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Abstract

Delimiting species is challenging in recently diverged species, and adaptive radiation is fundamental to understanding 
the evolutionary processes because it requires multiple ecological opportunities associated with adaptation to biotic 
and abiotic environments. The young Petunia genus (Solanaceae) is an excellent opportunity to study speciation 
because of its association with pollinators and unique microenvironments. This study evaluated the phylogenetic 
relationships among a Petunia clade species with different floral syndromes that inhabit several environments. We 
based our work on multiple individuals per lineage and employed nuclear and plastid phylogenetic markers and 
nuclear microsatellites. The phylogenetic tree revealed two main groups regarding the elevation of the distribution 
range, whereas microsatellites showed high polymorphism-sharing splitting lineages into three clusters. Isolation 
by distance, migration followed by new environment colonization, and shifts in floral syndrome were the motors for 
lineage differentiation, including infraspecific structuring, which suggests the need for taxonomic revision in the genus. 
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Introduction
Adaptive radiation plays a fundamental role in our 

understanding of the evolutionary process, and it is frequently 
accepted that adaptive radiation requires multiple ecological 
opportunities associated with adaptation to biotic and abiotic 
environments (Gillespie et al., 2020). Criteria such as common 
ancestry, phenotype-driver selector, and rapid speciation have 
been proposed to identify adaptive radiation (Schluter, 2009). 
However, some authors consider it challenging to prove for 
most studies (Gillespie et al., 2020). Delimiting species is 
difficult in recently derived species because of the short time 
interval since speciation could not be enough to accumulate 
genetic differentiation (e.g., Knowles and Carstens, 2007).

The genus Petunia (Solanaceae) encompasses 17 wild 
species distributed in southern South America (Greppi et al., 
2019) and one of the most important ornamental plants, P. 
hybrida. Divided into two main clades based on molecular 
phylogenetic analysis (Reck-Kortmann et al., 2014), the genus 
has 14 bee-pollinated species that share several morphological 
traits, especially the corolla tube length, which is short, and 
the bluish pollen. Three other species display long corolla 
tubes and yellow pollen and are more variable in attracting 
different pollinators (Stehmann et al., 2009; Fregonezi et 

al., 2013). The ornamental species P. hybrida is considered 
a perfect supermodel for genetic and physiological studies 
(Vandenbussche et al., 2016), and the wild species might be 
excellent models for understanding the evolutionary process 
for young groups. The clades diverged ca. 2.8 Mya (Särkinen 
et al., 2013), and species in the short corolla clade colonized 
highland grasslands, diversifying ca. 1.0 Mya (Lorenz-Lemke 
et al., 2010).

The topology of Petunia phylogenetic trees profoundly 
changes when different molecular markers are considered. 
When based only on plastid markers, species are preferentially 
grouped according to their distribution in highlands (elevation 
up to 500 m above the sea level – a.s.l.) or lowlands (below 
500 m high), respectively (Ando et al., 2005; Lorenz-Lemke 
et al., 2010). When the relationships are recovered based 
on only nuclear markers or combining nuclear and plastid 
sequences, the clades’ composition is supported by the corolla 
tube length, with the terminals’ position varying among gene 
trees (Chen et al., 2007; Kriedt et al., 2014; Reck-Kortmann 
et al., 2014; Segatto et al., 2016). 

The species in the short corolla tube clade (ST) share 
several morphological and ecological traits, and often it is 
difficult to distinguish them based only on morphology (Longo 
et al., 2014). The extensive genetic polymorphism sharing and 
some variable traits have promoted changes in the taxonomic 
classification of this group over time (Segatto et al., 2017). 
In the long corolla tube group (LT), the species are identified 
based on the corolla color (Stehmann et al., 2009), and no 
doubt has been put on their identity.
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The diversification in each clade has been attributed to 
different main drivers. For species in the ST, especially those 
occupying higher elevations (ca. 900 m a.s.l. or more), it has 
been proposed an allopatric speciation, strongly influenced by 
climate changes during the late Pleistocene (Lorenz-Lemke 
et al., 2010; Barros et al., 2015, 2020). Pleistocene effects 
were also implicated in the intraspecific diversification of 
some species (Backes et al., 2019; Souza et al., 2022; Soares 
et al., 2023). Additionally, for ST lowland species (elevation 
< 500 m), ecological factors and geomorphology were the 
most important features, even when the species are parapatric 
(Ramos-Fregonezi et al., 2015; Segatto et al., 2017). The LT 
species show morphological traits associated with distinct 
floral syndromes, and the interaction with different pollinators 
is described as the main driver for diversification (Fregonezi 
et al., 2013). 

