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Abstract. We introduce a non-commutative generalization of the notion of (approximately
proper) equivalence relations and propose the construction of a ‘quotient space’. We then
consider certain one-parameter groups of automorphisms of the resulting C*-algebra and
prove the existence of KMS states at every temperature. In a model originating from
thermodynamics we prove that these states are unique as well. We also show a relationship
between maximizing measures (the analogue of the Aubry—Mather measures for expanding
maps) and ground states. In the last section we explore an interesting example of phase
transitions.

1. Introduction

An equivalence relation on a compact Hausdorff space is said to be proper when the
quotient space is Hausdorff, and approximately proper when it is the union of an increasing
sequence of proper relations. The first major goal of this paper is to extend these concepts
to non-commutative spaces, that is to C*-algebras, and to construct the corresponding
quotient space. This turns out to be another C*-algebra which is often non-commutative
even when the original algebra is commutative. An example of this situation is the fail-
equivalence relation on Bernoulli’s space whose ‘quotient space’ turns out to be the CAR
algebra.

We then introduce the notion of potentials and their associated gauge actions which
are one-parameter groups of automorphisms of the ‘quotient space’. A characterization of
KMS states is then provided and we use it to show that KMS states exist for all values of
the inverse temperature.

Starting with a local homeomorphism 7" on a compact metric space X we consider the
equivalence relation on X under which two points x and y are equivalent if there is a
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natural number #n such that 7" (x) = T"(y). This turns out to be an approximately proper
equivalence relation and we apply the abstract theory developed in the previous sections,
enhanced by the use of Ruelle’s Perron—Frobenius Theorem, in order to show uniqueness
of KMS states at every temperature.

Ground states are studied next and a general characterization of those states which
factor through a certain conditional expectation is obtained in terms of the support of the
corresponding measure.

In the last section of the paper we show a relationship between maximizing measures
(the analogue of the Aubry—Mather measures for the class of expanding maps) and ground
states.

Approximately proper equivalence relations were first defined and studied in [Rel,
Re2]. Proposition 9.9 and Theorem 11.6 can also be obtained as a particular case of
the characterization of KMS states given in [Rel, 11.5.4]. The existence of KMS states
(Theorem 8.2) is also proved in [Rel, III.1.5] in a more particular case but with a similar
proof.

Our construction of the C*-algebra for an approximately proper equivalence relation
should be viewed as a non-commutative generalization of the groupoid C*-algebra [Rel]
for the groupoids treated by Renault in [Re2, Re3]. In the special case of approximately
proper equivalence relations over commutative algebras, under the assumption that certain
conditional expectations are of index-finite type, an assumption which we make from
§ 6 onwards, our situation actually becomes identical to some situations discussed by
Renault in the above-mentioned articles. Unlike Renault, we do not treat these situations
by employing groupoid techniques, but there is nevertheless a significant overlap in our
conclusions.

2. Approximately proper equivalence relations
In order to motivate the construction to be made here consider a compact Hausdorff space
X equipped with an equivalence relation R.

When the quotient X/R is a Hausdorff space we say that R is a proper equivalence
relation in which case the C*-algebra of continuous complex functions on X/R, which
we denote as C(X/R), is canonically *-isomorphic to the subalgebra C(X; R) of C(X)
formed by the functions which are constant on each equivalence class.

On the other hand, given any closed unital *-subalgebra A C C(X), define the
equivalence relation R4 on X by

(x.y)€eRa & VfeA f)=fO).

It is then easy to see that R4 is proper and that C(X; R4) = A. In other words, the
correspondence R — C(X; R) is a bijection between the set of all proper equivalence
relations on X and the collection of all closed unital *-subalgebras of C(X).

This could be used to give a definition of ‘proper equivalence relations’ over a ‘non-
commutative space’, that is, a non-commutative C*-algebra: such a relation would simply
be defined as a closed unital *-subalgebra.

This scenario is undoubtedly very neat, but it ignores some of the most interesting
equivalence relations in mathematics, most of which are not proper. Consider, for example,
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the tail-equivalence relation on Bernouli’s space. The fact that the equivalence classes are
dense implies that C(X; R) consists solely of the constant functions. So, in this case the
subalgebra C(X; R) says nothing about the equivalence relation we started with.

Fortunately, some badly behaved equivalence relations, such as the example mentioned
above, may be described as limits of proper relations, in the following sense.

Definition 2.1. An equivalence relation R on a compact Hausdorff space X is said to be
approximately proper if there exists an increasing sequence of proper equivalence relations
{Rn}nen such that R = |,y Ra-

We should perhaps say that we adopt the convention according to which N =
{0, 1,2,...}. Also, we view equivalence relations in the strict mathematical sense, namely
as subsets of X x X, hence the set theoretical union above.

Given {R,},en as above, consider for each n the subalgebra R, = C(X; R,).
Since R, € R, 4+1 we have that R, © R, 1. Since each R,, may be recovered from R,,, we
conclude that the decreasing sequence {R,},cn encodes all of the information present in
the given sequence of equivalence relations. We may then generalize to a non-commutative
setting as follows.

Definition 2.2. An approximately proper equivalence relation on a unital C*-algebra A is
a decreasing sequence {R, }, <N of closed unital *-subalgebras. For convenience we always
assume that Ry = A.

It is our goal in this section to introduce a C*-algebra which is supposed to be the non-
commutative analog of the quotient space by an approximately proper equivalence relation.
A special feature of our construction is that the resulting algebra is often non-commutative
even when the initial algebra A is commutative.

In order to carry on with our construction it seems that we are required to choose a
sequence of faithful conditional expectations { £, },en defined on A with E, (A) = R, and
E,+10E, = E,4 for every n.

Throughout this section, and for most of this work, we will therefore fix a C*-algebra A,
an approximately proper equivalence relation R = {R,},ciy, and a sequence £ = {Ep},eN
of conditional expectations as above.

Definition 2.3. The Toeplitz algebra of the pair (R,E), denoted 7(R,E), is the
universal C*-algebra generated by A and a sequence {é, },cn of projections (self-adjoint
idempotents) subject to the relations:

i e =1

(i) én-i-lén = én+1§

(iii) eqae, = En(a)en;

foralla € Aandn € N.

When an element a € A is viewed in 7 (R, £) we will denote it by a. At first glance it
is conceivable that the relations above imply that @ = 0 for some non-zero elementa € A.
We will soon show that this never happens so that we may identify A with its copy within
T(R, E), and then we will be allowed to drop the underlining notation.
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Note that Definition 2.3(ii) states that the ¢,, form a decreasing sequence of projections.
Also, by taking adjoints in Definition 2.3(iii), we conclude that e aée, = é, E,(a) as well.
It follows that each e, lies in the commutant of Ra.

PROPOSITION 2.4. Givenn,m € Nanda, b, c,d € A, one has that

akE,(bc)end, ifn <m,
aén Ep(bc)d, ifn>m.

(aenb)(cemd) = {

Proof. If n < m, we have
(aénb)(cemd) = a(eénbcen)émd = akEy (bc)énémé =ak, (bc)émé-
If n > m the conclusion follows by taking adjoints. O

Definition 2.5. For each n € N we denote by I&,, the closed linear span of the set
{ae,b:a,b e A}.

By Proposition 2.4 we see that fori < n one has that both /&,»/&,, and I%n I@i are contained
in KC,,. In particular, each K, is a C*-subalgebra of 7 (R, &).
We now need a concept borrowed from [E1, 3.6] and [E2, 6.2].

Definition 2.6. Let n € N. A finite sequence (ko,...,k,) € ]_[?:O I@i such that
Y okix =0forallx € K, will be called an n-redundancy. The closed two-sided ideal
of T (R, £) generated by the elements kg + - - - + kj,, for all n-redundancies (ko, ..., k),
will be called the redundancy ideal.

We now arrive at our main new concept.

Definition 2.7. The C*-algebra of the pair (R, £), denoted by C*(R, &), is defined to be
the quotient of 7 (R, £) by the redundancy ideal. Moreover, we will adopt the following
notation:

(i) the quotient map from 7 (R, £) to C*(R, £) will be denoted by ¢;

(ii) the image of ¢, in C*(R, &) will be denoted by e,;

(iii) the image of K, in C*(R, &) will be denoted by K.

It is clear that K, is the closed linear span of g (A)e,q(A).

3. A faithful representation
In this section we provide a faithful representation of C*(R, £) which will, among other
things, show that the natural maps A — 7 (R, ) and A — C*(R, &) are injective.

For n € N consider the right Hilbert R,,-module M,, obtained by completing A under
the R,-valued inner product

{(a,b) = E (a*b), Va,be€ A.
The canonical map assigning each a € A to its class in M,, will be denoted by

in:A—> M,.
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It is obviously a right R,-module map. For each a in A one may prove that the
correspondence
in(x) > iy(ax), VxeA

extends to a map L) € L(M,) (adjointable linear operators on M,). In turn, the
correspondence a — L/} may be shown to be an injective *-homomorphism from A to
L(M,) (recall that the E,, are assumed faithful) and whenever convenient we use it to
think of A as a subalgebra of L(M,,).

We denote by ¢, the projection in L£(M,) obtained by continuously extending the
correspondence i, (x) — i, (E,(x)) to the whole of M,,.

Given any two vectors &, 7 € M,, we denote by Q¢ , the ‘generalized rank-one compact
operator’ on M,, given by

Qen(C)=8M, L), Ve M,.

PROPOSITION 3.1. Given a,b € A one has that aé,b* = Qi ().i, ). Therefore, the
closed linear span of the set {ae,b* : a,b € A} is precisely the algebra of generalized
compact operators on M. This algebra will be denoted by K.

