) ; Cache coherence
2 c l f l u s h 16448(%rsp ,%rax , 4) ; Cache coherence
3 movq $0x002a000000000000 , %rbx ;PIM i n s t . f i r s t h a l f
4 movq %rbx , %xmm0
5 movq $0x0000000000000000 , %rbx ;PIM i n s t . second ha l f
6 movlhps %xmm0, %xmm0
7 movq %rbx , %xmm0
8 movntdq %xmm0, PIM0_ADDR(%r ip) ; I n s t r u c t i o n emis s ion
9 mfence

10 movntdq %xmm0, 16384(%rsp ,%rax , 4) ; Address emis s ion
11 mfence

Then, as shown in line 8, the PIM instruction is emitted to the memory-
mapped PIM (PIM0_ADDR) via non-temporal store MOVNTDQ instruction. The

33

mfence on lines 9 and 11 ensures that execution will be done in order before other
access to those addresses occurs. The non-temporal store (e.g., MOVNTDQ) instruc-
tion avoids cache hierarchy, which takes between 4 and 7 cycles for the instruction
to be committed, according to our measurements for the experimented architectures
(Table 6.1). While its throughput is 1 cycle (DEVICES, 2017; CORPORATION,
2016), its total latency is dependent on the main memory performance and its
latencies.

Despite the Plug N’ PIM technique requiring store operations, it is essential to
observe that: 1) Only instructions that effectively access memory (e.g., Load/Store)
require two non-temporal stores, as they must emit the address. 2) Other instructions
only require a single non-temporal store. In these cases, the non-temporal stores do
not touch the memory cells, being captured by the Instruction Manager, as will be
shown in Subsection 3.3.4, effectively reducing the instruction latency cost.

3.3.3 Cache Coherence

PIM devices and host may share the same memory address space. Therefore,
it is crucial to keep data coherent since the cache memory may contain data that can
be requested by PIM units, as illustrated in Listing 3.1. Cache coherence is dealt with,
with distinct methods in PIM designs. GraphPIM(NAI et al., 2017) uses a reserved
uncacheable memory space for PIM memory, and to guarantee cache coherence, all
data allocated to this region bypasses the cache hierarchy. DNN-PIM(Liu et al.,
2018) proposes a modification to openCL, inserting an explicit method for host-PIM
synchronization. Some designs use flush calls to guarantee cache coherence via
high-level APIs (DREBES et al., 2020).

Flush instructions are present in the host processor’s ISA (e.g., CLFLUSH
for x86, MCR for ARMv8, SFENCE.VMA for RISCV) to be used at no-privilege
mode, which makes them suitable for running at user-level application. Similar
to (DREBES et al., 2020), Plug ’N PIM maintains cache coherence by adopting
flush instructions. However, this approach can burden the programmer, and the
authors claim not to have experimented with its interaction with an operating system.
Instead, Plug ’N PIM lets the compiler handle the generation of flush operations
by checking whether an instruction accesses or modifies memory. For instance, if a
PIM_LOAD instructions that access 128 Bytes must be triggered, the compiler will

34

assure coherence by flushing all related cache lines before sending the instructions,
as shown on lines 1 and 2 of Listing 3.2. In this example, as PIM requests 128 Bytes,
two flush operations of 64 Bytes (cache line size) are emitted to keep cache coherence.
In case of PIM-STORE, flush operations must also be emitted since host may request
the same address after the PIM modifies it.

Although this is a functional strategy, flushing the cache line for each PIM-
LOAD or PIM-STORE instruction is costly. Thus, our compiler inserts flush
instructions only on memory regions that could have been previously modified by
the host processor or the PIM. This flush operation could also be handled directly by
the programmer or at the run time, as is the case with devices with distinct memory
partitions such as GPUs.

According to our measurements, the costs of a flush operation can achieve
between 105 cycles (Intel Kaby Lake/Cascade Lake) to 249 cycles (AMD Ryzen
Summit Ridge), depending on cache memories latency and cache line status. For
this operation, a throughput of 10 cycles can be achieved (DEVICES, 2017; CORPO-
RATION, 2016). Also, this overhead is dependent on main memory latency; hence
it is essential to avoid unnecessary flush operations. Moreover, the communication
between host and PIM can be harmed by poorly generated PIM code.

3.3.4 Virtual Memory Support

Virtual memory support allows PIM to integrate easily with current program-
ming methods and practices, including the abstraction of memory addresses and
ensuring multi-process isolation. This can be accomplished if the PIM replicates
the host Translation Look-aside Buffer (TLB) and the Memory Management Unit
(MMU) hardware (DRUMOND et al., 2017; AHN et al., 2015b), or the PIM must
be able to share or access the host’s TLB (SANTOS et al., 2019; NAI et al., 2017).

Plug ’N PIM allows for tightly-coupled PIM devices to support unrestricted
memory sharing while providing code offloading and cache coherence through ordinary
host’s instructions. Thus, virtual to physical addresses translations should occur
in the same way. Our approach avoids replication of TLBs (DRUMOND et al.,
2017; Liu et al., 2018; BOROUMAND; GHOSE, 2018), by leveraging hardware and
software at the host side. The targeted PIM types can adopt the PIM Instruction
Manager module, as illustrated in Figure 3.4.

35

PIM IM module works as a front-end for PIM instructions. Its main role is to
identify, trap, and compose at running-time Load and Store PIM instructions. PIM
instructions cannot contain memory addresses, since the host emits them as data
(Section 3.3.2), and its TLBs cannot translate addresses from data. As aforementioned
in Section 3.3.2, the compiler generates a second Non-Temporal Store instruction
(line 10 of Listing 3.2) to the target address-base of the Load/Store instruction. Also,
the compiler issues a second fence instruction to ensure the execution order (line 11
of Listing 3.2). It is essential to notice that the two fence instructions ensure order
between the first and second Non-Temporal Store operations.

The second Non-Temporal Store instruction does not require cache coherence
treatment as the memory was previously flushed at this specific address, and it will be
trapped by the IM not effectively accessing memory. The host’s TLBs will translate
this address granting the virtual memory support seamlessly. Both non-temporal
instructions will be jointly used to compose the LOAD or STORE PIM instruction,
which will then be processed by the correctly mapped PIM. In these non-temporal
store operations, DRAM cells are not accessed, hence no additional latency is caused.
Thus, the presented design allows low latency virtual memory support using the
native host’s instruction and a module at the PIM side.

3.4 Communicating Between Threads

UPMEM and HBM-PIM are both designed around multiple PIM threads.
However, they do not allow for PIM threads to access the memory of one another,
specially in different PIM units. Thus, they rely on the host hardware to bounce data
between PIM units. This section will discuss the requirements and consequences on
the PIM hardware and software model. The execution of this operation in the host
system and its costs, will be evaluated in Section 4.1.

3.4.1 Parallel Programming Model

The general-purpose programming paradigm that current commercial PIMs
present comes with a series of expected guarantees and mechanisms which pro-
grammers are used to. This includes familiarity with the parallel programming

36

model, memory coherence, and support for higher-level functions and libraries. The
parallel programming model adopted by the PIM mainly depends on the hardware
support available to handle memory consistency. We can have atomic data access
in a scenario where memory coherence and consistency are guaranteed with tight
constraints (JACOB; NG; WANG, 2010). The atomic access allows us to use syn-
chronization primitives, including fences, barriers, and release and acquire operations.
A strong foundation for these primitives allows the programmer or API to avoid
data race conditions in a multi-thread environment. Modern host systems primar-
ily utilize hardware-based memory consistency implementations. Different parallel
programming frameworks arise depending on the memory consistency mechanisms
present in the system. Two of the most common, OpenMP and MPI, are almost
directly translated from the underlying memory available to the threads (KANG;
LEE; LEE, 2015). OpenMP relies on the shared memory for synchronization and
data transfer between threads. While MPI, a specification rather than a specific
implementation, coordinates messages between the memories of different processes
that are not required to share memory space.

While theoretically possible to implement each system on any hardware,
some hardware implementations demand a specific paradigm for better performance.
Different PIM hardware is more suitable for different models than others. If the PIM
threads can share the entire memory space with low-latency, they are more easily
represented by a shared memory system with the OpenMP model. Otherwise, if the
threads are separated and cannot directly access the entire memory, they are closer to
an MPI model. However, the difference between current PIMs and the CPU systems
that originated these models is the communication cost between the threads (i.e.,
shared data structure coherence). Whether coherence should happen with oversight
from the hardware (e.g., MOSI) or software (e.g., APIs) is a decision that should
take into account the hardware architecture and targeted algorithms. However, the
means through which coherence is enforced in the PIM are not necessarily related to
the architecture. For a PIM device connected to the memory bus, the only options
for data transfer are transferring data internally on the memory module, or bouncing
data through the host. If the PIM units depend on the host to communicate between
each other (regardless if software or hardware monitoring triggered the coherence
request), they must bounce data through the host caches, communicating through a
distant bus and busing the host with additional work.

37

3.4.2 PIM Hardware Support

Since the host is responsible for overseeing PIM communication, it must take
active part in the process. As there is no means for a device in the memory bus
to directly communicate with the host, the host is required to poll the PIM status.
The communication requires 2 additional status flags for the PIM units: 1 data to
send and 2 data to receive. This way, the host can wait for the PIM devices to hit a
synchronization barrier before exchanging data.

Considering the PIM approach presented in Figure 3.4, if a PIM unit requests
data from another PIM unit, the following steps are required : 1) the host processor
must keep polling all PIM units to be aware of each operation being demanded; 2)
after the host processor identifies an inter-PIM request, it needs to check whether
the source PIM unit is available; 3) if so, the host sets the flags to halt the source
PIM unit, reads the data from the source PIM memory space, and stores it into its
cache memory or registers; 4) the host sets the destination PIM unit, writes the
data into the destination address space.

A PIM unit can access its local physical memory through large internal buses
(depending on implementation). However, as highlighted in Figure 3.4, each PIM unit
can access external components through a limited 8 bit wide bus. By distributing
PIM units across memory devices (e.g., Figure 3.4) or memory partitions (SANTOS
et al., 2017; LEE et al., 2021), each PIM device is prevented from fully accessing the
entire memory bandwidth, limited by its narrow private external buses.

Although the host processor can read and write 64 bytes of data (i.e., x86
cache line writeback - 8 bursts of 64 bits), this limitation primarily impacts PIM-to-
host communication. It requires that the host processor and PIM units filter the
incoming and outgoing data to avoid reading from and writing to non-required PIM
units. Furthermore, this leads to increasing the number of transmissions to overcome
that bus limitation.

38

4 IMPROVING PIM COMMUNICATION

Communication between PIM units is managed by the host happens through
a distant bus. As shown in Section 3.4 this spares PIM hardware modifications in
exchange for affecting the programmers choices on how to couple PIM hardware and
software. This chapter will evaluate the impact this communication can have and
means to implement a more efficient hardware solution and the energy benefits of
applying it to PIM communication.

4.1 Communication Efficiency

This section investigates the efficiency of using the host’s memory hierarchy
to provide communication between PIM threads. Given the PIM design presented in
Figure 3.4, the entire memory module composes the PIM device, with each PIM unit
contained inside a DRAM chip. For the purpose of this dissertation, we evaluate only
communication between units, considering each one an application thread. Thus,
threads do not share PIM units. Regardless of the memory technology, several
bottlenecks and disadvantages arise when adopting the host processor as support for
transferring data between. There are two scenarios where the lack of communication
capabilities between PIM units can really hurt performance. When PIM threads
need to pass data chunks between each other, and when there are alterations in data
layout. The first scenario can be as follows: an application may require processed
data to join in a single thread to perform another operation that requires the data
from the other threads (e.g., layers of a CNN converging data for the fully connected
network). The second scenario may happen when a matrix that was split among the
multiple PIM units, must now be transposed for another operation.

We perform an analytical evaluation of the performance impact of two corner
cases that stress the memory system in different ways. First, a broadcast operation
that occurs from one PIM unit to all the other currently active units (one-to-all).
Second, multicast operations that occur between all the active threads concurrently
(all-to-all). Regardless of the the number of PIM units involved in the communication,
the data transfer will still follow the standard main memory access protocol. The
smallest data chunk available for the processor to access from the memory is a cache
line. The way memory is partitioned in the DRAM ranks and banks optimizes for

39

Figure 4.1 – Host loading, rearranging, and then storing data back to memory.

8 Bytes 8 Bytes 8 Bytes 8 Bytes 8 Bytes 8 Bytes 8 Bytes8 Bytes

64 Bytes

8 Bytes

DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM

M
em

or
y

M
od

ul
e

Cache Line

H
os

t C
ac

he
s Copied Data

Overwritten Data

8kB data

8x Data Burst

W0 W1 W2 W3 W4 W5 W6 W7

B0 B1 B2 B3 B4 B5 B6 B7

1x Data Read

Cache Word

Accessed Word

Unnecessary Byte

Byte Shuffle

PIM UNIT
0x00

PIM UNIT
0x04

PIM UNIT
0x08

PIM UNIT
0x0C

PIM UNIT
0x10

PIM UNIT
0x14

PIM UNIT
0x18

PIM UNIT
0x1C

transferring an entire cache line. This results in the separation of consecutive bytes of
a word in different DRAM chips. So if the PIM needs to transfer data from one PIM
unit to another, the host needs to read an entire cache line, access each individual
word, shuffle the data, and then write the cache line back to memory, as shown in
Figure 4.1.

There is no in-device physical shared cache memory; hence the data must be
copied from the PIM unit source to the host’s cache memory and then stored into
each PIM destination memory space. If the data can not be transferred to the same
row address in every PIM, the host will have to execute a store operation for each
PIM destination. DMA is ineffective in this scenario, since data must be operated
on by the host. A 64 bytes (8×64-bits) write operation is emitted from the host to
PIM, but each PIM unit only receives 8 bytes (8×8-bits). The behavior mentioned
above adds to the disadvantages in terms of performance and energy efficiency. A
simple optimization is to synchronize the PIM units and align their input buffers
in memory. Therefore a single cache line written by the host can carry data for all
units at once. In this case, each PIM unit will receive 8×8-bits in parallel, using all
64 bytes available by the host operation.

We can plot this efficiency looking at the number of bytes actually used in
each two-way 128 byte transaction (64 bytes each way). For the broadcast operation,
we can see the distribution of used bytes for read and write depending on the number
of threads involved in the communication in Figure 4.2. The most efficient scenario,
where all 8 threads are involved (1 to 7), we can only achieve 50% efficiency in the

40

Figure 4.2 – Amount of bytes read and written in a broadcast operation between the
active threads in two 64-byte transfers.

transmission. The more threads are involved in receiving the broadcast, the greater
the data transfer efficiency due to the data interleaving. However, reading data will
never become efficient.

Figure 4.3 shows a more efficient scenario, where all threads are communicating
with each other at the same time. In this scenario the cache lines are entirely used for
writes and reads. This requires that all threads are synchronized in time (temporal
allocation) and all data is correctly aligned in the same DRAM row (spatial allocation).
The criteria can happen when threads are involved in computing the same kernel with
different data. However, this temporal and spatial allocation might not be possible

Figure 4.3 – Amount of bytes read and written in a multicast operation between the active
threads in two 64-byte transfers.

41

when threads are computing different kernels or handling data of unequal size. It is
also noticeable that, as the number of involved threads falls, so does efficiency.

In both scenarios the implication is that for this method of communication
to be efficient all threads need to be synchronized, making use of communication at
the same time. This also requires that shared data addresses must be aligned in the
memory, otherwise communication will have to happen separately. Thus, to improve
inter-thread communication, we must be able to access each PIM unit independently,
both in time and space.

