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Abstract. We introduce a non-commutative generalization of the notion of (approximately
proper) equivalence relations and propose the construction of a ‘quotient space’. We then
consider certain one-parameter groups of automorphisms of the resulting C*-algebra and
prove the existence of KMS states at every temperature. In a model originating from
thermodynamics we prove that these states are unique as well. We also show a relationship
between maximizing measures (the analogue of the Aubry–Mather measures for expanding
maps) and ground states. In the last section we explore an interesting example of phase
transitions.

1. Introduction
An equivalence relation on a compact Hausdorff space is said to be proper when the
quotient space is Hausdorff, and approximately proper when it is the union of an increasing
sequence of proper relations. The first major goal of this paper is to extend these concepts
to non-commutative spaces, that is to C*-algebras, and to construct the corresponding
quotient space. This turns out to be another C*-algebra which is often non-commutative
even when the original algebra is commutative. An example of this situation is the tail-
equivalence relation on Bernoulli’s space whose ‘quotient space’ turns out to be the CAR
algebra.

We then introduce the notion of potentials and their associated gauge actions which
are one-parameter groups of automorphisms of the ‘quotient space’. A characterization of
KMS states is then provided and we use it to show that KMS states exist for all values of
the inverse temperature.

Starting with a local homeomorphism T on a compact metric space X we consider the
equivalence relation on X under which two points x and y are equivalent if there is a
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natural number n such that T n(x) = T n(y). This turns out to be an approximately proper
equivalence relation and we apply the abstract theory developed in the previous sections,
enhanced by the use of Ruelle’s Perron–Frobenius Theorem, in order to show uniqueness
of KMS states at every temperature.

Ground states are studied next and a general characterization of those states which
factor through a certain conditional expectation is obtained in terms of the support of the
corresponding measure.

In the last section of the paper we show a relationship between maximizing measures
(the analogue of the Aubry–Mather measures for the class of expanding maps) and ground
states.

Approximately proper equivalence relations were first defined and studied in [Re1,
Re2]. Proposition 9.9 and Theorem 11.6 can also be obtained as a particular case of
the characterization of KMS states given in [Re1, II.5.4]. The existence of KMS states
(Theorem 8.2) is also proved in [Re1, III.1.5] in a more particular case but with a similar
proof.

Our construction of the C*-algebra for an approximately proper equivalence relation
should be viewed as a non-commutative generalization of the groupoid C*-algebra [Re1]
for the groupoids treated by Renault in [Re2, Re3]. In the special case of approximately
proper equivalence relations over commutative algebras, under the assumption that certain
conditional expectations are of index-finite type, an assumption which we make from
§ 6 onwards, our situation actually becomes identical to some situations discussed by
Renault in the above-mentioned articles. Unlike Renault, we do not treat these situations
by employing groupoid techniques, but there is nevertheless a significant overlap in our
conclusions.

2. Approximately proper equivalence relations
In order to motivate the construction to be made here consider a compact Hausdorff space
X equipped with an equivalence relation R.

When the quotient X/R is a Hausdorff space we say that R is a proper equivalence
relation in which case the C*-algebra of continuous complex functions on X/R, which
we denote as C(X/R), is canonically *-isomorphic to the subalgebra C(X;R) of C(X)
formed by the functions which are constant on each equivalence class.

On the other hand, given any closed unital *-subalgebra A ⊆ C(X), define the
equivalence relation RA on X by

(x, y) ∈ RA ⇔ ∀f ∈ A, f (x) = f (y).

It is then easy to see that RA is proper and that C(X;RA) = A. In other words, the
correspondence R �→ C(X;R) is a bijection between the set of all proper equivalence
relations on X and the collection of all closed unital *-subalgebras of C(X).

This could be used to give a definition of ‘proper equivalence relations’ over a ‘non-
commutative space’, that is, a non-commutative C*-algebra: such a relation would simply
be defined as a closed unital *-subalgebra.

This scenario is undoubtedly very neat, but it ignores some of the most interesting
equivalence relations in mathematics, most of which are not proper. Consider, for example,
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the tail-equivalence relation on Bernouli’s space. The fact that the equivalence classes are
dense implies that C(X;R) consists solely of the constant functions. So, in this case the
subalgebra C(X;R) says nothing about the equivalence relation we started with.

Fortunately, some badly behaved equivalence relations, such as the example mentioned
above, may be described as limits of proper relations, in the following sense.

Definition 2.1. An equivalence relation R on a compact Hausdorff space X is said to be
approximately proper if there exists an increasing sequence of proper equivalence relations
{Rn}n∈N such that R = ⋃

n∈N Rn.

We should perhaps say that we adopt the convention according to which N =
{0, 1, 2, . . . }. Also, we view equivalence relations in the strict mathematical sense, namely
as subsets of X ×X, hence the set theoretical union above.

Given {Rn}n∈N as above, consider for each n the subalgebra Rn = C(X;Rn).
SinceRn ⊆ Rn+1 we have that Rn ⊇ Rn+1. Since eachRn may be recovered fromRn, we
conclude that the decreasing sequence {Rn}n∈N encodes all of the information present in
the given sequence of equivalence relations. We may then generalize to a non-commutative
setting as follows.

Definition 2.2. An approximately proper equivalence relation on a unital C*-algebra A is
a decreasing sequence {Rn}n∈N of closed unital *-subalgebras. For convenience we always
assume that R0 = A.

It is our goal in this section to introduce a C*-algebra which is supposed to be the non-
commutative analog of the quotient space by an approximately proper equivalence relation.
A special feature of our construction is that the resulting algebra is often non-commutative
even when the initial algebra A is commutative.

In order to carry on with our construction it seems that we are required to choose a
sequence of faithful conditional expectations {En}n∈N defined on A with En(A) = Rn and
En+1 ◦ En = En+1 for every n.

Throughout this section, and for most of this work, we will therefore fix a C*-algebraA,
an approximately proper equivalence relation R = {Rn}n∈N, and a sequence E = {En}n∈N
of conditional expectations as above.

Definition 2.3. The Toeplitz algebra of the pair (R, E), denoted T (R, E), is the
universal C*-algebra generated by A and a sequence {ên}n∈N of projections (self-adjoint
idempotents) subject to the relations:
(i) ê0 = 1;
(ii) ên+1ên = ên+1;
(iii) ênaên = En(a)ên;
for all a ∈ A and n ∈ N.

When an element a ∈ A is viewed in T (R, E) we will denote it by a. At first glance it
is conceivable that the relations above imply that a = 0 for some non-zero element a ∈ A.
We will soon show that this never happens so that we may identify A with its copy within
T (R, E), and then we will be allowed to drop the underlining notation.
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Note that Definition 2.3(ii) states that the ên form a decreasing sequence of projections.
Also, by taking adjoints in Definition 2.3(iii), we conclude that ênaên = ênEn(a) as well.
It follows that each ên lies in the commutant of Rn.

PROPOSITION 2.4. Given n,m ∈ N and a, b, c, d ∈ A, one has that

(aênb)(cêmd) =
{
aEn(bc)êmd, if n ≤ m,

aênEm(bc)d, if n ≥ m.

Proof. If n ≤ m, we have

(aênb)(cêmd) = a(ênbcên)êmd = aEn(bc)ênêmd = aEn(bc)êmd.

If n ≥ m the conclusion follows by taking adjoints. �

Definition 2.5. For each n ∈ N we denote by K̂n the closed linear span of the set
{aênb : a, b ∈ A}.

By Proposition 2.4 we see that for i ≤ n one has that both K̂iK̂n and K̂nK̂i are contained
in K̂n. In particular, each K̂n is a C*-subalgebra of T (R, E).

We now need a concept borrowed from [E1, 3.6] and [E2, 6.2].

Definition 2.6. Let n ∈ N. A finite sequence (k0, . . . , kn) ∈ ∏n
i=0 K̂i such that∑n

i=0 kix = 0 for all x ∈ K̂n will be called an n-redundancy. The closed two-sided ideal
of T (R, E) generated by the elements k0 + · · · + kn, for all n-redundancies (k0, . . . , kn),
will be called the redundancy ideal.

We now arrive at our main new concept.

Definition 2.7. The C*-algebra of the pair (R, E), denoted by C∗(R, E), is defined to be
the quotient of T (R, E) by the redundancy ideal. Moreover, we will adopt the following
notation:
(i) the quotient map from T (R, E) to C∗(R, E) will be denoted by q;
(ii) the image of ên in C∗(R, E) will be denoted by en;
(iii) the image of K̂n in C∗(R, E) will be denoted by Kn.

It is clear that Kn is the closed linear span of q(A)enq(A).

3. A faithful representation
In this section we provide a faithful representation of C∗(R, E) which will, among other
things, show that the natural maps A → T (R, E) and A → C∗(R, E) are injective.

For n ∈ N consider the right Hilbert Rn-module Mn obtained by completing A under
the Rn-valued inner product

〈a, b〉 = En(a
∗b), ∀a, b ∈ A.

The canonical map assigning each a ∈ A to its class in Mn will be denoted by

in : A → Mn.
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It is obviously a right Rn-module map. For each a in A one may prove that the
correspondence

in(x) �→ in(ax), ∀x ∈ A
extends to a map Lna ∈ L(Mn) (adjointable linear operators on Mn). In turn, the
correspondence a → Lna may be shown to be an injective *-homomorphism from A to
L(Mn) (recall that the En are assumed faithful) and whenever convenient we use it to
think of A as a subalgebra of L(Mn).

We denote by ěn the projection in L(Mn) obtained by continuously extending the
correspondence in(x) �→ in(En(x)) to the whole of Mn.

Given any two vectors ξ, η ∈ Mn we denote by�ξ,η the ‘generalized rank-one compact
operator’ on Mn given by

�ξ,η(ζ ) = ξ〈η, ζ 〉, ∀ζ ∈ Mn.

PROPOSITION 3.1. Given a, b ∈ A one has that aěnb∗ = �in(a),in(b). Therefore, the
closed linear span of the set {aěnb∗ : a, b ∈ A} is precisely the algebra of generalized
compact operators on Mn. This algebra will be denoted by Ǩn.

