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A previously constructed laser model with quantum (noncommuting) noise sources was shown to lead near 
threshold to a quantum rotating-wave Van der Pol oscillator. A full dynamical correspondence between 
quantum and classical random processes allows one to compute the average of any time-ordered, 
normal-ordered operator function by averaging the associated function of classical random variables. 
Numerical calculations for the associated classical Van der Pol oscillator of the steady-state distribution, the 
total intensity fluctuations, and the linewidth versus operating point were amply confirmed experimentally. 
Measurements (and calculations) of higher than two-time correlations were sparse and contradictory. 
Photocount distributions, at times short compared to the intensity correlation time, confirm only the steady 
state of the laser. Pliotocount distributions at intermediate and longer times are difficuk to compute because 
they involve multitime correlations of high (co) order. By providing an exact solution for photocount 
distributions and their moments for all times, we expected to stimulate measurements near threshold which 
would provide an adequate test of the Van der Pol laser model. Comparison of the results reported here 
with recent photocount experiments of Meltzer, Davis, and Mandel and of Jakeman, Oliver, and Pike 
provides gratifying agreement and confirmation of our statistical understanding of laser fluctuations near 
threshold. 

I. INTRODUCTION 

The present paper provides an "exact" (i. e., 
with no stochastic approximations) solution of a 
long-standing problem in laser  statistics: the 
probability p(m, T) of observing m photocounts in 
a time T produced in a photodetector by a laser  
operating in the vicinity of threshold for a11 times 
T, short, comparable to, o r  long, compared to 
the laser-intensity correlation time T,. Well 
above threshold, laser  fluctuations a r e  negligible, 
and the photocount distribution reduces to a Poisson 
distribution. Well below threshold, the statistics 
a r e  Gaussian, and the problem reduces to a well- 
known but nontrivial problem on fluctuations of 
time-integrated intensities of a Gaussian variable 
fo r  which exact numerical solutions have been 
given.lm3 The region near threshold holds a spe- 
cial interest because the onset of lasing i s  a phase 
t r a n ~ i t i o n , * * ~  and the region near threshold i s  
equivalent to  the critica1 region near the transition 
temperature in a second-order phase transition. 

Our solution i s  exact in that no quantum-mechan- 
ical o r  stochastic approximations a r e  made in 

treating the rotating-wave Van der Pol (RWVP) 
model of a laser (described more fully in Sec. W ) .  
Of course, many key approximations were made in 
arriving a t  this model: (i) The atom-field sys-  
tem was treated as a Markoffian system with non- 
commuting noise s o ~ r c e s ~ ~ ' - ~ ~ ;  (ii) the atomic 
variables were adiabatically eliminated by assum- 
ing that they responded to the instantaneous field 
variables14; (iii) restoring forces higher than 
quadratic in the intensity were then neglected near 
threshold with a fractional error15 of the order of 
l / n t h  where n t h  - 104 i s  the number of photons at 
threshold. The Markoffian approximation as-  
sumes that the duration of a collision with a r e s -  
ervoir atom (- 10-l2 sec)  i s  short compared to the 
mean time (I'-'- 1 0 - ~  sec) between collisions-an 
excellent approximation used in the Boltzmann de- 
scription of gases. The adiabatic approximation 
appears to assume that atomic decay rates (r- 108/ 
sec) a r e  fast  compared to photon decay rates 
( y  - 107/sec), but actually involves the much weaker 
approximation that a11 of these ra tes  a r e  fast com- 
pared to the intensity relaxation rate near thresh- 
old," - y /n th .  These remarks support our gener- 
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FIG. 1. Experimental verification of the Van der  Pol 
model fo r  lasers  operating near threshold. The theoreti- 
cal curves a r e  f rom Hempstead and Lax (Ref. 15). The 
experimental points A, 0, and O a r e  f rom Gamo, Grace, 
and Walter (Ref. 23), Davidson and Mande1 (Ref. 24), 
and Arecchi et al. (Ref. 35), respectively. Lower-case 
p i s  the pump parameter of the model, (A) is  the effec- 
tive line~vidth of intensity fluctuations, 

(A) = ((AP)~)/J"; (Ap(t)Ap(@) ) d t ,  

and n"' is  the normalized second factorial moment 
(n(z - 1) ) / ( r ~ } ~ =  (w2) of the photocount distribution 

p(n,  T) a s  T-  O.  In this limit, ?t(2' - 1 = ( ( ~ p ) ' ) / ( p ) '  and 
I/Io i s  the light intensity normalized to threshold value 
( p = O ) ,  i . e . ,  I/Io= (p)/(p),=@)/1.128. 

a1 contention that a11 well-designed oscillators be- 
have like Van der Pol oscillators near thresh- 
old. 15-18 The slowness of the intensity relaxation 
rate y/nth is  produced by a time scaling, l6 and 
the smallness of cubic terms is  produced by an 
amplitude ~ c a l i n ~ . ' ~ ~ ~ ~  The occurrence of this 
scaling for both ordinary oscillators (e. g. , vacu- 
um tube) and lasers near threshold i s  the analog 
of scaling that takes place in a phase transition 
near the critica1 temperature in which long-time 
long-wave fluctuations become of importance. 

The simplest problem of laser statistics i s  the 
photocount problem for times so short (compared 
to the intensity correlation time) that the laser in- 
tensity does not change, so  that the counts repre- 
sent the steady-state photon o r  intensity distribu- 
tion in the laser. Early measurements of this dis- 
tribution by Freed and ~ a u s l ~  and Smith and Arm- 
strongZ0 and of moments of this distribution by 
Arecchi," Chang et a1. ,22 Gamo, Grace, and Wal- 
ter,23 and Davidson and MandelZ4 agree with the 

steady-state distribution for the Van der Pol mod- 
e1 [Eq. (18B30) of the Brandeis lecturesZ5 o r  Eqs. 
(7.18) and (7.21) of this paper.] See Fig. 1 for a 
comparison of the second factorial moment n"' 
= (nz(rn - l ) ) / ( v ~ ) ~  of the counting distribution with 
theory. A bibliography of initial experimental 
papers i s  given in Table 111 extending a similar 
table of ~ i k e , ~ ~  and a related set  of initiating theo- 
retical papers is  given in Table I1 in Sec. XI. 

The intensity fluctuation spectrum was harder to 
compute since it involved two time averages. To 
overcome these difficulties, we introduced a quan- 
tum-regression theoremg that related two-time 
averages to one-time averages and a dynamical 
c o r r e s p o n d e n ~ e ~ ~ ~ ~ ~ - ~ ~  between quantum random 
processes G d  associated classical random pro- 
cesses which permitted the translation of the prob- 
lem into a classical stochastic problem. The in- 
tensity fluctuation spectrum, calculated for the 
associated classical Van der Pol oscillator by 
Hempstead and ~ a x ' ~  and by Risken and vollmers4 
was found to be approximately Lorentzian with a 
linewidth possessing a minimum in the vicinity of 
threshold. Agreement displayed in Fig. 1 between 
the theoretical linewidth and experimental results 
of Gamo, Grace, and ~ a l t e r , ' ~  Arecchi et  a1. ,35 

and Davidson and MandelZ4 gave further support 
to the Van der Pol model. 

The laser spectrum (of amplitude and phase fluc- 
tuations) i s  also found to be Lorentzian with a line- 
width that varies inversely with the laser power, 
and contains in addition a factor that varies from 
2 to 1 as  one goes from below to above threshold 
(see Fig. 2). By heterodyning two lasers against 
one another, measurements of the phase linewidth 
have been made by Hinckley and FreedS6 and by 
Manes and Siegman.38 These measurements yield 

ABOVE LASER POWER IWATTSI 

FIG. 2. Spectrum fo r  phase and amplitude fluctuations 
of a l a se r  i s  Lorentzian to a good approximation. The 
dimensionless (Ref. 15) half-width A* times the dimen- 
sionless (Ref. 15) mean power p a r e  plotted against 
l a se r  power. The experimental results  a r e  those of 
Gerhardt, Welling, and Güttner (Ref. 36). The theoreti- 
cal  curves I and I1 a r e  due to Grosman and Richter (Ref. 
34) and curve E1 to Risken (Ref. 34) and Hempstead and 
Lax (Ref. 15). 
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FIG. 3 .  Time-dependent photocount distribution 

p(nz, T) for a l a se r  operated near  threshold. The solid 
lines a r e  the predictions of the present work (Ref. 38) 
and the circles correspond to measurements done by 
Meltzer, Davis, and Mande1 b e f .  3 9 ) .  Here s =  ( A ) T  
= T/T, i s  the time in units of the correlation t ime (5.26). 

a linewidth with the correct inverse power rela- 
tionship, with a numerical coefficient in approxi- 
mate quantitative agreement with theory. l 'he re-  
sults did not traverse the threshold region, how- 
ever, and s o  did not display the predicted factor- 
of-2 change in the coefficient. These results sum- 
marize earlier phase linewidth r n e a s ~ r e r n e n t s . ~ ~  

After this manuscript was submitted for publi- 
cation, measurements using a Michelson inter- 
ferometer technique (with multiple-reflection de- 
lay paths a s  long as  2 km) were reported by Ger- 
hardt, Welling, and ~ Ü t t n e r , ~ '  These measure- 
ments explore the threshold region displaying ex- 
cellent agreement with the ~ i s k e n ~ ~  and Hempstead 
and ~ a x "  calculations. These calculations which 
a re  exact solutions of the Fokker-Planck equation 
for a RWVP oscillator agree significantly better 
with the experimentally observed change in line- 
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FIG. 4. Same as Fig. 3. 
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FIG. 5. Same a s  Fig. 3 .  

width in the threshold region than the attempt by 
Grossman and ~ i c h t e r ~ ~  at an approximate calcu- 
lation in the spirit of the Landau theory of phase 
transitions. 

The most detailed verification of the Van der Pol 
model, and the most difficult to achieve, is  the 
photocount distribution for intermediate times, 
since this distribution involves multitime correla- 
tions of a11 orders. A preliminary report of our 
"exact" theoretical resultss8 stimulated measure- 
ments of p(m, T) by Meltzer, Davis, and ~ a n d e l . "  
The excellent agreement between experiment (cir- 
cles) and theory (solid wave) is displayed in Figs. 
3-5. Measurements of the second-, third-, and 
fourth-normalized factorial moments of p(m, T) 
were done by Jakeman et ale4' and compared with 
theory in Figs. 6-8. The theoretical curves in 
Figs. 3-8 a re  calculated by the methods discussed 
in this paper. 
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FIG. 6. Time-dependent normalized factorial moments 
(wr)=n") = ( n z c r l ) / ( m j r ,  where (mCr') = ( m ( m  - 1). . . 
(nz - r  + 1)) a r e  the rth factorial moment. The solid lines 
a r e  the predictions of the present work and the dots cor- 
respond to measuremeilts done by Jalreman, Oliver, Pike, 
Lax, and Zwanziger (Ref. 40). 
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FIG. 7. Same as Fig. 6. 

The successful calculations in this paper of the 
photocount distribution p(m, T) a re  based on the 
Glauber photocount f o r m ~ l a , ~ ~ * ~ ~  Eq. (2.18). In 
our use of this formula, however, we find it e s -  
sentia1 to describe the (positive frequency part  of 
the) electric field E+ at the detector as  proportion- 
a1 to the (quantum) amplitude b(t) of the normal co- 
ordinate of the single mode in which the laser i s  
operating. Thus, we use a single random ampli- 
tude that is  not free but subject to the random 
fluctuations induced by spontaneous-emission ef- 
fects, collisions, transmission losses, etc. The 
Glauber viewpoint, which has also been adopted by 
Mande1 and ~ o l f , ~ ~  Klauder and ~ u d a r s h a n , ~ ~  and 
Kelley and ~ l e i n e r , ~ ~  i s  that with the detector away 
from the source, the electric field behaves as  a 
free field. This viewpoint is, of course, correct 
but it inhibits the usefulness of the formula. In 
the free-field case, the field must be expressed 
as  an infinite linear combination of normal modes, 

each of which obeys the free-field time dependence 

This procedure achieves the desired aim of sep- 
arating the source problem from the detector prob- 
lem. Moreover, the time dependence of the inten- 
sity at the detector, Em(?,, t) . $(?o,  t), is  entire- 
ly specified by Eqs. (1.1) and (1.2), and the prob- 
lem i s  reduced to knowing the distribution of the 
initial values a,(O), i. e., the initial density opera- 
tor p(0) which is  a function of the set  of operators 
(a,, a$ or  the corresponding Glauber-Sudarshan 
representation  ai^, at}) in terms of the coher- 
ent states. Since w,=ck, the amplitudes a,(O) a re  
the individual Fourier components b, of b(t) at w 
= cá. Thus, the complete density operator 
p({a,, a#) describes a11 correlations of a11 Fourier 

components h; and h,, which is  more information 
than required to solve our photodetection problem 
and more difficult to obtain. 