The LT clade encompasses the species P. axillaris, 
divided into three subspecies [P. axillaris subsp. axillaris; P. 
axillaris subsp. parodii, and P. axillaris subsp. subandina – 
(hereafter shortly P. axillaris, P. parodii, and P. subandina, 
respectively)], P. exserta, P. secreta, and P. occidentalis. 
The P. axillaris subspecies display white flowers that are 
moth-pollinated (Ando et al., 1995; Venail et al., 2010); the 
bright red color and flower morphology of P. exserta attract 
hummingbirds (Stehmann et al., 2009); P. secreta shows 
pink corollas and is a bee-pollinated species (Rodrigues et 
al., 2018). The morphology of P. occidentalis corresponds to 
the melitophilous floral syndrome. However, no systematic 
pollination studies have been conducted with this taxon, and 
its effective pollinator is still unknown. 

Each taxon in LT shows different patterns of genetic 
structure throughout the geographic range (Segatto et al., 2014; 
Turchetto et al., 2014a,b, 2016; Giudicelli et al., 2022) and a 
complex process of intraspecific diversification emerges: P. 
parodii shows three main lineages, geographically structured 
(Chaco, Pampa-Brazil, and Pampa-Uruguay; Giudicelli 
et al., 2022); P. exserta revealed two lineages with slight 
morphological variation and distribution (P. exserta E1 and P. 
exserta E2), each one occurring in a different rock formation 
in Serra do Sudeste; and P. secreta that would have two main 
genetic lineages (Turchetto et al., 2016), more distinct from 
each other than canonical P. secreta is from P. axillaris (here 
treated as P. secreta and P. sp1, respectively). An unnamed 
taxon (P. sp3) occurs close to P. secreta and P. exserta E1.

All taxa in LT have high levels of genetic polymorphism 
sharing (Kulcheski et al., 2006; Fregonezi et al., 2013; Reck-
Kortmann et al., 2014; Turchetto et al., 2016), and interspecific 
hybridization has been observed among them (Lorenz-Lemke 
et al., 2006; Segatto et al., 2014; Turchetto et al., 2015, 2019a, 
b; Giudicelli et al., 2019; Teixeira et al., 2019; Schnitzler et 
al., 2020; Caballero-Villalobos et al., 2021). Intraspecific 
morphological diversity was also observed (Turchetto et al., 
2016; Giudicelli et al., 2019; Teixeira et al., 2020), even in 
taxa that did not display differentiated genetic lineages as P. 
axillaris (Turchetto et al., 2014b), which has a morphotype 
from coastal (A1) and another from inland (A2) distribution. 

Except for phylogenetic analyses, the LT taxa were not 
evaluated together based on their intra and interspecific genetic 
diversity. Thus, we aimed to (i) determine the phylogenetic 
relationships among taxa and intraspecific lineages in the 

long corolla tube clade of Petunia based on phylogenetic 
informative markers; (ii) compare the intraspecific genetic 
diversity among the LT taxa based on nuclear microsatellites; 
and (iii) identify any diversification process in course among 
LT lineages. We based our study on the cohesive species 
concept proposed by Templeton (1989) and as treated in 
Haselhorst et al. (2019).

Material and Methods

Phylogenetic approach

We collected young and healthy leaves from multiple 
individuals of each LT lineage (Figure 1), except for P. 
occidentalis, for which we used an herbarium-derived sample 
(Table S1). We extracted the total DNA using the CTAB 
(cetyl-trimethyl ammonium bromide)-based method (Roy et 
al., 1992), evaluated DNA quality in a NanoDrop DN 1000 
spectrophotometer (Thermo Fischer Scientific Co., Waltham, 
USA), and estimated the quantity using a Qubit fluorometer 
(Thermo Fischer). 