Proof. For x € A, note that
aénb™(in(x)) = in(@Ex(b*x)) = in(@) Ex(b*x) = in(a)(in (D), in(x))
= Qi,(a),in) {n(x)). a
The following is an important algebraic relation.
PROPOSITION 3.2. For everyn € N and every a € A one has that

epaéy = Ey(a)é, = e, E,(a).

Proof. Given x € A note that
énaén(in(x)) = in(Ep(aEn(x))) = in(En(a) En(x)) = En(a)én(in(x)).
So éyae, = Ey(a)é,. That ¢ aé, = é, E,(a) follows by taking adjoints. O
‘We now wish to see how the M,, relate to each other.
PROPOSITION 3.3. For every n € N there exists a continuous Ryy1-linear map j, :

M, — M,y such that j,(i,(a)) = iy+1(a) for alla € A. Moreover for any &€, € M,
one has that

Enp1((€.m) = (Jn (), Ju(m)).

Proof. For every a € A we claim that ||i,+1(a)| < ||lix(a)]|. In fact,
lins1@|* = [ Eny1(@ @)l = | Ent1En(a*a)|| < | En(@*a)ll = llin(a)]*.
Thus, the correspondence i,(a) + i,4+1(a) is contractive and hence extends to a

continuous map j, : M, — My4 such that j,(i,(a)) = iy+1(a). It is elementary to
verify that j, is R,+-linear. Suppose that & = i, (a) and n = i,(b) where a, b € A. Then

Epr1((6, ) = En1({in(a), in(0))) = Ept1(En(a™b)) = Ept1(a*b)
= (in+1(@), int1(0)) = (jn(in(@)), Ju(in(0))) = (Jju(§), ju(m)).

The conclusion now follows because i,,(A) is dense in M,,. O
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The preceding result gives a canonical relationship between elements in M,, and M, .
We now see how to relate operators.
PROPOSITION 3.4. There exists an injective *-homomorphism
@, 1 L(My) = L(Mp11)
such that for T € L(M,,) one has that

@, (T)(jn () = ju(T(§)), V& € My.

Proof. Let T € L(M,). Since T*T < ||T||* one has for all £ € M,, that

(T (), T&) =(T*T&),&) < |TI*E &)
Applying E, 41 to the above inequality yields

Ens1((T(E), TE))) < |ITI?Ent1((€, £)),

or

Un(T ), jn(TEN) < IT I ), jn(E))),
which implies that || j, (TENI < Tl | jn(€)]l. So the correspondence
Jn(&) > ju(T(§))

extends to a bounded linear map ®,(T) : M,+1 — M,y such that ®(T)(j,(§)) =
Jjn(T(&)) forall &€ € M,,.

We claim that ®(T)* = ®(T*) forall T € L(Mp,). In order to prove this let &, n € M,,.
We have that

(Jn(8), ®(T)(Gn(m)) = (jn (&), jn (T () = Eny1((5, T (m)))
= Epr1({T*(©), n) = (DT (§)), jn (M),

proving the claim. It is now easy to see that @, is indeed a *-homomorphism from L£(M,,)
to L(My41).
If T is such that ®,(T) = 0 then for every £ € M,, one has that

0= (Pu(T)(Jn(§)), Pu(T)(Jn(§))) = (Jn(T(§)), jn(T (&) = Ent1((T'(§), T(§))).
Since E, 4 is faithful we have that 7 (§) = 0. Since £ is arbitrary we have that 7 = 0. O

Definition 3.5. We denote by L the inductive limit of the sequence

o) 2 ooy 2

Recall that A is viewed as a subalgebra of £(M,) via the correspondence a +— L.
For a, x € A note that

D (L) (in41(x)) = Pn(Ly) (n (in(x) = ju (L (in(x))) = ju(in(ax)) = int1(ax)

= L' (i1 (1)),
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so that &, (L") = LZ‘H. It follows that if we identify £(M,,) with its image in L(M,,+1)
under ®,, the two corresponding copies of A will be identified with each other via the
identity map. Therefore, A sits inside of L in a canonical fashion.

We now claim that ¢, < ®,(¢é,) foralln € N. In fact, foralla € A

én+] ch(én)(ilH»] (a))
= én-‘,—l(bn(én)(jn(in(a))) = én-i—l(jn(én(in(a)))) = én-i—l(jn(in(En(a))))
= én+1(in+1(En(@))) = in+1(Ent1En(@)) = int1(Ent1(a)) = épt1(in+1(a)).

Within L, we then get a decreasing sequence of projections consisting of the images
of ¢, in the inductive limit, which we still denote by ¢,,.

We are now ready to prove the main result of this section, the main purpose of which is
to give a concrete realization of the so far abstractly defined C*(R, £).

THEOREM 3.6.

(1)  There exists a unique *-homomorphism 7t : T (R, E) — Lo such that 7 (a) = a for
allain A and 7 (e,) = ¢, foralln € N.

(ii) & vanishes on the redundancy ideal and so factors through C*(R, £) providing a
*-homomorphism

7:C*(R,E) = Lo

such that 7w (e,) = é, and w(q(a)) = a, where q is the quotient map from T (R, £)
to C*(R, E).

(iii) 7 is injective and hence C*(R, &) is isomorphic to the sub-C*-algebra of Lo
generated by A and all of the é,,.

Proof. The first point follows from Proposition 3.2, the fact that the ¢, are decreasing, and
the universal property of 7 (R, £).
Addressing (ii), all we must show is that 7 vanishes on any element of the form

n
i=0

where (ko, ..., k;) is an n-redundancy. Observing that for i < n one has that 7 (k;) €
L(M;) and that £(M;) is contained in L(M,,) (as subalgebras of the direct limit L),
we see that 7(s) € L(M,). Given a € A, choose b,c € A such that E(b*c) = 1
(e.g. b = ¢ = 1) so that

Proposition 3.1

A in@) = T Qiy(a),in®)lin(e) = 7(8) (anb™)linc) = (s aénb™) iy =0

because ae,b lies in I@n. This shows that 77 (s) = 0 and hence proves (ii).

In order to proceed we must now prove that the restriction of 7 to each Ky is injective.
For this purpose, recall from [Wa, 2.2.9] that Ky is precisely the unreduced C*-basic
construction relative to E, and thus possesses the universal property described in [Wa,
2.2.7]. The correspondence

acAr—>acT(R,E)

together with the idempotent ¢, gives by Definition 2.3(iii) a covariant representation of
the conditional expectation E,, according to Definition 2.2.6 in [Wa]. Therefore, there
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exists a *-homomorphism p : Ié,, — I@n such that p(aé,b) = ae,b for all a,b € A.
It follows that the composition p o (7| 1@1) is the identity map, hence proving our claim that
7| i, is injective.

In order to prove (iii), it suffices to show that for each n, 7 is injective on the sub-C*-
algebra of C*(R, £) given by

By =Ko+ + Ky,

where the K, are defined in Definition 2.7(iii) (note that B, is indeed a sub-C*-algebra by
[P, 1.5.8]). In fact, once this is granted, we see that 7 is isometric on the union of all B,
which is dense in C*(R, £). This would prove that 7 is isometric on all of C*(R, &).

Letb = ko + --- + k, € B,, where k; € K;, and suppose that w(b) = 0. Since
q(l@,-) = K; we may write k; = q(lz,-), where 12,- € I@,-. We therefore have that
Ao+ +kn) = 0.

We now claim that (/20, el lzn) is an n-redundancy. In order to prove this, let
X € I@n and note that (120 + -+ lzn)x € I@n by Proposition 2.4. However, since
#(ko+ - + kn)x) = 0 and # is injective on K, we have that (ko 4 - - - + kn)x = 0 as
claimed. So 120 +--- 4+ 12,, lies in the redundancy ideal and hence

b=gqlko+ - +ky) =0. !
COROLLARY 3.7. The maps
acA—>acT(R,E)
and
a€A— qga) e C*(R,E)
are injective.

The proof follows immediately from our last result.
From now on, we will therefore identify A with A and also with g (A).

4. Stationary equivalence relations
In this section we study approximately proper equivalence relations which have a special
simple description.

Definition 4.1. An approximately proper equivalence relation R = {R,},N over a unital
C*-algebra A is said to be stationary if there exists a unital injective *-endomorphism
o :A— Asuchthat R+ = a(R,) forall n.

In this case observe that R, is simply the range of «”. Throughout this section we fix a
stationary approximately proper equivalence relation R = {R,},cn over A. We will also
fix an endomorphism « as above.

Let E be a given faithful conditional expectation from A to R;. Define conditional
expectations E, from A to R, by

E,=a" V" (Ea™"...(Ea ) E.

n—1 times

It is easy to see that E, 1 o E, = E, 4 for every n.
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Definition 4.2. We say that a sequence of conditional expectations & = {Ep},eN iS
stationary if it is obtained as above from a single faithful conditional expectation
E:A— R

Throughout this section we fix a stationary sequence of conditional expectations as
above. Observe that the composition £ = «~ ! E is a transfer operator in the sense of [E1,
2.1]. We may then form the crossed-product A x, N as in [E1, 3.7]. Denote by y the
scalar gauge action [E2,3.3]on A x4 £ N.

The main result we wish to present in this section is the following.

THEOREM 4.3. With the hypothesis introduced in this section, C*(R, £) is isomorphic to
the sub-C*-algebra of the crossed-product algebra A X, r N formed by the fixed points for
the scalar gauge action.