Instead of dealing with the infinite number of f ree  
variables (ak(t), ni(t)}, we deal with the single pair 
b(t), bt(t) describing a Van der Pol oscillator in 
interaction with reservoirs that supply fluctuations 
a s  well as  damping (and pumping). Since our solu- 
tion of the photocount problem differs so markedly 
from that envisaged by Glauber, it is desirable to 
rederive, in the context of a nonlinear open sys- 
tem, the photocount formula Eq. (2.18) f irst  given 
by ~ l a u b e r ~ l  and rederived by Kelley and ~ l e i n e r . ~ ~  
We shall not attempt to take account of attenuation 
effects in the detector, a s  discussed by ~ o l l o w , ~ '  
nor shall we idealize the photodetector a s  a har- 
monic oscillator to avoid perturbation techniques 
a s  has ~ l a u b e r . ~ '  However, in Sec. iI w e shall 
handle a11 combinatorial aspects of the problem 
reducing it to the question of calculating the quan- 
tum-mechanical probability of obtaining one count 
in each cf n infinitesimal intervals (tj , tj + ~ t , )  for 
j = 1, 2, . . . , n without the complicated requirement 
that no counts occur in between. The latter prob- 
ability is  calculated in the unexpurgated version4' 
of this paper by ordinary perturbational techniques 
without treating the electromagnetic field as a f ree  
field. 

Section 111 describes the quantum classical cor- 
respondence that allows us to reduce our quantum- 
mechanical problem to an exactly equivalent classi- 
cal one, and Sec. IV reviews the theory of the 
laser model. In Secs. V-VII, we deduce our meth- 
ods for calculating photocount distributions and in 
Secs. VIii-X, we describe the numerical aspects 
of our work. A summary is  given in Sec. XI. 

11. REVIEW OF PHOTODETECTOR THEORY 

Light detectors with some probability absorb a 
photon and emit an electron, which in a photo- 

FIG. 8. Same as Fig. 6. 
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multiplier results  in a current  pulse. A typical 
experiment consists of counting the number rn of 
pulses in a given t ime interval T. The photocount 
distribution function p(nz, T) describes a compound- 
ing of fluctuations in the light source with random- 
ness  in the detection processes.  The aim of this 
section i s  to derive a formula for  p(n.2, T) which 
takes account of the Poisson character  of detection 
fluctuations s o  that attention can be focused on the 
l a se r  fluctuations. 

An ideal photodetector i s  assumed to produce a 
sharp signal pulse (in time) for each photoabsorp- 
tion, a s  compared to the observation t ime T. ln 
addition, after each pulse, the ideal photodetector 
i s  assumed to rese t  itself instantaneously to the 
state it was in pr ior  to the occurrence of the 
pulse. (Dead-time corrections a r e  a separate 
problem considered by experimentem in reducing 
their  data.)48 

A. Classical Photodetectors 

The probability of registering a pulse in a smal l  
t ime interval (T, T +  ATI i s  proportional to the 
t ime interval AT, the photon field i n t e i ~ s i t ~ ~ ~  p ( ~ ) ,  
and an efficiency factor E that includes geometry 
a s  well a s  quantum efficiency. For an ideal classi-  
ca l  photodetector, the probabilities E ~ ( T ) A T  and 
1 - cp(T)AT for registering o r  not registering a 
count a r e  independent of previous events. With 
these assumptions, it follows immediately that the 
distribution p(nz, T) which describes the detector 
photocount fluctuations for a fixed sample p(t) of 
the possible source intensity fluctuation obeys a 
Poisson distribution, 47 

p(m, T) = ( l /m !)orne-' , (2.1) 

where 52 i s  the time-integrated intensity variable 

n = E j T  p ( t ) d t .  (2.2) 

'rhe photocount distribution avernged over the ran- 
dom process p ( f )  reduces to the form given by 
Mandel, 50 

where the distribution of time-integrated intensi- 
t ies  i s  

The mean number of counts equals the mean num- 
ber of photons absorbed, and Eq. (2.2) gives 

Let u s  define a scaled variable w ,  the normal- 
ized time-integrated light intensity hitting the de- 
tector: 

with distribution 

v(@)= (52)~(52) . (2.7) 

Equation (2.3) can be written 

p(rn, ~ ) = , / [ ( ( n z ) w ) ~ / ? n ! ] e - ( ~ ' ~ ~ ( w ) d w  . (2.8) 

The norrnalieed factorial moments Z ' ~ ' ( T )  of p(nz, 
T), defined by I ~ ' ~ ' ( T )  = (m"')/(m )' o r  

when evaluated by inserting Eq. (2.8) a r e  found 
to be just the moments of V(w): 

? Z ( ~ ) ( T ) =  J W r ~ ( W ) d w  = (wr ) . (2.10) 

This result explains why factorial moments a r e  
measured in order  to characterize the statistical 
properties of the light source embodied in V ( w ) .  

B.  Quantum-Photodetector Theory 

Kelley and ~ l e i n e r * ~  break up the time inter-  
val [O, T] into a se t  of N intervals and calculate 
the probability p(m, T) that counts occur in nz of 
these intervals, with no counts in the remaining 
intervals. Such ''exclusive" probabilities a r e  dif - 
ficult to deal with. However, Kelley and Kleiner 
have shown that the exclusive tiature of the prob- 
ability i s  a combinatorial matter  which can be han- 
dled separately. A simplified version of the 
Kelley-Kleiner proof can be given4' by direct  use 
of the generating function 

to show that 

where w,(tl, t,, . . . , t,)At,At,. . . At, i s  the non- 
exclusive probability of a count in each o£ the n in- 
tervals  Atj , j - 1, 2, . . . , n with no vestr ict ims 
on intevvening euents . 

A variety o£ proofs have been that 

wn(tl,  t2,  . . . , t,) = E"(  b:bl. . . hf,b,bn_l.. . bl)  , 
(2.13) 

where 

a r e  creation and destruction operators (at time ti) 
for  the l a se r  mode and the ( ) implies a t race  
against the density operator o,, ,(O) of the field 
with i t s  sources and reservoi rs  (but not the detec- 
tor). These proofs involve the use of perturbation 
theory (from t j  to t j  + A t / )  followed by the use of 
projection ~ p e r a t o r s ~ ~ ' ~ "  (from 2, + At, to t, + At;) 
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on the detection apparatus. One finds 

o,, , ( L j +  At;) = cAt5b(tj)up. ,(tj)bt(lj) , (2.14) 

where E is an efficiency factor that involves the 
strength of coupling to the detector. The assump- 
tion is then made that i£ the system is not observed 
f rom t i+  At; to t,, , , 

This assumption neglects 6he reaction of the de- 
tector on the laser which is negligible in practice. 
Moreover, the photon loss due to the detector can 
be understood to be included in the loss parameter 
describing the laser  (e. g., the inverse "Q" o£ the 
laser  mode). 

It is further assumed that after each interaction 
the detector is restored to i ts  initial state. The 
iteration of Eqs. (2.14) and (2.15) then leads to 

o, + ,(t, +  ti) = €"At,ht, . . . At, 

a result which under the trace operation reduces 
to Eq. (2.13). I£ we let  the symbol TN indicate that 
the operators following it a re  to be placed in nor- 
mal order and in the apex time sequence shown in 
Eq. (2.131, Eqs. (2.12) and (2.13) can be com- 
bined into the simple form 

M(X, T) = ( T ~ ~ ' " o D )  , 
so that 

where 

This is analogous to the corresponding classical 
results, Eq. (2.2). We shall refer to Eq. (2.18) 
a s  the Glauber pliotocount f ~ r m u l a , ~ '  since i t  was 
first stated and derived by him for the free-elec- 
tromagnetic-field case. It is to be emphasized, 
however, that in the derivation discussed here4' 
we have not assumed that b(t) is associated with a 
free field, o r  even a superposition of free-field 
modes. {1n the free:field case we would have 
[b(t#), b(t5)] = 0, whereas in the derivation o£ our 
quantum rotating-wave ~ s c i l l a t o r , ' ~  commutators 
between b(t) and b(t+ At) - b(t) were found to be 
nonvanishing. Thus, in our case, the time-order- 
ing operation in Eqs. (2.17) and (2.18) is essen- 
tial, whereas i t  could have been ignored in the 
original Glauber derivation.) 

A formula that agrees with Eq. (2.18) for short 
times, but disagrees for larger times, has been 
derived by Scully and ~ a m b . ~ '  The disagreement 

is not calculational but caused by their assumption 
of a model that "does not correspond to the familiar 
experimental situation." Their model uses the 
steady state of the laser  a s  an initial condition, 
removes the lasing atoms from the cavity, and re- 
places them by detecting atoms. At long times, 
their detector depletes the photon supply. This i s  
unrealistic experimentally, and leads at infinite 
times to unit quantum efficiency: i f  n photons 
were in the cavity initially, a11 n will be counted. 
Thus, the mean number of photocounts in a time 
T saturates in this model, whereas i t  is linear in 
T in the typical photodetector situation. Moreover, 
their results depend only on the initial laser den- 
sity matrix and not at a11 on laser  dynamics repre- 
sented, for example, by the laser-intensity-fluc- 
tuation correlation time. 

111. QUANTUM-CLASSICAL CORRESPONDENCE 

An exact correspondence between quantum- 
mechanical operators and c numbers can be set 
up providing a definite ordering rule is adopted. 
The best-known corre~pondence, '~ that of normal 
ordering (a11 bt 's to the left of a11 b's), relates a 
c-number function a"'@, p*) to an operator 
~ ' ~ ' ( b ,  bt) in normal order by the normal ordering 
symbol which makes the replacements P- b, P* - b' and places the result in normal order: 

~ ( b ,  bt) = ~ ( " ) ( b ,  bt)=- xM(~ ' (B ,  p) 

E J d2pa'"'(p, P*)6(P - bbt)6(P- b) , (3.1) 

where d2p=d RepdImB and 

6(p* - b ' )6 (~-  b ) r  (l/n2) & - " @ * - P ~ '  ec*(8-b'd25 . 
(3.2) 

For example, 

b b t = b t b + l = X ( l p j 2 + 1 )  . (3.3) 

The connection between Eq. (3.1) and the Glauber- 
Sudarshan diagonal representation53'54 has been 
established, but the form (3.1) has the advantage 
that i t  cai1 readily be generalized to many times.28 
For example, i f  TH denotes replacing c numbers 
by operators and placing the latter in normal or-  
der and in the apex time sequence of (2.13), we 
can set  up the correspondence 

~ ( b : ,  bi, . . . , bn; b,, . . . , b,) 

=INlv(Pf, (35, . . . , P Z ;  P,, > Pl) 

2 Jd2pl, . . . , d2pnM(pf, . . . , P;; P, , . . . , P1) 

x6(/3? - bf), . . . ,6(P$ - bn)6(Bn- bn), . . . , 
xs(B1- b1) , (3.4) 

where bj= b(tj) as  in Eq. (2.13). The trace o£ Eq. 
(3.4) against the density matrix can be written 

( ~ ( b l ,  . . . , b;; b,, . . . , bl) ) 
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xp(P,, PZ, t,; . . . ; PiP?, LI) , (3.5) 
where 

p(Pn ,  p?,  tn; . . . , BlPr ,  tl)=(G(PT - b:), - .  a , 
x6(/3$ - b:)6(Bn - b,), , ~ ( P I  - bl)) (3.6) 

Equation (3.5) tells us that provided our opera- 
to r s  a r e  in the chosen normal-ordered apex time 
sequence, quantum-mechanical averages can be 
replaced by associated c-number averages which 
we shall denote ( ),. Since 

TNe " "op = I.Ne-XB , (3.7) 

TN(fiq, /m ! )e""op = IN(arn/?n ! )e- '" , (3.8) 

where 

f i ~ r ~ ' l p ( t ) ~ ~ d t ,  

the characteristic function and desired counting 
distribution can be obtained from 

M(X, T) =(e-X")c  , (3.10) 

even though averages over an arbitrarily large 
number of times appear when the exponential i s  
expanded. 