We amplified seven nuclear regions and five plastid DNA 
markers through PCR reactions using previously described 
primers and protocols (Table S2). We included once-obtained 
sequences (Reck-Kortmann et al., 2014) for some samples. 
We used two Calibrachoa species (Mäder and Freitas, 2019) 
and P. integrifolia representing the ST (Reck-Kortmann et 
al., 2014) as outgroups. Amplicons were purified using a 
polyethylene glycol method (Dunn and Blattner, 1987) and 
sequenced in an ABI 3730XL (Thermo Fischer Sci.) sequencer.

We assembled and edited sequences using Chromas 
v.2.0 software (Technelysium, Helensvale, Australia) and 
prepared alignments per DNA marker using Muscle in 
MEGA X (Kumar et al., 2018) and concatenated them to the 
phylogenetic analyses. We manually edited the alignments 
when necessary and coded contiguous insertion/deletion 
(indels) events involving more than one base pair (bp) as 
one mutational event (Simmons and Ochoterena, 2000). We 
did not include ambiguous sites (more than one pick in the 
chromatogram) from nuclear markers in the final matrix (Mäder 
et al., 2010). One representative of each different sequence 
was deposited at GenBank (Table S3). We also used MEGA 
to estimate genetic diversity per marker (Table 1).

To estimate the evolutionary relationships among taxa and 
lineages, we used a Bayesian inference (BI) as implemented in 
BEAST v.1.10 (Suchard et al., 2018), assessing the tree support 
with posterior probability (PP) with 107 chains. We estimated 
the best substitution model and gamma rate heterogeneity using 
jModelTest v.3.06 (Darriba et al., 2012) based on the Akaike 
information criterion (AIC) for each nuclear marker, matK 
gene, and combined intergenic plastid spacers, respectively 
(Table 1). We conducted BI analysis under the Yule process 
and two independent runs of 10 million generations, sampling 
every 1000 generations. We assessed Markov chain Monte 
Carlo (MCMC) convergence by examining effective sample 
size values (ESS > 200) and likelihood plots in Tracer v.1.7 
(Rambaut et al., 2018). We discarded the initial 25% of trees 
as burn-in and summarized the remaining trees to generate a 
maximum clade credibility tree using TreeAnnotator v.1.7.5 
(Suchard et al., 2018) visualized with FigTree v.1.4.1 (http://
tree.bio.ed.ac.uk/software/figtree/). PP ≥ 0.90 values were 
considered to represent strong support.
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 Figure 1 – Representative individuals of each analyzed Petunia lineage. (A) P. subandina; (B) P. exserta E2; (C) P. sp3; (D) P. axillaris A2; (E) P. sp1; 
(F) P. secreta; (G) P. occidentalis; (H) P. axillaris A1; (I) P. parodii; (J) P. exserta E1.

Table 1 – Genetic diversity per marker used to obtain the phylogenetic tree for Petunia long corolla tube clade.

Genetic Marker Alignment length Variable sites (%) PI sites (%) Evolutionary Model*

trnH-psbA1 424 20 (4.7) 9 (2.1) HKY+G

trnS-trnG1 652 15 (2.3) 9 (1.4) HKY+G

rps12-rpl201 777 26 (3.4) 13 (1.7) HKY+G

trnL-rpl321 976 25 (2.6) 13 (1.3) HKY+G

matK 857 21 (2.5) 13 (1.5) GTR+I

cpDNA Total 3,686 107 (2.9) 57 (1.6) –

ITS 536 55 (10.3) 29 (5.4) GTR+G

Hf1 1,395 50 (3.6) 24 (1.7) GTR+G

PolA1 987 25 (2.5) 9 (0.9) HKY+G

G3pdh 544 28 (5.2) 15 (2.8) HKY+G

PID3C4 209 10 (4.8) 6 (2.9) HKY+G

WOX4 231 43 (18.6) 32 (13.9) HKY+G

WUS 206 31 (15.1) 18 (8.7) HKY

nuDNA Total 4,108 242 (5.9) 133 (3.2) –

Total 7,794 349 (4.5) 190 (2.4)