Proof. The theorem follows immediately from [E2, 6.5] since the algebra U mentioned
there (see also [E2, 4.8]) is isomorphic to C*(R, £) by Theorem 3.6(iii). For the proof that
the fixed point algebra is precisely U see [M, 4.1]. a

We may now finally give a non-trivial example of our construction. Let A be an
n X n matrix of zeros and ones without any zero rows or columns and let (X, T') be the
corresponding Markov sub-shift. Define the endomorphism « of C(X) by a(f) = fo T,
for all f in C(X). Also, let E be the conditional expectation from C(X) to the range of «
given by

EPl=——t—— 3 f), VfeCX), xeX.
Hy  TO) = x) o,

We may then form R and £ as above. By [E1, 6.2], one has that C(X) x4 o N is the
Cuntz—Krieger algebra O4. By Theorem 4.3 we then have that C*(R, £) is isomorphic to
the subalgebra of O 4 formed by the fixed point algebra for the gauge action. When n = 2

and
1 1
A=
!

we then have that C*(R, &) is isomorphic to the CAR algebra.

5. Gauge automorphisms
In this section we return to the general case, therefore fixing a C*-algebra A, an
approximately proper equivalence relation R = {R,},cN, and a sequence & = {Ep},eN
of compatible conditional expectations as before.

We wish to introduce the notions of potentials and their corresponding gauge
automorphisms which will be the objects of study in later sections. We start with a simple
technical fact.

PROPOSITION 5.1. Leti < n andletb € Z(R;) (meaning the center of R;) then

E,(ab) = E,(ba), VYa € A.
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Proof. We have
Ey(ab) = En(Ei(ab)) = En(Ei(a)b) = Ex(bEi(a)) = En(Ei(ba)) = En(ba). O

Definition 5.2. By a potential we mean a sequence z = {z,},eN such that z, belongs to
Z(Ry) foreveryn € N.

Given a potential z observe that every z, commutes with every other z,,. Therefore, we
may set
" =z0z1.. . 2021, VneN,

without worrying about the order of the factors. We also use the notation z " to mean
("1~ when the latter exists.
If w = {wy,},,en is another potential, it is clear that zw := {z,wy}, <N 1S again a potential
and that
(zw)" = Myl vp e N

Potentials may be used to define automorphisms as follows.

PROPOSITION 5.3. Let u = {un},eN be a unitary potential (in the sense that each uy is a
unitary element). Then there is an automorphism @, of T (R, ) such that
¢ula) =a, VaeA,
and
Oulen) = u™e, M vp e N.
Moreover; given another unitary potential v, one has that ¢y, = @y Qy.
Proof. Foreveryn € Nlet f, = u"1é,u="1. Then

Fo o1 = uMeu iyt e, g =it = g 8y it

A 5 —[n+1 115 —[n+1
= ulupép Y = e, T =
so the f, are decreasing. For a € A we have

foaf, = u["]énu*[”]au["]énu*["] — u[”]En(u*["]au[”])énu*["]
Proposition 5.1 ~ — A —
= W E, (a)éu™™ = E,(@)u™é,u" = E,(a) f,.

By the universal property of 7 (R, £) there exist a *-homomorphism ¢, : 7(R,E) —
T (R, ) satisfying the conditions in the statement, except possibly for the fact that ¢, is
an automorphism.

Given another unitary potential v one can easily prove that ¢,, = ¢, ¢, by checking on
the generators. Plugging v = u~! := {u;l}nEN we then have that ¢, 1 and ¢, are each
others inverse and hence ¢, is an automorphism. a

PROPOSITION 5.4. For every unitary potential u the automorphism ¢, leaves the
redundancy ideal invariant (in the sense that the image of the redundancy ideal under
@u is exactly the redundancy ideal) and hence drops to an automorphism ¢, of C*(R, E)
which is the identity on A and such that

oulen) = u[n]enu—[n]’ Vn e N.
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Proof. 1t is elementary to verify that ¢, (I@n) = I@n for all n. Thus, if (ko, ..., k,) is a

~

redundancy we have that (¢, (ko). . .., ¢u(kn)) € [1— K;. Moreover, if x € K,,, we have

that
n n
> Gulki)x = @( kwu‘m) =0.
i=0 i=0
Therefore, (¢, (ko), ..., ¢u(k,)) is a redundancy and hence ¢, (kg + - - - + k) lies in the
redundancy ideal. So we see that ¢, sends the redundancy ideal into itself. Since the
same holds for §,-1 = ¢, ! it follows that the image of the redundancy ideal under @, is
precisely the redundancy ideal and hence the proof is concluded. a

So far we have introduced single gauge automorphisms, but now we would like to define
one-parameter groups.

Definition 5.5.

(i) A potential h = {h,},cN is said to be strictly positive when for each n there exists a
real number ¢, > 0 such that /,, > ¢,,.

(ii) Given a strictly positive potential 7 = {h,},cN and a complex number z we denote
by h? the potential {hZ},cn, and by A" = (h%)1"] for n € N.

(iii) The gauge action for a strictly positive potential & is the one-parameter group
0 = {01};er of automorphisms of C*(R, £) given by o, = ¢, forall t € R.

Givena, b € A and n € N, observe that
or(aepb) = ah"Me,n7""Mp Va, b e A, VneN. (5.6)

It is therefore clear that the gauge action is strongly continuous.

6. Finite index
Starting with this section we restrict ourselves to the case in which the E;, are of index-finite
type according to [Wa, 1.2.2]. We refer the reader to [Wa] for the basic definitions and
facts about index-finite type conditional expectations, which now acquire a preponderant
role in our study.

PROPOSITION 6.1. If E,, is of index-finite type then its restriction to each R,, where
n < m, is also of index-finite type. Moreover if {u1, ..., ux} is a quasi-basis for E,, then
{En(ur), ..., En(ur)} is a quasi-basis for the restriction of Ey, to Ry.

Proof. For every a € R, we have that
k k
a=Ey(a) = En(ZuiEmwi‘a)) =Y Ey)En(Eq(ufa))
i=0 i=0

k
= ZEn(ul)Em(En(ul)*a) -
i=0

PROPOSITION 6.2. Let n < m. Suppose that the restriction of E,, to R, is of index-finite
type and let {v1, ..., v} € R, be a quasi-basis for it. Then:

. k
1) Di_gviemVi =en;
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i) K, S K.

Proof. Leta, b € A and observe that
k
<én — Z Viénm v}“)aémb
i=0
k

k
= 8,apémb — Z Vi Em (v} a)émb = En(a)énb — Z Vi Em(En(vFa))émb
i=0 i=0
k
=E,(a)éub — Vi En (V] Ey(a))émb = Ep(a)émb — Ep(a)énb = 0.
i=0

Therefore, the (m + 1)-tuple

k
<0,...,0,én,0,...,0,—Zuiému§‘>
i=0

is an m-redundancy from which (i) follows. Obviously (ii) follows from (i). O

COROLLARY 6.3. Ifall E, are of index-finite type then IC,, are increasing and C*(R, £)
is the closure of | J,,en K-

Proof. By Proposition 6.1 we have that E,;1|R, is of index-finite type. Hence by
Proposition 6.2 we have that K, € IC,41. Since A = Ky and for every n we have that
e, € IC, the conclusion follows. O

In the finite index case we have the following elementary description of /C,.

PROPOSITION 6.4. Ifall E, are of index-finite type then M, = i,(A) and K,, = LR, (A),
where L, (A) denotes the set of all (not necessarily adjointable or even continuous)
additive right R, -linear maps on A (where A is identified with M,, via iy,).

Proof. By [Wa, 2.1.5] there exists a constant A, > 0 such that || E,(a*a)||'/? > A.llall,
for all a in A. Therefore,

lin(@)| = | Ex(@*a)|"/* = Anlall,

so that i, is a Banach space isomorphism onto its range which is therefore a complete
normed space, hence closed. Since i,,(A) is dense in M, we conclude that i,(A) = M,.
We will therefore identify M), and A.

It is clear that IC;, € Lg, (A). In order to prove the converse inclusion let {u, ..., u,}
be a quasi-basis for E,. Then, given any additive R,-linear map 7 on A and a € A, we
have

T(a) = T(ZmEn(u:‘m) =Y Twi)Ex(ufa) =Y T (ui){ui, a)
i=1

i=1 i=1
m
= Z QT(u,-),ui (a)v
i=1

sothat T = Y7 | Q7). € K. o
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This last result gives a curious description of the dense subalgebra (J,.n/Cy of
C*(R, £), namely that it is formed by the additive operators which are linear with respect
to some R,,. Observe that this is not quite the same as requiring linearity with respect to
the intersection of the R, !

One of the main tools in our study from now on will be a certain conditional expectation
from C*(R, &) to A. Unfortunately, we can only show its existence in the finite-index case.

PROPOSITION 6.5. If all E, are of index-finite type, then there exists a conditional
expectation

G:C*(R,E) — A,
such that for each n € N one has that

Glew)=25" .. a!

EERAE )

where A, = ind(En41lR,). If A is commutative then G is the unique conditional
expectation from C*(R, ) to A.

Proof. Set A, = ind(E,1i1|r,) so that A = {A;},en i a potential in the sense of
Definition 5.2 and the proposed value for G (e,) above is just A1, Observe, moreover,
that A=) commutes with R,,_;.

Let n € N be fixed. Observing that K, is isomorphic to I%n by Theorem 3.6(iii) and
arguing exactly as in [E2, 8.4], we conclude that there exists a positive A-bimodule map
Gy : Ky — A such that G, (e,;) = 271"

We claim that G4+ extends G,. In fact, let {u1, ..., ux} be a quasi-basis for E, 1.
Then by Proposition 6.1 we have that {E, (u1), ..., E,(ur)} is a quasi-basis for E,,y1|R,,.