Any function F(0) of the time-integrated inten- 
sity fi such a s  in Eq. (3.10) o r  (3.11.) can be re-  
written a s  an integral 

(F(fi) ), = JF(SZ)W(W) d a  , (3.12) 

where the work has been transferred to finding the 
distribution of intensities, 

w ( f i ) = ( a ( a -  ~ ( t ) / ~ d t ) ) ~ .  (3.13) 

Equations (3.10) and (3.11) apply whether o r  not 
the photon system alone can be regarded a s  Mar- 
koffian. We have shown, however, that if the elec- 
tromagnetic system is  Markoffian in the sense that 
the regression theorem i s  ~ b e y e d , ~ '  the %-time 
pçeudoprobability factorizes, 

p(Pn, P?,  t,; . . . , ?I, PT, 11)' 

x a . P(P3 , P3, tS / P2, ?2*, t2) 

xp(Pz, P f ,  tz ) @ I ,  B?,  Ll)P(B1, P T ,  t l )  , (3.14) 

showing that multitime averages can be calculated 
with use of products of two-time conditional prob- 
abilities just a s  for an ordinary classical Markoff- 
ian process. Moreover, P(P, p*, 1 I P o ,  Bt, to) is 
that solution of the equation o€ motion obeyed by 
the one-time distribution 

p(P,  B * ,  t) =(  6[P* - bt(t)] o[@- b(t)]) , (3 .15 )  

which reduces to 6(P* - P,*)6(P- Po) at t =  to (i. e . ,  
the Green's function). 

IV .  LASER THEORY 

A laser  model in which a single electromagnetic 
mode couples equivalently (except for phase) to 
many atoms is depicted in Fig. 9. Field losses 
and atomic collisions a r e  produced by reservoirs. 
Instead of referring to a11 authors who have studied 
this model, we indicate in Ref. 55 reviews written 
by proponents of the three most active groups in 
this field: Haken of Stuttgart, Lamb and Scully 
of Yale and the University of Arizona, and Lax of 
Bell Telephone Laboratories and City College and 
their co-workers. 

For the case of a homogeneously broadened line, 
after remova1 of certain phase factors, the field 
couples in a symmetrical way to a11 atoms. Thus 
a closed description can be given in terms of six 
variables: the field variables b and bt, the total 
upper- and lower-state populations N, and N,, and 
the transition polarization variables M and M + .  
For  this reason the ansatz for the density matrix 
of a laser made by ~ o r d o n ~ ~  and the six-variable 
description of Lax and ~ u e n ~ ~  a r e  exact. 

As discussed in Sec. I, only for the region near 
threshold a r e  powerful techniques required. For- 
tunately, in that region the long time scale of the 
fluctuations (increased by a factor n th -  lo4  over the 
usual decay times) permits the adiabatic elimina- 
tion of a11 but two variables. The result i s  an 
equation of motion for the density operator p(b, 
b', í-) o r  the associated pseudoprobability P(P, P *, 
t )  defined in Eq. (3.13). 

Moreover, the long time scale means that a11 
interactions with atomic variables take place so 
rapidly compared to the relevant times that these 
variables can be adiabatically eliminated leaving a 
Markoffian process for the field variables b(t), 
bt(t) o r  the associated "classical" random process 

ATOMIC TRANSITIONS SYSTEMS RESERVOIRS 

ACTIVE 
ATOMS PHONONS OR 

ATOMIC 

I COLLISIONS 

E M INTERACTION 

CAVITY WALLS 

RADIATION BLACKBODY FIELD 
RADIATION 

FIG. 9. Laser model. Radiative transitions (wavy 
arrow) are induced by the Qnamic atom-field coupling. 
Nonradiative transitions (straight arrows) and quantum- 
noise sources are derivable consequences of the coupling 
to the reservoirs. 
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P(t), B(t)* described by P(B, /F, t). This random 
process can equally well be described a s  a Lange- 
vin o r  noise-source process. In this form, we 
have establisheds6 that near threshold a homoge- 
neously broadened laser  is describable a s  a RWVP 
oscillator: 

where y i s  the cold-cavity decay rate, w o  the reso- 
nant frequency, rí an effective pump rate, and R, 
a saturation  aramet ter.^^ The noise sources F, 
and F f  a re  treated a s  approximately Gaussian with 

(Fa(t)*Fa(u)) = 2D6*,6(t - u )  (4.2) 

(and the complex-conjugate equation) a s  the only 
nonvanishing second moments. The parameters 
II, R,, and DB*B a re  constants which depend on the 
particular model assumed for a laser,  e. g., homo- 
geneous o r  inhomogeneous, and depend on pump 
rates, decay constants, etc. We have previously 
given reasons for expecting such an RWVP form for 
any well-designed single-frequency oscillatorls*le 
including vacuum-tube oscillators. By a combina- 
tion of amplitude and time scaling, 

our RWVP model can be reduced for the in-tune 
case to the canonical scaled form 

If we introduce intensity and phase variables p, 
40, 

pr=pl/2,-iv , (4.6) 

and drop the prime from t', the equations for 6' 
and (o1)* transform tos7 

Corresponding to the Langevin-noise-source 
equations (4.6) and (4.8), there i s  the associated 
Fokker-Planck form5" 58: 

When we a re  concerned entirely with intensity fluc- 
tuations, as  we shall be in this paper, the pseudo- 
probability P(p, cp, t)  can be assumed independent 
of cp and the last term in L omitted [see Eqs. 
(5.18) and (5.1911. 

V. PROBABILITY DISTRIBUTION V(w)  

Since we cannot directly evaluate the desired dis- 
tribution function 

w ( a ) = ( b [ a -  C dTp( t )d t ] )  , (5.1) 

we calculate instead its Laplace transform 

~ ( h ' ) .  L* e- * t"  W(Q) d a  (5.2) 

for real h', and in Secs. VI11 and IX invert this 
Laplace transform numerically to obtain W(S2). 

It is convenient to work with the scaled variable 

w = a / ( a ) =  ~ ~ p ( t ) d t / ( p ) ~  , (5.3) 

which has a distribution 

V(w)= ( a )  W(a) (5.4) 
that is independent of the efficiency parameter C: 

v ( w ) =  (6[w - ( l / ( p ) T )  dTp(t )dt ] )  . (5.5) 

By writing h' = h/<, Eq. (5.4) transforms into 

M(x) = J e -X(P 'TW~(w)dw 

= (exp(- h ~ ~ p ( t ) d t ) )  . (5.6) 

Following techniques used by Kac and siegert," 
~ a x "  showed that for random Markoffian processes 
in a set  of variables 2, p (ã) being an arbitrary 
functions of ã, the path-integral average, Eq. 
(5.6), can be calculated f rom 

Here the Markoff random process ã( t )  has a prob- 
ability distribution ~ ( ã ,  t)  which obeys 

-- ap(ã, t ) -  - L P ( ~ ,  i )  , 
at (5.8) 

where L is a linear differential o r  integral opera- 
tor, and 

LP, (a) = o (5.9) 

defines thdsteady state of this random process. 
The probability @ describes the same process mod- 
ified by a loss rate - hp(ã)@: 
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and Eq. (5.7) makes use of a conditional probabil- 
ity, o r  Green's-function solution of Eq. (5.101, 
that obeys the initial condition 

$(à, to 1 a,, to) = 6(ã - &,) . (5.11) 

L i s  usually a non-Hermitian operator in the 
Sturm-Liouville sense. We will assume that L and 
i t s  Hermitian adjoint Lt have complete se ts  of bi- 
orthogonal eigenfunctions, " 

LP, = A,P, ; Lt<p, = Atqi  , (5.12) 

((a, , P,) = [ d ã  qf (Z)P,(Z) = 6,, . (5. 13) 

We also assume we can obtain the eigenfunctions 
of the modified operator L +  Xp, 

The Green's-function solution of Eqs. (5.10) and 
(5.11) can be ~ r i t t e n ' ' * ~ ~  

H(ã,tl&,to)=Ce-ÂnT$n(Z)$,*(&), t - t , = ~ > O .  
n (5. 16) 

We show in Appendix A that for  random process-  
e s  obeying t ime reversal  and stationarity, 

when a: =i- a5 according to whether aj  is  even o r  
odd under time reversal. Inserting Eqs. (5.16) 
ancl (5. 17) in Eq. (5.7) gives us  our basic working 
formula: 

For any laser  model, 12f(A.) yields ~ ( w )  through 
the iriverse of Eq. (5. 6), and ~ ( w )  gives p(in, T) 
through Eq. (2.8). 

The operator L for  the laser  model we a r e  con- 
siàering, given by Eq. (4.13), has eigenfunctions 
of the formf(p)e i rw.  The integral over <p in Eq. 
(5.18) assures  that only the I = 0 (amplitude-fluc- 
tuation) modes contribute to p(~n ,  T). We can thus 
res t r ic t  our attention to 

Alternatively, we could have arrived at  this r e -  
sult directly by arguing that M(x) in Eq. (5.6) in- 
volves the stat is t ics  of p but not (a. 

The eigenfunctions of L and L + Xp of Eq. (5.19) 
cannot be found in simple closed form, and a nu- 
merical  approach is  nefessary. One can solve 
for  the eigenfunctions ~ , , ( p )  of L +Xp in t e rms  of 
our previously computed eigenfunctionsi5 ~ , ( p )  of 
L by setting 

P,(p) =CP,(P)C,, (5.20) 
j 

in Eq. (5.14) to obtain secular equations for Cjn 
and Ân : 

C [(A, - lin)6,,+ x~,,]c,,=o for  a11 i , (5.21) 
5 

where 

From Eq. (5.17), <p,$ = 1, and Eq. (5.13) gives 

The insertion of (5.20) and (5.23) into (5.18) yields 
for  ILI(X), 

a result that requires no knowledge of P,(P) other 
than the matrix elements pij of Eq. (5.22). The 
matrix elements ptf a s  a function of operating point 
p a r e  available from one of us  (M. L. )  on request, 
but a r e  omitted to save space. 