4.2 Inter-PIM Hardware

This section presents a concept to increase the communication efficiency
shown in the previous section when using the host processor as a medium between
multiple PIM units. The main objective of this concept is to restrict the data
movement between PIM units to the memory module only, hence avoiding the use of
the host, and accessing only the PIM units involved in the communication. Figure 4.4
illustrates the Inter-PIM placement within a typical DDR memory module.

Figure 4.4 – Placement of the Inter-PIM mechanism in between the data-path of the
DIMM.

DRAM DRAM DRAM DRAM

PIM UNIT
0x00

PIM UNIT
0x04

PIM UNIT
0x08

PIM UNIT
0x0C

DRAM DRAM DRAM DRAM

PIM UNIT
0x10

PIM UNIT
0x14

PIM UNIT
0x18

PIM UNIT
0x1C

1024 kB

L1 Data Cache

L2 Cache

Execution
Engine

TLBL3 Cache

Memory Controller

H
os

t P
ro

ce
ss

or

M
em

or
y

M
od

ul
e

Memory Subsystem

WC Buffers

Memory BusPIM 0x04 Data Path

8bit 8bit 8bit 8bit 8bit 8bit 8bit 8bit

64bit

Core

Inter-PIM

PIM 0x14 Data Path

42

4.2.1 Functional Requirements

Inter-PIM is designed to reduce data movement with the host, without
harming regular memory access. Thus, the Inter-PIM can:

Be transparent to the host: The host is responsible for feeding PIM
instructions and copying data from the main memory into PIM memory on the
target PIM architectures. The host also needs to monitor the PIM for additional
data requests or completion. Thus, Inter-PIM keeps a copy of all PIM status to
provide information to the host when required. When handling host load/stores, the
Inter-PIM simply forwards the requests. This entire process happens transparently
to the host. The only difference is that the host must read the Inter-PIM status
addresses instead of the PIM units.

Autonomously poll PIM units status: Since Inter-PIM triggers status
polls directly from the PIM’s memory, it does not burden the host processor nor
pollutes its cache memories. Inter-PIM keeps polling all PIM units, checking whether
any request is pending. If desired, this strategy allows it to keep polling PIM in a
different frequency than the host.

Manage load from and store to the PIM: Inter-PIM can access a PIM’s
memory space region, which can be used as a shared buffer between it and each PIM
unit. This buffer memory region can be dynamically addressed by the application or
fixed by design.

Integrate with the Instruction Manager: Inter-PIM integrates with
the IM, as it has the same placement in the memory module. As the IM must write
to each PIM unit, it can use the Inter-PIM infrastructure to do so.

Allow parallel communication between PIM units: By removing
communication from the host, energy gains are guaranteed. However, for performance
gains, the Inter-PIM must be capable of providing multiple concurrent accesses
between PIM units asynchronously, as shown in Section 4.1.

Figure 4.5 – Inter-PIM communication mechanism and PIM Unit status.

Read PIM
Status Address

If
Comm

Read PIM SRC
Write PIM DST

Update PIM
and Local

Status

Poll
PIM

Copy PIM Status
To Local Status

Update Local
Status

Memory/PIMInter-PIM

False

PIM UNIT Status: 1 - Waiting Data (Host) 2 - Data to Send 3 - Data to Receive 4 - Communicating 5 - Busy 6 - Done

Inter-PIM

43

Inter-PIM obeys a simple flow, as shown in Figure 4.5, indicating each possible
PIM status. Status 1, 5 and 6 are signals that the host interprets. Thus Inter-PIM
forwards them without any action. When the PIM status from one of the PIM units
changes to 2 (Data Send) or 3 (Data Receive), Inter-PIM interprets which PIM is
the destination and which one is the source from the same status registers. Then
it waits for the other PIM unit to enter the complementary status (either send or
receive) and handles the data transfer. When the handshake is performed, and the
threads start transferring data, Inter-PIM updates the local and the PIM unit status
to 4 (communicating), so the host is aware of the communication, and the PIM units
know when the transmission is occurring. Our design is generic in terms of PIM
architecture, which means it can be adopted by PIMs that implement either full
processors or simple FUs. It also performs regardless of the memory architecture or
technology, being it classical DRAM or memristor based.

4.2.2 Interconnection Device

There are three main types of generic interconnections: buses, crossbars, and
Network-on-Chips (NoCs) (PASRICHA; DUTT, 2008).

Bus: these are the simplest types of interconnects, used for decades in
industry due to their simplicity. The bus operates on a master-slave control scheme,
where only one master has access to the bus at a time. However, as one of the goals
of Inter-PIM is to provide simultaneous communication multiple input and outputs,
busses are not optimal for the Inter-PIM interconnect. Specially because the bus
throughput and bandwidth do not scale well with the number of devices connected
to it.

Crossbar: they consist of a matrix of switches and wires, interconnecting
inputs and outputs. When there is contention in the destination, an arbiter is
considered. Crossbars allow for more scalability and simultaneous communication
can happen between threads, as long as there is no contention for the output ports.
Crossbars select the inputs through MUTEX trees, and a large centralized arbitration
logic. The area and power overheads of these interconnects falls mostly on the long
wires connecting all of the inputs to all of the outputs (MATOS, 2014; PASRICHA;
DUTT, 2008).

44

Network-on-Chip: NoCs integrate a series of independent routers, respon-
sible for forwarding packages to one of five I/O ports, as shown in Figure 4.7a.
Arbitration happens in a distributed manner at each of the routers, allowing for
a more dynamic data flow to adjust to traffic contention (ANDERS et al., 2010).
Each router also contains levels of queues and buffers, allowing for communication
to be preempted, which is specially useful for allowing priority host access to the
memory. NoCs have been used in 3D-stacked memories due to their high bandwidth
and capability to deal with multiple transactions simultaneously (HADIDI et al.,
2018; MATOS, 2014; Hybrid Memory Cube Consortium, 2013). Furthermore, the
Instruction Manager can integrate seamlessly as one of the nodes in the network,
and have simple access to all PIM units, without interfering with the memory-host
data flow.

Since NoCs have been used in high-bandwidth scenarios, such as the Hybrid
Memory Cube (HMC) hardware, it makes sense that a NoC could be efficiently
used for Inter-PIM. Thus we selected the NoC as the interconnect to that enables
Inter-PIM.

4.2.3 Hardware Topology

For Inter-PIM to be compatible with regular memory accesses and Instruction
Manager oversight, it must allow reads from the memory to reach the memory bus
directly, having minimal interference in host-memory data transfer, and place the
IM in the path between memory and host.

Figure 4.6 – High level depiction of Inter-PIM hardware, with the IM as part of the
package.

8

DRAM DRAM DRAM DRAM

PIM UNIT
0x00

PIM UNIT
0x04

PIM UNIT
0x08

PIM UNIT
0x0C

DRAM DRAM DRAM DRAM

PIM UNIT
0x10

PIM UNIT
0x14

PIM UNIT
0x18

PIM UNIT
0x1C

INSTRUCTION MANAGER

8 8 8 8 8 8 8

Interconnect

From/To the Memory Bus

Inter-PIM

8

DRAM DRAM DRAM DRAM

PIM UNIT
0x00

PIM UNIT
0x04

PIM UNIT
0x08

PIM UNIT
0x0C

DRAM DRAM DRAM DRAM

PIM UNIT
0x10

PIM UNIT
0x14

PIM UNIT
0x18

PIM UNIT
0x1C

INSTRUCTION MANAGER

8 8 8 8 8 8 8

Interconnect

To the Memory Bus

Inter-PIM

D3[39:32]
D4[31:24]

D5[23:16]
D6[15:8]

D2[47:40]
D1[55:48]

D0[63:56]

D7[7:0]

8

M
em

or
y

M
od

ul
e

45

Figure 4.7 – Inter-PIM interconnect description.
(a) Inter-PIM interconnect as a 3x3 mesh NoC.

IM D1
[55:48]

D4
[31:24]

D3
[39:32]

D2
[47:40]

D5
[23:16]

D6
[15:8]

D7
[7:0]

R8

R3 R4 R5

R0 R1 R2

R6 R7

D0
[63:56]

(b) Interconnect I/O wires.

8

Interconnect D3[39:32]
D4[31:24]
D5[23:16]
D6[15:8]

D2[47:40]
D1[55:48]
D0[63:56]

D7[7:0]

IM

As shown in Figure 4.61, the first criteria is achieved by not having the
interconnect in the critical path of the bus. The second criteria is achieved by
simply maintaining the IM position in the bus, as would already happen without
Inter-PIM (SANTOS; FORLIN; CARRO, 2021b; SANTOS, 2019). Status updates
all happen through the interconnect, and data movement not requested by the host
can be blocked from reaching the memory bus by the Instruction Manager.

In Figure 4.7a we can see the NoC topology. The NoC is inspired by the
high-bandwidth NoC presented in (ANDERS et al., 2010). It consists of 9 routers
with internal crossbars, global arbitration, I/O buffers, and internal queue slots for
dynamic traffic pattern optimization. The NoC design is well suited for any multicast
configuration. A broadcast can happen by copying the packets and forwarding them
to all routers.

4.2.4 Overheads

To calculate the overheads for the Inter-PIM device with a NoC interconnect,
we can take the router design from a high-bandwidth NoC (ANDERS et al., 2010)
and scale the arbiter logic to the appropriate data width. Their 8x8 NoC design
implemented in a 45nm technology node resulted in a device with a die area of 6.25
mm2 with 64 routers. The router power consumption is dependent on the network
saturation, with a fully saturated NoC consuming 74 mW/router, while with 50%
saturation the consumption falls to 21 mW/router. The power consumption of the

1The control and address wires are not shown in the figures for simplification.

46

arbitration logic also varies with the saturation, resulting in 17% and 10% of total
router consumption, respectively.

In (ANDERS et al., 2010), the authors provide the relation of arbiter-width
to power consumption, and not to area. So for the area scaling, we simply recalculate
the number of routers in the network from the 8x8 grid to a 3x3 (64 routers to
only 9). This results in a reduction of more than 7× in the total interconnect area,
resulting in 0.87 mm2. As this interconnect is an off-chip (but still inside the memory
module) device, the area cost is difficult to compare. The original design used 512
bit-wide arbiter logic in the routers and each router in Inter-PIM has a data-width
of 8 bits, a reduction of 64×. Thus, we scale the router power consumption due to
the reduction in arbiter logic size as:

P Sat
8 = P Sat

512 · 0.17
64 + P Sat

512 · 0.83 = 61.6 mW/router (2)

P 50%
8 = P 50%

512 · 0.1
64 + P 50%

512 · 0.9 = 18.93 mW/router (3)

For the total power consumption of the Inter-PIM interconnect we simply
multiply the number of routers for each scenario. The results are presented in
Table 4.1.

Table 4.1 – Area and power overheads for the 3x3 NoC interconnect @45 nm.
Traffic Total Power (W) Total Area (mm2) Latency (ns)

Saturated 0.55 0.87 1.350% 0.17

Finally, we calculate the extra latency added to the system. Without enter-
ing in the details of the routing algorithm, Quality of Service (QoS), and device
positioning, we can only have a rough, worst case estimate of the actual costs. We
do this by taking the result from the original NoC proposed by Anders et al. and
scaling it down to our NoC. The original NoC could transmit a burst of 512 bits
from corner to corner in 11ns. As our NoC is smaller both in number of hops from
corner to corner (33% smaller) and in burst length (512 to 64 bits), we consider a
simple scaling that takes in to account the reduction of packet size as a first order
approximation of the worst case. Thus, we consider the delay added by Inter-PIM to
be 1.3 ns for 64-bit transmissions.

47

4.3 Memory Access Power

To evaluate the power consumption overheads of the Inter-PIM solution,
we first must understand the costs of moving data without it. Many works have
evaluated power performance of DRAM chips (SESHADRI et al., 2013; GHOSH;
LEE, 2007; GHOSE et al., 2018; AHN et al., 2012). DRAM power consumption can
be divided in two parts, static and dynamic power. Static power comes mostly from
peripheral circuits, transistor leakage and refresh operations. Dynamic power is a
two step process, activate-precharge and read-write operations. Activate-precharge
power comes from decoding addresses, and opening and closing rows inside the
chip. Read-write power comes from reading or updating data in the column-level
operations, this includes transferring control and data signals through the memory
bus and chip-to-chip I/O (AHN et al., 2012). We modify the highly detailed power
consumption model for a DDR4 memory from a Micron datasheet (MICRON, 2017)
to suit our analysis. As communication between PIM units will still have to access
the DRAM chips and the per-chip data transfer is still the same, we modify the
formula so that the number of active devices DA stays in evidence. So the total
memory power PM is given as:

PM = Pstatic ·DT +DA · (PW R + PRD + PACT) + PIO ·Bw (4)

Where Pstatic is the accumulated power demand of keeping the chips on, the
memory bus connected and the memory refreshing, DT is the total number of memory
chips, PW R is the power required for writing to the DRAM columns, PRD is the
power required for reading from the DRAM columns, PACT is the power required to
activate the rows in the DRAM chip, PIO is the power consumed by data moving
through the bus and through the pins, it is dependent on bus width Bw. As stated
before, the internal power consumption of each memory chip remains the same, thus
we can take this values directly from the specification provided by Micron, as shown
in Table 4.2.

The Inter-PIM device coupled to a DIMM shares electrical characteristics to
a Load Reduced Dual In-line Memory Module (LRDIMM). This means the load in
the bus is less dependent on the module implementation and the number of devices
connected to the bus. Data is driven through the bus from the memory controller
on writes and from the Inter-PIM device on reads. This means the system behaves

48

Table 4.2 – Power consumption for each component, calculated with data from Micron’s
8GB DDR4-2666 Data Sheet (MICRON, 2017).

Power Component Power (mW)
ACT 153.9
RD 64.6
WR 35.3
Static 85.5

as a point-to-point system. The energy for driving the signals through the bus
(PIO) is system-dependent, and there are different manners to implement the DDR4
JEDEC standard (JEDEC, 2012). For this analysis, the bus impedance is composed
of the driver impedance and the termination impedance, where Rdrvr = 20 Ω and
RT = 47 Ω, thus Rbus = 67 Ω (Values referenced from (NXP, 2016) for an SDDR4
memory interface).

Rbus = Rdrvr +RT (5)

Two methods can be used to calculate the power consumed by the driver
sinking and sourcing current (MICRON, 2017). The first is an accurate simulation of
the data bus components on SPICE, with a sufficiently long pattern of pseudo-random
data. The second, is to calculate the DC power of the driver against termination.
This method is simpler and yields smaller results than the worst-case (MICRON,
2017; NXP, 2016). We use the values presented in a technical document presented
by a DDR memory interface manufacturer (NXP, 2016). From this document, we
get that the source(IRD) and sink(IW R) currents for a DDR4 interface are 10 mA
and 11.3 mA, respectively. We can calculate the read and write power consumption
on each bus lane by using the following equations:

PR = I2
RD ·Rbus = 10 mA2 · 67 Ω = 6.7 mW (6)

PW = I2
W R ·Rbus = 11.3 mA2 · 67 Ω = 8.56 mW (7)

PIO = PR + PW = 15.26 mW (8)

49

Figure 4.8 – Breakdown of the total memory power consumption by its components.