Proof. For x ∈ A, note that

aěnb
∗(in(x)) = in(aEn(b

∗x)) = in(a)En(b
∗x) = in(a)〈in(b), in(x)〉

= �in(a),in(b)(in(x)). �

The following is an important algebraic relation.

PROPOSITION 3.2. For every n ∈ N and every a ∈ A one has that

ěnaěn = En(a)ěn = ěnEn(a).

Proof. Given x ∈ A note that

ěnaěn(in(x)) = in(En(aEn(x))) = in(En(a)En(x)) = En(a)ěn(in(x)).

So ěnaěn = En(a)ěn. That ěnaěn = ěnEn(a) follows by taking adjoints. �

We now wish to see how the Mn relate to each other.

PROPOSITION 3.3. For every n ∈ N there exists a continuous Rn+1-linear map jn :
Mn → Mn+1 such that jn(in(a)) = in+1(a) for all a ∈ A. Moreover for any ξ, η ∈ Mn

one has that
En+1(〈ξ, η〉) = 〈jn(ξ), jn(η)〉.

Proof. For every a ∈ A we claim that ‖in+1(a)‖ ≤ ‖in(a)‖. In fact,

‖in+1(a)‖2 = ‖En+1(a
∗a)‖ = ‖En+1En(a

∗a)‖ ≤ ‖En(a∗a)‖ = ‖in(a)‖2.

Thus, the correspondence in(a) �→ in+1(a) is contractive and hence extends to a
continuous map jn : Mn → Mn+1 such that jn(in(a)) = in+1(a). It is elementary to
verify that jn is Rn+1-linear. Suppose that ξ = in(a) and η = in(b) where a, b ∈ A. Then

En+1(〈ξ, η〉) = En+1(〈in(a), in(b)〉) = En+1(En(a
∗b)) = En+1(a

∗b)
= 〈in+1(a), in+1(b)〉 = 〈jn(in(a)), jn(in(b))〉 = 〈jn(ξ), jn(η)〉.

The conclusion now follows because in(A) is dense in Mn. �
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The preceding result gives a canonical relationship between elements in Mn andMn+1.
We now see how to relate operators.

PROPOSITION 3.4. There exists an injective *-homomorphism

�n : L(Mn) → L(Mn+1)

such that for T ∈ L(Mn) one has that

�n(T )(jn(ξ)) = jn(T (ξ)), ∀ξ ∈ Mn.

Proof. Let T ∈ L(Mn). Since T ∗T ≤ ‖T ‖2 one has for all ξ ∈ Mn that

〈T (ξ), T (ξ)〉 = 〈T ∗T (ξ), ξ〉 ≤ ‖T ‖2〈ξ, ξ〉.
Applying En+1 to the above inequality yields

En+1(〈T (ξ), T (ξ)〉) ≤ ‖T ‖2En+1(〈ξ, ξ〉),
or

〈jn(T (ξ)), jn(T (ξ))〉 ≤ ‖T ‖2(〈jn(ξ), jn(ξ)〉),
which implies that ‖jn(T (ξ))‖ ≤ ‖T ‖ ‖jn(ξ)‖. So the correspondence

jn(ξ) �→ jn(T (ξ))

extends to a bounded linear map �n(T ) : Mn+1 → Mn+1 such that �(T )(jn(ξ)) =
jn(T (ξ)) for all ξ ∈ Mn.

We claim that�(T )∗ = �(T ∗) for all T ∈ L(Mn). In order to prove this let ξ, η ∈ Mn.
We have that

〈jn(ξ),�(T )(jn(η))〉 = 〈jn(ξ), jn(T (η))〉 = En+1(〈ξ, T (η)〉)
= En+1(〈T ∗(ξ), η〉) = 〈�(T ∗)(jn(ξ)), jn(η)〉,

proving the claim. It is now easy to see that�n is indeed a *-homomorphism from L(Mn)

to L(Mn+1).
If T is such that �n(T ) = 0 then for every ξ ∈ Mn one has that

0 = 〈�n(T )(jn(ξ)),�n(T )(jn(ξ))〉 = 〈jn(T (ξ)), jn(T (ξ))〉 = En+1(〈T (ξ), T (ξ)〉).
Since En+1 is faithful we have that T (ξ) = 0. Since ξ is arbitrary we have that T = 0. �

Definition 3.5. We denote by L∞ the inductive limit of the sequence

L(M1)
�1−→ L(M2)

�2−→ · · · .
Recall that A is viewed as a subalgebra of L(Mn) via the correspondence a �→ Lna .

For a, x ∈ A note that

�n(L
n
a)(in+1(x)) = �n(L

n
a)(jn(in(x)) = jn(L

n
a(in(x))) = jn(in(ax)) = in+1(ax)

= Ln+1
a (in+1(x)),
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so that �n(Lna) = Ln+1
a . It follows that if we identify L(Mn) with its image in L(Mn+1)

under �n, the two corresponding copies of A will be identified with each other via the
identity map. Therefore,A sits inside of L∞ in a canonical fashion.

We now claim that ěn+1 ≤ �n(ěn) for all n ∈ N. In fact, for all a ∈ A
ěn+1�n(ěn)(in+1(a))

= ěn+1�n(ěn)(jn(in(a))) = ěn+1(jn(ěn(in(a)))) = ěn+1(jn(in(En(a))))

= ěn+1(in+1(En(a))) = in+1(En+1En(a)) = in+1(En+1(a)) = ěn+1(in+1(a)).

Within L∞ we then get a decreasing sequence of projections consisting of the images
of ěn in the inductive limit, which we still denote by ěn.

We are now ready to prove the main result of this section, the main purpose of which is
to give a concrete realization of the so far abstractly defined C∗(R, E).

THEOREM 3.6.
(i) There exists a unique *-homomorphism π̂ : T (R, E) → L∞ such that π̂(a) = a for

all a in A and π̂ (ên) = ěn for all n ∈ N.
(ii) π̂ vanishes on the redundancy ideal and so factors through C∗(R, E) providing a

*-homomorphism
π : C∗(R, E) → L∞

such that π(en) = ěn and π(q(a)) = a, where q is the quotient map from T (R, E)
to C∗(R, E).

(iii) π is injective and hence C∗(R, E) is isomorphic to the sub-C*-algebra of L∞
generated by A and all of the ěn.

Proof. The first point follows from Proposition 3.2, the fact that the ěn are decreasing, and
the universal property of T (R, E).

Addressing (ii), all we must show is that π̂ vanishes on any element of the form

s =
n∑
i=0

ki,

where (k0, . . . , kn) is an n-redundancy. Observing that for i ≤ n one has that π̂(ki) ∈
L(Mi) and that L(Mi) is contained in L(Mn) (as subalgebras of the direct limit L∞),
we see that π̂(s) ∈ L(Mn). Given a ∈ A, choose b, c ∈ A such that E(b∗c) = 1
(e.g. b = c = 1) so that

π̂(s)|in(a) = π̂(s) �in(a),in(b)|in(c) Proposition 3.1= π̂ (s) (aěnb
∗)|in(c) = π̂(s aênb

∗)|in(c) = 0

because aênb lies in K̂n. This shows that π̂ (s) = 0 and hence proves (ii).
In order to proceed we must now prove that the restriction of π̂ to each K̂n is injective.

For this purpose, recall from [Wa, 2.2.9] that Ǩn is precisely the unreduced C*-basic
construction relative to En and thus possesses the universal property described in [Wa,
2.2.7]. The correspondence

a ∈ A �→ a ∈ T (R, E)
together with the idempotent ên gives by Definition 2.3(iii) a covariant representation of
the conditional expectation En, according to Definition 2.2.6 in [Wa]. Therefore, there
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exists a *-homomorphism ρ : Ǩn → K̂n such that ρ(aěnb) = aênb for all a, b ∈ A.
It follows that the composition ρ ◦ (π̂ |K̂n

) is the identity map, hence proving our claim that
π̂ |K̂n

is injective.
In order to prove (iii), it suffices to show that for each n, π is injective on the sub-C*-

algebra of C∗(R, E) given by

Bn = K0 + · · · + Kn,

where the Kn are defined in Definition 2.7(iii) (note that Bn is indeed a sub-C*-algebra by
[P, 1.5.8]). In fact, once this is granted, we see that π is isometric on the union of all Bn
which is dense in C∗(R, E). This would prove that π is isometric on all of C∗(R, E).

Let b = k0 + · · · + kn ∈ Bn, where ki ∈ Ki , and suppose that π(b) = 0. Since
q(K̂i ) = Ki we may write ki = q(k̂i), where k̂i ∈ K̂i . We therefore have that
π̂(k̂0 + · · · + k̂n) = 0.

We now claim that (k̂0, . . . , k̂n) is an n-redundancy. In order to prove this, let
x ∈ K̂n and note that (k̂0 + · · · + k̂n)x ∈ K̂n by Proposition 2.4. However, since
π̂((k̂0 + · · · + k̂n)x) = 0 and π̂ is injective on K̂n, we have that (k̂0 + · · · + k̂n)x = 0 as
claimed. So k̂0 + · · · + k̂n lies in the redundancy ideal and hence

b = q(k̂0 + · · · + k̂n) = 0. �

COROLLARY 3.7. The maps

a ∈ A → a ∈ T (R, E)

and
a ∈ A → q(a) ∈ C∗(R, E)

are injective.

The proof follows immediately from our last result.
From now on, we will therefore identify A with A and also with q(A).

4. Stationary equivalence relations
In this section we study approximately proper equivalence relations which have a special
simple description.

Definition 4.1. An approximately proper equivalence relation R = {Rn}n∈N over a unital
C*-algebra A is said to be stationary if there exists a unital injective *-endomorphism
α : A → A such that Rn+1 = α(Rn) for all n.

In this case observe that Rn is simply the range of αn. Throughout this section we fix a
stationary approximately proper equivalence relation R = {Rn}n∈N over A. We will also
fix an endomorphism α as above.

Let E be a given faithful conditional expectation from A to R1. Define conditional
expectationsEn from A to Rn by

En = αn−1 (Eα−1) . . . (Eα−1)︸ ︷︷ ︸
n−1 times

E.