Here we have introduced the dimensionless time 

where (A)  i s  the linewidth of the spectrum of inten- 
sity fluctuations, 

to be approximately Lorentzian, and 
thus given by the ratio of the area  to n times the 
height of the spectrum. (A)  is  referred to by 
other authors a s  R,,, for  effective h; i t  can be ex- 
pressed a s  a superposition of the eigenvalues A i ,  

where the weights 

and the eigenvalues '1, =Ao,, have been computed by 
Hempstead and ~ a x l ~  and Risken and ~ o l l m e r . ~ ~  

Equation (5. 6) can be written a s  a Laplace trans-  
form, 

M ( A ) = ~ B ( V ) =  i m . - u u  vc,)rd 

where 

Equation (5.21), with the change of variables of 
Eq. (5.30), becomes 
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TABLE I. Eigenvalues of the Fokker-Planck opera- 

tor  L = - (a/ap) (2p2 - 2pp - 4) - (a2/8p2) (4p) corresponding 
to  the RWVP l a se r  model, Eq. (5.19), in the text for 
various values of p. The lowest eigenvalue Ao=O in each 
case  i s  not listed. The remaining An increase monotoni- 
cally with n. The results  for  n = 1 , 2 ,  . . . ,10  a r e  given 
sequentially. (lambda) stands for the harmonic-mean 
(A) defined in Eq. (5.26). 

p = - 1 0  p = - 2  p = - 1  p = o  p = 1  

2 .1469 x  1 0  
4.4871 x  1 0  
6 . 9 9 5 4 x  1 0  
9.6546 X 1 0  
1.2452 X 10' 
1.5377 x  102 
1 .8421 x  10' 
2 .1579 x  10' 
2.4843 X 10' 
2.8210 x  10' 

(larnbda) 
2.1479 X 1 0  

p = 2  

4.6358 
1 .1286 x  1 0  
2 .0387 X 1 0  
3.1396 X 1 0  
4.4064 X 1 0  
5.8220 x  1 0  
7.3738 x  1 0  
9.0520 x  1 0  
L. 0849 x  10' 
1 .2757 x  10' 

(lambda) 
5.1750 

7 .878 
1 .8948 x  1 0  
3.2312 x  1 0  
4 .7573 x  1 0  
6.4487 x  1 0  
8.2888 x 1 0  
1 . 0 2 6 5 x 1 0 2  
1 .2368X 10' 
1.4589 x 10' 
1 . 6 9 2 2 x  10' 

(lambda) 
7.9889 

p = 4  

5.6976 
1 .0236 X 1 0  
1 . 7 6 5 7 X  1 0  
2.6900 x  1 0  
3 .7774X 1 0  
5 . 0 1 1 1 x 1 0  
6 .3789X 1 0  
7 .8714X 1 0  
9 . 4 8 0 9 X  1 0  
1 . 1 2 0 1 x 1 o Z  

(lambda) 
7.1122 

6.6358 
1 . 6 4 9 8 x 1 0  
2.8688 X 10  
4 . 2 7 9 1 x  1 0  
5 . 8 5 5 9 x  1 0  
7 .5821X 1 0  
9.4451 x  10  
1.1435 x  10' 
1 . 3 5 4 4 x  10' 
1 .5764 x 10' 

(lambda) 
6.7927 

p = 6  

9 .4499 
1 . 1 5 8 2 x 1 0  
1 . 8 0 5 9 X 1 0  
2 . 5 6 1 4 x 1 0  
3 . 4 8 8 2 x 1 0  
4.5578 x  1 0  
5.7588 x  1 0  
7 . 0 8 2 0  x  1 0  
8.5200 x  1 0  
1.0067 x  10' 

(lambda ) 
1.1231X 1 0  

5.6266 
1.4363 x  1 0  
2.5452 X 1 0  
3 . 8 4 6 1 x  1 0  
5 .3139X 1 0  
6 . 9 3 1 4  x  10  
8.6859 x  1 0  
1 .0567X 1 0 2  
1 .2568 x 1 0 2  
1 .4681 x 10' 

(lambda) 
5.8539 

p = s  

1 .4651 X 1 0  
1 . 4 9 6 7 x  1 0  
2.3666 x 1 0  
2 . 8 3 8 9 x 1 0  
3.6289 X 1 0  
4 . 5 3 9 8 x  1 0  
5 . 5 8 5 8 ~  1 0  
6 . 7 5 2 4 x  1 0  
8 . 0 3 2 0 x  1 0  
9.4184 x  1 0  

(lambda) 
1.5462 x  1 0  

4 .9284 
1 . 2 6 0 4  x  1 0  
2 .2664X 10 
3 . 4 6 4 2 x  1 0  
4.8287 x  1 0  
6 . 3 4 2 7 x  1 0  
7 .9935 x  10  
9.7711 X 1 0  
1 . 1 6 ~ 8  x  10' 
1 . 3 6 7 6 ~  10' 

(lambda) 
5.2688 

p = 1 o  

1 . 9 1 1 4  X 1 0  
1 . 9 1 2 4  x  1 0  
3 . 4 5 1 8 x  1 0  
3 .5394X 1 0  
4 . 4 4 9 6 ~  1 0  
5 . 0 7 8 0 x  1 0  
5 .9745 x  10  
6 .9813 x  1 0  
8 . 1 0 6 9 x  1 0  
9.3398 x  1 0  

(lainbda) 
1 .  9582 X 1 0  

or else 

C [ ( E ,  - Ên)63, + Pp i j I  Cjn = O (5 .32)  
j 

w ith 

Equation (5 .24)  now reads 

Equations (5 .29) ,  (5 .32) ,  and (5 .34)  a re  espe- 
cially useful since sets of Ai and p,, have already 
been computed by Hempstead and ~ a x ~ ~ $ ~ ~  for a 
range of values of the pump parameter p. Values 
of A, and ( A )  are  l i ~ t e d ~ ~  in Table I. The previ- 
ously unpublished values of p l j  (see Ref. 4 7 )  were 
used in the present work to compute @(v) .  Alter- 
natively, one can numerically integrate the per- 
turbed eigenvalue equation (5 .14)  and work with 
Eq. (5.18).  

The inverse Laplace transform of @(v) ,  V(W ), 
was computed as described in Sec. IX. The prob- 
ability distributions V ( w )  obtained are shown in 
Figs. 10-12 for a range of values of p and S .  

The procedure by which we have reduced the 
problem to a purely radial problem i s  not re- 

FIG. 10. Probability distributions V ( w )  of the normal- 
ized (((i.) = 1) integrated light intensity w computed f rom 
the KWVP oscillator model of a laser  operating near 
threshold, for  various values of the pump p and the 
scaled t ime S.  See Table V (Ref. 47) for more  complete 
results. 

stricted to the van der Pol oscillator. More gen- 
era l  nonlinearities are  possible. The factoriza- 
tion of eigenfunctions into the form ~ , , ( ~ ) e "  does 
require, however, that a11 the drift vectors and 
diffusion coefficients be independent of q, although 
they can~remain arbitrary functions of p. 

VI. MOMENTS OF DISTRIBUTION V ( w )  

For comparison w ith the factorial-moment z''' 
data of Jakeman e t  a1. ,40 we shall in view of Eq. 
(2 .10)  obtain the exact moments ( w r )  of V(w) .  
Frorn Eq. (5 .29) ,  one derives 

FIG. 11. Same a s  Fig. 10. 
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-. ---- 
-i We expand the derivatives of j,(p) in t e rms  of 1 I v ( w l  5 = l 0  

I 
1 

fJn(p): 

FIG. 12. Same as Fig. 10. 

Equation (5.30) gives the identity 

a 3  .. ,. 
p, ' p,',"= 

a A C p m ~ m n  , ( 6 . 3 ~ )  

a4  A A 

pn = p,!,'" - 
ax -,ZfJm~,, . (6.3d) 

m 

From Eqs. (5.20) and (5.23), we see  that 

and from Eqs. (6.3), likewise, 

We now take the derivatives of Eq. (5.24), se t  
(6.2) h = 0 7 a n d u s e E q s . ( 5 . 2 5 ) , ( 6 . 1 ) , ( 6 . 2 ) , ( 6 . 5 ) , a n d  

the fact that C ~ ( X  = 0) = 60,, to obtain 

The dependence on ( A )  in Eqs. (6.6) i s  illusory, 
since Eq. (5.32) suggests that (A) can be elimi- 
nated entirely. Equations (6.3) and (6.6) remain 
valid with ( A )  s e t  equal to 1 if a11 derivatives in 
both se ts  of equations a r e  reinterpreted a s  deriva- 
tives with respect to p =  h/( A). 

It i s  seen from Eq. (6.6) that the residual mo- 
ments ((an ) - I), a s  expected, approach constants 
for  smal l  s ,  and a r e  proportional to l/s for large 
S. 

In Appendix B we calculate A:, i,!,', i,!,", h,!,"' 
and D,, E,,, F,,, G,, froin Eqs. (5.14) in 
t e r m s  of A, and pij. 

The second, third, and fourth moments of V(W) 
were computed by this procedure, and a r e  com- 

I 

pared in Figs. 6-8 to the second, third, and fourth 
factorial moments of the photocount d i ~ t ~ i b u t i o n  
p ( m ,  T) measured by Jakeman, Oliver, Pike, Lax, 
and ~ w a n z i g e r  .40 

VII. ASYMPTOTIC APPROXIMATIONS FOR V ( w )  ANDp(m, T) 

For long t imes ( s »  I), Eq. (5.34) i s  well ap- 
proximated by i t s  f i r s t  t e rm alone, 

D(v) -e-Êo(f i ) s [~OO(p)]2  . (7.1) 

The inverse of Eq. (5.29), 

V ( ,  ) = (I/Zni) ,t-a:w evYiTl(v) dv , ('7.2) 

can be written, changing variables according to 
Eq. (5.33) and inserting Eq. (7. I),  
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F(w) 7 i 1 The variance of P,(w), 

FIG. 13. Functions F ( o )  appropriate to the asymptotic 
approximation ( s  >> 1)  of V í w ) ,  V ( w )  = ~ " ~ F ( o ) e ' ~ ~ ( o ) .  

Large s makes the exponential a rapidly varying 
function compared to C ; ,  , and we may integrate 
Eq. (7.3) by the method of steepest descent.@ The 
point p, at  which the exponential in Eq. (7.3) i s  a 
maximum i s  an implicit function of o: 

We have 

V(W) = [C , , (P~) ]~  ( P  ) s ~ w ( -  s[Êo(~m) - F ~ ( P  )a1 I 

Replacing ( p  - p,) by i x  and integrating, we find 

V(W) = , (7.6) 

where 

F(w ) = [  ( P ) / ( ~ ~ ) ~ / ~ ~ [ C ~ ~ ( P , ) ~ ~ / [ - Ê Ó ' ( P ~ ) I  , (7.7) 

E ( W )  = Ê0(prn) - prn (P)W (7.8) 

The derivatives of Ê, and C,, with respect to p a r e  
related to the derivatives of Â, and C,, with r e -  
spect to X. The latter can be computed for  A{ and 
a s  shown in Appendix B and in Eq. (6. 5). 

The functions F(W) and ~ ( w )  computed for our 
laser  model a r e  shown in Figs. 13 and 14. 

Next, an asymptotic approximation for  p(m, T) 
in the limit of large ( m )  i s  obtained. Equation 
(2.8) can be written 

p(m, T I =  Sdw P , ( W ) V ( W ) / ( ~ ) ,  (7.9) 

where the normalized Poisson distribution 

Pm(w) = ( ( m ) ~ ) ~ e - ' ~ ' ~  (m )/m! (7.10) 

has moments 

= ( m + l ) / ( m ) ,  (7.11) 

( ~ ~ ) p = ( r n + 2 ) ( m + l ) / ( m ) ~ .  (7.12) 

tends to zero for  large ( rn)  while the variance of 
V(W) tends'to zero for large S. For a given s, 
(nz)  can be made sufficiently large so  that P,(w) 
i s  sharp compared to ~(o), and Eq. (7.9) can be 
integrated to give 

For t imes T short  compared to T, = (A)-', the 
correlation t ime of intensity fluctuations p  can be 
assumed to remain constant under the integral in 
Eq. (5.3): 

Since the distribution of p i s  the steady state Po 
defined by Eqs.  (5.9) and (5.19), 

po (p) = N~ PP / 2-p2 / 4 (7.16) 

where iV i s  a normalization factor, we have, in 
this limit, 

The moments of v(w), according to Eq. (7.15), a r e  

(o' ) =  (pr )/(pY = ( N / ( p Y ) i m p r  exp(ipp - l p 2 ) d p ,  
(7.18) 

and can be calculated from the following formula, 
obtained from Eq. (7.18) o r  integrating by par t s  
(see Ref. 15, footnote 27): 

In particular, 

( p ) = P + ~ ( e * 2 "  irlfl e-t2i2dt)-1 , (7.20) + 

FIG. 14. Functions E ( w )  appropriate to the asymptotic 
approximati n (s »1) of V ( w ) ,  V ( w )  = s 1 / 2 ~ ( w ) e * E ( W ' .  For  P a11 curves,  E(w =1)=0 ;  they a r e  displaced for clarity by 
the length of the line conneoting the minima to the point 
w = l ,  E = O .  
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FIG. 15. Scale factors a and B used in computations 
described in Sec. VIII. 