I/O
26.5%

ACT
33.4%

Static
18.5%

RD
14.0%

WR
7.7%

Now, using these values and the values from Table 4.2 on Equation 4, assuming
DT = DA = 8 and Bw = 64:

PM = 85.5 · 8 + 8 · (35.3 + 64.6 + 153.9) + 15.26 · 64 = 3, 690 mW (9)

We are interested in evaluating the power drawn from the entire system,
independently if the memory module generated the consumption. Figure 4.8 shows
a breakdown of the power consumption by the individual components of Equation 4.
More than a quarter of the total power is dedicated to I/O, this value is well above
the calculated in the Micron reference material (MICRON, 2017). This increase is
mostly due to the inclusion of memory controller driver in the PIO calculation.

There are some notable changes when the data copy does not need to happen
through the memory bus. First and foremost, due to avoiding moving data off-device,
PIO is absent from the Inter-PIM power consumption, which immediately yields a
26.5% decrease in power consumption. Thus we are no longer calculating power
consumption for accessing a different device, but two chips in the same module. Also,

50

the number of active DRAM chips (DA) is reduced to the number of active threads
involved in communication. Thus, we can rearrange Equation 4 as:

P Scaled
MP = Pstatic ·DT +DA · (PW R + PRD + PACT) (10)

We can exemplify with a scenario where only two threads are communicating,
which improves in 4× the dynamic energy from accessing memory (RD + WR +
ACT) . This result is inline with the one found in (AHN et al., 2012), where DRAM
chips could be accessed in smaller groups. If we recalculate this partial memory
power consumption with these parameters (P 2

MP), we arrive at only 1.19 W. This
totals a 2.5 W power saving, or a reduction of 3.1× in power dissipation on the
DRAM alone.

P 2
MP = 85.5 · 8 + 2 · (35.3 + 64.62 + 153.9) = 1, 190 mW (11)

This estimate only serves as a gross approximation of a real-world device
power consumption, as it is known that DRAM devices power specifications are not
reliable (GHOSE et al., 2018). Furthermore, this analysis ignores the consumption
of sending DRAM commands through the bus, as well as ignoring the costs of the
memory controller internal logic.

4.4 Processor and Cache Energy

Inter-PIM will not save energy only on DRAM data transfers, but on the
processor caches and logic as well. As shown in Section 4.1, for the host to access
a DIMM-like PIM unit, it must read from the entire PIM device. The host needs
to read an entire cache line, access each individual word, shuffle the data, and then
write the cache line back to memory, as shown in Figure 4.1.

We can measure the impact this procedure has on the host by implementing
a simple test, as shown in Appendix A. The test code loads data (DRAM rows)
from the main memory in chunks of 64 bytes. For this device with 8 DRAM chips,
each chip contributes with 1 kB of data to the row. By accessing an entire row,
1 kB of data moves from one chip to another. Data is flushed out of the caches
before being loaded, this operation is not accounted. We use Streaming SIMD
Extensions (SSE) intrinsics to perform the temporal load operations more efficiently,

51

using non-temporal stores to avoid the caches on the way back to the main memory.
The code is instrumented using the host Hardware Performance Counters (HPC) to
evaluate performance metrics. The host system used is shown in Table 4.3. With it,
we collect hardware metrics to show the impact of data movement inside the host.

Table 4.3 – Host System used in the data movement test.
OS: Ubuntu 18.04.4 LTS
Baseline/Host Intel i5 - 7600 @ 3.5GHz
Cache per Core L1 = 32kB; L2 = 1024kB; Last Level Cache = 6MB;
Main Memory DDR4 1x16GB 2400MHz CL16;

The results from this test are shown in Table 4.4. From the hit/miss counters
alone it seems that most of the impact of the data transfer stays located to the
L1 cache. There are very few misses on the L1 and L2 caches, even fewer hits on
the L2 cache, and no hits or misses in the L3. Non-temporal stores guarantee that
the L3 cache is not touched on the writes. Thus we can deduce that the loads are
also skipping the L3 cache. This behavior is expected, as this processor contains a
non-inclusive cache, that behaves as a victim cache on this application. The L2 hit
and miss metrics refer to a cache line, so we can approximate the data requests by
multiplying the counter results by 64 bytes, as shown in Table 4.4. We can see that
these metrics do not seem to scale with the data.

There are two extra components to cache access, the L1 and L2 prefetcher re-
quests. These can be accessed via the PF_REQSTS and L2_RQSTS_PF_HIT
counters. PF_REQSTS stands for the total prefetch requests originating from the L1
and L2. The L2_RQSTS_PF_HIT counter represents the amount of L1 prefetcher
requests that hit the L2 cache. With these counters, we can extract the number of
requests each prefetcher made. These values are also shown in Table 4.4 scaled for
the cache line size (64 bytes).

Table 4.4 – Collected metrics from executing data transfer between DRAM chips with 106

repetitions
Data Size Cycles L1 hit L1 Miss L2 Hit L2 Miss L1 Pref. L2 Pref. L3 Miss/Hit
8kB 31,229 9,971 320 192 320 11,456 7,552 0
16kB 61,901 19,946 576 256 384 22,080 15,040 0
24kB 96,031 29,921 768 256 576 32,384 22,720 0
32kB 125,366 39,895 832 256 704 44,736 30,272 0
40kB 158,611 50,025 1,216 256 832 53,888 37,824 0
48kB 188,141 59,835 1,216 448 1,024 65,152 45,568 0
56kB 216,274 69,823 1,280 448 1,088 75,328 52,928 0

Bytes

52

By plotting the total cache access for different data transfer sizes (Figure 4.9),
we see that the L1 hits and Prefetchers compose most of the data movement in the
caches. This total access also scales linearly with the size of the transfer and the
amount of cycles spent. This indicates that the L1 and L2 prefetchers identified the
access pattern and are bringing data to the cache. Thus, we can deduce that the L2
prefetcher brings data into the L2, which then the L1 prefetcher brings back to the
L1.

With this data in hands, we can see that even though misses in L1 and L2
are not counted in the counters, data is being brought in by the prefetchers. Thus,
we can create an equation that uses the most significant cache access components
for this type of data movement inside the processor:

EHC = EHit_L1 ·NHit_L1 + EP F _L1 ·NP F _L1 + EP F _L2 ·NP F _L2 (12)

Where EHC is the total host data movement energy, EHit_L1 is the energy cost
of accessing and moving a word from the L1 to the registers, NHit_L1 is the number
of L1 hits. EP F _L1 and EP F _L2 represent the energy of prefetching (hardware +
data movement + cache access) a cache line to the L1 and L2, respectively. NP F _L1

and NP F _L2 are the number of cache lines prefetched. We can extract the number of
accesses from Table 4.4. These energy costs are not documented and experimentation
to retrieve them is cumbersome. Thus, we rely on the experiments made by (KESTOR
et al., 2013) to extract these values. Their experiments were made for a different

Figure 4.9 – Size of each type of cache access for different data transfers.

Data Size

To
ta

l C
ac

he
 A

cc
es

s
(k

B
)

C
yc

le
s

0

30

60

90

120

150

180

210

0

32000

64000

96000

128000

160000

192000

224000

8kB 16kB 24kB 32kB 40kB 48kB 56kB

Cycles L3 Miss/Hit L2 Prefetcher L1 Prefetcher L2 Miss L2 Hit L1 Miss L1 hit

53

Table 4.5 – Energy consumption for data access and movement. Extracted from
(KESTOR et al., 2013).

Energy (nJ)
Hit_L1 1.11
PF_L1 3.65
PF_L2 11.24

processor, on a different technology and microarchitecture. We consider these values
as a first order approximation for the actual energy costs, as shown in Table 4.5.

Using these values with Equation 12 for 1 kB data transfer between DRAM
chips (8 kB accessed data), we arrive at a per core energy cost of 13.5 µJ . This
analysis does not take in to account the energy spent on the SIMD units to shuffle
data, nor does it take in to account stalled core cycles. This also fails to take in
to account other secondary drain of energy in the core. The objective here is to
show a lower bound energy cost of a processor core transferring data between PIM
units. This extra energy will not be spent if the PIM can transfer data directly. If
the host is required to execute other tasks concurrently, the extra memory accesses
will pollute the caches, busy the prefetchers, and lower overall efficiency for the host
application.

To provide a counterpart upper bound for this analysis, we measure the Model-
Specific Registers (MSR) from the Running Average Power Limit (RAPL) interface.
These registers provides a clean interface for energy measurements in the CPU
package. However, they are not actually measurements, but rather an approximation
made on the fly by an on-chip model. While accurate on the CPU measurements,
they tend to present energy offsets on the DRAM measurements (DESROCHERS;
PARADIS; WEAVER, 2016). By executing the same tests with the RAPL interface,
we arrive at an estimated per core energy cost of 73.24 µJ for 1 kB of transferred data
between DRAM chips. As we made little effort to minimize background processes on
the measured core, this estimate acts as an upper bound for a busy system.

Taking the results from Equations 4, 11, and the per core energy cost, the
total energy cost for the host system to handle 1kB of inter-thread communication
(EComm) is given as:

EComm = EHC + PM · CyclesT ransfer

f
(13)

Where we multiply the memory power consumption by the number of cycles
over frequency spent transferring data. For 31, 299 Cycles at 3.5 GHz we get

54

the lower bound communication energy El
Comm = 46.5 µJ , and the upper bound

communication energy Eu
Comm = 106.24 µJ . In Section 6.2 we will demonstrate the

total energy gains of using Inter-PIM compared to the host for different number of
threads and in Sections 6.3 and 6.4 the energy consumption for different applications.

55

5 BUILDING A SIMULATOR

Not all PIM designs are created equally, and most simulators available can
handle only a tiny subset of these (Oliveira et al., 2017; Xia et al., 2018; Leidel;
Chen, 2016). The simulation must be aware of the OS and the underlying hardware
to handle a multi-thread application in a multi-core environment accurately. Some
simulators include the hardware and a virtualized operating system, while others
simulate only the PIM device and use the complete host system. Simulators such
as gem5 (BINKERT et al., 2011) and SiNUCA (Alves et al., 2015) can simulate
entire micro-architectures with an elevated level of accuracy. SiNUCA (Alves et
al., 2015) is a trace-based simulator, which uses traces generated on a real machine.
The simulator has accurate descriptions of the hardware components down to the
processor’s pipeline. However, it can not simulate the interactions with the operating
system and other processes. The simulator also suffers from the flaws of other trace-
based simulators in that the benchmark can not interact with simulated hardware,
as the traces have already been collected.

Researchers have used the gem5 (BINKERT et al., 2011) simulator to evaluate
a set of applications under different hardware configurations, making this setup perfect
for hardware-software co-design. The simulator is divided into several independent
modules, coupled and decoupled to test different combinations. However, this
modularity and broad configuration options create a notoriously steep learning curve
for using the gem5 environment. While the code maintainers strive to improve
usability, testing disruptive new hardware such as PIM units on the simulator can
prove a hurdle, even for simplistic experiments.

A faster alternative is to use PinTools (LUK et al., 2005). Utilizing trace
files containing cycles, memory access, and data as input for basic processor and
memory hierarchy models, acting much like SiNUCA, the tool can interpret each
issued instruction. PinTools’s huge instrumentation overheads prohibit direct code
measurements and gem5’s extensive simulation times and barrier of entry. None of
these simulators can handle threaded applications with native system calls. Baremetal
simulators as (Alves et al., 2015) can not simulate OS-level thread scheduling and
system calls, while gem5 based simulators still face long simulation times and added
virtualization overheads.

56

Figure 5.1 – Simulators scope when considering system integration. Many more examples
exist in all categories.

Host PIM
CIM-SIM

MNSIM
PIMSim
HMC-SIM 2.0

CLAPPS

 Sinuca

gem5

System Simulators PIM Simulators

Sim²PIM Host CodeSim²PIM Actual
Simulation

However, even with limited support from simulators, multi-thread applications
are a majority in high-performance computing applications. Thus, the need arose for
simulators capable of handling multiple memory stacks at the host and PIM sides.
Developed explicitly for this purpose, MultiPIM (Yu; Liu; Khan, 2021), based on
two other simulators (SANCHEZ; KOZYRAKIS, 2013; Kim; Yang; Mutlu, 2016),
can simulate a multi-stacked-memory PIM device. The simulator offloads POSIX
and OpenMP threads, mapping them to the PIM hardware, maintaining coherence
between cores, and a PIM-side task scheduler. It can therefore handle multi-thread
applications on the PIM side. However, the simulator utilizes Intel’s PinTool (LUK et
al., 2005) based instruction feeding mechanism, which interprets each instruction in
the virtual environment at run-time. The program must then simulate all the metrics
in a virtual environment, bearing a long simulation time. Figure 5.1 summarizes the
current academic simulation ecosystem. Current PIM architecture simulators are
either architecture-specific (Leidel; Chen, 2016) or rely on system simulators (Oliveira
et al., 2017; BINKERT et al., 2011; Alves et al., 2015) or other tools with a heavy
overhead (XU et al., 2018). Finally, simulators for newer technologies are incomplete,
as they do not try to simulate a fully connected system (Xia et al., 2018), and
again rely on tools presenting a heavy overhead (BANAGOZAR et al., 2019). PIM’s
current simulation ecosystem lacks a low-overhead solution capable of providing
system integration with coherence and code offloading mechanisms, together with
virtual memory capabilities, which does not rely on full-fledged system simulators.

57

5.1 Sim2PIM Framework

The main focus of development during this dissertation, Sim2PIM (SANTOS;
FORLIN; CARRO, 2021c) evolved from a single-thread PIM simulator, to a full-
fledged multi-thread capable PIM simulation and instrumentation framework. The
Sim2PIM framework presents a high accuracy, low overhead, low execution time, and
quick to implement simulation. These qualities place the Sim2PIM framework in
stark contrast to other current simulation methodologies like full-system (BINKERT
et al., 2011; Alves et al., 2015) and trace-based simulators (Alves et al., 2015; XU et
al., 2018; Oliveira et al., 2017; BANAGOZAR et al., 2019).

With Sim2PIM, the application is integrated and controlled by the framework,
in an inversion of control, to become a single executable that can run natively on
the host terminal. This allows Sim2PIM to use host hardware for executing host
instructions and the PIM-simulator for PIM instructions. Thus, Sim2PIM execution
consists of a mix of instrumented host code and simulated PIM hardware, where the
entire stack of the host is available to the application and can be used natively (e.g.,
OS, libraries, drivers). Moreover, the framework is designed with multi-threaded code
execution in mind, allowing for parallel applications to actually access multi-core
hardware and software resources. This support is built around the pthread library,
allowing for the library’s complete functionality, including synchronization capabilities.
Therefore, Sim2PIM does not have to replicate or emulate this functionality. Other
current simulators presented in the literature must simulate performance metrics,
while Sim2PIM delivers the host’s HPC as the most accurate baseline possible
for real hardware. The simulator makes smart use of the host HPC to integrate
code instrumentation directly with application code. This allows Sim2PIM to add
functionality to the application environment and control even fine-grained PIM
interaction with host hardware. Furthermore, by running natively, Sim2PIM makes
use of the OS, with its libraries, kernel calls and any other native element. This
integration between native application and the PIM can be added automatically
by the instrumentation tool, or manually by invoking Sim2PIM as an API. The
Sim2PIM framework provides:

• Hardware Prototyping Flexibility - The PIM-simulator modularity allows
the developer to deal with PIM hardware and its design independently from
the application and instrumentation. The framework allows the designer to

58

experiment different PIM designs and their interaction with different host
resources, including multiple cores and multiple processors.

• Fast PIM Prototyping - The framework provides a flexible abstraction
level, allowing the developer to decide the simulation level of detail during
development, including hardware description language, PIM technology, and
architecture. Since host integration is guaranteed, this leads to a fast imple-
mentation time.