PI – parsimoniously informative sites; *Best substitution model estimated with jModelTest based on Akaike information criterion; 1concatenated sequences
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Intraspecific variability

To estimate the intraspecific diversity, we amplified 
seven nuclear microsatellite loci (Table S4) for all taxa 
(except P. occidentalis), including individuals throughout the 
entire geographic distribution of each lineage, proportional 
to population density. We genotyped 10 P. axillaris A1, 63 P. 
axillaris A2, 13 P. exserta E1, 82 P. exserta E2, 50 P. secreta, 
39 P. parodii, 23 P. subandina, 23 P. sp1, and 11 P. sp3. We 
visualized and scored the alleles with GeneMarker v.1.97 
software (Softgenetics LLC, State College, USA) and used 
Micro-Checker (van Oosterhout et al., 2004) software to 
identify possible null alleles, significant allele dropout, and 
scoring errors due to stutter peaks.

We used the FSTAT v.2.9.3.2 software (Goudet, 1995) 
to evaluate the number of alleles per locus (A) and Nei’s 
unbiased gene diversity (GD; Nei, 1987). Additionally, we 
used AZDE (Szpiech et al., 2008) to estimate allelic richness 
(AR) and number of private alleles (PA) through rarefaction, 
as sample sizes vary among lineages.

We conducted a discriminant analysis of principal 
components (DAPC; Jombart et al., 2010) employed in the R 
program for Statistical Computing v.3.3.2 (R Core Team, 2020) 
to explore genetic groups. The lowest Bayesian information 
criterion (BIC) in DAPC was used to assess the best number 
of groups, and we did not include taxonomic and geographic 
prior information.

Results

Evolutionary relationships

We obtained a data matrix with 7,794 characters based 
on the DNA markers, from which ~5% were variable, and 
~3% were parsimoniously informative. Nuclear regions 
were more variable and informative than plastid markers 
(Table 1). The BI analysis (Figure 2A) split the species 

with long corolla tubes in two main clades, mainly based 
on elevation: clade I, species distributed in elevations 
higher than 700 m a.s.l (P. subandina and P. occidentalis), 
and clade II, species found at less than 700 m a.s.l (remain 
lineages). Clade II also could be divided into two subclades, 
IIA encompassing P. secreta, P. sp1, P. sp3, and the inland 
lineage of P. axillaris. In subclade IIB, we found coastal 
P. axillaris lineage, two P. exserta lineages, and P. parodii. 
These ten lineages were well supported (PP ≥ 0.90), except 
for the P. parodii positioning (PP < 0.90). The separation 
between Petunia LT and ST clades was confirmed.

Intraspecific variability

Considering the seven SSR loci, all individuals exhibited 
a maximum of two alleles per locus, as expected for diploid 
species, and the sizes of the alleles were compatible with the 
repetition for each locus. All loci were polymorphic among 
lineages. The most variable lineage was P. axillaris A1, 
considering AR and GD indices, whereas the least variable 
was P. sp1. The highest number of private alleles (PA) was 
observed in P. subandina, whereas P. exserta E1 has the 
lowest (Table 2). 

The DAPC analysis (Figure 2B), including all individuals 
and microsatellite loci, revealed the most probable K = 3 
groups. Individuals of most lineages were distributed in two or 
three groups, except P. sp1, from which all individuals belonged 
to the first cluster. Approximately 50% of P. subandina, P. 
parodii, and P. axillaris A2 samples composed the first cluster. 
The second cluster encompassed most P. exserta E1 and E2, 
and P. sp3 individuals, whereas all lineages had representatives 
in group 3, except P. sp1. Most P. secreta and P. axillaris A1 
belonged to the third group (Table S5). The polymorphism 
sharing based on microsatellite alleles did not replicate the 
evolutionary relationships among species. Groups were 
homogeneous with low superimposition in the Cartesian plane.