VIII. INVERSE LAPLACE TRANSFORM: 
DISCRETE APPROXIMATIONS 

There i s  no known general procedure of nu- 
merically inverting a Laplace transform, known 
only on the rea l  axis, guaranteed to give accurate 
results  in every case. The difficulties involved 
a r e  well illustrated in the book by Bellman, 
Kalaba, and ~ocke t t , "  and they a11 ar i se  from the 
fact that the Laplace transform i s  a smoothing 
operation. Significant figures will be lost on the 
inverse unsmoothing operation. Each problem 
must be tackled individually and the only useful 
guide i s  an a priovi knowledge of the general nature 
of the solution. In our case, we know that ~ ( o )  
a r e  normalized positive functions, zero at  the or i -  
gin and approaching zero for  large values of W .  

The over-a11 shapes of V(") were f i r s t  studied 
by obtaining discrete se ts  of values V(W,) as func- 
tions of p and S .  An extensive collection of possi- 
ble ways i s  given in the book by Krylov and 
~ k o b l ~ a . ~ ~  For example, Eq. (5.29) can be written, 
with w = ax, 

By use  of the Gauss-Laguerre integration formu- 
la, 67 

one approximates Eq. (8.1) a s  

The nature of the problem makes G,, an ill-condi- 
tioned" matrix, that is, significant digits a r e  lost 
in the calculation of its inverse. One t r ies  to 
mitigate this detrimental effect by experimenting 
with different quadrature formulas (which yield 
different se ts  of xi and A,) o r  values of the scale 
factors a and 0. 

The 15-point Gauss-Laguerre integration for-  
mula was found to work well over our entire - 10 
<p<10 range. The values of A, and x, were ob- - 
tained from Ref. 69 where A, a r e  denoted a,. The 
optimum parameters a and p, found by t r ia l  and 
e r ro r ,  varied with s, but were independent of p. 
Figure 15 summarizes their behavior. Figure 16 
shows typical results, with good and poor choices 
of a and p, compared to continuous approximations 
of v(~,J ) obtained a s  described in Secs. M and X. 

The aj defined by Eq. (8.5) were computed using 
the matrix method of Eqs. (5.32) and (5.34). 

IX. ISVERSE L.\PLACE TR,\NSFORII: 
CONTIhUOUS APPROXI31ATIONS 

To obtain continuous functions V(W) rather  than 
discrete se ts  of values, we introduce the new pro- 
cedure of representing V(W) by a judiciously chosen 
function t imes a polynomial. The N-polynomial 
coefficients a r e  determined to satisfy N values of 
the Laplace transform. The choice of the approxi- 
mating function i s  guided by the information we 
already have on v(w). 

In the region - 1 0 < p < l  we represent V(w) by 

-.2 $2 ' I 
I 2 3 4 The choice of a linear se t  of points v j  = pj, j = O, 1, 

. . . , n - 1 (which i s  not the only, nor necessarily FIG. 16.  Comparison of V(w) distributioris computed 

the optimum, choice), gives a system of algebraic nuinerically by inverting a Laplace transform with differ- 

equations ent methods. The solid sniooth curve i s  obtained by the 
representation method, Eq. (9 .1)  of the text. The dashed 
curve i s  obtained by the Fourier-transform method of Sec. 

- ~ G , , V ,  -i.' , 4, X; where not apparent, it coincides with the previous 

curve. The solid circles a r e  the result of the ''discrete" 
with technique of Sec. VIII; the open circles,  connected by 

straight lines for clari ty,  exemplify a poor choice of scal- 
v, = V(W,) = ~ ( ( Y x ~ )  , ing paraineters o! and p in the discrete technique. 
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We cal1 the function multiplying the polynomial in 
Eq. (9.1) the R i c e - ~ a n d e l ~ '  approximation. It i s  
normalized and has unit f i r s t  moment, and a i s  
chosen so that i t  approximates the correct  second 
moment of V ( U )  known from Eq. (6.6a) a s  a func- 
tion of s and p. From Eqs. (5.29) and (9. I ) ,  one 
obtainç 

and the moments of v(w), defined by Eq. (9.11, a r e  

In the region I c p  510, we use the approximations 

and 

where 

and = N(a/p) i s  the normalization factor  of the 
Gaussian (truncated at w = 0) multiplying the poly- 
nomial. Again, a and P a r e  chosen so  that the 
Gaussian approximates the f i r s t  and second mo- 
ments of V(W) a s  s and p vary. The moments of 
Eq. (9.4) a r e  given by 

where the integrals can be written in t e rms  of the 
incomplete r function. Equation (9.7) cai1 be r e -  
duced by partia1 integration to 

where 

w ith 

We use  linear se ts  of points v, = yj, j = O, 1, . . . , 
N- 1 for  determining b, and d, by Eqs. (9.2) and 
(9. 5). The algebraic system obtained from Eq. 
(9.2) was found to be least i11 conditioned when y 
= 0.1 for a11 choices of s and p. For the system 
obtained from Eq. (9.5) it was necessary to vary 
y from 0.2 to 1. O a s  [ ( a 2  )-I] varied from about 
0.3 to about 0.0003. Up to 15 coefficients were 
necessary for expansion (9.2) when V(W) displayed 
a sharp r i s e  near the origin (small values of s 

and w) .  
For  the coefficients b, and d, for p = - 10, - 2, 

-1, 0, 1, 2, 4, 6, 8, l O a n d s = O . l ,  0.2, 0.5, 1, 
2, 5, 10, 20, 50, and 100 see  Ref. 47. Figures 
10-12 show some of the V(W) curves obtained by 
Eqs. (9.1) and (9.4). Although we did not compute 
V(W) for p l e s s  than - 10 o r  more than 10, the 
representations used in Eqs. (9.1) and (9.4) a r e  
definitely suitable in those ranges a s  well for  rea-  
sons to be discussed below. 

For p < - 10, the laser  s tat is t ics  a r e  already 
close to those of a damped harmonic oscillator a s  
i s  evident in Fig. 17. (The exact results  for  the 
harmonic oscillator a r e  obtained in Sec. X. ) Fig- 
u r e  17 also illustrates the breakdown, a t  smal l  s, 
of the Rice-Mande1 approximation [see comment 
after Eq. (9. I)], 

for the laser  below threshold (and thermal fields). 
The Rice-Mande1 curve shown has the same sec- 
ond moment a s  the RWVP curve shown. 

For  p z 10, the laser  is  already amplitude s ta -  
bilized ( ( ( A ~ ) ~ ) / ( ~ ) ~  i s  small, a s  shown in Fig. 1)) 
permitting one to make the usual quasilinear ap- 
proximation." By expanding the drift and diffusion 
coefficients of Eq. (5.19) in ser ies  about their  
mean value, and by retaining linear t e rms  only, 
Eq. (5.19) i s  reduced to 

where A, B, and C a r e  independent of p but func- 
tions of p. This results  in a Gaussian distribution 
for p, which in turn implies a Gaussian distribution 
for  W: 

FIG. 17. Comparison of V ( w )  distributioris given by 
the harmonic-oscillator (HO) model of a l a se r  operating 
below threshold, by the RWVP oscillator model a t  p = - 10 ,  
and by the Rice-Mande1 (RM) approximation determined 
by the second moment of the H 0  curve. 
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FIG. 18. Comparison o£ moments of V ( w )  obtained 
from the R W V P  model and from models of the l a se r  
operating well above and well below threshold. B, 
=i (w")  - 1 ) ~ 0 / (  (uni - where H 0  stands for  the 
damped harmonic-oscillator model, and p = - 10 was used 
in the RWVP model. A,=((w") - I ) ~ - / ( ( W ~ )  - ~ ) Q L , G L ,  

where QL stands for the quasilinear model (solid lines) 
and GL stands for the Glauber-Lachs (Refs. 72 and 73) 
model (dashed lines) of a superposition of coherent and 
incoherent fields. A2 was se t  equal to unity, and p = 1 0  
was used in the RWVP model. 

[Since ~ ( o ) ~ ,  is  highly localized around o = 1, we 
integrate over - m < w < to obtain the normalization 
factor.  ] The higher moments of of Eq, (9. 15) 
a r e  determined by the second moment: 

In Fig. 18, we display ratios of the moments of 
the harmonic-oscillator model to the moments of 
the RWVP model a t  p = - 10, and ratios of the mo- 
ments of the RWVP model at p = 10 to the moments 
of the quasilinear model, using the second moment 
of the RWVP model at p = 10. The proximity to 
unity of the various ratios i s  a good indication that 
we covered the full range of p for the RWVP model 
of the laser  which cannot be handled by simpler 
methods. 

It may be of interest to note that an early model 
proposed by ~ l a u b e r "  and ~ a c h s ~ ~  for a laser  
above threshold i s  a superposition of a perfect co- 
herent Signal with a Gaussian noise. Jakeman 
and pike7* and Jaiswal and ~ e h t a ' ~  calculated the 
moments of V(w),, [i. e . ,  the factorial moments 
of p(m, T)] for such a field, assuming a Lorentzian 
spectrum. Choosing the ratio of coherent to inco- 
herent signals so  a s  to match the second moment 
of V(,) for the RWVP model at p = 10, we calculated 
the corresponding third and fourth moments of 
V(a),, for the Glauber-Lachs model. The ratios 
of the moments of the RWVP model at p = 10 to the 
moments of the Glauber-Lachs model a re  shown 
a s  dashed curves in Fig. 18. By comparing these 
with similar  curves for the quasilinear model it i s  
safe to conclude that the quasilinear model i s  a 

better approximation to the laser  above threshold 
than the Glauber-Lachs model. 

X. ACCURACY OF COMPUTATIONS 

Three independent tes ts  were performed to check 
the accuracy of our continuous representation 
method for obtaining the inverse Laplace transform 
V((d ) . 

A. Laser below Threshold 

The operator 

which i s  Eq. (5.19) without the p2 term, has eigen- 
functions and eigenvalues 

P , ( ~ ) =  S jpJ  ( ~ / n ! ) e - ' ~ ' ~ "  L,(S\P\ p) , (10.2a) 

n n = 2 1 p l n ,  (10.2b) 

where L, a r e  the Laguerre polynomials, and lp l 
stands for - p since p < O. The matrix elements 
defined by Eq. (5.22) a r e  

pit = ( 2 / 1 ~ 1 ) ( 2 i + l ) ,  (10. 3a) 

P i , i + ~ = P t + i , t  = -  ( 2 / l ~ l ) ( i + l ) ,  (10. 3b) 

al l  others zero. The effective linewidth (A) i s  
calculated to be 

( ~ ) = ~ , = z i p l  

Equation (10.1) corresponds to a damped har-  
monic-oscillator model of a laser  operating below 
threshold, whose field P i s  described (see Ref. 
2 5) by the Langevin equations: 

where lp l i s  a dissipation coefficient and F, and 
F, a r e  random Markoffian forces which account 
for the interaction with reservoirs .  Equation 
(10.1) can be obtained similarly to the way Eq. 
(3.4) of Ref. 15 i s  calculated from Eqs. (2.1) and 
(2.2) of that reference. 

M(x'), defined by our Eqs. (5.1) and (5.2), i s  
given by Eq. (18C31) of Ref. 25, 

~ / I ( A ' )  = eS' [coshzs' + i (z + l /z )  sinhzsf]-' , (10.7) 
where 

.S f= lp1T ,  z = ( ~ ~ ~ x ' E ( ~ ) / ( A ) ) ' " .  (10.8) 

The inverse Laplace transform of Eq. (10.7), 

~ ( n )  = (1/27ii) L ~""M(x') d ~ '  , (10.9) 

can be integrated by the usual residue methods 
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FIG. 19.  Probability distribution V(w) of the normal- 
ized ( (w)  = 1) time-integrated light intensity w computed 
from the damped harmonic-oscillator model of a laser  
operating well below threshold (thermal source) for  vari- 
ous values of the scaled time S. 

giving, after scaling the result according to Eqs. 
(5.3) and (5.41, 

where y, a re  the positive roots of the equation 

This result was published earlier by Jakeman and 
pike.IB Equations (10.8), (10.4), and (5.25) define 
the relation 

between the Jakeman-Pike time parameter (s') and 
ours (s). It is also to be noted that 2 (A) i s  ap- 
proximately equal to the half -width at half -power 
of the total (phase and amplitude) noise spectrum 
only for the laser below threshold (see Hef. 15). 
Above threshold this is  not true. 