• Fast Application Prototyping - Sim2PIM also allows the developer to
quickly experiment with multiple software-side techniques to improve PIM
performance (e.g., number of threads, thread scheduling, data organization,
thread throttling, and even DVFS). This possibility is easily supported as the
framework integrates natively with C code and its libraries.

• Fast Execution - Since the framework runs native host code on the host pro-
cessor, and simulates only the PIM side, its performance is directly dependent
on the level of detail and complexity of the PIM design.

• Host Independence - PIM designs are expected to be coupled with different
hosts (e.g., Intel, AMD, ARM). This work allows experimenting PIM adoption
in any system by running native code on the native host processor.

• Host Metrics - Sim2PIM allows access to real metrics provided by the host’s
HPC. Hence, it is possible to evaluate the impact of the PIM design on the
entire system based on the metrics available to the host.

Sim2PIM minimizes overheads when not simulating PIM instructions. As will
be shown in Section 5.8, it achieves execution speeds similar to performance profiling
tools such as perf on host code, with as little as 10% run-time overhead and less than
2% metrics difference for most applications. Additionally, utilizing the host hardware
and OS resources allows Sim2PIM to simulate multiple PIM threads concurrently,
exploring natural parallelism for the tested applications, achieving more than 8×

simulation speedup compared to a sequential simulation and orders of magnitude
compared to other simulators.

The Sim2PIM framework operation is composed of two different phases, offline
instrumentation and online execution. The offline phase contains the instrumentation
parser, responsible for inserting instructions in the PIM’s application assembly code.
This is accomplished with a low, and more importantly, known overhead, as is shown
in Section 5.2. The online phase is composed of several functionally separate modules.

59

It integrates the offline phase output, the backbone, and the PIM-simulator interface.
An overview of the modules is shown in Figure 5.2. We also present Sim2PIM call
graphs in Appendix B, in Figures B.1, B.2, B.3, and B.4.

Figure 5.2 – Overview of Sim2PIM modular components and execution phases.

Interfaces

Backbone PIM-Simulator

Meta-data

Memory InputPIM-Code

Instrumentation
(Offline)

Execution Components
(Online)

Parser Instrumented
Application Thread_0()

PIM
Control

Thread_N()

PIM Metrics

Buffer

Sim2PIM strives in software-hardware co-design by not hampering software
development and providing a clean interface for any level of PIM simulation. For
example, if the PIM-simulator is implemented as a timing-aware functional simulation
written in C language, the use flow of Sim2PIM is as follows:

1. Generate PIM code assembly (e.g., using a PIM compiler (AHMED et al.,
2019)).

2. Parse the assembly with the instrumentation tool (in blue Figure 5.2).
3. Compile the Sim2PIM backbone (in yellow Figure 5.2).
4. Compile the PIM-simulator (in green Figure 5.2).
5. Link the instrumented assembly with the backbone and PIM-simulator.
6. Execute the binary.

If the application software needs to be rewritten, only the instrumented
assembly must be generated again. When a hardware detail must be changed, the
PIM-simulator can be modified and re-linked to the rest of the framework. For the
scenario described, Sim2PIM usage does not differ from compiling a program with an
ordinary compiler to run on the terminal, as the entire simulation becomes a binary.
Sim2PIM supports pthread, as it is the lowest level API for multi-threading. It could
also be extended to other multi-processing paradigms.

60

5.2 Instrumentation

Sim2PIM leverages a static instrumentation tool, namely a parser. The role of
the parser is to replace the original explicit PIM instruction, code annotated section,
or block call, with a representative code offloading method according to the PIM
code offloading design (SANTOS; FORLIN; CARRO, 2021a; SANTOS et al., 2019;
ALVES et al., 2016; NIDER et al., 2021; LEE et al., 2021). This arrangement allows
for the user to determine and measure the impact of the experimented code offloading.
It also replaces pthread, with the Sim2PIM interface API to allow simulation support
for multi-threaded applications.

Lines 3 and 11, in Listings 5.1 and 5.2 respectively, exemplify a parsed PIM
instruction, adopting a simple store as code offloading method. The PIM_LOAD
in this operation represents the original PIM instruction/macro/basic block. This
register is then saved to a memory position (e.g., a memory-mapped PIM unit),
which the simulator knows and has access to. Like Pin (LUK et al., 2005), the
parser saves and restores registers according to calling conventions and adjusts stack
pointers to avoid overlapping data addresses in the stack, as illustrated in Listing 5.2.

Listing 5.1 –
Original x86+PIM Code Snippet - Annotated or Compiled

1 movq %rax , %r14

2

3 PIM_LOAD 32512(%rbx , %rax), % PIM_REG_0

4 ;PIM instruction

5

6 addq $2048 , %rax

Contrary to Pin’s dynamic instrumentation, the instrumentation is static,
so it can be done beforehand, avoiding Pin’s severe Just-In-Time (JIT) execution
overheads (LUK et al., 2005; XU et al., 2018). Due to the modular nature of
the framework and the application being instrumented separately, Sim2PIM avoids
linkage errors. The interface API calls can be inserted automatically by the parser
or manually by the programmer in the original C code. For basic tests inserting the
interface API directly might prove faster. However, as the application code grows

61

larger, it becomes easier and more reliable to use the parser. The currently available
interfaces represent the most basic functionality of Sim2PIM.

Listing 5.2 –
Parsed x86+PIM Code Snippet

1 movq %rax , %r14

2

3 subq $120 , %rsp ; Adjusting Stack Pointer

4 pushq %rax ; Saving registers

5 pushq %rbx ; Saving registers

6 pushq %rcx ; Saving registers

7 pushq %rdx ; Saving registers

8 pushq %rdi ; Saving registers

9 pushq %rsi ; Saving registers

10

11 movq PIM_LOAD_OPCODE , %rcx ;read PIM instruction as a string

12 movq %rcx , (GLOBAL_VAR_PIM_INST) ;PIM Instruction is emitted

to the simulator

13 leaq 32512(% rbx , %rax), %rcx ;PIM memory access calculation

in case of LOAD/STORE

14 movq %rcx , (GLOBAL_VAR_PIM_INST_ADDR) ;PIM memory access

address is emitted to the simulator

15 callq PIM_interface ;PIM interface call (Section 5.2)

16

17 popq %rsi; Recovering registers

18 popq %rdi; Recovering registers

19 popq %rdx; Recovering registers

20 popq %rcx; Recovering registers

21 popq %rbx; Recovering registers

22 popq %rax; Recovering registers

23 addq $120 , %rsp ; Adjusting Stack Pointer

24

25 addq $2048 , %rax

5.3 Interfaces

The role of the interfaces is to add functionality to the application code with
the least amount of interference as possible. This is accomplished in two ways: first,

62

Figure 5.3 – Creation of threads before instrumentation (left) and after (right).

Application

pthread_create()

Application

create_interface()

pthread_create() Setup_Thread()

Thread()

Thread()

Calls function

Spawns thread

code and memory accesses inside the interfaces are kept to a minimum, avoiding too
much interference with the caches. Second, as will be discussed in Section 5.4.1, the
interfaces efficiently use the HPC to avoid measuring their overhead.

PIM_interface: This interface is inserted right after PIM instruction of-
floads or annotated PIM blocks. The PIM_interface serves as the output of the
application environment. It contains the logic required to retrieve the PIM in-
structions and memory access addresses. This information is offloaded from the
application to the backbone through a non-blocking software FIFO buffer, discussed
in Section 5.4.3. The only scenario where this interface presents blocking behavior
happens when the host and PIM need to synchronize, discussed in Section 5.6.

create_interface: We encapsulate the original pthread_create calls in ap-
plication code by directly changing the function call, with the same inputs. As will
be shown in Figure 5.5, this wrapper dynamically allocates a new physical core for
the thread during the execution, and then measures the pthread_create with the
performance counters. It substitutes the thread function with a dedicated thread
launcher function, which is responsible for executing the performance counter setup
for the new thread before it is launched (Setup_Thread), as shown in Figure 5.3.

join_interface: Much like the create_interface, this function encapsulates
calls to pthread_join function. The pthread_join function is a blocking interface
that awaits the end of the issued thread. Due to its blocking behavior, measuring
the performance counters when the thread stays blocked is pointless, as simulated
and executed metrics are distinct. Thus, this wrapper’s role is to avoid measuring
the blocking behavior, as will be shown in Figure 5.5.

63

5.4 Backbone

Sim2PIM online phase tries to isolate the application, backbone, and PIM-
simulation in different physical cores for higher simulation speed and precision. Not
only does this provide more accurate metrics for the application isolated from the
simulation environment, but it also allows for any application threads to actually
execute in parallel. The backbone contains Sim2PIM entry-point. It is responsible
for generating the multi-thread infrastructure in which the entire simulation will
execute. There are inherent advantages to using multiple threads in the simulation
environment. Since the application, the backbone, and the PIM-simulator are all
threads in the same program, they can easily share the same memory space. Thus it
is trivial for the PIM to operate over the target application data as if both PIM and
data were physically on the same memory device. This allows simulating PIMs that
reside on the system’s main memory or accelerators in a specific memory device (by
adjusting the data movement overheads).

Additionally, the host’s cache hierarchy guarantees cache coherence for the
simulation data. The process described in (SANTOS; FORLIN; CARRO, 2021a)
can be used to implement the coherence and virtual memory support in unmodified
hardware, or the simulator could be coupled with other methods of cache coher-
ence (BOROUMAND; GHOSE, 2016). The backbone is responsible for several
housekeeping tasks and interfaces, including environment setup, application thread
management, instruction and data buffers, and PIM-simulator and application inter-
faces. It also contains the low-overhead assembly functions responsible for calling
the HPC, and the output functions responsible for delivering the final metrics.

5.4.1 Precise measurements

The HPC are overflow counters. This means one must acquire the difference
between two consecutive measures instead of an absolute value. Sim2PIM makes
use of inline functions to call the rdpmc instructions directly. These instructions
take as input the configured HPC register and an output register. Multiple threads
can share a core, so the return values of the rdpmc instructions are stored in a
per-thread data structure. The usage of the counters is straightforward. At the
beginning of a backend code segment, the counter values are collected with a STOP

64

COUNTERS call. When the backend code ends, the counter values are collected
with a RESUME COUNTERS call. The values subtracted from subsequent
resume-stop calls represent the measured code, the application space. Backend code
effectively runs in a blind spot of the measurement functions, which we call the
Sim2PIM space.

There are multiple HPC available for any given host, such as retired in-
structions, unhalted cycles, cache misses/hits, among others. Sim2PIM avoids over-
engineering a solution to this multitude of possibilities by providing a clean, uniform
interface through a user-defined configuration file. The counters themselves can be
configured beforehand for any host architecture.

5.4.2 Environment Setup

Sim2PIM flow for a single-threaded application occurs as in Figure 5.4. We
can see that the application space (dashed lines) contains the original application
code, while the rest of the framework resides in Sim2PIM space. The following steps
are executed in this part of execution:

Figure 5.4 – Interfaces and overheads of offloading data from the application to
PIM-simulation. The functionality encapsulated by Sim2PIM space is the executable,

while the Application Space is the original application code.

Sim²PIM

Warm-Up

Start
HPC

PIM-Interface

Create PIM-Control
Thread

Write to
Buffer

Time

Stop
HPC

Resume
HPC

Counted
Metrics

Application
Space

Uncounted
Metrics

Backend
Overhead

Instrumentation
Overhead

Config
Counters

Sim²PIM
Space

65

CONFIGURE COUNTERS: At the start of the simulation, the configu-
ration file is read, and the counters are selected for the simulation (run time defined
as command-line inputs). There is no need to recompile the simulator for using
different active counters, and more than one counter can be used simultaneously.
However, they will be triggered sequentially to access multiple counters at once,
which reduces the precision due to compounding overheads. This feature is helpful
for when an extended test run is required, and a trade-off between losing accuracy
in some metrics and a smaller number of total executions is acceptable.

WARM-UP: Different hosts and compilers may result in different measure-
ments and generated code. Considering the relevance of precise metrics, this module
executes several back-to-back HPC calls to collect the instrumentation overhead.
These overheads include the serialization instructions inserted on each HPC call (as
is shown in Section 5.2) and the instruction overhead required to read the HPCs.
In Figure 5.4 the measured overheads for instrumentation are represented before
and after the PIM-interface (green in Figure 5.4), and the HPC calls overheads
before each counter invocation (orange in Figure 5.4). The values extracted here are
subtracted after each call in Sim2PIM space.

CREATE ENVIRONMENT: Sim2PIM tries to isolate the simulation
from the user application to provide more accuracy for the hardware counters by
reserving a physical core for the PIM-Control and another one for the PIM-simulator.
The rest of the host’s cores remain free for the user’s application. This approach
reduces the interference in the data and instruction caches, hence allowing more
precise measurements.

5.4.3 Communication Buffer

PIM devices that connect with unmodified host processors through the
memory channel do not have 2-way communication; hence the PIM can not directly
write on processor cache memory and registers. This induces PIM designs to operate
asynchronously from the host akin to the main memory device, which means the
host does not block on PIM instructions.

When a single-thread application interacts with the PIM-simulator, the
instruction offload throughput from the host might not be enough to keep the PIM-
simulator fully occupied. However, as more threads offload to the PIM-simulator,

66

there will be contention on the input-side and a bottleneck on the output. This can
happen because one core is responsible for simulating PIM instructions delivered
from many cores. Although this is an exclusive simulation bottleneck, it may
cause contention on the host side, artificially reducing the PIM instruction offload
throughput and the host’s native instruction execution.

To mitigate this effect in the multi-threaded architecture of Sim2PIM, the
PIM-interface writes a data structure to a non-blocking FIFO buffer. Each thread has
its row in the buffer, so they do not contend between themselves. The data structure
written contains instructions, data addresses, and any other meta-data Sim2PIM has
access to, including current performance counter values. The non-blocking buffer is
implemented with atomic primitives to avoid costly system calls. On the other side
of the buffer, the PIM-Control retrieves the data structure from all the threads and
offloads them to the PIM-simulator as needed.

As shown in Figure 5.4, when the application code calls the PIM-interface,
the HPCs are sampled, and the code is now in Sim2PIM space. Thus, it can interact
with the instruction buffer without the risk of interfering with host metrics. When
the PIM-interface is done with the buffer, the counters are resumed, and the code
returns to application space.

5.4.4 PIM-Control Interface

The PIM-Control Interface is responsible for reading the data buffer, invoking
the PIM-simulator, and collecting its metrics. It is worth noting that any PIM-
simulator that fulfills the interface requirements can be coupled to this interface,
especially those that take trace-files as inputs (XU et al., 2018; Oliveira et al., 2017;
Alves et al., 2015; BANAGOZAR et al., 2019; Xia et al., 2018; Leidel; Chen, 2016).
As shown in Figure 5.2, the PIM-Control Interface feeds three types of input to the
PIM-simulator, meta-data, PIM instruction, and data addresses. Meta-data outputs
consist of those originating from the instrumentation. These can include any metrics,
including the cycle in which the PIM instruction was issued or the number of cache
misses. The instruction and address outputs are the data that would typically exit
the host processor core and go through the memory bus to the PIM.

67

Figure 5.5 – Overhead diagram for a multi-thread application on the Sim2PIM with the
Hardware Performance Counters (HPC).