It is easy to see that En+1 ◦ En = En+1 for every n.
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Definition 4.2. We say that a sequence of conditional expectations E = {En}n∈N is
stationary if it is obtained as above from a single faithful conditional expectation
E : A → R1.

Throughout this section we fix a stationary sequence of conditional expectations as
above. Observe that the composition L = α−1E is a transfer operator in the sense of [E1,
2.1]. We may then form the crossed-product A�α,L N as in [E1, 3.7]. Denote by γ the
scalar gauge action [E2, 3.3] on A�α,L N.

The main result we wish to present in this section is the following.

THEOREM 4.3. With the hypothesis introduced in this section, C∗(R, E) is isomorphic to
the sub-C*-algebra of the crossed-product algebraA�α,L N formed by the fixed points for
the scalar gauge action.

Proof. The theorem follows immediately from [E2, 6.5] since the algebra Ǔ mentioned
there (see also [E2, 4.8]) is isomorphic to C∗(R, E) by Theorem 3.6(iii). For the proof that
the fixed point algebra is precisely Ǔ see [M, 4.1]. �

We may now finally give a non-trivial example of our construction. Let A be an
n × n matrix of zeros and ones without any zero rows or columns and let (X, T ) be the
corresponding Markov sub-shift. Define the endomorphism α of C(X) by α(f ) = f ◦ T ,
for all f in C(X). Also, let E be the conditional expectation from C(X) to the range of α
given by

E(f )|x = 1

#{y : T (y) = x}
∑

T (y)=x
f (y), ∀f ∈ C(X), x ∈ X.

We may then form R and E as above. By [E1, 6.2], one has that C(X)�α,L N is the
Cuntz–Krieger algebra OA. By Theorem 4.3 we then have that C∗(R, E) is isomorphic to
the subalgebra of OA formed by the fixed point algebra for the gauge action. When n = 2
and

A =
[

1 1
1 1

]
,

we then have that C∗(R, E) is isomorphic to the CAR algebra.

5. Gauge automorphisms
In this section we return to the general case, therefore fixing a C*-algebra A, an
approximately proper equivalence relation R = {Rn}n∈N, and a sequence E = {En}n∈N
of compatible conditional expectations as before.

We wish to introduce the notions of potentials and their corresponding gauge
automorphisms which will be the objects of study in later sections. We start with a simple
technical fact.

PROPOSITION 5.1. Let i ≤ n and let b ∈ Z(Ri ) (meaning the center of Ri) then

En(ab) = En(ba), ∀a ∈ A.
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Proof. We have

En(ab) = En(Ei(ab)) = En(Ei(a)b) = En(bEi(a)) = En(Ei(ba)) = En(ba). �

Definition 5.2. By a potential we mean a sequence z = {zn}n∈N such that zn belongs to
Z(Rn) for every n ∈ N.

Given a potential z observe that every zn commutes with every other zm. Therefore, we
may set

z[n] = z0z1 . . . zn−1, ∀n ∈ N,

without worrying about the order of the factors. We also use the notation z−[n] to mean
(z[n])−1 when the latter exists.

Ifw = {wn}n∈N is another potential, it is clear that zw := {znwn}n∈N is again a potential
and that

(zw)[n] = z[n]w[n], ∀n ∈ N.

Potentials may be used to define automorphisms as follows.

PROPOSITION 5.3. Let u = {un}n∈N be a unitary potential (in the sense that each un is a
unitary element). Then there is an automorphism ϕ̂u of T (R, E) such that

ϕ̂u(a) = a, ∀a ∈ A,
and

ϕ̂u(ên) = u[n]ênu−[n], ∀n ∈ N.

Moreover, given another unitary potential v, one has that ϕ̂uv = ϕ̂uϕ̂v .

Proof. For every n ∈ N let fn = u[n]ênu−[n]. Then

fnfn+1 = u[n]ênu−[n]u[n+1]ên+1u
−[n+1] = u[n]ênunên+1u

−[n+1]

= u[n]unênên+1u
−[n+1] = u[n+1]ên+1u

−[n+1] = fn+1,

so the fn are decreasing. For a ∈ A we have

fnafn = u[n]ênu−[n]au[n]ênu−[n] = u[n]En(u−[n]au[n])ênu−[n]

Proposition 5.1= u[n]En(a)ênu−[n] = En(a)u
[n]ênu−[n] = En(a)fn.

By the universal property of T (R, E) there exist a *-homomorphism ϕ̂u : T (R, E) →
T (R, E) satisfying the conditions in the statement, except possibly for the fact that ϕ̂u is
an automorphism.

Given another unitary potential v one can easily prove that ϕ̂uv = ϕ̂uϕ̂v by checking on
the generators. Plugging v = u−1 := {u−1

n }n∈N we then have that ϕ̂u−1 and ϕ̂u are each
others inverse and hence ϕ̂u is an automorphism. �

PROPOSITION 5.4. For every unitary potential u the automorphism ϕ̂u leaves the
redundancy ideal invariant (in the sense that the image of the redundancy ideal under
ϕ̂u is exactly the redundancy ideal) and hence drops to an automorphism ϕu of C∗(R, E)
which is the identity on A and such that

ϕu(en) = u[n]enu−[n], ∀n ∈ N.
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Proof. It is elementary to verify that ϕ̂u(K̂n) = K̂n for all n. Thus, if (k0, . . . , kn) is a
redundancy we have that (ϕ̂u(k0), . . . , ϕ̂u(kn)) ∈ ∏n

i=0 K̂i . Moreover, if x ∈ K̂n, we have
that

n∑
i=0

ϕ̂u(ki)x = ϕ̂u

( n∑
i=0

kiϕ
−1
u (x)

)
= 0.

Therefore, (ϕ̂u(k0), . . . , ϕ̂u(kn)) is a redundancy and hence ϕ̂u(k0 + · · · + kn) lies in the
redundancy ideal. So we see that ϕ̂u sends the redundancy ideal into itself. Since the
same holds for ϕ̂u−1 = ϕ̂−1

u it follows that the image of the redundancy ideal under ϕ̂u is
precisely the redundancy ideal and hence the proof is concluded. �

So far we have introduced single gauge automorphisms, but now we would like to define
one-parameter groups.

Definition 5.5.
(i) A potential h = {hn}n∈N is said to be strictly positive when for each n there exists a

real number cn > 0 such that hn ≥ cn.
(ii) Given a strictly positive potential h = {hn}n∈N and a complex number z we denote

by hz the potential {hzn}n∈N, and by hz[n] = (hz)[n], for n ∈ N.
(iii) The gauge action for a strictly positive potential h is the one-parameter group

σ = {σt }t∈R of automorphisms of C∗(R, E) given by σt = ϕhit for all t ∈ R.

Given a, b ∈ A and n ∈ N, observe that

σt (aenb) = ahit [n]enh−it [n]b, ∀a, b ∈ A, ∀n ∈ N. (5.6)

It is therefore clear that the gauge action is strongly continuous.

6. Finite index
Starting with this section we restrict ourselves to the case in which theEn are of index-finite
type according to [Wa, 1.2.2]. We refer the reader to [Wa] for the basic definitions and
facts about index-finite type conditional expectations, which now acquire a preponderant
role in our study.

PROPOSITION 6.1. If Em is of index-finite type then its restriction to each Rn, where
n ≤ m, is also of index-finite type. Moreover if {u1, . . . , uk} is a quasi-basis for Em then
{En(u1), . . . , En(uk)} is a quasi-basis for the restriction of Em to Rn.

Proof. For every a ∈ Rn we have that

a = En(a) = En

( k∑
i=0

uiEm(u
∗
i a)

)
=

k∑
i=0

En(ui)Em(En(u
∗
i a))

=
k∑
i=0

En(ui)Em(En(ui)
∗a). �

PROPOSITION 6.2. Let n ≤ m. Suppose that the restriction of Em to Rn is of index-finite
type and let {v1, . . . , vk} ⊆ Rn be a quasi-basis for it. Then:
(i)

∑k
i=0 viemv

∗
i = en;
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(ii) Kn ⊆ Km.

Proof. Let a, b ∈ A and observe that(
ên −

k∑
i=0

vi êmv
∗
i

)
aêmb

= ênaênêmb −
k∑
i=0

viEm(v
∗
i a)êmb = En(a)êmb −

k∑
i=0

viEm(En(v
∗
i a))êmb

= En(a)êmb −
k∑
i=0

viEm(v
∗
i En(a))êmb = En(a)êmb − En(a)êmb = 0.

Therefore, the (m+ 1)-tuple(
0, . . . , 0, ên, 0, . . . , 0,−

k∑
i=0

vi êmv
∗
i

)

is an m-redundancy from which (i) follows. Obviously (ii) follows from (i). �

COROLLARY 6.3. If all En are of index-finite type then Kn are increasing and C∗(R, E)
is the closure of

⋃
n∈NKn.

Proof. By Proposition 6.1 we have that En+1|Rn
is of index-finite type. Hence by

Proposition 6.2 we have that Kn ⊆ Kn+1. Since A = K0 and for every n we have that
en ∈ Kn the conclusion follows. �

In the finite index case we have the following elementary description of Kn.

PROPOSITION 6.4. If all En are of index-finite type thenMn = in(A) and Kn = LRn
(A),

where LRn
(A) denotes the set of all (not necessarily adjointable or even continuous)

additive right Rn-linear maps on A (where A is identified with Mn via in).

Proof. By [Wa, 2.1.5] there exists a constant λn > 0 such that ‖En(a∗a)‖1/2 ≥ λn‖a‖,
for all a in A. Therefore,

‖in(a)‖ = ‖En(a∗a)‖1/2 ≥ λn‖a‖,
so that in is a Banach space isomorphism onto its range which is therefore a complete
normed space, hence closed. Since in(A) is dense in Mn we conclude that in(A) = Mn.
We will therefore identifyMn and A.