We calculated V(U) for a set of values of s using 
the residue method of Eq. (10.10) (see Fig. 19). 
The same distributions were also calculated using 
the representation method, Eq. (9.1) with &?(v) 
computed from Eqs. (5.31), (5.34), and (10.2)- 
(10.4). Agreement to two significant figures was 
generally found, which bolstered our confidence 
in the representation technique. 

B. Rediiction o€ the Inverse Laplace Transform to a Fourier 
Series 

Equation (7.2) can be converted to a Fourier 
transform by the change of variables v = a+ ix: 

Since from its very nature V(U) approaches zero 
for large w, we may assume v(w)e-OW to be effec- 
tively zero outside some interval (0, w,), and ex- 
pand it in a Fourier series: 

where 

The integral in Eq. (10.16) i s  just the Laplace 
transform of V(W) at a +  iku. Comparison with Eq. 
(5.29) then yields 

Writing 

Eq. (10.14) becomes 

(10.19) 
The use of Eq. (10.19) requires the calculation 

of M for large complex arguments, and the finite 
matrix procedure of Eq. (5.31) may no longer be 
adequate. We used the Numerov m e t h ~ d ~ ~ ~ ~ ~  for 
solving the eigenvalue problem of Eq. (5.14) and 
calculated &? using Eq. (5.34). Owing to the slow 
convergence of the Fourier series, Eq. (10.19), 
about ten times more computation time i s  required 
to obtain one V(w) curve, as  compared to the rep- 
resentation method based on real  values of X. We 
limited ourselves to the computation of a few test 
cases. First, we computed V(w) for the damped 
harmonic -0scil1ator model using the operator of 
Eq. (10.1) and the parameters S =  1, a =  O, o =  1, k 
= 1, 2, . . . , 40. The resiilt agrees within 1% of 
peak value with the distribution calculated from 
Eq. (10.10), and would be indistinguishable from 
the curve displayed in Fig. 17. We also computed 
V(U) for the RWVP at p = - 10, with the same pa- 
rameters as  above, again obtaining excellent 
agreement with the RWVP curve displayed in Fig. 
17, computed by the representation method. 
Finally, we computed V(w ) for the RWVP model at 
p = O using the same parameters a s  above. The 
result i s  shown in Fig. 16, along with results ob- 
tained by other methods for comparison. The 
small discrepancy between the representation 
method and the Fourier-series method i s  not nec- 
essarily an e r ro r  of the representation method. 
The Fourier method was used with 20 points a s  
well as  with the 40 points on which Fig. 16 i s  
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FIG. 20. Moments of V ( w )  for p = 0 (threshold). The 
solid lines a r e  obtained by the exact perturbation method 
of Sec. VI. The dots correspond to the continuous repre- 
sentation described in Sec. IX, and were computed from 
the data contained in Table V (Ref. 47); ( w r )  = ( n zb l ) / (w ) r .  

based. Improved agreement accompanied the 
change from 20 to 40 points. It might take 200 
points to be sure  of convergence of the Fourier 
method. Although the Fourier-series method i s  
potentially more accurate, because it avoids ill- 
conditioned matrices, we thought it too expensive 
to generate fainilies of V ( w )  curves. 

C. Comparison of Moments of V ( w )  

Moments of ~ ( w )  were calculated using Eqs. 
(9.3) and (9.8). These a r e  based on our represen- 
tation method of inverting the Laplace transform, 
and a re  shown a s  points in Fig. 20. The points 
agree quite well with the curves obtained from the 
potentially exact formulas (6.1) based on perturba- 
tion theory. 

In summary, we believe our V(W) curves a re  
generally accurate to about 1% of peak value except 
when the ~ ( w )  curves r i s e  sharply near the origin 
(small s and small  w).  The reason for this con- 
fidence i s  based on (a) agreement between repre- 
sentation results with exact residue results for the 
harmonic-oscillator model, (b) agreement of rep- 
resentation method (real X information) with the 
"exact" Fourier method (inversion of the Laplace 
transform in the complex plane), (c) agreement of 
representation moments with "exact" moments, 
(d) agreement between the representation method 
and the asymptotic results of Sec. VI1 for la'ge 
s ( ~ 2 1 0 ) .  

XI. DISCUSSION AND COMPARISON WITH EXPERIMENT 

The problem of determining the statistical dis- 
tribution of the integrated intensity of a Gaussian 
random variable has been given considerable at- 

tention in the ~ a s t , '  mostly because of its relation 
to the study of noise in amplifier systems like laser 
sources. We have shown (see, for example, Fig. 
17) that the light field of a laser operating in a single 
mode below threshold behaves like a thermal light 
field, i. e . ,  it  i s  described by a random complex 
variable with a Gaussian probability distribution 
and Lorentzian frequency spectrum. Well above 
threshold, on the other hand, laser light is  ade- 
quately described by a quasilinear approximation 
which leads to a Gaussian distribution in intensity 
and a single effective decay rate. Because a super- 
position of a coherent field with Gaussian noise 
was thought to be a good approximation to a laser 
well above threshold, an extensive literature was 
built up on photocount statistics for such a model. 
Although we have shown that the quasilinear ap- 
proximation i s  more accurate (see Fig. 18) and 
easier  to apply, we have, nevertheless, reproduced 
and extended a table of Jakeman and pike2 that 
summarizes the initiating papers in this theoretical 
literature (see Table II). This literature i s  s t i l l  
relevant for understanding scattering and hetero- 
dyning experiments that mix coherent and Gaussian 
signals. A similar bibliography to the experimen- 
tal  photocount statistics of laser  and thermal light 
i s  given in Table 111. Near threshold, the nonlin- 
eari t ies in the laser  equations must be retained, 
and calculating the time-dependent photocount sta-  
tistics of the field i s  a complicated quantum-me- 
chanical problem. We made use of an exact quan- 
tum classical correspondence, valid for Markoff ian 
processes, to associate our operator variables to 
classical variables, and then calculated the dis- 
tribution of the integrated intensity of the field 
variable from classical equations of motion cor-  
responding to the laser  system. 

Measurements (see Table 111) substantiate the 
RWVP oscillator model for a laser  operating near 
threshold. Following publication of our main r e -  
s ~ l t s , ~ ~  photocount experiments were performed 
that a r e  in excellent agreement with our theory. 
In Figs. 3-5, we show the time-dependent photo- 
count distributions measured by Meltzer, Davis, 
and ~ a n d e l , "  and in Figs. 6-8, the time-depen- 
dent moments measured by Jakeman, Oliver, and 
pike40 a re  displayed. Any small  discrepancies be- 
tween theory and experiment a r e  comparable to the 
quoted e r r o r s  in theory and experiment. 
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APPENDIX A: TIME REVERSAL AND THE 
EIGENFUNCTIONS OF L? 

The purpose of this appendix i s  to show that the 
reiation $$(a) = f i , ( a T ) / ~ , ( a )  of Eq. (5.17) relating 
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TABLE 11. Theoretical photocount statistics of Gaus- 
sian-Lorentzian and coherent fields, a bibliography of 
initial papers [after Jakeman and Pike (Ref. 2) with addi- 
tionsl. The numbers in parentheses are the year of pub- 
lication. The following notation is used: ------ , inco- 
herent-field spectrum; - , coherent-field spectrum; 
a,, frequency of the coherent field; w,, mean frequency 
of the incoherent field; ( A ) ,  linewidth of the incoherent- 
field spectrum; (I,), mean intensity of the coherent field; 
(Ii), mean intensity of the incoherent field; (a), mathe- 
matically equivalent calculation; (b) , not formal expan- 
sion in l /s ,  s = ( A ) T ;  (c), in these early papers, bunch- 
ing was thought to be a property of photons; (d), recur- 
rence relations only ; (e), numerical calculations; (f) , 
to second order in l/s; (g), various spectral shapes; B, 
Bédard (Ref. 3);  G, Glauber (Refs. 41, 42, 72); H, 
Helstrom (Ref. 84); JM,  Jaiswal and Mehta (Ref. 85); 
JP, Jakeman and Pike (Ref. 86); L, Lachs (Ref. 73); &I, 
Mande1 (Ref. 87); MP, McLean and Pike (Ref. 88); P, 
Pzrina (Ref. 89); PH, Terina and Horák mef. 90);  Pu, 
Purcell (Ref. 91); R, Rice (Ref. 70). 

the eigenfunctions of Lt to those of L i s  a conse- 
quence o£ time reversal  and stationarity. The 
proof given here will generalize an earl ier  proof 
(Ref. 25, Chap. 8) from a Fokker-Planck process 
to a general Markoffian process, and from vari- 
ables even under time reversal  to variables odd 
under time reversal. 

The original version of this paper made the f i r s t  
generalization. ~ i s l c e n ' ~  and Graham and ~ a k e n ' ~  
in the meantime have considered the Fokker- 
Planck process with odd variables. We shall, 
therefore, briefly present a proof which makes 
both generalizations simultaneously. 

If the steps in Eq. (8D1-7) of Ref. 25 a r e  r e -  
peated without assuming variables even under 
time reversal, we obtain the condition 

on the two-time probability where a represents a 
se t  of variables denoted 5 in the text, and ã i s  
the set  of time-reversed variables, called àT in 
the text. Thus, for any component variable, 

where K i s  the t ime-reversal  operator which 
leaves unchanged even variables and reverses the 
sign of variables odd under time reversal. Con- 
dition (Al) has been given a detailed justification 
by De Groot and ~ a z u r . ' ~  

Equation (Al) can be rewritten in t e rms  of con- 
ditional probabilities, 

where Po(a) i s  time independent in the (assumed) 
stationary case. . If the limiting condition 

i s  applied to Eq. (A3), one must conclude that the 
stationary state p0(a) obeys 

po(a) = Po(ã) . (A51 

When transition probabilities exist, i. e., for a 
+ a', 

i i m ~ ( a ,  t + h t ) (  a', t ) / ~ t =  w(a, a') a s  At- 0 (A6) 

exists, and the Chapman-Kolmogoroff equation 
for a Markoff process can be rewritten a s  a master  
equation: 

=I $V(., a') da' p(at ; t)  - r(a)P(a,  1)  ,. (-47) 
a t  

where the f i r s t  t e rm describes a11 transitions into 
state a and, with 

r ( a )  = w(al, a) da' , (-48) 

the second t e rm describes a11 transitions out of 
state a. Equation (A7) can be written in the form 

-= - (a1 L I  a '  ) da' ~ ( a ' ,  t) , 
a t  (-49) 

where 

(a1 L I  a ' ) =  - w(a, a ' )+ r (a)6(a-  a') 

= lim ~ ( a ,  t+Atl  a l t ) -6 (a -  a') 
A t 

. (Alo) 
At 'O  

Equation (A3), with the help of (A5) and (AIO), 
leads to the conditions 

These results a r e  equivalent to the single condition 

K ~ K - ~ =  (I /W)LW, (A131 

where W is  an operator whose eigenvalue on a 
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state of definite a i s  P,(u), so that $;(a) = >,(Ü)/Po(~)  , (A201 

(a1 ( ~ / w ) L w I  a o )  = [ l /Po(a ) ]  (a1 L I  q) P,(u,,) . (A141 and the Green's-function solution (5.16) can be 
written 

This result, which follows from the definition of 
the operator L in terms of the conditional prob- $(a, t ( % b ) = C  e-"(tt.tO' a . (A,,) ability, is  thus applicable to the master-equation n Po(a0) 
form of the transport equation, as well a s  to the 

Note that although $,(a) is, in general, complex, Fokker-Planck form when L is  approximated by a 
second-order differential operator. In either case, 3: does not appear in Eq. (A21). For the Van der 

Pol oscillator, the complex variable P =  re-", the complex conjugate of the adjoint equation 
where T= r, 7 = - q .  The eigenvector P, requires 

L+% = % V,  (A15) a double index n, X and can be written 

when multiplied by W and K, leads to 3, =&(r, k)eix" , (A221 

WKZcp; = WK&q: (A16) so that 

w ( K ~ K - ' ) K ~ ;  = a( W K ~ : )  . 
The use of (A13) leads to the result 

L ( w K ~ , * )  = A,,(wKv,*) , (A18) a result which we have previously given2' as  valid 
even in the presence of detuning. 

so that Wq,* i s  an eigenfunction of L with eigen- 
if one is  concerned only with intensity fluctua- 

value A,, which can be identified with P,. Thus, 
tions, one can restrict  oneself to the h = O terms in 

q,* (a )  = w-'KP,(~)  = ~ , ( ã ) / ~ ~ ( a )  . (A19) (A23) and use the even variable p = I p 1 = $: 

To obtain <p,* we must replace L by L +  Xp a s  in Eq. f ~ ( ~ ,  T; po , O )  =C e- LT e (P)&(P,) . (A241 
(5.10). If p(a) = p(ã), then Eq. (A13) with L re-  n 

placed by L + Xp continues to be obeyed with the Alternatively, the X # O terms in Eq. (AZ2) disap- 
same W. Thus, pear after the integration over cp in Eq. (5.18). 