Start
HPC

Start
HPC

Application Thread 0

Time
Counted
Metrics

Simulated
Metrics

Backbone

Start
HPC

Create
Thread

Create
Thread

PIM Simulation Thread

Join
Thread

Join
Thread

PIM
Interface

PIM
Interface

End
HPC

End
HPC

Backend
Overhead

Instrumentation
Overhead

Sys Call
Metrics

Uncounted
Metrics

Application Thread N

Sim²PIM
Space

Call App

C
or

e
3

 C
or

e
2

 C
or

e
1

 C
or

e
0

5.5 Application Thread Management

As shown in Figure 5.5, the application itself is a function to be called in
the backbone between instrumentation sections. For the simulation of a multi-
thread application, each thread will perform its backend calls. As each core has its
performance counters, we must ensure that the threads do not migrate cores, which
would result in a wrong calculation of the metrics.

If the number of threads is greater than the number of available cores,
Sim2PIM can offer two distinct strategies: 1) it can allow for all the threads to be
launched by the main thread and dispute core time with each other. This approach
would enable the OS to optimize thread context switches and simultaneously keep a
more significant number of threads alive. Alternatively, 2) it can allow the execution
of only one thread per physical core at a time. Thus, this solution provides the
best accuracy for individual threads, even allowing for better profiling of the PIM
instructions.

As shown in Section 5.3 pthread_create() and pthread_join() functions are
replaced by the interface functions, create_interface and join_interface respectively.
These interfaces wrap around the pthread call functionality, adding the capability of
setting the core affinity, marking the physical core as in-use (if using the strategy
mentioned above 2)), and acquiring metrics before the start of the thread function
itself. Inside the create_interface function, the only measurement made is around
the original pthread_create() call. We make sure to measure the thread’s launch, as

68

this can pose a significant overhead in multi-thread applications, shown in Figure 5.5
as Sys Call Metrics.

Each thread counts its metrics, and we assume all the threads are alive
simultaneously. For all metrics, core/thread-wise metric counts are available. Only
the largest value is considered to the final count for the total program elapsed-cycles
and elapsed-time metrics, as it is the bottleneck for program conclusion. The interface
function around pthread_join() guarantees the waiting time for the simulations to
end is not counted on the benchmark’s main thread metrics, as shown in Figure 5.5.

5.6 Thread Synchronization

When using pthreads, the programmer primarily handles synchronization
between threads, with mutexes, semaphores, and other atomic operations. This
behavior does not change on Sim2PIM, as the host memory caches are still used for
shared memory space between host threads. Synchronization between PIM-threads
still happens at the host side, as the PIM depends on the host for memory accesses
and instruction offloading.

If shared data is used concurrently by multiple threads (e.g., a shared vector),
the typical approach would be to use pthread barriers or other atomic operations
to avoid using outdated values in other threads, maintaining synchronization. This
approach remains valid for most situations in the simulation environment, as all
synchronization mechanisms still execute natively. However, in cases where the last
issued PIM instruction before the barrier was a store, there can be a race condition
between the PIM store instruction and the next host load instruction. A simple
solution is for the host to consider PIM store instructions synchronization barriers in
the execution.

5.7 PIM-Simulator

As described in Section 5.4.4, the PIM-simulator module is fed from the
PIM-Control interface. PIM instruction and data addresses are used to trigger
specific operations (e.g., PIM arithmetic, PIM memory access), while the meta-data
involves metrics that might be useful to the simulation, such as the cycle in which

69

the PIM instruction was emitted. This module can take the complexity level the
designer needs, from a cycle-accurate to an instruction-level look-up table. Moreover,
due to the modular nature of the Sim2PIM, for this module, any language can be
adopted, as well as connected to different tools (e.g., specialized memory or PIM
simulators (BANAGOZAR et al., 2019)). Therefore, the designer can use hardware
description languages (e.g., SystemVerilog, SystemC, VHDL) with an inter process
communication, or high-level abstract languages (e.g., C, C++, Python), where the
C languages could be integrated as simple function calls.

5.8 Validating the Simulator

As shown in Figure 5.1, most simulators focus on PIM architecture exper-
imentation. However, they lack connections between actual hosts and simulated
architectures. Thus, their metrics need to be virtualized, as no real hardware is in play.
Furthermore, this behavior prevents the utilization of existing host resources, such
as multiple cores, integration with the memory system, OS support, and the HPC.
While these features can be simulated, they make implementation more complex,
more costly, and less accurate if not done carefully.

Table 5.1 – Baselines and Case Study PIM Parameters
Baseline/Host Intel i5-7600 @ 3.5GHz;
Cache per Core L1 = 32kB; L2 = 256kB;
Last Level Cache = 6MB;
Main Memory DDR4 1x16GB 2400MHz CL18;

Baseline/Host Intel Xeon Silver-4214 @ 2.2GHz;
Cache per Core L1 = 32kB; L2 = 1024kB;
Last Level Cache = 16MB;
Main Memory DDR4 2x32GB 2400MHz CL16;

Baseline/Host AMD R5-1600 @ 3.2GHz;
Cache per Core L1 = 32kB; L2 = 512kB;
Last Level Cache = 8MB;
Main Memory DDR4 2x8GB 2666MHz CL16;

RVU Processing Logic (SANTOS et al., 2017; SANTOS; FORLIN; CARRO, 2021a)
Operation frequency: 1 GHz;
Up to 32x 64 functional units (integer + floating-point);
Vector sizes (bytes):

32x 256, 16x 512, 8x 1024, 4x 2048, 2x 4096, 1x 8192
Latency (cycles): 1-alu, 3-mul. and 20-div. int. units;
Latency (cycles): 5-alu, 5-mul. and 20-div. fp. units;
Register bank: 8 sets of 32 composable registers of 256 bytes each;

70

This Section evaluates the Sim2PIM framework, showing the benefits of
simulating only the design of interest. To assess the framework, we implemented a
common PIM approach that implements FUs within a 3D-stacked memory (Hybrid
Memory Cube Consortium, 2013; LEE et al., 2021; SANTOS et al., 2017). The
case study is based on the RVU architecture (SANTOS et al., 2017) and (SANTOS;
FORLIN; CARRO, 2021a), and Table 5.1 summarizes the hosts’ systems and the
case study PIM parameters.

5.8.1 Overhead Evaluation

Two main types of overheads are inserted in the application code by Sim2PIM:
PIM_interface insertion and the create_interface. The former interface is inserted
before each PIM instruction, while the last one replaced the original pthread_create()
in case of a multi-threaded application. As mentioned in Section 5.4.2, the warm-up
phase is required to remove the overheads from the HPC and PIM_interface calls.
To exemplify this, we collected these overheads for two different host processors for
the instructions and cycles metrics. These overheads are directly dependent on the
host processor, as illustrated in Table 5.2.

Table 5.2 – Average overheads for two different HPCs, unhalted cycles and retired
instructions. Measured with 10,000 repetitions in the warm-up phase of two different

processors.
Overheads Intel

Core i5-7600@GCC7.5
AMD

R5-1600@GCC9

Cycles Instrumentation 174 184
Backend 168 180

Instructions Instrumentation 28 27
Backend 9 8

In the case of multi-threaded applications, the multi-thread overheads happen
in the create_interface function, as aforementioned in Section 5.5. To evaluate the
impact of these overheads on PIM multi-thread simulation, we compared the same
set of applications executing with and without the simulator. We selected the well-
established perf as an easy to deploy, low-overhead, and high-accuracy performance
profiling tool for the comparison. We used some of the algorithms on the PolyBench
benchmark suite (POUCHET, 2012). The results are shown in Table 5.3.

For both the single thread and multi-thread results, we can see that for most
benchmarks, Sim2PIM and perf show similar results, with a trend towards more

71

Table 5.3 – Simulated Cycles vs. Simulation time for Sim2PIM and perf on the AMD
processor. Values represent a single thread and the average of 4 threads.

Benchmark
- data size

Perf cycles Sim2PIM cycles cycles % increase Perf Time (s) Sim2PIM Time (s)
1T 4T - Avg. 1T 4T - Avg. 1T 4T - Avg. 1T 4T - Avg. 1T 4T - Avg.

vecsum - 32MB 1.25E+07 3.06E+06 1.23E+07 3.05E+06 -1.799 -0.541 0.0165 0.0083 0.037 0.035
gemm - 1,5MB 2.89E+07 9.02E+06 2.84E+07 8.77E+06 -1.577 -2.771 0.0173 0.0089 0.029 0.033
2mm - 750kB 1.57E+08 3.93E+07 1.57E+08 3.92E+07 -0.018 -0.255 0.0524 0.0219 0.039 0.046
covariance - 16MB 1.58E+09 4.30E+08 1.61E+09 4.23E+08 1.898 -1.734 0.7163 0.4740 1.041 0.5
Floyd-Warshall - 8MB 1.18E+10 3.93E+09 1.18E+10 3.88E+09 -0.018 -1.261 3.2186 1.1955 3.232 1.22
Nussinov - 8MB 2.86E+10 7.23E+09 2.88E+10 7.21E+09 0.597 -0.319 7.7568 1.9769 7.825 1.998

minor results in Sim2PIM. We leverage this trend is due to the instrumentation
provided by Sim2PIM to be more accurate due to the use of hard-coded HPC, not
depending on slower system calls. The cycles metric is influenced by several factors,
including the congestion of the memory subsystem and frequency fluctuations. Thus
some applications may present more variation than others. Splitting the application
between threads might also affect this behavior, increasing the traffic in the processor
caches. We can also see the execution time collected with the time command for
Sim2PIM and perf itself. Although Sim2PIM adds execution time, this effect is
smaller as the execution gets longer. We can see that Sim2PIM’s performance for
host code is very competitive, especially if we consider the usual run-times of other
simulators.

5.8.2 Simulation Time Evaluation

Sim2PIM merits lay on top of its high simulation speeds, high-accuracy host
hardware metrics, and the backbone’s structure high modularity. These character-
istics make Sim2PIM especially suited to evaluate the interactions between host
hardware and the PIM device, including the system’s memory hierarchy and technol-
ogy. We set out to showcase the speedup of simulating multiple threads in Sim2PIMs
truly multi-core environment. We test the multi-thread PIM simulation on a simple
embarrassingly parallel kernel that performs the vector sum (vecsum) over 64MB data,
varying from 1 to 8 perfectly balanced threads. This way, we avoid complications
dealing with complex vector algorithms and inter-thread communication.

In Figure 5.6 the bars represent the number of simulated cycles for the ap-
plication with varying numbers of active threads. To evaluate the effectiveness of
isolating simulation and application threads in different physical cores, the lines in
Figure 5.6 represent the execution speed (ms) of three different Sim2PIM configura-
tions: a single-core execution, a dual-core execution (simulator + application), and

72

the standard Sim2PIM with dedicated cores. The Sim2PIM 1-Core line represents
the single-core execution, meaning the entire framework and the application threads
share a single core. While the OS can dynamically schedule them, most applications
effectively run sequentially with the PIM-simulator. This is similar to many other
simulators (BINKERT et al., 2011; XU et al., 2018) that do not support parallel
simulation execution readily. The results clarify that forcing the PIM-simulator
and backbone to share a core with the application severely harms the framework
performance. This is directly proportional to the number of threads disputing for
core time, which results in an increased number of context switches between the
application threads and between framework and application threads.

Thus, when we remove the framework from this dispute (by placing it in an
exclusive core), as shown in line Sim2PIM 2-Cores in Figure 5.6, there is a significant
release in pressure for the application core. For this example, the vecsum application
is lightweight and straightforward on the host side, there is still contention between
application threads disputing the same core, but it is significantly smaller. Finally,
we achieve the most efficient execution when we execute Sim2PIM with dedicated
cores (line Sim2PIM N-Cores in Figure 5.6) for each application thread and the
framework. This way, the application parallelism works in favor of the framework, as
long as there are enough free cores to operate in all threads in parallel. This impact
might be more meaningful for larger applications on the host side when deciding how
to test the application.

0

100

200

300

400

500

600

700

0

5

10

15

20

1-Thread 2-Threads 4-Threads 8-Threads

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

C
yc

le
s

Si
m

u
la

te
d

 (
M

ill
io

n
s)

Cycles Simulated Sim²PIM N-Cores

Sim²PIM 1-Core Sim²PIM 2-Cores

Figure 5.6 – Simulated Cycles and Simulation Time for a 64MB vecsum application
offloaded by the Xeon CPU to the PIM device using three different simulation

configurations.

73

Our experience with simulators like Gem5 (BINKERT et al., 2011) is that
although they can simulate very different architectures and enable the design of
new architectures, the designer is forced to simulate the host architecture. If the
designer desires to couple the PIM with a different host, there is a need to implement
the new host and its features. Quickly changing a software or hardware parameter
and rerunning the simulation is not an option as the simulation can take hours,
even in the most straightforward modes. Tools based on Intel’s Pin (LUK et al.,
2005) offer very fine control over the code currently executing, allowing the user to
follow branches and see accessed virtual memory addresses without recompiling code.
However, the JIT model of instrumentation and execution makes the simulation
speed slow and makes quick testing a nuisance.

Hardware
Estimated

Performance

Sim²PIM 2-Cores

Sim²PIM N-Cores

PinTool

gem5

0

20

40

60

80

100

0.01 0.10 1.00 10.00 100.00 1000.00

Si
m

u
la

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Execution Time - Normalized

Figure 5.7 – Execution time and accuracy for a vecsum application with eight threads in
different simulators.

Besides, trace-based simulators, which require application traces, suffer from
another challenge: changes in application code require the traces to be reacquired.
Figure 5.7 presents a comparison between our previous experiments with these
tools showing the accuracy of the metrics concerning simulation estimates of the
actual hardware performance (SANTOS et al., 2017; SANTOS; FORLIN; CARRO,
2021a) (y-axis). The simulation speeds (x-axis) are normalized to the run-time
of the execution speed of Sim2PIM. In case of a lack of available cores, executing
applications serially in Sim2PIM as shown in line Sim2PIM 2-Cores in Figure 5.6,
slows down the simulation and prevents us from evaluating the interaction of these
multiple requests on shared resources, such as memory access bandwidth. Even
then, Sim2PIM is orders of magnitudes faster than the other base simulation options,
either trace-based or full-system simulators.

74

6 EVALUATING COMMUNICATION STRATEGIES

There are a lot of variables when it comes to multi-threaded applications
executing on a PIM device integrated with an unmodified host processor. The
integration between PIM and host, the interaction between threads sharing hardware
resources, the data movement in the memory hierarchy, among many other subtle
details (e.g., virtual memory paging). These characteristics are inherently linked to
how the data parallelism in the application is exploited, and how well the algorithm
maps to available hardware resources. Thus, the best communication strategy is very
much dependant on the hardware system and software requirements. As discussions
on optimal programming paradigms for different algorithms are well beyond the
scope of this dissertation, we focus the evaluation on data transfer corner cases.

6.1 Experiment Setup

The parameters for the host processor, memory system details, and the
adopted PIM device are shown in Table 6.1. The application was compiled with
a PIM compiler (AHMED et al., 2019) and integrated with Sim2PIM (SANTOS;
FORLIN; CARRO, 2021c) to simulate the PIM device coupled to a general-purpose
system. We implemented the PIM device discussed in Section 3.2, which is capable
of handling 8 concurrent threads as it has 8 independent PIM units. In these tests we
do not evaluate the efficiency of increasing the number of threads past the number of
chips, as this incurs in a different set of optimizations. Each PIM thread is coupled to
an exclusive host core for all the tests, and the threads do not migrate between PIM
units. This coupling guarantees that the PIM can achieve maximum data transfer
bandwidth when multiple requests coincide. It mirrors the HBM-PIM (LEE et al.,
2021), where multiple host threads are needed to achieve the desired efficiency. For
this experiment, the operations occur over 1024 bytes. Hence, in a memory module
comprising eight memory devices (Figure 4.4), each PIM unit can process over the
entire local row buffer per operation. The PIM units are also independent of each
other.