It is clear that Kn ⊆ LRn
(A). In order to prove the converse inclusion let {u1, . . . , un}

be a quasi-basis for En. Then, given any additive Rn-linear map T on A and a ∈ A, we
have

T (a) = T

( m∑
i=1

uiEn(u
∗
i a)

)
=

m∑
i=1

T (ui)En(u
∗
i a) =

m∑
i=1

T (ui)〈ui, a〉

=
m∑
i=1

�T (ui),ui (a),

so that T = ∑m
i=1�T(ui),ui ∈ Ǩn. �
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This last result gives a curious description of the dense subalgebra
⋃
n∈NKn of

C∗(R, E), namely that it is formed by the additive operators which are linear with respect
to some Rn. Observe that this is not quite the same as requiring linearity with respect to
the intersection of the Rn!

One of the main tools in our study from now on will be a certain conditional expectation
fromC∗(R, E) toA. Unfortunately, we can only show its existence in the finite-index case.

PROPOSITION 6.5. If all En are of index-finite type, then there exists a conditional
expectation

G : C∗(R, E) → A,

such that for each n ∈ N one has that

G(en) = λ−1
0 . . . λ−1

n−1,

where λn = ind(En+1|Rn
). If A is commutative then G is the unique conditional

expectation from C∗(R, E) to A.

Proof. Set λn = ind(En+1|Rn
) so that λ = {λn}n∈N is a potential in the sense of

Definition 5.2 and the proposed value for G(en) above is just λ−[n]. Observe, moreover,
that λ−[n] commutes with Rn−1.

Let n ∈ N be fixed. Observing that Kn is isomorphic to Ǩn by Theorem 3.6(iii) and
arguing exactly as in [E2, 8.4], we conclude that there exists a positive A-bimodule map
Gn : Kn → A such that Gn(en) = λ−[n].

We claim that Gn+1 extends Gn. In fact, let {u1, . . . , uk} be a quasi-basis for En+1.
Then by Proposition 6.1 we have that {En(u1), . . . , En(uk)} is a quasi-basis for En+1|Rn

.

By Proposition 6.2(i) we have that en = ∑k
i=1 En(ui)en+1En(ui)

∗, so that

Gn+1(en) =
k∑
i=1

En(ui)λ
−[n+1]En(ui)∗ = λ−[n+1]

k∑
i=1

En(ui)En(ui)
∗

= λ−[n+1] ind(En+1|Rn
) = λ−[n+1]λn = λ−[n] = Gn(en).

The claim then follows easily from the fact that bothGn and Gn+1 are A-bimodule maps.

As a consequence we see that each Gn restricts to the identity on A and hence Gn is a
conditional expectation from Kn to A. Conditional expectations are always contractive so
there exists a common extensionG : C∗(R, E) → A which is the desired map.

Suppose that A is commutative and that G′ is another conditional expectation from
C∗(R, E) to A. Given n let {u1, . . . , uk} be a quasi-basis for En and hence by
Proposition 6.2(i) we have

1 = G′(1) = G′
( k∑
i=0

uienu
∗
i

)
=

k∑
i=0

uiG
′(en)u∗

i = G′(en) ind(En),

so necessarily G′(en) = ind(En)−1 = λ−[n] by [Wa, 1.7.1]. Once we know that G andG′
coincide on en it is easy to see that G = G′. �

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Jan 2011 IP address: 143.54.235.202

1064 R. Exel and A. Lopes

7. KMS states
In this section we begin the general study of KMS states for gauge actions on C∗(R, E).
We refer the reader to [BR, P] for the basic theory of KMS states.

Given what are probably limitations in our methods, we will all but have to assume that
A is commutative. To be precise, we assume from now on that the conditional expectations
En satisfy the following trace-like property:

En(ab) = En(ba), ∀a, b ∈ A, (7.1)

which is obviously the case when A is commutative. Unfortunately, we have no interesting
non-commutative example of this situation, but since we do not really have to suppose
that A is commutative and in the hope that some such example will be found, we proceed
without the commutativity of A.

We moreover assume that allEn are of index-finite type and denote byG the conditional
expectation given by Proposition 6.5. Our first result is that any KMS state factors
throughG.

PROPOSITION 7.2. Let h be a strictly positive potential, let β > 0, and let φ be a (σ, β)-
KMS state (i.e. a KMS state for σ at inverse temperature β) on C∗(R, E) for the gauge
action σ associated to h. Then φ = φ ◦G.

Proof. Given a, b ∈ A and n ∈ N it is clear from (5.6) that aenb is an analytic element
with

σz(aenb) = ahiz[n]enh−iz[n]b, ∀z ∈ C.

We claim that

φ(aenb) = φ(hβ[n]En(bah−β[n])en), ∀a, b ∈ A, ∀n ∈ N. (∗)

In order to prove it we use the KMS condition as follows

φ(aenb) = φ(enba) = φ(enbaσiβ(en)) = φ(enbah
−β[n]enhβ[n])

= φ(En(bah
−β[n])enhβ[n]) = φ(hβ[n]En(bah−β[n])en),

proving (∗). We next claim that

φ(aen+1) = φ(λ−1
n aen), ∀a ∈ A,

where λn is defined in Proposition 6.5. In order to prove this claim, let {v1, . . . , vk} ⊆ Rn

be a quasi-basis for the restriction of En+1 to Rn. Then by Proposition 6.2(i) we have for
all x ∈ A that

φ(xen) = φ

( k∑
i=0

xvien+1v
∗
i

)
(∗)=

k∑
i=0

φ(hβ[n+1]En+1(v
∗
i xvih

−β[n+1])en+1).

Since vi ∈ Rn and since h−β[n+1] commutes with Rn, we have that

En+1(v
∗
i xvih

−β[n+1]) = En+1(v
∗
i xh

−β[n+1]vi) = En+1(xh
−β[n+1]viv∗

i ),

by the trace-like property of En+1. We then conclude that

φ(xen) = φ(hβ[n+1]En+1(xh
−β[n+1]λn)en+1).
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Using (∗) once more we have that

φ(aen+1) = φ(hβ[n+1]En+1(ah
−β[n+1])en+1).

So when x = λ−1
n a, we have that φ(xen) = φ(aen+1), which is precisely the identity we

were looking for. By induction, we then have that

φ(aen) = φ(λ−[n]a).

Therefore, for all a, b ∈ A,

φ(aenb) = φ(baen) = φ(λ−[n]ba) = φ(aλ−[n]b) = φ(G(aenb)).

As the closed linear span of the set of elements of the form aenb is dense in C∗(R, E) the
proof is complete. �

In particular, it follows that every KMS state is determined by its restriction to A. It is
therefore useful to know which states on A occur as the restriction of a KMS state.

PROPOSITION 7.3. Let φ be a state on A and let β > 0. Then the compositionψ = φ ◦G
is a (σ, β)-KMS state if and only if

φ(a) = φ(�−[n]En(�[n]a)), ∀a ∈ A, ∀n ∈ N,

where � = {�n}n∈N is the potential given by �n = h
−β
n λn.

Proof. Suppose that ψ is a (σ, β)-KMS state. Then for all a, b, c, d ∈ A and all n ∈ N we
have

ψ((aenb)σiβ(cend)) = ψ((cend)(aenb)). (∗∗)

Observe that the left-hand side of (∗∗) equals

ψ(aenbch
−β[n]enhβ[n]d) = ψ(aEn(bch

−β[n])enhβ[n]d)
= φ(aEn(bch

−β[n])λ−[n]hβ[n]d).

Meanwhile, the right-hand side of (∗∗) equals

ψ(cEn(da)enb) = φ(cEn(da)λ
−[n]b).

Plugging in b = 1, c = hβ[n], and d = h−β[n]λ[n] we have that (∗∗) implies that

φ(a) = φ(hβ[n]En(h−β[n]λ[n]a)λ−[n]) = φ(�−[n]En(�[n]a)).

In order to prove the converse we first claim that if φ satisfies the condition in the
statement for n = 1, then φ must be a trace. In fact, observing that�[1] = �0 ∈ Z(A) we
have for all a, b ∈ A that

φ(ab) = φ(�−[1]E1(�
[1]ab)) = φ(�−[1]E1(a�

[1]b)) = φ(�−[1]E1(�
[1]ba)) = φ(ba),

where we have again used the trace-like property of E1. Supposing now that φ satisfies the
above condition not only for n = 1, but for all n ∈ N, let us prove that ψ is a KMS state.
For this we would like to prove that

ψ((aenb)σiβ(cemd)) = ψ((cemd)(aenb)), (∗∗∗)
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for all a, b, c, d ∈ A and n,m ∈ N. Supposing that n ≤ m, the left-hand side of (∗∗∗)
equals

ψ(aenbch
−β[m]emhβ[m]d)

= ψ(aEn(bch
−β[m])emhβ[m]d)

= φ(aEn(bch
−β[m])λ−[m]hβ[m]d) = φ(En(bch

−β[m])hβ[m]λ−[m]da) = · · · .
Letting x = h

β
n . . . h

β

m−1, observe that x ∈ Rn and hβ[m] = xhβ[n], so the above equals

· · · = φ(En(bch
−β[n]x−1)xhβ[n]λ−[m]da) = φ(En(bch

−β[n])hβ[n]λ−[m]da)
= φ(�−[n]En(�[n]En(bch−β[n])hβ[n]λ−[m]da))
= φ(�−[n]En(bch−β[n])En(λ[n]λ−[m]da)).

Meanwhile, the right-hand side of (∗∗∗) equals

ψ(cemEn(da)b) = φ(cλ−[m]En(da)b) = φ(bcλ−[m]En(da))
= φ(�−[n]En(�[n]bcλ−[m]En(da)))
= φ(�−[n]En(bcλ−[m]λ[n]h−β[n])En(da)).

Observing that λ−[m]λ[n] ∈ Rn we therefore see that (∗∗∗) is proved under the hypothesis
that n ≤ m. If, on the other hand, n ≥ m the left-hand side of (∗∗∗) becomes

ψ(aenbch
−β[m]emhβ[m]d) = ψ(aenEm(bch

−β[m])hβ[m]d)
= φ(aλ−[n]Em(bch−β[m])hβ[m]d)
= φ(�−[m]Em(�[m]λ−[n]Em(bch−β[m])hβ[m]da))
= φ(�−[m]Em(bch−β[m])Em(hβ[m]da�[m]λ−[n]))
= φ(�−[m]Em(bch−β[m])Em(daλ[m]λ−[n])).