Figure 2 – Evolutionary relationships among Petunia long corolla tube clade. (A) Bayesian inference phylogenetic tree including plastid and nuclear 
sequences. Each branch represents collapsed individuals with identical sequences. (B) Cartesian plane obtained in DAPC analysis based on nuclear 
microsatellites (best K = 3). Colors indicate clusters: red, cluster 1; green, cluster 2; and blue, cluster 3. Cluster composition in lineages and individual 
numbers follow Table S5.
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Discussion
Here, we investigated the evolutionary relationships 

among the Petunia long corolla tube species employing a 
phylogenetic approach and intraspecific genetic variability. 
The taxa in the LT clade display marked differentiation in 
floral traits associated with pollinator attraction (Stehmann 
et al., 2009), and plant-pollinator interaction was proposed 
as the main speciation driver in the group (Fregonezi et al., 
2013). Despite attracting different pollinators, several hybrid 
populations are found (e.g., Turchetto et al., 2019b; Giudicelli 
et al., 2019).

Our results revealed unexpected relationships regarding 
previous studies (e.g., Reck-Kortmann et al., 2014). On the other 
hand, the present work is the first to include multiple samples 
and intraspecific lineages throughout their entire geographic 
distribution. In the Petunia genus, geographic isolation is often 
implicated in population structure and reproductive isolation 
(e.g., Giudicelli et al., 2022; Guzmán et al., 2022). Moreover, 
local adaptation and microenvironmental conditions keep 
species limits (e.g., Segatto et al., 2017; Caballero-Villalobos 
et al., 2021), contributing to differentiation (Fregonezi et al., 
2013; Pezzi et al., 2022).

The phylogenetic tree and SSR-based analyses were 
not entirely congruent. Phylogenetic markers indicated with 
full support the split between high elevation-distributed 
species (P. occidentalis and P. subandina) and the lowland 
species (remaining lineages, all distributed at < 500 m a.s.l.), 
whereas SSR profiles formed three groups that did not reflect 
phylogenetic clades and subclades. SSR-based group 2 
encompassed all P. exserta individuals, independently of their 
occurrence area, most P. sp3, one P. secreta from the same 
region than P. sp3, and one P. axillaris A2 sampled close to 
P. exserta. Petunia exserta occupies the subclade IIB in the 
tree, whereas the remaining lineages from group 2 form the 
subclade IIA. In turn, groups 1 and 3 clustered individuals of 
all lineages in different proportions (except for P. sp1, which 
integrates only group 1): P. axillaris A2, P. parodii, and P. 
subandina were equally distributed between groups 1 and 3, 
whereas P. axillaris A1 and P. secreta mainly integrated the 
group 3. The lineages P. axillaris A1 and P. secreta were not 
closely related in the phylogenetic tree, occupying different 
subclades despite the high similarity in their SSR profiles. The 

geographic distribution of P. axillaris A1 is on the southern 
Atlantic coast, predominantly in Uruguay (Turchetto et al., 
2014a), whereas P. secreta is endemic to Serra do Sudeste in 
Rio Grande do Sul (Stehmann and Semir, 2005).

Almost all phylogenetic analyses including the LT taxa 
(Ando et al., 2005; Kriedt et al., 2014; Reck-Kortmann et 
al., 2014; Segatto et al., 2016) placed P. subandina and P. 
occidentalis as sister species (but also see Chen et al., 2007), 
despite the first displays long corolla tube and yellow pollen 
as the remaining species in the LT, whereas P. occidentalis 
shows a short corolla tube and bluish pollen as all species in the 
ST. Regarding the geographical distribution, P. occidentalis 
is restricted to the sub-Andean region, in elevation up to 
900 m, and isolated from the other Petunia species by the 
Chaco (Tsukamoto et al., 1998); the remaining species in 
LT are found in grasslands in Chaco or Pampa (Stehmann et 
al., 2009), in open rocky ground areas and roadside slopes, 
except for P. subandina, which occurs only in the sub-Andean 
mountains (Ando, 1996). The taxa P. axillaris, P. exserta, and 
P. secreta occur in sympatry in Brazil. However, P. axillaris 
is widely distributed in the Uruguayan Pampa, whereas the 
other two species are narrowly endemic to rocky formations 
in southern Brazil. The P. parodii can be found in Chaco 
(Argentina) and Pampa (southern Brazil, Uruguay, and 
Argentina), where the plants grow disjunct from P. axillaris. 
Except for P. subandina and P. occidentalis, the species in LT 
are distributed from zero to less than 500 m a.s.l., occupying 
areas proposed as ancestral for the Petunia genus (Reck-
Kortmann et al., 2014).