Each application is tested with our Inter-PIM model and through the host.
The Inter-PIM model was implemented within Sim2PIM, which considers the host’s
memory access costs, and the hardware estimations described in Table 6.1. Host

75

Table 6.1 – Baselines and PIM Parameters
OS: Ubuntu 18.04.4 LTS
Baseline/Host Intel Xeon Silver-4114 @ 2.2GHz
Cache per Core L1 = 32kB; L2 = 1024kB; Last Level Cache = 16MB;
Main Memory DDR4 2x32GB 2400MHz CL16;

PIM Processing Logic based on (SANTOS et al., 2017; SANTOS; FORLIN; CARRO, 2021b)
@ 300 MHz;
Vector Operand size (bytes): 1024
Latency Int/FP. (cycles): 1/5-alu, 3/5-mul.
Register bank: 8 sets of 1024 bytes each;

Inter-PIM Mechanism @ 2 GHz;
Network-on-Chip - 3x3 8 bit; Corner-to-Corner Latency: 1.3 ns;
Input Buffer, Output Buffer: 8 positions;
Estimated Power: Saturated Traffic = 0.55W - 50% Traffic = 0.17W
Estimated Area: 0.87mm2@45nm;

communication was measured directly from the host system’s access to and from
memory, using hardware performance counters. We calculate communication energy
consumption separately with the methods described in Section 4, as the nature of
Sim2PIM prohibits its integration with the RAPL interface1.

6.2 Energy Efficiency

In Section 4.4, we calculated the energy costs for the memory module con-
figuration and for a host processor handling communication. As we use a different
processor in the following tests, the upper and lower bound energy costs are recal-
culated. The DRAM power parameters remain the same, requiring recalculation of
the frequency and cycles values, as shown in Equation 13. The EHC upper bound
must be recalculated with the RAPL interface (96.67 µJ). Collecting these metrics
for the tested processor (48, 450 Cycles at 2.2 GHz), we get that the lower bound
communication energy is El

Comm = 94.76 µJ , and the upper bound communication
energy is Eu

Comm = 177.93 µJ . We use the mean value between these two scenarios
as a fair representation of cost, where the host caches are not the only element
active in the transfer, but we also leverage that the host is also executing other
tasks concurrently with the transfer, increasing its efficiency. Therefore, we use
EHC = 136.35 µJ as the energy cost to move 1 kB of data between PIM threads.

1The RAPL interface uses register files and system calls, which are too costly for the fine-grained
integration that Sim2PIM requires.

76

For the energy costs of the Inter-PIM mechanism, we scale the worst-case 64
bits transmission delay from corner to corner (Section 4.2.4) to the transmission of 1
kB. We get 166 ns total transmission time in the Inter-PIM NoC. For the DRAM
access times, in this case the CAS latency of 12 ns for a DDR4-2666 device, we get a
latency of 12,288 ns for 1 kB of data. Inter-PIM power consumption is dependent on
the network saturation, so we scale consumption linearly from 50% traffic to 100%
saturation ranging from 2 to 8 threads (P Scaled

IP). As discussed in Section 4.3, DRAM
power consumption with Inter-PIM access scales with the number of active threads,
as shown in Equation 10. We calculate the energy consumption of the Inter-PIM to
move 1 kB of data between threads as:

EIP = P Scaled
IP · 166 ns+ P Scaled

MP · 12, 288 ns (14)

Table 6.2 shows these values for a different number of active threads. Com-
paring the energy costs for a single 1 kB data transfer between PIM threads yields a
difference of 9.29× in energy consumption. It is important to note that although
there is a large difference in energy costs, the cost for Inter-PIM transfers is individual,
while the host can perform all transfers with the same cost (i.e., broadcast). So when
one of the PIM threads uses a broadcast, Inter-PIM must write to 7 DRAM chips,
yielding a gain of 4.08×.

Table 6.2 – DRAM, Inter-PIM, and Host energy and power results scaled according to the
number of threads.

Threads P Scaled
MP (W) P Scaled

IP (W) Inter-PIM (µJ) Host (µJ) Difference (µJ) Energy Gains
2 1.19 0.17 14.67 136.35 121.68 9.29 ×
3 1.45 0.23 17.80 136.35 118.55 7.66 ×
4 1.70 0.30 20.93 136.35 115.42 6.51 ×
5 1.95 0.36 24.06 136.35 112.29 5.67 ×
6 2.21 0.42 27.19 136.35 109.16 5.02 ×
7 2.46 0.49 30.32 136.35 106.03 4.50 ×
8 2.71 0.55 33.45 136.35 102.90 4.08 ×

6.3 Communication Patterns

As corner cases, we selected two communication patterns (broadcast and
multicast) with threads arranged into producer and consumer threads (a sending
and a receiving end). All tests execute the same PIM algorithm, as the focus here is
to observe the impact of the communication on total run-time. The computation
is divided into an individual workload that every thread executes and a unique

77

Figure 6.1 – Energy and Cycle results for 8 threads of vecsum kernel with a broadcast
access pattern.

workload that only the consumer thread runs. The first part of the computation
(C1) is a simple vector sum of 3 arrays, each of 8MB each, totaling 24MB per PIM
thread. The second part (C2) is an accumulation of the previous result with the
received data. So the computation time is expected to increase as the data size
increases. For all evaluations, Inter-PIM communication performance is estimated
on the simulator and host performance is measured. Energy values are derived from
the results found in Section 6.2.

Broadcast - One-to-All communication: In this application, all 8 threads
execute computation C1. After the end of the first execution block, all threads except
the one executing the broadcast lock, changing their status to 3 (Figure 4.5) and
waiting for data. This thread sets its status to 4, and the communication happens
according to the tested mechanism (host or Inter-PIM). After communication is
complete, all threads except the communicating thread compute C2 on the received
data. As we can see in Figure 6.1, the energy improvement scales with the size of
the data transfer. As discussed in Section 3.4 for host communication, the broadcast
operation can never achieve 100% efficiency. This results in the communication
through the host performing reads in PIM units that are not necessary. Inter-PIM
can be precise in reading data from the correct PIM unit, avoiding energy waste.

Multicast - Multiple One-to-one communications:

This application divides threads into two groups, even and odd threads. Each
pair of odd and even threads operates similarly to a 2-thread broadcast application.
If shared data is aligned in memory between all threads, the host can optimize data
access by synchronizing data transfers. Figure 6.2 demonstrates the performance

78

and energy consumption for the solutions in this operation. In this scenario, host
energy consumption and performance are identical to that of a broadcast operation,
as it performs the same amount of reads and writes. Inter-PIM performs more reads
compared to the broadcast operation. Thus its energy consumption increases, but as
they happen in parallel as well, they do not affect performance.

Figure 6.2 – Energy and Cycle results for 8 threads of vecsum kernel with a multicast
access pattern.

In both communication patterns, performance between host and Inter-PIM
communication vary by a small amount, 20% in average. This is reasonable, as the
main source of latency from memory access on the host is the DRAM itself (LI;
REDDY; JACOB, 2018; CHATTERJEE et al., 2012), where CAS latency limits the
physical speed at which memory cells can be accessed. In this manner, Inter-PIM
is still mostly limited by the memory access latency. However, there can still be
large performance gains in some applications. In a scenario where shared data is not
aligned in memory, the host will not be able to use chip parallelism to its advantage.
It will have to perform multiple accesses to transfer data between threads. This can
also occur if threads operate on vastly different kernels or data sizes, not permitting
that transfer-synchronization occurs. As shown in Figure 6.3, Inter-PIM will not
suffer from this problem, as it can handle independent concurrent accesses. Besides
the performance inefficiency, the host also suffers with excess energy consumption.

79

Figure 6.3 – Energy and Cycles for 1MB of non-aligned shared data movement between
threads.

Int
er-
PI
M

Ho
st

Int
er-
PI
M

Ho
st

Int
er-
PI
M

Ho
st

6.4 Experimenting with a Complex Application

In more complex applications, the boundary between computation and com-
munication overheads may vary drastically. Thus the performance impact of commu-
nication will also vary. We implemented an application that mimics a filter operation
on the PIM with multiple GEMM -kernel executions to measure this impact. The
threads are arranged in a tree-like dependency, where each level operates on 1MB
matrices and forwards the resulting 1MB matrix to the next level, as shown in
Figure 6.4.

Figure 6.4 – Shared data movement in the GEMM application.

T0 T1 T2 T3 T4 T5 T6 T7

T1 T3 T4 T7

T3 T7

T7

Level 3

Level 2

Level 1

Level 0

80

Even though the application is essentially compute-bound when the data is
present on the correct PIM units, it can still impact performance due to the extensive
data sizes being processed. This pattern can be imagined as if the filtering kernels
are fixed in each PIM unit, and the resulting data is sent to the next set of threads.
The first level has eight threads, the second has four, the third has two, and the last
only has one thread. The communication pattern for each level is identical to the
multicast pattern described above. The resulting application spends most of its time
computing and less with data transfers.

As can be seen in Figure 6.5, this results in a minor speedup relative to the
total run-time, around 5% incremental improvement. However, the communication
energy impact is still significant, reducing from 0.97 J via the host to 0.07 J via
the inter-PIM. Regardless of the benchmark used, the key point is to maintain data
inside the memory module and perform precise accesses to the PIM units that require
them, by removing the host from supervising the communication and replacing it
with an efficient hardware implementation.

Figure 6.5 – Execution cycles and Energy for GEMM kernels

As discussed in Section 4.4, this will reduce energy consumption by increasing
memory access efficiency, by not using host resources, and avoiding cache pollution.

81

7 CONCLUSIONS

It is more apparent than ever that the architectural community must propose
new paradigms to keep up with computing trends. Processing-in-Memory (PIM) is a
clear contender to take the top spot of energy efficiency and acceleration. However,
there must be leaps in architectural designs and the support environment to accelerate
this development, including simulators. The Sim2PIM framework brings a fast and
accurate simulation tool for single and multi-threaded applications to the hands
of researchers and designers. Sim2PIM makes few compromises, guaranteeing fast
simulation speeds and high accuracy, as long as the host hardware is available for
testing. Furthermore, the developed simulation framework presents new opportunities
to evaluate hardware-software co-design in PIM applications.

This work also demonstrated that using the host as a data relay between
the threads in different PIM units can impact the application’s performance and
energy efficiency. This impact is directly related to how the application orchestrates
thread communication, the frequency of this communication, and the transferred
data size. We exposed the hardware requirements for a dedicated communication
mechanism between PIM units that can mitigate this impact. Inter-PIM provides
performance improvements proportional to the amount of data and complexity of
the communication involved, and it also significantly lowers the energy footprint of
communication between PIM units.

Of course, there are still a lot of improvements that could be made in the
work presented here. Although the power and energy models presented are based on
previous works and fit in estimates for the evaluated hardwares, they still should be
validated by themselves. The performance evaluation of Inter-PIM also leaves a lot
of complexity out, including the impact of real-world communication patterns in the
NoC, and the impacts of parallelism and pipelining in the memory accesses. Perhaps
more critically, a more complete and relevant benchmark suite could help validate
the need for Inter-PIM in real world scenarios.

7.1 Future Work

As future work on Inter-PIM, we aim to investigate how the reduction of
host cache pollution affects complex applications that divide the load between PIM

82

and host. The arguments in Section 4.2.2 also beg the question of how would a
Network-on-Chip (NoC) inside the memory module change the dynamic of memory
access. By following a closer implementation to that of HMC, we might discover
that the mechanism can even benefit regular memory operations (AHN et al., 2012).

Sim2PIM as a framework already has a high complexity in its inner workings.
However, there is still a lot of functionality that can be added to the simulator
backend or as part of the functional simulation. As future work, we are testing ways
to implement Sim2PIM as an instrumentation tool for current commercial PIMs.
Also, as the framework controls the creation of threads, there is space for testing how
a PIM-aware scheduler could affect performance during the lifetime of host threads.
The framework makes it easy to test on the current host system as is. However, we
mean to test its integration with memory simulators to try and change the memory
behavior for host-side applications as well.

83

REFERENCES

AGA, S. et al. Compute caches. In: 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA). [S.l.: s.n.], 2017. p.
481–492.

AHMED, H. et al. A compiler for automatic selection of suitable processing-in-
memory instructions. In: Design, Automation & Test in Europe Conference
& Exhibition (DATE). [S.l.: s.n.], 2019.

AHN, J. et al. A scalable processing-in-memory accelerator for parallel graph pro-
cessing. In: 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA). [S.l.: s.n.], 2015. p. 105–117.

AHN, J. et al. A scalable processing-in-memory accelerator for parallel graph pro-
cessing. In: IEEE. Int. Symp. on Computer Architecture (ISCA). [S.l.], 2015.

AHN, J. et al. Pim-enabled instructions: A low-overhead, locality-aware processing-
in-memory architecture. SIGARCH Comput. Archit. News, Association for
Computing Machinery, New York, NY, USA, v. 43, n. 3S, p. 336–348, jun. 2015.
ISSN 0163-5964. Disponível em: <https://doi.org/10.1145/2872887.2750385>.

AHN, J. H. et al. Improving system energy efficiency with memory rank subsetting.
ACM Trans. Archit. Code Optim., Association for Computing Machinery, New
York, NY, USA, v. 9, n. 1, mar 2012. ISSN 1544-3566. Disponível em: <https:
//doi.org/10.1145/2133382.2133386>.

ALVES, M. A. Z. et al. Large vector extensions inside the hmc. In: Proceedings of
the 2016 Conference on Design, Automation amp; Test in Europe. San Jose,
CA, USA: EDA Consortium, 2016. (DATE ’16), p. 1249–1254. ISBN 9783981537062.

Alves, M. A. Z. et al. Sinuca: A validated micro-architecture simulator. In: 2015,
17th Int. Conf. on High Performance Computing and Communications.
[S.l.: s.n.], 2015.

ANDERS, M. A. et al. A 4.1tb/s bisection-bandwidth 560gb/s/w streaming circuit-
switched 8×8 mesh network-on-chip in 45nm cmos. In: 2010 IEEE International
Solid-State Circuits Conference - (ISSCC). [S.l.: s.n.], 2010. p. 110–111.

BANAGOZAR, A. et al. Cim-sim: Computation in memory simulator. In: 22nd
Int. Workshop on Software and Compilers for Embedded Systems. [S.l.:
s.n.], 2019. (SCOPES ’19).

BINKERT, N. et al. The gem5 simulator. SIGARCH Comput. Archit. News,
2011.

BOROUMAND, A.; GHOSE, e. a. LazyPIM: An Efficient Cache Coherence Mecha-
nism for Processing-in-Memory. IEEE Computer Architecture Letters, 2016.

BOROUMAND, A.; GHOSE, e. a. Google workloads for consumer devices: Mitigating
data movement bottlenecks. In: Int. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems. [S.l.: s.n.], 2018. (ASPLOS), p.
316–331. ISBN 9781450349116.

https://doi.org/10.1145/2872887.2750385
https://doi.org/10.1145/2133382.2133386
https://doi.org/10.1145/2133382.2133386

84

CALI, D. S. et al. Genasm: A high-performance, low-power approximate string
matching acceleration framework for genome sequence analysis. In: 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). [S.l.: s.n.], 2020. p. 951–966.