The right-hand side of (∗∗∗) equals

ψ(cEm(da)enb) = φ(cEm(da)λ
−[n]b) = φ(λ−[n]bcEm(da))

= φ(�−[m]Em(�[m]λ−[n]bcEm(da)))
= φ(�−[m]Em(bch−β[m]λ[m]λ−[n])Em(da)).

The conclusion follows once more because λ[m]λ−[n] ∈ Rm. �

Putting together our last two results we reach one of our main goals.

THEOREM 7.4. Let R be an approximately proper equivalence relation on a C*-algebra
A and let E = {En}n∈N be a sequence of conditional expectations of index-finite type
defined on A with En(A) = Rn satisfying (7.1) and En+1 ◦ En = En+1 for every n.
Also, let h be any strictly positive potential and denote by σ the associated gauge action
on C∗(R, E). Then for every β > 0, the correspondence ψ �→ φ = ψ|A is a bijection
from the set of (σ, β)-KMS states ψ on C∗(R, E) and the set of states φ on A satisfying

φ(a) = φ(�−[n]En(�[n]a)), ∀a ∈ A, ∀n ∈ N,

where � = {�n}n∈N is the potential given by �n = h
−β
n λn. The inverse of this

correspondence is given by φ �→ ψ = φ ◦G, where G is given in Proposition 6.5.
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8. Existence of KMS states
Theorem 7.4 gives a precise characterization of the KMS states on C∗(R, E) in terms
of states on A satisfying certain conditions. It does not say, however, if such states exist.
We now take up the task of showing the existence of at least one KMS state for each inverse
temperature β > 0. We begin with a technical result which states that the conditions on φ
required by Proposition 7.3 increase in strength with n.

PROPOSITION 8.1. Let φ be a state on A and suppose that the formula

φ(a) = φ(�−[n]En(�[n]a)), ∀a ∈ A,
holds for n = k + 1, where k ∈ N is given. Then the formula holds for n = k.

Proof. For each n ∈ N, let Fn be the operator on A given by

Fn(a) = �−[n]En(�[n]a), ∀a ∈ A.
Then the formula in the statement is equivalent to F ∗

n (φ) = φ, where F ∗
n refers to the

transpose operator on the dual of A.
We claim that for all n one has that Fn+1 ◦ Fn = Fn+1. In fact, observing that

�[n+1]�−[n] = �n ∈ Rn, we have

Fn+1(Fn(a)) = �−[n+1]En+1(�
[n+1]�−[n]En(�[n]a))

= �−[n+1]En+1(En(�
[n+1]�−[n]�[n]a)) = �−[n+1]En+1(�

[n+1]a)
= Fn+1(a).

Given that F ∗
k+1(φ) = φ we have

F ∗
k (φ) = F ∗

k (F
∗
k+1(φ)) = (Fk+1Fk)

∗(φ) = F ∗
k+1(φ) = φ. �

We now arrive at the main result of this section.

THEOREM 8.2. Let R be an approximately proper equivalence relation on a C*-algebra
A and let E = {En}n∈N be a sequence of conditional expectations of index-finite type
defined on A with En(A) = Rn satisfying (7.1) and En+1 ◦ En = En+1 for every n.
Also let h be any strictly positive potential and denote by σ the associated gauge action on
C∗(R, E). Then for every β > 0 there exists at least one (σ, β)-KMS state on C∗(R, E).

Proof. For each n ∈ N, let Sn be set of all states on A satisfying F ∗
n (φ) = φ, where Fn is

the operator defined in the beginning of the proof of Proposition 8.1. It is clear that the Sn
are closed subsets of the state space of A and hence compact.

We claim that Sn is non-empty for every n. In order to prove this let τ be any trace onA.
Observe that traces on A may be obtained by composing any state with E1. For a given n,
let φ = F ∗

n (τ ). Since F 2
n = Fn it is clear that F ∗

n (φ) = φ. Moreover, φ is a positive linear
functional because for all a ∈ A+ we have

φ(a) = τ (�−[n]En(�[n]a)) = τ (�− 1
2 [n]En(�

1
2 [n]a�

1
2 [n])�− 1

2 [n]) ≥ 0.

Thus dividing φ by φ(1) (observe that φ(1) �= 0 by [Wa, 2.1.5]) gives an element of Sn so
that Sn �= ∅. By Proposition 8.1 we have that the Sn are decreasing so their intersection is
non-empty. Any φ belonging to that intersection is a state on A satisfying the condition in
Proposition 7.3 and hence φ ◦G is a (σ, β)-KMS state on C∗(R, E). �
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It should be noted that the method employed above may be used to give an iterative
process to produce KMS states: start with any state φ0 on A and define

φn = φn−1(Fn(1))−1F ∗
n (φn−1).

Any weak accumulation point of the sequence {φn}n will be a state φ on A satisfying
Proposition 7.3 and hence φ ◦G is the desired KMS state.

In the present level of generality there is not much more we can say about KMS states.
In the following sections we discuss an example in which KMS states will be proven to be
unique as well.

9. Thermodynamic formalism and uniquenes of KMS states
In this section we show a relationship between the KMS states that we have been discussing
and the Gibbs states of thermodynamic formalism, as developed by Bowen [Bo] and Ruelle
[Ru1, Ru2, Ru3]. This section should be viewed more as an illustration of the definitions
of the previous sections rather than new results. In particular, Proposition 9.9 can also be
obtained as a particular case of the characterization of KMS states given in [Re2, II.5.4].

Throughout the rest of this section, we fix a compact metric space X and a local
homeomorphism T : X → X. We also let α be the endomorphism of C(X) given by

α(f ) = f ◦ T , ∀f ∈ C(X).
Consider the equivalence relation on X given by

x ∼ y ⇔ ∃n ∈ N, T n(x) = T n(y).

In the case of the left shift on Bernouli’s space (an example to be kept in the back of one’s
mind) this equivalence relation turns out to be the tail-equivalence relation which is not
proper. However, it is easy to see that it is always approximately proper, and that it is the
union of the equivalence relations Rn given by

(x, y) ∈ Rn ⇔ T n(x) = T n(y). (9.1)

Clearly each Rn is proper and the algebra C(X;Rn) is precisely the range of αn. For
simplicity we will denote the latter algebra by Rn.

We now need conditional expectations En from C(X) onto Rn and these are obtained
as follows. By the assumption that T is a local homeomorphism and that X is compact
we see that T is necessarily a covering map. The inverse image under T of each x ∈ X is
therefore a finite set. Given a continuous strictly positive function p : X → R consider the
associated Ruelle–Perron–Frobenius operator given by

Lp(f )|x =
∑
T (z)=x

p(z)f (z), ∀f ∈ C(X), x ∈ X.

We will assume that p is such that Lp is normalized (meaning that Lp(1) = 1). This means
that for every x ∈ X, the association z �→ p(z) is a probability distribution on the
equivalence class of x relative to R1.

It is easy to show that Lp satisfies the identity

Lp(f )g = Lp(f α(g)), ∀f, g ∈ C(X). (9.2)
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For any n ∈ N set

En = αnLnp. (9.3)

Given f ∈ C(X) one then has that E1(f )|x is just the weighted average of f over the
equivalence class of x relative to R1. Therefore, E1 is a conditional expectation onto R1.
Likewise, En is a conditional expectation onto Rn and because the composition Lp ◦ α is
the identity map on C(X), we have that Em ◦ En = Em for m ≥ n. Setting R = {Rn}n∈N
and E = {En}n∈N we may then speak of C∗(R, E).

Observe that the present situation is precisely that of a stationary equivalence relation
described in § 4.

Given any f ∈ C(X) it is clear that αn(f ) ∈ Rn for all n and hence the sequence
{αn(f )}n∈N is a potential. Accordingly we will adopt the notation f [n] to mean

f [n] = fα(f ) . . . αn−1(f ).

For later use it is convenient to give an explicit description for Lnp as well as En.

LEMMA 9.4. Let n ∈ N, then for every f ∈ C(X) and x ∈ X one has that

Lnp(f )|x =
∑

T n(z)=x
p[n](z)f (z),

and

En(f )|x =
∑

(z,x)∈Rn
p[n](z)f (z),

Before giving the proof we should note that in summations of the form
∑
(z,x)∈Rn , which

will be often used from now on, the variable which we mean to sum upon will always be
the first mentioned (z in this case) even though equivalence relations are well known to be
symmetric.

Proof of Lemma 9.4. In order to prove the first statement we use induction on n observing
that the case n = 1 follows by definition. Given n ≥ 1 we have

L(n+1)
p (f )|x = Lnp(Lp(f ))|x =

∑
T n(z)=x

p[n](z)
∑

T (w)=z
p(w)f (w) = · · · .

Note that a pair (z,w) is such that T n(z) = x and T (w) = z if and only if it is of the form
(T (w),w) where T n+1(w) = x. Therefore, the above equals

· · · =
∑

T n+1(w)=x
p[n](T (w))p(w)f (w) =

∑
T n+1(w)=x

p[n+1](w)f (w),

proving the first statement. The second statement then follows easily. �

In the following we compute the index of our conditional expectations.

PROPOSITION 9.5. For each n ∈ N we have that En+1|Rn
is of index-finite type and

ind(En+1|Rn
) = αn(p−1).
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Proof. Let {Vi}mi=1 be a finite open covering of X such that the restriction of T to each
Vi is one-to-one and let {vi}mi=1 be a partition of unity subordinate to this covering.
Set ui = (p−1vi)

1/2 and observe that for every f ∈ C(X) and x ∈ X one has that

m∑
i=1

uiE1(uif )|x =
m∑
i=1

ui(x)
∑
z∈X

T (z)=T (x)

p(z)ui(z)f (z)

=
m∑
i=1

ui(x)p(x)ui(x)f (x) =
m∑
i=1

vi(x)f (x) = f (x).

Therefore {u1, . . . , um} is a quasi-basis for E1 so that

ind(E1) =
m∑
i=1

u2
i =

m∑
i=1

p−1vi = p−1.