TABLE 111. Experimental photocount statistics of l a se r  and thermal fields, a bibliography of initial papers, after  Pike 
(Ref. 26). The year  of publication i s  given in parentheses. The following abbreviations a r e  used: A, Arecchi (Ref. 21); 
CDKAH, Chang, Detenbeck, Korenman, Alley, J r . ,  andHochuly (Ref. 22); CIZD, Chang, Korenman, and Detenbeck (Ref. 
22); FH, Freed and Haus (Ref. 19); GG, Grace and Gamo (Ref. 80); GGW, Gamo, Grace, and Walter (Ref. 23); JMP, 
Johnson, McLean, and Pike (Ref. 81); JOP, Jakeman, Oliver, and Pike (Ref. 82); P ,  Pike (Ref. 83); MDM, Meltzer, 
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Field s p ( W Z ,  T) % ( 2 )  
% (3) ( 4 )  > n(4) 

Lase r  < 1 FH(65) FH(65) FH(65)a FH(65) 
below SA(65) JOP(68) 
threshold 
(ther mal) 
RWVP 

Laser  DM (67) 
neas SA(66) SA(66) A(67) 
thresliold. < 1 MDM(70) GGW(68) CDKAH(67) CDKAH(G7) GG(69) 
RWVP 
- 1 o - c p c i o  

CKD(68) CKD(G8) - 1 P(67) P(67) JOP(70) JOP(70) GG(69) 

Laser  FH(65) FH(65) FH(65) FH(65) 
above < 1 SA(65) 
threshold 
RWVP 

- 1 FH(65) FH(65) FH(65) FH(65) 

p >10 > 1 FH(65) FH(65) FH(65) F H  (65) JOP(68) 
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APPENDIX B: DERIVATIVES OF Â, AKD k, WITH from which we conclude that 
RESPECT TO h 

Let P, and & be defined by Eqs. (5.14) and 
(5.15) having the property of Eq. (5.17). Further-  
more, let the derivatives of P, with respect  to X be 
defined by Eqs. (6.3). Differentiating the f i r s t  of 
Eqs. (5.14), multiplying from the left-hand side 
by $,* and integrating, one obtains with the help o£ 
Eqs. (6. 3a) and (5.15), 

a generalization of the well-known Feynman-Hell- 
man7' theorem to the non-Hermitian case. 

By differentiating Eq. (Bla)  and using Eqs. 
(5.17) and (6.3a), 

where the last  step follows from the symmetry of 
p. Similarly one obtains, 

With the use  of (5.20), Eq. (Bla)  can be written 

C, =CPi j~ jnc i rn  t 032) 
i j 

with pij defined by Eq. (5.22), and the Cj,  deter-  
mined by the secular  equations (5.21). The coeffi- 
cients D,, E,, F,,, and C, a r e  calculated a s  
follows. Differentiating the f i r s t  of Eqs. (5.14), 
we find 

but 

since 

( @ r ,  pPn) =C (@I , Pm)fimn = b t n  (B5) 
m 

By inserting from Eq. (6.3) and using ( ~ 5 )  and 
(5.14), Eq. (B4) becomes 

o r 

~ ~ , = i ~ ~ / ( Â , , - ' i , , , ) ,  m # n  . (I384 

Similarly by differentiating Eq. (5.14) successive- 
ly, and by using Eqs. (6.3), one obtains 

The diagonal coefficients a r e  calculated from 
Eq. (5.15) in which we expand 4, and 18, in a Taylor 
s e r i e s  and collect t e rms  of same order: 

Thus, a11 coefficients of the powers of A must be 
zero. This implies, for  example, 

Thus, 

D,,=O for a11 n ,  (Bl l a )  

and similarly, 

E,,= -C o:, , (Bl lb)  
m 

F,,= -CD,E, , ( ~ 1 1 ~ )  
m 

G, ,=-~CD,F~,-~CE, .  (Bl l d )  
m m 

The eigenvalue derivatives A,!, , G', A,,"', A,',"' 
and wave-function expansion coefficients D, , E,, 
F , ,  G, a r e  used in Sec. VI to calculate the exact 
moments ( w r  ), i. e . ,  the exact factorial moments 
n " ' ( ~ )  [Eq. (2.10) of the photocount distribution]. 

*Also at  Physics Dept., City College of City University rPresent address: Universidade Federal do Rio Grande do Sul, 
of New York, New York, N. Y. 10031. Departmento de Fisica, Pôrto Alegre, Brazil. 

t ~ a p e r  describes a portion of Ph. D. thesis submitted to the 'D. Slepian, Bell Syst. Tech. J. 37, 163 (1958); U. Grenander, 
Universidade Federal do Rio Grande do Sul, Pôrto Alegre, Brazil. H. O. Pollak, and D. Slepian, J. Soc. Ind. Appl. Math. 7, 374 
Work done with partia1 support from Conselho Nacional de (1959). 
Pesquisas, Brazil. ZE. Jakeman and E. R. Pike, J. Phys. A 2, 115 (1969). 



770 M .  L A X  A N I )  M .  Z W A N Z I G E R  - 7 

3G. Bédard, Phys. Rev. 151, 1038 (1966). 
4R. Graham and H. Haken, Z. Phys. 237, 31 (1970). 
'V. DeGiorgio and M. O. Scully, Phys. Rev. A 2, 1170 (1970). 
6M. Lax, Phys. Rev. 145, 110 (1966). 
7The moments of a// (field and atom) noncommuting noise 

sources were derived by a single generalized Einstein relation [Eq. 
(2.9) of Ref. 61. In connection with an application to the 
derivation of the phase linewidth (Ref. 8). this Einstein relation and 
the resulting moments (Ref. 6) were presenied at the Puerto Rico 
Conference on the Physics of Quantum Electronics, 1965. The 
atomic moments were explicitly obtained as atomic operators with 
the help of an atomic-operator algebra introduced much earlier 
(Ref. 9). Up to that time, the operator dependence of the atomic 
noise sources had not been recognized. For example, the paper 
presented by H. Haken, H. Risken, H. Sauerman, and W. 
Weidlich (unpublished) made use of noncommuting atomic noise 
sources introduced by Sauerman (Ref. IO), whose moments did not 
have the correct operator dependence. This defect was then 
remedied by Haken and Weidlich (Ref. 11) making use of our 
operator algebra (Ref. 9) but not of the Einstein relation. This 
procedure was not (as the Einstein relation is) capable of directly 
yielding the field (harmonic oscillator) noise sources introduced by 
Senitzky (Ref. 13) which differ slightly from ours. It is possible to 
treat the harmonic osciliator directly (Ref. 6) with the help of the 
Einstein relation or as a special multilevel atom with regular 
spacing with noise sources that agree with each other in the two 
cases and disagree slightly with the Senitzky noise sources. 

'M. Lax, in Physics of Quantun? Electronics, edited by P. L. 
Kelley, B. Lax, and P. E. Tannenwald (McGraw-Hill, New York, 
1966). 

'M. Lax, Phys. Rev. 129, 2341 (1963). 
''H. Sauerman, Z. Phys. 188, 480 (1965); 2. Phys. 189, 312 

(1966). 
"H. Haken and W. Weidlich, Z. Phys. 189, 1 ( 1966). 
I2H. Haken, Z. Phys. 190, 327 (1966). 
I3I. R. Senitzky, Phys. Rev. 119, 670 (1960); Phys. Rev. 

124, 642 (1961). 
14M. Lax and W. H. Louisell, IEEE J .  Quantum Electron. QE-3, 

47 (1967). This paper was presented at the Phoenix International 
Conference on Quantum Electronics, 1966. 

''R. D. Hempstead and M. Lax, Phys. Rev. 161, 360 (1967), 
Appeiidix A. This work was presented by R. D. Hempstead to the 
Dept. of Electrical Engineering of Massachusetts Institute of 
Technology in 1965, in partia1 fulfillment of the requirements for a 
Master of Science Degree. 

I6The intensity relaxation rate is ( A  ) / T ,  where the 
dimensionless ( A ) is tabulated in Table 1 and has the value 
5.853 at threshold. The scaling time T (see Refs. 17 and 56 for an 
exact definition of the scaling time T and other Van der Pol 
parameters) can be written T=(2n . I  28y), where 1.128 is 
the threshoid value of ( p  j and y is the cavity decay rate (- 107/ 
sec). Thiis, the typical time (117) is scaled up by the large factor 
n t h m  1 04. 

I7M. Lax, Phys. Rev. 157, 213 (1967), Fig. 1. 
"M. Lax, Phys. Rev. 160, 290 (1967), Ref. 10. 
I9C. Freed and H. A. Haus, in Physics of Quantum Electronics, 

edited by P. L. Kelley et a!. (McGraw-Hill, New York, 1966), p. 
715. 

''A. W. Smith and J. A. Armstrong, in Physics of Quantum 
Electronics, edited by P. L. Kelley et a/. (McGraw-Hill, New 
York, 1966), p. 701; Phys. Rev. Lett. 16, 1169 (1966). 

21F. T. Arecchi, in Quantum Optics, edited by R. J. Glauber 
(Academic, New York, 1969), p. 57. 

22R. F. Chang, R. W. Detenbeck, V. Korenman, C. O. Alley, 
Jr., and U. Hochuli, Phys. Lett. A 25, 272 (1967); R. F. Chang, 
V. Korenman, and R. W. Detenbeck, Phys. Lett. A 26, 417 
(1968). 

"H. Gamo, R. E. Grace, and T. J. Walter, IEEE J. Quantum 
Electron. QE-4,344 (1968). Measureinents of the secona factorial 

moment n(" and of the linewidth of laser intensity fluctuations 
were first reported to the Rochester Conference on Coherence and 
Quantum Optics, 1966. 

24F. Davidson and L. Mandel, Phys. Lett. A 25, 700 (1967). 
25M. Lax, in Statistical Physics, Phase Transitions arzd 

Superfluidity, edited by M .  Chretien, E. P.Gross, and S. Deser 
(Gordon and Breach, New York, 19681, Vol. 2. 

26E. R. Pike (private communication). 
27The first applications of this quantum-classical correspondence 

to phase and intensity fluctuations were made in Ref. 14. The first 
extension from two-time to many-time operators was made in 
Chap. 11 of the 1966 Brandeis Lectures (Ref. 25). An extension 
to many operators (including atomic as well as field operators) 
and many times was made in Ref. 28. At the same time, Hakeii 
and Weidlich (Ref. 29) introduced a modified-density-operator 
technique capable in principie of yielding multitime field-opera- 
tor averages (in the presence of atoins), and Haake (Ref. 30) has 
recently extended this technique to the non-Markoffian case. 
The techniques of Refs. 29 and 30 did not, however, provide the 
classical technique of taking multitime averages involving atomic 
as well as field opcrators introduced in Ref. 28. Applications of 
a correspondence technique to two-leve1 lasers was made by 
Haken, Risken, and Weidlich (Ref. 3 11, and applications to tlrree- 
leve1 lasers was made by Gordon (Ref. 32) and by Lax and Yuen 
(Ref. 33). 