CHATTERJEE, N. et al. Leveraging heterogeneity in dram main memories to
accelerate critical word access. In: 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. [S.l.: s.n.], 2012. p. 13–24.

CHEN, K.; PACHTER, L. Bioinformatics for whole-genome shotgun sequencing of
microbial communities. PLOS Computational Biology, Public Library of Science,
v. 1, n. 2, p. null, 07 2005. Disponível em: <https://doi.org/10.1371/journal.pcbi.
0010024>.

CHI, P. et al. Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory. In: 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). [S.l.: s.n.],
2016. p. 27–39.

Chu, C. et al. Pim-prune: Fine-grain dcnn pruning for crossbar-based process-in-
memory architecture. In: 2020 57th ACM/IEEE Design Automation Confer-
ence (DAC). [S.l.: s.n.], 2020. p. 1–6.

CORPORATION, I. Intel 64 and IA-32 Architectures Optimization Refer-
ence Manual. 2016. Disponível em: <https://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.
pdf>.

DENG, Q. et al. Dracc: a dram based accelerator for accurate cnn inference. In: 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC). [S.l.: s.n.],
2018. p. 1–6.

DENNARD, R. et al. Design of ion-implanted mosfet’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, v. 9, n. 5, p. 256–268, 1974.

DESROCHERS, S.; PARADIS, C.; WEAVER, V. M. A validation of dram rapl power
measurements. In: Proceedings of the Second International Symposium on
Memory Systems. New York, NY, USA: Association for Computing Machinery,
2016. (MEMSYS ’16), p. 455–470. ISBN 9781450343053. Disponível em: <https:
//doi.org/10.1145/2989081.2989088>.

DEVAUX, F. The true processing in memory accelerator. In: 2019 IEEE Hot
Chips 31 Symposium (HCS). [S.l.: s.n.], 2019. p. 1–24.

DEVICES, A. M. Software Optimization Guide for AMD Family 17h Pro-
cessors. 2017. Disponível em: <https://developer.amd.com/wordpress/media/2013/
12/55723_SOG_Fam_17h_Processors_3.00.pdf>.

DREBES, A. et al. Tc-cim: Empowering tensor comprehensions for computing-
in-memory. In: IMPACT 2020 workshop (associated with HIPEAC 2020).
[S.l.: s.n.], 2020. Informal proceedings.

https://doi.org/10.1371/journal.pcbi.0010024
https://doi.org/10.1371/journal.pcbi.0010024
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1145/2989081.2989088
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf

85

DRUMOND, M. et al. The mondrian data engine. In: ACM. Int. Symp. on
Computer Architecture. [S.l.], 2017.

ECKERT, C. et al. Neural cache: Bit-serial in-cache acceleration of deep neural
networks. In: 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). [S.l.: s.n.], 2018. p. 383–396.

FARMAHINI-FARAHANI, A. et al. Nda: Near-dram acceleration architecture lever-
aging commodity dram devices and standard memory modules. In: 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA). [S.l.: s.n.], 2015. p. 283–295.

GAO, F.; TZIANTZIOULIS, G.; WENTZLAFF, D. Computedram: In-memory
compute using off-the-shelf drams. In: Int. Symp. on Microarchitecture. New
York, NY, USA: [s.n.], 2019. (MICRO ’52). ISBN 9781450369381.

GAO, F.; TZIANTZIOULIS, G.; WENTZLAFF, D. Computedram: In-memory
compute using off-the-shelf drams. In: Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. New York,
NY, USA: Association for Computing Machinery, 2019. (MICRO ’52), p. 100–113.
ISBN 9781450369381. Disponível em: <https://doi.org/10.1145/3352460.3358260>.

GAO, M.; KOZYRAKIS, C. Hrl: Efficient and flexible reconfigurable logic for
near-data processing. In: 2016 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). [S.l.: s.n.], 2016. p. 126–137.

GAO, M. et al. Tetris: Scalable and efficient neural network acceleration with
3d memory. In: . New York, NY, USA: Association for Computing Machinery,
2017. (ASPLOS ’17), p. 751–764. ISBN 9781450344654. Disponível em: <https:
//doi.org/10.1145/3037697.3037702>.

GHOSE, S. et al. What your dram power models are not telling you: Lessons
from a detailed experimental study. Proc. ACM Meas. Anal. Comput. Syst.,
Association for Computing Machinery, New York, NY, USA, v. 2, n. 3, dec 2018.
Disponível em: <https://doi.org/10.1145/3224419>.

GHOSH, M.; LEE, H.-H. S. Smart refresh: An enhanced memory controller de-
sign for reducing energy in conventional and 3d die-stacked drams. In: 40th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO 2007). [S.l.: s.n.], 2007. p. 134–145.

HADIDI, R. et al. Performance implications of nocs on 3d-stacked memories: Insights
from the hybrid memory cube. In: 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). [S.l.: s.n.], 2018.
p. 99–108.

HAJINAZAR, N. et al. Simdram: A framework for bit-serial simd processing using
dram. In: . Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems. New York, NY, USA: Association for Computing Machinery, 2021. p.
329–345. ISBN 9781450383172. Disponível em: <https://doi.org/10.1145/3445814.
3446749>.

https://doi.org/10.1145/3352460.3358260
https://doi.org/10.1145/3037697.3037702
https://doi.org/10.1145/3037697.3037702
https://doi.org/10.1145/3224419
https://doi.org/10.1145/3445814.3446749
https://doi.org/10.1145/3445814.3446749

86

HENNESSY, J. L.; PATTERSON, D. A.Computer Architecture, Fifth Edition:
A Quantitative Approach. 5th. ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011. ISBN 012383872X.

Hybrid Memory Cube Consortium. Hybrid Memory Cube Specification Rev.
2.0. 2013. Http://www.hybridmemorycube.org/.

JACOB, B.; NG, S.; WANG, D. T. Memory systems: cache, DRAM, disk.
[S.l.]: Morgan Kaufmann Publishers, 2010.

Jain, S. et al. Computing in memory with spin-transfer torque magnetic ram. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2018.

JEDEC. DDR4 SDRAM specification. JESD79-4C. 2012. Disponível em:
<https://www.jedec.org/standards-documents/docs/jesd79-4a>.

KANG, S. J.; LEE, S. Y.; LEE, K. M. Performance comparison of openmp, mpi, and
mapreduce in practical problems. Advances in Multimedia, v. 2015, p. 1–9, 2015.

KESTOR, G. et al. Quantifying the energy cost of data movement in scientific
applications. In: 2013 IEEE International Symposium on Workload Char-
acterization (IISWC). [S.l.: s.n.], 2013. p. 56–65.

KIM, D. et al. Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory. In: 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). [S.l.: s.n.], 2016. p. 380–392.

Kim, Y.; Yang, W.; Mutlu, O. Ramulator: A fast and extensible dram simulator.
IEEE Computer Architecture Letters, 2016.

KWON, Y.-C. et al. 25.4 a 20nm 6gb function-in-memory dram, based on hbm2
with a 1.2tflops programmable computing unit using bank-level parallelism, for ma-
chine learning applications. In: 2021 IEEE International Solid- State Circuits
Conference (ISSCC). [S.l.: s.n.], 2021. v. 64, p. 350–352.

LEE, S. et al. Hardware architecture and software stack for PIM based on commercial
dram technology : Industrial product. In: Int. Symp. on Computer Architecture
(ISCA). [S.l.: s.n.], 2021.

Lee, V. T. et al. Application codesign of near-data processing for similarity search.
In: 2018 IEEE Int. Parallel and Distributed Processing Symp. (IPDPS).
[S.l.: s.n.], 2018.

Leidel, J. D.; Chen, Y. Hmc-sim-2.0: A simulation platform for exploring cus-
tom memory cube operations. In: 2016 IEEE Int Parallel and Distributed
Processing Symp Workshops (IPDPSW). [S.l.: s.n.], 2016.

LEISERSON, C. E. et al. There’s plenty of room at the top: What will
drive computer performance after moore’s law? Science, v. 368, n. 6495,
p. eaam9744, 2020.

LI, S. et al. Drisa: A dram-based reconfigurable in-situ accelerator. In: 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). [S.l.: s.n.], 2017. p. 288–301.

https://www.jedec.org/standards-documents/docs/jesd79-4a

87

LI, S.; REDDY, D.; JACOB, B. A performance amp; power comparison of modern
high-speed dram architectures. In: Proceedings of the International Sympo-
sium on Memory Systems. New York, NY, USA: Association for Computing
Machinery, 2018. (MEMSYS ’18), p. 341–353. ISBN 9781450364751. Disponível em:
<https://doi.org/10.1145/3240302.3240315>.

Li, S. et al. Pinatubo: A processing-in-memory architecture for bulk bitwise operations
in emerging non-volatile memories. In: Design Automation Conference (DAC).
[S.l.: s.n.].

LIMA, J. a. P. et al. Design space exploration for pim architectures in 3d-stacked
memories. In: ACM. Proceedings of the Computing Frontiers Conference.
[S.l.], 2018.

Liu, J. et al. Processing-in-memory for energy-efficient neural network training: A
heterogeneous approach. In: 2018 51st Annual IEEE/ACM Int. Symp. on
Microarchitecture (MICRO). [S.l.: s.n.], 2018.

LOH, G. H. et al. A processing in memory taxonomy and a case for studying
fixed-function pim. In: Workshop on Near-Data Processing. [S.l.: s.n.], 2013.

LUK, C.-K. et al. Pin: Building customized program analysis tools with dynamic
instrumentation. In: . [S.l.]: Association for Computing Machinery, 2005.

MATOS, D. d. S. M. Exploring Hierarchy, Adaptability and 3D in NoCs
for the Next Generation of MPSoCs. Tese (Doutorado) — Programa de Pos
Graduação em Computação, UFRGS, Porto Alegre, RS, Brazil, 2014.

MCKEE, S. et al. Experimental implementation of dynamic access ordering. In: 1994
Proceedings of the Twenty-Seventh Hawaii International Conference on
System Sciences. [S.l.: s.n.], 1994. v. 1, p. 431–440.

MICRON. Technical Note: Calculating Memory Power for DDR4 SDRAM.
2017. Disponível em: <https://www.micron.com/-/media/client/global/documents/
products/technical-note/dram/tn4007_ddr4_power_calculation.pdf>.

Moore, G. E. Progress in digital integrated electronics. IEEE Solid-State Circuits
Society Newsletter, 2006.

NAI, L. et al. Graphpim: Enabling instruction-level pim offloading in graph com-
puting frameworks. In: IEEE. Int. Symp. on High Performance Computer
Architecture (HPCA). [S.l.], 2017.

NAIR, R. et al. Active memory cube: A processing-in-memory architecture for
exascale systems. IBM Journal of Research and Development, IBM, v. 59,
2015.

NGUYEN, H. A. D. et al. A classification of memory-centric computing. J. Emerg.
Technol. Comput. Syst., Association for Computing Machinery, New York, NY,
USA, v. 16, n. 2, jan. 2020. ISSN 1550-4832. Disponível em: <https://doi.org/10.
1145/3365837>.

https://doi.org/10.1145/3240302.3240315
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://doi.org/10.1145/3365837
https://doi.org/10.1145/3365837

88

NIDER, J. et al. A case study of processing-in-memory in off-the-shelf systems. In:
Annual Technical Conference (USENIX ATC 21). [S.l.: s.n.], 2021. ISBN
978-1-939133-23-6.

NXP. Hardware and Layout Design Considerations for DDR4 SDRAM
Memory Interfaces. 2016. Disponível em: <https://www.nxp.com/docs/en/
application-note/AN2582.pdf>.

Oliveira, G. F. et al. A generic processing in memory cycle accurate simulator under
hybrid memory cube architecture. In: Int. Conf. on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS). [S.l.: s.n.],
2017.

PASRICHA, S.; DUTT, N. On-Chip Communication Architectures: System
on Chip Interconnect. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2008. ISBN 012373892X.

PAWLOWSKI, J. T. Hybrid memory cube (hmc). In: 2011 IEEE Hot Chips 23
Symposium (HCS). [S.l.: s.n.], 2011. p. 1–24.

POUCHET, L.-N. Polybench: The polyhedral benchmark suite. URL:
http://www.cs.ucla.edu/pouchet/software/polybench, 2012. Acessado em
10/02/2022.

SANCHEZ, D.; KOZYRAKIS, C. Zsim: Fast and accurate microarchitectural sim-
ulation of thousand-core systems. In: Int. Symp. on Computer Architecture.
[S.l.: s.n.], 2013.

SANTOS, P. C. Improving Efficiency of General Purpose Computer Sys-
tems by adopting Processing-in-Memory Architecture. Tese (Doutorado) —
Programa de Pos Graduação em Computação, UFRGS, Porto Alegre, RS, Brazil,
2019.

SANTOS, P. C. et al. Exploring cache size and core count tradeoffs in systems with
reduced memory access latency. In: IEEE. Int. Conf. Parallel, Distributed, and
Network-Based Processing (PDP). [S.l.], 2016.

SANTOS, P. C.; FORLIN, B. E.; CARRO, L. Providing plug n’ play for processing-
in-memory accelerators. In: Asia and South Pacific Design Automation Con-
ference (ASPDAC). [S.l.: s.n.], 2021.

SANTOS, P. C.; FORLIN, B. E.; CARRO, L. Providing plug n’ play for processing-
in-memory accelerators. In: 2021 26th Asia and South Pacific Design Au-
tomation Conference (ASP-DAC). [S.l.: s.n.], 2021. p. 651–656.

SANTOS, P. C.; FORLIN, B. E.; CARRO, L. Sim2pim: A fast method for simulating
host independent pim agnostic designs. In: . [S.l.: s.n.], 2021. (DATE ’21).

SANTOS, P. C. et al. Solving datapath issues on near-data accelerators. In: IFIP
WG10.2 Working Conference: Int. Embedded Systems Symp. (IESS). [S.l.:
s.n.], 2019. (IESS ’19).

https://www.nxp.com/docs/en/application-note/AN2582.pdf
https://www.nxp.com/docs/en/application-note/AN2582.pdf

89

SANTOS, P. C. et al. Operand size reconfiguration for big data processing in memory.
In: IEEE. Design, Automation & Test in Europe Conference & Exhibition
(DATE). [S.l.], 2017.

SCHALLER, R. R. Moore’s law: past, present and future. IEEE Spectrum, 1997.

SESHADRI, V. et al. Rowclone: Fast and energy-efficient in-dram bulk data copy and
initialization. In: 2013 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). [S.l.: s.n.], 2013. p. 185–197.

SESHADRI, V. et al. Ambit: In-memory accelerator for bulk bitwise operations using
commodity dram technology. In: 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). [S.l.: s.n.], 2017. p. 273–287.

SHAFIEE, A. et al. Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. In: 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA). [S.l.: s.n.], 2016. p.
14–26.

SHAHAB, A. et al. Farewell my shared llc! a case for private die-stacked dram caches
for servers. In: 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). [S.l.: s.n.], 2018. p. 559–572.

SONG, L. et al. Pipelayer: A pipelined reram-based accelerator for deep learning.
In: 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). [S.l.: s.n.], 2017. p. 541–552.

SONG, L. et al. Graphr: Accelerating graph processing using reram. In: 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). [S.l.: s.n.], 2018. p. 531–543.

TAYLOR, M. B. Is dark silicon useful? harnessing the four horesemen of the coming
dark silicon apocalypse. In: Design Automation Conference. [S.l.: s.n.], 2012.

Xia, L. et al. Mnsim: Simulation platform for memristor-based neuromorphic comput-
ing system. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2018.