Next observe that the diagram

R0

αn

��

E1 �� R1

αn

��
Rn

En+1 �� Rn+1

is commutative. Therefore, En+1|Rn
is conjugate to E1 under αn and so ind(En+1|Rn

) =
αn(ind(E1)) = αn(p−1). �

We therefore have that each En is of index-finite type. Also, note that in the notation of
Proposition 6.5 we have proven that λn = αn(p−1).

Let H be a strictly positive continuous function on X. Setting hn = αn(H) for
every n ∈ N we have that h := {hn}n∈N is a strictly positive potential in the sense of
Definition 5.5. The corresponding gauge action will be denoted by σ .

We are interested in showing that for every β > 0 there exists a unique (σ, β)-KMS
state on C∗(R, E), thus improving on Theorem 8.2.

Given β > 0, consider the Ruelle–Perron–Frobenius operator associated to H(z)−β ,
namely

LH,β (f )|x =
∑

T (z)=x
H(z)−βf (z), ∀f ∈ C(X), x ∈ X.

In order to achieve our goal, we need to use the celebrated Ruelle–Perron–Frobenius
Theorem whose conclusions are as follows.

THEOREM 9.6. (Conclusions of the Ruelle–Perron–Frobenius Theorem)
(a) There exists a unique pair (c

H,β
, ν

H,β
) such that c

H,β
is a strictly positive real number,

ν
H,β

is a probability measure on X, and

L∗
H,β
(νH,β ) = cH,β νH,β ,

where L∗
H,β

refers to the transpose operator on the dual of C(X), which in turn is
identified with the space of finite regular Borel measures on X.

(b) There exists a strictly positive continuous function kH,β on X such that:
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•
∫
kH,β dνH,β = 1;

• LH,β (kH,β ) = cH,β kH,β ; and

• lim
n→∞(L

n
H,β
(f )/cn

H,β
) = k

H,β

∫
f dν

H,β
, ∀f ∈ C(X);

where the limit is with respect to the (sup) norm topology of C(X).

Initially proven for the shift on the one-sided Bernouli space andH a Hölder continuous
function [Ru1, Theorem 3] this theorem has been proved to hold under more general
hypotheses: see, for example, [Ba, Bo, C, F, FJ1, FJ2, K, Ru2, Ru3, W1, W2].

The reader is referred to the above articles for more details on the various hypotheses
under which the Ruelle–Perron–Frobenius Theorem holds, so we will simply assume its
conclusions as above.

Definition 9.7. The probability ν
H,β

is called the Gibbs state associated to H−β .

In the sequel we show the following elementary relationship between the operators Lp
and L

H,β
.

PROPOSITION 9.8. Given β > 0 and n ∈ N we have that

Ln
H,β
(f ) = Lnp(�[n]f ), ∀f ∈ C(X),

where the potential� = {�n}n∈N was defined in Proposition 7.3 by �n = h
−β
n λn.

Proof. In the present situation we have that hn = αn(H) and λn = αn(p−1) so that

�n = αn(H)−βαn(p−1) = αn(H−βp−1).

Next, observe that for f ∈ C(X) we have

L
H,β
(f ) = Lp(H−βp−1f ) = Lp(�0f ).

The conclusion now follows easily by induction using (9.2). �

We now show that the Gibbs states indeed give KMS states on C∗(R, E).

PROPOSITION 9.9. For every β > 0 the state φ
H,β

on C(X) corresponding via the Riesz
representation theorem to the Gibbs state ν

H,β
satisfies the conditions of Proposition 7.3

and hence the composition ψ
H,β

= φ
H,β

◦G is a (σ, β)-KMS state on C∗(R, E).

Proof. The condition that ν
H,β

is an eigenmeasure for L
H,β

gives for every f ∈ C(X) and
any n ∈ N that

φ
H,β
(Lnp(�[n]f )) = φ

H,β
(Ln

H,β
(f )) = cn

H,β
φ
H,β
(f ).

Plugging f = �−[n]αn(g) above, where g ∈ C(X), we obtain

φ
H,β
(g) = cn

H,β
φ
H,β
(�−[n]αn(g)).

In order to prove the condition in Proposition 7.3 we then compute

φ
H,β
(�−[n]En(�[n]f )) = φ

H,β
(�−[n]αnLnp(�[n]f )) = c−n

H,β
φ
H,β
(Lnp(�[n]f )) = φ

H,β
(f ).

This concludes the proof. �
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Our next main goal is to show that the state ψH,β given by the above result is the unique
(σ, β)-KMS state on C∗(R, E).

THEOREM 9.10. Let T be a local homeomorphism on a compact metric space X and
consider the approximately proper equivalence relation R = {Rn}n∈N, where each Rn
is given by (9.1). Let p : X → R be a strictly positive continuous function satisfying∑
T (z)=x p(z) = 1 for every x ∈ X and define the sequence of conditional expectations

E = {En}n∈N as in (9.3). Let H be a strictly positive continuous function on X and
consider the one parameter automorphism group of C∗(R, E) given by the potential
h := {H ◦ T n}n∈N. Assuming Theorem 9.6 we have that for every β > 0 the state ψ

H,β

given by Proposition 9.9 is the unique (σ, β)-KMS state on C∗(R, E).

Proof. Let ψ be a (σ, β)-KMS state on C∗(R, E) and let φ be its restriction to C(X).
By Proposition 7.2 we have that ψ = φ ◦ G so it suffices to show that φ = φH,β .
Fix f ∈ C(X) and note that by Proposition 7.3 we have

φ(f ) = φ(�−[n]En(�[n]f )) = φ(�−[n]αnLnp(�[n]f )) = φ(�−[n]αnLn
H,β
(f ))

= cn
H,β
φ

(
�−[n]αn

(
Ln
H,β
(f )

cn
H,β

))
. (†)

We next claim that if we replace the argument of αn in (†) by its limit, namely φH,β (f )kH,β ,
we will arrive at an expression which converges to φ(f ) as n → ∞. In order to prove this
we compute

|φ(f )− cn
H,β
φ(�−[n]αn(φH,β (f )kH,β ))|

=
∣∣∣∣∣cnH,β φ

(
�−[n]αn

(
Ln
H,β
(f )

cn
H,β

− φH,β (f )kH,β

))∣∣∣∣∣
≤ cn

H,β
φ(�−[n])

∥∥∥∥∥L
n
H,β
(f )

cn
H,β

− φH,β (f )kH,β

∥∥∥∥∥ .
The claim will be proven once we show that the expression cn

H,β
φ(�−[n]) is bounded from

above with n. In fact, as k
H,β

is strictly positive, there exists m > 0 such that k
H,β

> m.
Therefore, plugging f := k

H,β
into (†) leads to

φ(kH,β ) = cn
H,β
φ(�−[n]αn(kH,β )) ≥ cn

H,β
φ(�−[n])m,

from where one easily deduces the desired boundedness. Summarizing we have proven
that

φ(f ) = φ
H,β
(f ) lim

n→∞ cn
H,β

φ(�−[n]αn(k
H,β
)),

for every f ∈ C(X). Since both φ and φ
H,β

evaluate to 1 on the constant function f = 1,
it follows that limn→∞ cn

H,β
φ(�−[n]αn(k

H,β
)) = 1 and hence that φ = φ

H,β
as desired. �

As a consequence we have the following.

COROLLARY 9.11. Let X, T , R, p, and E be as in Theorem 9.10. Then C∗(R, E) admits
a unique trace.
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Proof. SetH = 1 in Theorem 9.10 so that the corresponding one parameter automorphism
group is the trivial one. Fixing an arbitrary β > 0 observe that the (σ, β)-KMS states on
C∗(R, E) are precisely the traces. The conclusion then follows from Theorem 9.10. �

10. Conditional minima and ground states
So far we have studied KMS states at positive temperature and we have seen how they
relate to the Gibbs states of statistical mechanics. We next want to discuss ground states,
but before that we need to study the notion of conditional minimum points.

Our discussion in this section may be viewed as a special case of Renault’s study of
ground-state cocycles over groupoids [Re1, §3]. We begin with some notation.

Definition 10.1. Let R be a proper equivalence relation on the compact space X, let h be a
continuous real function on X, and let C be a closed subset of X.
(i) We denote by Mh,C the set of minimum points for h over C, namely

Mh,C =
{
x ∈ C : h(x) = inf

y∈C h(y)
}
.

(ii) We denote by MR
h the union of all Mh,C as C runs over the quotient space X/R

(observe that each C ∈ X/R is a closed subset of X).

Observe that a necessary and sufficient condition for x to be in MR
h is that

∀y ∈ X, (x, y) ∈ R ⇒ h(x) ≤ h(y). (10.2)

For this reason the points in MR
h should be called conditional minimum points of h.

Observe also that our hypotheses imply that Mh,C is non-empty for every C ∈ X/R so
one sees that MR

h meets every single equivalence class.
Even though Mh,C is closed for every equivalence class C it may be that MR

h is not
closed. However, under suitable conditions we may be sure that MR

h is closed.

PROPOSITION 10.3. (see [Re1, 3.16.iii]) Let R be a proper equivalence relation on the
compact space X and let h be a continuous real function on X. If R is open (recall that an
equivalence relation is said to be open when the saturation of each open set is open), then
MR
h is closed.

The proof is left to the reader.
So far we have been considering a proper equivalence relation R on a compact set X

and a continuous real function h onX. From now on we will assume that R is such that the
quotient map π : X → X/R is a covering map, which incidentally implies that R is open.
We wish to add to this setup a conditional expectation E from C(X) to R := C(X;R)
which will be obtained as follows: fix a strictly positive continuous function p on X and
let E : C(X) → R be given by

E(f )|x =
∑

(y,x)∈R
p(y)f (y), ∀f ∈ C(X), x ∈ X. (10.4)

If we assume that ∑
(y,x)∈R

p(y) = 1, ∀x ∈ X, (10.5)

it is easy to see that E is indeed a conditional expectation onto R.
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The following result is a crucial technical tool in our characterization of ground states.