By Proposition 6.2(i) we have that e, = Zf-‘zl E,(ui)en+1E,(u;)*, so that

k k
Guii(en) = ) Enui)h ™" E, up)* = A7y " By (ui) En(u)*
i=1 i=1
= 27" ind(Epy1lR,) = 27", = 271 = G(en).

The claim then follows easily from the fact that both G, and G+ are A-bimodule maps.
As a consequence we see that each G, restricts to the identity on A and hence G, is a
conditional expectation from K, to A. Conditional expectations are always contractive so
there exists a common extension G : C*(R, £) — A which is the desired map.
Suppose that A is commutative and that G’ is another conditional expectation from
C*(R,E) to A. Given n let {uj,...,ur} be a quasi-basis for E, and hence by
Proposition 6.2(i) we have

k k
1=G'(1)= G/(Zu,»enu;*> =Y u;G'(en)u; = G'(ey) ind(Ey),
i=0 i=0

so necessarily G'(e,) = ind(E,)~' = A~"] by [Wa, 1.7.1]. Once we know that G and G’
coincide on ¢, it is easy to see that G = G'. a
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7. KMS states
In this section we begin the general study of KMS states for gauge actions on C*(R, ).
We refer the reader to [BR, P] for the basic theory of KMS states.

Given what are probably limitations in our methods, we will all but have to assume that
A is commutative. To be precise, we assume from now on that the conditional expectations
E,, satisfy the following trace-like property:

E,(ab) = E,(ba), VNa,be A, (7.1)

which is obviously the case when A is commutative. Unfortunately, we have no interesting
non-commutative example of this situation, but since we do not really have to suppose
that A is commutative and in the hope that some such example will be found, we proceed
without the commutativity of A.

We moreover assume that all £, are of index-finite type and denote by G the conditional
expectation given by Proposition 6.5. Our first result is that any KMS state factors
through G.

PROPOSITION 7.2. Let h be a strictly positive potential, let § > 0, and let ¢ be a (o, B)-
KMS state (i.e. a KMS state for o at inverse temperature B) on C*(R, E) for the gauge
action o associated to h. Then ¢ = ¢ o G.

Proof. Given a,b € A and n € N it is clear from (5.6) that ae, b is an analytic element
with
o;(ae,b) = ah@Me, n~2Mp vz e C.

We claim that
b (aenb) = ¢ (WP E,(bah P"e,), Va,be A, VneN. (%)
In order to prove it we use the KMS condition as follows
$(ae,b) = p(enba) = d(enbacip(en)) = p(enbah™P"e,hPIT)
= ¢(En(bah™"")e,hPU) = ¢ (WP E, (bah™P")e,),
proving (x). We next claim that
d(aent1) = ¢, lae,), VaeA,

where A, is defined in Proposition 6.5. In order to prove this claim, let {vy, ..., vt} C R,
be a quasi-basis for the restriction of E, 1 to R,. Then by Proposition 6.2(i) we have for
all x € A that

P(xen) = ¢< Xk: Xvienil v?‘) @ Xk: dPIHIE, L (fxvih Pt e, ).
i=0 i=0
Since v; € R, and since A"+ commutes with R,,, we have that
Ep1 fxvih Py = B, ofxh P ) = By (e Py,
by the trace-like property of E, 1. We then conclude that
¢(xen) = pWP I E, L k=P e ).
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Using () once more we have that
p(aens1) = p(hPUNE, 1y (@h P e, ).

So when x = A 'a, we have that ¢ (xe,) = ¢(ae,+1), which is precisely the identity we
were looking for. By induction, we then have that

p(ae,) = o1 1Ma).
Therefore, foralla, b € A,
d(aeyb) = p(baey) = p(A"ba) = ¢p(ar™"b) = ¢(G(ae,b)).

As the closed linear span of the set of elements of the form ae, b is dense in C*(R, £) the
proof is complete. a

In particular, it follows that every KMS state is determined by its restriction to A. It is
therefore useful to know which states on A occur as the restriction of a KMS state.

PROPOSITION 7.3. Let ¢ be a state on A and let B > 0. Then the composition = ¢ oG
is a (o, B)-KMS state if and only if

¢@) = p(AME,(A"a)), Yae A, VneN,
where A = {Ap},eN is the potential given by A, = h;ﬂkn.

Proof. Suppose that i is a (o, 8)-KMS state. Then for all a, b, c,d € Aand alln € N we
have

Y ((aenb)oig(cend)) = Y ((cend)(aeyb)). (k)
Observe that the left-hand side of () equals
V(aepbch ™M e, nP gy =y (a E, (bch™ P, hPUM d)
= ¢(aEp(bch™Plrlyp~nlpBlnl gy
Meanwhile, the right-hand side of (%) equals
V(cEn(da)enb) = p(cEn(da)r™"Ib).
Plugging in b = 1, ¢ = hP" and d = h=Pl"IA1"] we have that (sx) implies that
¢(a) = p(WPPE, (= PrIMayn ) = ¢ (AT E, (AMa)).

In order to prove the converse we first claim that if ¢ satisfies the condition in the
statement for n = 1, then ¢ must be a trace. In fact, observing that Alll = Ag € Z(A) we
have for all a, b € A that

¢ (ab) = p(ATME (AMab)) = (AN E (aaMb)) = (AT E (AMba)) = ¢ (ba),

where we have again used the trace-like property of E|. Supposing now that ¢ satisfies the
above condition not only for n = 1, but for all n € N, let us prove that i is a KMS state.
For this we would like to prove that

v ((aenb)oig(cemd)) = Y ((cemd)(aenb)), (seskok)
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forall a,b,c,d € A and n,m € N. Supposing that n < m, the left-hand side of ()
equals

¥ (aeybeh™Plme, nPml )
= Y (aEy(beh P, hPM )
= ¢(aEy(beh Py ~tmpPlmlgy = ¢ (E, (bch=PUmhypPlmly~Imlggy = ...
Letting x = hg .. .hifl, observe that x € R, and AP = xhP" 50 the above equals
oo = G(En(beh Py~ xpPlra "M gay = ¢ (E, (beh PPl —Imlgq)
— qb(A*[”]E,,(A["]E,,(bchiﬁ["])hﬂ[”])f[m]da))
= ¢(A"E, (bch PN E, WM dg)).
Meanwhile, the right-hand side of () equals
Y (cem En(da)b) = ¢(ch™ "™ E,(da)b) = ¢ (beh "™ E, (da))
= ¢(AME, (A" ber""E, (da)))
= ¢(AE, (ber WM p=PIYE, (da)).

Observing that A~"131"] € R, we therefore see that (xxx) is proved under the hypothesis
that n < m. If, on the other hand, n > m the left-hand side of (x*%) becomes

Y (aenbch™P™e, WPy =y (aey Eyy (bch =Py pnPlml )
— ¢ (ar" M E,, (beh—PUmlypAlml gy
= p(A I E, (AT E,, (bch =P pPUm g q))
= oA E,, (beh =P B, (P da A3y
= ¢(AIME,, (beh =PI E,, (darm1. 0.
The right-hand side of (%) equals
Y (cEm(da)e,b) = ¢ (cEn(da)r™"b) = ¢ (1" MbcE,y (da))
= p(A M E,, (A"AMpeE, (da)))
= ¢(A"ME,, (bch P\ M)~ E (da)).
The conclusion follows once more because A™1A~1" ¢ R, 0O

Putting together our last two results we reach one of our main goals.

THEOREM 7.4. Let R be an approximately proper equivalence relation on a C*-algebra
A and let £ = {E,},cN be a sequence of conditional expectations of index-finite type
defined on A with E,(A) = R, satisfying (7.1) and E,41 o E,, = E,11 for every n.
Also, let h be any strictly positive potential and denote by o the associated gauge action
on C*(R, ). Then for every B > 0, the correspondence v +— ¢ = Y|4 is a bijection
from the set of (o, B)-KMS states yr on C*(R, £) and the set of states ¢ on A satisfying

d(a) = p(AME, (AMa)), Vae A, ¥neN,

where A = {Ap},en is the potential given by A, = h;ﬁkn. The inverse of this
correspondence is given by ¢ +— = ¢ o G, where G is given in Proposition 6.5.
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8. Existence of KMS states

Theorem 7.4 gives a precise characterization of the KMS states on C*(R, £) in terms
of states on A satisfying certain conditions. It does not say, however, if such states exist.
We now take up the task of showing the existence of at least one KMS state for each inverse
temperature 8 > 0. We begin with a technical result which states that the conditions on ¢
required by Proposition 7.3 increase in strength with 7.

PROPOSITION 8.1. Let ¢ be a state on A and suppose that the formula
¢(@) = p(AME,(AMa)),  Va € A,
holds for n = k + 1, where k € N is given. Then the formula holds for n = k.
Proof. For each n € N, let F;, be the operator on A given by
Fu(a) = A"ME,(A"a), Va e A.

Then the formula in the statement is equivalent to F,’(¢) = ¢, where F,’ refers to the
transpose operator on the dual of A.
We claim that for all » one has that F,,41 o F, = Fy,41. In fact, observing that
AlTHA-IN = A, € R, we have
Fop1(Fy(@) = A7 E, (AP HIATE, (Aa))

— A_[n+1]En+1(En(A["+1]A_[n]A["]a)) — A_[n+1]En+1(A[n+l]a)

= Fyyi1(a).
Given that Ff, (¢) = ¢ we have
Fi(¢) = F (F{ 1 (@) = (Fit1 F)™ (@) = FY (@) = ¢. d

‘We now arrive at the main result of this section.