Xie, L.; Cai, H.; Yang, J. Real: Logic and arithmetic operations embedded in rram
for general-purpose computing. In: 2019 IEEE/ACM Int. Symp. on Nanoscale
Architectures (NANOARCH). [S.l.: s.n.], 2019.

Xie, L. et al. Scouting logic: A novel memristor-based logic design for resistive
computing. In: 2017 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). [S.l.: s.n.], 2017. p. 176–181.

XIN, X.; ZHANG, Y.; YANG, J. Elp2im: Efficient and low power bitwise opera-
tion processing in dram. In: 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). [S.l.: s.n.], 2020. p. 303–314.

XU, S. et al. Pimsim: A flexible and detailed processing-in-memory simulator. IEEE
Computer Architecture Letters, IEEE, 2018.

90

Yu, C.; Liu, S.; Khan, S. Multipim: A detailed and configurable multi-stack
processing-in-memory simulator. IEEE Computer Architecture Letters, 2021.

Yu, J. et al. Memristive devices for computation-in-memory. In: 2018 Design,
Automation Test in Europe Conference Exhibition (DATE). [S.l.: s.n.],
2018. p. 1646–1651.

ZHANG, D. et al. Top-pim: Throughput-oriented programmable processing in
memory. In: Proceedings of the 23rd International Symposium on High-
Performance Parallel and Distributed Computing. New York, NY, USA: Asso-
ciation for Computing Machinery, 2014. (HPDC ’14), p. 85–98. ISBN 9781450327497.
Disponível em: <https://doi.org/10.1145/2600212.2600213>.

ZHANG, D. et al. Top-pim: throughput-oriented programmable processing in mem-
ory. In: ACM. Int. Symp. on High-performance Parallel and Distributed
Computing. [S.l.], 2014.

https://doi.org/10.1145/2600212.2600213

91

APPENDIX A — HOST TRANSMISSION CODE

This is the code for the host transmission test.

1 #de f i n e _GNU_SOURCE
2

3 #inc lude <s td i o . h>
4 #inc lude <s t d l i b . h>
5 #inc lude <s t r i n g . h>
6 #inc lude <s td i n t . h>
7 #inc lude <sched . h>
8 #inc lude <immintrin . h>
9 #inc lude "HPCounters . h "

10

11 #de f i n e CACHELINE_SIZE 64
12 #de f i n e ROW_SIZE 8192∗1
13

14 /∗∗
15 ∗ @brie f Flush po in t e r ∗p cache l i n e
16 ∗
17 ∗ @param p
18 ∗/
19 void f l u s h (void ∗ p) {
20 asm v o l a t i l e (" c l f l u s h (%0)\n "
21 :
22 : " c " (p)
23 : " rax ") ;
24 }
25

26 /∗∗
27 ∗ @brie f Pr int 2 64 b i t v a r i a b l e s from 128 b i t vec to r
28 ∗
29 ∗ @param var
30 ∗/
31 void print128_num (__m128i var)
32 {
33 int64_t v64val [2] ;
34 memcpy(v64val , &var , s i z e o f (v64val)) ;
35 p r i n t f ("%. 16 lx %. 16 lx \n " , v64val [1] , v64val [0]) ;
36 }

92

37

38 /∗∗
39 ∗ @brie f Flush the content in address [s t a r t+backward , s t a r t+

forward) from cache
40 ∗
41 ∗ @param s t a r t
42 ∗ @param backward
43 ∗ @param forward
44 ∗ @modify
45 ∗/
46 void f l u s hA l l (void ∗ s ta r t , i n t backward , i n t forward) {
47 f o r (i n t i= backward ; i< forward ; i+=CACHELINE_SIZE) {
48 void ∗ address = s t a r t + (i) ;
49 f l u s h (address) ;
50 }
51 }
52

53 void LoadStoreTest () {
54

55 // Malloc Page a l i gned reg i on
56 __m128i ∗ page_start ;
57 posix_memalign ((void ∗)&page_start , 4096 ,ROW_SIZE) ;
58

59 // I n i t data
60 f o r (s i z e_t i = 0 ; i < ROW_SIZE/16 ; i = i + 16)
61 {
62 __m128i index ;
63

64 // c r e a t e vec to r with indexes with 2 64 b i t va lue s
65 index = _mm_setr_epi64 ((__m64) i , (__m64) i +1) ;
66 _mm_store_si128 (page_start+i , index) ;
67 }
68

69

70 // Flush a l l data
71 f l u s hA l l ((void ∗) page_start , 0 , ROW_SIZE) ;
72 mfence () ;
73 i n t repeat_times = 100000 ;
74

75 // Repeat t e s t
76 f o r (i n t i=0 ; i<repeat_times ; i++){

93

77

78 __m128i s hu f f l e_bu f f e r [4] ;
79

80 HPCStart () ; // s t a r t performance counter s
81

82 f o r (s i z e_t j = 0 ; j < ROW_SIZE; j = j + CACHELINE_SIZE)
83 {
84 // Load 64 bytes
85 f o r (s i z e_t k = 0 ; k < 4 ; k++)
86 s hu f f l e_bu f f e r [k] = _mm_loadu_si128 (page_start+j

/16+k) ;
87

88 // Shu f f l e data
89 __m128i s h u f f l e d = _mm_castpd_si128 (_mm_shuffle_pd(

_mm_castsi128_pd (s hu f f l e_bu f f e r [0]) ,_mm_castsi128_pd (
s hu f f l e_bu f f e r [2]) , 3)) ;

90

91 // Overwrite s to r ed data
92 s hu f f l e_bu f f e r [2] = s hu f f l e d ;
93

94 // Store 64 bytes
95 f o r (s i z e_t k = 0 ; k < 4 ; k++)
96 _mm_stream_si128 (page_start + j /16+k ,

s hu f f l e_bu f f e r [k]) ;
97

98 // Flush NT- bu f f e r s
99 _mm_sfence () ;

100

101 }
102

103 HPCStop () ; // stop performance counter s
104 HPCAccum() ;
105

106 //Make sure data i s f l u shed
107 f l u s hA l l ((void ∗) page_start , 0 , ROW_SIZE) ;
108 mfence () ;
109

110 }
111

112 p r i n t f (" Counter t o t a l == %ld \n" , HPC_measure . accum/
repeat_times) ;

94

113 f r e e (page_start) ;
114 re turn ;
115 }
116

117

118 i n t main (i n t argc , char ∗argv []) {
119

120 // S e l e c t Performance Counter
121 i n t counter = 0 ;
122 i f (argc > 1) {
123 counter = a t o i (argv [1]) ;
124 }
125

126 // s e t a f f a n i t y so that the program w i l l run on one core
127 cpu_set_t cpu_set ;
128 CPU_ZERO(&cpu_set) ;
129 CPU_SET(0 , &cpu_set) ;
130 i f (s c h ed_s e t a f f i n i t y (0 , s i z e o f (cpu_set) , &cpu_set) < 0) {
131 p r i n t f (" s e t a f f a n i t y e r r o r ! ") ;
132 e x i t (EXIT_FAILURE) ;
133 }
134

135 // I n i t Counter
136 In i tCounte r s (counter) ;
137

138 // Run t e s t
139 LoadStoreTest () ;
140

141 re turn 0 ;
142 }

Listing A.1 – Host data transfer utilizing SSE instructions.

95

APPENDIX B — SIM2PIM

Sim2PIM graphs generated with Doxygen documentation.

PIM_Interface

BufferAppendSync

BufferCheckStore

BufferWaitStore

HPCAccum

HPCOverhead

HPCStart

HPCStop

setupGetCoreIndex

BufferAppend

p_rdpmc

Figure B.1 – Sim2PIM PIM_interface() call graph.

96

Figure B.2 – Sim2PIM join_interface() call graph.

join_interface

HPCAccum

HPCOverhead

HPCStart

HPCStop

setupToggle_Core

p_rdpmc

Figure B.3 – Sim2PIM create_interface() call graph.

create_interface HPCAccum

HPCOverhead

HPCStart

HPCStop

setupFindFreeCore

Thread_Launch

p_rdpmc

setupToggle_Core

HPCWarmup

setupGetCoreIndex

97

main

createPIMControl setupToggle_Core

HPCInitCounters

HPCWarmup

inputCounters

PIMPrintAll

runApplication

setupCreate

setupDestroy

setupGetCPU_info

setupInit

PIM_Control

BufferClose

BufferConsumeSync

BufferInit

BufferSyncStore

doWork

BufferConsume

HPCAccum

HPCStart

HPCStop

p_rdpmc

setupHelp

benchmark

HPCOverhead

create_interface

join_interface

PIM_Interface

setupFindFreeCore

Thread_Launch

setupGetCoreIndex

BufferAppendSync

BufferCheckStore

BufferWaitStore

BufferAppend

Figure B.4 – Sim2PIM main() call graph.

98

APPENDIX C — RESUMO EXPANDIDO

Processamento em memória (PIM), com a ajuda de modernas tecnologias
de integração, emergiu como uma solução prática para o memory wall enquanto
melhora a performance e efciciência energética de aplicações contemporâneas. Novas
tecnologias de memória juntamente com o surgimento de técnicas de integração 3D
proveram os meios para computar dados na memória. Seja explorando as capacidades
analógicas ou integrando lógica e memória. Dispositivos PIM tem o objetivo de
explorar toda a banda da memória, usando o paralelismo de dados das aplicações
de diferentes formas. Com modelos de programação genéricos, e dispositivos de
hardware que podem ser acessados independentes, é natural que programadores
tentem explorar paralelismo a nível de thread.

Com threads de propósito geral, estruturas de dados compartilhados inevitavel-
mente surgem, as quais devem ser lidadas corretamente para garantir consistência na
memória. Independentemente da maneira como essa consistência é mantida, dados
devem ser transmitidos entre diferentes regiões de memória. Os atuais dispositivos
comerciais PIM ignoram esse aspectos em seus designs e deixam a transferencia de
dados à cargo do processador. Enviando dados através do bus de memória para
as caches, onde eles serão rearranjados e enviados de volta para a memória. Nós
argumentamos que esse processo vai contra os princípios de design PIM, aumentando
os movimentos de dados entre o PIM e o processador. Nós demonstramos essa inefi-
ciência analiticamente e experimentalmente, desenvolvendo um modelo de consumo
de potência que consegue extrair limites superiores e inferiores para a comunicação
via o processador. Dependendo do processador usado, retransmitir dados através
das caches pode custar 3 × mais energia, salientando os altos custos energéticos em
usar o processador para esta tarefa.

Para rodar corretamente esses experimentos, nós precisamos executar bench-
marks muito integrados com o processador, enquanto extraímos suas métricas. Existe
uma falta de ferramentas capazes de rapidamente simular diferentes designs PIM
e suas integrações com múltiplos processadores multi-core. Logo, essa dissertação
apresenta Sim2PIM um simples simulador para dispositivos PIM que integra qual-
quer arquitetura PIM com um processador multi-core e a hierarquia de memória.
Analisando casos de compartilhamento de dados, esse trabalho mostra que essa
comunicação, se execudada pelo processador, pode minar os benefícios de dispositivos

99

PIM. Nós usamos esse simulador para demonstrar que se o dispositivo PIM depende
do processador para compartilhamento de dados, o custo de comunicação entre
threads escala mais rápido com o tamanho dos dados do que o custo da computação,
em alguns casos podendo custar 86% do tempo total de execução.

C.1 Contribuições e Objetivos Alcançados

É mais aparente do que nunca que a comunidade de arquitetura de sistemas
deve propôr novos paradigmas para acompanhar as tendências computacionais. PIM
está na disputa para se tornar um dos principais meios de aumentar a aceleração e
eficiência energética. Contudo, devem ocorrer pulos largos nos designs arquiteturais
e nos ambientes de suporte para acelerar esse desenvolvimento, inclusive com simu-
ladores. O framework Sim2PIM traz uma ferramenta de simulação precisa e veloz
para aplicações single e multi-thread para as mãos de pesquisadores e desenvolvedores.
Sim2PIM permite novas oportunidades de análise, incluindo estratégias de co-design
para hardware e software.

Nós propomos uma solução interna para o PIM que reduz os custos de
performance e energia de compartilhamento de dados, mantendo a comunicação
dentro do módulo de memória. Esse mecanismo pode acessar unidades PIM e seus
espaços de memória independentemente, se desacoplando do padrão de acesso à
memória DDR, enquanto opera sem supervisão do processador. Com baixos custos de
área e potência, podemos atingir ganhos de performance e energia em transferências
de dados entre unidades PIM. A solução Inter-PIM reduz o custo de performance
de movimento de dados entre threads em 20% quando os dados estão alinhados na
memória e em mais de 4× quando não estão.

C.2 Trabalho Futuro

Ainda existem muitas melhoras possíveis neste trabalho. Os modelos de
energia aqui apresentados ainda devem ser validados por si só. A avaliação de
performance do Inter-PIM também requer melhoras, adicionando mais complexidade.
Talvez, de maneira mais crítica, um suite de benchmarks mais complexo poderia
ajudar a validar a necessidade do Inter-PIM em cenários reais. Como trabalho futuro

100

no Inter-PIM, nós planejamos investigar a redução da poluição das caches do host.
Também desejamos investigar o impacto uma NoC dentro do módulo de memória
mudaria a dinamica do acesso, inclusive trazendo benefícios para o host (AHN et al.,
2012).

O Sim2PIM já tem uma alta complexidade, contudo, ainda há espaço para
adicionar mais funcionalidades. Como trabalho futuro, estamos testando maneiras
de implementar o Sim2PIM como uma ferramenta de instrumentação para PIMs
comerciais. Também buscamos implementar um scheduler e como ele impactaria a
performance das threads. Como trabalho futuro, também resta a integração com
outros simuladores PIM.

	agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	Contents
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Research Goals and Contributions
	1.3 Dissertation Overview

	2 Related Work
	3 Understanding Multi-Threaded PIM
	3.1 Why Bother with Multi-Thread?
	3.2 PIM Architecture
	3.3 Integrating With the Host System
	3.3.1 in-Memory Mapped PIM
	3.3.2 Code Offloading
	3.3.3 Cache Coherence
	3.3.4 Virtual Memory Support

	3.4 Communicating Between Threads
	3.4.1 Parallel Programming Model
	3.4.2 PIM Hardware Support

	4 Improving PIM Communication
	4.1 Communication Efficiency
	4.2 Inter-PIM Hardware
	4.2.1 Functional Requirements
	4.2.2 Interconnection Device
	4.2.3 Hardware Topology
	4.2.4 Overheads

	4.3 Memory Access Power
	4.4 Processor and Cache Energy

	5 Building a Simulator
	5.1 Sim2PIM Framework
	5.2 Instrumentation
	5.3 Interfaces
	5.4 Backbone
	5.4.1 Precise measurements
	5.4.2 Environment Setup
	5.4.3 Communication Buffer
	5.4.4 PIM-Control Interface

	5.5 Application Thread Management
	5.6 Thread Synchronization
	5.7 PIM-Simulator
	5.8 Validating the Simulator
	5.8.1 Overhead Evaluation
	5.8.2 Simulation Time Evaluation

	6 Evaluating Communication Strategies
	6.1 Experiment Setup
	6.2 Energy Efficiency
	6.3 Communication Patterns
	6.4 Experimenting with a Complex Application

	7 Conclusions
	7.1 Future Work

	References
	Appendix A — Host Transmission Code
	Appendix B — Sim2PIM
	Appendix C — Resumo Expandido
	C.1 Contribuições e Objetivos Alcançados
	C.2 Trabalho Futuro