LEMMA 10.6. Let R be a proper equivalence relation on a compact space X such that
the corresponding quotient map is a covering map. Let p be a strictly positive continuous
function on X satisfying (10.5) and define the conditional expectation E as in (10.4). If h
is another strictly positive continuous function on X, define for each real number β ≥ 0
the operator Eβ on C(X) by

Eβ(f ) = hβE(h−βf ), ∀f ∈ C(X).
Then for every probability measure µ on X the following conditions are equivalent:
(i) the support of µ is contained in MR

h ;
(ii) for every f, g ∈ C(X) one has that

sup
β≥0

∣∣∣∣
∫
X

fEβ(g) dµ

∣∣∣∣ ≤ ‖f ‖ ‖g‖;

(iii) for every f, g ∈ C(X) one has that

sup
β≥0

∣∣∣∣
∫
X

fEβ(g) dµ

∣∣∣∣ < ∞;

(iv) the inequality in (iii) holds for f = g = 1.

The proof is left to the reader.
Now we apply the conclusions reached above to study ground states on C∗(R, E).

The setup for now will be as follows: X will be a compact Hausdorff space and R =
{Rn}n∈N an approximately proper equivalence relation on X. We also fix a real potential
h = {hn}n∈N. Recall from Definition 5.2 that this means that each hn is a continuous real
function in Rn := C(X;Rn).
PROPOSITION 10.7. For every n ∈ N let Mn be the set of conditional minimum points of
h[n] relative to Rn, namely

Mn = M
Rn

h[n]

in the notation of Definition 10.1(ii). Then Mn+1 ⊆ Mn.

Proof. Let x ∈ Mn+1. In order to show that x ∈ Mn we employ the characterization given
in (10.2). So let y be such that (x, y) ∈ Rn. Since the Rk are increasing we have that
(x, y) ∈ Rn+1 and hence

h[n+1](x) ≤ h[n+1](y). (‡)

Observe that because hn belongs to C(X;Rn) we have that hn(x) = hn(y). Dividing both
sides of (‡) by this common value leads to h[n](x) ≤ h[n](y), completing the proof. �

If one tries to apply the definition of conditional minimum points for the relation
R = ⋃

n∈N Rn, which we are attempting to approximate by the sequence {Rn}n∈N, one
is likely to run into some trouble, not least because equivalence classes need not always be
closed (in fact, they are often dense). An alternative approach is to look at points which
are conditional minima for all Rn.
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Definition 10.8. Given an approximately proper equivalence relation R = {Rn}n∈N on a
compact space X and a real potential h = {hn}n∈N, we denote by MR

h the intersection of

M
Rn
h[n] as n range in N.

Observe that if all of the Rn are open equivalence relations, it follows from
Propositions 10.3 and 10.7 that MR

h is a non-empty compact subset of X.
From this point on we assume that Rn are not only open but also that the quotient maps

are covering maps as in Lemma 10.6. In addition to this we will fix a strictly positive
potential p = {pn}n∈N. Following Lemma 9.4 and 10.4 we define mapsEn : C(X) → Rn

by
En(f )|x =

∑
(y,x)∈Rn

p[n](y)f (y), ∀f ∈ C(X), x ∈ X.

LEMMA 10.9. Suppose that for every n and every Rn+1-equivalence class C one has that∑
D

pn(D) = 1,

where the sum extends over all Rn-equivalence classes D contained in C, and for each
suchD one interprets pn(D) as the common value of pn(x) for any x ∈ D. Then each En
is a conditional expectation of index-finite type onto Rn and En+1 ◦ En = En+1.

Proof. We first claim that for every n ∈ N and every x ∈ X one has that∑
(y,x)∈Rn p

[n](y) = 1. In order to prove this we use induction observing that the case
‘n = 1’ follows from the hypothesis. Assuming that n ≥ 1 we have∑

(y,x)∈Rn+1

p[n+1](y) =
n∑
i=1

∑
y∈Ci

p[n+1](y) = · · ·

where {C1, . . . , Cn} is the decomposition of the Rn+1-equivalence class of x into
Rn-equivalence classes. The above then equals

· · · =
n∑
i=1

∑
y∈Ci

pn(y)p
[n](y) =

n∑
i=1

pn(Ci)
∑
y∈Ci

p[n](y) =
n∑
i=1

pn(Ci) = 1,

where the penultimate equality follows from the induction hypothesis and the last equality
is a consequence of our hypothesis. It immediately follows that En is in fact a conditional
expectation onto Rn. The proof that En is of index-finite type is a simple modification of
Proposition 9.5 and hence will be omitted.

With respect to the last part of the statement, let f ∈ C(X) so that for x ∈ X, we have

En+1(En(f ))|x =
∑

(y,x)∈Rn+1

p[n+1](y)
∑

(w,y)∈Rn
p[n](w)f (w) = · · · .

Letting {C1, . . . , Cn} be as in the first part of the proof we have that the above equals

. . . =
n∑
i=1

∑
y∈Ci

p[n+1](y)
∑
w∈Ci

p[n](w)f (w) =
n∑
i=1

∑
y,w∈Ci

pn(y)p
[n](y)p[n](w)f (w)

=
n∑
i=1

∑
y,w∈Ci

pn(w)p
[n](y)p[n](w)f (w) =

n∑
i=1

∑
y∈Ci

p[n](y)
∑
w∈Ci

p[n+1](w)f (w)

= En+1(f )|x. �
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We are now ready to present our main theorem on ground states. Unlike Proposition 7.2
one cannot prove that all ground states factor through the conditional expectation G of
Proposition 6.5. For example, if we choose the potential h given by hn ≡ 1, then the
dynamics are trivial and hence any state is a ground state, regardless of whether it factors
through G or not. Our result will therefore be restricted to the characterization of the
ground states of the form φ ◦G, where φ is a state on C(X).

THEOREM 10.10. (see [Re1, 5.4]) Let X be a compact Hausdorff space and R =
{Rn}n∈N an approximately proper equivalence relation on X such that the quotient map
relative to each Rn is a covering map. Fix a strictly positive potential p = {pn}n∈N
satisfying Lemma 10.9 and letEn be the conditional expectations provided by Lemma 10.9.
Also, let σ be a one-parameter group of automorphisms of C∗(R, E) obtained from a
strictly positive potential h. Given a measure µ on X let φ be the state on C(X) given by
integration against µ. Then the composition ψ = φ ◦G is a ground state on C∗(R, E) if
and only if the support of µ is contained in MR

h .

Proof. Let a, b, c, d ∈ C(X), let n,m ∈ N, and let z = α + iβ. If n ≤ m we have by
Proposition 2.4 that

ψ((aenb)σz(cemd)) = ψ(aEn(bch
iα[n]h−β[n])emh−iα[n]hβ[n]d)

=
∫
aEn(bch

iα[n]h−β[n])λ−[m]h−iα[n]hβ[n]d dµ =
∫
fEβn (g) dµ,

(�)

where f = aλ−[m]h−iα[n]d , g = bchiα[n], and Eβn is defined as in Lemma 10.6 in terms
of h[n].

If n ≥ m we instead have

ψ((aenb)σz(cemd)) =
∫
fEβm(g) dµ, (�′)

where g is as above and f is now aλ−[n]h−iα[n]d .
Assuming that the support of µ is contained inMR

h it follows from Lemma 10.6(ii) that
both (�) and (�′) are bounded as z runs in the upper half plane and hence that ψ is a ground
state. The converse also follows easily from Lemma 10.6. �

11. Ground states and maximizing measures
In a similar way as in § 9, in the present section we want to obtain (in an interesting
particular case) a characterization of ground states of C∗-algebras by means of maximizing
measures in the sense of [CLT] (or, in other words, by means of zero temperature Gibbs
measures in the sense of [RF, Appendix B]).

Let (X, d) be a compact metric space and T : X → X be an expanding transformation
(see [Ba] for a definition and properties). In order to simplify our proof we assume in this
section that the transformation T has the property that each point x ∈ X has k > 1 distinct
preimages and take p = 1/k = 1/�, where p,� are defined as in § 9. Similar results can
be obtained for p Hölder.
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We denote by µ0 the maximal entropy measure because we are considering here
p = 1/k = 1/�. Then µ0 is the eigenmeasure for L∗

p associated to the eigenvalue 1.
We consider the associated C∗-algebra C∗(R, E) as before.
Consider a fixed Hölder real function H : X → R. We say H̃ > 0 is cohomologous

to H if there exists a real function V and real constant c such that log H̃ = logH − [(V ◦
T )− V ] + c.

We denote as usual by M(T ) the set of invariant probabilities for T .
An important point in § 9 is that for a given real β the measure νH,β is an eigenmeasure

(not necessarily invariant) for the Ruelle operator LH,β . Given H there exists, however,
another potential H̃ , cohomologous to H such that the eigenmeasure νH̃ ,β for LH̃ ,β is an
invariant measure (see [Bo]).

We would like to investigate similar properties for the ground state problem.
In principle, it can happen that for a certainH there is no invariant measureµ with support
inside MH of Theorem 10.10.

Given H we define a certain H̃ cohomologous to H . Consider φ a ground state for
σz associated to such h = H̃ (defined as before in § 5). It follows from the reasoning
of this section that there exist a measure ν, which is an invariant maximizing measure in
the sense of [CLT], such that for any continuous function f we have φ(f ) = ∫

f dν.
These measures ν are the discrete time analogs (for the case of expanding maps) of the
Aubry–Mather measures of Lagrangian mechanics. In the case of the geodesic flow in
compact surfaces of negative curvature, they exactly correspond to each other under the
action of the discrete group of Moebius transformations in the boundary of the Poincare
disk (see [BS] and [LT]).

First we will recall some general results for maximizing measures.

Definition 11.1. Given an α-Hölder function B we denote

Holα(B) = sup
d(x,y)>0

{ |B(x)− B(y)|
d(x, y)α

}
.

If we denote by ‖B‖∞ the uniform norm, then we define the α-Hölder norm of B by
‖B‖α = Holα(B)+ ‖B‖∞. We also let Hα be the set of α-Hölder functions.

Definition 11.2. Given logH ∈ Hα we define

m(−logH) = sup

{
−
∫

logH(x) dρ(x) | ρ ∈ M(T )

}
and

MH(T ) =
{
ρ ∈ M(T ) : −

∫
logH(x) dρ(x) = m(−logH)

}
.

We call any ρ ∈ MH(T ) a maximizing measure for H and it will be generically denoted
by µH .