THEOREM 8.2. Let R be an approximately proper equivalence relation on a C*-algebra
A and let £ = {E,},eN be a sequence of conditional expectations of index-finite type
defined on A with E,(A) = R, satisfying (7.1) and E,41 o E,, = E,11 for every n.
Also let h be any strictly positive potential and denote by o the associated gauge action on
C*(R, E). Then for every B > 0 there exists at least one (o, 8)-KMS state on C*(R, £).

Proof. For eachn € N, let S, be set of all states on A satisfying F,’ (¢) = ¢, where F, is
the operator defined in the beginning of the proof of Proposition 8.1. It is clear that the S,
are closed subsets of the state space of A and hence compact.

We claim that S,, is non-empty for every n. In order to prove this let T be any trace on A.
Observe that traces on A may be obtained by composing any state with E£;. For a given n,
let ¢ = F,*(7). Since Fn2 = Fy itis clear that F,"(¢) = ¢. Moreover, ¢ is a positive linear
functional because for all a € A4 we have

#(a) = T(AME, (AMa)) = 1(A"2ME, (A2l g A2y A= 2I0) > 0,

Thus dividing ¢ by ¢ (1) (observe that ¢ (1) # 0 by [Wa, 2.1.5]) gives an element of S, so
that S,, # ¢. By Proposition 8.1 we have that the S,, are decreasing so their intersection is
non-empty. Any ¢ belonging to that intersection is a state on A satisfying the condition in
Proposition 7.3 and hence ¢ o G is a (o, 8)-KMS state on C*(R, £). O
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It should be noted that the method employed above may be used to give an iterative
process to produce KMS states: start with any state ¢ on A and define

bn = u1 (Fu(D) " EF ().

Any weak accumulation point of the sequence {¢,}, will be a state ¢ on A satisfying
Proposition 7.3 and hence ¢ o G is the desired KMS state.

In the present level of generality there is not much more we can say about KMS states.
In the following sections we discuss an example in which KMS states will be proven to be
unique as well.

9. Thermodynamic formalism and uniquenes of KMS states
In this section we show a relationship between the KMS states that we have been discussing
and the Gibbs states of thermodynamic formalism, as developed by Bowen [Bo] and Ruelle
[Rul, Ru2, Ru3]. This section should be viewed more as an illustration of the definitions
of the previous sections rather than new results. In particular, Proposition 9.9 can also be
obtained as a particular case of the characterization of KMS states given in [Re2, I1.5.4].
Throughout the rest of this section, we fix a compact metric space X and a local
homeomorphism 7' : X — X. We also let & be the endomorphism of C(X) given by

a(fy=foT, VfelCX).
Consider the equivalence relation on X given by
x~y & dneN, T"(x)=T"().

In the case of the left shift on Bernouli’s space (an example to be kept in the back of one’s
mind) this equivalence relation turns out to be the tail-equivalence relation which is not
proper. However, it is easy to see that it is always approximately proper, and that it is the
union of the equivalence relations R,, given by

x,y)€R, & T'(x)=T"(®y). 9.1

Clearly each R, is proper and the algebra C(X; R,) is precisely the range of . For
simplicity we will denote the latter algebra by R,,.

We now need conditional expectations E, from C(X) onto R, and these are obtained
as follows. By the assumption that 7 is a local homeomorphism and that X is compact
we see that T is necessarily a covering map. The inverse image under T of each x € X is
therefore a finite set. Given a continuous strictly positive function p : X — R consider the
associated Ruelle—Perron—Frobenius operator given by

LyNHle= > p@)f@). YfeCX), xeX.

T (z)=x

We will assume that p is such that £, is normalized (meaning that £,(1) = 1). This means
that for every x € X, the association z + p(z) is a probability distribution on the
equivalence class of x relative to Rj.

It is easy to show that £, satisfies the identity

Lp(Ng=Lp(fa(g)), V[ geCX). 9.2)

CAMBRIDGE JOURMNALS

http://journals.cambridge.org Downloaded: 13 Jan 2011 IP address: 143.54.235.202



http://www.journals.cambridge.org

Equivalence relations and thermodynamic formalism 1069

For any n € N set
E, = oz”ﬁ’;,. 9.3)

Given f € C(X) one then has that E1(f)]|, is just the weighted average of f over the
equivalence class of x relative to Rj. Therefore, E is a conditional expectation onto R 1.
Likewise, E, is a conditional expectation onto R, and because the composition £, o « is
the identity map on C(X), we have that E,, o E, = E,, form > n. Setting R = {Rn},eN
and £ = {E, },,eny We may then speak of C*(R, £).

Observe that the present situation is precisely that of a stationary equivalence relation
described in § 4.

Given any f € C(X) it is clear that «"(f) € R, for all n and hence the sequence
{o"(f)}nen is a potential. Accordingly we will adopt the notation £l to mean

= fa(fy...a" ().
For later use it is convenient to give an explicit description for £; as well as E,.

LEMMA 9.4. Letn € N, then for every f € C(X) and x € X one has that

LyHle= Y rMaf@,

T"(z)=x

and

ENlk= Y, p"@r@.

(z,X)ER,

Before giving the proof we should note that in summations of the form Z(z) x)eR,» Which
will be often used from now on, the variable which we mean to sum upon will always be
the first mentioned (z in this case) even though equivalence relations are well known to be
symmetric.

Proof of Lemma 9.4. In order to prove the first statement we use induction on n observing
that the case n = 1 follows by definition. Given n > 1 we have

LY=Ly Lol = D PM@ Y paf@w) =---.

T"(z)=x T(w)=z

Note that a pair (z, w) is such that 7" (z) = x and T (w) = z if and only if it is of the form
(T (w), w) where T"+! (w) = x. Therefore, the above equals

= ) PMT@ypfwy = Y P fw).

T"“(w):x T”*l(w):x
proving the first statement. The second statement then follows easily. o
In the following we compute the index of our conditional expectations.

PROPOSITION 9.5. For each n € N we have that E,1|R, is of index-finite type and
ind(Ep41lR,) = a™(p™").
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Proof. Let {V;}_| be a finite open covering of X such that the restriction of T to each
Vi is one-to-one and let {v;}/", be a partition of unity subordinate to this covering.
Setu; = (p_lv,-)l/2 and observe that for every f € C(X) and x € X one has that

Y wEIwif)ly =Y uix) Y. p@ui2)f()
=l =1 T(zZ)E:)T(m
= D w0 pui () f(x) = Y v (1) f(x) = [ (x).
i=1 i=1
Therefore {u1, ..., u,} is a quasi-basis for £y so that

m m
ind(Ep) = Zu? = Zpilv,' = pil.
i=1 i=1

Next observe that the diagram
E
Ro —— R

n n

o o

E,
Rn n+l Rn+]
is commutative. Therefore, E, 1|, is conjugate to Ey under " and so ind(E,1|R,) =
a"(ind(E1)) = " (p~"). 0

We therefore have that each E,, is of index-finite type. Also, note that in the notation of
Proposition 6.5 we have proven that A,, = oe"(p’] ).

Let H be a strictly positive continuous function on X. Setting i, = «”(H) for
every n € N we have that h := {h,},cn is a strictly positive potential in the sense of
Definition 5.5. The corresponding gauge action will be denoted by o

We are interested in showing that for every 8 > 0 there exists a unique (o, 8)-KMS
state on C*(R, &), thus improving on Theorem 8.2.

Given 8 > 0, consider the Ruelle—Perron—-Frobenius operator associated to H (z)’ﬁ,
namely

Lyp(Dli= Y HOPf@). YfeCX), xeX.
T(z)=x

In order to achieve our goal, we need to use the celebrated Ruelle—Perron—Frobenius

Theorem whose conclusions are as follows.

THEOREM 9.6. (Conclusions of the Ruelle-Perron—Frobenius Theorem)
(@)  There exists aunique pair (¢, 4, vy, ») such that c,, , is a strictly positive real number,
v, 4 s a probability measure on X, and

*
£H,ﬂ (Vyp) = ChpVups

where EZ p refers to the transpose operator on the dual of C(X), which in turn is
identified with the space of finite regular Borel measures on X.
(b)  There exists a strictly positive continuous function k,, , on X such that:
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° /ku,,s dv,, =1;

. Ly sky ) =cypky s and

. nl_i)nolo(ﬁ’;ﬁ(f)/c’;ﬁ) =ky, / fdvy,, VfeCX)
where the limit is with respect to the (sup) norm topology of C(X).

Initially proven for the shift on the one-sided Bernouli space and H a Holder continuous
function [Rul, Theorem 3] this theorem has been proved to hold under more general
hypotheses: see, for example, [Ba, Bo, C, F, FJ1, FJ2, K, Ru2, Ru3, W1, W2].

The reader is referred to the above articles for more details on the various hypotheses
under which the Ruelle—Perron—Frobenius Theorem holds, so we will simply assume its
conclusions as above.

Definition 9.7. The probability v, , is called the Gibbs state associated to H -,

In the sequel we show the following elementary relationship between the operators £,
and L, ;.

PROPOSITION 9.8. Given 8 > 0 and n € N we have that

Ly () =Ly, vfecw,

where the potential A = {Ap},ecN was defined in Proposition 7.3 by A, = h;ﬁ)»,,.
Proof. In the present situation we have that 4, = & (H) and A, = " (p~!) so that
Ay =o"(H) P (p~h) =" (H 7.
Next, observe that for f € C(X) we have
Lyy(f)=Ly(HPp f) = L,y (Aof).
The conclusion now follows easily by induction using (9.2). a
We now show that the Gibbs states indeed give KMS states on C*(R, £).