"M. Lax, Phys. Rev. 172, 350 (1968). 
Z9H. Haken aiid W. Weidlich, Z. Phys. 205, 96 (1967). 
'OF. Haake, Phys. Rev. A 3, 1723 (1971). 
31H. Haken, H. Risken, and W. Weidlich, Z. Phys. 206, 355 

(1967). 
32J. P, Gordon, Phys. Rev. 161, 367 (1967). 
33M. Lax and H. Yuen, Phys. Rev. 172, 362 (1968). 
34H. Risken and H. D. Vollmer, Z. Phys. 201, 323 (1967); H. 

Risken, Z. Phys. 191, 302 (1966); S. Grossman and P. H. Richter, 
Z. Phys. 242, 458 (1971). 

35F. T. Arecchi, G. S. Rodari, and A. Sona, Phys. Lett. A 
25, 59 (1967); F. T. Arecchi, M. Giglio, and A. Sona, Phys. Lett. 
A 25, 341 (1967). 

'6E. D. Hinckley and C. Freed, Phys. Rev. Lett. 23, 277 (1969); 
K .  R. Manes and A. Siegman, Phys. Rev. Lett. 4, 373 (1971); H. 
Gerhardi, H. Welling, and A. Güttner, Z. Physik (to be published). 

37T. S. Jaseja, A. Javan, and C. H. Townes, Phys. Rev. Lett. 
10, 165 (1963); A. E. Siegman, B. Daino, and K. R. Manes, IEEE 
J. Quantum Electron. @-3,  160 (1967); Yu. N. Zaitsev and D. P. 
Stepanoff, Zh. Eksp. Teor. Fiz. Pis'ma Red. 6, 733 (1967) [JETP 
Lett. 6,  209 (1967)l; A. E. Siegman and R. Arrathoon, Phys. Rev. 
Lett. 20, 901 (1968); Yu. P. Egorov, Zh. Eksp. Teor. Fiz. Pis'ma 
Red. 8, 525 (1968) [JETP Leti. 8, 320 (1969)l; J. A. Armstrong 
and Archibald W. Smith, Appl. Phys. Lett. 4, 196 (1964); S. W. 
Crowe and R. M. Craig, Appl. Phys. Lett. 5, 72 (1964); W. E. 
Alrearn and J .  W.  Growe, IEEE J .  Quantiim Electron. QE-2, 597 
(1966). 

38M. Lax and M. Zwanziger, Phys. Rev. Lett. 24, 937 (1970). 
39D. Meltzer, W. Davis, and L. Mandel, Appl. Phys. Lett. 

17, 242 (1970). 
40E. Jakeman, C. J. Oliver, E. R. Pike, M. Lax, and M. 

Zwanziger, S. Phys. A 3,  L52 (1970). 
41R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963); in Quantum 

Optics and Electronics, edited by C. DeWitt et a/. (Gordon and 
Breach, New York, 1965). 

42R. J. Glauber, in Quantum Optics, edited by R. J. Glauber 
(Academic, New York, 1969), p. 15. In this paper the detector is 
replaced by a harmonic oscillator and then treated exactly rather 
than with the help of perturbatioti theory. This field, however, is 
still treated as free. 

43L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965). 
44J. R. Klauder and E. C. G. Sudarshan, Fundamentais of 

Quantum Optics (Benjamin, New York, 1968), Chap. 8. 
45P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A3 16 



E X A C T  P H O T O C O U N T  S T A T I S T I C S :  L A S E R S . .  

(1964). 
46B. R. Mollow, Phys. Rev. 168, 1896 (1968). 
47Details of derivations omitted here, and extensive tables of 

input data and results are available from M. Lax in a previous 
draft of this paper. 

48F. A. Johnson, R. Jones, T. P. McLean, and E. R. Pike, Phys. 
Rev. Lett. 16, 589 (1966); I. de Lotto, P. F. Manfredi, and P. 
Principio, Energ. Nucl. (Milan) 11, 557 (1964). 

49The intensity p ( T )  is more conventionally called I ( T ) ,  see for 
example, Ref. 43. In our laser example, p ( T )  will represent a 
dimensionless scaled intensity. Because of the presence of the 
efficiency factor E, either scaled or unscaled intensities can be used 
with impunity sirice quantities to be compared with experiment 
will be expressed in a form independent of E. 

50L. Mandel, Proc. Phys. Soc. Lond. 72, 1037 (1958). See also 
L. Mandel, in Progress in Optics, edited by E. Wolf 
(North-Holland, Amsterdam, 1963), Vol. 2, p. 242. 

51M. O. Scully and W. E. Lamb, Jr., Phys. Rev. 179, 368 
(1969). 

52W. H. Louisell, Radiation nnd Noise in Quantum Electronics 
(McGraw-Hill, New York, 1964), p. 104; W. H. Louisell and L. 
R. Walker, Phys. Rev. 137, R204 (1965); R. Kubo, J. Phys. Soc. 
Jap. 17, 1100 (1962); F. Coester and H. Kummel, Nucl. Phys. 
17,477 (1960). 

53R. J .  Glauber, Phys. Rev. Lett. 10, 84 (1963); Phys. Rev. 
130, 2529 (1963); Phys. Rev. 131, 2766 (1963). 

54E. C. G.  Sudarshan, Phys. Rev. Lett. 10, 277 (1963); 
Proceedings o f  tlte Symposium on Optical Lasers (Wiley, 
New York, 1963), p. 43; C. L. Mehta and E. C. G. Sudarshan, 
Phys. Rev. 138, B274 (1965). For a review on coherent states, 
see also L. Mandel and E. Wolf, Rev. Mod. Phys. 37,231 (1965). 

55H. Haken and W. Weidlich, in Quantum Optics, edited by R. 
J. Glauber (Academic, New York, 1969); M. Scully, in Quantum 
Optics, edited by R. J .  Glauber (Academic, Kew York, 1969); M. 
Lax, in Stati.stica1 Physics, Phase Transition and Superfluidity , 
edited by H. Chretian et al. (Gordon and Breach, New York, 
1968). For a recent review, see H. Haken, in Handbuch der 
Physik, edited by S .  Flügge (Springer, Berlin, 1970), Vol. XXV/2c. 

56M. Lax and W. H. Louisell, Phys. Rev. 185, 568 (1969) 
(especially Sec. 12). 

57M. Lax, Rev. Mod. Phys. 38, 541 (1966) [see especially Eqs. 
(3.27)-(3.28):. 

58M. Lax, Rev. Mod. Phys. 38, 359 (1966) [see Eqs. (5.13) and 
(7B. I)]. 

59M. Kac, Trans. Am. Math. Soc. 59, 401 (1946); Berkeley 
Symposittm on Mathematics, Statistics and Probability (University 
of California Press, Berkeley, Calif., 1951), p. 189; A. J. F. Siegert, 
IRE Trans. Inf. Theory 3, 38 (195'7); IRE Trans. Inf. Theory 4, 4 
(1958). 

60~eference 58, Eqs. (4.2) and (4.8). 
61P. M. Morse and H. Feshbach, Methods of Theoretical Physic,~ 

(McGraw-Hill, New York, 1953), p. 884. 
62Reference 61, p. 864. 
63R. D. Hempstead and M. Lax (unpublished). 
64P. M. Morse and H. Feshbach, Ref. 61, p. 437 ff.  
65R. E. Bellman. R. E. Kalaba, and J. A. Lockett, Numerical 

Inversion of the Laplace TransfOrm (American Elsevier, New York, 

1966). 
66V. I. Krvlov and N. S. Skoblva. Handbook o f  Numerical , . 

Inversion of Laplace Tran.forms (Israel Program for Scientific 
Translations, Jerusalem, 1969). 

67F. B, Hildebrand, Zntroduction to Numerical Analysis 
(McGraw-Hill, New York, 1956), Chap. 8. 

%J. R. Westlake, A Handbook of Numerical Matrix Inversion 
(Wiley, New York, 1968), Chap. 4; W. Gautschi, Math. Comput. 
23, 109 (1969). 

6 9 ~ .  E, Salzer and R. Zucher, Bull. Am. Phys. Soc. 55, 1004 
(1949). 

70S. O. Rice, Bell Syst. Tech. J. 24, 46 (1945); L. Mandel, Proc. 
Phys. Soc. Lond. 74, 233 (1959). 

llM. Lax, Rev. Mod. Phys. 32, 25 (1960). 
12R. J. Glauber, in Physics of Quantum Electronics, edited by P. 

L. Kelley et al. (McGraw-Hill, New York, 1966), p. 808. 
73G. Lachs, Phys. Rev. 138, B1012 (1965). See also H. 

Morawitz, Phys. Rev. 139, A1072 (1965), G. Lachs, J .  Appl. 
Phys. 42, 602 (1971). 

74E. Jakeman and E. R. Pike, J. Phys. A 2, 115 (1969). 
"A. K,  Jaiswal and C. L. Mehta, Phys. Rev. A 2, 168 (1970). 
76E. Jakeman and E. R. Pike, J. Phys. A 1, 128 (1968). 
77B. Numerov, Publ. Observatoire Central Astrophys. Russ. 

2, 188 (1933). 
78D. R,  Hartree, The Calculation o f  Atomic Structures (Wilev, 

New York, 1957), pp. 71-85; Numerical Analysis (Clarendon, 
Oxford, England, 1958), pp. 142-162. 

79R. P. Feynman, Phys. Rev. 56, 340 (1939); H.  Hellmann, 
EinfÜhrung in die Quantenchemie (Franz Deuticke, Leipzig, 
1?37), p. 285. 

80R. E. Grace and H. Gamo, J. Opt. Soc. Am. 59, 504 (1969). 
"F. A. Johnson, T. P. McLean, and E. R. Pike, in Physics of 

Quantum Electronics, edited by P. L. Kelley et al. (McGraw-Hill, 
New York, 1966), p. 706. 

82E. Jakeman, C. J. Oliver, and E. R. Pike, J. Phys. A 1, 406 
(1968); J. Phys. A 1, 497 (1968); J. Phys. A 3, L52 (1970). 

R. Pike, in Quantum Optics, edited by R. J. Glauber 
(Academic, New York, 1969), p. 160. 

84C. Helstrom, Proc. Phys. Soc. Lond. 83, 777 (1964). 
85A. K. Jaiswal and C. L. Mehta, Phys. Rev. A 2, 168 (1970). 
86E. Jakeman and E. R. Pike, J. Phys. A 1, 128 (1968); J. Phys. 

A 1, 627 (1968); J. Phys. A 2, 115 (1969). 
87L. Mandel, Proc. Phys. Soc. Lond. 72, 1037 (1958); Proc. 

Phys. Soc. Lond. 74, 233 (1959); in Quantum Electronics, edited 
by P. Grivet et al. (Columbia U.P., New York, 1964), p. 101. 

88T. P, McLean and E. R. Pike, Phys. Lett. 15, 318 (1965). 
89J. Périna, Phys. Lett. A 24, 333 (1967). 
90J. Périna, and R.  Horák, J. Phys. A 2, 702 (1969). 
9'E. M. Purcell, Nature (Lond.) 178, 1449 (1956). 
92H. Risken, Z. Phys. 251, 231 (1972). 
93R. Graham and H. Haken, Z. Phys. 243, 289 (1971). 
94S. R. De Groot and P. Mazur, Nonequilibrium 

Thermodynamics (North-Holland, Amsterdam, 1962), Chap. VII. 
95MvI. Lax, in Dynamical Processes ia Solid State Optics, edited 

by R. Kubo and H. Kamimura (Benjamin, New York, 1967), pt. 
I, Eq. (22C1). 