The most surprising result was the divergence between 
P. axillaris interspecific lineages A1 and A2. According to the 
phylogenetic markers, this taxon was paraphyletic. Previous 
works (Turchetto et al., 2014a, b) support the separation 
found here among P. axillaris, P. parodii, and P. subandina, 
indicating they should be treated as independent evolutionary 
units and not only as subspecies. Although P. axillaris, P. 
parodii, and P. subandina shared several plastid haplotypes 
and no genetic-based intraspecific groups have been found 
(Turchetto et al., 2014a), morphologic floral traits revealed that 
P. axillaris can be divided in two groups that correspond to 
coastal (A1 in the present work) and inland (A2) populations. 
In the same way, ecological features pointed to the same P. 

Table 2 – Median values for genetic diversity indices observed in Petunia long corolla tube lineages based on seven nuclear microsatellites

Lineages N A AR PA GD

P. axillaris A1 10 6.3 6.3 0.68 0.74

P. axillaris A2 63 8.1 5.5 0.25 0.70

P. exserta E1 13 3.7 3.5 0.06 0.54

P. exserta E2 82 6.7 4.5 0.59 0.57

P. secreta 50 7.6 5.2 0.43 0.62

P. parodii 39 6.3 4.7 0.37 0.64

P. subandina 23 4.9 4.3 0.70 0.69

P. sp1 23 4.1 3.2 0.38 0.43

P. sp3 11 4.7 4.7 0.11 0.67

N – number of analyzed individuals; A – total number of alleles per species; AR – allele richness; PA – number of private alleles; GD – gene diversity.
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axillaris subgroups and three groups in P. parodii (Chaco, 
Pampa-Brazil, and Pampa-Uruguay), which were not perceived 
based on morphologic analysis. The P. parodii subdivision 
was not confirmed here in the phylogenetic tree and SSR, 
but it was also identified using a sizeable genomic evaluation 
(Giudicelli et al., 2022). 

It is widely accepted that ecological divergence due 
to habitat differences plays an essential role in lineage 
differentiation (e.g., Foster et al., 2007), notably regarding to 
adaptation to extreme environments such as coastal areas (e.g., 
Lowry et al., 2008) that are often reflected in morphological 
traits in addition to genetic markers. Significant morphologic 
differences were already observed comparing P. axillaris 
inland populations in Brazil with coastal populations from 
Uruguay, whereas P. parodii Brazilian populations were not 
different from those collected in Uruguay (Kokubun et al., 
2006). Such differences or their absence followed taxa’s 
self(in)-compatibility system.

The polymorphism sharing between some lineages in the 
Petunia LT can be explained by introgression due to hybrid 
populations’ high frequency and stability (e.g., Schnitzler 
et al., 2020), whereas others are based on shared ancestry. 
Hybridization could be discarded because of the long distance 
between populations, such as P. exserta and P. axillaris 
A1 or P. subandina and all others, as the distance between 
populations exceeds 1 km, which is the maximum estimated 
distance for pollen dispersal (e.g., Turchetto et al., 2015, 2022; 
Rodrigues et al., 2019). Moreover, seed dispersal in Petunia 

is very limited, with seeds falling close to the mother plant 
by autochory (Stehmann et al., 2009).