PROPOSITION 9.9. For every B > 0 the state ¢, , on C(X) corresponding via the Riesz
representation theorem to the Gibbs state v, , satisfies the conditions of Proposition 7.3
and hence the composition Y, , = ¢, , o G is a (o, B)-KMS state on C*(R, ).

Proof. The condition that v, , is an eigenmeasure for £, , gives for every f € C(X) and
any n € N that

Gup Ly (A ) = ¢, (L0 () =}y by, ().
Plugging f = A~"la"(g) above, where g € C(X), we obtain
Pup(8) =y by s (A" (9)).
In order to prove the condition in Proposition 7.3 we then compute
Gy (ATE, (A ) = ¢, (AT L (AT 1)) = € by (L (AT 1)) = ¢, ().
This concludes the proof. a
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Our next main goal is to show that the state ¥, , given by the above result is the unique
(o, B)-KMS state on C*(R, &).

THEOREM 9.10. Let T be a local homeomorphism on a compact metric space X and
consider the approximately proper equivalence relation R = {R,},eN, Where each R,
is given by (9.1). Let p : X — R be a strictly positive continuous function satisfying
ZT(z)=x p(2) = 1 for every x € X and define the sequence of conditional expectations
E = {Ep}nen as in (9.3). Let H be a strictly positive continuous function on X and
consider the one parameter automorphism group of C*(R, &) given by the potential
h :={H o T"},en. Assuming Theorem 9.6 we have that for every p > 0 the state ,, ,
given by Proposition 9.9 is the unique (o, 8)-KMS state on C*(R, £).

Proof. Let ¢ be a (o, 8)-KMS state on C*(R, £) and let ¢ be its restriction to C(X).
By Proposition 7.2 we have that = ¢ o G so it suffices to show that ¢ = ¢, ,.
Fix f € C(X) and note that by Proposition 7.3 we have

¢(f) = ¢(ATME, (A" 1)) = gAMoL (A 1)) = gAMLY ()

El’l
S (A["]oz" (Lj;(f )>> . ()
cH,ﬁ

We next claim that if we replace the argument of @ in () by its limit, namely ¢, , (f)k, 4,
we will arrive at an expression which converges to ¢ (f) as n — oo. In order to prove this
we compute

() = AT (@, ()]

(100 (B2 )
H.p con H.p H.p

H.p

n

w5
c - ¢H,ﬁ (f)kHﬁ

n
H.p

< (A

The claim will be proven once we show that the expression ¢, ﬁq) (A~ is bounded from
above with n. In fact, as k,, , is strictly positive, there exists m > 0 such that k,, , > m.
Therefore, plugging f := k, , into (}) leads to

¢(kH,/3) = CZ,ﬂ(P(A*["]a"(kH’ﬂ)) > CZ’ﬁ¢(A7[n])m’

from where one easily deduces the desired boundedness. Summarizing we have proven
that
S(f) = ¢y (1) lim AT (ky ),

forevery f € C(X). Since both ¢ and ¢,, , evaluate to 1 on the constant function f = 1,
it follows that lim,,— o0 ¢} 5 d(AM " (ky ) = 1 and hence that ¢ = ¢, , as desired. O

As a consequence we have the following.

COROLLARY 9.11. Let X, T, R, p, and & be as in Theorem 9.10. Then C*(R, £) admits

a unique trace.
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Proof. Set H = 1 in Theorem 9.10 so that the corresponding one parameter automorphism
group is the trivial one. Fixing an arbitrary 8 > 0 observe that the (o, 8)-KMS states on
C*(R, £) are precisely the traces. The conclusion then follows from Theorem 9.10. a

10. Conditional minima and ground states
So far we have studied KMS states at positive temperature and we have seen how they
relate to the Gibbs states of statistical mechanics. We next want to discuss ground states,
but before that we need to study the notion of conditional minimum points.

Our discussion in this section may be viewed as a special case of Renault’s study of
ground-state cocycles over groupoids [Rel, §3]. We begin with some notation.

Definition 10.1. Let R be a proper equivalence relation on the compact space X, let 2 be a
continuous real function on X, and let C be a closed subset of X.
(i)  We denote by M}, ¢ the set of minimum points for & over C, namely

My c = {x € C : h(x) = inf h(y)} .
yeC

(ii)) We denote by M}f the union of all My, ¢ as C runs over the quotient space X/R
(observe that each C € X/R is a closed subset of X).

Observe that a necessary and sufficient condition for x to be in M}f is that
VyeX, (x,y)€R= h(x)<h(). (10.2)

For this reason the points in M,{" should be called conditional minimum points of 4.
Observe also that our hypotheses imply that M), ¢ is non-empty for every C € X/R so
one sees that M f meets every single equivalence class.

Even though M), ¢ is closed for every equivalence class C it may be that M f is not
closed. However, under suitable conditions we may be sure that M f is closed.

PROPOSITION 10.3. (see [Rel, 3.16.iii]) Let R be a proper equivalence relation on the
compact space X and let h be a continuous real function on X. If R is open (recall that an

equivalence relation is said to be open when the saturation of each open set is open), then
M f is closed.

The proof is left to the reader.

So far we have been considering a proper equivalence relation R on a compact set X
and a continuous real function 4 on X. From now on we will assume that R is such that the
quotient map 7w : X — X /R is a covering map, which incidentally implies that R is open.
We wish to add to this setup a conditional expectation £ from C(X) to R := C(X; R)
which will be obtained as follows: fix a strictly positive continuous function p on X and
let E : C(X) — R be given by

E(N)x = Z pOMf(B), VfelX), xeX. (10.4)
(v,x)eR
If we assume that
Y p=1. VreX, (10.5)
(v,x)eR

it is easy to see that E is indeed a conditional expectation onto R.
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The following result is a crucial technical tool in our characterization of ground states.

LEMMA 10.6. Let R be a proper equivalence relation on a compact space X such that
the corresponding quotient map is a covering map. Let p be a strictly positive continuous
function on X satisfying (10.5) and define the conditional expectation E as in (10.4). If h
is another strictly positive continuous function on X, define for each real number f > 0
the operator EP on C(X) by

EF(Hy=hPENWPf), VfecCX).

Then for every probability measure i on X the following conditions are equivalent:
(i)  the support of u is contained in MR;
(i) forevery f, g € C(X) one has that

sup /fEﬂ(g)du <IfI gl
p>01JX
(iii) for every f, g € C(X) one has that
sup / FEP(g9)du| < oo;
p=01JX

(iv) the inequality in (iii) holds for f = g = 1.

The proof is left to the reader.

Now we apply the conclusions reached above to study ground states on C*(R, &).
The setup for now will be as follows: X will be a compact Hausdorff space and R =
{R,},eN an approximately proper equivalence relation on X. We also fix a real potential
h = {h,},en. Recall from Definition 5.2 that this means that each #,, is a continuous real
functionin R,, := C(X; R,).

PROPOSITION 10.7. For every n € N let M, be the set of conditional minimum points of

K" relative to R, namely
Ry

hlnl
in the notation of Definition 10.1(ii). Then M1 € M,,.

M, =M

Proof. Letx € My+1. In order to show that x € M,, we employ the characterization given
in (10.2). So let y be such that (x, y) € R,. Since the Ry are increasing we have that
(x,y) € Ry4+1 and hence

R () < R (). ()

Observe that because &, belongs to C(X; R,) we have that i, (x) = h,(y). Dividing both
sides of () by this common value leads to A1"!(x) < Al"l(y), completing the proof. O

If one tries to apply the definition of conditional minimum points for the relation
R = U, ey Rn» which we are attempting to approximate by the sequence {R,},cN, one
is likely to run into some trouble, not least because equivalence classes need not always be
closed (in fact, they are often dense). An alternative approach is to look at points which
are conditional minima for all R,,.
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Definition 10.8. Given an approximately proper equivalence relation R = {R,},cN on a
compact space X and a real potential 2 = {h,},cn, we denote by M,Zz the intersection of

R, .
M, [, as n range in N.

Observe that if all of the R, are open equivalence relations, it follows from
Propositions 10.3 and 10.7 that MZz is a non-empty compact subset of X.

From this point on we assume that R;, are not only open but also that the quotient maps
are covering maps as in Lemma 10.6. In addition to this we will fix a strictly positive
potential p = {p,},en. Following Lemma 9.4 and 10.4 we define maps E,, : C(X) — R,
by

E(Nlz= Y PO, VfeCX). xeX.

(y,X)ER,

LEMMA 10.9. Suppose that for every n and every R, 4 1-equivalence class C one has that
> pa(D) =1,
D

where the sum extends over all R,-equivalence classes D contained in C, and for each
such D one interprets p, (D) as the common value of p,(x) for any x € D. Then each E,
is a conditional expectation of index-finite type onto R, and E,+1 o E, = Ep41.