The maximizing measure is not necessarily unique.
It was shown in [CLT, Proposition 15, p. 1387] that a measure µ is maximizing if

and only if its support is contained in the �(− logH,T ) set (see [CLT, p. 1386] for a
definition). This result is the version of Theorem 10.10 above for the case of invariant
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measures. We refer the reader to [CLT] for general references on the topics considered in
the present section.

Consider F+
α = ⋃

γ>αHγ equipped with the α-norm.

THEOREM 11.3. ([CLT, p. 1382]) For an open and dense set G contained in F+
α , when

− logH ∈ G, the measure µH ∈ MH(T ) is unique and has support in a unique periodic
orbit.

It can be shown that for anyH , the omega-limit set of points inMH (of Theorem 10.10)
is contained in the support of the maximizing measureµH . Note thatMH is not necessarily
a forward invariant set for T .

In [CLT, p. 1394] examples were shown of H where µH is uniquely ergodic and has
positive entropy. Denote by S : L2(µ0) → L2(µ0) the Koopman operator where for
η ∈ L2(µ0) we define (Sη)(x) = η(T (x)). Such S defines a linear operator in L2(µ0).
It is well known that S∗ = Lp acting on L2(µ0). We consider the same C∗-algebra as in
the previous sections associated to p = 1/� = 1/k. We assume that H̃ > 0 is Hölder and
consider the corresponding σz = e−izH̃ S as before.

By Proposition 11 of [CLT], there exist V : X → R, Hölder continuous strictly positive
and satisfying for all x the inequality

V (T (x))− V (x) ≥ −logH(x)−m(−logH).

This inequality is called a sub-cohomological equation. The inequality is an equality for x
in the support of µH .

The function V is defined by

V (x) = sup

{ n−1∑
j=0

(−logH −m(−logH))(T j (y)) | T n(y) = x, n ∈ N

}
.

Note that m(−logH + V − V ◦ T ) = sup
{∫ −logHdρ | ρ ∈ M(T )

} = m(−logH),
because we are considering ρ an invariant measure.

We say that a probability measure ψ is a ground measure when the state on C∗(R, E)
given by φ = ψ ◦G is a ground state, as in Theorem 10.10.

Consider theC∗-algebra described in § § 7 and 8 in the particular case we consider here.
We say that a certain state φ is a ground-state for σz if for any pair a and analytic b

sup
Imz≥0

|φ(aσz(b))| < ∞.

Note that a measure is maximizing for H Hölder if and only if it is maximizing for H̃
Hölder, where −log H̃ is cohomologous to −logH .

Given H , we would like to associate a T -invariant measure µH̃ to the ground state φ of
the automorphism associated to H̃ , where −log H̃ = −logH + V − V ◦ T , and V was
defined before.

Given a ground state φ for H̃ , the action of φ over the continuous functions identifies a
probability ν such that φ(f ) = ∫

f dν, for all continuous functions f .
We will show later that ν is a maximizing measure for H̃ (or forH ).
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Using the same procedure as §§ 7 and 8 for such ν, one can easily show that an
equivalent characterization of the ground state φ for H̃ is as follows: for all f, g ∈ C(X),
all m and all complex β = −iz, such that Re(β) ≥ 0, we have

|φ(Mgσβ(S
m(S∗)mMf ))|

≤
∫

|gαm(Lmp (fH−β[m]e(V [m]−V ◦T [m])β))Hβ[m]e(−V [m]+V ◦T [m])β | dν
≤ ‖f ‖∞‖g‖∞ < ∞.

We show that such ν exists, is invariant and is a maximizing measure for H̃ (or for H ).
For a generic H it will follow from Theorem 11.3 that ν has support in a unique periodic
orbit.

For z ∈ X, and n ∈ N, denote by xin(z), i ∈ {1, 2, . . . , kn}, the kn solutions of
T n(z) = x.

Fix a point x from now on. We are going to define a sequence of points yn inductively.
We set y0 = x, and for y1, we choose a point over the set {z|T (z) = y0} such that
V (T (y1)) − V (y1) = −logH(x)−m(−logH). From the definition of V one can easily
show that there is always such a point y1. Inductively, given yi , for yi+1, we choose a point
over the set {z|T (z) = yi} such that V (T (yi+1))−V (yi+1) = −logH(yi+1)−m(−logH).
Note that T (yi+1) = yi , for all i. Consider µn = (1/n)

∑n−1
l=0 δyl , and by compactness a

measure ρ such that is a weak limit ρ = limr→∞ µnr . The measure ρ is invariant for T .
Indeed, for any continuous function∫

F ◦ T dρ = lim
r→∞

∫
f ◦ T µnr = lim

r→∞

∫
fµnr =

∫
f dρ,

because f is bounded. This ρ is our candidate for being a ground measure for H̃ =
H e−V+V ◦T .

We assume from now on that H is such that µH is unique (and so uniquely ergodic
by Theorem 6 of [CLT]). This is not really necessary, but for the sake of simplicity we
assume this.

PROPOSITION 11.4. We have ρ = µH .

Proof. V (x) is Hölder continuous on x, and therefore bounded, so

−
∫

logH dρ = − lim
r→∞

∫
logH dµnr = − lim

r→∞
1

nr

nr−1∑
j=0

(logH(yj))

= lim
r→∞

1

nr

nr−1∑
j=0

(V (yj−1)− V (yj )+m(−logH))

= lim
r→∞

1

nr
(V (x)− V (ynr−1)+ nrm(−logH)) = m(−logH).

Therefore, ρ = µH and does not depend on x. �

We denote such ρ by ν∞. This measure is invariant.
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PROPOSITION 11.5. For any Re(β) ≥ 0, m ∈ N and f, g ∈ C(X)∫
|gαmLmp (fH−β[m]e(V [m]−V ◦T [m])β)Hβ[m]e(−V [m]+V (T ))[m])β | dν∞ ≤ ‖g‖∞‖f ‖∞.

Proof. The proof is similar to Lemma 10.6.
Considerm > 0 and k > 1 fixed. Consider the transformation T m, which has degree km

and the function −logH(x) = −logH(x)− log (H(T (x))− · · · −log (H(T m−1(x))) =
−logH [m].

From the fact that we consider just invariant probabilities ρ:

m(−logH) = m(−logH(x)− log (H(T (x))−· · ·− log (H(T m−1(x)))) = mm(−logH).

It is easy to see that the maximizing measure ν∞ for −logH is also the maximizing
measure for −logH .

Note that the previously defined V is such that

−logH(x)−mm(−logH) ≤ V (T m(x))− V (x).

We are going to define a sequence of points xn inductively. We set x0 = x, and for
x1, we choose a point over the set {z | T m(z) = x0} such that V (T m(x1)) − V (x1) =
−logH(x1) − mm(−logH). There is always such a point from the definition of V
(see [CLT, p. 1384]). Inductively, given xi , for xi+1, we choose one over the set
{z | T m(z) = xi} such that V (T m(xi+1)) − V (xi+1) = −logH(xi+1) − mm(−logH).
Note that T m(xi+1) = xi , for all i.

Consider µn = (1/n)
∑n−1
l=0 δxn , and by compactness a measure ρ that is a weak limit

ρ = limr→∞ µnr . From

m(−logH(x)− log(H(T (x))− · · · − log (T m−1(x))) = mm(−logH),

and in the same way as before one can show that − ∫
logH dρ = mm(−logH), and finally

that ρ = ν∞.
The important relation that follows from the above ([CLT, Proposition 11, p. 1384]) is

−logH(x)+ V (x) = −logH(x)[m] + V (x) ≤ V (T m(x))+mm(−logH).

Note that for any fixed j and any xmi (T
m(xj )) with i ∈ {1, 2, . . . , km}, we have

V (T m(xmi (T
m(xj ))))− V (xmi (T

m(xj )))

= V (T (xmi (T
m(xj ))))[m] − V (xmi (T

m(xj )))[m]
≥ (−logH(xmi (T

m(xj ))))[m] −m(−logH)

and

V (T m(xj ))− V (xj ) = V (T (xj ))[m] − V (xj )[m] = (−logH(xj))[m] −mm(−logH),

therefore,

−(logH(xj))[m] −mm(−logH)+ V (xj )

= V (T m(xj )) = V (T m(xmi (T
m(xj ))))

≥ −(logH(xmi (T
m(xj ))))[m] −mm(−logH)+ V (xmi (T

m(xj ))).
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Therefore, from the way we choose xj we have∣∣∣∣∣ H(xj)
β[m]e−V (xj )β

H(xmi (T
m(xj )))β[m]e−V (xmi (T m(xj )))β

∣∣∣∣∣ ≤ 1.

Now, by the triangle inequality∫
|gαmLmp (fH−β[m]e(V−V ◦T )[m]β)Hβ[m]e(−V+V ◦T )[m]β | dν∞

= lim
r→∞

∫
|gαmLmp (fH−β[m]e(V−V ◦T )[m]β)Hβ[m]e(−V+V ◦T )[m]β | dµnr

= lim
r→∞

∣∣∣∣ 1

nr

nr−1∑
j=0

g(xj )
1

km

km∑
i=1

(f (xmi (T
m(xj ))H(x

m
i (T

m(xj )))
−β[m]

× e(V−(V ◦T ))(xmi (T m(xj ))[m]β)H(xj )β[m]e(−V (xj )+(V ◦T )(xj ))[m]β
∣∣∣∣

≤ ‖f ‖∞‖g‖∞ < ∞.

The conclusion is that the minimizing measure µH = ν∞ determines the ground state
φν∞ . �

It follows from this proposition that we have the next theorem.

THEOREM 11.6. Given H > 0 Hölder, there is V > 0 Hölder, such that if ν∞ is the
maximizing measure for − logH , then the state φ defined by

φ(Mf S
m(S∗)m) =

∫
f

�[m] dν∞,

for all m ∈ N, f ∈ C(X), is a ground-state for the potential H̃ = He−V+V ◦T .

The conclusion is that, if one considers p = 1/k and H > 0 Hölder, then the state
φν∞ associated to a minimizing measure ν∞ forH is a ground-state for some H̃ (such that
log H̃ is cohomologous to logH ).
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