The evolutionary relationships and polymorphism-
sharing in the Petunia long corolla tube clade could be 
explained based on the migration routes (Figure 3) from an 
albino ancestor (Wijsman, 1983), which originated in lowland 
(Reck-Kortmann et al., 2014), ca. 2.8 Mya (Särkinen et al., 
2013), with subsequent diversification after colonized new 
environments or under pollinator selection (Fregonezi et al., 
2013). The albino lineage arose from the anthocyanin 2 (AN2) 
gene inactivation. The AN2 is active in the species of the ST 
clade and responsible for the pink color (Quattrocchio et al., 
1999), the critical morphologic trait to attract bees. The ST 
species probably represent the genus ancestor, which appeared 
in lowlands in southern South America, likely in the Pampa 
(Reck-Kortmann et al., 2014). The genus diverged from the 
sister group ca. 8.0 Mya (Särkinen et al., 2013).

The first step in LT clade differentiation was the high-
lands’ colonization, which also explains the presence of P. 
occidentalis in the clade despite its several morphological 
traits in common with ST species. Petunia occidentalis could 
represent an incomplete lineage sorting in the highland LT 
clade, sister of the albino P. subandina. The albino lineage 
would expand its distribution towards the southern South 
American grasslands as the Pleistocene climate changes 
allowed. The albino lineage colonized the Chaco, migrating 
to the north, and Pampa, growing to the south and east, now-
adays represented by P. parodii (Giudicelli et al., 2022) and 
its parapatric lineage P. axillaris A2. 

Figure 3 – Putative migratory routes and diversification for Petunia corolla tube clade species.
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These last two lineages, P. parodii and P. axillaris A2, 
could have given rise to the colored lineages in the clade as 
they advanced colonizing new environments. The albino P. 
parodii and P. axillaris A1 and the red-flowered P. exserta 
share several polymorphisms (e.g., Segatto et al., 2014; Li 
et al., 2023), despite currently not being found close. Mainly 
regarding P. exserta, this species inhabits a very particular 
microenvironment, inside small caves where plants grow 
protected from direct sunlight and rain (Stehmann et al., 2009; 
Segatto et al., 2014), an inhospitable environment for other 
Petunia species. The two P. exserta lineages (E1 and E2) 
differ mainly in flower color hue (Figure 1) and distribution 
as each inhabits a different rock formation. Petunia exserta 
E2 is sympatric to some P. axillaris A2 populations, whereas 
P. exserta E1 occurs in the same formation as P. secreta. The 
red color of P. exserta petals is reached through a complex 
gene interaction that begins with a moderate upregulation 
and shifts in tissue specificity of the Deep Purple gene that 
restores anthocyanin biosynthesis (Berardi et al., 2021). P. 
exserta retains the same nonfunctional AN2 copy present in 
P. axillaris.

The pink-flowered P. secreta and P. sp1 differ from 
P. axillaris only based on the flower color (Stehmann and 
Semir, 2005), and this difference is due to the regain in AN2 
gene function (Esfeld et al., 2018). Petunia secreta and P. 
sp1 occur in the same geographic area as P. axillaris A2. 
Still, whereas P. sp1 occupies a similar environment closely 
distributed to P. axillaris, P. secreta is found ca. 40 Km away 
from the closest P. axillaris A2 population and in an entirely 
diverse microenvironment (Turchetto et al., 2016; Rodrigues 
et al., 2019). Petunia sp3 is the P. secreta sister lineage, 
despite being morphologically similar to P. exserta, mainly 
regarding the exserted styles and anthers (Figure 1). Indeed, 
P. sp3, P. secreta, and P. exserta E1 are endemic to the same 
rock formation. Still, whereas P. exserta E1 occupies shaded 
locations, P. secreta and P. sp3 individuals grow in sunny 
places. Our results did not discard a hybrid status for P. sp3.

In conclusion, we described the evolutionary relationships 
among the Petunia long corolla tube clade due to ancestral 
geographic expansion with local adaptation and pollinator 
interaction as the vital diversification drivers. Structuring 
in LT lineages depends on isolation by distance, and high 
polymorphism-sharing is due to a common ancestor and rapid 
adaptive radiation.
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