Proof. We first claim that for every n € N and every x € X one has that
Z(y’x)e R, p"l(y) = 1. In order to prove this we use induction observing that the case
‘n = 1’ follows from the hypothesis. Assuming that n > 1 we have

n

Yoo e =) Y o) =

(v.x)eR41 i=1 yeC;
where {Ci,...,C,} is the decomposition of the R, i-equivalence class of x into
R, -equivalence classes. The above then equals

o= > P =D pa(C) Y M) =D pa(C) =1,
i=1 i=1

i=1 yeG; yeC;
where the penultimate equality follows from the induction hypothesis and the last equality
is a consequence of our hypothesis. It immediately follows that E,, is in fact a conditional
expectation onto R,,. The proof that E, is of index-finite type is a simple modification of
Proposition 9.5 and hence will be omitted.
With respect to the last part of the statement, let f € C(X) so that for x € X, we have

Enii(Ex(le= Y p" oy Y pMayfaw) =

(¥, X)ER, 11 (w,y)ER,
Letting {Cy, ..., C,} be as in the first part of the proof we have that the above equals
n n
=0y M) Y M@y fwy =Y Y pa)pM )M w) f (w)

i=1 yeC; weC; i=1 y,weC;
n n

=Y > pa)pM P )= Y Mo Y p I w) f(w)
i=1 y,weC; i=1 yeC; weC;

= En+] (f)|x d
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We are now ready to present our main theorem on ground states. Unlike Proposition 7.2
one cannot prove that all ground states factor through the conditional expectation G of
Proposition 6.5. For example, if we choose the potential & given by 4, = 1, then the
dynamics are trivial and hence any state is a ground state, regardless of whether it factors
through G or not. Our result will therefore be restricted to the characterization of the
ground states of the form ¢ o G, where ¢ is a state on C(X).

THEOREM 10.10. (see [Rel, 5.4]) Let X be a compact Hausdorff space and R =
{Rn}neN an approximately proper equivalence relation on X such that the quotient map
relative to each R, is a covering map. Fix a strictly positive potential p = {pn}neN
satisfying Lemma 10.9 and let E,, be the conditional expectations provided by Lemma 10.9.
Also, let o be a one-parameter group of automorphisms of C*(R, ) obtained from a
strictly positive potential h. Given a measure |1 on X let ¢ be the state on C(X) given by
integration against jt. Then the composition W = ¢ o G is a ground state on C*(R, &) if
and only if the support of u is contained in M ;,R

Proof. Leta,b,c,d € C(X),letn,m € N, and let z = o + iB8. If n < m we have by
Proposition 2.4 that

¥ ((aenb)o; (cemd)) = Y (aEy(beh®Mp=Pinye, p=ielnlpflnl g
=/aE,,(bch"“["]h—ﬁ["])r['"]h—"“["]hﬂ["]ddu=/fEf(g) du,
6)

where f = ar"Mp~ielnlg o = peh’M and E,f is defined as in Lemma 10.6 in terms
of A"l
If n > m we instead have

¥ (aenb)os (cend)) = / FEE(9)dp, )

where g is as above and f is now aA~"lp—ielnlg,

Assuming that the support of u is contained in M,Zz it follows from Lemma 10.6(ii) that
both () and (#’) are bounded as z runs in the upper half plane and hence that ¥ is a ground
state. The converse also follows easily from Lemma 10.6. a

11. Ground states and maximizing measures

In a similar way as in § 9, in the present section we want to obtain (in an interesting
particular case) a characterization of ground states of C*-algebras by means of maximizing
measures in the sense of [CLT] (or, in other words, by means of zero temperature Gibbs
measures in the sense of [RF, Appendix B]).

Let (X, d) be a compact metric space and 7 : X — X be an expanding transformation
(see [Ba] for a definition and properties). In order to simplify our proof we assume in this
section that the transformation 7" has the property that each point x € X has k > 1 distinct
preimages and take p = 1/k = 1/A, where p, A are defined as in § 9. Similar results can
be obtained for p Holder.
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We denote by wo the maximal entropy measure because we are considering here
p =1/k =1/A. Then ug is the eigenmeasure for E; associated to the eigenvalue 1.

We consider the associated C*-algebra C*(R, £) as before.

Consider a fixed Holder real function H : X — R. We say H > 0 is cohomologous
to H if there exists a real function V and real constant ¢ such that log H = log H — [(V o
T)—V]+ec.

We denote as usual by M(T') the set of invariant probabilities for T'.

An important point in § 9 is that for a given real 8 the measure vy g is an eigenmeasure
(not necessarily invariant) for the Ruelle operator Ly g. Given H there exists, however,
another potential H, cohomologous to H such that the eigenmeasure v i.p for L a.p is an
invariant measure (see [Bo]).

We would like to investigate similar properties for the ground state problem.
In principle, it can happen that for a certain H there is no invariant measure p with support
inside My of Theorem 10.10.

Given H we define a certain H cohomologous to H. Consider ¢ a ground state for
o, associated to such h = H (defined as before in § 5). It follows from the reasoning
of this section that there exist a measure v, which is an invariant maximizing measure in
the sense of [CLT], such that for any continuous function f we have ¢(f) = [ fdv.
These measures v are the discrete time analogs (for the case of expanding maps) of the
Aubry—Mather measures of Lagrangian mechanics. In the case of the geodesic flow in
compact surfaces of negative curvature, they exactly correspond to each other under the
action of the discrete group of Moebius transformations in the boundary of the Poincare
disk (see [BS] and [LT]).

First we will recall some general results for maximizing measures.

Definition 11.1. Given an a-Holder function B we denote

PB@)—B@N}_

Holy(B) = sup A,y

d(x,y)>0

If we denote by ||B|lx the uniform norm, then we define the «-Holder norm of B by
|Blle = Holy(B) + || Bllco- We also let H,, be the set of «-Holder functions.

Definition 11.2. Givenlog H € Hy we define

m(—log H) = sup {—/logH(x)dp(x) | p € M(T)}

and

My (T) = {p e M(T) : —/logH(x)dp(x) = m(—logH)}.
We call any p € M py(T) a maximizing measure for H and it will be generically denoted
by pm.

The maximizing measure is not necessarily unique.

It was shown in [CLT, Proposition 15, p. 1387] that a measure p is maximizing if
and only if its support is contained in the Q2 (—log H, T') set (see [CLT, p. 1386] for a
definition). This result is the version of Theorem 10.10 above for the case of invariant
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measures. We refer the reader to [CLT] for general references on the topics considered in
the present section.
Consider F = UVM 'H,, equipped with the a-norm.

THEOREM 11.3. ([CLT, p. 1382]) For an open and dense set G contained in F,5, when
—log H € G, the measure uyg € Mg (T) is unique and has support in a unique periodic
orbit.

It can be shown that for any H, the omega-limit set of points in My (of Theorem 10.10)
is contained in the support of the maximizing measure p . Note that My is not necessarily
a forward invariant set for 7.

In [CLT, p. 1394] examples were shown of H where u g is uniquely ergodic and has
positive entropy. Denote by § : Ez(uo) — ﬁz(ﬂo) the Koopman operator where for
n € L2(uo) we define (Sn)(x) = n(T(x)). Such S defines a linear operator in £2(uo).
It is well known that $* = L, acting on Ez(,uo). We consider the same C*-algebra as in
the previous sections associated to p = 1/A = 1/k. We assume that H > 0 is Holder and
consider the corresponding o, = e~'*# § as before.

By Proposition 11 of [CLT], there exist V : X — R, Holder continuous strictly positive
and satisfying for all x the inequality

V(T (x)) — V(x) > —log H(x) —m(—log H).

This inequality is called a sub-cohomological equation. The inequality is an equality for x
in the support of wy.
The function V is defined by

n—1
V(x) = sup { Y (~log H — m(~log H))(T7(y)) | T"(y) = x,n € N}.
j=0

Note that m(—logH + V — V o T) = sup{[ —logHdp | p € M(T)} = m(—log H),
because we are considering p an invariant measure.

We say that a probability measure  is a ground measure when the state on C*(R, &)
given by ¢ = ¥ o G is a ground state, as in Theorem 10.10.

Consider the C*-algebra described in § § 7 and 8 in the particular case we consider here.
We say that a certain state ¢ is a ground-state for o, if for any pair ¢ and analytic b

sup |¢(aoz(D))| < oo.

Imz>0

Note that a measure is maximizing for H Holder if and only if it is maximizing for
Holder, where —log H is cohomologous to —log H.

Given H, we would like to associate a T -invariant measure (5 to the ground state ¢ of
the automorphism associated to H, where —log H = —logH +V — V o T, and V was
defined before.

Given a ground state ¢ for H, the action of ¢ over the continuous functions identifies a
probability v such that ¢ (f) = [ f dv, for all continuous functions f.

We will show later that v is a maximizing measure for H (or for H).
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Using the same procedure as §§ 7 and 8 for such v, one can easily show that an
equivalent characterization of the ground state ¢ for H is as follows: for all f, g € C(X),
all m and all complex f = —iz, such that Re(8) > 0, we have

16 (Mg0p (S™ (5" M)
< / |gotm (Em(fH*ﬂ[m]e(V[m]fVoT[m])ﬁ))Hﬁ[m]e(fV[mHVoT[m])ﬂ| dv
- P
< flloollglloo < 0.

We show that such v exists, is invariant and is a maximizing measure for H (or for H).
For a generic H it will follow from Theorem 11.3 that v has support in a unique periodic

orbit.
For z € X, and n € N, denote by xfl(z), i € {1,2,...,k"}, the k" solutions of
T"(z) = x.

Fix a point x from now on. We are going to define a sequence of points y, inductively.
We set yo = x, and for y;, we choose a point over the set {z|T(z) = yo} such that
V(T (y1)) — V(y1) = —log H(x) — m(—log H). From the definition of V one can easily
show that there is always such a point y;. Inductively, given y;, for y; 41, we choose a point
over the set {z|T(z) = y;} such that V(T (yi+1))—V (yi+1) = —log H(y;+1)—m(—log H).
Note that T (yj+1) = Vi, for all i. Consider u,, = (1/n) Z;lz_ol dy,, and by compactness a
measure p such that is a weak limit p = lim,_, o, tn,. The measure p is invariant for 7.
Indeed, for any continuous function

FoTdp=1lim | foTu, = lim | fu, = [ fdp,
r—00 " rosoo "

because f is bounded. This p is our candidate for being a ground measure for H =
H e*V+VoT’

We assume from now on that H is such that pg is unique (and so uniquely ergodic
by Theorem 6 of [CLT]). This is not really necessary, but for the sake of simplicity we
assume this.

PROPOSITION 11.4. We have p = y.

Proof. V (x) is Holder continuous on x, and therefore bounded, so

ny—1

1
— | logHdp = — lim logHdw, =— lim — E (log H(y;))
r—o00 " r—>o0 n, =0

np—1

1
= lim — Y " (V(yj-1) = V(y)) + m(~log H))
r j:0

= lim ni(V(x) — V(yn,—1) +nrm(=log H)) = m(—log H).

r—0oQ0 r
Therefore, p = pwpy and does not depend on x. O

We denote such p by vs. This measure is invariant.
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PROPOSITION 11.5. ForanyRe(B8) >0, m € Nand f, g € C(X)
/ |g(xm,CZ' (fH—ﬁ[m]e(V[m]—VoT[m])/fi)Hﬁ[m]e(—V[mHV(T))[m])ﬁ| dveo < |Igllscl f lloo-

Proof. The proof is similar to Lemma 10.6.

Consider m > 0 and k > 1 fixed. Consider the transformation 7™, which has degree ™
and the function —log H (x) = —log H (x) — log (H(T (x)) — - -- —log (H(T™ ! (x))) =
—log H™,

From the fact that we consider just invariant probabilities p:

m(—log H) = m(—log H (x) —log (H(T(x)) —- - -—log (H(T"™ ' (x)))) = mm(—log H).

It is easy to see that the maximizing measure v, for —log H is also the maximizing
measure for —log H.
Note that the previously defined V is such that

—log H (x) — mm(=log H) < V(T™(x)) — V(x).

We are going to define a sequence of points x, inductively. We set xo = x, and for
x1, we choose a point over the set {z | T™(z) = xo} such that V(T™(x1)) — V(x1) =
—log H(x;) — mm(—log H). There is always such a point from the definition of V
(see [CLT, p. 1384]). Inductively, given x;, for x;41, we choose one over the set
{z | T™(z) = x} such that V(T™(xi+1)) — V(xi+1) = —log H(x;+1) — mm(—log H).
Note that 7" (x;+1) = x;, for all i.

Consider u, = (1/n) Z;lz_ol 8y, and by compactness a measure p that is a weak limit
p = lim,_, o0 Wy, . From

m(—log H(x) — log(H (T (x)) — - - - — log (T™ ! (x))) = mm(—log H),

and in the same way as before one can show that — | log H dp = mm(—log H), and finally
that p = vVeo.
The important relation that follows from the above ([CLT, Proposition 11, p. 1384]) is

—logﬁ(x) + V(x) = —log H(x)[m]+ V(x) < V(T™(x)) + mm(—log H).
Note that for any fixed j and any x" (7" (x;)) with i € {1,2,...,k™}, we have
V(T (x]"(T™ (x)) = V(" (T" (x)))
= V(T (" (T™ (x;))Im] = V (x;" (T™ (x)))[m]
> (—log H (x{"(T" (x;))))[m] — m(—log H)
and
V(T"(x;)) = V(xj) = V(T (x;)[m] — V(x;)[m] = (~log H (x;))[m] — mm(—log H),
therefore,

—(log H(x;))[m] — mm(—log H) + V(x;)
= V(T"(x;)) = V(T"(x;"(T"(x}))))
> —(log H(x"(T™ (xj))[m] — mm(—log H) + V(x"(T™ (x))).
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Therefore, from the way we choose x; we have

H(xj)ﬂ[m]efv(xj')ﬁ -1
H(x (T (xj)))Plmle =V O T @pop | =

Now, by the triangle inequality
/ |ga™ L1 (f HPIm V=V imIBy p lm] o —VEVODImIB | g

= rl—i>nolo/ g™ L1 (f HPIm (V=YD mipy py pimlg(-VHVeT)mIp| gy,

1 ny—1 1 k™
Jim =Y () > T ) H (T e p)) A
" j=0 i=1

s eV=(VOTNGI T CImIB) py (5 )P =V (6 +(VOT)p)mIf

= Iflloliglleo < 00

The conclusion is that the minimizing measure uy = v determines the ground state
Dvoo- O

It follows from this proposition that we have the next theorem.

THEOREM 11.6. Given H > 0 Holder, there is V. > 0 Holder, such that if veo is the
maximizing measure for —log H, then the state ¢ defined by

m g QR\my __ f
¢(MfS M) = mdvoo,

forallm €N, f € C(X), is a ground-state for the potential H = He=VtVeT,

The conclusion is that, if one considers p = 1/k and H > 0 Holder, then the state
¢, associated to a minimizing measure v, for H is a ground-state for some H (such that
log H is cohomologous to log H).

Acknowledgements. The first author wishes to acknowledge fruitful discussions with Jean
Renault, Chris Skau and Anatoly Vershik on topics related to equivalence relations in the
commutative setting.

R. Exel was partially supported by CNPq and A. Lopes was partially supported by
CNPq and the Institute of Millenium, IMPA.

REFERENCES
[Bo] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in
Mathematics, 470). Springer, Berlin, 1975.
[Ba] V. Baladi. Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear

Dynamics, 16). World Scientific, Singapore, 2000.

CAMBRIDGE JOURMNALS

http://journals.cambridge.org Downloaded: 13 Jan 2011 IP address: 143.54.235.202



http://www.journals.cambridge.org

1082

[BS]
[BR]
[CLT]

[C]
[E1]

[E2]
[E3]

[F]
[FJ1]

[FJ2]

K]
[KP]

[LT]
M]

[P]
[Rel]

[Re2]
[Re3]

[RF]

[Rul]

[Ru2]
[Ru3]

[wi]
[(w2]

[Wa]

R. Exel and A. Lopes

R. Bowen and C. Series. Markov maps associated with a Fuchsian group. Publ Math. Inst. Hautes
Etudes Sci. 50 (1979), 153-170.

O. Bratelli and W. Robinson. Operator Algebras and Quantum Statistical Mechanics. Springer Verlag,
1994.

G. Contreras, A. Lopes and P. Thieullen. Lyapunov minimizing measures for expanding maps of the
circle. Ergod. Th. & Dynam. Sys. 21 (2001), 1379-1409.

M. Craizer. Teoria ergddica das transformacdes expansoras. Masters Thesis, IMPA, 1985.

R. Exel. A new look at the crossed-product of a C*-algebra by an endomorphism. Ergod. Th. &
Dynam. Sys. 23(6) (2003), 1733-1750.

R. Exel. Crossed-products by finite index endomorphisms and KMS states. J. Funct. Anal. 199(1)
(2003), 153-188.

R. Exel. KMS states for generalized gauge actions on Cuntz—Krieger algebras (An application of the
Ruelle—Perron—Frobenius Theorem). Bol. Soc. Brasil. Mat. (N.S.) to appear.

A. Fan. A proof of the Ruelle operator theorem. Rev. Math. Phys. 7 (1995), 1241-1247.

A. Fan and Y. Jiang. On Ruelle—Perron—Frobenius operators. I. Ruelle theorem. Comm. Math. Phys.
223 (2001), 125-141.

A. Fan and Y. Jiang. On Ruelle—Perron—Frobenius operators. II. Convergence speeds. Comm. Math.
Phys. 223 (2001), 143-159.

G. Keller. Equilibrium States and Ergodic Theory. Cambridge University Press, Cambridge, 1998.
D. Kerr and C. Pinzari. Noncommutative pressure and the variational principle in Cuntz—Krieger type
C*-algebras. Comm. Math. Phys. 223 (2001), 143-159.

A. Lopes and P. Thieullen. Mather measures and the Bowen-Series transformation. Ann. Inst. H.
Poincaré Anal. Non Linéaire to appear.

G. J. Murphy. Crossed products of C*-algebras by endomorphisms. Integral Eq. Operat. Th. 24
(1996), 298-319.

G. K. Pedersen. C*-Algebras and their Automorphism Groups. Academic Press, New York, 1979.

J. Renault. A Groupoid Approach to C*-algebras (Lecture Notes in Mathematics, 793). Springer,
Berlin, 1980.

J. Renault. AF equivalence relations and their cocycles. Operator Algebras and Mathematical Physics
(Constanza, 2001 ). Theta, Bucharest, 2003, 365-377.

J. Renault. The Radon—Nikodym Problem for Approximately Proper Equivalence Relations, in
preparation.

A. C. D. van Enter, R. Ferndndez and A. D. Sokal. Regularity properties and patologies of position—
space renormalization-group transformations: Scope and limitations of the Gibbsian theory. J. Statist.
Phys. 7 (1995), 1241-1247.

D. Ruelle. Statistical mechanics of a one-dimensional lattice gas. Commun. Math. Phys. 9 (1968),
267-278.

D. Ruelle. Thermodynamic Formalism. Addison-Wesley, Reading, MA, 1978.

D. Ruelle. The thermodynamic formalism for expanding maps. Commun. Math. Phys. 125 (1989),
239-262.

P. Walters. Invariant measures and equilibrium states for some mappings which expand distances.
Trans. Amer. Math. Soc. 236 (1978), 121-153.

P. Walters. Convergence of the Ruelle operator for a function satisfying Bowen’s condition. Trans.
Amer. Math. Soc. 353 (2001), 327-347 (electronic).

Y. Watatani. Index for C*-subalgebras. Mem. Am. Math. Soc. 424 (1990), 117.

CAMBRIDGE JOURMNALS

http://journals.cambridge.org

Downloaded: 13 Jan 2011 |P address: 143.54.235.202


http://www.journals.cambridge.org

